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Abstract

Children (4 to 6 years old) were presented with problems requiring from 4 to
7 moves for solution. The problems were constructed such that the subgoal
ordering was ambiguous. Children’s performance was consistent with a
generate and test strategy that had a 2-move lookahead for a goal state, a

no-backup constraint, and some partial evaluation of progress toward the goal.
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Ambiguous sub-goals

When faced with problems in unfamiliar domains, adults draw on a small
repertoire of processes called "weak maethods®, including generate-and-test,
heuristic search, means-ends analysis, hill-climbing, and planning (Newell, 1969;
Laird & Newaell, 1983a). The weak methods are usually inadequate and inefficient
compared to knowledge-rich, problem-specific methods. Nevertheless, they are
extremely general, and they often provide the only basis for intelligent action.
Young children also use rudimentary forms of weak methods requiring the use of
subgoals, such as means-ends analysis (Klahr, 1978; Klahr & Robinson, 1981, Spitz
& Borys, 1984; Spitz, Webster, & Borys, 1982).

Klahr & Robinson (1981) presented pre-school children with two variants of the
Tower of Hanoi (TOH). They found that performance declined when subgoal
ordering was not self-evident. On the standard "tower-ending” problems, in which
all the objects are stacked on a single peg, it is clear that the bottom-most object
must get to the goal peg first, then the second from the bottom, and so on. This
subgoal sequence is apparent even though the exact move sequence necessary to
achieve it is not. On these problems, half of the 6-year-old subjects could solve
6-move problems, and even 5-year olds were able to solve 4-move problems
most of the time.

On "flat-ending” problems, in which each peg has one object on it, the
proportion of 5- and 6-year-olds who could reliably plan at least four moves
ahead dropped from 81% to 40%. Flat-ending problems do not have an obvious
order in which disks reach their goal pegs. When the surface form of the problem
does not suggest an unambiguous ordering of subgoals, then children have a
difficult time applying MEA. Instead, they must use an even weaker one of the
weak methods.

This study further investigates how pre-school children behave when confronted
with such ambiguous subgoal problems. We address the following questions:

* Do children move haphazardly when subgoals are ambiguous?
* Do children avoid unnecessary backup?
* Do children advance directly toward a goal once it becomes “visible”?

* Are children reluctant to move away from a goal temporarily in order
to ultimately reach it?

* Are they easily led down “garden paths"?
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Ambiguous sub-goals

The Dog-Cat-Mouse Puzzle

The Dog-Cat-Mouse (DCM) puzzle consists of three toy animals and three toy
foods that “belong” to the animals (a bone, a fish and a piece of cheese) arranged
on the game-board illustrated in Figure 1. The board has four grooves running
parallel to each side of the square, and a diagonal groove between the upper left
and lower right corners of the square formed by the four outside grooves. The
animals can be moved along the groves, and the foods can be fastened to and
unfastened from each of the four corners.

Figure 1 The apparatus for the Dog-Cat-Mouse problem. Each animal
must be moved to its favorite food: the dog to the bone, the
cat to the fish, and the mouse to the cheese.

A problem consists of an initial state -- indicated by some arrangement of the
animals and a final state -- indicated by some arrangement of the foods.
Problem Set

The state space for the DCM puzzle is illustrated in Figure 21, Each node
represents a legal configuration. The label on each arc corresponds to the animal
that was moved to get from one state to its neighbor.
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Ambiguous sub-goals 229

Figure 2 State space for the DCM problem. Each node represents a
unique configuration of the three animals.

Several properties of the state space are relevant to our subsequent discussion:

* Rotation problems have both initial and final states on the same
hexagon -- either the inner or the outer. They have minimum paths
that do not use the diagonal of the game board (Examples: 1-5, 23-17).
Permutation problems have initial and final states on different
hexagons, and require the use of the diagonal. These problems start
and end with different permutations of the three animals, and the
permutation order can be changed only by using the diagonal
(Examples 1-15, 22-3).

