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Abstract

Smoothed Particle Hydrodynamics and Its Application Towards Extrusion Based
Additive Manufacturing

by

Chang Yoon Park
Doctor of Philosophy in Mechanical Engineering

University of California, Berkeley

Professor Tarek I. Zohdi, Chair

The possibility of using the mesh-free method Smoothed Particle Hydrodynamics (SPH)
towards analyzing modern additive manufacturing techniques, extrusion based ones in
particular, is investigated in this report. The mathematical foundations and a number of
corresponding topics regarding SPH is introduced, ranging from incompressible SPH and
implicit timestepping methods to total Lagrangian formulations: displaying its robust
capabilities for solving multiphyiscal mechanical problems. Finally, we demonstrate a
swarm-intelligence based optimization scheme coupled with our SPH solver to optimize
extrusion topologies for DIW (Direct Ink Writing) applications.
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Preface

In no doubt, the manufacturing is among one of the most significant fields that have
massively benefited from the development of e�cient numerical computational methods.
For example, the production of a modern automobile will be close to impossible without
modern simulation technologies, most of which are based on the tried-and-true Finite El-
ement Method (FEM) ([14, 131]); covering everything from sheet metal stamping process
simulations, structural sti�ness optimizations, engine combustion simulations to virtual
crash tests. This is also true for nearly every conventional manufacturing based indus-
tries. I firmly believe that it is not an exaggeration that modern technological marvels
were made possible due to the power of computational methods in general.

Apart from conventional subtractive / deformation based manufacturing methods, a
completely di�erent type of manufacturing method has been emerging throughout the
last couple of decades: Additive Manufacturing, also known as 3D printing. The term ad-
ditive manufacturing encompasses a large set of manufacturing methods where materials
are combined to form a meaningful object; this includes methods such as FDM (Fused
Deposition Modeling), DIW (Direct Ink Writing), SLM (Selective Laser Melting), SLA
(Stereolithography Additive Manufacturing). Although the concept itself dates back as
early as the 1980s, the modern advancements in microprocessor technologies and open-
source software made the method widely available in recent years. Unlike conventional
methods, such manufacturing methods involve many multi-physical phenomena that are
sometimes extremely di�cult to model with conventional numerical methods. For ex-
ample, FDM involves the deposition of an amorphous polymer that is heated up until
its glass-transition temperature, where it will start bonding to a pre-existing structure
via crosslinking. Such glassy polymers are often extremely di�cult to model ([8, 7]), and
may exhibit complex mechanical responses due to thermal conditions. It can be said that,
in a practical point of view, there are not many readily available solvers that have the
capability to e�ectively provide a computational model for such applications.

In the field of computational mechanics, conventional methods such as FEM (Finite
Element Method) have provided incredibly accurate simulations throughout its invention
in the early 1940s. One main advantage is its capability to provide accurate computations
without having “millions” of nodes. However, the advancement of the power of micropro-
cessors following Moore’s Law ([106]) has allowed modern computational simulations to
use many more unknowns. I believe that one major reason that popular mesh-free meth-
ods such as SPH (Smoothed Particle Hydrodynamics) or MPM (Material Point Method)
have become widely adopted is because of the processing power of modern computers
have finally allowed them to be useful.

SPH first started out as a numerical model to model astrophysical phenomenon ([94,
88, 89, 95]) by J.J. Monaghan. Due to it’s simplicity, it quickly evolved into a numer-
ical method with its own category. Modern SPH solvers have become highly advanced
compared to its original version, boasting features such as incompressible pressure solvers
([126, 37, 61, 16]), implicit viscous solvers ([16, 122, 113]), shock capturing pressure solvers



x

([62, 71, 70, 13, 11]), kernel correction methods ([44, 43, 118, 6, 18]) and more.
In this report, the possibility of employing the popular mesh-free method, Smoothed

Particle Hydrodynamics (SPH), towards analyzing extrusion based deposition fabrication
methods is explored. One major benefit of SPH is that it can trivially handle free-surface
boundaries for fluids. Compared to mesh-based methods such as FEM, this eliminates
major problems involved with the complex evolving topology of the deposited fluid. This
makes SPH an ideal candidate to model such deposition problems, although there exists
di�culties that one must overcome. One interesting problem that we look into is the
discrepencies between the nozzle path and the actual deposition shape ([64, 130, 59, 65]).
This often results in a situation where fine-tuning of the nozzle must be done in order to
obtain desirable results. Coupled with a PSO (Particle Swarm Optimization) optimization
algorithm, we prove that we can simulate and optimize the nozzle toolpaths in order to
produce a deposition much closer to the original desired shape.

To end, I would like to thank my academic advisor Professor Zohdi for the many years
of advising me (which I assume must have took great patience). I would also like to
thank professor Souto-Iglesias from Universidad PolitÃ c•cnica de Madrid, who teached
me how to be better at SPH. I would not have been able to present the results in this
paper without them.
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Chapter 1

Brief Review of Continuum
Mechanics
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1.1 Preliminary Mathematical Notations
Continuum mechanics is the foundation of virtually every fluid / solid model, and is

critical in understanding our computational model that will be introduced later on. We
will briefly go over mathematical preliminaries regarding the subject.

1.1.1 Vectors, Scalars and Matrices
1.1.1.1 Vectors

A N -dimensional vector is a collection of N scalars, and is written in bold (usually
lower case):

a =

S

WU
a1
a2
a3

T

XV (1.1)

ai represents the ith component of the vector a.
A “vector function” is a function where the result is a vector. This can be thought of

as a collection of 3 scalar functions:

a (· · · ) =

S

WU
a1 (· · · )
a2 (· · · )
a3 (· · · )

T

XV (1.2)

1.1.1.2 Matrices

A matrix is a collection of scalars presented in rows and columns, and is usually written
in uppercase bold symbols:

A =

S

WWWU

A11 A12
A21 · · ·

· · ·
Anm

T

XXXV (1.3)

where Aij represents the entry in the ith row and jth column. A matrix can be
multiplied with another matrix:

A¸˚˙˝
n◊m

· B¸˚˙˝
m◊n

= C¸˚˙˝
n◊n

(1.4)

Note: The dot (·) can be left out so that AB = C.
Where the components of C is defined as

Cij =
mÿ

k=1
AikBkj (1.5)
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The transpose of a matrix A is defined as:

AT =

S

WWWU

A11 A21
A21 · · ·

· · ·
Amn

T

XXXV (1.6)

with components
1
AT

2

ij
= Aji.

The inverse of a matrix A, is defined as

A≠1 · A = 1 (1.7)
Note: The existance of the inverse matrix is not guaranteed.

1.1.1.3 Basic Matrix Algebra

We state the following properties without proof:

A (B + C) = A · B + A · C (1.8)

(A + B)T = AT + BT (1.9)

(AB)T = BT AT (1.10)

(AB)≠1 = B≠1A≠1 (If the inverse exists for both A, B) (1.11)

1
A≠1

2T
=

1
AT

2≠1
(If the inverse exists for A) (1.12)

1.1.1.4 Eigenvalues and Eigenvectors

„ is an eigenvector of the matrix A if:

A„ = ⁄„ (1.13)
where „ is the corresponding eigenvector. In general, they can be found by considering

the following:

(A ≠ ⁄1) „ = 0 (1.14)
Since we are interested in non-zero eigenvectors,

det (A ≠ ⁄1) = 0 (1.15)
In which we solve for the eigenvalues by solving the resulting characteristic equation.
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1.1.1.5 Determinant and Condition Numbers

The following identities apply for the determinant of a matrix:

det(AB) = det(A)det(B) (1.16)

det(A≠1) = 1
det (A) (1.17)

The condition number is defined as:

Condition Number = “ =
Û

Largest Eigenvalue
Smallest Eigenvalue (1.18)

1.1.2 Tensors
1.1.2.1 Definition

In mathematical terms, a tensor is an object that can operate on another scalar, vector
or tensor. For a tensor with two free indicies, it can be considered to be a “matrix”. The
same properties of a matrix will apply in this case:

T a = b (1.19)

where a and b are n ◊ 1 vectors and T is a n ◊ n tensor. Such tensors are classified
as “second order tensors”. It can also operate on other second order tensors to produce
another second order tensor:

T 1 · T 2 = T 3 (1.20)

Sometimes, the order of a tensor is represented by the corresponding number of un-
derbars:

T (Second Order Tensor) (1.21)

Higher order tensors has more than 2 free indicies, and can no longer be represented as
a row/column matrix. For example, consiter a 4th order tensor C operating on a second
order tensor ‘ to produce a second order tensor ‡:

C : ‘ = ‡ (1.22)

Where the i, j, k, lth component defined as:

(C)ijkl = Cijkl (1.23)
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1.1.2.2 Einstein Notation

While dealing with tensor calculus, Einstein developed a convinient way to write them.
For example, consider a second order tensor operating on a 3-by-1 vector:

T · n = t (1.24)

In component form, this can be written as:

3ÿ

j=1
Tijnj = ti (1.25)

In Einstein notation, the summation notation (q) is simply left out, and the repeated
indicies (in this case, j) is assumed to be summed over the number of dimensions (in this
case, 3). Thus,

T · n = t
Equivalentæ Tijnj = ti (1.26)

For a second order tensor operating on another second order tensor:

A · B = C
Equivalentæ AikBkj = Cij (1.27)

Notice that operating a tensor on a vector or a di�erent tensor eliminates the free index
by summing over it. This is called “contraction”. Sometimes, the number of indicies being
summed over is represented via the number of dots betwwen the two symbols (as seen
above). For example,

C : ‘ = ‡ æ Cijkl‘kl = ‡ij (1.28)

is considered a double-contraction.

1.1.2.3 Tensor Calculus

The true convenience of the Einstein notation comes with doing calculus with it.

Gradient The spatial gradient of a scalar field will result in a vector field:

Òf =

S

WWU

ˆf
ˆx1
ˆf
ˆx2
ˆf
ˆx3

T

XXV (1.29)

Or equivalently,

Òf = ˆf

ˆxi
ei (Vector Form) Equivalentæ (Òf)i = ˆf

ˆxi
(Component Form) (1.30)
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Divergence The divergence of a vector field is written as

Ò · u = ˆui

ˆxi
(1.31)

Tensor Product The tensor product of two vectors produces a tensor, and is written
as

aibj (1.32)

a ¢ b =

S

WU
a1b1 a1b2 a1b3
a2b1 a2b2 a2b3
a3b1 a3b2 a3b3

T

XV (1.33)

In Einstein notation, it is much more concise:

a ¢ b = aibjei ¢ ej (Vector Form) Equivalentæ (a ¢ b)ij = aibj (Component Form) (1.34)

Di�erentiation Di�erentiating a vector field by another vector field, we obtain a tensor:

ˆa

ˆb
=

S

WU

ˆa1
ˆb1

ˆa1
ˆb2

ˆa1
ˆb3

ˆa2
ˆb1

ˆa2
ˆb2

ˆa2
ˆb3

ˆa3
ˆb1

ˆa3
ˆb2

ˆa3
ˆb3

T

XV (1.35)

In Einstein notation,

ˆa

ˆb
= ˆai

ˆbj
ei ¢ ej (Vector Form) Equivalentæ

A
ˆa

ˆb

B

ij

= ˆai

ˆbj
(Component Form) (1.36)

1.2 Kinematics
1.2.1 Deformation Gradient

In solid mechanics, the deformation is one of the most important tensors that are
virtually used in every material model to describe its mechanical response. Physically, its
represents the mathematical gradient of the deformation.
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Figure 1.1: Mechanical Potato

The coordinate of the point on the deformed “mechanical potato” (x) also corresponds
to a coordinate (X) on the undeformed, original “potato”. Let us call this mapping
function ‰ (·):

x(t) = ‰ (X, t) (1.37)

which is a function of time and the original position vector on the undeformed body.
The displacement is computed by (easy to get confused by the velocity field in fluid
mechanics, since they use the same symbol)

u(t) = x(t) ≠ X (1.38)

Finally, the deformation gradient is otained by taking the spatial gradient of u :

F (t) = ˆx(t)
ˆX(t) (1.39)

The resulting tensor occupies the symbol F , and is a second order tensor. In compo-
nent form:

Fij = ˆxi

ˆXj
(1.40)
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1.2.2 Jacobian
The Jacobian is defined as

J = det (F ) (1.41)

Physically, it represents the amount of “stretch” occuring due to the deformation:

dVdefomred = J · dVundeformed (1.42)

1.2.3 Decomposition of the Deformation Gradient
The polar decomposition theorem states that it is always possible to decompose am

admissible deformation gradient into a rotational part and a stretching part:

F = R · U = V · R (1.43)

where R is the rotational tensor and U , V is the stretch tensor. Here, R is a proper
orthogonal tensor and U , V is a symmetric, positive definite tensor. U and V can both
be decomposed via spectral decomposition:

U =
ÿ

i

⁄iri ¢ ri (1.44)

V =
ÿ

i

⁄ili ¢ li (1.45)

The ⁄is are known as the principal stretches.

1.2.4 Strain
Strain is a measurement of deformation, and is used directly to determine the me-

chanical response of the material in most solid models. The widely adopted Green-Strain
is written as

E = 1
2

1
F T F ≠ 1

2
(1.46)

An approximation for “small strains” for green strain can also be made:

Á = 1
2

1
F T + F

2
≠ 1 (1.47)

Note that the above approximation works well for “small strains”, only under the
condition that rotations are not present. If rotations are included in the deformation, the
approximation no longer works even the strain itself might be considered “small’.
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1.2.5 Stress Measures
1.2.5.1 Cauchy Stress Tensor

The Cauchy stress is a second order tensor that can be related to the traction vector:

‡ (x) · n = t (1.48)

Here, ‡ is the Cauchy stress and n is the normal vector of an arbitrary imaginary
plane cutting across the small “stress cube” located in point x. The traction vector, t, is
the amount of force that will be acting on this plane. This tensor is defined in the current
configuration.

1.2.5.2 First Piola-Kirchho� Stress Tensor

The Piola-Kirchho� stress tensor is defined as

S = J‡F ≠T (1.49)

and is defined in the current configuration.

1.2.5.3 Second Piola-Kirchho� Stress Tensor

The Second Piola-Kirchho� stress tensor is one of the most widely used stress measures
to represent the material response for a given strain. This tensor is defined as

S(2) = JF ≠1‡F ≠T (1.50)

For example, the stress response of a Saint Venant-Kirchho� model is given as

S(2) = ⁄tr (E) 1 + 2µE (1.51)

where E is the Green strain and µ is the shear modulus. We will review material
models later on.

1.2.5.4 Stress Rates

In many cases regarding models used for viscoelastic / viscoplastic fluids, it is much
more convenient to model stress rates, instead of finding the absolute stress. One at-
tempting to model viscoelastic / viscoplastic fluids will find such rates extremely useful.
We mention some popular stress rates below:

�
‡ = ‡̇ + LT ‡ + ‡L (Convected Rate) (1.52)

Ò
‡ = ‡̇ ≠ L‡ ≠ ‡LT (Oldroyd Rate) (1.53)
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¶
‡ = ‡̇ ≠ W ‡ + W ‡ (Jaumann Rate) (1.54)

¢
‡ = ‡̇ + ‡� ≠ �‡ (Green-Naghdi Rate) (1.55)

Where L is the velocity gradient
1
L = ˆv

ˆx

2
and W is the spin tensor

1
W = 1

2

1
L ≠ LT

22

and � = Q̇QT . It is also worth noting that the integration of stress rates over a long
period of time does cause accumulation of errors in many cases. Thus, it is beneficial to
avoid when possible, in general.

1.3 Balance Laws
Essential concepts of balance laws in the context of continuum mechanics are pre-

sented. To be concise, many proofs and details are left out; most of them are outside
the scope of this report. For a detailed review on continuum mechanics, it is strongly
suggested for one to go through excellent textbooks such as [52, 111].

1.3.1 Conservation of Mass
For a region � within a body, the following must hold:

d

dt

⁄

�
fl (x, t; ‰) dV = 0 (1.56)

From the transport equations, the above becomes
⁄

�
(fl̇ + flÒ · v) dV = 0 (1.57)

Since � is arbitrary, the integrand must satisfy:

fl̇ + flÒ · v = 0 (1.58)

1.3.2 Balance of Linear Momentum
For a region � within a body, the resulting forces equals the rate of increase of its

linear momentum:
⁄

�
flbdV +

⁄

ˆ�
tdA = d

dt

⁄

�
flvdV (1.59)

Where ˆ� represents the boundary of the region �. Assuming the fields are smooth,
using the fact that (without proof)
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d

dt

⁄

�
fl„dV =

⁄

�
fl„̇dV (1.60)

we may write
⁄

�
flbdV +

⁄

ˆ�
tdA =

⁄

�
flv̇dV (1.61)

1.3.3 Field Equations: Balance of Linear Momentum
We will state without proof (refer to [52] for details regarding the Cauchy’s tetahedron

and the symmetry of the stress tensor) that the surface integral of the traction vector can
also be represented as

⁄

ˆ�
tdA =

⁄

ˆ�
T T · ndA (1.62)

where T is the Cauchy stress tensor where its components are defined by

Tij = t (≠ei) ¢ (≠ej) (1.63)
This allows to rewrite the balance of linear momentum:

⁄

�
flvdV =

⁄

ˆ�
T T ndA +

⁄

�
flbdV =

⁄

ˆ�
T T ndA +

⁄

�
flbdV (1.64)

Thus;
⁄

�
(Ò · T + flb ≠ flv̇) dV (1.65)

Again, since � is arbitrary, the above can be localize to give

Ò · T T + flb = flv̇ (1.66)
Or in component form:

ˆTji

ˆxj
+ flbi = flv̇i (1.67)

From Cauchy’s theorem, we have

T T = T (1.68)

Thus we have

Ò · T + flb = flv̇ (1.69)
The Cauchy stress tensor T is also commonly written as ‡:

Ò · ‡ + flb = flv̇ (1.70)
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1.3.4 Field Equations: Thermodynamics
Following the first law of thermodynamics, the rate of work and heating being applied

to a region of the body � must equal the total rate of energy change occuring within the
body. This can be written as

⁄

ˆ�
t · vdA +

⁄

�
flb · vdV +

⁄

ˆ�
q · ndA +

⁄

�
flrdV

= d

dt

3⁄

�

1
2flv · vdV +

⁄

�
flÁdV

4
(1.71)

Here, the terms correspond to
⁄

ˆ�
t · vdA æ Mechanical power (1.72)

⁄

�
flb · vdV æ Work done by body forces (1.73)

⁄

ˆ�
q · ndA æ Heat flux entering boundary (1.74)
⁄

�
flrdV æ Internal Heat Generation (1.75)

⁄

�

1
2flv · vdV æ Kinetic Energy (1.76)

⁄

�
flÁdV æ Internal Energy (1.77)

We also state the work-energy identity without further proof:
⁄

ˆ�
t · vdA +

⁄

�
flb · vdV = d

dt

3⁄

�

1
2flv · vdV

4
+

⁄

�
T : DdV (1.78)

where T is the Cauchy stress and D = Òv is the velocity gradient. Substituting the
identity into equation 1.71,

⁄

ˆ�
q · ndA +

⁄

�
flrdV +

⁄

�
T · DdV = d

dt

3⁄

�
flÁdV

4
=

⁄

�
flÁ̇dV (1.79)

Note that we have again used the identity d
dt

s
� fl„dV =

s
� fl„̇dV . Applying the diver-

gence theorem, ⁄

�
(T · D + Ò · q + flr ≠ flÁ̇) dV = 0 (1.80)

Since � is an arbitrary region within the body, we can localize (like earlier) into

T · D + Ò · q + flr = flÁ̇ (1.81)
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Chapter 2

Topics in Smoothed Particle
Hydrodynamics
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2.1 Introduction to SPH
2.1.1 Concept

SPH was first introduced by JJ. Monghan to solve astrophysics problems ([94, 89,
88, 95]). In SPH, a kernel function that centers around a SPH “particle” is defined as
W (r, h), where r is the position vector to the center of the kernel (the position of the
SPH particle), and h is the smoothing length. There are many possible selections of such
kernel functions, although it is known that the Wendland kernel provides the best overall
numerical properties ([77]).

