
UCLA
Technical Reports

Title
A Unified Network and Node Level Simulation Framework for Wireless Sensor Networks

Permalink
https://escholarship.org/uc/item/73k4d7cz

Authors
Heemin Park
Weiping Liao
King Ho Tam
et al.

Publication Date
2003

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/73k4d7cz
https://escholarship.org/uc/item/73k4d7cz#author
https://escholarship.org
http://www.cdlib.org/


A Unified Network and Node Level Simulation Framework 
for Wireless Sensor Networks 

 
Heemin Park, Weiping Liao, King Ho Tam, Mani B. Srivastava and Lei He 

 
University of California, Los Angeles 
Electrical Engineering Department 

420 Westwood Plaza 
Los Angeles, CA 90095 

{hmpark, wliao, ktam, mbs, lhe}@ee.ucla.edu 
 

ABSTRACT 
Low power consumption is an essential requirement for wireless 
sensor networks. In many situations un-tethered wireless sensor 
nodes are expected to operate on non-renewable batteries for 
extended periods of time. To survive in such regimes, the 
embedded software running on the sensor nodes should strive to 
optimize power consumption at the node and network levels.  In 
this paper, we present a novel simulation framework for 
quantifying power consumption in a unified way that also reflects 
the node level performance to network-wide power estimation. At 
the node level, our framework combines power simulator for the 
StrongARM processor with a radio and a sensing 
component.  This is then integrated into SensorSim, an enhanced 
version of the ns-2 network simulator that also incorporates the 
sensing aspects required to simulate realistic sensor network 
scenarios. We illustrate the capabilities of our simulation 
framework to explore different power management schemes and 
interactions across the node level network layer and sensor field 
events using a representative example scenario. 

1. INTRODUCTION 
Embedded systems have networking capability to communicate 
wirelessly and in order to monitor physical phenomenon it is 
common to equip various sensors such as seismic, light, 
temperature sensors or accelerometers. Such networked and 
embedded systems with sensing capability are called Wireless 
Sensor Networks. Sensor networks can be used widely for 
monitoring physical phenomenon, like fire detection, target 
detection and tracking, traffic monitoring, wildlife habitat 
monitoring, etc. A sensor network comprises of a large number of 
sensor nodes, which are equipped with CPU for computing, radio 
for communicating wirelessly, and various sensors for capturing 
physical phenomenon which interests. In Figure 1, an example of 
wireless sensor networks and sensor node are illustrated. In this 
example, the role of the sensor network is to monitor and track the 
movement of the truck. As shown in Figure 1, the wireless sensor 
networks can be viewed in two levels. One is network level of 
which interests are connectivity, routing, channel characteristics, 
protocols, etc. The other is node level which consists of hardware 
and software components, radio, CPU, sensors, embedded 
software and limited energy. 

 

 Gateway node 

Sensor node

CPU

Radio

Sensor

Battery

(a) Sensor Network (b) Sensor Node  
Figure 1: An Example of Sensor Network (a) and Sensor Node 

(b) 

Since the sensor nodes are likely to be deployed in ad-hoc fashion 
(i.e. air-dropped over an area), most sensor nodes can only afford 
a battery as their energy source. Sensor networks are often 
designed to monitor physical phenomenon over long period time, 
e.g. from six months to one year. Thus, it is essential for the 
sensor network to have long lifetime. Therefore, the low power 
consumption is emerging as the most important factor in 
designing the wireless sensor networks. If one of the sensor nodes 
dies, then the entire sensor network might not perform the 
function perfectly. The lifetime of a sensor network can be 
defined as the lifetime of the node which dies first after depleting 
its battery completely. The main sources of energy consumptions 
are CPU, radio and sensor. To optimize overall energy 
consumption, it is desirable to optimize the energy consumption 
in these three components. It is known that transmitting or 
receiving a bit is much expensive than processing a bit in local 
CPU [14]. The energy by radio communication can be greatly 
reduced by in-network data processing. This is done by 
compressing data to be transmitted by processing them in local 
CPU rather than transmit the raw data to the destination node. 
Thus, the role of embedded software in a node has become more 
important not only for computing and forwarding the data, but 
also for reducing overall energy consumption in a network. This 
leads to the need to calculate the software power precisely at the 
node level. On the other hand, to precisely calculate the energy 
consumption for embedded software and radio communication at 
network level, it is desirable to make the embedded software fully 
functional at network level as well as at node level. Most current 
network level simulation tools do not have details of the node 
level architecture and power profiling. Therefore, with current 
available network simulators and node level power simulators, it 
is hard to optimize the overall energy consumption for the whole 
network because there has been no available framework which 



