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Research Brief
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Tumors escape immune detection and elimination through a variety of mechanisms. 
Here, we used prostate cancer as a model to examine how androgen-dependent 

tumors undergo immune evasion through downregulation of the major histocompatibility complex 
class I (MHCI). We report that response to immunotherapy in late-stage prostate cancer is associated 
with elevated MHC expression. To uncover the mechanism, we performed a genome-wide CRISPR 
interference (CRISPRi) screen and identified androgen receptor (AR) as a repressor of the MHCI 
pathway. Syngeneic mouse models of aggressive prostate cancer deficient in Ar also demonstrated 
increased tumor immunogenicity and promoted T cell–mediated tumor control. Notably, the increase 
in MHCI expression upon AR blockade is transient and correlates with resistance to AR inhibition. 
Mechanistic studies identified androgen response elements upstream of MHCI transcription start 
sites which increased MHCI expression when deleted. Together, this body of work highlights another 
mechanism by which hormones can promote immune escape.

Significance: Immunotherapy options for immune cold tumors, like prostate cancer, are limited. We 
show that AR downregulates MHCI expression/antigen presentation and that AR inhibition improves 
T-cell responses and tumor control. This suggests that treatments combining AR inhibitors and check-
point blockade may improve tumor immune surveillance and antitumor immunity in patients.
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Introduction
A fundamental component of antitumor immunity is the 

expression of the major histocompatibility complex class I 
(MHCI) on tumor cells. In the past decade, mechanisms of 
immune escape via loss of MHCI have been described (1–6). 
Furthermore, resistance to immune checkpoint blockade 
(ICB) is associated with loss of MHCI (5). Given this, efforts 
have been invested toward understanding the mechanisms of 
immunotherapy resistance. Some seem to be shared between 
tumor types (i.e., PD-1+ lymphocytes) and others unique to 
the tissue of origin (6–8). It is plausible that just as viruses uti-
lize distinct immune evasion tactics based on tissue tropism, 
cancer cells might have mechanisms of immune evasion that 
reflect unique attributes of their tissue microenvironment 
and/or oncogene addiction. In this regard, prostate cancer 
represents an appropriate disease for investigating the cross-
talk between androgens and tumor immune evasion.

Prostate cancer, as compared with lung cancer, has a low 
response rate to ICB and markedly lower MHCI expression 
(Fig. 1A; refs. 1, 9, 10). The molecular mechanisms that con-
trol MHCI expression in prostate cancer remain unknown 
despite evidence that androgen deprivation therapy (ADT) is 
initially immunogenic, recruiting leukocytes into the tissue 
(11, 12). In a clinical trial designed to investigate the early ef-
fects of ADT on the prostate tumor landscape, there was an 
initial infiltration of mononuclear cells that corresponded 
to increased cell death (13). By week 4 after ADT initiation, 
tumor cell death plateaued, as did the infiltration of mono-
nuclear cells. Despite evidence of ADT-induced immunoge-
nicity, prostate cancer immunotherapy trials are repeatedly 
negative. Therefore, there is a critical need to understand the 
mechanisms of immunotherapy resistance in this disease.

In this study, we employed a genome-wide CRISPR inter-
ference (CRISPRi) flow cytometry-based screen to identify the 
regulators of MHCI in prostate cancer cells. Significant hits 
involved in androgen receptor (AR) signaling were validated 
as suppressors of MHCI using in vitro and in vivo models as 
well as observed in four phase II clinical trials. Interestingly, 
the top regulators of MHCI in prostate cancer were distinct 
from those recently identified in a similar immune evasion 
CRISPR screen in AML (2) or reported in melanoma (4–6). 
Thus, these screens undoubtedly help identify disease-specific  
regulators of immune evasion to inform tumor-specific com-
bination therapies and improve ICB efficacy in MHC-low  
tumors, such as prostate cancer.

Results
AR Represses MHCI in Prostate Cancer

We previously reported that one mechanism of ICB resis-
tance in advanced prostate cancer is through AR suppres-
sion of CD8 T-cell function (14). Using the same dataset, we 
observed an increased MHCI expression in ICB responders 
(Fig. 1B). To explore MHCI regulation in prostate cancer, we 
conducted a genome-wide CRISPRi screen using a metastatic 
castration-resistant prostate cancer (mCRPC) line, C42B, 
stably expressing a non-catalytic Cas9 (dCas9-KRAB fusion 
protein). Cells were infected (15), selected, and sorted based 
on highest and lowest (25%–30%) MHCI expression (Fig. 1C). 

Gene hits were ranked by phenotype score (Fig. 1D; Supple-
mentary Table S1). As expected, gene hits in the MHCI pro-
cessing pathway (B2M, TAP1, HLA-A, TAPBP, TAP2, and IRF2) 
decreased MHCI expression upon knockdown. Interestingly, 
suppression of AR increased MHCI expression. AR coreg-
ulators (16, 17), GRHL2 and FOXA1, were also shown to 
significantly increase MHCI expression upon knockdown. 
We validated these findings by knocking down AR, GRHL2, 
FOXA1, and B2M using individual sgRNAs and compared 
MHCI expression to control (GAL4) in C42B and LNCaP cells 
(Fig. 1E; Supplementary S1A and S1B). These results revealed 
increased MHCI expression upon knockdown of AR and AR 
signaling genes. Further, knocking down AR genes improved 
MHCI upregulation in response to interferon gamma (IFNγ) 
treatment (Supplementary Fig. S1C and S1D). Overexpressed 
AR in the AR-null PC3 prostate cancer cell line demonstrated 
decreased MHCI processing and presentation genes and ex-
pression in AR-positive PC3 cells compared with AR-null cells 
(Fig. 1F–H).