Permutation problems generally have several minimum paths. For
example, the minimum path from node 1 to node 19 could cross from
the outer to the inner loop at nodes 2, 4 or 6.

If we abstract over the specific identity of the pieces, then there are
only two types of nodes: those with open diagonals, having three
adjacent states (eg. 2, 4, 19, 21), and those with closed diagonals,
having two adjacent states (e.g., 1, 3, 18, 20). At an open node, there
are three possible moves; at a closed node, there are two possible
moves.
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Problem selection

Problems were designed to vary path length (from 4 to 7), type of initial node
(open or closed diagonal), and problem type (permutation or rotation). The eight
problems selected are listed in the bottom section of Table 12 In addition, four
three-move training problems were used. They are shown at the top of Table 1.

Tabie 1: Problem Set

Initial Goal Path Initial Problem
State State Length Node Type

T1 1 4 3 closed rotation
Training T2 7 22 3 closed permutation

Set T3 12 9 3 open rotation
T4 2 17 3 open permutation

1 17 21 4 open rotation
2 18 8 4 closed permutation
3 11 20 S closed permutation

Problem 4 10 5 5 open rotation

Set 5 13 19 6 open rotation

8 24 18 8 closed rotation
7 14 7 7 closed permutation
8 15 8 7 open permutation

Method
Subjects

Thirty-nine predominantly middle-class children, ranging in age from 45 to 70
months old, completed this experiment.

Procedure

Problems were presented in the order shown in Table 1. Children were told a
cover story about animals who wanted to get to their favorite food. Children were
given two chances to produce a minimum path solution to each problem. |If a
problem was solved in the minimum number of moves, then the next problem in
the sequence was presented. If it was solved in more than the minimum number,
or if it had not been solved after twice the minimum number of moves had been
made, then it was presented a second time. Regardless of whether the second trial
produced the minimum path, a longer solution path, or no solution, the next
problem in the sequence was then presented.
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Results

For each trial, subjects were assigned a 0/1 score based on the number of
moves they made. If the number of moves made on any trial was greater than two
more than the minimum path, then the score was 0, otherwise it was 1. Note that
the scoring is somewhat more lenient than the actual procedure used to decide
whether or not to repeat a trial. Two extra moves were allowed because they
correspond to common minor errors in this particular state space:

* On rotation problems, if subjects unnecessarily use the diagonal to
move from the inner to outer hexagon, and then move back to the
corraect hexagon, they will make two extra moves.

* |If subjects make a false start, but immediately correct it, then they will
make two extra moves.

Each subject was assigned a score based on the percentage of passes (1s) == on
either the first or second presentation of each problem -- across the eight
problems. Each problem was assigned a score based on the proportion of
subjects passing it. The scores, ranked by subject performance and problem
difficulty, are shown in Table 2.

Subjects’ performance varied widely: from maximum scores for the three best
subjects to almost total failure for the worst subject. Problem difficulty also varied
widely: from nearly all subjects passing the easiest problem to about two-thirds of
the subjects failing the hardest problems.

The most important result shown in Table 2 is the rank order of the problems.
Recall that the problems varied in path length from 4 moves (problems 1 and 2) to
7 moves (problems 7 and 8). Path length is a poor predictor of problem difficulty
(r = .34). (See also the solid line in Figure 3.) The two easiest problems are also
the two shortest, but even though they both have a path length of 4, there is a
20% difference in the proportion of subjects passing them. The next two easiest
problems are the two longest (7 moves). The four hardest problems are
intermediate in path length, and within that set, there is a large difference between
the pairs with the same path length.

In the following analysis, we will show how path length, solution strategy and the
structure of the problem space interact to produce this pattern of results.

Strategic analysis

How might children attempt to solve these problems? In this section we will
describe a basic strategy and compare it to the subjects’ performance. Then we
will propose several variations on that strategy, and show that none of them fit the
data as well as the basic strategy.