has the capability to explore the interactions between network and 
node level performance and sensor signal events. In this paper, we 
present a novel simulation framework to address this problem. 

Our work is motivated by two observations. First, although a 
number of power simulators have been developed [3, 11, 17, 19], 
they can only simulate software power merely inside processors. 
Embedded systems often have special hardware requirements 
such as sensors and radio. Therefore, in order to calculate power 
consumption in wireless networks accurately, the power simulator 
should take into account the power consumption in radio and 
sensor by making them fully functional in the simulator. 
Moreover, communication is known to be much more expensive 
than computation [14]. The number of communications between 
nodes can be calculated using network simulators [5, 8]. To 
calculate the energy consumption with this information, the cost 
of using radio receiver and transmitter need to be prepared 
beforehand. Likewise, the techniques to reduce energy 
consumption in wireless communication and embedded systems 
are implemented as a form of embedded software in individual 
node. Dynamic voltage scaling, dynamic modulation scaling [13, 
16], dynamic shutdown and wakeup method, energy-aware MAC 
protocol and topology control can be the example of the 
techniques. Pure network simulators which neglect all these node-
level information are less useful in optimization of the embedded 
software. Although there are some network simulators has the 
special requirements of sensor networks [9, 10, 15, 18], none of 
them can provide a detailed perspective on the energy 
consumption of embedded software and peripherals like radios 
and sensors. Bakshi [1, 2] proposed to use node level energy 
profiling results in network level simulation. However, with [1, 2], 
the simulation would be done separately, which means the 
network level simulation would be able to be performed only after 
running node level simulation. Hence, with [1, 2] network and 
node level perspectives cannot be obtained at the same time. 
Among prior work, the most similar one with ours is [4, 7] by 
Drago et al. They integrated two simulation environments, 
SystemC and ns-2 by using a share memory queue to provide an 
extension to detail simulation of hardware for network simulator, 
and vice versa. Although SystemC is a design environment of 
hardware and software, it is hard to be used in profiling realistic 
power consumption for specific platforms such as StrongARM 
which is popularly used in wireless embedded systems. That is 
because the hardware is described in behavioral level or RT-level 
in SystemC. It results in very slow simulation of complex 
embedded software. Therefore, [4, 7] is not suitable to be used in 
optimizing power consumption of embedded software of wireless 
sensor networks. 

We have developed a novel simulation framework for calculating 
energy consumption for wireless networks, which has the 
capability to simulate network level and node level at the same 
time. With our framework, the interaction between network level 
issues and node level issues can be observed. The network 
protocols stacks such as routing protocol, MAC protocol and 
noise, error and channel model would be network level issues. 
Likewise, the software implementation of those network protocols 
and operating system point of view like tasking and scheduling 
are node level issues. Users can explore the various alternatives 
for network stack and the embedded software in unified way. 

Hence, users can optimize the embedded software as well as 
network stacks. 

Moreover, since our unified simulation framework has the 
capability of simulating the node level embedded software, users 
can deploy the embedded software used in unified simulation 
directly to the real sensor node. To facilitate this direct 
deployment and ease of use, we provide a set of API. 

The remainder of this paper is organized as follows. In the next 
section, we present overall idea and structure of our unified 
simulation framework. Section 3 presents the details of our node 
level simulator, Embedded Systems Power Simulator. In section 4, 
we demonstrate the capabilities of our simulation framework and 
section 5 concludes this paper. 

