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Fromsingle-cell RNA-sequencing (scRNA-seq) and spatial transcriptomics
(ST), one can extract high-dimensional gene expression patterns that can

be described by intercellular communication networks or decoupled gene
modules. These two descriptions of information flow are often assumed to
occurindependently. However, intercellular communication drives directed
flows of information that are mediated by intracellular gene modules, in
turn triggering outflows of other signals. Methodologies to describe such
intercellular flows are lacking. We present FlowSig, amethod that infers
communication-driven intercellular flows from scRNA-seq or ST data using
graphical causal modeling and conditional independence. We benchmark
FlowSig using newly generated experimental cortical organoid data and
synthetic data generated from mathematical modeling. We demonstrate
FlowSig’s utility by applying it to various studies, showing that FlowSig can
capture stimulation-induced changes to paracrine signaling in pancreatic
islets, demonstrate shiftsin intercellular flows due to increasing COVID-19
severity and reconstruct morphogen-driven activator-inhibitor patternsin
mouse embryogenesis.

Cells communicate through biochemical signaling to organize bio-
logical activities. Inflows of intercellular signals are processed through
intracellular gene regulatory mechanismsinvolving transcription fac-
tors (TFs) and their downstream targets, which result in outflows of
other signals. These spatiotemporal flows of ‘cause and effect’ drive
every biological process. One famous example of an ‘intercellular flow’
is Wolpert’s French Flag Problem’, wherein a spatially propagating
morphogendrives coordinated expression of multiple TFs, generating
the eponymous ‘flag’. Biological homeostasis is maintained by coor-
dination between intercellular flows, which is perturbed in disease.
Disentangling these intercellular flows is critical to understanding
health and disease.

scRNA-seq and ST generate simultaneous measurements of
10,000-20,000 genes, yielding high-dimensional snapshots of gene
expression in biological tissue. From these data, patterns can be
extracted thatvary along axes such as trajectory, disease status, space

and time. There are two primary categories of methods to extract such
patterns. First, one can construct gene expression modules (GEMs),
defined by gene sets such thatintra-set expressionis more correlated
thanis gene expression between sets>'°. Second, one can infer ligand-
receptor interaction networks that facilitate intercellular communica-
tion directly from non-spatial scRNA-seq" " or spatial data™™. The
interplay betweenboth ligand-receptorinteractions and GEMs drives
intercellular flows across tissues, but there are few methods that can
infer such flows. We aim to address this gap.

In studies by Sachs et al." and Chen et al.”, which are similar to
this work, graphical causal modeling was used to learn dependencies
directly fromsingle-cell data. Sachs et al. inferred a signaling network
from multi-perturbation flow cytometry data of phosphoproteins
measuredinCD8" T cells. Chen et al.inferred person-specific networks
between GEMs generated from bulk RNA-seq and scRNA-seq data
sampled from head and neck squamous cell carcinoma tumors. There
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Fig.1|Description of the FlowSig model. a, We modelintercellular flows to be
directed from inflowing intercellular signals to GEMs that capture intracellular
regulatory responses and that drive outflowing intercellular signals. FlowSig
outputs anintercellular flow network describing directed edges from inflow
signal variables (receptor gene expression weighted by the average expression
of downstream TF gene set, R, x TF,), to GEMs (cell membership to latent GEM
factors, GEM,) to outflow variables (signal ligand gene expression, L;). b, FlowSig
uses additional perturbation data and pathway knowledge of immediate

downstream TF targets to learn accurate intercellular flows resulting from
cell-cell communication. ¢, From spatial transcriptomics data, we can infer the
amount of inflowing signals received at each spatial location more accurately,
enabling us to infer intercellular flows without additional perturbation data.
FlowSig outputs anintercellular flow network describing directed edges from
inflow signal variables (inferred amount of received signal ligand from COMMOT,
rec. L;) to spatially resolved GEMs (membership to GEMs, GEM,), to outflow
variable (ligand gene expression, L).

is also the node-centric expression model by Fischer et al.'® and the
spatial variance componentanalysis framework by Arnol et al.””, which
infer how gene expression depends on the local environment. Other
methods construct ‘multicellular representations’ of gene expression
programs coordinated by several cell states**° > (see Supplementary
Table 1for acomparison of methods).