Pharmacologic Inhibition of AR Modulates MHCI
sgRNA gene targeting has variable knockdown efficiency 

(Supplementary Fig. S1E and S1F); thus, we treated C42B 
cells with various AR inhibitors and observed increasing 
MHCI over time (Fig. 2A). Expression of MHCI-associated 
genes/protein could be repressed by the exogenous AR ligand 
R1881 (Fig. 2B; Supplementary Fig. S2A and S2B). Additional 
prostate cancer models with various AR expression levels 
(C42B, LNCaP, VCaP, PC3) were treated with enzalutamide 
(Fig. 2C–F), the AR degrader (ARD; Supplementary Fig. S2C–
S2F; refs. 18, 19), or CSS (Supplementary Fig. S2G–S2J) and 
also demonstrated increased expression of MHCI and antigen 
presentation genes. Given AR inhibition is reported to induce 
type I interferons (20, 21), we evaluated interferon response 
genes following enzalutamide treatment and observed an in-
crease in a few genes (Supplementary Fig. S2K).

Notably, we observed a rapid drop of MHCI within a week 
after removing AR inhibition, which returned to baseline by 2 
weeks (Fig. 2G), suggesting active AR inhibition is required to 
maintain MHCI. To determine the stability of elevated MHCI 
with AR inhibition, C42B cells were treated with enzalut-
amide and MHCI expression measured over 3 months reveal-
ing two phases of sensitivity to androgen blockade and MHCI 
expression. In the first 30 days, MHCI expression was signifi-
cantly increased, corresponding with growth arrest (Fig. 2H), 
followed by loss of expression and tumor cell growth. Curious 
if this was associated with AR reactivation, we evaluated the 
mRNA expression via RNA sequencing (RNA-seq) at 28, 49, 
and 91 days posttreatment (Fig. 2I; Supplementary Tables 
S2A–S2C). Interestingly, loss of MHCI is proceeded by an in-
crease in NR3C1, the glucocorticoid receptor (Fig. 2J).

AR Transcriptionally Represses MHCI Gene 
Expression

To determine if AR regulated MHCI through binding to an-
drogen response elements (ARE), we identified AREs within 
10 kb of MHCI transcriptional start sites (TSS) and designed 
sgRNAs to target these sites using Cas9 nuclease (Supple-
mentary Table S3). We conducted a lentiviral pooled CRISPR 
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screen targeting 41 AREs, as well as AR, GRHL2, and FOXA1 
(positive controls) and B2M, HLA-A, and TAP genes (negative 
controls; Fig. 2K). The screen confirmed that AR, FOXA1, and 
GRHL2 inhibition increased MHCI expression and knockout 
of B2M, TAP, and HLA-A decreased MHCI expression (Fig. 2L). 
ARE motifs in NLRC5, CANX, TAP2, TAP1, and IRF2 were  
individually targeted using sgRNAs, single-cell cloned, and 

confirmed on-target cutting efficiency. ARE-deleted clones 
showed increased MHCI expression by flow cytometry  
(Fig. 2M) and qRT-PCR (Fig. 2N). We also utilized publicly 
available ChIP-seq data (22) to query AREs targeted in our 
CRISPR screen and found decreased AR binding (Fig. 2O; Sup-
plementary Fig. S3A and S3B) and increased H3K27ac (Supple-
mentary Fig. S3C and S3D) after enzalutamide treatment.  
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Finally, we treated two control (GAL4) or ARE-deleted (CANX) 
clones with enzalutamide and assessed MHCI expression 
after 7 days (Supplementary Fig. S3E–S3G). These experiments 
showed a larger increase in MHCI expression in the control 
than in the ARE-deleted clones (Supplementary Fig. S3H), 
suggesting that the deletion of AREs prevents the transcrip-
tional repression of MHCI genes.

AR Inhibition Increases T-cell Cytotoxicity
To see if increasing MHCI expression by AR inhibition could 

improve antitumor T-cell responses, we transfected human 
CD8 T cells with an HLA-A2-restricted TCR specific for the 
cancer testis antigen NY-ESO1 (Supplementary Fig. S4A). 
HLA-A2-restricted NY-ESO1-expressing C42B cells (Fig. 3A) 
were treated with AR inhibitors, washed, replated, and co-
cultured with NY-ESO1-reactive CD8 T cells. These exper-
iments showed increased T-cell cytotoxicity and a reduction 
in tumors pretreated with an AR inhibitor compared with 
control (Fig. 3B and C; Supplementary Fig. S4B–S4E), an ob-
servation that was dependent upon MHCI expression on the  
tumor cells (Fig. 3D; Supplementary Fig. S4D). C42B cells 
that did not express NY-ESO1 and cocultured with T cells were 
not killed when treated with AR inhibitors (Supplementary 
Fig. S4F), demonstrating that AR inhibition enhances T-cell 
recognition of target cells in an MHCI-dependent manner.

Tumor Cell-Intrinsic AR Knockdown Increases CD8 
T cell–Mediated Antitumor Immunity

To explore our observation in vivo, the TrampC1 tumor 
model, which has a known MHCI-restricted tumor antigen, 
stimulator of prostatic adenocarcinoma (Spas-1; ref. 23), and 
low expression of MHCI, and the PPSM (Pten−/−; p53−/−; 
Smad4−/−) model, which is androgen insensitive, were em-
ployed (24). We knocked down Ar (Ar-KD; Supplementary  
Fig. S5A and S5B), generated single-cell clones, and observed 
comparable growth in vitro to wild-type (WT) cells (Supple-
mentary Fig. S5C and S5D). Loss of Ar in TrampC1 cells 
increased MHCI expression (Fig. 3E) and sensitivity to IFNγ- 
induced MHCI expression (Fig. 3F). In vivo (Fig. 3G), TrampC1 
Ar-KD tumors were significantly smaller (Fig. 3H), and the 
number of tumor-infiltrating CD8 T cells was significantly 
greater in Ar-KD tumors (Fig. 3I). Using the Nur77GFP mouse 
in which GFP is upregulated by TCR engagement (25) and can 
be used as a tool to identify tumor-reactive T cells that recently 
received strong TCR signals (26), we observed significantly  
increased Nur77GFPhi CD8 T cells in Ar-KD tumors (Fig. 3J). 
Furthermore, we recovered more Spas1 tetramer-positive  
CD8 T cells in Ar-KD tumors (Fig. 3K and L; Supplementary 
Fig. S5E) and upon stimulation observed a significant in-
crease in the total number of IFNγ-producing CD8 T cells in 
Ar-KD tumors compared with WT (Fig. 3M and N). Finally, 
we explored the requirement for T cell–mediated tumor con-
trol in our models. In the absence of lymphocytes (Rag-KO), 
we observed no difference in tumor growth in Ar-KD versus 
WT (Fig. 3O and P) and extended these observations into the 
PPSM model (Supplementary Fig. S5F–S5H). Overall, our 
data suggest that loss of tumor-intrinsic Ar expression in-
creases MHCI expression and the frequency and function of 
tumor-specific CD8 T cells, enhancing tumor control.