2. Unified Simulation Framework 
Among currently available node level simulators [3, 11, 12, 17, 
19]  The EMSIM [12] is an energy simulation framework that 
simulates a simple embedded system featuring StrongARM 
microprocessor [6] and Linux OS. It basically includes a complete 
Linux system with support to necessary peripherals such as timers, 
serial UARTs, etc. It is able to provide detail power statistics for 
each hardware component as well as power profiling for each 
running task. The EMSIM, however, does not provide the 
important modules for embedded system researches, such as 
sensors and radio. In some sense, it is more like a general purpose 
simulator running on top of StrongARM processors and Linux OS. 
In order to have node level simulation feature for wireless sensor 
networks, we have extended such simulator to Embedded Systems 
Power Simulator (ESyPS) by integrating sensor and radio 
modules into EMSIM. 

For the network level simulation capability, we use SensorSim [9]. 
SensorSim is an enhanced version of the ns-2 network simulator 
[8]. Because it incorporates the sensing aspects required to 
simulate realistic sensor network scenarios SensorSim is a 
suitable network level simulation tool for wireless sensor 
networks. It has the notion of sensor channel through which the 
sensing signal propagates, and the notion of target node which 
models the objects that are being tracked or monitored. 

We integrate these two simulators, SensorSim and our node level 
simulator (ESyPS) for StrongARM processor, into one unified 
framework. The architecture of two types of sensor nodes in our 
simulation framework is shown in Figure 2. In our simulation 
framework, the sensor node is either one of the two types, 
SensorSim node or ESyPS node. The specific node which we are 
interested in detailed energy profiling for CPU, radio and sensor 
would be the ESyPS node. The SensorSim node has sensor stack 
as well as network stack. In SensorSim, there is sensor channel in 
which sensor signals, such as seismic signal, can propagate [9]. 
For the ESyPS node, the detailed node level power simulator will 
be executed for the embedded software. The basic idea of using 
ESyPS in conjunction with SensorSim is to connect ESyPS radio 
and sensor module with the radio and sensor physical layer 
through wireless and sensor channel. In integrating network level 
simulator (SensorSim) and our node level simulator (ESyPS), 
there are two main issues. Those are 1) time synchronization 
between two simulators and 2) Connecting radio and sensor 
module in ESyPS and the physical layer objects in SensorSim. 



In order for two simulators to operate consistently, the time in 
them should be synchronized to certain level of precision. We 
introduced a time synchronization module in between two 
simulators. The role of this module is to control the advance of 
ESyPS simulation steps with respect to the real time in SensorSim. 
ESyPS is an extension of ARMulator (the ARM processor 
simulator developed initially by ARM), which has only a notion 
of the number of clocks inside the simulator instead of real time. 
The time in ESyPS is obtained by multiplying the number of 
clocks elapsed in ESyPS by time per clock period. The time per 
clock can be obtained from the operating frequency of the 
processor (i.e. 206MHz for StrongARM). The pseudo code of the 
time synchronization algorithm is described in Figure 3. 

 

timeSync_module begin 
 if this is the first entry begin 
  Execute ESyPS until Linux is booted 

end 
t_SensorSim is obtained from scheduler of SensorSim 

 t_ESyPS = CLOCK_PERIOD * number of cycles after bootup
while t_SensorSim > t_ESyPS begin 

Execute ESyPS for one cycle 
end 
Reschedule timeSync_module after SYNC_RESOLUTION 

end 

 

Figure 3: The Pseudo Code of the Time Synchronization 
Algorithm. 

What the time synchronization module(timeSync_module) do are 
as follows. SensorSim starts going ahead of ESyPS by 
SYNC_RESOLUTION which the maximum allowed time 
difference between two simulators. Then, the ESyPS simulator 
catches Sensorsim until the times of two simulators become same. 
This process is periodically repeated at every 
SYNC_RESOLUTION. When timeSync_module is executed for 
the first time, the Linux OS bootup sequence is executed. The 
value of SYNC_RESOLUTION can be adjusted according to the 
requirement of application. For the demonstration purpose, we set 
this value to 0.0001 second in our example. However, time 

synchronization can be as precise as one clock period of the 
processor. 