2.1.2 Operators
A physical property Â at the location of particle a then can be written as an interpo-

lation of the properties of the surrounding particles (neighbors)

ÈÂÍa =
ÿ

bœNa

ÂbvbW (rab, h) (2.1)

where Wab = W (rab, h) , and rab = ra ≠rb. Also, for convenience, we write the angled
brackets È·Í to represent the value obtained from the SPH operators.

As first introduced by Monaghan, the gradient of a physical property ÒÂa can be
written as:

ÈÒÂÍa =
ÿ

bœNa

ÂbvbÒWab (2.2)

although this is not the only way one can write the gradient operator. One can write
the above so that conservation properties are obtained:

ÈÒÂÍa =
ÿ

bœNa

(Âa + Âb) vbÒWab (2.3)

Note that this operator does not satisfy 0-order consistency, which means that it is
not capable of representing a constant gradient (such as Ò (x + y + z) = [1 1 1]T ).
Another operator that will give us 0-order consistency for the gradient is

ÈÒÂÍa =
ÿ

bœNa

(Âb ≠ Âa) vbÒWab (2.4)

Which is generally more widely used in SPH. Recently, in [44], a first-order consistent
operator was given:

ÈÒÂÍa = Ba

ÿ

bœNa

(Âb ≠ Âa) vbÒWab (2.5)

Where Ba is the renormalization matrix defined as
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Ba = ≠
S

U
ÿ

bœNa

rab ¢ ÒWabvb

T

V
≠1

(2.6)

The divergence of a vector field can also be written in a similar manner:

ÈÒ · ÂÍa =
ÿ

bœNa

(Âb ≠ Âa) vb · ÒWab (2.7)

ÈÒ · ÂÍa = Ba

ÿ

bœNa

(Âb ≠ Âa) vb · ÒWab (2.8)

These operator gives first order consistency for the gradient regardless of the particle
orientation. One caviat is the fact that Ba may not always be invertible.

The Laplacian operator is another operator that frequently arises in PDEs as di�usive
terms. A naive implementation would be to iteratively apply first derivative operators
twice, such as

e
Ò2Â

f
= ÈÒ · ÒÂÍ =

ÿ

bœNa

(ÈÒÂbÍ ≠ ÈÒÂaÍ) vb · ÒWab (2.9)

This type of operators su�er from the well-known oscillatory issues regarding “ex-
tended stencils”, since the evaluation makes use of the values of the neighbors of the
neighbors. In [21], an operator that retains the compact stencil was proposed:

e
Ò2Â

f
=

ÿ

bœNa

2vb
Âb ≠ Âa

rab
eabÒWab (2.10)

Recently, in [44], a first-order consistent operator was introduced:

e
Ò2Â

f
= B̂a :

ÿ

bœNa

2vbeab ¢ ÒWab

Q

aÂa ≠ Âb

rab
≠ eab ·

ÿ

bœNa

vb (Âb ≠ Âa) Ba · ÒWab

R

b (2.11)

Where B̂a is another renormalization tensor is defined as the solution of the following:

S

U

Q

a
ÿ

bœNa

2vbrab ¢ eab ¢ eab ¢ ÒWab

R

b +
Q

a
ÿ

bœNa

vbeab ¢ eab ¢ ÒWab

R

b ¢
Q

a
ÿ

bœNa

vbrab ¢ rab ¢ ÒWab

R

b : Ba

T

V

¸ ˚˙ ˝
Aa

: B̂a = ≠I

(2.12)

B̂a = ≠A≠1
a (2.13)

Similar to the earlier renormalization tensor Ba, Aa may be singular and a correction
might not exist. One necessary condition for Aa to be invertible, is that particle a has a
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Figure 2.1: Operator comparison

neighbor in each of it’s quadrants for a coordinate system centered around particle a. For
example, in 3D, a particle must have at least 8 neighbors in each quadrants. In practice,
an algorithm searches for the 8 particles and the attempt to invert Aa is only performed
if they all exist.

2.1.3 On Solving the Navier Stokes Equation with SPH
First, we state the Navier-Stokes equation:

fl
Du

Dt
= ≠Òp + µÒ2u (2.14)

the continuity equation must also be satisfied:

ˆfl

ˆt
+ Ò · (flu) = 0 (2.15)

We start by discretizing the abobve equations using the SPH operators stated above:

Du
Dt

= ≠
K

1
fl

Òp

L

+
K

µ

fl
Ò2u

L

+ g (2.16)

Dfl

Dt
= ÈflÒ · uÍ (2.17)

p = fEOS(fl) (2.18)

Where < · > represents the discretized version of the expression using SPH, and fEOS

represents the equation of state. An example of an equation of state is Tait’s equation of
state ([90]), where the pressure is directly computed from the density deviation:
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p = 1
“

fl0c
2
0

AA
fl

fl0

B“

≠ 1
B

(2.19)

Although “ represents a physical material parameter associated with the fluid and
c0 represent the speed of sound, in practice, c0 and “ are usually chosen so that the
SPH model is “incompressible enough” to avoid unreasonably small timesteps. Using the
gradient operator found in [96], Equation 3.10 can be written in the following symmetric
form:

≠
K

1
fl

Òp

L

i

= ≠
ÿ

jœNi

A
pi

fl2
i

+ pj

fl2
j

B

ÒiWijmj (2.20)

Where the index i represents the ith SPH particle, while j œ Ni represents the set of
neighbors of the ith particle. Wij is the kernel function centered around particle i, ÒiWij

represents the gradient of the kernel, pi is the pressure of particle i, pj is the pressure
of particle j, fli is the density of particle i, flj is the density of particle j, and mi and
mj represent the mass of particle i and j, respectively. The viscosity contribution is
discretized as

K
µ

fl
Ò2u

L

i

=
ÿ

jœNi

4mj(µi + µj)rij · ÒiWij

(fli + flj)2(r2
ij + ‘) uij (2.21)

For weakly compressible SPH approaches, the following discretization for the continuity
equation is employed. This is known as”-SPH, where a numerical di�usion term is added
onto the divergence of u:

ÈflÒ · uÍi = ≠fli

ÿ

jœNi

(uj ≠ ui) · ÒiWijVj + ”hc0Di (2.22)

where Di is the “di�usion” term, defined as

Di = 2
ÿ

jœNi

Âij
rji · ÒWij

r2
ij

Vj, (2.23)

where ” is a tunable constant (usually chosen to be 0.1), h is the SPH smoothing
length, c0 is the speed of sound, and Âij is defined as :

Âij = (flj ≠ fli) ≠ 1
2 (ÈÒ1fliÍ + ÈÒ1fljÍ) · rji, (2.24)

where ÈÒ1 ( · )Í represents the renormalized gradient operator. ÈÒ1fliÍ can then be written
as :

ÈÒ1fliÍ = Bi

ÿ

jœN (i)
(flj ≠ fli)ÒiWijVj (2.25)

The above set of equations is a great starting point for simulating Newtonian Fluids
with ”-SPH. We will introduce more advanced methods further along in the report.
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Algorithm 2.1 Weakly Compressible SPH Timestep (Explicit Forward Euler)
for Particlei in all particles do

Compute ≠
e

1
fl(t)Òp

f

i
= ≠ q

jœNi

3
pi

fl(t)2
i

+ pj

fl(t)2
j

4
ÒiWijmj

Compute Di = 2 q
jœNi

Âij
r(t)ji·ÒWij

r(t)2
ij

Vj,

Compute Èfl(t)Ò · u(t)Íi = ≠fl(t)i
q

jœNi

(u(t)j ≠ u(t)i) · ÒiWijVj + ”hc0Di

end for
for Particlei in all particles do

fl(t + �t)i = fl(t)i + (�t)(Èfl(t)Ò · u(t)Íi)
ri(t + �t) = ri(t) + (�t)(ui(t))
ui(t + �t) = ui(t) + (�t)(≠

e
1

fl(t)Òp
f

i
+ Èfl(t)Ò · u(t)Íi)

end for

2.1.4 Boundary Condition Enforcement
Enforcing proper boundary conditions in SPH is rather tricky. Conditions such as

slip / no-slip conditions are usually achieved by using ghost particles ([81, 93, 82, 90]).
This involves a layer of static SPH particles that lie on the boundary surface. During the
position / velocity update phase during each timestep for the boundary particles, instead
of updating them, the velocity / poisitions are enforced to be an appropriate value.

2.1.5 Free-Surface Tracking
In order to detect free-surface particles, the algorithm first filters out potential free

surface particles. This can be done by computing the particle density for particle a:

ca =
ÿ

bœNa

vbWab

If ca < 0.95, we mark particle a as a potential free-surface particle. Using this creterion
exclusively usually produces undesirable results, and further filtering is required. In [83], a
versitile free surface detection algorithm was implemented, and uses the following criterion
to further determine whether it actually belong to the free surface :

Condition 1: |xab| Ø –
Ô

2h and |xbT | < –h

Condition 2: |xab| < –
Ô

2h and |na · xbT | + |sa · xbT | < –h

Where xT = xi + �x · ni, and is a tuning parameter such that 0 < – < 1. In the
original nomenclature in [83], – was chosen to be 1

3 (as they use the term “smoothing
length” as one third of the support radius of the kernel).
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2.1.6 Particle Shifting
Another modern technique worth mentioning is particle shifting, and is usually used

in conjunction with WCSPH methods. The main purpose of particle shifting is to provide
a workaround regarding tensile instability. Shifting particles naively produces artificial
defects on the free-surface. Thus, it is required that one correctly identifies the free surface
and applies appropriate shifting methods accordingly. Various shifting algorithms have
been proposed with varying performance. Particle “Shifting” schemes in SPH can be seen
as a re-sampling scheme. It was shown that this can lead to significant improvements
in accuracy and stability ([126],[104],[128]). We follow the recent work by [128] where a
fine-tuned shifting methodology was successfully developed. In [104], the following normal
vector computation was used with successful results:

na = M a · ÒCa

|M a · ÒCa|
Now, following For the bulk of the particles that are not free-surface particles, we use

”ra = ≠5
3hVaÒCa · �t

For the free-surface ones, we use

”ra = ≠5
3hVa (1 ≠ na ¢ na) ÒCa · �t

After the position update phase during each time step, we now apply the shifting
vector to the particle positions:

x̂a = xa + ”ra

Then, it is required that the variables associated with the particle must be advected
accordingly:

Y
_____]

_____[

fl̂a = fla + (Òfl)a · ”ra

v̂a = va + (Òv)a ”ra

·̂ a = · a + (Ò· )a ”ra

◊̂a = ◊a + (Ò◊)a ”ra

2.2 Advanced SPH Solvers
Since its development ([94]), SPH has been mostly an explicit method. By “explicit”,

we imply the following:

• The pressure Poisson equation (PPE) that keeps the fluid “incompressible” is only
“approximated” by an equation of state.
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• The viscous forces acting on each particle is computed according to the positions /
velocities computed in the earlier timestep.

Explicit formulations tend to work well for low-viscosity Newtonian fluid flow applica-
tions, but for highly viscous fluids, they are usually very hard to stabilize even with
tiny timesteps. Methods such as ”-SPH ([80]) are greatly beneficial for stabiblizing the
pressure step, but large viscosities can still cause stability issues. This was covered in
detail in an earlier section. Since the ultimate goal of this report is to devise a method
that can simulate highly viscous printing inks for additive manufacturing methods, it is
a requirement that an implicit timestepping scheme is used for our SPH framework.

In this section, we introduce several approaches regarding implicit timestepping with
SPH.

2.2.1 Review of Implicit Methods in SPH
Enforcing incompressibility in SP

2.2.1.1 Cummins, Rudman (1999)

To our best knowledge, the earliest development of implicit pressure solvers that en-
force incompressibility based on operator splitting can be traced back to the work of
Cummins and Rudman ([38]). Following the original notation in the paper (note that
particle indicies are a and b instead of i and j), an operator splitting methods was em-
ployed:

rú
a = rn

a + �t(un
a) (2.26)

Where rú represents the intermediate position computed by only applying the viscous
operator:

uú
a = un

a ≠ �t

A
ÿ

b

mb‰
n
ab (rú) + g

Fr2

B

(2.27)

Here, ‰n
ab represents the viscous interation between particle a and b and Fr is the

Froude number. The following PPE (Pressure Poisson Equation) is then solved to acquire
the pressure values that each particle needs to have in order to enforce incompressibility:

Ò ·
A

1
fl

ÒP

B

a

= Ò · uú
a

�t
(2.28)

The computed pressure values are now used to obtain a divergence-free velocity field:

un+1
a = un

a ≠ �t
ÿ

b

mb

A
Pb

fl2
b

+ Pa

fl2
a

B

ÒaWab (2.29)
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The trapezoidal rule is then applied to update the particle positions:

rn+1
a = rn

a + �t

A
un+1

a + un
a

2

B

(2.30)

The PPE operator that was used in this paper follows as:

Ò ·
A

1
fl

ÒP

B

a

=
ÿ

b

mb

flb

A
4

fla + flb

B
Pabrab · ÒaWab

|r2
ab| + ÷2 (2.31)

This operator is symmetric, and can be solved with a matrix solver such as conjugate
gradient. One must note that the free surface boundary particles must be enforced a free-
surface condition by precribing the pressure Pa to be zero. Thus, an accurate free-surface
detection algorithm must be executed before attempting to solve the PPE.

However, in our experience, solving the above PPE resulted in oscillating pressure
profiles (even with direct solvers), redering the simulation unstable for any practical usage.
Cummin’s also reported oscillations in their research.

2.2.1.2 IISPH - Implicit Incompressible SPH, Ihmsen et al (2014)

In 2014, an extremely robust pressure solver which has spawned many variants was
developed by Ihmsen et al. ([61]). We would like to give a brief review of the method,
since the original article (although excellent in content) can be somewhat confusing to
follow.

The timestep is first splitted into a viscous part and the pressure part. Similar to
conventional approaches, the acceleration acting on a particle is computed by:

ap
i (t) = ≠

ÿ

j

mj

A
Pi(t)
fl2

i (t) + Pj(t)
fl2

j (t)

B

ÒWij(t) (2.32)

No equation of state is used, so the pressure values are unknown and must be solved
for. To obtain the pressure for the particles, a PPE is derived starting from the continuity
equation:

Dfl

Dt
= ≠flÒ · u (2.33)

using a forwards di�erence for the density:

fli (t + �t) ≠ fli (t)
�t

=
ÿ

j

mjvij (t + �t) ÒWij(t) (2.34)

Note that here we have the unknown densities vi (t + �t) and vj (t + �t). Then, the
intermediate velocity after the application of viscous forces is written as:

vú = vi (t) + �taadv
i (t) (2.35)
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aadv
i (t) represents the acceleration from the viscous forces / surface tension / gravity,

etc, and are assumed to be known. We then compute an intermediate density field from
equation 2.34:

flú
i = fli(t) + �t

ÿ

j

mjv
ú
ijÒWij(t) (2.36)

This density field clearly does not represent an “incompressible” fluid, since the viscous
forces will not give a divergence-free velocity field. This needs to be fixed at the pressure
step. Since we know that the density of the fluid after the pressure step needs to be fl0
(rest density), the velocity field from the pressure step must provide a density change to
match:

fl0 ≠ flú
i

�t
=

ÿ

j

mj (vi (t + �t) ≠ vj (t + �t)) ÒWij(t) (2.37)

Since vi (t + �t) = vú
i + �tap

i (t) , vj (t + �t) = vú
j + �tap

j (t) :

fl0 ≠ flú
i

�t
=

ÿ

j

mj

1
vú

i ≠ vú
j

2
ÒWij(t) + �t

ÿ

j

mj

1
ap

i ≠ ap
j

2
ÒWij(t) (2.38)

Ihmsen further assumed that q
j mj

1
vú

i ≠ vú
j

2
ÒWij(t) ¥ 0 (although not explicitly

stated in his paper). Note that since the intermediate velocity field is not completely
divergence free, possible errors might arise (although for practical applications, the ap-
proximation yields satisfactory results). Thus, we have

fl0≠flú
i = (�t)2

Q

a
ÿ

j

mj

Q

a≠
ÿ

j

mj

A
Pi(t)
fl2

i (t) + Pj(t)
fl2

j (t)

B

ÒWij(t) ≠
ÿ

k

mk

A
Pj(t)
fl2

j (t) + Pk(t)
fl2

k (t)

B

ÒWjk(t)
R

b ÒWij(t)
R

b

(2.39)
The above set of equations forms a set of linear equations that can be expressed as:

A · p(t) = b (2.40)

Where A and b are the corresponding matrix and sourceterms, and p(t) is the unknown
pressure vector.

Notice the index k, which refers to the neighbors of the neighbors. The only
unknown values in the above expression are thre pressure values associated with each
particle.

The most unique feature of this pressure solver originates from how it actually solves
the PPE. Equation 2.39 is a set of linear equations, and is symmetric due to how the
pressure gradient is calculated. In theory, a matrix solver such as conjugate gradient
with the appropriate free-surface boundary conditions should be able to determine the
pressure field (which was also mentioned in Ihmsen’s original paper). However, this turned
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out to be di�cult in our experience. Attempts were made to locate the free-surface
boundary particles and implement proper free-surface boundary conditions, and then
solve it via various matrix solvers (Direct / Conjugate Gradient, etc). Results showed
unstable oscillations within the pressure field, similar to the results obtained via the
method proposed by Cummins ([36, 38]).