MHCI Expression Increases following AR Inhibition 
in Patients with Prostate Cancer

Last, we explored evidence for androgen axis-targeted  
therapies modulating MHCI in patients. We analyzed RNA 
expression data from a phase 2 clinical trial that stud-
ied the effects of enzalutamide in early prostate cancer  
(NCT03297385; ref. 27). Paired biopsies from treatment- 
naïve patients and 3 months after neoadjuvant enzalutamide 
treatment without ADT showed significantly increased tran-
scription of HLA-A and B2M and MHC-regulating genes 
IRF1 and IRF2 posttreatment (Fig. 4A) and an enrichment 
of interferon activity (Supplementary Fig. S6A). These data 
were consistent with data from a second cohort of patients 
(NCT02430480) treated for 6 months with neoadjuvant ADT 
plus enzalutamide (Fig. 4B; Supplementary Fig. S6B; ref. 28). 
Pathway analysis of these paired biopsies also revealed an 
increase in antigen presentation (Supplementary Tables 
S4 and S5). To determine if this correlation was observed in 
lethal, metastatic castration-resistant disease, we generated 
an MHCI signature (see “Methods”), applied it to a hormone- 
refractory metastatic prostate cancer biopsy dataset (29), and 
observed a significant negative correlation between MHCI 
activity and AR activity (Fig. 4C).

To determine if there was clinical significance to our 
observations in the context of immunotherapy, we lever-
aged a single-cell dataset in metastatic hormone-sensitive 
prostate cancer (mHSPC; ref. 30). Two groups of patients 
permitted analysis of tumor cell-intrinsic changes in MHCI 
with ADT (on ADT) versus ADT with anti-PD1 (on combi-
nation). Cells from all patients were combined and clustered 
into hematopoietic and non-hematopoietic cells (Fig. 4D;  
Supplementary Fig. S6C). There was a distinct luminal ep-
ithelia cell cluster (EPCAM+AR+TMPRSS2+, Supplemen-
tary Fig. S6C), which we evaluated for pretreatment AR 
and MHCI gene expression. Pretreatment lesions had low 
MHCI processing and presentation gene expression and 
high AR and AR target genes (Fig. 4E). Using the Virtual 
Inference of Protein-activity by Enriched Regulon analysis 
(VIPER) to infer protein activity (31), we observe decreased 
AR activity and a corresponding increase in MHCI activity 
with treatment (Supplementary Fig. S6D and S6E). Iso-
lating only epithelial cells, we observed a clear conserved  
reduction of AR activity in paired individual biopsies in 
both treatment groups with a strong increase in MHCI 
with ADT that was further increased with ADT+anti-PD1 
(Fig. 4F and G). The increased MHCI with anti-PD1 treat-
ment likely reflects an increase in T-cell-derived IFNγ activity 
(14) that was not observed with ADT alone but was signifi-
cantly increased with ADT+anti-PD1 (Supplementary Fig. 
S6F and S6G).

Discussion
Immunotherapy has become a mainstay of the oncology 

landscape for many solid tumors. In prostate cancer, the 
low response rate to immunotherapy has been seen as a fail-
ure of the treatment to restore T-cell function. However, an 
alternative hypothesis is plausible; failure of immunother-
apy responses in patients with prostate cancer reflects our 
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Figure 3.  AR inhibition increases T-cell cytotoxicity in vitro and in vivo. A, Expression of NY-ESO1 in C42B cells. B and C, NY-ESO1-expressing C42B 
cells treated with either DMSO (C) or enzalutamide (D) for 14 days and then cocultured with CD8 T cells transduced with a NY-ESO1 TCR for 3 days. 
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treatment. G, Schematic of in vivo TrampC1 tumor experiment. H, Tumor weights at time of harvest (day 12 posttumor implantation). I, Number of CD8 T 
cells in WT or Ar-KD TrampC1 tumors. J, Number of Nur77-GFP+ T cells in WT or Ar-KD TrampC1 tumors. K, Representative cytograms showing CD44 and 
Spas1 tetramer staining in the tumor. Gated on live, TCRβ+, CD8+. L, Number of Spas1 tetramer + CD8 T cells in the tumor. M, Representative cytograms 
showing CD44 and IFNγ expression in CD8 T cells in the tumor. Gated on live, TCRβ+, CD8+. N, Number of IFNγ-expressing CD8 T cells in the tumor. O, Growth 
curves of WT and Ar-KD TrampC1 tumors in WT and Rag-KO animals. P, Tumor weights on day 29. Data representative of two to four independent experi-
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L, Two-way ANOVA, *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001.

limited understanding of what regulates immunity in this 
tissue microenvironment. In this regard, we set out to iden-
tify regulators of MHCI in prostate cancer with the goal 
of understanding the mechanisms of response and resis-
tance in this disease. Importantly, our investigation herein 
compliments a previous report that AR inhibition leads to 

aberrant endogenous retrovirus regulation, thereby induc-
ing type I interferons and MHCI (21), a mechanism that is 
likely synergistic with the work presented here.

