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ARTICLE OPEN

Development and validation of an interpretable neural
network for prediction of postoperative in-hospital mortality
Christine K. Lee1,2, Muntaha Samad3, Ira Hofer4, Maxime Cannesson 1,4✉ and Pierre Baldi2,3

While deep neural networks (DNNs) and other machine learning models often have higher accuracy than simpler models like
logistic regression (LR), they are often considered to be “black box” models and this lack of interpretability and transparency is
considered a challenge for clinical adoption. In healthcare, intelligible models not only help clinicians to understand the problem
and create more targeted action plans, but also help to gain the clinicians’ trust. One method of overcoming the limited
interpretability of more complex models is to use Generalized Additive Models (GAMs). Standard GAMs simply model the target
response as a sum of univariate models. Inspired by GAMs, the same idea can be applied to neural networks through an
architecture referred to as Generalized Additive Models with Neural Networks (GAM-NNs). In this manuscript, we present the
development and validation of a model applying the concept of GAM-NNs to allow for interpretability by visualizing the learned
feature patterns related to risk of in-hospital mortality for patients undergoing surgery under general anesthesia. The data consists
of 59,985 patients with a feature set of 46 features extracted at the end of surgery to which we added previously not included
features: total anesthesia case time (1 feature); the time in minutes spent with mean arterial pressure (MAP) below 40, 45, 50, 55, 60,
and 65mmHg during surgery (6 features); and Healthcare Cost and Utilization Project (HCUP) Code Descriptions of the Primary
current procedure terminology (CPT) codes (33 features) for a total of 86 features. All data were randomly split into 80% for training
(n= 47,988) and 20% for testing (n= 11,997) prior to model development. Model performance was compared to a standard LR
model using the same features as the GAM-NN. The data consisted of 59,985 surgical records, and the occurrence of in-hospital
mortality was 0.81% in the training set and 0.72% in the testing set. The GAM-NN model with HCUP features had the highest area
under the curve (AUC) 0.921 (0.895–0.95). Overall, both GAM-NN models had higher AUCs than LR models, however, had lower
average precisions. The LR model without HCUP features had the highest average precision 0.217 (0.136–0.31). To assess the
interpretability of the GAM-NNs, we then visualized the learned contributions of the GAM-NNs and compared against the learned
contributions of the LRs for the models with HCUP features. Overall, we were able to demonstrate that our proposed generalized
additive neural network (GAM-NN) architecture is able to (1) leverage a neural network’s ability to learn nonlinear patterns in the
data, which is more clinically intuitive, (2) be interpreted easily, making it more clinically useful, and (3) maintain model
performance as compared to previously published DNNs.
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INTRODUCTION
We and others have recently shown that deep neural networks
(DNNs) and random forest algorithms, using only readily available
information extracted from the electronic health record before or
at the end of surgery, can successfully predict postoperative in-
hospital mortality with area under the curve (AUC) ranging from
0.87 to 0.931–3. While DNNs and other machine learning models
often have higher accuracy than simpler models like logistic
regression (LR), they are often considered to be “black box”
models and this lack of interpretability and transparency is
considered a challenge for clinical adoption4. In healthcare,
intelligible models not only help clinicians to understand the
problem and create more targeted action plans, but also help to
gain the clinicians’ trust. Thus, LR models remain popular in the
healthcare space, as they are easily interpretable, robust, easy to
implement, and usually have good performance, as previously
observed in our work comparing DNNs to LR3. However, LR can be
limited by the fact that it is a shallow model with no ability to
create new feature representations, such as with DNNs. An LR
model can only combine the input features linearly before passing

that combination through a logistic function, and this linear
combination of features may not reflect clinical intuition. For
example, both hypervolemia and hypovolemia have been shown
to increase the risk of postoperative complications, reflecting a
nonlinear relationship between a patient’s volume status and the
risk for complications5. Nonlinear relationships can be captured by
LR, but only through extra featurization and analyses, which may
result in an infinite number of possible relationships and
combinations of features. While DNNs are capable of learning
nonlinear relationships between features on their own, they lack
the interpretability of LR.
One method of overcoming the limited interpretability of more