In Ihmsen’s original paper, he instead proposed an e�cient iterative Jacobi-based
iterative solver for the purpose of solving 2.39:

P l+1
i = (1 ≠ Ê) P l

i + Ê
1
aii

Q

afl0 ≠ flú
i ≠

ÿ

j

mj

Q

a
ÿ

j

diiP
l
j ≠ djjP

l
j ≠

ÿ

k ”=i

djkP l
k

R

b ÒWij

R

b

(2.41)
where

dii = ≠ (�t)2
Q

a
ÿ

j

mj

fl2
i

ÒWij

R

b , dij = ≠ (�t) mj

fl2
j

ÒWij (2.42)

Also, during each iteration, the pressure values where pinned to be positive:

P l+1
i = max(0, (1 ≠ Ê) P l

i +Ê
1
aii

Q

afl0 ≠ flú
i ≠

ÿ

j

mj

Q

a
ÿ

j

diiP
l
j ≠ djjP

l
j ≠

ÿ

k ”=i

djkP l
k

R

b ÒWij

R

b)

(2.43)
this e�ectively elminates the requirement to locate the free-surface particles and en-

force zero-pressure values to them. When implemented, one can observe that the free-
surface particles automatically exhibit 0 pressure values. The downsides to this approach
are:

• The method is ad-hoc in a sense. It makes assumptions to the solution while the
boundary conditions are not rigorously applied.

• The method will not produce negative pressure values. Nevertheless, one can also
argue that for free-surface fluid flows, e�ects from negative pressures are negligible
(the fluid would simply break apart and will experience atmospheric pressure instead
of exhibiting negative pressure).

Still, the method itself produces excellent, stable results that tolerates larger timesteps.
Note that the methods was developed for computer graphics applications, and the require-
ments are clearly di�erent compared to computational physics. Although we employ the
above modified Jacobi solver in our numerical simulations as well, rigorous verification
and validation of the proposed method in engineering solutions is something we would
like to look into in the future.
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2.2.1.3 DFSPH - Divergence Free SPH (Bender and Koschier, 2017)

In 2017, Bender and Koschier published a revised pressured solver based on Ihmsen’s
previous work ([16]). As noted earlier, Ihmsen’s assumption that q

j mj

1
vú

i ≠ vú
j

2
ÒWij(t) ¥

0 generates velocity fields that were not completely divergence free. DFSPH attempts to
resolve this by using a di�erent formulation for the PPE and performing a second Jacobi
iteration process separately for the density values during the timestep. This results in an
extremely fast and robust pressure solver. We breakdown how the algorithm stated in
Bender’s original manuscript works, since it may be confusing for beginning SPH practi-
tioners.

Algorithm 2.2 DFSPH Timestep (Using notation from Bender’s original paper)
1. Compute non-pressure forces av

i

2. Compute vú
i (t) = vi + �tav

i

3. CorrectDensityError()
4. Update Positions xi(t + �t) = xi(t) + �tvú

i

4. UpdateDensities fli

5. Compute –i

6. CorrectDivergenceError()
7. UpdateVelocities vi(t + �t) = vú

i

First, the viscous forces are applied and the system takes a half-step towards the inter-
mediate state (rú, vú, flú). Now, the step CorrectDensityError and CorrectDivergenceError
attempts to update vú so that the updated velocity field represents a divergence-free vec-
tor field. To be explicit, the vú in step 2. (line 12 in Algorithm 1. in the original paper)
and step 4. (line 15 in Algorithm 1. in the original paper) are not the same (It is im-
plied that the function CorrectDensityError and CorrectDivergenceError updates vú to a
divergence-free velocity field)!

Enforcing Zero Divergence We will now go in detail to explain what CorrectDivergenceError
does to correct the divergence. The acceleratrion that will be applied due to pressure forces
is computed with:

ap
i (t) = ≠miÒPi(t) (2.44)

Then, instead of the classic pressure gradient operator (which Ihmsen also adopted
earlier) it is assumed that the pressure gradient ÒPi can be represented as

ÒPi = Ÿv
i Òfli = Ÿv

i

ÿ

j

mjÒWij (2.45)

where Ÿv
i represents the sti�ness parameter which we need to determine.

Remark
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Conceptually, this approach is similar to the SHAKE algorithm that was proposed by
Ellero et al. ([42]) where Lagrange multipliers that enforce incompressibility is solved for.
The noticable di�erence is that DFSPH takes advantage of Ihmsen’s pressure-clamping
Jacobi solver.

After updating the velocity field to vú (Step 2), the divergence of the velocity field is
no longer zero. This results in a Dfli

Dt that is non-zero:

Dfli

Dt
= ≠fliÒ · vú

i =
ÿ

j

mj

1
vú

i ≠ vú
j

2
ÒWij (2.46)

If we could add-on the pressure force induced velocity changes to vú so that Dfli

Dt is
small, that would be exactly what we are looking for. Let us call the total pressure force
“density” acting on particle i to be f p

i and the pressure “density” acting on i coming from
particle j to be f p

iΩj,. Then the velocity change of particle i, and the velocity change of
j counting only the contrubition coming from particle i can be written as

”vi = �t
f p

i

fli
, ”vjΩi = �t

f p
jΩi

fli
(2.47)

The term “Pressure force density” is a term that was used throughout the original
paper, defined as f p

i = ≠ÒPi with the unit
Ë

N
m3

È
. The resulting density change resulting

from this new velocity field should yield a density change that should cancel out Dfli

Dt :

ÿ

j

mj (”vi ≠ ”vj) ÒWij = �t
ÿ

j

mj

A
f p

jΩi

fli
≠ f p

i

fli

B

ÒWij = ≠Dfli

Dt
(2.48)

substituting f p
i = ÒPi = Ÿv

i Òfli = Ÿv
i

q
j mjÒWij,

�t
ÿ

j

mj

A
Ÿv

i mjÒWij

fli
≠

Ÿv
i

q
j mjÒWij

fli

B

ÒWij = ≠Dfli

Dt
(2.49)

Expanding out,

Dfli

Dt
= Ÿv

i

�t

fli

Q

ca

------

ÿ

j

mjÒWij

------

2

+
ÿ

j

|mjÒWij|2
R

db (2.50)

We then can solve the system above wrt. Ÿ:

Ÿv
i = 1

�t

Dfli

Dt
· fli

–i
(2.51)

where –i =
---
q

j mjÒWij

---
2

+ q
j |mjÒWij|2. Bender and Koschier observed that using

Jacobi iterations, along with the clamping technique introduced by Ihmsen worked well
for solving the above system of equations:
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Algorithm 2.3 DFSPH - CorrectDivergenceError

while
11

Dfl
Dt

2

ave
> TOLdiv

2
do

for Particlei in all particles do
Compute Dfli

Dt = ≠fliÒ · vú
i

end for
for Particlei in all particles do

Ÿv
i = 1

�t
Dfli

Dt · fli

–i
, Ÿv

j = 1
�t

Dfli

Dt · flj

–j

vú Ω vú ≠ �t
q

j mj

1
Ÿv

i
fli

+ Ÿv
j

flj

2
ÒWij

end for
end while

Enforcing Zero Density Change On top of the zero divergence enforcement, Bender
et al., also included a second step for the pressure solver. It is possible to consider this as
a separate solver that can be applied on its own. In Bender et al., this solver was applied
once more independantly after the zero divergence solver to deal with the residual errors.
Ignoring the zero divergence solver step, after The non-pressure forces, the intermediate
density can be written as

flú
i = fli + �t

Dfli

Dt
= fli + �t ·

ÿ

j

mj

1
vú

i ≠ vú
j

2
ÒWij (2.52)

the pressure forces that will enforce zero density change can written as ()

flú
i ≠ fl0 = �t2 ÿ

j

mj

A
f p

i

fli
≠

f p
jΩi

fli

B

ÒWij (2.53)

defining (note that this is the same as the zero divergence solver, only with Dfli

Dt =
q

j mj

1
vú

i ≠ vú
j

2
ÒWij replaced with flú

i ≠fl0
�t , we have the following sti�ness value:

Ÿi = 1
�t2 (flú

i ≠ fl0) , (2.54)

where we could use for Jacobi iterations.

2.2.2 Viscosity Solvers
For large viscosities, implicit timestepping can be regarded as a requirement. Although

work regarding implicit visocosity solvers were not abundant until this point, there were
many recent advancements regarding the topic. We will introduce several types of implicit
viscosity solvers that we have been investigating to use for our application. Remark Our
own viscosity solver that can resolve large visocisity di�erences are also covered in later
in the document.
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Algorithm 2.4 DFSPH - CorrectDensityError
while (flavg ≠ fl0)ave > TOLdense do

for Particlei in all particles do
Compute flú

i

end for
for Particlei in all particles do

Ÿi = flú
i ≠fl0
�t2 –i, Ÿj = flú

j ≠fl0
�t2 –j

vú Ω vú ≠ �t
q

j mj

1
Ÿi
fli

+ Ÿj

flj

2
ÒWij

end for
end while

2.2.2.1 Takahashi et al. (2015)

In [113], Takahashi formulated an implicit viscous step for the simulation of highly
viscous fluids. Starting from the Navier-Stokes Equation:

fli
Dui

Dt
= ≠ÒPi + Ò · · i + fli

m
F ext

i (2.55)

· i = µi

1
Òui + (Òui)T

2
(2.56)

where · i is the shear stress tensor originating from viscous forces on particle i. With
operator splitting, we can obtain an intermediate velocitiy field where only the non-
pressure forces are applied:

uú
i = ui (t) + �t

fli
Ò · · ú

i = ui (t) + m�t
ÿ

j

A
· ú

i

fl2
i

+
· ú

j

fl2
j

B

ÒWij (2.57)

· ú
i = µi

ÿ

j

Vj

31
uú

j ≠ uú
i

2
¢ ÒWij +

11
uú

j ≠ uú
i

2
¢ ÒWij

2T
4

(2.58)

Substituting · ú
i into equation 2.57:

(2.59)

uú
i = ui (t) + m�t

ÿ

j

Q

ccca

µi
q
j

Vj

31
uú

j ≠ uú
i

2
¢ ÒWij +

11
uú

j ≠ uú
i

2
¢ ÒWij

2T
4

fl2
i

+
µj

q

k
Vk

31
uú

k ≠ uú
j

2
¢ ÒWjk +

11
uú

k ≠ uú
j

2
¢ ÒWjk

2T
4

fl2
j

R

dddb ÒWij (2.60)
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Note that the system involves the “neighbors of the neighbors”. The above system of
equations is positive definite, and can be solved for uú using a matrix solver. Refer to
the original paper of Takahashi et al. ([113]) for deatils, since the author provides a more
concise form that is easier to program with.

2.2.2.2 Weiler et al. (2018)

Recently, Weiler et al. introduced a physically consistent implicit viscosity solver
([122]). The fact that many previous implicit viscosity solvers meant for computer graphics
applications were not physically consistent gives this approach a great advantage for
solving engineering problems. The viscous forces in SPH is represented as

Ò2vi = 2(d + 2)
ÿ

j

mj

flj

vij · xij

||xij||2 + 0.01h2
ÒWij (2.61)

where d is the number of spatial dimensions. This referes to Monaghan’s viscosity
operator found in ([87]). The velocity of the intermediate timestep can be written as

vú = v (t) + �t
µ

fl
Ò2vú (2.62)

The above system can be re-written as a system of linear equations:

(I ≠ �tA) vú = v (t) (2.63)

with block matricies Aij that correspond to particle i and its neighbors j:

Aij = ≠2 (d + 2) µm̄ij

fliflj

ÒWij ¢ xij

||xij||2 + 0.01h2
, Aii = ≠

ÿ

j

Aij (2.64)

The above system is a positive definite linear system, and can be solved with a method
such as conjugate gradient.

2.3 Heat Transfer
2.3.1 Heat Equation

Writing out Fourier’s Law for the di�usion flux q:

q = ≠IK (Ò◊) (2.65)

where IK represents the thermal conductivity coe�cient tensor and ◊ represents the
temperature. The rate of change of the temperature then can be written as

D◊

Dt
= Ò · (≠q) = Ò · (IK (Ò◊)) (2.66)
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Assuming the thermal conductivity of the material is isotropic (IK = kII),

D◊

Dt
= kÒ2◊ (2.67)

This is known as the Heat Equation.

2.3.2 SPH Discretization
In [32], the following operator was suggested for the discretization of Ò (IK (Ò◊))

that can handle discrepancies between particles that have larges di�erences regarding
their thermal conductivity ka and kb:

e
kÒ2◊

f
=

ÿ

bœNa

4
fla

kakb

ka + kb
(◊a ≠ ◊b)

rab · ÒWab

r2
ab + ‘

vb (2.68)

where ‘ is a small number to avoid singularities, and ka and kb are respectively the
thermal conduction coe�cient of the two particles. It is well known that the above
operator generates large errors when the uniformity of the particle distribution becomes
poor. This especially applies for regions near a free-surface where the support domain of
the kernel functions are no longer filled with neighboring particles.

2.3.3 Ghost Particle Boundary for the Heat Equation
2.3.3.1 Method

When using Eq. 2.68 to solve the di�usion equation, special treatment is required for
the particles that are located near the free-surface in order to recover consistency when
computing the Laplacian. Several methods based on correction matrices were proposed
(for example, [44, 107]) as a remedy. These methods are known to provide excellent
convergence properties. However, in our practical experience, the correction matrices
that must be inverted at each particle is very easy to become singular throughout the
simulation. For example, the correction scheme introduced in [44] requires at least 1
neighboring particle in each octant (defined by placing the indexed particle at the origin),
for a particle to have a valid correction matrix.

A simple but e�ective approach is to employ ghost particles. This approach was
successfully applied to heat conduction problems (for example, [63]) and is relatively easy
to implement. In order to reduce computational costs tied to placing the ghost particles,
we only place them near “rear” particles that have a particle density lower than a pre-
defined value (Algorithm 2.5). The function placeGhostParticles(Particle) takes
in the position of the particle, and fills empty pre-determined gridpoints that is within
the support region of the kernel with ghost particles. Afterwards. ghost particles that
penetrate the physical region are trimmed according to a rule based on particle density
( �

bœNa

vbWab). For our application, ÷place = 0.85 and ÷trim = 1.3 yielded satisfactory results.



30

2.3.3.2 Boundary Conditions

For the case of heat transfer, Dirichlet boundary conditions are obtained by fixing the
temperature of the corresponding ghost particles. This is a common practice for many
SPH based heat trasnfer simulations ([32, 21, 5, 63]). Neumann conditions are rather
tricky to implement with SPH. In our implementation, the temperatures of the ghost
particles are assigned to be the same temperature as the nearest non-ghost particle at the
beginning of the timestep. This is conceptually similar to how finite di�erence methods
when implementing insulating conditions ([72]).

Algorithm 2.5 Place / Trim Ghost Particles
ghostParticles Ω ?
for Each Particle in SolidParticles do

if particle density < ÷place then
placeGhostParticles(Particle)
Push Ghost Particle to ghostParticles

end if
end for
for Each ghostParticle in ghostParticles do

if ghostParticle density < ÷trim then
Remove ghostParticle from ghostParticles

end if
end for

2.4 Thermal Stress occurring from Hot Droplet Im-
pacting Surface

2.4.1 Introduction
Additive manufacturing (AM) methods are becoming common choice for fabricating

cutting edge devices. AM broadly covers various methods that involve droplets being
deposited onto a surface, such as DBM ([30]), ink-jet printing ([86], [35]), LIFT (Laser-
Induced Forward Transfer, [40], [123], [2]) and Direct Ink Writing (DIW, [?]). In some
cases, the droplets may be laden with extremely fine micro or nano materials tailored
to each specific application, where good examples are given in [27] and [26]. Despite
the considerable amount of recent advancement in additive manufacturing technologies,
development of numerical frameworks that may be applied to such methods have been
mostly stagnant.
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When the targeted substrate is expected to be fragile, the integrity of the substrate
during the deposition process is critical for the engineer. During the process, the induced
stress within the substrate is highly dependent on both heat transfer and momentum
transfer between the droplet and the substrate.

In most cases, observations can only be made after a resource consuming experimental
process ([67], [22], [105], [56]). We propose a new numerical framework, based directly on
the continuum equations involved in such processes. The proposed numerical framework
involves a thermo-mechanical solution solved via SPH (Smoothed Particle Hydrodynam-
ics) and a one-way coupled FEM setup which is used to compute the thermal/mechanical
stress induced in the impacted solid. Advantages of such an approach includes:

• · Computationally a�ordable simulation of the free-surface fluid object (droplet).

• · Rapidly deforming free-surfaces of the fluid object is trvially represented.

• · Obviates the di�culties due to time step di�erences within the solid domain and
the fluid domain.

During the process, the geometry of the fluid droplet undergoes rapid deformation. A
mesh-based method (such as the Finite Element Method) will be very expensive for such
problems, due to the re-meshing process that will be required after each time step. Thus,
a mesh-free method such as SPH can be appropriate alternative approach. The main
intention of this paper is to provide an e�ective numerical framework that can assist the
engineer designing a droplet based manufacturing process.

SURFACE

DROPLET

SURFACE

IMPACT

Figure 2.2: Droplet impacting a surface.

This paper is organized as follows. First, we state the governing equations of the prob-
lem. Second, a detailed explanation regarding the proposed discretization of the governing
equations, for a Newtonian-type ink, is given. Third, a numerical convergence study is
performed to justify the usage of the framework. Fourth, a practical numerical example
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is provided to illustrate the method, along with a brief comparison against a previously
developed predictive model regarding heat penetration. Finally, we mention some limita-
tions of the proposed approach, which will be investigated in future work.

Remark: In some applications, the composition of the ink may dictate the viscous
behaviour the ink. The droplet must be modeled as a Non-Newtonian fluid, in this case.
While the topic regarding solving Non-Newtonian flows with SPH exceeds the scope of this
paper, a brief note regarding the solution process for such prolems will be given later in
this paper on.

2.4.2 Governing Equations
2.4.2.1 Navier-Stokes Equation for Newtonian Fluids

The incompressible Navier-Stokes equations in Lagrangian formalism are the field
equations:

Dr
Dt

= u, (2.69)

Ò · u = 0, (2.70)

fl
Du
Dt

= Ò · ‡f + flg. (2.71)

where for a Newtonian fluid

‡f = ≠p1 + µÒ2u, (2.72)

where r and u are the position vector and the velocity vector respectively, fl is the density
of the fluid, g is the body force, ‡f is the stress tensor of the fluid, µ is the dynamic
viscosity of the fluid, and p represents the pressure. Note that D(·)

Dt represents the material
derivative.