The other issue is to transfer sensor signal to ESyPS and to do 
wireless communication with ESyPS through wireless channel 
provided by SensorSim. In SensorSim node, if the wireless or 
sensor physical layer receives packets and signals through 
channel, then it sends the packets and signals to upper layer stack, 
such as MAC or sensor agent. For ESyPS node, we send up the 
packets and signals to ESyPS simulator after converting the 
packets from ns-2 format to ESyPS packet format. Then, in 
ESyPS simulator, the packets transferred to user application 
program through the Application Program Interface (API). The 
process for the user application program to transmit packets to 
SensorSim node can be done in a reverse way. 

3. ESyPS:Embedded Systems Power 
Simulator 
In this section, we present our Embedded System Power 
Simulator (ESyPS). The ESyPS is developed by integrating 
sensor and radio modules into EMSIM [12]. ESyPS has a fully 
functional sensor node in embedded systems with detection, 
processing and wireless communication capability. The ESyPS 
part consists of three parts: processing core, peripherals and 
sensing devices as shown in Figure 4. The processor core is a full 
model for ARM processor with functional units, caches, memory 
management unit (MMU) and read/write buffers. The peripherals 
include the timer, serial UARTs, interrupt controller and the main 
memory. The sensing devices are sensors and radio modules 
specially designed for embedded system sensor nodes. 

Figure 2: Node Architecture in Unified Simulation Framework. 

Network Layer 

MAC Layer 

Physical Layer 

Network Stack 

Sensor Agent 

Physical Layer 

Sensor Stack 

Sensorsim node 

Wireless 
Physical Layer

ESyPS node 

Wireless Channel

Application 

API 

Radio Module Sensor Module 

User Application Program 

Time 
Synchronization 

Sensorsim 
Sensor 

Physical Layer 

Sensor Channel



 

Processing 
Core 

Radio  
Modules 

Timer 

Memory 

Interrupt  
Controller 

Serial 
UART’s 

Sensor 
Modules  

Figure 4: The Structure of Embedded System Power 
Simulator(ESyPS). 

 

 

Figure 5: The State Machine of Sensors. 
 

3.1 Sensor Modules 
The sensor model consists of state machines and a collection of 
controlling functions. It models multiple sensors attached to a 
sensor manager, which in turn connects to the processor through 
the UART. Owing to the fact that the emulator has got only one 
UART port available (the other port is used for terminal service, 
e.g. printf on screen), the sensor manager, which is the only piece 
of hardware having a port, has to deal with all sensor requests 
delivery from the processor and data collection from sensors. The 
sensor model is constructed as one of the hardware components in 
the ARMulator which interacts with the system only through the 
serial port. User application program can control the sensor model 
by opening and writing to the serial port using the normal 
functions like 'open' and 'write'. The cross compiler will then 
translate this into writing to special memory addresses which 
correspond to ports 0x2f8. The virtual memory simulator, when 
receiving such address access requests, will call the UART 
handler. The original UART handler is used for modem emulated 
by network sockets. We have modified it so that it calls the 
simulation library functions of the sensor model. 

Messages from the user program is packetized and sent serially to 
UART. Each message has a fixed length and a fixed format. User 
programs can control the sensors with the following parameters: 
1) Turn On and Off, which corresponds to idle/reset and sleep 
modes. 2) Sense once and report after a delay. 3) Keep sensing 
and reporting periodically, with period specified. 4) Read sensor 

readings once the sensor manager gets one of these commands, it 
start parsing the packet and then dispatch a work request to 
change the state of the specified sensor. Sensor can be set either in 
WORK, IDLE, SLEEP or OUTPUT modes. A sensor state 
machine is shown in Figure 5. 