complex models is to use Generalized Additive Models (GAMs).
Standard GAMs simply model the target response as a sum of
univariate models. Caruana et al. demonstrated that GAMs which
also included pairwise interactions of features could be applied to
real healthcare problems such as pneumonia risk with interpret-
ability and high accuracy6. Through a graphical representation of
each model feature’s learned contribution to the predicted risk,
the interpretable GAMs help to visualize learned patterns and
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identify new patterns in the data or confirm what clinicians
already know. Inspired by GAMs, the same idea can be applied to
neural networks through an architecture referred to as General-
ized Additive Models with Neural Networks (GAM-NNs)7. In GAM-
NNs, a network is built on top of each input feature (or each group
of input features) and the output of these networks are linearly
combined to produce the final regression or classification output.
To incorporate a modest number of pairwise interactions,
additional networks processing the corresponding pairs can also
be included. Pairing of features was not assessed in this study to
avoid cluttering the final interpretation. Bras-Geraldes et al.
showed GAM-NNs could be used to predict mortality in the ICU
with an AUC of 0.83, using 19 features from vital signs, lab values,
demographics, admission information, and comorbidities8.
In short, models like DNNs allow for learning the more complex

relationship between the input and class label. However, they are
not as easily interpretable as LR. In this manuscript, we present the
development and validation of a model applying the concept of
GAM-NNs to allow for interpretability by visualizing the learned
feature patterns related to risk of in-hospital mortality for patients
undergoing surgery under general anesthesia.

RESULTS
Patient characteristics
The data consisted of 59,985 surgical records, and the percent of
occurrence of in-hospital mortality was 0.81% (n= 389) in the
training set and 0.72% (n= 87) in the testing set. Patient
demographics and characteristics of the training and testing
datasets are summarized in Table 1.

Development of the model
The final hyperparameters for the GAM-NN model with Healthcare
Cost and Utilization Project (HCUP) features consist of one hidden
layer with 50 neurons hyperbolic tangent (tanh) activations (Table
2). The model was trained with dropout probability of 0.5 and L2
weight decay of 0.0001. The final hyperparameters for the GAM-
NN model without HCUP features were the same except for an L2
weight decay of 0.001.

Model Performance
All performance metrics reported below refer to the testing set
(n= 11,997).

Performance metrics. Area under the receiver operating char-
acteristic curve (AUC ROC) and average precision (AP) are
summarized in Table 3. The GAM-NN model with HCUP features
had the highest AUC 0.921 (0.895–0.95). Overall, both GAM-NN
models had higher AUCs than LR models, however had lower APs.
The LR model without HCUP features had the highest AP 0.217
(0.136–0.31).

Interpretability: Visualizing feature contributions. To assess the
interpretability of the GAM-NNs, we visualized the learned
contributions of the GAM-NNs and compared against the learned
contributions of the LRs for the models with HCUP features.
In Fig. 1, we visualize these contributions for a select sample of the

top nine contributing features in the GAM-NN model. The top nine
were chosen by selecting the features with the highest mean GAM-
NN contribution. We did not include any binary features in this
example, such as presence of arterial line, as their visualization would
not be as interesting, since there would only be two values to plot.
We see that, overall, the direction of the learned contributions

from both the GAM-NN and LR models were similar, i.e., as MAX_DES
increases, the contributions for both models decreased. However,
while the LR model will always have a linear relationship, the GAM-
NN learned nonlinear relationships that were unique to each feature.

For example, for the feature AVG_MAP_10_MIN we see a nonlinear
function where GAM-NN contributions increase for mean arterial
pressure (MAP) < 60mmHg and MAP > 60mmHg. One odd relation-
ship is the one observed between ANES_CASE_HOURS and mortality
risk, where, with less hours spent under anesthesia there was more
contribution to mortality risk. This could be a reflection of the
infrequency of extremely high anesthesia case hours (>10 h), and
that in-hospital mortality patients may not spend significantly longer
amounts of time under anesthesia compared to non-mortality
patients. In addition, while risk contribution increased with lower
MIN_DBP, there was the opposite relationship for AVG_DBP_10_MIN
and AVG_DBP, which could indicate that not all summary measures
of vital signs are the same, and that these should be taken into
consideration when selecting features. Both of these examples
demonstrate that the effect of a particular feature may not always
represent an underlying physiological phenomena, and that
modification of a particular feature for a particular patient may not
necessarily produce a reduction in risk.
For an up-close comparison of interpretability at the patient-

specific level, we can also look at the top GAM-NN contributors to
the risk of mortality (Table 4). If we look at the top 10 GAM-NN
contributions from the best-performing GAM-NN with HCUP features
for two unique in-hospital mortality patients from the testing set, we
can see that the features that contributed most were different. ASA
was a top contributor for Patient Example 1 but not for Patient
Example 2. Surgery-related features like presence of HCUP category 1
(HCUP_cat_1_YN) (Incision and excision of CNS), minimum case
hemoglobin (MIN_HB), and time of anesthesia (ANES_CASE_HOURS)
were top contributors for Patient Example 2, not found in Patient
Example 1. While five of the shared top contributing features
between Patient Examples 1 and 2 were blood pressure and
phenylephrine-related features, Patient Example 1’s top contributing
features also included an additional blood pressure and heart rate-
related feature. These differences could indicate that while vital signs
were top contributors for both patients, the surgery type contributed
more to risk for Patient Example 2 than for 1.