The interaction between hormones and immune responses 
is extremely complex with cell-intrinsic and cell-extrinsic 
mechanisms at play. There is growing evidence that the sexual 
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dimorphism observed in inflammatory diseases, such as 
cancer, is in part mediated by androgen signaling (32–36). 
In a recent study of individuals receiving gender-affirming 
hormone therapy, testosterone treatment repressed anti-
gen presentation pathways in circulating monocytes (37). 
In another study, 17 different mouse tissues were profiled 
to reveal sex differences mediated by androgens, and of the 
top 10 genes differentially expressed in male and female 
mice, 9 were MHCI genes (38). Together, these recent bodies  
of work highlight the immunomodulatory nature of andro-
gens but come up short in providing a mechanism. Herein, 
we provide a mechanistic link via AR which directly represses 
MHCI expression (Supplementary Fig. S7). Interestingly, 
in a phase I clinical trial in men with nivolumab-refractory 
melanoma, patients were treated for 28 days with an AR 
axis inhibitor in an effort to make them sensitive to immu-
notherapy. A RECIST of 42.8% was reported in this small 
study (39), suggesting the potential clinical application of 

androgen axis inhibition in improving immunotherapy re-
sponses in other tumors that have hijacked androgen sig-
naling to evade immunity.

Our investigation of AR regulation of MHCI expression 
also revealed a temporal period in which androgen axis 
blockade was immunostimulatory. Over 91 days, early an-
drogen axis inhibition was immunomodulatory and corre-
sponded with tumor cell growth arrest. As the tumor cells 
transitioned from a period of arrest to growth, MHCI ex-
pression also decayed. Notably, under chronic AR inhibition, 
tumor cells increased GR expression prior to loss of MHCI, 
suggesting a possible transition of AR- to GR-mediated re-
pression of MHCI (40). GR-conferred repression of MHCI 
upon chronic AR inhibition is perhaps not surprising as 
this has been reported for tumor cell survival in other pros-
tate cancer models (41). Unique to our discovery is the idea 
that perhaps GR promotes immune evasion in addition to 
cell survival.
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Finally, our observation of a potential AR-to-GR switch is 
interesting considering the design of immunotherapy clinical 
trials in prostate cancer and standard of care treatment for 
this patient population. The KEYNOTE 991 trial (35) was 
the largest clinical study to date that tested the hypoth-
esis that early combination of androgen axis inhibition with 
immunotherapy in patients with mHSPC would be effective. 
Unfortunately, the trial was ended due to a lack of signal in  
combination therapy over the control arm. The trial was de-
signed to enroll patients with no prior history of androgen 
axis blockade; however, patients were allowed to be treated for 
up to 3 months with ADT prior to starting immunotherapy. 
Given the work of others, as well as data presented herein, an-
drogen axis blockade might be initially immunogenic but then 
lost due to the activation of other nuclear receptors that repress 
MHCI. Future immunotherapy clinical trials should be de-
signed to harness the window of ADT-induced immunogenic-
ity and/or the development of biomarkers to identify patients 
for which androgen axis blockade remains immunogenic.

Methods
Cell Lines and Reagents

Most cell lines were originally purchased from the ATCC and 
cultured following standard ATCC protocols. C42B-dCas9 and 
LNCaP-dCas9 cell lines [generated by Das and colleagues (RRID: 
CVCL_0395; ref. 42)] and TrampC1 cells were cultured in RPMI 1640 
medium (Gibco) with 10% (Gibco) and 5% penicillin/streptomycin 
(Invitrogen). VCaP (RRID:CVCL_2235), PC3 (RRID:CVCL_0035), 
and HEK293T cells (RRID:CVCL_0063) were cultured in DMEM 
(Gibco) with 10% FBS and 5% penicillin/streptomycin. For AR-positive 
PC3 cells, a lentiviral vector was designed to express AR-ORF and 
mCherry selection marker in PC3 cells. HEK293T cells were trans-
fected with AR/mCherry-expressing lentiviral plasmid together with a 
second-generation psPAX2 (RRID:Addgene_12260) packaging vector 
and pMD2.G (RRID:Addgene_12259) envelope-expressing plasmid. 
The virus was harvested 24 and 48 hours post-transfection and pre-
cipitated using Lenti-X concentrator (Takara). PC3 cells were trans-
duced with virus in the presence of polybrene (4 µg/mL) for 24 hours, 
and mCherry-positive cells were sorted using Aria (BD). All cells 
were grown in a 5% CO2 humidified incubator at 37°C. Cell line 
STR authentications were done at the UC Berkeley DNA Sequencing 
Facility. Mouse Pten−/−; p53−/−; Smad4−/− (PPSM) castration-resistant 
prostate tumor model was a gift from R. DePinho. TrampC1 cells 
were purchased from ATCC (RRID:CVCL_3614). Cell lines were 
STR authenticated prior to use, tested for mycoplasma monthly,  
and used under passage 50. Enzalutamide was purchased from  
Selleckchem, and the AR PROTAC degrader ARD-61 was a gift from 
Dr. Shaomeng Wang’s lab at the University of Michigan (18).

CRISPRi Flow Cytometry Screen
The genome-wide CRISPRi flow cytometry screen was performed 

using the Weissman lab protocol (weissmanlab.ucsf.edu) with some 
modifications (43). In brief, C42B-dCas9 cells were generated by 
infecting C42B cells with a lentivirus containing dCas9-KRAB (KRAB 
domain, Krüppel-associated box), a repressive chromatin-modifying 
complex to induce transcriptional silencing. dCas9 (from Streptococcus 
pyogenes) was fused to two copies of a nuclear localization signal, HA 
tag, and blue fluorescent protein (44). Approximately 132 million 
C42B-dCas9 cells were then infected in duplicate with a lentivirus 
containing the CRISPRi-V2 library (RRID:Addgene_1000000093), 
a kind gift from Dr. Luke Gilbert’s lab at UCSF, at an MOI of 0.3 
and 8 µg/mL polybrene (TR-1003-G). After 3 days, cells were put into 

media containing 8 µg/mL puromycin (A11138-03). After another  
3 days, cells were placed into drug-free media and allowed to re-
cover for 24 hours. Cells were then harvested and fixed in 4% PFA 
(5 million cells per 1 mL of PFA solution) at room temperature for 
20 minutes, washed with cold 1× PBS, and incubated with human 
Fc Block (564220) in FACS buffer for 10 minutes at room tempera-
ture. An anti-human HLA-ABC antibody was then added (Thermo 
Fisher Scientific, Cat# 17-9983-42, RRID:AB_10733389) and incu-
bated on ice for 20 minutes in the dark. Finally, cells were washed 
and resuspended in cold FACS buffer and sorted on a BD FACSAria  
Fusion cell sorter to collect the 25% to 30% highest and lowest 
HLA-ABC-expressing cells. This protocol was also followed for the 
ARE sub-library CRISPR screen in C42B cells, using virus generated 
as described below. DNA was extracted using the Zymo Quick-DNA 
FFPE Kit (56404) and amplified for 26 cycles using NEBNext Ultra 
II Q5 Master Mix (M0544S) and primers containing TruSeq index-
es for NGS analysis. Libraries were gel purified and extracted using 
the Zymoclean Gel DNA Recovery Kit (11-301C) and assessed on a 
high-sensitivity DNA bioanalyzer kit (5067-4626). Sample libraries 
were run on a HiSeq 4000 and analyzed using standard protocols 
(ScreenProcessing) as previously described (43).