Smoothed Particle Hydrodynamics (SPH), is a mesh-free numerical method that can
used to discretize various continuum mechanics problems. Originally intended for astro-
physical problems, SPH found many practical usage cases in analyzing fluid flows involving
free-surfaces ([33], [11], [96]). The set of equations given by SPH is usually closed with
a weakly compressible scheme in which the pressure term is directly correlated to the
density variable through an equation of state, which is used throughout this paper :

p = 1
“

fl0c
2
0

AA
fl

fl0

B“

≠ 1
B

(2.73)

where fl0 represents the reference density, c0 represents the speed of sound, and “ is a
constant, usually chosen to be 7. This type of equation of state is typically known as a
variant of Tait’s equation of state, and is widely used in the SPH community.
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For the problem in interest, equation (2.71) should incorporate the surface tension,
where its e�ect may be significant in microscale droplets:

fl
Du
Dt

= Ò · ‡f + flg + f s
¸˚˙˝

Surface Tension
. (2.74)

There are two popular methods for implementing surface tension. In the context of
SPH, one method originally proposed by [97] takes the form :

fl
Du
Dt

= Ò · ‡f + flg + ”sŸÎn¸ ˚˙ ˝
Surface Tension

, (2.75)

where Î is the surface tension coe�cient of the fluid-air interface, Ÿ is the curvature of the
free-surface and n is the surface normal defined at xj. Also, ”s is a function such that

”s(x) =
I

1 x œ �F S,
0 x œ �I ,

(2.76)

where �F S represents the subset of the fluid domain located on the free-surface, and �I

represents the subset of the fluid domain located in the interior, so that x œ �F S fi�I = �
and �F S fl �I = ?. This is often called the CSF surface tension model introduced in [98].

The method has several drawbacks. To accurately evaluate the surface curvature, it
is advantageous that kernel truncation does not occur near the free surface. To alleviate
errors due to such truncation, it is thus required to model the surrounding medium (such
as air) with a separate set of SPH particles. The method also is reported to return surface
curvatures with large errors ([92]), when particles are sparsely distributed (such as small
detached droplets).

Another method to model surface tension is the IIF (Inter-particle Interaction Force)
model, which directly adds forces between the SPH particles that represent attraction/repulsion
forces due to molecular interactions ([114]). The forces only act on the particles near the
free surface, since the forces cancel each other out in the interior of the fluid. Since
the force is not derived from a continuum model, the force must be calibrated to bridge
the scale between the SPH and the molecular particles. When calibrated, the model
accurately reproduces surface tension e�ects, without the computation of free-surface
curvature, which is prone to generate numerical errors. In [114], the authors employ the
following interaction model:

f s
ij =

I
sij cos

1
1.5fi
3h rij

2
eji, rij Æ h

0, rij > h.
(2.77)

where sij is a parameter used to calibrate the surface tension model. In this paper,
we propose a modified form of this interaction model that weighs the interaction force
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with the mass mi, in order to account for the di�erence in mass, with s as a calibration
parameter and that exactly conserves linear momentum:

f s
ij =

I
s 2mi

mi+mj
cos

1
1.5fi
3h rij

2
eji, rij Æ h

0, rij > h.
(2.78)

2.4.2.2 Thermo-Elasticity

For the purpose of this work, we assume that the deformation of the solid due to
change in temperature and momentum transfer from the fluid droplet is small. We also
consider the timescale of the momentum transfer process to be significantly longer than the
timescale of the shockwaves traveling throughout the solid (which is directly correlated to
the speed of sound in the solid). Thus, a linear-quasi-static formulation may be justified:

Ò · ‡s = ≠ fext, (2.79)

‡s =⁄
3

Ò · v≠–�T
3

3 + 2G

⁄

44
1 + 2GÁ(v) (2.80)

Á = 1
2

1
Òv + (Òv)T

2
(2.81)

where ‡s is the Cauchy stress of the solid, fext is the external forces exerted by the
impacting fluid, Á is the resulting strain, u are the displacements, ⁄ is the first Lamé
Constant, G is the shear modulus, – is the thermal expansion coe�cient and �T is the
increase in temperature. We employ the Finite Element Method as described later in the
paper.
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2.4.3 Discretization

Neighbor Search

Compute SPH Approximations

Compute SPH Interactions

Save Sensor Values Compute Stress (FEM)

Update System, Output Results

Initialize System (Mass, Positions, etc)

Figure 2.3: Algorithmic procedures of the code.

2.4.3.1 Navier-Stokes

We discretize the Navier-Stokes equation using SPH:

Du
Dt

= ≠
K

1
fl

Òp

L

+
K

µ

fl
Ò2u

L

+ g (2.82)

Dfl

Dt
= ÈflÒ · uÍ (2.83)

p = fEOS(fl) (2.84)

Where < · > represents the discretized version of the expression using SPH, and fEOS

represents the equation of state. The pressure gradient contribution in (2.82) can be
written in the symmetric form specifically found in [96]:
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≠
K

1
fl

Òp

L

i

= ≠
ÿ

jœNi

A
pi

fl2
i

+ pj

fl2
j

B

ÒiWijmj (2.85)

Throughout the paper, the index i represents the ith SPH particle, while j œ Ni

represents the set of neighbors of the ith particle. Wij is the kernel function centered
around particle i, ÒiWij represents the gradient of the kernel, pi is the pressure of particle
i, pj is the pressure of particle j, fli is the density of particle i, flj is the density of particle
j, and mi and mj represent the mass of particle i and j, respectively. The Quintic
Wendland kernel was employed due to its superior properties when used with SPH, which
was rigorously verified in [79]. As in [108], the viscosity contribution is discretized as

K
µ

fl
Ò2u

L

i

=
ÿ

jœNi

4mj(µi + µj)rij · ÒiWij

(fli + flj)2(r2
ij + ‘) uij (2.86)

The continuity equation is discretized with the method found in [13], also known as ”-SPH
:

ÈflÒ · uÍi = ≠fli

ÿ

jœNi

(uj ≠ ui) · ÒiWijVj + ”hc0Di (2.87)

where Di is the “di�usion” term, defined as

Di = 2
ÿ

jœNi

Âij
rji · ÒWij

r2
ij

Vj, (2.88)

where ” is a tunable constant (usually chosen to be 0.1), h is the SPH smoothing
length, c0 is the speed of sound, and Âij is defined as :

Âij = (flj ≠ fli) ≠ 1
2 (ÈÒ1fliÍ + ÈÒ1fljÍ) · rji, (2.89)

where ÈÒ1 ( · )Í represents the renormalized gradient operator. ÈÒ1fliÍ can then be written
as :

ÈÒ1fliÍ = Bi

ÿ

jœN (i)
(flj ≠ fli)ÒiWijVj (2.90)

Here, Bi is the first derivative renormalization matrix suggested by [99], which is defined
as :

Bi =
S

U≠
ÿ

jœN (i)
rij ¢ ÒWijVj

T

V
≠1

(2.91)

Physically, this term adds “artificial di�usivity” to the continuity equation. Although
exact conservation of mass no longer holds, the added di�usivity greatly increases stability
throughout the system.
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2.4.3.2 Heat Equation

We now represent the balance of energy for an incompressible fluid, also in Lagrangian
Formalism :

fl
De

Dt
= � + Ò · (kÒT ) (2.92)

Here, e is the specific energy, k is the thermal conductivity of the medium and � is
the dissipation function. This accounts for the dissipation that occurs in the fluid due
to viscous e�ects, and for an incompressible fluid, where bulk viscosity is assumed to be
negligible,

� = 2µD : D, (2.93)

D = 1
2

1
Òu + (Òu)T

2
(2.94)

The significance of the dissipation due to the deforming fluid for our problem is low,
and is excluded in our formulation. Note that this assumption may not hold in other
applications (such as lubricants in bearings). Also, since the droplet is assumed to be
incompressible, temperature increase due to adiabatic compression of the fluid is ignored.
Equation (2.92) now simplifies to :

flc
DT

Dt
= Ò · (kÒT ) . (2.95)

Here, c represents the specific heat capacity of the medium. The energy equations must
solved for both the fluid and the solid, in order to model the heat transfer between the
fluid droplet and the impacted surface. The temperature of the system is solved according
to the discretized version of the heat equation:
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Ò2
e

1
2(x2 + y2)

f
(Uncorrected laplacian)

Ò2
1

e
1
2(x2 + y2)

f
(Corrected laplacian (Our method))

Figure 2.4: Left : Particle Configuration, Right : Laplacian @ y = 0.5, h = 3�x
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flc
DT

Dt
= ÈÒ · (kÒT )Í (2.96)

In [32], the following discretization was suggested:

ci
DTi

Dt
=

ÿ

jœNF S(i)

4mj

fliflj

kikj

ki + kj
Tij

rij · ÒiWij

r2
ij + ‘

(2.97)

Figure 2.4 shows a brief comparison of the two Laplacian operators on a 11 ◊ 11
cartesian particle distribution representing x = [0, 1], y = [0, 1], f(x, y) = 1

2(x2 + y2). The
analytical Laplacian of f(x, y) should be 2, in this case. It is a well known that when
using conventional SPH operators (such as the one above), the accuracy of the Laplacian
severely deteriorates and fails to recover the correct value near the free surface (Figure
2.4), as mentioned in the original paper ([31]). Such e�ects are usually ignored with
justification ([110]) when discretizing the viscosity in (2.82), but accurately computing
the heat transfer inside our defined geometry is an important aspect which should be
addressed.

Recent advancement in SPH discretization techniques ([119], [44]) suggest the following
renormalization tensor for second-derivatives, which recovers first-order accuracy of the
Laplacian for an arbitrary distribution of SPH particles :

e
Ò2

1fi

f
=

2Li :
S

U

Q

a
ÿ

jœNF S(i)
eij ¢ ÒiWij

R

b
A

fi ≠ fj

rij
≠ eij · Ò1fi

B

Vj

T

V
(2.98)

Using the above correction, it is no longer required that the particles must retain the
predefined stencil (dx) to reach convergence. Here, Li is the correction tensor for the
second derivative, and is the solution to the following set of equations :

≠”mn =
ÿ

jœNF S(i)
(Ai

kmnek
ij + rm

ij en
ij)(L

op
i + eo

ij (ÒiWij)p Vj); (2.99)

Akmn
i = Gkq

i

ÿ

jœNF S(i)
(rm

ij rn
ij (ÒiWij)q Vj) (2.100)

With m, n, o, p, q being the indices used for the Einstein notation. In 3D, the above
system is a 6 ◊ 6 matrix where the components of the solution vector correspond to the
entries of Li (which is in result, a function of Ai = Akmn

i ek ¢em¢en and ”i = ”mn
i em¢en).
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Using this correction, we thus modify equation (2.97) to :

ci
DTi

Dt
=

ÿ

jœNF S(i)

C
4
fli

A
kikj

ki + kj

B

(Li : eij ¢ ÒiWij)
A

Ti ≠ Tj

rij
≠ eij · ÒiTi

B

Vj

D (2.101)

here, ki or kj is defined to be the thermal conductivity of the fluid or solid, depending on
which domain the SPH particles is defined to be within.

Although the above correction seems promising for many situations, the method carries
a drawback. For a correction to exist, a particle requires at least one neighboring particle
in each quadrant with respect to itself. Thus, in 3D, at least 8 neighbors are required. A
simple workaround for particles where the correction is not defined, is to resort back to
(2.97).

2.4.3.3 Finite Element Method

Previous e�ort regarding modeling solids via SPH were made in [9], [49], [120]. The
main weakness of such formulations were on stability and consistency. Since the solid
domain of our problem is assumed to involve a sti� material (with sti�ness being on the
order of 100GPas), the fluid domain and the solid domain would require timesteps with
large discrepancies, and renders modeling the whole domain with SPH di�cult.

The Finite Element Method (FEM) is a well-established method for discretizing PDEs,
and is adequate for modeling solid mechanics problems; thus is used to model the solid
substrate in our problem. Each timestep, after the temperature field and the velocity /
position field is updated, a linear-quasi-static thermo-elasticity problem is solved within
the solid domain. Writing the weak-form of the proposed problem :

⁄

�s

‡s(v) : Á(v̄) d� =
⁄

�s

f · v̄ d� +
⁄

�s

‡sn · v̄d�, (2.102)

‡s(v) = ⁄
3

Ò · v≠–�T
3

3 + 2G

⁄

44
1 + 2GÁ(v) (2.103)

Á(v) = 1
2

1
Òv + (Òv)T

2
, (2.104)

Where v is the solution (displacement field) of the problem, v̄ is an arbitrary test
function defined over the mesh, and �T (temperature change), ‡sn|�s (traction boundary
conditions) are values defined over �s and �s respectively, and are precalculated from the
SPH scheme. For simplicity, the formulation is chosen to be quasi-static. This is under the
assumption that the impact speed is comparably smaller than the speed of the shockwaves
travelling through the solid.
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The weak form above is then discretized via an isoparametric mapping with linear
shape functions, and is represented as a set of linear equations involving the displacement
of the nodes :

Kv = f (2.105)

where v is the displacement field, K is the sti�ness matrix and f is computed with the
inputs (temperature, force) subjected to the solid mesh. The displacement field is then
post-processed to obtain the desired stress distributions. Detailed solution procedures are
beyond the scope of this paper, and we refer to well-known literature such as [131] and
[14] for details.

2.4.4 Numerical Algorithm
The above equations are solved explicitly for each field, similar to the formulations

found in [133]. The main numerical procedures for each time-step follow as (also depicted
in Figure 2.3) :

[(i)]

1. Neighbor Searching.

2. Solve the Momentum equation for the fluid with SPH.

3. Solve the Heat equation for the fluid / solid with SPH.

4. Solve the mechanical response of the solid with FEM.

2.4.4.1 SPH-FEM 1-way Coupling

As seen in 2.3, the information obtained from the SPH solution is fed into the FEM
solver, in a 1-way coupled fashion. This is obtained by placing a grid of SPH particles
on top of the finite element nodes (Figure 2.5) where relevant. The FEM solver takes the
inputs (pressure field / viscous forces / temperature) and then solves the thermoelasticity
problem stated earlier.

2.4.4.2 Neighbor Searching

Many particle methods, including SPH, rely on Neighbor Searching algorithms before
computing the interactions between the particles. Here, we employ the neighbor search
algorithm found in [69], which is a variant of the Compact Hashing algorithm developed
in [60].
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2.4.4.3 Particle Interaction

In order to compute the correction matrices and the di�usion term used in ”-SPH,
several passes (the normalized density gradients, such as ÈÒ1fliÍ and the normalization
matrices Li and Bi need to be computed first) are conducted over the particles. The linear
algebra library [50] was used to solve the 6 ◊ 6 matrices involved in the second-derivative
renormalization matrices (Li).

2.4.4.4 SPH-FEM Coupling and Thermoelasticity

A finite element mesh is defined over the solid domain, where the nodes coincide with
the SPH particles. “Sensor Particles” that are located near the surface of the solid directly
feed the observed temperature and forces to the finite element nodes. This input can be
regarded as the corresponding nodal loading. The open-source FEM library by [4] was
used to define and solve a thermoelasticity problem.

2.4.4.5 Initial Placement

To remove the aliased edges of a simple-rejection-sampled Cartesian placement, the
initial particle representation of the fluid droplet was created using a 3D Poisson sampling
algorithm by [55].

The SPH particles representing the solid domain was placed using a simple Cartesian
placement. Before the first timestep, the mass of each SPH particle is assigned using the
number density :

mi = fl0q
jœN (i) Wij

(2.106)
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Figure 2.5: SPH particles placed on top of Finite Element nodes

Figure 2.6: 1D Transient Heat Transfer Problem Schematic
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Figure 2.7: 1D Transient Heat Transfer Problem @ t = 0.03

2.4.5 Convergence Study
2.4.5.1 Heat Equation with Consistent Operators

To highlight the e�ectiveness of the consistent operators, we compare the results to
the inconsistent one by solving a (dimensionless) 1D transient heat equation. A uniform
rod of length L = 1 and initial temperature distribution T (x, t = 0) = 0, x œ [0, 1] is
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placed between two walls with constant temperature Tleft = 0, Tright = 1 (Fig. 2.6). This
is an interesting problem, since at (x, t) = (0, 0), the solution is discontinuous.

The analytical time-dependent solution for this problem is given by:

Tanalyitcal(x, t) = 1 ≠ Erf( x

2
Ô

t
) (2.107)

We compare the solutions obtained by using the formulation given in [32] and [44]
by solving the above transient 1D heat transfer prolem until t = 0.03, (Fig. 2.7), with
3 di�erent discretization scales (80 nodes, 160 nodes, 320 nodes) and with smoothing
radius 3�x. We observe convergence from the corrected operators, in contrast to the
conventional operators. This is a well known issue when solving the Heat Equation with
SPH, since the conventional operators assume su�cient amount of smoothness of the
solution.

2.4.5.2 SPH-FEM Momentum Coupling

We now justify the approach regarding heat-transfer and mechanical coupling between
SPH/FEM.

Figure 2.8: Poiseuille flow shear transfer test

We verify the 1-way momentum coupling scheme described earlier, by considering a
steady-state 2D Poiseuille flow. Finite elements were used to represent the solid bound-
aries, while SPH particles represented the Newtonian fluid (Figure ). Viscosity of the fluid
will cause shear on the walls, where the analytical steady-state velocity profile is given by

vx(y) = (H2/2µ)(≠dP

dx
)( y

H
(1 ≠ y

H
)) (2.108)
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Where H is the distance between the two plates. The analytical shear stress at the
wall is given by

·xy = µ
ˆvx

ˆy
(2.109)

For the test, we use H = 1, µ = 0.001, ˆp
ˆx = 10, with periodic boundary conditions on

the inlet / outlet. The thickness of the wall modeled with finite elements was chosen to
be T = 0.25. All the y-direction DOFs on the finite element mesh was enforced to be 0,
in order to rule out any volumetric deformations. Then, the average stress throughout
the finite element domain was computed by

‡ave =
⁄

V
‡(x, y)dV (2.110)

and was compared (Figure 2.9) against the analytical value (·xy = 0.02 from Eq.
2.108). The results indicate that the coupling technique is suitable to model consistent
momentum transfer between the solid and the fluid.

●

●

●

10 20 30 40

0.002

0.005

0.010

0.020

# of SPH Particles In The y- Direction

Ab
s.
Er
ro
r(
Av
e.
Sh
ea
rS
tre
ss
)

Absolute Average Error vs Discretization
(Smoothing Length h = 3Δx)

● Current Study
Slope:- 1

Figure 2.9: Average Shear Stress Error

2.4.6 Numerical Example
2.4.6.1 Thermal Droplet Impact Case

A numerical example involving a droplet with high-temperature impacting a low-
temperature surface was performed. Approximately 2 ◊ 105 particles were used to rep-
resent the droplet and the solid domain. The solid substrate was clamped down with
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Dirichlet boundary conditions on its 4 sides, and was assumed to be thermally insulated
from the surrounding air.
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t/tc = 0.25
t/tc = 0.75
t/tc = 1.25
t/tc = 1.75

Figure 2.10: Evolution of a fluid droplet impacting the substrate.
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t/tc = 1.75

Figure 2.11: Temperature distribution on the substrate surface at t/tc = 1.75.