On the configuration side, users can set the number of sensors 
attached to the system, their intrinsic minimum response time and 
their power values at their various states in the header file of the 
ARMulator sensor module. To estimate energy consumption, 
power values and time have to be known before the simulation is 
run. Power is set as described above. Time is computed in the 
simulator. The global system time notion is based on the number 
of cycles elapsed on the processor. With the processor frequency 
known as a priori (and in our system it is 206Mhz), the program 
can gives the energy and power values. SLEEP, IDLE and 
WORK states all have their power values independently 
configurable. At state changes, the total consumed energy value is 
updated according to the sensor state just before the state change 
and the time which the sensor has spent in such state. In order to 
facilitate users to program for using sensor modules, we provide 
APIs so that users can just call library functions to control sensors. 
Since multiple sensors are sharing one UART buffer, these library 
functions have to be run atomically to avoid multiple accesses to 
the UART buffer. All the functional calls are shown below, where 
id is the sensor id (as defined in the ARMulator sensor header 
file), t is the delay and d is the period. With API, users are freed 
from the details of having to make up packetized commands and 
un-packetize respond messages for sensor values. 

y void SetUpUART() 
y void CloseSensor() 
y void TurnOnSensor(int id) 
y void TurnO_Sensor(int id) 
y void Sense(int id, unsigned int t) 
y void Streaming(int id, unsigned int d) 
y int ReadSensor(int id) 

 
3.2 Radio Modules 
We connect radio module to EMSIM using memory-mapped 
mechanism. Our embedded systems power simulator can afford 
several number of radio modules simultaneously to support 
various requirements of sensor nodes. Figure 6 shows the control 
flow for radio modules. 

Each radio module has a 4KB buffer, which can be read or written 
by the processor directly via memory-mapped mechanism. In our 
system, we choose the main memory address between 0xdfff0000 
and 0xdfff0000 for mapping. The memory-mapped mechanism is 
done by intercepting the memory accesses from the processor. We 
check all memory references before the virtual address is 
translated. If the memory addresses fall with the range for radio 
module, we redirect the memory accesses to radio module. No 
further memory translation is necessary. Each radio module has 
three power states: active, idle and sleep. The active power is 
dissipated when the radio module is transmitting or receiving data. 
The idle power is the power when the radio is turned on but doing 
nothing. The sleep power is dissipated when  



 User program: 
ptr=0xdfff0010; 

memcpy(ptr, x, y); 
… 

Compiler 

StrongARM Processor 

Memory Controller 

Radio 

Radio 

Radio 

Radio Models

 
Figure 6: Radio Modules. 

the radio is turned off. Currently we set the value for all three 
power states with the relation of Pactive : Pidle : Psleep = 100 : 10 : 1. 
These parameters can be adjusted according to user specific radio 
component. Another feature for the radio module is its modulation 
level. Instead of setting the absolute value for modulation level, 
we choose the relative modulation levels with the base 
modulation level equal to the capability to transmit 1 bit for every 
100000 cycles. The base modulation level is equivalent to 1kbps 
at 100MHz processor. Other relative modulation levels are 
multiple of the base modulation level in the power of 2. For each 
modulation level M, the cycle number to transmit or receive N bit 
data is: 

N
M

×=
100000 Cycles Total  

With this modulation capability of our radio modules, the 
dynamic modulation scaling method [16] to reduce 
communication power can be easily implemented and verified. 
Similar to the sensor module, we develop APIs for radio. This 
includes turning on/off radio, set/get modulation level, 
transmit/receive radio, get current status of radio. The APIs for 
radio module are as follows. 

y int TurnOnRadio(int id) 
y int TurnOffRadio(int id) 
y int SetModLevel(int id, int mod) 
y SendRadio(int id, int size, char *buffer) 
y int GetRadio(int id, int size, char 
*buffer) 
y int GetStatus(int id) 
y int GetModLevel(int id) 

 