Lentivirus Generation and Infection
To validate gene hits from the CRISPRi flow cytometry screen, 

sgRNA sequences (Supplementary Table S6) were cloned into the 
pLG20 pU6-sgRNA Ef1 alpha Puro-T2A GFP vector (RRID:Addgene_ 
111596) and lentivirus generated as previously described (42). Cells 
were plated in a six-well dish at 150,000 cells/well in 2 mL of media  
and infected with virus the next day with 10 µg/mL polybrene  
(TR-1003-G). Cells were harvested after 72 hours and analyzed as 
described above. Gene knockdown was measured by extracting RNA  
using the Zymo Quick-RNA MiniPrep Kit (R1054), performing 
cDNA synthesis using SuperScript III First Strand Synthesis Kit 
(18080051), and conducting qRT-PCR using Fast SYBR Green Master 
Mix (4385612) all according to the manufacturer’s protocols.

Drug Treatments and Antibodies
C42B, LNCaP, VCaP, and PC3 cells were treated in their respective 

media with either DMSO, 10 µmol/L enzalutamide, or 100 nmol/L 
ARD for 14 days and refreshed every 5 days at minimum. Cells treated 
with CSS (Gibco) were maintained in phenol red-free media and 
refreshed every 7 days at minimum. Cells treated with the synthetic 
androgen R1881 (10 nmol/L) were refreshed every 3 days. Following 
14 days of treatment, cells were harvested for flow cytometry and 
qRT-PCR (Supplementary Table S7), as described above, or Western  
blot analysis using anti-AR (D6F11), anti-MHCI (OriGene, Cat# 
AM33035PU-N, RRID:AB_3662758), or anti-Lamin B1 (Cell Signal-
ing Technology, Cat# 15068, RRID:AB_2798695) antibodies. Gene 
expression of MHCI processing genes (normalized to GAPDH) was 
measured by qRT-PCR and compared with control. Drug-treated  
cells were stained with a fluorescent HLA-ABC antibody (17-9983-42) 
and analyzed using flow cytometry. Median fluorescence intensity  
(MFI) of cells stained with a fluorescent HLA-ABC antibody was mea-
sured by flow cytometry and compared with control to determine 
MHC fold change. MHCI expression of cells infected with sgRNAs 
targeting GAL4 (nontargeting control), AR, GRHL2, FOXA1, or B2M 
was measured by flow cytometry and compared with GAL4 to deter-
mine MHC fold change.

RNA Expression Analysis of Neoadjuvant Enzalutamide 
Patient Samples

Bulk RNA expression analysis of MHCI-related genes was per-
formed on primary prostate cancer tissues before and after neoadjuvant 
enzalutamide treatment without ADT from the phase 2, prospective, 
single-arm DARANA study (ClinicalTrials.gov #NCT03297385) at the 
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Netherlands Cancer Institute Antoni van Leeuwenhoek Hospital. 
RNA-seq was performed as previously described (27). In brief, RNA 
from FFPE material was isolated from 2 to 10 sections of 10 µm  
using the AllPrep DNA/RNA FFPE Kit (Qiagen). cDNA was syn-
thesized from 250 ng of RNA using SuperScript III Reverse Tran-
scriptase (Invitrogen) with random hexamer primers. For RNA-seq, 
strand-specific libraries were generated with the TruSeq RNA Ex-
ome Kit (Illumina) and sequenced on a HiSeq 2500 (65-bp reads, 
single end). Sequencing data were aligned to hg38 using Hisat2 
(RRID:SCR_015530; ref. 45), and the number of reads per gene was 
measured with HTSeq count (RRID:SCR_005514; ref. 46). For anal-
yses, gene counts were normalized using DESeq2 (RRID:SCR_015687; 
ref. 47) and subsequently log transformed. Significance of expression 
level differences between pre- and posttreatment samples was deter-
mined using a Mann–Whitney U test. RNA-seq data from paired pre- 
and posttreatment prostate tumors from patients enrolled in a phase 
2 clinical trial of 6 months of neoadjuvant ADT plus enzalutamide 
(ClinicalTrials.gov #NCT02430480) at the National Cancer Institute 
were downloaded from GEO (Study Accession: GSE183100; refs. 
28, 48). Responding tumors with residual disease volumes less than 
0.001 cm3 were omitted from analysis (n = 5).

RNA-seq Analysis
RNA extraction was performed using the Zymo Quick-RNA 

MiniPrep Kit (R1054) and sent to the QB3 Genomics Sequencing 
Facility at UC Berkeley for library preparation and sequencing 
(RRID:SCR_022170). RNA-seq data were generated in FASTQ format. 
We quantified the gene-level expression using kallisto (49) and then 
used the abundance calls for downstream analysis. DESeq2 (50) was 
used for differential gene expression analysis, including evaluating 
the effect size and statistical significance. Length-scaled transcripts 
per million (TPM) generated by tximport (51) were used for plotting 
gene expression values. For treatment × time interaction analysis,  
P values were evaluated using the likelihood ratio test implemented 
in DESeq2 to compare the full model [treatment (ENZA vs. DMSO), 
time (day 7, day 28, day 49, and day 91), and treatment × time inter-
action] with the reduced model (treatment and time without the in-
teraction term). All statistical analyses were performed using R 4.2.0, 
and plots were generated using ggplot2 (RRID:SCR_014601; https://
cran.r-project.org/web/packages/ggplot2/citation.html).