Here, we present FlowSig, a method that identifies ligand-
receptor interactions whose inflows are mediated by intracellular pro-
cessesanddrivesubsequent outflow of otherintercellular signals. Using

graphical modeling and conditional independence testing, FlowSig
learns a completed partial directed acyclic graph (CPDAG) describ-
ingintercellular flows between three types of constructed variables:
inflowing signals, intracellular gene modules and outflowing signals.
To reduce the false discovery rate, we orient the CPDAG according
to the biological assumption that inflowing intercellular signals are
processed by intracellular models before being converted to other
outflowing signals. FlowSig can be applied to either non-spatial
scRNA-seq or ST data. To analyze non-spatial scRNA-seq data,
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inwhichligand-receptor interactions are harder to infer accurately,
we incorporate information gained from ‘control versus perturbed’
studies, in which the system has been altered by, for example, exter-
nal stimulation, disease or time. FlowSig uses differential expression
analysis and conditional invariance testing to infer the set of inflow and
outflow variables that most significantly shiftin distribution and thus
most likely drive intercellular flows. In doing so, we reduce the set of
possible graphs that could be generated by the dataand learnamore
accurate CPDAG. We validate FlowSig using (1) synthetic data gener-
ated from simulations of mathematical models of intercellular flows
and (2) novel experimental data generated from cortical organoids.
Webenchmark FlowSig against several methods and show the unique
insights gained from the platform. FlowSigis applied to scRNA-seq of
stimulated human pancreaticislets, identifying specific changes due
to stimulation. We analyze the case of multiple perturbations due to
different COVID-19 severities resulting in distinct intercellular flow
mechanisms. Applying FlowSig to ST data of mouse embryogenesis,
we uncover regulatory TFs that enable a ‘flow module’ resembling
Turing’s activator-inhibitor system.

Results

FlowSig uses gene expression measurements and output from cell-cell
communication inference to learn intercellular flows that describe
directed dependencies. These dependencies are oriented from
inflowing intercellular signals to intracellular GEMs, which could be
individual TFs or cellwise enrichment for correlated gene sets, and
from GEMs to outflowing intercellular signals (Fig. 1a). We model the
intercellular flows using graphical causal models, where nodes rep-
resent the flow variables—inflowing signals, GEMs and outflowing
signals—and learn a directed graph using conditional independence
testing and the unknown target interventional greedy sparsest permu-
tation algorithm (UT-IGSP)*. Considering that one can use statistical
conditionalindependence relations toinfer, at best, aset of equivalent
directed acyclic graphs (DAGs) with the same undirected skeleton
graphand directed v-structures (connected node triplets (x, y, z) with
thedirected edges x> y< z)*, we use UT-IGSP to learn aninitial CPDAG,
which can contain both directed arcs and undirected edges. We then
construct the intercellular flow network by reorienting undirected
edges and removing biologically unrealistic arcs so that edges are
directed from inflowing signals to GEMs, between GEMs and from
GEMs to outflowing signals.

Although the core steps in using FlowSig to analyze non-spatial
scRNA-seq and ST data are the same, there are several differences. For
non-spatial scRNA-seq data, we must overcome a fundamental issue:
itisnot possible to directly measure the intercellular signals that each
cellreceived. Therefore, weimpose two constraints (Fig. 1b). First, we
consider only studies comparing a ‘control’ condition against one or
more perturbed conditions, for example, healthy versus diseased. We
use the additional information gained from perturbation data through
conditionalinvariance testing to narrow down the set of possible flow
graphs, reducing the occurrence of false positive edge discovery.
Second, for each ligand-receptor interaction inferred from cell-cell
communicationinference, we extract downstream TF targets from the
OmniPath database” to measure signal inflow. Receptor gene expres-
sion quantifies the potential for acelltoreceive anintercellular signal,
and downstream TF expression quantifies the extent to which the cell
actually received the signal; we define signal inflow as the product of
receptor gene expression and the average expression of downstream
TF targets.

ST technologies are currently in their infancy, so there are rela-
tively fewer control versus perturbed ST studies than scRNA-seq stud-
ies. However, we can use communication methods such as COMMOT*
to spatially constrain and measure the amount of inflowing signal more
accurately (Fig. 1c). Therefore, FlowSig uses the greedy sparsest algo-
rithm (GSP)”, which does not use perturbation data, to analyze ST data.