DISCUSSION
Despite their popularity and success in many applications such as
speech recognition and computer vision, DNNs still face challenges
to being fully accepted in the healthcare data space. There has
been growing interest and success in the application of DNNs for
healthcare tasks due to the availability of large and complex
electronic biomedical data, such as genomic data, biomedical
images, and electronic medical records (EMRs)1–3,9–11. In addition,
in many cases, DNNs have shown better predictive performance
than traditional models such as LR, however, a significant
perceived problem with DNNs has been their “black box”
reputation4. Clinicians are interested in not only the probability
of an adverse event, such as in-hospital mortality, occurring but
also need to understand what variables contributed to the
increased risk so that they can change and target their therapies
to potentially avoid an adverse event altogether. The inability of a
model to allow for this level of transparency and interpretability is
a potential barrier to positive clinical perception and can decrease
trust and subsequently usability12–14. A small survey of ICU and ED
clinicians found that clinicians viewed interpretability of a machine
learning model as justification for clinical decision making
following a model’s prediction, and so models should be built
with enough transparency around the clinical features driving the
model’s decision that clinicians could validate model outputs with
their clinical knowledge and judgment13. Ginestra et al. found that
when evaluating the real-time hospital implementation of their
ML-based sepsis prediction alert, only 16% of providers found the
alert helpful 6 h after an initial alert and only 9% reported that the
alert changed management14. In addition, the most frequent
suggestion by clinicians was transparency regarding factors
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leading to a sepsis alert. LR is often preferred in the medical field
due to its easy implementation and interpretability. The learned
coefficients can easily be extracted and interpreted as relative
significance, and odds ratios calculated from those coefficients are

routinely used in the medical research community to interpret a
feature’s contribution to increased odds of an adverse event.
However, LR is a shallow model with no ability to create new
feature representations and can only combine the features linearly

Table 1. Training and testing dataset patient characteristics reported as number patients (%) or mean ± standard deviation. HCUP code description
and distribution is shown only for those representing >1% of the training dataset.

Train Test

No. of patients 47,988 11,997

No. of patients with in-hospital mortality (%) 389 (0.81%) 87 (0.73%)

Age (years) 56 ± 17 56 ± 18

Estimated blood loss (cc) 95 ± 540 94 ± 410

Presence of arterial line (%) 8585 (17.9%) 2135 (18.0%)

Presence of pulmonary artery line (%) 1641 (3.4%) 430 (3.6%)

Presence of central line (%) 2444 (5.1%) 635 (5.3%)

ASA score (%)

1 3023 (6.3%) 762 (6.4%)

2 17930 (37.4%) 4477 (37.3%)

3 23960 (49.9%) 5986 (49.9%)

4 2911 (6.1%) 735 (6.1%)

5 144 (0.3%) 30 (0.3%)

6 4 (0.01%) 0 (0%)

HCUP code description (%)

UPPER GASTROINTESTINAL ENDOSCOPY, BIOPSY 3864 (8.05%) 965 (8%)

COLONOSCOPY AND BIOPSY 1693 (3.53%) 388 (3.2%)

LAMINECTOMY, EXCISION INTERVERTEBRAL DISC 1029 (2.14%) 287 (2.4%)

OTHER THERAPEUTIC PROCEDURES, HEMIC AND LYMPHATIC SYSTEM 1013 (2.11%) 247 (2.1%)

OTHER OR THERAPEUTIC PROCEDURES ON RESPIRATORY SYSTEM 985 (2.05%) 254 (2.1%)

INCISION AND EXCISION OF CNS 942 (1.96%) 255 (2.1%)

OTHER OR PROCEDURES ON VESSELS OTHER THAN HEAD AND NECK 932 (1.94%) 207 (1.7%)

OTHER THERAPEUTIC ENDOCRINE PROCEDURES 904 (1.88%) 258 (2.2%)

HIP REPLACEMENT, TOTAL AND PARTIAL 792 (1.65%) 186 (1.6%)

ARTHROPLASTY KNEE 768 (1.6%) 193 (1.6%)