ChIP-seq Analysis
ChIP-seq data for AR and H3K27ac were obtained from Hwang 

and colleagues (22). Briefly, Raw ChIP-seq data were downloaded 
from SRA (SRP222785). Reads with base quality scores more than 30  
across all bases were aligned using bwa-mem v0.7.17 (RRID:SCR_ 
022192; ref. 52) to build hg38. The aligned reads were deduplicated, 
and peaks were called using MACS2 v.2.2.5 (53) with a FDR thresh-
old of 0.01. Peaks in ENCODE (RRID:SCR_015482) hg38 blacklist 
(ENCSR636HFF) were excluded, and only peaks that were enriched 
at least 10-fold more than background were kept for further analy-
sis. The hg38 reference genome was segmented into 200-bp windows. 
The number of sequencing reads aligning to each window was deter-
mined and adjusted relative to the total number of mapped reads in 
the sample, yielding counts per million (CPM) values. Nonoverlap-
ping unique ChIP-seq narrow peak regions were obtained from the 
samples analyzed, and CPM values for the 200-bp bins overlapping 
the ChIP-seq peaks were obtained. Further, the differential ChIP-seq 
analysis on the CPM values was performed using the Student t test.

ARE Identification, Sub-library Generation, and Screen 
Analysis

Genomic DNA was extracted from C42B cell lines using the  
ENZA tissue DNA kit (D3396-02), sheered using Covaris ME220 
Focused Ultrasonicator (RRID:SCR_019818), and cleaned up using 

the MinElute Reaction Cleanup Kit (28204). Sample quality was  
assessed using a high-sensitivity DNA bioanalyzer kit (5067-4626) 
and sequenced on a NovaSeq S4 PE150 to reach 50× coverage per 
samples. Whole-genome sequence data were aligned to GRCh38  
using the Burrows–Wheeler Aligner version 0.7.17 (52). The con-
sensus sequence FASTA files were generated using bcftools algo-
rithm version 1.9-213 (54). A list of AREs, including full, half-site, 
and lenient motifs (55), were downloaded as position site-specific 
matrix models from JASPAR database (RRID:SCR_003030; ref. 56). 
The Find Individual Motif Occurrences (FIMO) version 5.1 was em-
ployed to identify potential AREs upstream of MHC that may exist 
within FASTA files derived from the cell lines or using the Cistrome 
database (http://cistrome.org; ref. 57). Hits passing the FDR q value 
≤ 0.05 were considered significant and prioritized by the highest 
FIMO occurrence score.

The Broad Institute sgRNA designer CRISPick was used to gen-
erate sgRNA sequences based on the location of the cut site (within 
the ARE sequence or a maximum of 3 bp outside), on-target cut-
ting efficiency >0.2, and minimal off-target binding. In addition 
to ARE-targeting guides, 10% of the sub-library contained control 
guides targeting nonessential genes, positive control genes (AR, 
GRHL2, and FOXA1), negative control genes (B2M, TAP1, and HLA-A),  
and nontargeting guides. A 1-pmol guide pool was ordered from 
IDT with the addition of forward/reverse primer adapter sequenc-
es and a BSMBI cut site flanking the guide sequences. Cloning was 
performed using the Weissman lab protocol for cloning of pooled 
sgRNAs into lentiviral vectors with some modifications. In brief, 
libraries were amplified using HF Phusion enzymes (F-530S), pu-
rified using the MinElute Kit (28204), and cloned into the Lenti- 
CRISPR-V2 plasmid (Addgene, #52961). Ligation products were 
transformed with Stellar chemically competent cells (636736) and 
purified using Qiagen Maxi Prep Kit (12263). Guide distribution 
was validated by PCR using the Broad Institute’s protocol for 
PCR of sgRNAs for Illumina sequencing using Ex Taq DNA Poly-
merase (RR001) and purified using SPRI select reagent (B23317) 
according to the Weissman lab protocol for Illumina Sequencing 
Sample Prep. Sample quality was assessed using a high-sensitivity 
DNA bioanalyzer kit (5067-4626) and sequenced on the MiSeq V3 
150SR (RRID:SCR_016379) at the California Institute for Quanti-
tative Biosciences at UC Berkeley. In evaluating element distribu-
tion, we took into account the 90% confidence interval of element 
abundance (i.e., the ratio between read counts of the 95th percen-
tile most expressed element and that of the 5th percentile element).  
A 90% confidence interval less than 10 suggests a reasonably tight 
distribution with few missing elements.

Lentivirus was generated, and a FACS-based screen was per-
formed as described above. In brief, C42B-dCas9 cells were infected 
with lentivirus containing an ARE-targeted sub-library at a 30% 
MOI for 3 days, selected with puromycin for 3 days, and allowed 
to recover for 24 hours. Cells were then fixed, stained with a  
HLA-ABC antibody, and sorted for 25% to 30% high and low MHC 
expression. DNA was extracted using the Zymo Quick-DNA FFPE 
Kit (56404) and amplified for 26 cycles using NEBNext Ultra II 
Q5 Master Mix (M0544S) and primers containing TruSeq indexes 
for NGS analysis. Libraries were purified using SPRI select reagent 
(B23317) according to the Weissman lab protocol for Illumina 
Sequencing Sample Prep. Sample quality was assessed using a 
high-sensitivity DNA bioanalyzer kit (5067-4626) and sequenced 
on a HiSeq 4000, SE50, at the UCSF Core Facility. Counts per target 
guide were calculated using MAGeCK (50) and normalized per 
sample by dividing by the total number of counts and multiplying 
with 1,000. Normalized counts were transformed by log2(normalized 
counts + 1). Differences between high and low MHCI groups were 
calculated at day 0 using the average of log-transformed counts 
across replicates. A t test was used to test for statistical signifi-
cance per guide.

http://ClinicalTrials.gov
https://cran.r-project.org/web/packages/ggplot2/citation.html
https://cran.r-project.org/web/packages/ggplot2/citation.html
http://cistrome.org
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T-cell Isolation and Coculture
PBMCs were ordered from STEMCELL Technologies and T cells 

isolated using EasySep Human T Cell Isolation Kit (17951) according 
to the manufacture’s protocol. Cells were resuspended in complete X 
VIVO media with 5% FBS, 10 mmol/L N-acetyl cysteine, 55 µmol/L 
ß-mercaptoethanol, and 50 IU/mL IL2. T cells were activated using 
Dynabeads Human T-Activator CD3/CD28 for T-Cell Expansion 
and Activation (11132D) and infected with lentivirus containing the  
NY-ESO1 expression construct (Genecopoeia EX-Q0397-LV205) and 
8 µg/mL polybrene 24 hours after activation. NY-ESO1 expression 
was validated by flow cytometry 6 days postinfection. T cells were 
thawed the day prior to coculture in ATCC-modified RPMI media 
+10% FBS +5% penicillin/streptomycin + 1/10,000 IL2 + 5% human 
serum (H4522).