Synthetic validation of FlowSig

We first benchmarked FlowSig using synthetic data generated from
mathematical models of intercellular flows (see ‘Generating synthetic
datafrom model simulations’inthe Supplementary Notes). For simplic-
ity, wemodeled GEMs asindividual TFs. We considered three scenarios.
In the first scenario, we examined unidirectional intercellular flow
induced by SHH signaling that generates outflow of BMP4 through
FOXF1(ref. 28), with flows learned over a set of five nodes: SHH ligand,
unbound PTCH1 receptor, SHH inflow due to SHH-PTCH1 binding,
FOXF1TF and BMP4 ligand (Fig. 2a). The second scenario involved
SHH-induced tissue patterning, characterized by the expression of
NKX2.2,0LIG2, PAX6 and IRX3 (ref.29). Flows were inferred over aset of
sevennodes: SHH ligand, unbound PTCH1 receptor, SHH inflow (SHH-
PTCHI1 complex), NKX2.2 TF, OLIG2 TF, PAX6 TF and IRX3 TF (Fig. 2b).
Inthe third scenario, we explored competition between SHH and BMP4
in driving dorsoventral patterning®. Flows were learned over a set of
ninenodes, including SHH ligand, unbound PTCH1 receptor, inflowing
SHH (SHH-PTCH1 complex), BMP4 ligand, unbound BMP1A and BMPR2
receptor, inflowing BMP4 (BMP complex) and three GEM variables,
dorsal, intermediate and ventral (Fig. 2c). We wanted to validate two
core FlowSig assumptions. The first is that accurate measurement of
inflowing signalis needed to infer intercellular flows. For all models, we
compared the use of bound ligand-receptor complex as signal inflow
to total receptor expression (free receptor plus bound complex), the
latter of which is directly measured from scRNA-seq and ST data. The
second is that including perturbation data increases the accuracy of
intercellular flow inference. We quantified the accuracy of FlowSig by
measuring the true positiverate (TPR) and true negative rate (TNR) for
each scenario. For all scenarios (Fig. 2d-f), we found that the average
TPR does not change if we use bound receptor expression to measure
signal inflow, or if perturbation data are introduced. However, meas-
uring inflow using bound receptor increases the average TNR. This is
especially true for the models describing SHH-driven patterning and
competition between SHH and BMP4, in which flows are more com-
plexand multidirectional (Fig. 2e,f). Incorporating perturbation data
through conditional invariance testing reduces the variation in TNR
values, bothinterms of the interquartile range and outliers, resulting
in‘tighter’ estimates of intercellular flows. These results suggest that
FlowSig reduces the number of false positive discoveriesinferred from
baseline GSP and UT-IGSP algorithms.

Benchmarking FlowSig against multicellular representation
methods

To provide additional insight into FlowSig’s capabilities, we bench-
marked it against methods that construct multicellular programrepre-
sentations from scRNA-seqand ST data, including DIALOGUE?, scITD?,
MOFAcellular”, MOFAtalk*, MultiNicheNet” and Tensor-cell2cell”. We
also compared FlowSig with direct CellChat output (Supplementary
Table1). Allmethods were benchmarked using an scRNA-seq dataset of
stimulated peripheral blood mononuclear cells sampled from people
with lupus, which was generated by Kang et al.*'. We summarize key
points here (see ‘Comparison to other methods’ inthe Supplementary
Results for a full discussion). We also evaluated FlowSig’s robustness
to different inputs constructed by alternative cell-cell communica-
tion and GEM construction methods (see ‘Robustness of FlowSig to
different input methodologies’ in the Supplementary Results) and
found that different cell-cell communication methods can resultin
different sets of intercellular flows, owing to discrepanciesininferred
ligand-receptor interactions; however, FlowSig willinfer intercellular
flows through GEMs constructed by different methods that are enriched
for the same regulatory TFs.

Analyzing CellChat output directly suggested there were 6,886
potential inflow-to-outflow relationships. Of these, 3,167 were shared
across both conditions, 1,511 were unique to the control conditionand
2,208 were unique to the stimulated condition. From CellChat results
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Fig.2|Synthetic validation of FlowSig. a-c, Causal diagrams representing
activation (green arrow) or inhibition (red arrow) of unidirectional activation
frominflowing SHH to outflowing BMP4 (a), SHH-inflow-driven patterning of
NKX2.2, OLIG2, PAX6 and IRX3 (b) and competition between SHH inflow and
BMP4 inflow to drive dorsoventral (dorsal (D), intermediate (I) and ventral (V))
patterning (c). d-f, The TPR and TNR of FlowSig output for a-c, respectively.
We considered the effect of additional perturbation data and the effect of
applying our biological flow model to constrain edges. Ind-f, plots were
generated over 500 simulations. Light blue boxes indicate the cases when total
receptor expression (free plus bound receptor) was used as the inflow variable,
while dark blue boxes indicate the cases when bound receptor expression was
used as the inflow variable. Box plot whisker bounds are: d, minimum (TPR:
controlonly 0.5, 0.5; control + perturbation: 0.5, 0.5; TNR: control only 0.56,
0.64; control + perturbation: 0.62, 0.72), maximum (TPR: control only 0.5, 0.5;
control + perturbation: 0.5,1.0; TNR: control only 0.79, 0.85; control +
perturbation: 0.79, 0.85). Horizontal lines are defined by Q1 (TPR: control