4. DEMONSTRATIONS 
In this section, we demonstrate the capabilities of our unified 
simulation framework. We use a simple tracking scenario 
example, in which sensor nodes are randomly deployed and a 
target (i.e. truck) movements are injected along a path. Each 
sensor node will detect a seismic signal from the target using a 
seismic sensor. After collecting a predefined number of samples, 
the sensor node determines if the sensed signal is true or false by 
calculating the signal-to-noise ratio (SNR). The noise model is 
provided by network level simulator, SensorSim. Once processing 

the sensed signals, it sends the data to gateway node which has 
long-range radio or internet access to send the results to remote 
place. Every sensor node acts as router as well as collector of 
seismic signal. The example network is as follows. A 100 sensor 
nodes are deployed randomly onto 1000x1000 plane. The network 
topology is shown in Figure 7. The solid dots represent sensor 
nodes. The circled node is the gateway node and the boxed node 
is the node equipped with the node-level simulator (ESyPS). We 
select this node because this is located at about center of the 
network and the pathway to gateway node from the bottom side of 
the network. We will examine the node level energy consumption 
for the boxed node in detail. The line in the middle of the network 
is the trajectory of the target movements. 

 

gateway node

ESyPS node 

 
Figure 7: Test Topology with 100 nodes 

The target will pass along the line at the speed of 40 per second. 
The link between nodes means those two nodes are within radio 
range. The radio range is 150 and sensing range is 100. The 
seismic sensor detects some signals if the target is within 100 
from the sensor node. In this scenario, the seismic sensor run at a 
sample rate of 100Hz using timer interrupt. whenever each node 
collects 100 samples of seismic signal, it calculates the SNR. 
When the SNR is greater than a certain threshold, then the sensor 
node regards the the sensed signal being true and sends a 
signature size of which is 16 bits to gateway node. Otherwise, 
because the sensed signal needs further complex signal processing 
to determine its certainty, the node sends all the data collected (i.e. 
100 samples) to gateway node. 

We have implemented a lightweight protocol stack for SensorSim 
node and ESyPS node. TDMA based medium access control 
(MAC) protocol is used. A unique TDMA slot for each node is 
pre-calculated by our scenario generation tool and assigned to 
each node. The routing protocol used is distance vector routing. 
The scenario generation tool we are using also discovers the 
shortest hop distance paths from each node to gateway node and 
then assigns the next-hop-to-gateway node to each sensor node. 
When a node receives a packet, it will forward the packet to the 
next-hop-to-gateway node according to the distance vector 
assignments. We perform a simulation for this example scenario 
for 30 seconds. With our simulation framework, the overall 



network behavior  and the detail power profiling for the node 
which we are interested in can be observed. 

Figure 8 shows the number of packets received and transmitted 
for each node. Since the node 1 is the gateway node, it does not 
have transmitted packets in this example. As Figure 8 verifies, the 
sensor node which is modeled in detail using ESyPS receives and 
transmits a large number of packets as it is on the pathway to the 
gateway node from the bottom part of the network. 

To examine the detail packet statistics and energy profiling for the 
node we are interest in, the received and transmitted packets for 
ESyPS node and the cumulative energy consumption for each 
components are demonstrated in Figure 9(a) and (b), respectively. 
As shown in Figure 9(a) and (b), energy is consumed according to 

the packets receiving and transmitting for each components, radio, 
CPU and sensor. 

Let us zoom in the energy consumption to more detail. We have 
plotted graphs of the energy consumption of the ESyPS node 
from 7.55 second to 8.0 second. During this period, there are 
packet receptions in the ESyPS node at 7.57 and 7.94 second, and 
the ESyPS node forwards at 7.92 second the packet received at 
7.57. The energy consumption of these detailed operation of radio, 
CPU as well as sensor are shown in Figure 10. 

As shown in figure 10(c), since the sensor is always performing 
sensing at every 100Hz, it consumes similar energy whenever it 
senses over time. Meanwhile, the radio consumes lots of energy 
whenever it actively receives or transmits the packets.   

(a) Number of Packets Received and Transmitted. 

(b) Cumulative Energy Consumption for Each Component 

Figure 9: Node Level View of Simulation Results. 

Figure 8: Network Traffic Statistics. 