NY-ESO1 was expressed in C42B cells by infecting with lenti-
virus containing the NY-ESO1 expression construct (Genecopoeia 
EX-Q0397-LV205) and 8 µg/mL polybrene and sorted twice for GFP 
expression. NY-ESO1 expression was confirmed via Western blot 
(D1Q2U). For use in Incucyte experiments, C42B-NY-ESO1-expressing  
cells were infected with Nuclight Lentivirus Reagent (NLR; 4627) 
and sorted for RFP expression. For coculture experiments, C42B-
NY-ESO1-NLR cells were treated with either DMSO, 10 µmol/L 
enzalutamide, 100 nmol/L ARD, or CSS for 14 days; drug treat-
ment was refreshed at minimum every 5 days. Tumor cells were then 
harvested, washed, and replated in triplicate in a 96-well plate at 
either 2,500 or 10,000 cells per well, and T cells were added the fol-
lowing day. Cells were imaged and counted every 6 hours for 3 days 
using an Incucyte. For the indicated experiments, 5,000 U/mL of 
interferon gamma (I17001) was added 2 days prior to plating for 
coculture experiments and mouse anti-human HLA-ABC (311402) 
or IgG2a isotype control (400202) was added 2 hours prior to add-
ing T cells.

Ar Knockdown TrampC1/PPSM Cells, Ar qPCR, and In Vitro 
Cell Growth Assessment

AR was deleted in TrampC1 or PPSM cells according to the proto-
col (58). sgRNA targeting the murine Ar gene (sgRNA 1: AATACTGAA 
TGACCGCCATC and sgRNA 4: GGGTGGAAAGTAATAGTCGA) 
and the mouse genome nontargeting Ctrl sgRNA (5′-GCACUACC 
AGAGCUAACUCA-3′) were obtained from Synthego. Cas9 recombi-
nant protein was obtained from IDT. Following electroporation of 
the Cas9/sgRNA complex into 2 × 106 TrampC1 tumor cells, cells 
were plated in complete media and allowed to grow for 3 days. Cells 
were then subcloned, and 10 clones were analyzed for Ar expression 
by qPCR. Total RNA was extracted (RNeasy, Qiagen) and subjected 
to one-step RT-qPCR for Ar and Sdha (GoTaq one-step RT-qPCR) 
amplified in a QuantStudio 3 thermocycler (Applied Biosystems). 
Mouse qPCR primer sequences were as follows: mouse Ar (forward: 
5′GGAGAACTACTCCGGACCTTAT3′; reverse: 5′GGGTGGAAAGT 
AATAGTCGATGG3′) and mouse Sdha (forward: 5′GAGATACGC 
ACCTGTTGCCAAG3′; reverse: 5′GGTAGACGTGATCTTTCTCA 
GGG3′). One clone with the lowest Ar mRNA expression was selected 
for further studies, referred to as TrampC1 Ar-KD. In vitro growth 
potential of TrampC1 Ar-KD cells was assessed by platting 5,000  
cells in a 96-well plate, and confluency was measured using an Incu-
cyte, with measurements every 2 hours for 30 hours.

MHCI Expression in TrampC1 and PPSM Cells by Flow 
Cytometry

To measure MHCI expression, 1 × 105 TrampC1 WT and TrampC1 
Ar-KD or PPSM WT and PPSM Ar-KDc7 cells were plated in a  
six-well plate. Approximately 10 ng/mL of rIFNγ (BioLegend) was 
added. After 24 hours, cells were harvested and incubated on ice for 
20 minutes with e506 fixable viability dye (eBioscience) and H-2Kb 

antibody (AF6-88.5, BioLegend, RRID:AB_2721683). Data were col-
lected with a Fortessa Flow Cytometer (BD Biosciences) and analyzed 
using FlowJo software (Tree Star; RRID:SCR_008520).

In Vivo Mouse Studies
C57BL/6 (RRID:IMSR_JAX:000664), Nur77-GFP (RRID:IMSR_

JAX:016617), and Rag2-KO (RRID:IMSR_JAX:008449) were pur-
chased from the Jackson Laboratory. All animals were maintained 
under specific pathogen-free conditions in the Oregon Health &  
Science University animal facility. Eight-week-old males were used 
in all the experiments described. All cell lines were tested and con-
firmed to be Mycoplasma- and endotoxin-free using the MycoAlert 
Detection Kit (Lonza) and the Endosafe-PTS system (Charles River 
Laboratories). All animal experiments were approved by the Insti-
tutional Animal Care and Use Committee of OHSU. Animals were  
implanted with 1 × 106 TrampC1 WT, TrampC1 Ar-KDc6, PPSM WT,  
or PPSM Ar-KDc7 tumor cells passaged no more than three times 
after thawing on both hind flanks. Tumors were harvested and 
weighed 12 days postimplantation. Tumor-infiltrating lymphocytes 
(TIL) were isolated by dissection of tumor tissue into small frag-
ments in a 50-cc conical tube followed by digestion at room tem-
perature in a bacterial shaker at 180 rpm for 30 minutes in 1 mg/mL  
collagenase type IV (Worthington Biochemicals) and 20 mg/mL 
DNase (Roche) in PBS. Cells were then further disrupted with a 
1-cc syringe plunger through a 70-μm nylon cell strainer (BD Bio-
sciences) and filtered to obtain a single-cell suspension. TILs were 
incubated on ice for 20 minutes with e506 fixable viability dye 
(eBioscience), Spas1 tetramer (peptide sequence STHVNHLHC, 
NIH tetramer core), and the following antibodies: CD8 (53-6.7, 
RRID:AB_11124344), TCRb (H57-597, RRID:AB_1272173), and 
CD44 (IM7, RRID:AB_494011). For intracellular cytokine staining, 
TILs were plated at 1 × 106 cells/well in 96-well plates and stimulated 
for 5 hours with PMA (80 nmol/L) and ionomycin (1.3 µmol/L) for 
restimulation, in the presence of brefeldin A (BFA). Cells were 
then stained for surface markers, fixed and permeabilized using 
the BD Cytofix/CytoPerm kit, and stained with IFNγ (XMG1.2, 
RRID:AB_466193) antibody. All the antibodies were purchased 
through BioLegend or eBioscience. Data were collected with a 
Fortessa Flow Cytometer (BD Biosciences) and analyzed using 
FlowJo software (Tree Star; RRID:SCR_008520). For long-term 
tumor growth assessment, tumors were measured using a caliper 
from day 8 until day 29.