Consider the following procedure -- called Strat2 -- for making moves in the
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Table 2: Pass/fail scores (by second trial) for all subjects on all
problems. Ranked from best to worst subject and easiest to hardest problem.
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DCM state space:

1. If there is a two-move sequence that can reach the goal state, then
make it, otherwise:

2. Generate all candidate moves: (all legal moves, except the piece just
moved.)

3. If there is more than one candidate, choose randomly.

4. Go to step 1.

This is a simple generate—and-test strategy, with two constraints: a) Two-move
lookahead to the goal state. The lookahead has a very simple evaluation function:
the state is either the goal state or it is not. No partial evaluations are made
(such as the number of pieces in their goal positions.) b) No immediate backup. In
the DCM puzzle, a constraint against moving the same piece twice is equivalent to
a prohibition on immediate backup.

We can determine the probability that Strat2 would discover a minimum path
solution for each problem by computing the compound probabilities that it will
stay on a minimum path.

By applying this analysis to each of the eight problems, we can compare the
probability that Strat2 would pass each problem with the subjects’ actual
performance. For each of the problems in Table 3 -- ranked from easiest to
hardest -— we have listed the problem number, the initial and final states, the path
length, the probability that Strat2 would find the minimum path solution on a
single trial, the probability that Strat2 would be successful if it were given two
chances to find the minimum path, and, in the final column, the proportion of
subjects passing each problem by the second trial.

Table 3: Subject performance and Model performance

Problem States Path Strat2 Proportion
Number Initial Final Length P 2p - p? Passing

2 18--—-> 8 4 500 .750 95

1 17 ===> 21 4 333 556 74

8 15 ---> 8 7 500 750 69

7 14 ---> 7 7 500 .750 59

3 11 ---> 20 5 375 609 51

5 13 ---> 19 6 333 556 50

6 24 ---> 18 6 250 440 34

4 10---> § 5 167 310 33

233



Ambiguous sub-goals 934

A plot of both the model's and the subjects’ likelihood of success for each
problem, is shown in Figure 3. Strat2 explains almost 60% of the variance in
problem difficulty (r = .767, t = 29, df = 7, p < .05). If we eliminate the two 4-
move problems, which were much easier for the subjects than for the model, then
the correlation between Strat2 and subject performance is r = .95 (t=6.02, df=5, p

< .01).

1.00
90
Subjects
.80
°
S
s T0F-
(8]
& Strat 2,’
< 60| /
a d
4
a .50}
40 rSmn ] :.':
30 6 0 G
0{ | | 1 | 1 1 1 i
0 ] 2 3 q [ 6 7 8
Problem Number
Figure 3 Probability of passing a problem by the second trial for subjects

(solid line), Strat2 (dashed line) and Strat1 (dotted line).

Strat2 can be characterized as a random walk through the state space with two
constraints: no immediate backup, and a two-step lookahead for the goal state.
We can ask two questions about these constraints. First, how well do subjects
adhere to them? Second, how important are they?

The No-Backup Constraint. Children’s compliance with the no-backup constraint
was assessed by counting the number of times - over both successful and
unsuccessful trials - that they moved the same piece twice in succession. Overall,
there was a violation rate of 11%. If moves were made without the constraint, we
would expect 33% of moves to be double moves.

Removing the no-backup constraint from Strat2 substantially reduces the
probability of solution. All the two-way branches become three-way branches,
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and all the direct connections (e.g., 11-10 in problem 7) become binary nodes.
Even with two-move lookahead, such a model would perform far below the
average solution rates for our subjects.

Depth of Lookahead. Compliance with the two-move lookahead constraint was
assessed by computing the proportion of trials in which subjects move to the goal
directly from states that are n moves distant from the goal. Figure 4 shows the
actual proportion of minimum path solutions as a function of distance from the
goal. Also shown are the proportions predicted by Strat2 and by a random move
generator.

Strat2’'s two-move lookahead predicts perfect performance from up to 2 moves
away from a goal, and then a sharp decline. Subject performance is indeed quite
good at 2 moves away, but it remains high (nearly 90%) for 3 moves away, rather
than dropping as predicted. In fact, about 40% of the subjects exhibited perfect
performance once they were 3 moves away from the goal.