2.4.6.2 Fluid Properties

• fl0 = 1000 [kg/m3] (Rest density)

• T0,f = 100 [C] (Initial temperature)

• cf = 4000 [J/K kg] (Specific heat)

• kf = 0.6 [W/m K] (Thermal Conductivity)

• µf = 0.0003 [Pa s] (Dynamic viscosity of fluid)

• c0 = 500 [m/s] (Sound of speed)

• D = 0.1 [mm] (Diameter of droplet)

• v0 = 50 [m/s] (Impact velocity)

• s = 1 106[N ] (Surface Tension Coe�cient)

• tc = 2.0 · 10≠6 [s] (Characteristic Time)

Note : The below parameters represent the properties of water, in general.

2.4.6.3 Solid Properties

• L = 2mm ◊ 2mm ◊ 0.26mm

• fls = 3950 [kg/m3] (Specific mass)

• T0,s = 20 [C] (Initial temperature)

• µs = 0.0003 [Pa s] (Dynamic viscosity of solid/fluid interface)

• cs = 900 [J/kg K] (Specific heat)



50

• ks = 10 [W/m K] (Thermal Conductivity)

• E = 300 [GPa]

• ‹ = 0.21 (Poisson’s Ratio)

• – = 8.1 · 10≠6 (Thermal expansion coe�cient)

Note : The below parameters broadly represent the properties of typical Alumina.

2.4.6.4 General Parameters

• �x = 2.5 · 10≠6 [m] (Particle stencil)

• h = 3�x [m] (Smoothing length)

• “ = 7 (Tait EOS parameter)

• dt = 2.5 · 10≠10 [s] (Timestep)

2.4.6.5 Analysis

Here, we have demonstrated an useful example regarding the usage of the compu-
tational framework we have introduced in this paper. In detail, figure 2.10 shows the
temperature of the droplet along with the evolution of the droplet geometry. Figure 2.11
shows the temperature distribution of the substrate at t/tc = 1.75.

Initially, the heat transfer is confined within the small contact patch of the droplet,
where the temperature arises locally. The timescale of the impact limits the increase of
temperature of the solid at deeper depths, as seen in figure 2.13. We observe that for the
timescale of interest, the heat transfer occuring between the fluid and the solid dominates
the temperature increase in the solid.
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t/tc = 0.5 t/tc = 0.75

t/tc = 1.25 t/tc = 1.75

Figure 2.12: Stress (Von-Mises) distribution on the substrate surface.
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The stress within the substrate increases with time (figure 2.12), as the droplet breaks
spreads over the surface. The stress is largest near the surface of the substrate, as seen
in figure 2.13. This is due to the large heat and momentum transfer between the droplet
and the surface at the contact patch (2.12). The contact patch between the droplet and
the substrate expands radially.
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We focus on time t/tc = 1.75, where the droplet is fully deposited onto the substrate
(as shown in figure 2.10). Figure 2.11 shows the surface temperature distribution, which
indicates that the majority of the heat transfer is made through the initial contact patch
with diameter of roughly 0.6 times the initial droplet diameter ( 0.06mm). The e�ective
(Von-Mises) stress experienced by the substrate along the cross-section is depicted in fig-
ure 2.13, which shows the concentrated stress near the surface (2.15).

For the homogeneous material (Alumina) in consideration for the current example,
we can predict that no type of failure will occur, since the stress levels shown in 2.13
are well below the known failure criterion. On the other hand, for tailor-made substrates
obtained by mixing specific functional microparticles into a binding matrix, this type of
concentrated stresses confined to the surface will usually result in a delamination-type
defect ([?]). This is a well known micromechanical pheonomena, and is due to the stress
concentrations that occur between the interface of the functional particle and the matrix.
The stress concentration factors may become extremely high in certain situations, as seen
in ([?]). Thus, for such applications, it is critical to first find the stress concentration
factor by experiments or computational methods via RVE (Representative Volume Ele-
ment) methods before making a conclusion regarding the design of the deposition process.
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Figure 2.14: Temperature evolution on substrate surface, with respect to time.
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Figure 2.15: Stress Components , t/tc = 1.75
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2.4.7 Discussion
2.4.7.1 Summary

An enhanced formulation of SPH (Smoothed Particle Hydrodynamics) was coupled
with a finite element solver to deliver a practical tool that can quickly simulate the thermo-
mechanical stresses occurring on the substrate of such processes. The modified corrected
SPH scheme robustly handles various starting configurations, including free surfaces, while
providing improved accuracy over its conventional counterpart. The coupling between
SPH and FEM was achieved via staggering of SPH particles on top of finite element
nodes, where the physics observed by the SPH particles were directly enforced on the
corresponding finite element node. To summarize, the resulting framework allows:

• · Fast and accurate modeling of Newtonian fluid droplets.

• · Thermal and mechanical coupling between fluids with free-surfaces and solids.

• · Removal of timestep limitations imposed due to di�erent CFL conditions for the
solid and fluid.

As noted earlier, the above aspects are all very useful features to have when conduct-
ing numerical experiments on droplet deposition manufacturing techniques. Mesh-based
approaches require frequent re-meshing, and may become computationally extremely ex-
pensive.

Overall, a rapid simulation framework that can provide useful insight regarding the in-
duced mechanical stresses for droplet based additive manufacturing was developed. With
an example demonstrating a droplet impacting a solid surface, we have shown that the
framework is capable of providing useful insights that may be sometimes hard to obtain
by purely experimental methods. Justification of the framework was also given by per-
forming convergence analysis on the thermal / mechanical coupling methods. Since the
numerical results are derived from a direct numerical simulation of the proposed contin-
uum problem, the various material/mechanical parameters used in the simulation can be
altered freely to suit the users needs.

2.4.7.2 Limitations

Although the method assumes the fluid model to be homogeneous, this is not neces-
sarily the case for many emerging additive manufacturing methods. In some applications,
specifically tailored micro/nano materials are mixed with a base fluid ([27],[26],[86],[116],[45]).
Often, these are referred to as “functionalized” inks.

In many cases, mixing functional powders into the solvent forces the ink to have
shear-thinning properties, along with a yielding stress. The mechanical behavior of such
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inks can usually be modeled with Non-Newtonian fluid models, one being the popular
Herschel-Bulkley fluid model. For this model, the shear stress of a fluid can be written as

· = ·y + K“̇n (2.111)

where ·y is the yield stress, “̇ is the e�ective shear rate, and K, n are parameters to
be fitted. Many previous work on DIW (Direct Ink Writing) fabrication methods have
successfully employed ([?], [?]) the Herschel Bulkley model to explain the mechanical be-
haviour of these inks. In numerical implementations, the “Regularized Herschel Bulkley”
model is frequently used, where a shear-rate dependent e�ective viscosity is used for the
viscosity term in the Navier-Stokes equations:

· = 2µeff (“̇), µeff (“̇) =

Y
]

[
k“̇0

n+1 + ·0“̇0
≠1 “̇ Æ “̇0

k“̇0
n≠1 + ·0“̇0

n≠1 “̇ Ø “̇0
(2.112)

For unyielded regions within the fluid, the high e�ective viscosity will make the fluid
behave similar to a rigid body. For yielded regions, the viscosity will be several magnitueds
smaller compared to the unyielded regions. Therefore, with an explicit time-stepping
approach with SPH, the problem becomes very di�cult to solve, and an implicit time
stepping scheme must be implemented to alleviate the di�culties. To our best knowledge,
no such schemes have been devised specifically for Non-Newtonian fluids with SPH. This
topic is currently under investigation by the authors.

Ackowledgements Thanks to Prof. Antonio Souto Iglesias and Dr. Henning Wessels
for providing many fruitful discussions. This material is based upon work supported by
the National Science Foundation under award number 1547112.

2.5 Finite Deformation Elasticity: A Total Lagrangian
Approach

2.5.1 Introduction
Smoothed Particle Hydrodynamics originates from the early work by Monaghan ([94,

88, 89][94, 88, 89]) that was proposed to solve astrophysical problems. Recently, its
framework has been widely adopted for solving complex free-surface fluid flows. Since the
particle set does not require a pre-defined mesh, it is very well suited for such problems.
The e�ort to increase convergence, stability and accuracy in the field of fluid mechanics
resulted in several pioneering methods that may be classified as “Weakly Compressible”
SPH (WCSPH), such as ”-SPH ([12, 71]) or Riemann SPH ([71, 62, 25, 51]). It was proven
that such state-of-the-art SPH solvers can be as accurate as Finite Element and Finite
Di�erence Method based fluid solvers. However, compared to the massive success it has
experienced for free-surface fluid problems, SPH based solid mechanics solvers remain
relatively unpopular due to several reasons. At a first glance, solving solid mechanics
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problems with SPH seems straight-forward, since one may think that all that is needed
is to compute the Cauchy Stress (‡) occurring on each particle, and then adjust the
acceleration of the particle accordingly by computing the divergence of ‡. In many cases,
the Cauchy-Stress is integrated in time via an objective stress rate rule (for example,
[76, 74, 10]). However, it should be noted that:

• Field approximations are inconsistent near the free surface due to kernel truncation.

• Unlike fluids, inconsistent approximations of the stress tensor of the divergence of
the stress tensor can cause immediate instability.

• The popular Jaumann Rate is “inaccurate” for stretch-dominated deformations.

To obviate these issues, rather than employing the updated Lagrangian / Eulerian for-
mulation, a total Lagrangian formulation can be employed to describe the deformation of
the body. This approach allows us to obviate the usage of stress rates or incremental de-
formation gradients, and allow us to directly compute the Second Piola-Kirchho� stress.
For example, in [19], a total Lagrangian form of the deformation gradient was used in
conjunction with an explicit time stepping scheme to avoid the so-called “Tensile Insta-
bilities” that arise from standard SPH formulations. To the author’s best knowledge, this
seems to be the earliest, extensive research regarding the topic. [103] formalized this new
approach towards SPH, where it was successfully applied to numerous elasto-plasticity
problems. Later, [121] also summarized the total-Lagrangian approach, with emphasis on
various kernel correction methods. An incremental deformation gradient was computed
each timestep, which was used to track the overall deformation gradient. Recently, [53]
successfully applied the method for solving Fluid-Structure interaction problems.

In this section, our goal is to contribute towards the development of this relatively
new approach. Specifically, it will include aspects that to our best knowledge, has not
been discussed before:

• Formulation of the multiplicative deconstruction of the deformation gradient with
SPH.

• Finite-Deformation thermoelastic constitutive modeling.

• Ghost particle treatment algorithm for thermal boundary conditions.

• Monolithic, implicit time-stepping scheme for SPH-based thermo-elasticity.

2.5.2 SPH Discretization in Current Configuration
The angled bracket notation was employed to represent SPH approximations. For the

interpolation of the physical property and its spatial gradient at position ra, we have
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Â (ra) ¥ ÈÂÍa =
ÿ

bœNa

ÂbvbW (rab, h) (2.113)

ÒÂ (ra) ¥ ÈÒÂÍa =
ÿ

bœNa

ÂbvbÒWab (2.114)

where Âa, Âb are the physical values stored at particle a, b and Wab represents the
kernel centered around ra and its evaluation at rb, and ÒWab represents it’s gradient
evaluated at rb. It is well known that the consistency of the gradient approximation given
by eq. 2.114 deteriorates near free-surface boundaries. For the purpose of pursuing solid
mechanics, even a slight amount of error in the deformation gradient near the boundaries
result in immediate instability. The correction tensor which was first suggested in the
pioneering work by Johnson and Beissel([66]) is used as a remedy for the issue:

ÒÂ (ra) ¥ ÈÒÂÍa =
Q

a
ÿ

bœNa

ÂbvbÒWab

R

b · Ba (2.115)

with

Ba =
Q

a
ÿ

bœNa

vb (rb ≠ ra) ¢ ÒWab

R

b
≠1

(2.116)

For the Laplace operator (Ò2Â), we use a ghost particle approach which is explained
later in this section. We also define the correction tensor in the reference configuration:

Ba,o =
Q

a
ÿ

bœNa,o

vb,o (rb,o ≠ ra,o) ¢ ÒWab,o

R

b
≠1

(2.117)

Where the subscript o is used to describe the variable in its reference state.

2.5.3 Total Lagrangian Formalism for Finite Deformation Ther-
moelasticity

2.5.3.1 Constitutive Relations

In thermoelasticity, it is common to introduce a fictional intermediate state where
it is assumed that only deformations due to thermal e�ects have taken place. This is
often called the multiplicative decomposition of the deformation gradient. The total
deformation gradient is then represented as

F = F e · F ◊ (2.118)
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Support Radius

Reference Configuration Current Configuration

Figure 2.16: Initial Neighbors (N0) are stored within memory and used throughout the
simulation. Note that the initial neighbors may leave the kernel support radius in the
current configuration.

where F e and F ◊ inlcudes only the deformations due to elasticity and thermal expan-
sion e�ects, respectively. Assuming the material in interest possesses an isotropic swelling
coe�cient matrix, the thermal deformation gradient can be readily computed:

F ◊ (◊) = v (◊) 1 = (1 + – (◊)) 1 (2.119)

where –(◊) is a temperature dependent thermal expansion parameter. Then, the
elastic portion of the deformation gradient is computed with

F e = F · F ≠1
◊ (2.120)

In order to define the corresponding stress, we first define the Helmholtz free-energy per
unit mass as a function dependent on the temperature (◊) and deformation

1
E = 1

2

1
F T · F ≠ 1

22

Â = Â̂ (◊, E) = Âe (Ee, ◊) + Â◊ (◊) (2.121)

Note that we have split the function into two parts, where Âe is an isotropic function
of the elastic strain Ee and temperature ◊, and Â◊ is a function that should be obtained
and adjusted via experimental data. One possible option for Âe is a function derived
from the well-known iso-thermal finite elasticity free energy function. The constitutive
relations for the Second Piola-Kirchho� stress may then be established:

S = flo

v2
ˆÂe

ˆEe
= vSe (2.122)

where the relationship regarding the density is defined by flo = v3fl◊. Assuming we
choose Âe to be a quadratic function of the elastic strain,

fleÂe = 1
2⁄ (◊) (trEe)2 + µ (◊) Ee : Ee (2.123)
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the corresponding Second Piola-Kirchho� stress is derived for the concentration-dependent
fourth order sti�ness tensor Ce = Ĉe (◊):

Se = Ce : Ee, Ce = Ĉe (◊) = ⁄ (◊) 1 ¢ 1 + 2µ (◊) 11 (2.124)

Where 1 ¢ 1 is the fourth order unit tensor and 11 is the tensor given by 11ijkl =
1
2 (”ik”jl + ”il”jk). Further assuming that the Lamé parameters can be considered constant
with respect to the concentration ◊, we have for the overall Second Piola Kirchho� stress:

S = ⁄o (trE) 1 + 2µoE ≠ 3– (◊ ≠ ◊o) Ÿo1 (2.125)

2.5.4 Total Lagrangian SPH discretization for solid mechanics

Algorithm 2.6 Compute the deformation gradient
function ComputeDeformationGradient(Particlea)

for Particleb in Na,o do Û Loop over initial neighbors
F a+ = (xb ≠ xa)vb,o ¢ ÒWab,o

end for
F a := F a · Ba,o Û Apply Renormalization return F a

end function

Algorithm 2.7 Compute accelerations
function ComputeAccelerations(Particlea)

for Particleb in Na,o do Û Loop over initial neighbors
aa+ = 1

flo
(F a · Sa · Ba,o · ÒWab,o ≠ F b · Sb · Bb,o · ÒWba,o)

end for
end function

The balance of linear momentum gives us the acceleration of each SPH particle in the
reference configuration:

Ò0 · P + fl0b = fl0a (2.126)

Which requires us the computation of the first Piola-Kirchho� stress P = F ·S, which
is also a function of the deformation gradient (eq. 2.125).

At the beginning of the simulation, initial neighbor maps are constructed in order to
take the gradient of a physical field in the current configuration. Each particle “remem-
bers” its original coordinates throughout the simulation. For example, the gradient of a
physical quantity Â with respect to its original configuration is computed as
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ÒoÂ (ra) ¥ ÈÒoÂÍa =
Q

a
ÿ

bœNa,o

Âbvb,oÒWab,o

R

b · Ba,o (2.127)

Where Na,o represents the neighbors of particle a at the reference configuration, vb,o

represents the original volume of particle b, ÒWab,o is the kernel gradient defined between
a and b at the reference configuration and Ba,o is the renormalization tensor for particle
a defined at the same configuration. Following this formalism, the deformation gradient
of particle a may be directly computed using its definition:

F a = ˆx

ˆX
|x=ra =

Q

a
ÿ

bœNa,o

(xb ≠ xa) vb,o ¢ ÒWab,o

R

b · Ba,o (2.128)

The divergence of P then may be obtained:

Òo · P = flo

Q

a
ÿ

bœNa,o

va,ovb,o

ma
(F a · Sa · Ba,o · ÒWab,o ≠ F b · Sb · Bb,o · ÒWba,o)

R

b (2.129)

Remark: There are multiple formulations that may be employed to compute the di-
vergence in the reference configuration; the above popular formulation was first introduced
in [47].

2.5.4.1 The choice of divergence operators

There exists several possible divergence operators we can choose from when computing
the divergence Ò · ‡ or Ò0 · P . To introduce a few,

1.
ÈÒ · ‡Ía = fla

ÿ

bœNa

ma

A
‡a

fl2
a

+ ‡b

fl2
b

B

· ÒW̃ab

2.
1
fla

ÈÒ · ‡Ía = 1
ma

ÿ

bœNa

vavb (‡a + ‡b) · ÒW̃ab

3.
ÈÒ · ‡Ía = 2

ma

ÿ

bœNa

vavb‡a · ÒW̃ab

And for computing the divergence in the reference configuration :

1.
aa = 1

fla
ÈÒX · P Ía = 1

ma

ÿ

bœN 0
a

VaVb (P a + P b) · ÒXWab
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Here, the notation ÒW̃ab represents the normalized kernel gradient ÒW̃ab = Ba · ÒWab.
The same applies to Ò0 · P only that ÒW̃ab is replaced with Ò0W̃ab and q

bœNa

is replaced

with q

bœN 0
a

, and va is replaced with v0
a. It is usally preferred to use symmetrized operators

such as 1 and 2, since this guarantees momentum conservation (the force exerted to
particle a from particle b equals the force exerted to particle b by particle a). Formulation
3 assumes localized stresses, and results in non-physical deforamtions (although frequently
employed in the computer graphics community due to it’s stability).

2.5.5 Implicit Timestepping

Algorithm 2.8 Fixed Point Iteration
function FixedPointIterationC

xt+1

vt+1

D0

=
C

xt

vt

D

Û Initialize Guess

while Norm(
C

xt+1

vt+1

Dk+1

≠
C

xt+1

vt+1

Dk

) > TOL do

for Particlea in SolidParticles do Û Compute �k+1

ComputeAccelerations(Particlea)
ComputeDiffusion(Particlea)

end for
for Particlea in SolidParticles do Û Update GuessC

xt+1

vt+1

Dk+1

= �
Q

a
C

xt+1

vt+1

Dk
R

b

end for
end while

end function

Implementation of the implicit Trapezoidal method based on a fixed-point iteration
scheme for a set of nonlinear system of equations is proposed to solve for the next time
step (Algorithm 2.9). Although the convergence rate for fixed-point iterations are known
to be slow, it provides a relatively easy way of solving for the next timestep. Note that
for particle systems, obtaining the Hessian (for Newton-Raphson iterations) is extremely
computationally expensive.