Analysis of Previously Published Single-Cell RNA-seq Data
The recently published human PCa scRNA-seq dataset (30) was 

obtained from https://doi.org/10.17632/5nnw8xrh5m.1. We rean-
alyzed this dataset using the Seurat pipeline (RRID:SCR_016341; 
v4.1.0). The BBKNN algorithm (59) was employed to mitigate po-
tential batch effects. Clustering and single-cell distribution were 
visualized using Uniform Manifold Approximation and Projection 
(UMAP) with the Leiden algorithm. Subsequently, cell clusters were 
annotated based on previously reported cell-type marker genes of 
human PCa (60) and the combined automatic annotation method 
CellTypist (61). AR activity was calculated using the VIPER analysis 
(62), an algorithm that employs the transcriptional gene regulatory 
network targeted by AR to infer its activity. Pathway activity of MHCI 
(3) or IFNγ was calculated using AUCell algorithm (v1.16.0). The pre-
processed matrix of gene counts versus cells contained 40,270 cells 
from 19 individual biopsies from a total of 11 patients. Of patients 
published, our initial analysis included patients 1, 3, 5, 6, 7, 9, 10, 
11, and 12. Patient 11 was not included in the published table but 
was included in the shared dataset. After clustering all cells, luminal 
cells were subset for further analysis. Patient 3 was excluded for sub-
sequent analysis due to less than 1 luminal epithelial cell with ADT 
and/or upon recurrence.

http://AACRJournals.org
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Activity Analysis of WCDT Biopsy Samples
To measure AR regulon activity of each sample in the WCDT 

cohort, we used the VIPER R package (version 1.26.0; ref. 62). A 
log1p-transformed TPM gene expression matrix and a regulatory net-
work were used as inputs for VIPER analysis. The viper function was 
employed to calculate AR activities. The regulatory network used in 
the VIPER analysis was the same as described above. To quantify the 
activity of the MHCI signature (HLA-A, HLA-B, HLA-C, IRF2, TAP1, 
TAPBP, and B2M genes) in each sample, we used the single-sample 
gene set enrichment analysis (ssGSEA; ref. 63) implemented in the 
GSVA (64) R package (version 1.44.5). The ssGSEA algorithm is 
a rank-based method to assess the expression levels of genes of a 
gene signature against all other genes in each sample within a given  
dataset. Log-transformed gene expression profiles and the MHCI 
signature were used as input to ssGSEA. FDR q values were used to 
determine statistical significance.

Master Regulator and GSEA Analysis
RNA-seq data of pembrolizumab-treated patient samples were 

used to evaluate differential transcription factor activities and to 
perform GSEA analysis (RRID:SCR_003199). Differential gene ex-
pression analysis between responders and nonresponders was first 
performed using DESeq2 (version 1.32.0; ref. 47). Gene expression 
differences were considered significant when the adjusted P value is 
<0.05. Transcription factor activity was inferred by msVIPER algo-
rithms provided in the VIPER R package (version 1.26.0). The Wald 
test statistic results from DESeq2 output served as a gene list input 
data for the VIPER analysis. The transcriptional regulatory network 
used in this study was curated from four databases as previously 
described (65). GSEA version 3.0 (66) was used to identify gene sets  
that were significantly activated in pembrolizumab nonresponders 
compared with responders from the Hallmark database [version 
7.4 of the Molecular Signatures Database (MSigDB; https://www.
gsea-msigdb.org/gsea/msigdb/)]. The expression data normalized by  
variance-stabilizing transformation in DESeq2 were used as the 
input of GSEA, and the default metric Signal2Noise in GSEA was 
applied to calculate the differential expression with respect to non-
responders and responders. The gene sets were considered to be ac-
tivated if their FDR q value was less than 0.05.

Statistical Analysis
Significance of expression level differences in primary prostate 

cancer pre- and posttreatment samples was determined using either 
a Mann–Whitney U test or a prespecified FDR significance level of 
0.05 as indicated above. Unpaired t tests were used to determine the 
statistical significance for the column plots, denoted by asterisk (*). 
*, P < 0.05; **, P < 0.01; ***, P < 0.001. For mCRPC RNA-seq analy-
sis, we calculated the correlation between two continuous variables 
using Pearson’s correlation coefficients. The threshold of P < 0.05 
indicates the significance of correlation.

Data Availability
RNA-seq data generated from the DARANA study are available in 

the European Genome-Phenome Archive (EGA) under the accession 
number EGAS00001006016. RNA-seq data from patient prostate  
tumors before and after 6 months of neoadjuvant ADT plus enzalut-
amide were downloaded from GEO (GSE183100). RNA-seq data 
and corresponding clinical annotations of tumor samples in WCDT 
cohort were downloaded from previously published studies (29). 
Single-cell RNA-seq data from patients with mHSPC were obtained 
from the authors (30). Newly generated RNA-seq data from 91 days 
of enzalutamide treatment in the C42B cells are available from GEO 
(GSE277299).
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