only 0.5, 0.5; control + perturbation: 0.5, 0.5; TNR: control only 0.56, 0.72;
control + perturbation: 0.69, 0.77), median (TPR: control only 0.5, 0.5; control +
perturbation: 0.5, 0.5; TNR: control only 0.69, 0.77; control + perturbation: 0.72,
0.77) and Q3 (TPR: control only 0.5, 0.5; control + perturbation: 0.5, 0.5; TNR:

controlonly 0.77,0.79; control + perturbation: 0.77,0.79). e, Minimum (TPR:
control only 0.18, 0.18; control + perturbation: 0.36, 0.45; TNR: control only 0.56,
0.60; control + perturbation: 0.56, 0.76), maximum (TPR: control only 0.73, 0.73;
control + perturbation: 0.73, 0.73; TNR: control only 0.80, 0.92; control +
perturbation: 0.76, 0.88). Horizontal lines are defined by Q1 (TPR: control only
0.55,0.55; control + perturbation: 0.55, 0.55; TNR: control only 0.64, 0.76;

control + perturbation: 0.76, 0.84), median (TPR: control only 0.55, 0.55; control +
perturbation: 0.55, 0.55; TNR: control only 0.72, 0.84; control + perturbation:
0.76,0.88) and Q3 (TPR: control only 0.55, 0.55; control + perturbation: 0.55, 0.55;
TNR: control only 0.76, 0.88; control + perturbation: 0.76, 0.88). f, Minimum
(TPR: control only 0.3, 0.3; control + perturbation: 0.4, 0.4; TNR: control only
0.56, 0.64; control + perturbation: 0.62, 0.72), maximum (TPR: control only 0.8,
0.8; control + perturbation: 0.8, 0.8; TNR: control only 0.79, 0.85; control +
perturbation: 0.79, 0.85). Horizontal lines are defined by Q1 (TPR: control

only 0.4, 0.4; control + perturbation: 0.4, 0.4; TNR: control only 0.67, 0.72;
control +perturbation: 0.69, 0.77), median (TPR: control only 0.5, 0.5; control +
perturbation: 0.5,0.5; TNR: control only 0.69, 0.77; control + perturbation: 0.72,
0.77) and Q3 (TPR: control only 0.6, 0.6; control + perturbation: 0.6, 0.6; TNR:
control only 0.77,0.79; control + perturbation: 0.77,0.79). Diamonds indicate
outliers (less than Q1 -1.5xIQR or greater than Q3 +1.5x IQR).

alone, we cannot infer which of these relations are truly intercellular
flows, that is, whether the second interaction depends on the first,
and we cannot infer the intracellular mediators of these intercellular
flows. By contrast, FlowSig inferred only 44 intercellular flows across
6 signal inflow variables, 20 GEMs and 12 signal outflow variables (see
‘Comparison to other methods’ in the Supplementary Results and
Supplementary Fig.1).

DIALOGUE identified four multicellular programs (MCPs) from
the Kang et al. dataset. MCP1 was enriched across CD14* monocytes,
CD8'Tcellsand B cells, suggesting that there was coordination through
intercellular flows between these cell types (Supplementary Fig. 2a).
In MCP4, CD8" T and CD14" cells exhibited significant differential
expression between conditions (Supplementary Fig. 2b). DIALOGUE
identified upregulation of the signal ligand CCL4 (in CD8" T cells),
which FlowSig inferred to drive signal outflow. scITD decomposed the
datasetintotwo latent factors (Supplementary Fig. 3a): Factor1was sig-
nificantly enriched for FlowSig signal outflow ligands CXCL10, CXCL11
and TNFSF10 (Supplementary Fig. 3b) and intercellular-flow-driving
interactions (Supplementary Fig. 3c). MOFAcellular decomposed the
datasetinto five factors (Supplementary Fig. 4a): Factor 1was enriched
for signal outflow variables CXCL11 and TNFSF10 (Supplementary
Fig.4b). Applying MOFATalk to the ligand-receptor interaction scores
inferred from LIANA*? yielded four factors (Supplementary Fig. 4c):
Factor 1 was enriched for the interactions CCL2-CCR1 and CCL8-
CCRI (between CD14" cells, dendritic cells (DCs) and FGR3" cells) and
signal outflow of TNFSF13B (Supplementary Fig. 4d). Tensor-cell2cell