 

0
10
20
30
40
50
60
70
80
90

Time [sec]

N
um

be
r o

f P
ac

ke
ts

packet received
packet transmitted

 

0

50000

100000

150000

200000

250000

Time [sec]

E
ne

rg
y 

C
on

su
m

pt
io

n 
[m

J]

Total
Radio
CPU
Sensor

 

0

20

40

60

80

100

120

Node ID

N
um

be
r o

f P
ac

ke
ts

received packets transmitted packets

1 10 20 30 40 50 60 70 80 90 100

ESyPS node 



We can determine that there are three communications as we can 
see in Figure 10(a). Energy consumption at other time is much 
less than reception or transmission time. This is because the node 
checks at every start time of TDMA slots if there is a packet by 
probing channel only for a short period of time. If there is no 
packet in wireless channel, the radio is going back to IDLE state. 

The energy consumption in CPU shows a little bit different 
behavior. Whenever the node generates an interrupt signal and 
executes interrupt service route for sensing the seismic signal and 
checks if there is a packet in channel, it consumes energy for a 
short time. If there is a packet, then the node needs to process the 
packet to determine if destination of the packet is itself or if the 
packet requires forwarding. If it requires forwarding, the node 
needs to put the packet in outgoing queue. This is shown in Figure 
10(b) at time around 7.57 and 7.94 second. However, the packet 
transmission to neighbors does not affect much in energy 
consumption of CPU. The transmission of packets has to be done 
in unique assigned slot. Thus, while transmitting packets, CPU 
does not need to participate. This only increases energy 
consumption in CPU slightly. This case happens at 7.92 second in 
Figure 10(a) and (b). As demonstrated in this section, with our 
unified simulation framework, the interactions between network 
and node level performance can be observed at the same time. 
This capability is essential in optimization of embedded software 
and overall energy consumption of the wireless networks. 

5. CONCLUSIONS 
In this paper, we present a unified simulation framework for 
network and node level which is suitable for energy profiling of 
wireless sensor networks. This framework is composed of two 
main parts. One is the Embedded Systems Power Simulator 
(ESyPS) which has been built on EMSIM. ESyPS has two 
important extensions, the sensor and the radio models. These 
models are designed to be highly configurable so that users can 
simply modify the hardware characteristics, and application 
program interface(API) is provided to facilitate for users to use 
the models. By integrating this ESyPS and SensorSim which has 
the capability of incorporating sensing aspect into network 
simulator, we have build a unified simulation framework which 
has multi-level perspective of network and node level at the same 
time. We demonstrate the capabilities of our simulation 
framework using a tracking scenario. In the demonstration, we 
show that the overall network issues and detailed node level 
energy profiling are available. With this unified simulation 
framework, it is possible to explore the interactions between 
network level and node level performance and interactions with 
sensor in-field events. 

6. REFERENCES 
[1] A. Agrawal, A. Bakshi, J. Davis, B. Eames, A. Ledeczi, S. Mohanty, 

V. Mathur, S. Neema, G. Nordstrom, V. Prasanna, C. Raghavendra, 

(a) Energy Consumption in Radio 

(b) Energy Consumption in CPU 

(c) Energy Consumption in Sensor 

Figure 10: Detail Energy Consumption Results. 

0

10

20

30

40

50

60

70

Time [sec]

En
er

gy
 C

on
su

m
pt

io
n 

in
R

ad
io

 [m
J]

  

7.55 7.60 7.70 7.80 7.90 8.00

 

0.65

0.66

0.67

0.68

Time [sec]

E
ne

rg
y 

C
on

su
m

pt
io

n 
in

C
P

U
 [m

J]

7.55 7.60 7.70 7.80 7.90 8.00

 

0

0.001

0.002

0.003

0.004

0.005

Time [sec]

E
ne

rg
y 

C
on

su
m

pt
io

n
in

 S
en

so
r [

m
J]

7.55 7.60 7.70 7.80 7.90 8.00



and M. Singh, MILAN: A Model Based Integrated Simulation 
Framework for Design of Embedded Systems, Workshop on 
Languages, Compilers, and Tools for Embedded Systems (LCTES 
2001), Snowbird, Utah, June 2001. 