OTHER OR THERAPEUTIC NERVOUS SYSTEM PROCEDURES 750 (1.56%) 181 (1.5%)

THYROIDECTOMY, PARTIAL OR COMPLETE 737 (1.54%) 172 (1.4%)

SPINAL FUSION 735 (1.53%) 150 (1.3%)

OTHER OR THERAPEUTIC PROCEDURES ON BONE 722 (1.5%) 195 (1.6%)

CONVERSION OF CARDIAC RHYTHM 720 (1.5%) 184 (1.5%)

HEART VALVE PROCEDURES 715 (1.49%) 186 (1.6%)

CHOLECYSTECTOMY AND COMMON DUCT EXPLORATION 700 (1.46%) 216 (1.8%)

ENDOSCOPIC RETROGRADE CANNULATION OF PANCREAS (ERCP) 663 (1.38%) 155 (1.3%)

KIDNEY TRANSPLANT 659 (1.37%) 194 (1.6%)

OTHER OR THERAPEUTIC PROCEDURES ON NOSE, MOUTH AND PHARYNX 653 (1.36%) 173 (1.4%)

OTHER HERNIA REPAIR 652 (1.36%) 178 (1.5%)

HYSTERECTOMY, ABDOMINAL AND VAGINAL 641 (1.34%) 155 (1.3%)

APPENDECTOMY 634 (1.32%) 147 (1.2%)

OTHER THERAPEUTIC PROCEDURES ON MUSCLES AND TENDONS 629 (1.31%) 154 (1.3%)

COLORECTAL RESECTION 609 (1.27%) 127 (1.1%)

INSERTION, REVISION, REPLACEMENT, REMOVAL OF CARDIAC PACEMAKER OR CARDIOVERTER/DEFIB
RILLATOR

601 (1.25%) 128 (1.1%)

ABORTION (TERMINATION OF PREGNANCY) 587 (1.22%) 162 (1.4%)

TREATMENT, FRACTURE OR DISLOCATION OF HIP AND FEMUR 570 (1.19%) 155 (1.3%)

OTHER OR GASTROINTESTINAL THERAPEUTIC PROCEDURES 569 (1.19%) 124 (1%)

OPEN PROSTATECTOMY 554 (1.15%) 140 (1.2%)

DIAGNOSTIC BRONCHOSCOPY AND BIOPSY OF BRONCHUS 550 (1.15%) 131 (1.1%)

NEPHRECTOMY, PARTIAL OR COMPLETE 526 (1.1%) 124 (1%)
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before passing through a logistic function to represent the
probability of response labels, such as in-hospital mortality. Neural
networks have the ability to self-learn new and significant linear
and nonlinear features that are combinations of the original input
features. However, these features can be thought of as “hidden” in
the network layers. In this study, we were able to demonstrate that
our proposed generalized additive neural network (GAM-NN)
architecture is able to (1) leverage a neural network’s ability to
learn nonlinear patterns in the data, which is more clinically
intuitive, (2) be interpreted easily, making it more clinically useful,
and (3) maintain model performance as compared to our first
study3.
It should be noted that LR models can still incorporate nonlinear

feature representations, but this requires extra featurization. For
example, hypotension and hypertension are both of concern
during surgery. If we use the average MAP as a feature, an LR
model would only learn a coefficient that indicates either risk
increases with increased MAP or risk decreases with increased
MAP, as we see in Fig. 2. To incorporate the domain knowledge
that risk should increase with both high MAP and with low MAP,
the MAP feature would have to be transformed into new features,
i.e., binning the MAP values and creating multiple binary features.
However, neural networks minimize the need for this type of
tedious feature engineering and preprocessing, and they can
effectively learn this clinically intuitive relationship without the
domain knowledge or extra featurization.
Two limitations to our current study are that we were only able

to develop and validate our model on (1) a single institution and
(2) from the years 2013 to 2016, potentially limiting the
generalizability of our results. Clinical practice not only varies
from institution to institution, but also can change year to year
with the emergence of new clinical evidence. While the difficulty
in having large enough retrospective medical datasets to
effectively train very complex models such as DNNs is no longer
a limitation, developing the infrastructure to be able to not only
gain access to the data, but to also obtain the data and process it
for research use is a tremendous task. Obtaining past and new
data from the same institution can itself be limiting, and the ability
to access and integrate other institutions’ data for validation can
also be difficult. One benefit of this model is that the features
needed from other institutions to validate our model are not only
common across all institutions, but are also commonly used. For
example, MAP is a commonly observed vital sign, however,