For simplicity, we first consider a system where the acceleration of each particle only
depends on x and v. For the displacement field and the acceleration field we have:

C
xt+1

vt+1

D

=
C

xt

vt

D

+ �t

2 ·
AC

vt+1

at+1

D

+
C

vt

at

DB

(2.130)
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Where
C

xt

vt

D

represents the vector of displacements and velocities of the whole particle

system at time t. Plugging in [vt+1] = [vt] + �t
2 ([at+1 + at]), we have for [xt+1]:

Ë
xt+1

È
=

Ë
xt

È
+�t

2 ·
AË

vt
È

+ �t

2 ·
1Ë

at+1
È

+
Ë
at

È2
+

Ë
vt

ÈB

=
Ë
xt

È
+�t·

Ë
vt

È
+(�t)2

4
1Ë

at+1
È

+
Ë
at

È2

(2.131)
we have

C
xt+1

vt+1

D

=
C

xt

vt

D

+ �t

2 ·
AC

vt + �t
2 · (at+1 + at)

at+1

D

+
C

vt

at

DB

(2.132)

According to our constitutive model, the acceleration vector at+1 is a nonlinear func-
tion of the velocity and the position vectors at time t + 1:

Ë
at+1

È
= ›

AC
xt+1

vt+1

DB

(2.133)

Writing everything out again,

C
xt+1

vt+1

D

=
C

xt

vt

D

+ �t

2 ·

Q

cccca

S

WWWWU

vt + �t
2 ·

A

›

AC
xt+1

vt+1

DB

+ at

B

›

AC
xt+1

vt+1

DB

T

XXXXV
+

C
vt

at

D
R

ddddb
(2.134)

Notice that the only unknowns are
C

xt+1

vt+1

D

. Thus, we have a system of nonlinear

equations. Defining the function

�
AC

xt+1

vt+1

DB
def=

C
xt

vt

D

+ �t

2 ·

Q

cccca

S

WWWWU

vt + �t
2 ·

A

›

AC
xt+1

vt+1

DB

+ at

B

›

AC
xt+1

vt+1

DB

T

XXXXV
+

C
vt

at

D
R

ddddb
(2.135)

we have the form suitable for a fixed-point iteration solution process :
C

xt+1

vt+1

D

= �
AC

xt+1

vt+1

DB

(2.136)

Thus, we can iterate with a fixed-point iteration method to solve for
C

xt+1

vt+1

D

:
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C
xt+1

vt+1

Dk+1

= �
Q

a
C

xt+1

vt+1

Dk
R

b (2.137)

Where k is the iteration counter. We simply use
C

xt+1

vt+1

D0

=
C

xt

vt

D

as the initial

“guess”.
To include heat transfer, the e�ects of the temperature needs to be considered. Thus,

the temperature vector unknown vector (

S

WU
xt+1

vt+1

◊t+1

T

XV). Similarly, we perform fixed-point

iteration on the system

S

WU
xt+1

vt+1

◊t+1

T

XV

k+1

= �̃

Q

cca

S

WU
xt+1

vt+1

◊t+1

T

XV

k
R

ddb with

�̃

Q

ca

S

WU
xt+1

vt+1

◊t+1

T

XV

R

db
def=

S

WU
xt

vt

◊t

T

XV + �t

2 ·

Q

ccccccccccccccca

S

WWWWWWWWWWWWWWWU

vt + �t
2 ·

Q

ca›̃

Q

ca

S

WU
xt+1

vt+1

◊t+1

T

XV

R

db + at

R

db

›̃

Q

ca

S

WU
xt+1

vt+1

◊t+1

T

XV

R

db

›̄

Q

ca

S

WU
xt+1

vt+1

◊t+1

T

XV

R

db

T

XXXXXXXXXXXXXXXV

+

S

WU
vt

at

◊̇t

T

XV

R

dddddddddddddddb

(2.138)

where ›̃

Q

ca

S

WU
xt

vt

◊t

T

XV

R

db = at and ›̄

Q

ca

S

WU
xt

vt

◊t

T

XV

R

db = ◊̇
t.

2.5.6 Numerical Expamples
Several numerical simulations were conducted to demonstrate the proposed numerical

method. All simulations were done with the following parameters:
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Nondimensional Tip Displacement wrt. Time
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Figure 2.17: Transient Danilovskaya Problem ⁄ = 5 ◊ 105, µ = 2.5 ◊ 105. w represents
the displacement of the tip.
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2.5.7 Transient Heat Transfer on an Expanding Rod
We first consider the where a sudden temperature field is applied to the tip of a rod

where its other faces are insulated, often known as the Danilovskaya problem [39]. An
analytical solution in exists in the Laplace transformation space, and is often used to
benchmark numerical thermoelastic schemes ([24, 115, 23]). A thermoelastic rod is con-
strained at its base, while the sides are only allowed to move in the y-direction. Initially,
the temperature is T0 throughout. A temperature of Tsurface = T0 + ◊0 is prescribed
as a boundary condition on the top part of the structure, allowing the block to expand
accordingly. The sides and the base is thermally insulated. Assuming the displacements
are moderate, it is possible to obtain an analytical solution for the y-displacement field of
the tip and the temperature field within the rod via the inverse-Laplace transformation
of the following:

◊̄ =
A

◊0
s

B
cosh(÷x)
cosh (÷h) , ū =

A
◊0
÷s

B A
—

M

B
sinh (÷z)
cosh (÷h)

where

÷ =
Ú

s

Ÿ
, M = E(1 ≠ ‹)

(1 + ‹) (1 ≠ 2‹) , — = E–/ (1 ≠ 2‹) .

Here, Ÿ = k
flc is the thermal di�usivity and s is the parameter for the Laplace trans-

formation. Figure 2.17 shows the numerical solution obtained via our method. Although
some oscillations during the start-up phase are noticed due to the instantaneous tem-
perature application of ◊0, the overall solution is in good agreement with the analytical
solution and the FEM solution.
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Bilayer Bending Radius (Ideal theory vs SPH Simulation)
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Figure 2.18: Bilayer Bending Radius (Ideal theory vs SPH Simulation)

Figure 2.19: Comparison of FEM and SPH for the Bilayer Bending problem. Shown:
Final deformed state for data point corresponding to E1/E2 = 0.5, h1/h2 = 1 in Figure
2.18.
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2.5.8 Expansion Induced Curvature in a Free Standing Bimate-
rial

One application that exploits thermal expansion is thermally actuated switches. In
[129], an analytical approach was used to derive the idealized curvature of a uniformly-
heated bi-layered structure. The setup was replicated within our framework using two
types of SPH particles, each with varying mechanical / thermal properties. The resulting
curvature, assuming the di�erence in curvature between the upper/lower strip is small,
is:

h1
fl

=
2E2

E1
· h2

h1

1
1 + h2

h1

2
(3 (–1 ≠ –2) ◊0)

1 +
1

E2
E1

· h2
2

h2
1

22
+ 2 · h2

h1
· E2

E1

1
2 + 3h2

h1
+ h2

2
h2

1

2 (2.139)

Which is also equivalent to the relation stated in [117] and [84]. Where h1 and h2
represent the height of the strips. Multiple simulation cases were considered by varying
h1/h2 and E1/E2, and was compared to the above analytical curvature in Figure 2.19.
Overall, they were in good agreement.
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Material 1 Material 2

SPH DiscretizationMicrostructure Schematic

Figure 2.20: A 2D version of the metamaterial structure proposed in [124]. Material 1 is
a more compliant material with a smaller thermal expansion coe�cient, while material 2
is a sti�er material with a larger thermal expansion coe�cient.

Material 1 Material 2
Thermal Di�usivity 2.0 ◊ 10≠5m2/s 2.0 ◊ 10≠5m2/s
First Lamé Modulus 1.0 ◊ 105Pa 1.0 ◊ 106Pa

Shear Modulus 0.5 ◊ 105Pa 0.5 ◊ 106Pa
Coe�cient of Thermal Expansion 2.0 ◊ 10≠5 2.0 ◊ 10≠4

Table 2.1: Physical Parameters
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t = 0 s t = 0.4 s t = 0.8 s

t = 1.2 s t = 1.6 s t = 2.0 s

t = 4.0 s t = 6.0 s t = 8.0 s

Temperature

Ghost Particle Distribution 

(t = 4.0 s)

Ghost Particle Distribution 

(t = 0 s)

Ghost Particle Evolution

Figure 2.21: Numerical example of the 2D microstructure proposed in [124]. Dotted line
corresponds to the original volume of the microstructure. The structure is suddenly ex-
posed to an elevated background temperature of �◊ext = 100 K. At ≥ 8s, the structure
nearly reaches thermal equilibrium, exhibiting a negative overall thermal expansion co-
e�cient. The right 2 figures show the ghost particles that were placed by our algorithm
(purple markers).
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2.5.9 Analysis of a Metamaterial Structure with Negative Ther-
mal Expansion

It is possible to engineer a metamaterial that will possess an overall negative thermal
expansion coe�cient by carefully designing a specific microstructure utilizing multiple
materials. Recently in [124], a hypotherical microstructure that may possess such property
was proposed and demonstrated via simple large-scale structural experiments. In [102]
the same proposed microstructure (Figure 2.20) was fabricated via laser lithography. The
expected “negative thermal expansion” e�ects were then verified experimentally.

As a practical numerical demonstration, a similar 2D microstructure was devised
within our SPH framework, and the microstructure was subjected to instantaneous tem-
perature conditions on the boundary (free surface). Table 2.1 lists the physical parameters
that was assumed for our demonstration. A 0.6 m ◊ 0.6 m 2D structure with a repeat-
ing microstructure (shown in Figure 2.20) was suddenly exposed to an elevated ambient
temperature of �◊ = 100K, and pure conduction is assumed at the free surface. The
evolution of the structure is plotted in Figure 2.21. As the material near the boundary
expands, the individual sca�olds connecting the circular nodes start to bend; minimiz-
ing voids in the initial structure. For the structure used in the demonstration, the final
average thermal expansion coe�cient (sometimes called the secant coe�cient of thermal
expansion) was computed to be – = 2.054 ◊ 10≠6.

2.5.10 Discussion
A comprehensive solution process based on SPH for one-way coupled thermoelastic-

ity problems was proposed. In order to obviate instabilities and inconsistencies, a total
Lagrangian approach was employed as the basis of the SPH implementation. An implicit
time-stepping scheme was also proposed to complement the proposed method. By solving
well-known benchmark problems with the proposed solver, we showed that the results ob-
tained via SPH were in good agreement with its analytical counterpart and FEM. We also
included a practical numerical example for a multi-material structure exhibiting negative
thermal expansion. Several drawbacks still exist due to the limitation of implementing
thermal / mechanical boundary conditions in SPH. For example, the adaptive ghost par-
ticle placing algorithm that are required to enforce thermal boundary conditions requires
many dummy particles that do not really participate in the simulation. Di�culties in en-
forcing Neumann and Dirichlet conditions for the solid also exist. A more robust solution
process involving Newton iterations would be extremely desirable, although obtaining the
Hessian (or even an approximate) of the particle system may be very expensive. We hope
to revisit this topic as future work.
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2.6 Non-Newtonian Fluids
2.6.1 Introduction

Originally developed for astrophysical simulations, SPH has become a popular numer-
ical method of choice for simulating free-surface Newtonian flow problems ([32, 75, 34]).
Naturally, the topic regarding the simulation of non-Newtonian flows with this method
have been in question for some time, although successful attempts were limited due to
the explicit nature of SPH. Such e�orts can be found in previous work such as in [57]. Al-
though satisfactory results were obtained for some cases, the e�ective viscosity values used
within the simulation had little variance. For example, for a Herschel-Bulkley type fluid,
unyielded regions exhibit viscosity values that are multiple magnitudes larger compared
to yielded regions. In our experience, it becomes very di�cult to resolve a SPH system
with such viscosity variance exclusively with explicit methods, especially with SPH. For
this section, we will employ Chorin’s projection method to split the viscous forces and
the pressure forces. We then introduce an iterative process to solve for the viscous forces
implicitly for the next timestep. A brief convergence study for a simple 2D flow field of a
Herschel-Bulkley fluid was given at the end.

2.6.2 Problem Formulation
We first discretize the Navier-Stokes equation via SPH formalism. For each SPH

particle, we have

Dui

Dt
= ≠

K
1
fl

Òp

L

i

+
K

µ

fl
Ò2u

L

i

+ bi (2.140)

Dfli

Dt
= ÈflÒ · uÍi (2.141)

pi =fEOS(fli) (2.142)

The physical quantity included within the angles brackets < · > represents the physical
value discretized via SPH, and fEOS represents the equation of state. Tait’s equation of
state ([96]) was used for this paper. Note that taking such approach results in a weakly-
compressible SPH model (WCSPH). The pressure gradient discretization (2.140) is usually
chosen to be ([96]):
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fl2
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fl2
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ÒiWijmj (2.143)

The index i represents the ith SPH particle, while j œ Ni represents the set of neighbors
of the ith particle. Wij is the kernel function centered around particle i, ÒiWij represents
the gradient of the kernel, pi is the pressure of particle i, pj is the pressure of particle j,
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fli is the density of particle i, flj is the density of particle j, and mi and mj represent the
mass of particle i and j, respectively.

We may split the pressure and the viscous contributions via a projection method ([29]):

uú
i =un

i +
A

�t

fli

B

(ap)i (2.144)

un+1
i =uú

i +
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�t

flú
i

B

(av)j (2.145)

where un
i and un+1

i respectively represents the velocity of particle i at the nth and
n + 1th timestep, and nú

i represents the “intermediate velocity”. The acceleration of each
particle due to pressure forces can be computed using (2.143). We now look into the
acceleration contribution for the viscous step (aa,v). Influenced by the viscous operator
utilized in[108], we explicitly expand out the viscous operator. For an explicit version, we
will have:
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For the average e�ective viscosity µ̄eff,ab, we pick

(µ̄eff )ij = (µ̄eff )i + (µ̄eff )j

2 (2.147)

Note that there exists di�erent methods for “mixing” the viscosities between particles
([58, 32]).

Later on, we will re-formulate the above via an implicit timestepping scheme.
The e�ective viscosity of each particle is computed according to the non-Newtonian

fluid model before the viscous step. For a regularized Herschel-Bulkley fluid model (Tan-
ner / milthrope 1983):

µeff =
I

k“̇o
n+1 + ·o“̇o

≠1 “̇ < “̇o

k“̇n≠1 + ·o“̇≠1 “̇ Ø “̇o
(2.148)

With the viscous shear (· i) computed using the above e�ective viscosity being

· = 2(µeff )i(“̇)Di, Di = 1
2(Òuú

i + Òuú
i

T ) (2.149)

For continuity, the method found in [13] was employed (widely known within the SPH
community as ”-SPH) :

ÈflÒ · uÍi = ≠fli

ÿ

jœNi

(uj ≠ ui) · ÒiWijVj + ”hc0Di (2.150)
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where Di is the “di�usion” term, defined as

Di = 2
ÿ

jœNi

Âij
rji · ÒWij

r2
ij

Vj, (2.151)

where ” is a tunable constant (usually chosen to be 0.1), h is the SPH smoothing
length, c0 is the speed of sound, and Âij is defined as :

Âij = (flj ≠ fli) ≠ 1
2 (ÈÒ1fliÍ + ÈÒ1fljÍ) · rji, (2.152)

where ÈÒ1 ( · )Í represents the renormalized gradient operator. ÈÒ1fliÍ can then be written
as :

ÈÒ1fliÍ = Bi

ÿ

jœN (i)
(flj ≠ fli)ÒiWijVj (2.153)

Here, Bi is the first derivative renormalization matrix suggested by [99], which is defined
as :

Bi =
S

U≠
ÿ

jœN (i)
rij ¢ ÒWijVj

T

V
≠1

(2.154)

Physically, this term adds “artificial di�usivity” to the continuity equation. Although
exact conservation of mass no longer holds, the added di�usivity onto the density greatly
increases stability throughout the system. As a result, ”-SPH was proven to be an accu-
rate, versatile approach for many SPH applications as an alternative to a PPE (pressure
Poisson Equation) solver for estimating the pressure field. ([13, 12, 80])

2.6.3 Viscous Forces: Semi-Implicit Time Stepping
Non-Newtonian flows usually consist of yielded and non-yielded regions within the

fluid. Many practical fluid models usually generate e�ective viscosities that mare magni-
tudes lower for yielded regions, allowing them to “flow”. Obtaining stability and conver-
gence for such systems has been a challenge for SPH due to this property of non-Newtonian
fluid models. In order to address this issue (2.9), we propose an implicit time-stepping
scheme for the viscous step. A fixed-point iteration scheme is used to solve for the whole
particle system, similar to ([133, 132]).

Consider a system where the acceleration of each particle only depends on x and v.
Using an implicit trapezoidal rule, for the displacement field and the acceleration field we
have:
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Where
C
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represents the vector of displacements and velocities of the whole par-
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Thus, we have for
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Notice that the acceleration vector at+1
v is a nonlinear function of the velocity and the

position vectors at time t+1; thus [at+1
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Writing everything out again,
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Thus, we have a system of nonlinear equations with the unknown vector
C

rt+1

ut+1

D

. We

now have the form suitable for a fixed-point iteration solution process :
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Where k is the iteration counter. We simply use
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“guess”.
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Algorithm 2.9 Fixed Point Iteration
function FixedPointIterationC
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=
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Û Initialize Guess

while Norm(
C
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≠
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ut+1
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) > TOL do

for Particlea in SolidParticles do Û Compute �k+1

ComputeAccelerations(Particlea)
end for
for Particlea in SolidParticles do Û Update GuessC
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= �
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a
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Dk
R

b

end for
end while

end function

2.6.4 Boundary Conditions
A ghost-particle approach was used for our no-slip boundary implementation. Such

approach is fairly straight-forward, although for Newtonian fluids one must be cautious
when assigning velocities to the ghost particles. In previous work regarding Newto-
nian fluids such as ([93, 17]), the ghost particles were assigned mirrored velocities in
order to improve convergence near the boundaries when implementing no-slip condi-
tions. Unfortunately, for non-Newtonian fluids, this approach would be inappropri-
ate since the rate of deformation tensor that is required to compute the shear tensor
(· = 2(µeff )i“̇Di, Di = 1

2(Òuú
i + Òuú

i
T )) would incorrectly indicate that the fluid is

“yielding” near the boundary. Thus, the velocities are required to be zero for the ghost
particles.
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Mirrored Velocity 
(Newtonian Fluids)

“Zeroed” Velocity 
(Non-Newtonian Fluids)Boundary (Ghost) Particles

Fluid Particles

Figure 2.22: No-slip boundary conditions for Newtonian fluids and Non-Newtonian fluids.