[2] Amol Bakshi, Jingzhao Ou, and Viktor K. Prasanna, Towards 
Automatic Synthesis of a Class of Application-Specific Sensor 
Networks, International Conference on Compilers, Architecture, and 
Synthesis for Embedded Systems (CASES 2002), October 2002. 

[3] David Brooks , Vivek Tiwari and Margaret Martonosi, Wattch: a 
framework for architectural-level power analysis and optimizations, 
Proceedings of the 27th annual international symposium on Computer 
architecture, pp. 83-94, June 2000, Vancouver, British Columbia, 
Canada. 

[4] N. Drago, F. Fummi and  M. Poncino, Modeling network embedded 
systems with NS-2 and SystemC, Circuits and Systems for 
Communications, 2002, Proceedings. ICCSC '02. 1st IEEE 
International Conference on , 26-28 June 2002, pp. 240 –245. 

[5] GlomoSim 2.0, http://pcl.cs.ucla.edu/projects/glomosim, 2001. 

[6] Intel StrongARM Processors, http://developer.intel.com/ 
design/pca/applicationsprocessors/1110_brf.htm. 

[7] M. Martignano, N. Drago, F. Fummi and S. Martini, A combined 
approach to validate the design of embedded network devices, 
Circuits and Systems, 2002. ISCAS 2002. IEEE International 
Symposium on , Volume: 3 , 26-29 May 2002, pp. III-169 -III-172 
vol.3. 

[8] Ns-2 simulator, http://www.isi.edu/nsnam/ns, 2001. 

[9] S. Park, A. Savvides and M. B. Srivastava, SensorSim: A Simulation 
Framework for Sensor Networks, in the Proceedings of MSWiM 
2000, Boston, MA, August 11, 2000. 

[10] S. Park, A. Savvides and M. B. Srivastava, Simulating networks of 

wireless sensors. Winter Simulation Conference, pp. 1330-1338, 
2001. 

[11] Powerimpact, in http://ee.ucla.edu /PowerImpact, 2002. 

[12] T. K. Tan, A. Raghunathan and N. K. Jha, EMSIM: an energy 
simulation framework for an embedded operating system, IEEE 
International Symposium on Circuits and Systems, pp. 464-467, 
volume 2, 2002. 

[13] V. Raghunathan, S. Ganeriwal, C. Schurgers, M. B. Srivastava, 
E2WFQ: An Energy Efficient Fair Scheduling Policy for Wireless 
Systems, International Symposium on Low Power Electronics and 
Design (ISLPED'02), Monterey, CA, August 12-14, 2002. 

[14] V. Raghunathan, C. Schurgers, S. Park, and M.B. Srivastava, Energy-
Aware Wireless Microsensor Networks, IEEE Signal Processing 
Magazine, vol.19, no.2, March 2002, pp.40-50. 

[15] A. Savvides, S. Park, and M. B. Srivastava, On Modeling Networks of 
Wireless Micro Sensors, poster session at SIGMETRICS 2001, 
Boston, MA, June 2001. 

[16] C. Schurgers, O. Aberthorne, M. B. Srivastava, Modulation Scaling 
for Energy Aware Communication Systems, International Symposium 
on Low Power Electronics and Design (ISLPED'01), Huntington 
Beach, CA, pp. 96-99, August 6-7, 2001. 

[17] A. Sinha and A. P. Chandrakasan, JouleTrack – A Web based tool for 
software energy profiling, Proceedings of the 38th Design Automation 
Conference, 2001, pp. 220-225. 

[18] C. Ulmer, Sensor Network Simulator, 
http://users.ece.gatech.edu/~grimace/research/sensorsimii, 2001. 

[19] W. Ye , N. Vijaykrishnan , M. Kandemir and M. J. Irwin, The design 
and use of simplepower: a cycle-accurate energy estimation tool, 
Proceedings of the 37th Design Automation Conference, pp. 340-345, 
June 05-09, 2000, Los Angeles, California, United States 

 