features like central venous pressure (CVP) and pulmonary arterial
pressure (PAP) require invasive catheters and are only standard of
care in more critical patients. Features like the bispectral index
(BIS) do not require invasive catheters, however, it is not standard
of care practice to monitor it. Thus, we expect the features in our
model to be applicable to all patients across all institutions.
However, it should also be noted that standard-of-care practice
also varies from institution to institution, and so patterns
discovered in this single-institution dataset may not be general-
izable to other institutions and may require re-training of the
model to individual institutions or more variety of institutions. As
mentioned before, developing the infrastructure for such data
extraction is a difficult process. The Perioperative Data Warehouse
at UCLA15 used in the data extraction for this study exemplifies
how this can be done successfully, however, replicating the
process at another institution with a different electronic health
record system and standardizing the disparate medical dataset to
be able to merge it with our current one is a well-known issue in
the medical data community. Despite the difficulties mentioned
above in obtaining new data for validation, we are currently
working to address the limitations of our current validation results
by collaborating with other institutions to replicate the data
extraction used in this study as well as working within our own
institution to access more recent data to validate the general-
izability of our model.
In addition, while the models in this study were made to be

interpretable, it should be emphasized that the interpretation is not
necessarily causation, and the modification of a highly contributing
specific feature would not necessarily decrease the patient’s risk of
mortality. For example, in Table 4, both patient examples have high
contribution related to arterial line placement, but deciding to not
place an arterial line would not necessarily result in avoiding
mortality. This is also true of other models such as LR. Although our
model is transparent and the extraction of feature contributions
described here explains how the model made the predictions, the
relationship between the features and the risk of in-hospital
mortality should still be thought of as correlation. These relation-
ships would likely change with the removal of various features or
addition of new features. However, the relationships learned in this
model appear to be clinically intuitive and they are still important in
that they provide new or confirm known insight that is not usually
available with DNNs.
While we are no longer limited to using more traditional

methods such as LR due to availability of data when developing
more complex models, we should consider the needs for clinical
adoption and impact. DNNs, such as ours, can be automated and
incorporated with real-time EMR data. For example, with our
model, all the model input features described can easily be
automatically extracted or calculated at the end of surgery and
our model would then be used to provide a probability for in-
hospital mortality. If the probability is high, a summary of which
features contributed the most to an increased risk of mortality
(Table 4) and where the patient lies relative to other patients (Fig.
2) can also be displayed for the clinician. Thus, our model can
serve as clinical decision support tool helping to identify patients
in need of more postoperative resources and potentially informing
therapeutic actions. For example, if a patient’s minimum DBP
being very low contributed the most to that patient’s high risk of

Table 2. Final model parameters for each Generalized Additive Models with Neural Networks (GAM-NNs) model with and without HCUP category
description features.

No. of features No. of hidden layers No. of neurons Hidden layer activation Dropout probability L2 lambda

With HCUP features 88 1 50 tanh 0.5 0.0001

Without HCUP features 55 1 50 tanh 0.5 0.001

Table 3. Area under the receiver operating characteristic curve (AUC
ROC) and average precision (AP) with 95% CIs for the Generalized
Additive Models with Neural Networks (GAM-NNs) and logistic
regression (LR) models, with and without HCUP category description
features.

Feature set Model AUC AP

With HCUP features GANN 0.921 (0.895–0.95) 0.176 (0.109–0.26)

LR 0.912 (0.879–0.94) 0.207 (0.127–0.3)

Without HCUP features GANN 0.912 (0.883–0.94) 0.197 (0.124–0.29)

LR 0.906 (0.873–0.94) 0.217 (0.136–0.31)
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in-hospital mortality, the clinician may consider hypotension and
associated risks such as acute kidney injury. A very different
application of our model would be to re-train and apply it to a
single institution to understand what areas of a patient’s care
during surgery clinicians could be paying more attention to
moving forward, if they are not already. For example, in Fig. 2, low
average MAP below 50 and high average MAP above 80 are both
associated with increased risk of in-hospital mortality. Clinicians at
this institution could then target therapies during surgery to never
leave that range of MAP. However, at a different institution, the
learned relationship could be different and the targeted range of
MAP may change based on the current practices of that
institution. In either application, our model could be used to
quickly assess a large amount of data and provide actionable
insight, a task that may otherwise be time-consuming for
clinicians.
In summary, this study shows that DNNs can be made to be not

only accurate, but also interpretable. Any complex predictive
model needs both to build enough trust that a clinician can

interpret and act on a model’s decision over or complementary to
their own clinical intuition. Future work includes not only
validating the performance and generalizability of this model on
other hospitals’ datasets, but also assessing how clinicians interact
with the interpretability of the model.