2.6.5 Numerical Example: Herschel-Bulkley 2D Poiseuille Flow
A simple steady-state numerical example is presented to show convergence properties

of our method, as shown in figure 2.23. The left/right boundaries were treated with a
periodic boundary condition, where the leaving particles were feeded back into the domain.
The quintic Wendland kernel was exclusively used as our kernel function, due to its many
known benefits ([78]). The kernel support radius was chosen to be 3 times the particle
diameter (3 ◊ �x).

To compare our results, the analytical solution of the above problem ([46]) was used:
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2D Non-Newtonian Channel Flow

HPeriodic

x

y 

No-Slip

No-Slip

Periodic

Analytical Solution: Velocity Profile
Figure 2.23: Physical parameters: ˆp

ˆx = 10 [Pa/m], fl = 1 [kg/m3], H = 0.5 [m], u(y =
0) = 0, u(y = H) = 0, k = 0.5 [Pa · s], ·o = 0.5 [Pa], n = 0.5, “o = 0.001.



80

2.6.6 Numerical Results
The results of the numerical solution is shown in figures 2.24, 2.26. 4 simulations with

di�erent resolutions (11, 21, 41, 81 particles in the y-direction, respectively).
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Figure 2.24: Steady state velocity profile compared to analytical solution.
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Figure 2.25: The method showed a convergence order of 1.6 in space.
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Figure 2.26: Red region is the “unyielded” fluid where the e�ective viscosity is significantly
larger. At startup (left), the region is significantly larger compared to steady state (right).
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2.6.7 Discussion
Figure 2.24 compares the velocity profile of the SPH solution to the analytical solution.

Figure 2.25 shows the convergence rate of our proposed method. The results show that our
semi-implicit approach is capable of resolving large viscosity contrasts between the two
di�erent regions. Nevertheless, compared to the simulation with the highest resolution
(Nx = 81), the lower resolution cases seemed to show rather large errors. Since the shear
rate “̇ =

Ô
2D : D is dependent on the rate of deformation tensor, which is computed

at each timestep with the SPH operators, it is di�cult to maintain "sharp" transitions
for the rate of deformation tensor. This transition region can also be observed in figure
2.26). This indicates that the boundaries between the yielded region and the non-yielded
regions are being excessively smoothed (which SPH operators are known to do), especially
for lower resolution simulations.
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Chapter 3

Computational Optimization of
Nozzle Extrusion Paths in Ink
Writing Manufacturing Procedures
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3.1 Introduction
Direct ink writing (DIW) is an additive manufacturing method where an extrusion

deposition process of a fluid-like material (often described as “gels” and “pastes”) is used.
The depositions are usually tailored, functional inks, often used to manufacture devices
such as sensors, micro-fluidic networks, tissue-engineering sca�olds, etc. Desired patterns
are generated using a controlled nozzle that continuously, or discontinuously (eg, Drop-
On-Demand type methods) ejects such inks. Typical dimensions of the nozzle diameter
can reach from several hundred microns to even sub-micro scales. In many applications,
these inks are a colloidal suspensions, obtained by a combination of

• Solvents (water is widely used)

• Functional particles (Alumina, Titania, Mullite, —-TCP, etc)

• Dispersants

• Rheology Modifiers

The weight percentage of the functionalizing particles (powders) can reach up to 50%,
where higher concentration gives benefits in terms of printing dynamics / shrinking. As
the extrusion extrudes out from the nozzle, the ink usually undergoes solidification. Some
types of solidification methods include:

• Solidification due to drying. ex, Colloidal Suspensions

• Gelation or chemical crosslinking ([48])

• Crystalization ex, freezing of water

The behaviour of the extrusion can sometimes be non-trivial, due to the non-Newtonian
behaviour of the extrusion. In order to obtain accurate desired depositions, it is sometimes
required to “fine-tune” the extrusion toolpath to match the physical behaviour of the
extrusion. In many cases, a naive toolpath identical to the desired shape will return
undesirable depositions. There are several factors that may influence the optimal toolpath.
Some include:

• Path that the tool follows

• Distance from the nozzle tip to the target substrate

• Nozzle angle

• Extrusion speed

• Translation speed of the nozzle
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• Material properties of the “uncured” material

• Temperature

• etc.

The goal of this research is to investigate towards finding the optimal toolpath for a given
set of physical writing parameters. The basic key ideas of framework can be stated as
below:

1. Optimization is performed for a given desired deposition path via a “swarm intelli-
gence” optimization method.

2. A set of parameters (cite) are chosen in a way such that it represents a mildly
modified path from the desired one. For each “timestep” of the “swarm member”,
the parameters are either randomly generated or obtained by moving each member
to a more desirable location within the parameter space.

3. The “fitness” of each path is then evaluated by a single physical simulation. A
parameter set is considered to be more “fit”, if the deviation of the actual deposition
from the desired path is smaller.

4. The physical simulation is achieved by using a numerical solver based on smoothed
particle hydrodynamics (SPH).

Ideally, there are infinite ways one can characterize a toolpath. In reality, due to the lim-
itation of computational power and practicality, it is convenient to chose to only optimize
a certain parameter. Thus, for the work in this paper, we only attempt to optimize the
path that the tool actually follows. The procedures on how a toolpath is characterized is
discussed in detail later on.

In order to create a fast, e�cient physical simulation step, smoothed particle hydrody-
namics (SPH) was used to model the material being deposited onto the target substrate.
To model the highly-viscous and shape-retaining characteristics of the material, an in-
compressible, a fully implicit formulation was used ([122]). Although directly using non-
Newtonian fluid models (which are known to match the flow of the materials discussed
earlier) would be favorable due to the abundance of physical measurement data, we chose
not to use non-Newtonian models for our optimization study due to the following reasons:

1. Even with fully implicit formulations, we encountered di�culties for accurately com-
puting the viscous forces with a reasonable timestep and discretization stencil.

2. Many physical characteristics of the inks can also be obtained by using a Newtonian
fluid model with large viscosities, combined with large surface tension.
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Stress Tensor
Newtonian Fluid ‡ = p1 + 2µD

Power Law ‡ = p1 + 2k“̇n≠1D
Bingham ‡ = p1 + · o + 2µD

Carreau-Yasuda ‡ = p1 + · o + 2k“̇nD
Herschel Bulkley ‡ = p1 + · o + 2 (k“̇n≠1 + ·o“̇≠1) D

Table 3.1: Non-Newtonian Fluid Models

The fact that there are many experimentalists who also prefer to adopt our second argu-
ment (cite) backs our assumption regarding our choice of fluid model.

Finally, as a proof of concept, several test cases were performed, including a 90-Degree
bend, a 30-Degree bend. The tooltip is assumed to have a constant tangential velocity
throughout the whole deposition. In a manufacturing standpoint, the benefit would realize
as a reduced turnaround time. We compare the naive path of choice (a path identical
to the desired deposition shape) to the optimized path. The optimization algorithm
produced a non-intuitive toolpath that generated more “fit” results than a naive path.

3.2 Modeling of Inks
3.2.1 Mechanics of Inks

In Direct Ink Writing, obtaining the desired pattern is a very sensitive procedure, and
sometimes can be extremely di�cult to control. In many cases, iterative fine tuning is
required to obtain a set of printing parameters that will produce extrusions that will suit
the the desired application. In order to devise a computer based simulation, it is required
to employ a suitable fluid model. Although there is no concrete agreement on what model
that should be employed for inks, non-Newtonian fluid models are widely accepted due
to its ability to model “shear-thinning”. This “shear-thining” behavior allows the fluid
to “set” after deposition, so that the post-extrusion shape is maintained throughout the
un-yielded region. The stress-strain rate response of such fluid models are shown in table
3.1.

One popular model that can be employed is the Herschel-Bulkley fluid model ([73, 54,
48, 85]), which accounts for the shear-thinning properties of inks that are used in DIW
applications.

It is also possible to employ Newtonian-based fluid models for ink modeling. This type
of approach towards modeling the ink was also used in previous work such as ([100, 101]).
A very high viscosity combined with high surface tension allows the fluid to “set” at
a shape after deposition. Regarding which approach (Newtonian vs Non-Newtonian) is
more appropriate is debatable. One must also acknowledge that any of the two approaches
require careful calibrations to match the actual fluid, and is highly dependent on the type
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Figure 3.1: Non-Newtonian Fluid Models

of ink as well; thus we assume that any of the two approaches are acceptable as long as
the model is adequately calibrated towards one’s specific application.

In this paper, we employ a Newtonian fluid model combined with high surface tension
to model the ink. The governing equations of the model follows as:

fl
Du

Dt
= ≠Òp + µÒ2u (Navier-Stokes) (3.1)

ˆfl

ˆt
+ Ò · (flu) = 0 (Continuity) (3.2)

Where u is the velocity of the fluid, fl is the density of the fluid, p is the pressure
field and µ is the viscosity. We would also like to mention that the continuity equation in
incompressible SPH implementations is automatically satisfied, which will be discussed
later on in the text. In order to represent surface tension, we must further introduce f st

which represents the surface tension. One widely employed surface tension model is the
CSF surface tension method. In the work by Brackbill et al ([20]), a continuum form of
the surface tension was derived:

f st = ‡Ÿ (r) Òc (r)
[c (r)] (3.3)

Where ‡ is the surface tension coe�cient, Ÿ (r) is the curvature of the free surface
defined at position r, and c (r) is the “color function” defined at position r:

c (r) =

Y
__]

__[

c1 (Fluid 1)
c2 (Fluid 2)
c1+c2

2 (At the interface)
(3.4)

The squared bracket notation [c (r)] represents the “jump operator”, which gives the
change in value of the color field at the interface. Thus, for this particular surface tension
method, the Navier-Stokes equation including surface tension becomes
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fl
Du

Dt
= ≠Òp + µÒ2u + ‡Ÿ (r) Òc (r)

[c (r)] (Navier-Stokes) (3.5)

This approach does not require calibration, since the physical parameter (‡) is already
available for many fluids. Nevertheless, despite its popular usage, the above method is
often problematic for our discretization method ([97]). Later on, we will introduce a
di�erent surface tension method that can be well-integrated with our numerical framework
of choice.

3.2.2 Numerical Method - Smoothed Particle Hydrodynamics
(SPH)

3.2.2.1 Brief Introduction

SPH (Smoothed Particle Hydrodynamics) was first introduced by JJ. Monaghan to
solve astrophysics problems ([94, 89, 88, 95]). In SPH, a kernel function that centers
around a SPH “particle” is defined as W (r, h), where r is the position vector to the
center of the kernel (the position of the SPH particle), and h is the smoothing length.
SPH is an ideal method of choice for our problem, since the free-surfaces of the extrusions
are automatically resolved without any type of re-meshing. Thus, the method is used
exclusively for our deposition framework.

Without derivation, we state the so-called “SPH operators’ for a scalar field Â (r) and
the vector field „ (r):

ÈÂÍa =
ÿ

bœNa

ÂbvbW (rab, h) (Field value) (3.6)

ÈÒÂÍa =
ÿ

bœNa

(Âb ≠ Âa) vbÒWab (Gradient) (3.7)

ÈÒ · „Ía =
ÿ

bœNa

vb („b ≠ „a) · ÒWab (Divergence) (3.8)

e
Ò2Â

f

a
=

ÿ

bœNa

2vb
Âb ≠ Âa

rab
eabÒWab (Laplacian) (3.9)

Here, Na represents all the neighboring particles (particles that fall within the kernel
support domain centered around particle a, va is the physical volume represented by
particle a, Wab = W (rab, h) , and rab = ra ≠ rb. The kernel function is usually chosen to
be 3 times the particle radius for e�ciency. Although there exists many possible choices
for the kernel function, for our work we employ the quintic Wendland kernel due to its
known benefits ([78]).

The introduced operators were first used in pioneering earlier research such as [89, 21],
and proved itself to be practical and accurate throughout the years . Recently, advanced
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higher order operators are becoming more and more popular, although such operators
were not employed in this work (refer to [44]). Also, for convenience, we write the angled
brackets È·Í to represent the value obtained from the SPH operators.

3.2.2.2 Discretization of the Navier-Stokes Equation

Using the operators introduced above, the Navier-Stokes equation without surface
tension becomes

3
Du

Dt

4

a
= ≠

K
1
fl

Òp

L

a

+
K

µ

fl
Ò2u

L

a

+ g (3.10)
3

Dfl

Dt

4

a
= ÈflÒ · uÍa (3.11)

Many surface tension discretization methods exist for SPH ([3, 1, 91, 97, 114]). While
some are based on the CSF surface tension model described earlier, others require pa-
rameters that must be calibrated. For our work, we will follow the surface tension model
described in the work by Akinci et al ([3]). The model combines molecular-like forces
between the SPH particles, similar to ([114]), along with surface area minimizing forces.
According to the original paper, the “molecular” cohesion force is defined as

F molecular
aΩb = ≠“1mambC (|ra ≠ rb|)

A
ra ≠ rb

|ra ≠ rb|

B

(3.12)

where C is a cubic spline function defined as

C (r) = 32
fih9

Y
__]

__[

(h ≠ r)3 r3 h
2 < r Æ h

2 (h ≠ r)3 r3 ≠ h6

64 0 Æ r < h
2

0 Otherwise
(3.13)

The curvature derived forces are additionally computed with

F curvature
aΩb = ≠“2ma (na ≠ nb) (3.14)

with
na = h

ÿ

bœNa

mb

flb
ÒWab (3.15)

which is a vector normal to the surface, and “1 and “2 are physical constants with
appropriate units that require calibration. For an interior fluid particle, the summation
of the kernel gradients will cancel each other out, leaving a near zero vector. The combined
forces that will contribute towards the surface tension is then

F st
aΩb = F molecular

aΩb + F curvature
aΩb (3.16)
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Adding the surface tension forces onto the discretized Navier-Stokes equation (equation
3.10),

3
Du

Dt

4

a
= ≠

K
1
fl

Òp

L

a

+
K

µ

fl
Ò2u

L

a

+ g + f st
a (3.17)

where the following kernel summations for each term (following [87, 21]):
K

1
fl

Òp

L

a

=
ÿ

bœNa

mb

A
Pa(t)

fl2
a

+ Pb(t)
fl2

b

B

ÒWab(t) (3.18)

K
µ

fl
Ò2u

L

a

=
ÿ

bœNa

8µmbrab · ÒWab

(fla + flb)2(r2
ab + ‘)uab (3.19)

f st
a = ≠

ÿ

bœNa

A

“1mbC (|ra ≠ rb|)
A

ra ≠ rb

|ra ≠ rb|

B

+ “2 (na ≠ nb)
B

(3.20)

Note that we assumed that the density of the fluid is constant. This is possible due
to the incompressible pressure solver that we will be employing.

3.2.2.3 Solution of the Pressure Poisson Equation (Incompressible SPH)

In weakly compressible SPH implementations (such as ”-SPH, [13]), the continuity
equation is used to update the density of each SPH particle:

ˆfl

ˆt
+ Ò · (flu) = 0 æ Dfl

Dt
= ÈflÒ · uÍ (3.21)

and discretized as

ÈflÒ · uÍa = ≠fla

ÿ

bœNa

(ub ≠ ua) · ÒaWabvb + ”hc0Da (3.22)

where Da is the “di�usion” term, defined as

Da = 2
ÿ

bœNa

Âab
rba · ÒWab

r2
ab

Vj, (3.23)

where ” is a tunable constant (usually chosen to be 0.1), h is the SPH smoothing
length, c0 is the speed of sound, and Âab is defined as :

Âab = (flb ≠ fla) ≠ 1
2 (ÈÒ1flaÍ + ÈÒ1flbÍ) · rba, (3.24)

Then, the equations regarding the motion of the fluid are closed of by an equation of
state. An example is Tait’s equation of state:
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P = 1
“

fl0c
2
0

AA
fl

fl0

B“

≠ 1
B

(3.25)

where c0 is the speed of sound, fl0 is the rest density and “ is a parameter. This
approach e�ectively eliminates the need to solve the pressure Poisson equation (PPE),
and is easy to implement. On the otherhand, exact incompressibility no longer holds,
and the simulation may require relatively small timesteps for it to be stable. Since our
optimization framework demands many simulation runs with di�erent parameters, being
able to quickly finish a simulation is a critical factor for us. Thus, an incompressible SPH
solver was employed for our simulations. For our application, we follow the work by [16],
which is based on operator splitting ([28, 29]).

Algorithm 3.1 DFSPH Timestep (Using notation from Bender’s original paper)
1. Compute non-pressure forces av

a

2. Compute vú
a(t) = va + �tav

a

3. CorrectDensityError()
4. Update Positions xa(t + �t) = xa(t) + �tvú

a

4. UpdateDensities fla

5. Compute –a

6. CorrectDivergenceError()
7. UpdateVelocities va(t + �t) = vú

a

First, the viscous forces are applied and the system takes a half-step towards the inter-
mediate state (rú, uú, flú). Second, the step CorrectDensityError and CorrectDivergenceError
attempts to update uú so that the updated velocity field represents a divergence-free vec-
tor field.