Given this relatively good performance from 3 moves away, it is reasonable to
consider an alternative to Strat2 that differs only in having three—-move, rather than
two-move lookahead to the goal. Strat3 would produce very high likelihoods of
success within two trials, ranging from .97 and .94 for problems 8 and 7, to lows
of 56 for problems 1, 4, and 5. Not only does Strat3 produce unacceptably high
solution rates, but also, it only explains about 5% of the variance in subjects’
solution rates.

If we degrade the two-move lookahead to a one-move lookahead, then we get a
model that explains only 26% of the variance.

All-or-none Evaluation. Associated with Strat2’'s two-move lookahead is an all-
or-none evaluation function. If the children were using a partial evaluation
function that was sensitive to some -- but not all -- of the pieces being in their
goal positions, then we should see two kinds of biases in their move patterns.
One bias would show up as a tendency to favor moves -- early in the solution
-- that increase the number of pieces in their goal locations. For example, in
Problem 2 (18 --> 8), a first move of the cat increases the evaluation function,
while moving the dog does not. The dog is also off the minimum path. QOver all
trials and all subjects, on this problem, the cat was moved 81% of the time. Even
more revealing are the “garden path” problems. In Problem 4 (10 --> b5), the
minimum path move is the mouse, which does not increase the evaluation
function. Only the cat increases the partial evaluation function, and it is preferred
on 66% of the trials, even though it is off the minimum path. Similarly, on
Problem 5 (13 -->19), the non-minimum move of the dog is preferred on 61% of
the trials.
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Figure 4 Proportion of minimum path solutions from n moves away, for

Strat2, subjects and a random model.

The other bias would be a reluctance to remove pieces from their goal locations
-- to reduce the value of a partial evaluation function. This can be assessed on
Problem 3 (11-->20), where the minimum path sequence requires that the dog be
temporarily removed from its goal position. On 65% of all trials with Problem 3,
subjects preferred to move the cat rather than the dog, even though this took
them off the minimum path, The all-or-none evaluation function in Strat2
understates the sensitivity of children to partially correct solutions.

Summary of Strategic Analysis

Strat2 explains almost 60% of the variance over all problems and 95% of the
variance over the six most difficult problems. Strategies that vary the depth of the
lookahead do not do as well. Stratl explains 26% of the variance, and Strat3 only
5%. Elimination of no-backup from Strat2 yields unacceptably low solution rates.

Strat2 slightly understates children’s abilities in two respects. First, the children
appear to be capable of some partial evaluation, whereas Strat2 is not. Second,
once they are only 3 moves away from the goal state, the children are more likely
to find a minimum path solution than is Strat2. Nevertheless, within the space of
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plausible alternative strategies explored here, Strat2 provides the best account of
how children solve problems with ambiguous subgoals.

Discussion

Piaget (1976) concludes from his observations of 5~ and 6-year-old children
solving conventional TOH problems that they are unable to plan and that “There is

a systematic primacy of the trial-and-error procedure over any attempt at
deduction, and no cognizance of any correct solution arrived at by chance.” (p.
291). In contrast, studies of pre-schoolers solving a modified version of the TOH
(Klahr & Robinson, 1981) show that, although the amount of planning they can do
is limited, the procedures they use are highly similar to adult forms.

In this investigation, pre-schoolers were presented with problems having
ambiguous subgoals. We discovered that here too, Piaget's characterization does
not do justice to young children’s abilities. First, as described earlier, even the
random component of Strat2 is highly constrained. The avoidance of double
moves reveals a rudimentary knowledge about thoroughly useless actions that is
not conveyed by the “trial-and-error” view. Second, solutions are not really
“arrived at by chance”, since there is a lookahead to the goal state, and little
deviation from the minimum path, once it is in sight. Third, children use partial
evaluations of nearly correct states to guide their choice of moves.
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