METHODS
This manuscript follows the “Guidelines for Developing and Reporting
Machine Learning Predictive Models in Biomedical Research: A Multi-
disciplinary View”16.

Electronic medical record data extraction and description
All data used in this study came from the UCLA Medical Center’s
Perioperative Data Warehouse, a custom data warehouse built on top of
the EMR (EPIC Systems, USA) and has been described in a previous paper15.
All data used for this study were obtained from this data warehouse and
IRB approval (UCLA-A IRB#15-000518) has been obtained for this
retrospective review. Patients’ written approval was waived because of
the retrospective nature of this study. Data included all surgical procedures

Fig. 1 Receiver operator characteristic curves and precision-recall curves for LR models and GAM-NN for prediction of mortality with and
without HCUP features. GAM-NN: Generalized Additive Models with Neural Networks; HCUP: Healthcare Cost and Utilization Project; LR:
Logistic regression.

Table 4. Top 10 neural network contributions learned from the best-performing Generalized Additive Models with Neural Networks (GAM-NNs)
model with HCUP features, for two in-hospital mortality patient examples from the test set.

Patient Example 1 (top 10 contributions) Patient Example 2 (top 10 contributions)

Feature Value Contribution Feature Value Contribution

ART_LINE_YN 1 0.993 HCUP_cat_1_YN (Incision and excision of CNS) 1 1.080

ASA_SCORE 4 0.939 ART_LINE_YN 1 0.993

MIN_DBP 22 0.269 MIN_DBP 19 0.271

AGE 81 0.259 MIN_HB 7.6 0.184

AVG_DBP 68 0.234 PHENYLEPHRINE_CURRENT_RATE_MCG_MIN 43 0.177

PHENYLEPHRINE_CURRENT_RATE_MCG_MIN 45 0.191 PHENYLEPHRINE_MAX_RATE_MCG_MIN 43 0.174

PHENYLEPHRINE_MAX_RATE_MCG_MIN 45 0.176 MIN_MAP 17 0.132

MIN_MAP 30 0.122 AGE 69 0.094

AVG_HR 95 0.104 AVG_DBP_10_min 72 0.043

AVG_DBP_10_min 74 0.060 ANES_CASE_HOURS 3.9 0.001

C.K. Lee et al.
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performed between March 1, 2013 and July 16, 2016, and excluded cases
not performed under general anesthesia, ambulatory cases, and patients
older than 89 or less than 18 years of age.

Model endpoint definition
The definition for in-hospital mortality was defined in the same way as
described in our previous work3. The occurrence of an in-hospital mortality
was extracted as a binary event [0, 1] based upon either the presence of a
“mortality date” in the EMR between surgery time and discharge, or a
discharge disposition of expired combined with a note associated with the
death (i.e., death summary, death note). The definition of in-hospital
mortality was independent of length of stay in the hospital.

Model input features
The data and features used in this study are from our previous work
modeling in-hospital mortality3. The data consists of 59,985 patients with
an original feature set of 87 features extracted at the end of surgery. These
features included demographics, labs, ASA score, intraoperative vital signs,
total case time, medication administration, and anesthesia events. These
original 87 features were reduced to 45 features in our previous work, and
ASA was added as a feature in the final model (46 features) that improved
model performance3. In this study, we used the same 46 features, and also
added previously not included features: total anesthesia case time (1
feature); the time in minutes spent with MAP below 40, 45, 50, 55, 60, and
65mmHg (6 features); and HCUP Code Descriptions of the Primary current
procedure terminology (CPT) codes (33 features) (Table 5). There were 183

unique HCUP Code Descriptions in our dataset, and we selected 33 HCUP
Code Descriptions that were present in at least 1% of the total data
(Supplementary Table 1). These HCUP Code Descriptions were then
encoded as 33 binary features.

Data preprocessing
Before model development, missing values for ASA scores were filled with
the most common value (ASA 3); missing values for medications
administration features indicated that no medication was actually adminis-
tered and so were filled with 0; and all other missing values were filled with
the means for that feature. Values that were greater than a clinically normal
maximum (determined by M.C. and I.H.) were set to a maximum possible, as
described in previous work3. Finally, all training data were rescaled to have
mean 0 and standard deviation 1 per feature. Testing data were rescaled with
the training data mean and standard deviation.