The acceleration that will be applied due to pressure forces is computed with:

ap
a(t) = ≠maÒPa(t) (3.26)

Then, instead of the classic pressure gradient operator (which Ihmsen also adopted
earlier) it is assumed that the pressure gradient ÒPa can be represented as

ÒPa = Ÿv
aÒfla = Ÿv

a

ÿ

bœNa

mbÒWab (3.27)

where Ÿv
a represents the sti�ness parameter which we need to determine. After updat-

ing the velocity field to vú (Step 2), the divergence of the velocity field is no longer zero.
This results in a Dfla

Dt that is non-zero:

Dfla

Dt
= ≠flaÒ · uú

a =
ÿ

bœNa

mb (uú
a ≠ uú

b) ÒWab (3.28)



92

If we could add-on the pressure force induced velocity changes to uú so that Dfla

Dt is
small, that would be exactly what we are looking for. Let us call the total pressure force
“density” acting on particle a to be f p

a and the pressure “density” acting on a coming from
particle b to be f p

aΩb,. Then the velocity change of particle a, and the velocity change of
b counting only the contribition coming from particle a can be written as

”va = �t
f p

a

fla
, ”vbΩa = �t

f p
bΩa

fla
(3.29)

The term “Pressure force density” is a term that was used throughout the original
paper, defined as f p

a = ≠ÒPa with the unit
Ë

N
m3

È
. The resulting density change resulting

from this new velocity field should yield a density change that should cancel out Dfli

Dt :

ÿ

bœNa

mb (”va ≠ ”vb) ÒWab = �t
ÿ

bœNa

mv

A
f p

bΩa

fla
≠ f p

a

fla

B

ÒWab = ≠Dfla

Dt
(3.30)

substituting f p
a = ÒPa = Ÿv

aÒfla = Ÿv
a

q

bœNa

mbÒWab,

�t
ÿ

bœNa

mb

Q

ca
Ÿv

ambÒWab

fla
≠

Ÿv
a

q

bœNa

mbÒWab

fla

R

db ÒWab = ≠Dfla

Dt
(3.31)

Expanding out,

Dfla

Dt
= Ÿv

a

�t

fla

Q

a
-----
ÿ

b

mbÒWab

-----

2

+
ÿ

b

|mbÒWab|2
R

b (3.32)

We then can solve the system above wrt. Ÿ:

Ÿv
a = 1

�t

Dfla

Dt
· fla

–a
(3.33)

where –a = |qbœNa
mbÒWab|2 + q

bœNa
|mbÒWabb|2. Bender and Koschier observed

that using Jacobi iterations, along with the clamping technique introduced by Ihmsen
worked well for solving the above system of equations:

Enforcing Zero Density Change On top of the zero divergence enforcement, Bender
et al., also included a second step for the pressure solver. It is possible to consider this as
a separate solver that can be applied on its own. In Bender et al., this solver was applied
once more independantly after the zero divergence solver to deal with the residual errors.
Ignoring the zero divergence solver step, after The non-pressure forces, the intermediate
density can be written as

flú
a = fla + �t

Dfla

Dt
= fla + �t ·

ÿ

bœNa

mb (vú
a ≠ vú

b) ÒWab (3.34)
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Algorithm 3.2 DFSPH - CorrectDivergenceError

while
11

Dfl
Dt

2

ave
> TOLdiv

2
do

for Particlea in all particles do
Compute Dfli

Dt = ≠flaÒ · vú
a

end for
for Particlea in all particles do

Ÿv
a = 1

�t
Dfla

Dt · fla

–a
, Ÿv

b = 1
�t

Dfla

Dt · flb
–b

vú Ω vú ≠ �t
q

bb mb

1
Ÿv

a
fla

+ Ÿv
b

flb

2
ÒWab

end for
end while

the pressure forces that will enforce zero density change can written as

flú
a ≠ fl0 = �t2 ÿ

bœNa

mb

A
f p

a

fla
≠ f p

bΩa

fla

B

ÒWab (3.35)

defining (note that this is the same as the zero divergence solver, only with Dfla

Dt =
q

bœNa
mb (vú

a ≠ vú
b) ÒWab replaced with flú

a≠fl0
�t , we have the following sti�ness value:

Ÿa = 1
�t2 (flú

a ≠ fl0) , (3.36)

where we could use for Jacobi iterations.

Algorithm 3.3 DFSPH - CorrectDensityError
while (flavg ≠ fl0)ave > TOLdense do

for Particlei in all particles do
Compute flú

a

end for
for Particlea in all particles do

Ÿa = flú
a≠fl0
�t2 –a, Ÿb = flú

b ≠fl0
�t2 –b

vú Ω vú ≠ �t
q

b mb

1
Ÿa
fla

+ Ÿb
flb

2
ÒWab

end for
end while

3.2.2.4 Implicit Viscosity Solver

The viscosities of the fluids involved in DIW are usually extremely large compared to
typical fluids due to their composition. The required timestep restriction almost renders
explicit stepping methods impossible. The only plausible way is to use an implicit method
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that will provide reasonably large timestpes. Recently, Weiler et al. introduced a physi-
cally consistent implicit viscosity solver ([16, 122]). The fact that many previous implicit
viscosity solvers meant for computer graphics applications were not physically consistent
gives this approach a great advantage for solving engineering problems.

As stated before, the viscous forces in SPH is represented as
K

µ

fl
Ò2v

L

a

=
ÿ

bœNa

8µmbrab · ÒWab

(fla + flb)2(r2
ab + ‘)uab (3.37)

Note that this is a slightly di�erent operator compated to the one user in the original
paper by Weiler et al. The velocity of the intermediate timestep can be written as

vú = v (t) + �t
µ

fl
Ò2vú (3.38)

The above system can be re-written as a system of linear equations:

(I ≠ �tA) vú = v (t) (3.39)

with block matricies Aab (with a and b representing the rows and columns, respec-
tively) that correspond to particle a and its neighbors

Aab = ≠ 8µmb

(fla + flb)2
ÒWab ¢ rab

||rab||2 + 0.01h2
, Aaa = ≠

ÿ

b

Aab (3.40)

The above system is a positive definite linear system, and can be solved with a method
such as conjugate gradient.

3.3 Computational Optimization of Extrusions in DIW
3.3.1 Overview

Due to the unique mechanical properties of inks usually used in DIW processes, the
final deposition geometry may not always closely follow the desired one. Some factors
that can cause such issues are (but not limited to): Height from nozzle to substrate, ac-
celeration of nozzle, extrusion rate, nozzle diameter, ink viscosity / surface tension. For
example, when a nozzle changes its direction rapidly, the trailing extrusion of ink may
“whip” and set at a undesired location. Experimental approaches on controlling such phe-
nomena have been investigated recently in research articles such as [64, 65, 130, 59]. Our
computational framework allows the practitioner to avoid such time-consuming proce-
dures via a computational optimization method. Our goal will be to provide an algorithm
that will “learn” the optimal printing parameters. A particle swarm optimization (PSO)
algorithm was employed for the optimization procedure, while a single SPH simulation
is instatiated for the evaluation of each particle (figure 3.3). Although optimization of
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Figure 3.2: Ink being “dragged” by the nozzle . The ink may inhibit very-high viscosity
values and large surface tension e�ects, or non-Newtonian e�ects ([64, 65, 130, 59]). In
e�ect, this becomes an obstacle for obtaining a desired deposition, which can involve many
experimental iterations.

a print can include a virtually endless amount of parameters (variable extrusion rate,
variable nozzle motion speed, etc.), for our investigation we will only be considering op-
timizing the path for the nozzle to follow with all the other parameters fixed. We later
show that this type of optimization technique alone can lead to significant improvements
towards the quality of the deposition.

3.3.2 Waypoint generation
In order to optimize the nozzle path, we introduce “waypoints” that the nozzle must

pass. Then, an interpolation scheme is used to connect the “waypoints”, which is used as
the actual path for the nozzle. The waypoints are then randomly generated so that they
slightly deviate from the original path. The process follows:

1. The desired deposition path is converted into a parametric form:

pdesired (s) =
C

x (s)
y(s)

D

, 0 Æ s Æ 1 (3.41)

2. N random values are then generated to produce a set of random points (wi, 1 Æ
i Æ N), that lie on the desired toolpath:

[w1, w2, · · · , wN ] = [pdesired (s1) , pdesired (s2) , · · · , pdesired (sN)] (3.42)

3. For each point, the normal vector is calculated with

ni =
C

dy
ds |s=si

≠dx
ds |s=si

D

, 1 Æ i Æ N (3.43)
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Figure 3.3: Computational Simulation of Ink Deposition with SPH. Blue object represents
the nozzle, whilte the white particles are the SPH particles representing the ink.
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Figure 3.4: Structure of our optimization framework, including the PSO optimizer and
SPH based fitness value solver. The multiple evaluations corresponding to each evaluation
point can be done simultaneously by invoking multiple solvers.
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4. Each point is then o�setted by a random distance, where the distance is bounded
by ≠d Æ ”i Æ d:

[w̃1, w̃2, · · · , w̃N ] = [w1 + ”1n1, w2 + ”2n2, · · · , wN + ”NnN ] (3.44)

5. Using the o�setted points [w̃1, w̃2, · · · , w̃N ], we may defined a new interpolated
curve for the nozzle to follow:

pnozzle (s) =
C

x̃ (t)
ỹ (t)

D

, 0 Æ t Æ 1 (3.45)

The above procedure allows us to define a toolpath that is represented by a set of param-
eters:

⁄ =
C

s1 s2 · · · sN

”1 ”2 · · · ”N

DT

(3.46)

. Thus, for a randomized toolpath with N waypoints, there will be 2N parameters.
Although it would be possible to characterize the toolpath in a di�erent manner, we
concluded that our characterization method reduces the parameters to be optimized,
allowing practical, rapid optimizations.

After the generation of the waypoints, the PCHIP (Piecewise Cubic Hermite Interpo-
laying Polynomial) interapolation method was used to interpolate the variables between
the waypoints. This specific interpolation scheme was preferrable, since the method does
not overshoot within the interpolated region.

3.3.3 Particle Swarm Optimization (PSO)
We have employed the Particle Swarm Optimization (PSO, [68, 41, 109]) method to

achieve our desired goals. In the PSO algorithm, a “swarm” is deployed throughout
the parameter space, followed by evaluating the fitness of each “swarm member” (or
“particle”). Then, each swarm member is relocated according to the algorithm shown
in algorithm 3.4. The idea is that by adjusting the velocity of each swarm particle so
that the particle will move towards a point where the di�erence between its current
position and its personal best / global best tends to be minimized, the particle will
converge onto a optimal point. Since the method does not require any type of gradient
computation, implementation is straight forward. We also introduced randomized points
during each timestep (inspired by genetic algorithms), replacing the lowest-performing
swarm members. In our experience, PSO produced more stable results for our problem
than only using Generic Algorithms (GA). For our application, the parameters that define
the waypoints (as described in section 3.3.2) contructs the optimization space.
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Figure 3.5: Toolpath Generation Procedure (From Top Left to Bottom Right)
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Algorithm 3.4 PSO Optimization
for memberi in all Swarm Members do

Initialize member position: ⁄i = [⁄i
1, ⁄i

2, · · · , ⁄i
k]

Initialize member velocity: vi = [⁄̇i
1, ⁄̇i

2, · · · , ⁄̇i
k]

end for
while min(f(member1), · · · , f(memberN)) > TOL do

for memberi in all Swarm Members do
Update member’s best position: If (f(⁄̂i) > f(⁄i)), ⁄̂i Ω ⁄i

Update global best position: If (f(⁄gb) > f(⁄i)), ⁄gb Ω ⁄i

end for
for memberi in all Swarm Members do

vi Ω vi + C1 · rand · (⁄̂i ≠ ⁄i) + C2 · rand · (⁄gb ≠ ⁄i)
⁄i Ω ⁄i + vi

end for
for memberi in M poorest performing Swarm Members do

Initialize member position: ⁄i = [⁄i
1, ⁄i

2, · · · , ⁄i
k]

Initialize member velocity: vi = [⁄̇i
1, ⁄̇i

2, · · · , ⁄̇i
k]

end for
end while

3.4 Optimization Examples
The performance of the suggested computational optimization approach is shown by

applying the method to several paths, all which are the most frequently occurring patterns
in real DIW processes. The ink property was assumed to follow the constants listed in
table 3.2 for our optimization attempts. In order to evaluate the fitness of the extruded
topology, the following simple metric was used throughout our examples:

f (⁄) =
ÿ

aœParticle Set

A
dist (ra)

h

B3

(3.47)

where the function dist (ra) represents the minimum distance from the SPH particle
located at position ra projected onto the substrate plane to the desired, ideal deposition
path, and h is the smoothing length of the SPH discretization. The popular SPH Library
SPlisHSPlasH ([15]) was modified for our fluid model, and to evaluate/output a fitness
value for a given input file.

3 di�erent deposition paths that are frequently utilized in additive manufacturing was
considered. The parameters shown in Table 3.2 was assumed for all of the simulations.
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Physical Parameters Value
Fluid density (fl) 800 kg/m3

Fluid viscosity (µ) 0.1 Pa · s
Fluid surface tension (‡) 0.01 N/m

Nozzle Width (D) 0.7 mm

Table 3.2: Fluid Properties

0.000 0.002 0.004 0.006 0.008

-0.002

0.000

0.002

0.004

0.006

0.008

Figure 3.6: Naive Deposition (Dotted red: desired deposition path), Fitness=2, 021, 340.0

3.4.1 90 Degree Bend
3.4.1.1 Non-Optimized Extrusion Case

We first consider the case for the “naive” deposition, where the nozzle toolpath follows
the same path as the deposition path (figure 3.6). Near the origin, the extruder abruptly
changes its direction. We can observe that the extrusion material yet to be deposited
onto the substrate carries on to move in the original direction due to its momentum. This
creates an undesirable final deposition, where the maximum deviation was around 2.86
times the nozzle diameter. The fitness value of the naive case was 2, 021, 340.0.

3.4.1.2 Optimized Extrusion Case

4 randomized waypoints, along with a fixed waypoint (table 3.3) was used for the
optimization process. The evolution of the best fitness value for each iteration is shown in
figure 3.7. Notice the fluctuations in the fitness value, since the PSO algorithm does not
necessarily produce a monotonically-decreasing result. This is mainly due to the “inertia”
of each swarm member. For each iteration, 100 swarm members were deployed throughout
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Figure 3.7: Evolution of Fitness Value, 90 Degree Bend

Optimization Parameters Bounds (interval)
s1, s2, s3 (0.5, 0.9)
”1, ”2, ”3 (0, 0.0015) [m]

Fixed s4 = 0 N/A
”4 (0, 0.0005) [m]

Fixed Waypoint @ s = 0, ” = 0 N/A

Table 3.3: Bounds for Randomization (90 Degree Bend)

100 iterations (10,000 total simulations). The best performaing swarm member was found
during iteration 63 and 90, as shown in 3.8. Although the optimized toolpath was not
able to completely resolve the “intertial overshooting” near the bend, the deviation was
greatly reduced compared to the naive deposition case.

For this specific case, 4 randomized waypoints were generated along the original tool-
path, according to the characterization method described in 3.3.2. The bounds for the
randomization step are shown in table 3.3.

3.4.2 180 Degree Bend (Small Radius)
3.4.2.1 Non-Optimized Extrusion Case

For the 180 degree bend case, the tooltip undergoes even more rapid acceleration.
This causes more material to jet outwards from the desired path, as shown in figure 3.9.
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Figure 3.8: Naive Deposition (Dotted red: desired deposition path, Dotted blue: nozzle
path)
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Figure 3.9: Naive Deposition (Dotted red: desired deposition path), Fitness=631, 201.0

Optimization Parameters Bounds (interval)
s1 (0.1, 0.324)

Fixed ”1 = 0 N/A
s2, s3 (0.324, 0.771)
”2, ”3 (≠0.002, 0.002) [m]

s4 (0.771, 0.9)
Fixed ”4 = 0 N/A

Fixed Waypoint @ s = 0, ” = 0 N/A
Fixed Waypoint @ s = 1, ” = 0 N/A

Table 3.4: Randomization Parameters(Small Radius 180 Degree Bend)

For this case, the maximum deviation was around 2.48 times the nozzle diameter D, and
the fitness value was 631, 201.0.

3.4.2.2 Optimized Extrusion Case

4 randomized waypoints, along with 2 fixed waypoints located on each end of the
desired path (table 3.4) were used for the optimization process. The evolution of the best
fitness value for each iteration is shown in figure 3.10. For each iteration, 200 swarm
members were deployed throughout 100 iterations (20,000 total simulations). The best
performing swarm member was found during iteration 83, as shown in 3.11. Although
the deposition closely matches the desired one, one can observe a discontinuous section in
the actual deposition. This is mainly due to the fact that no penalization regarding such
e�ects were enforced in our algorithm. For example, using a di�erent fitness formulation
where the average distance between the SPH particles is penalized, will try to avoid any
such discontinuous depositions.
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Figure 3.10: Evolution of Fitness Value, 180 Degree Small Radius Bend

3.4.3 180 Degree Bend (Large Radius)
3.4.3.1 Non-Optimized Extrusion Case

The centrifugal forces acting on the stream of fluid forces the deposition to land outside
the desired toolpath, although the e�ect is not as magnified seen in the small radius 180
degree bend. The maximum deviation from the desired toolpath for this case was 1.28
times the nozzle diameter, with a fitness value of 870, 687.0.

3.4.3.2 Optimized Extrusion Case

5 randomized waypoints, along with 2 fixed waypoints located on each end of the
desired path (table 3.5) were used for the optimization process. The evolution of the best
fitness value for each iteration is shown in figure 3.13. For each iteration, 200 swarm
members were deployed throughout 100 iterations (20,000 total simulations). The best
performing swarm member was found during iteration 83, as shown in 3.14. We observe
that the actual deposition matches the desired one closely, although some improvements
regarding maintaining a constant radius can be further considered. This can be done
by increasing the number of randomized points, or introducing additional optimization
parameters as mentioned earlier in the paper.
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Figure 3.11: Optimized Deposition (Dotted red: desired deposition path, Dotted blue:
nozzle path)

Optimization Parameters Bounds (interval)
s1, s2, s3, s4, s5 (0.2, 0.8)
”1, ”2, ”3, ”4, ”5 (≠0.002, 0) [m]

Fixed Waypoint @ s = 0, ” = 0 N/A
Fixed Waypoint @ s = 1, ” = 0 N/A

Table 3.5: Bounds for Randomization (Large Radius 180 Degree Bend)
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Figure 3.14: Optimized Deposition (Dotted red: desired deposition path, Dotted blue:
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3.5 Conclusion
3.5.1 Discussion

We have proposed an extrusion optimization framework based on physical computa-
tional simulations that can account for the non-intuitive behavior of inks used in DIW.
Based on several test cases, we were able to obtain final extrusion morphology that are
much closer to the intended shape, compared to a “naive” extrusion path. This can be
observed by noticing the fitness value decreasing approximately 3 orders of magnitude.
Note that the optimal toolpath was characterized only with spatial waypoints for our
test cases. We believe our computation based optimization method is capable of address-
ing many di�culties that arise regarding parameter tuning during experimental set-ups
([48, 73, 125]).

3.5.2 Limitations
3.5.2.1 Ink Model

For shear-thinning non-Newtonian fluids, there exists a sharp transition of the e�ective
viscosity values between the yielded region and the unyielded region. The di�erence in
viscosity is at least more than 4~5 orders of magnitude higher in the unyielded region, and
requires an implicit viscosity step. Although previous work exist for simulating such fluids
with SPH ([108, 57, 127]), in our implementation experience, this is extremely di�cult to
e�ciently simulate with SPH, due to the large number of particles that are required to
accurately represent the transition. Thus, a Newtonian fluid model with large viscosity
and surface tension was employed instead. Although it is still possible to calibrate one’s
ink model to our specified fluid model, this may come to an inconvenience, since ink
models that are calibrated using non-Newtonian fluids seem to be relatively easier to find.
Thus, the usage of other numerical methods such as MPM (Material Point Method) or
FEM (Finite Element Method) seems reasonable, and is currently under investigation by
the authors.

3.5.2.2 Parameter Space

It is expected that even more optimized printing parameters may be found by intro-
ducing additional complexity / parameters to the characterization of the toolpath. For
example, some additional parameters that may be added onto the waypoints may include
extrusion rates and the tooltip speed, while employing an approach similar to what was
implemented in our example between the waypoints for such additional parameters. Tun-
ing the properties of the ink is also a practice regularly performed by DIW researchers
([64, 112, 101, 125]). This can also be accounted for by allowing the optimization al-
gorithm to perform a search on various fluid parameters such as viscosity, density and
shear-thinning properties.
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