Development of the model and feature contribution extraction
In this work, we were interested in classifying patients at risk of in-hospital
mortality utilizing a proposed generalized additive neural network (GAM-
NN) architecture (Fig. 3). All data were randomly split into 80% for training
(n= 47,988) and 20% for testing (n= 11,997) prior to model development.
The loss function used in training was cross-entropy and to deal with the

highly unbalanced classes, we applied class weights to the loss function by
assigning the positive class 100x weight compared to the negative class to
reflect the <1% occurrence of in-hospital mortality in our dataset.

Fig. 2 Sample of nine continuous features that had the highest mean mortality risk GAM-NN contributions across all patients, in order of
highest to lowest. These features in order are maximum desflurane (MAX_DES), total anesthesia case hours (ANES_CASE_MINUTES), average
diastolic blood pressure (AVG_DBP), maximum sevoflurane (MAX_SEVO), minimum diastolic blood pressure (MIN_DBP), total crystalloid
administered (CRYSTALLOID_ML), urine output (UOP), average diastolic blood pressure of the last 10min of the case (AVG_DBP_10_min), and
average mean blood pressure of the last 10min of the case (AVG_MAP_10_min). The feature’s values for all patients are plotted on the x-axis
and the respective GAM-NN contribution (blue) on the primary y-axis and LR contribution (green) on the secondary y-axis. The more negative
the risk contribution, the less contribution the respective value has to the risk of mortality.
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To optimize hyperparameters, a grid search across varying hyperpara-
meter combinations was performed, where each model was trained on
80% of the data with 5-fold cross validation. The model with the highest
mean 5-fold validation AUC was chosen as the one with the best
hyperparameter combination, and retrained on all of the training data
prior to being tested. All hyperparameter values that were assessed are
shown in parentheses. All models were trained with a batch size of 256 and
Adam optimization17 with default parameters and reduced the learning

rate by a factor of 10 when the validation loss stopped improving for five
consecutive epochs, a batch size of 256 and a maximum of 100 epochs.
Dropout (0.25, 0.5, 0.9)18,19 and L2 regularization (0.001, 0.0001) were also
used to prevent overfitting. In our GAM-NN architecture, each feature had
its set of hidden layers (1–4) with layer sizes of 10, 40–50, 90, 100 neurons
with all activations being either rectified linear unit (ReLu) or hyperbolic
tangent (tanh) (Fig. 3). These hidden layers are followed by a last layer with
just one neuron with a tanh activation. This last tanh layer transforms the

Table 5. Description of model input features.

Feature Feature description

AGE Age of the patient in years (note we exclude ages <18 and >89)

ANES_CASE_HOURS Case time under anesthesia in hours

ART_LINE_YN Presence of arterial line

ASA_SCORE ASA score

AVG_SBP, AVG_DBP, AVG_MAP, AVG_HR, AVG_PULSE_OX Average systolic BP, diastolic BP, mean BP, heart rate, and pulse
oximetry for the case

AVG_SBP_10_MIN, AVG_DBP_10_MIN, AVG_MAP_10_MIN, AVG_HR_10_MIN,
AVG_PULSE_OX_10_MIN

Average systolic BP, diastolic BP, mean BP, heart rate, and pulse
oximetry for the last 10min of the case

BASELINE_GFR Most recent GFR prior to surgery (only within 365 days)

COLLOID_ML Total colloid administered

CRYSTALLOID_ML Total crystalloid administered

CURRENT_HB, STARTING_HB Most recent hemoglobin prior to surgery, Starting hemoglobin

CVC_ANES_YN Presence of a central venous line

EBL Total estimated blood loss

EPINEPHRINE_CURRENT_RATE_MCG_KG_MIN,
EPINEPHRINE_MAX_RATE_MCG_KG_MIN

End of case rate of epinephrine, Highest infusion rate of
epinephrine during the case

ESMOLOL_CURRENT_RATE_MCG_KG_MIN, ESMOLOL_MAX_RATE_MCG_KG_MIN End of case rate of esmolol, Highest infusion rate of esmolol
during the case

HCUP_CAT_x_YN 33 binary features for HCUP Category Descriptions IDs: [1. 3. 9.
10. 12. 33. 37. 42. 43. 48. 61. 67. 70. 76. 78. 80. 82. 84. 86. 99. 104.
105. 114. 124. 126. 146. 152. 153. 158. 160. 161. 172. 225]

MAX_DBP, MAX_DES, MAX_GLUCOSE, MAX_HR, MAX_ISO, MAX_MAP,
MAX_PULSE_OX, MAX_SBP, MAX_SEVO

Maximum diastolic BP for the case, Maximum MAC of
desflurane during the case (note this is not age adjusted),
Maximum glucose for the case, Maximum heart rate for the
case, Maximum MAC of isoflurane during the case (note this is
not age adjusted), Maximum mean BP for the case, Maximum
pulse oximetry for the case, Maximum systolic BP for the case,
Maximum MAC of sevoflurane during the case (note this is not
age adjusted)

MILRINONE_CURRENT_RATE_MCG_KG_MIN, MILRINONE_MAX_RATE_MCG_KG_MIN End of case infusion rate of milrinone, Highest infusion rate of
milrone during the case

MIN_DBP, MIN_GLUCOSE, MIN_HB, MIN_HR, MIN_MAP, MIN_PULSE_OX, MIN_SBP Minimum diastolic BP for the case, Minimum glucose for the
case, Minimum hemoglobin during the case, Minimum heart
rate for the case, Minimum mean BP for the case, Minimum
pulse oximetry for the case, Minimum systolic BP for the case

MIN_MAP_LT_40,MIN_MAP_LT_45,MIN_MAP_LT_50,MIN_MAP_LT_55,
MIN_MAP_LT_60min_MAP_LT_65

Minutes MAP < 40mmHg, Minutes MAP < 45mmHg, Minutes
MAP < 50mmHg, Minutes MAP < 55mmHg, Minutes MAP < 60
mmHg, Minutes MAP < 65mmHg

NICARDIPINE_CURRENT_RATE_MG_HR, NICARDIPINE_MAX_RATE_MG_HR End of case rate of nicardipine, Highest infusion rate of
nicardipine during the case

NITRIC_OXIDE_YN Nitric oxide used for the case

NITROGLYCERIN_CURRENT_RATE_MCG_MIN,
NITROGLYCERIN_MAX_RATE_MCG_MIN

End of case rate of nitroglycerin, Highest infusion rate of
nitroglycerin during the case

NITROPRUSSIDE_CURRENT_RATE_MCG_KG_MIN,
NITROPRUSSIDE_MAX_RATE_MCG_KG_MIN

End of case rate of nitroprusside, Highest infusion rate of
nitroprusside during the case

PA_LINE_YN Presence of pulmonary artery catheter

PHENYLEPHRINE_CURRENT_RATE_MCG_MIN,
PHENYLEPHRINE_MAX_RATE_MCG_MIN

End of case rate of phenylephrine, Highest infusion rate of
phenylephrine during the case

UOP Total urine output

VASO_CURRENT_RATE_UNITS_HR, VASOPRESSIN_MAX_RATE_UNITS_HR End of case rate of vasopressin, Highest infusion rate of
vasopressin during the case

XFUSION_RBC_ML Total red blood cells transfused
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previous layer’s output into one value and forces the feature’s neural
network final output to be between −1 and 1. The outputs of all the
features’ tanh layers are then concatenated prior to being input into the
final logistic layer (Fig. 3). The feature contributions are calculated as their
tanh layer outputs multiplied by their respective logistic weights. Binary
features only had a direct connection from the input layer to the final
logistic layer, and so their feature contributions are calculated as the input
value multiplied by their respective logistic weights.

HCUP feature experiments
HCUP codes provide informative groupings in regard to a patient’s surgery and
are also uniformly coded, making them easy to use as model inputs. However,
they are not immediately available at the end of surgery, and so their inclusion
could limit our model’s practical use. Thus, we also assessed developing a
model without HCUP features to assess the impact on performance.

Model performance
All model performances were assessed on the 20% of the data held out
from training as a testing set. The same training and testing sets were used
in this work as our previous work on in-hospital mortality for comparison3.
Model performance was compared to a standard LR model using the same
features as the GAM-NN.

Performance metrics
Model performance was assessed using area under the receiver operating
characteristic curve (AUC ROC) and average precision (AP), and 95%
confidence intervals were calculated using bootstrapping with 1000 samples.

Interpretability: Visualizing feature contributions
As previously described, the learned contribution of the GAM-NNs for each
feature is its last tanh layer’s output multiplied by its respective weight
from the logistic layer. Since the binary features have a direct connection
from input to the logistic layer, the binary features’ learned contributions
would be their input values multiplied by their respective weight from the
logistic layer. For every data sample, each individual feature’s value was
plotted on the x-axis vs its respective contribution on the y-axis. Individual
feature contributions in the LR model were calculated as the individual
feature’s value multiplied by its learned coefficient. For both models, the
more negative the risk contribution, the less contribution the respective
value has to the risk of mortality.
All neural network models were developed using Keras20. LR models and

performance metrics were calculated with scikit-learn21.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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