extracted six factors fromligand-receptor interaction scores inferred
from LIANA (Supplementary Fig. 5a): CD14" cells, DCs and FGR3" cells
wereidentified as key signal receiver groups (Supplementary Fig. 5b).
Clustering ligand-receptor interactions identified that CCL2-CCR1,
CCL3-CCR1, CCL4-CCR1 and CCL8-CCR1 were upregulated after
stimulation (Supplementary Fig. 5¢). Finally, MultiNicheNet identi-
fied CCL2-CCR1, CCL3-CCR1, CCL4-CCR1 and CCL8-CCR1 as dif-
ferentially expressed between conditions (Supplementary Fig. 6a).
MultiNicheNet also identified outflow of CXCL10, CXCL11 and FASLG
and inflow into CCR1 (Supplementary Fig. 6b).

Validating FlowSig using a cortical organoid system

We tested FlowSig against new scRNA-seq datagenerated froman orga-
noid model of cortical development, for which fibroblast growth factor
(FGF) and bone morphogenetic protein (BMP) signaling are known
to drive patterning®. We generated cortical organoids from human
embryonic stem cells and collected the organoids at day 18 (D18) and
D35in culture for scRNA-seq analysis. Inthe organoid system, the cell
fate for corticalidentity is determined by D18, and signal responses to
FGF and BMP, as measured by graded TF expression, are established
by D35. The continual exposure of FGF and BMP signaling drives dras-
tic changes in gene expression, and thus between D18 and D35 there
are transcriptional changes and changes in cell type composition as
the organoids mature. Hence, when applying FlowSig to this dataset,
rather than assume the D18 and D35 populations are sampled from
the same underlying ‘steady state’ distributions of gene transcription,
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Fig.3 | Experimental validation of FlowSig using a cortical organoid model.
a, Differentially inflowing signals between D18 and D35 timepoints.

b, Differentially outflowing signals between D18 and D35 timepoints.

¢, Constructed gene expression modules capture time-specific and time-shared
gene expression patterns. Some modules have been highlighted by the timepoint
for which they are more enriched. d, Inferred intercellular flows due to FGF
signaling. We speculated that EOMES is a key regulatory TF downstream of FGFR1
inflow. e, Inferred intercellular flows due to BMP signaling. We speculated that
NR2F1(CoupTF1) and PAX6 are downstream TF targets of BMP inflow.

f, Measurement of the FC of EOMES gene expression using RT-qPCR following
bath application of FGF, with four biological replicates and two technical
replicates. Unpaired two-tailed ¢-tests were performed (¢ = 3.135,d.f.=14,

P=0.0073). g, Measurement of the FC of PAX6 and NR2F1 (CoupTF1) gene
expression using RT-qPCR following bath application of BMP, with two biological
replicates and two technical replicates each. One-way ANOVA using Tukey’s
multiple-comparisons test was used to calculate adjusted P values. For PAX6,
control versus 10 ng ml™: mean diff. 0.50 with 95% confidence interval (CI)
(0.40,0.61), adjusted P<1x107*. For PAX6, control versus 50 ng ml™: mean diff.
0.57 with95% C1(0.47,0.68), adjusted P<1x 10, For NR2F1, control versus

10 ng mI™: mean diff. —-0.91 with 95% CI (-1.88, 0.06), adjusted P=0.066. For
NR2F1 control versus 50 ng ml™: mean diff. -1.43 with 95% CI (-2.40,-0.45),
adjusted P=0.0068.Inf,*P< 0.05,*P < 0.01, **P < 0.001, ***P < 0.0001.In

g, *adjusted P<0.05, **adjusted P< 0.01, ***adjusted P< 0.001, ***adjusted
P<0.0001.Errorbars represent s.d.

wetreatthe D35 dataasa‘perturbed’ formofthe ‘control’ D18 data due
to exposure to FGF and BMP signaling.

We identified differentially flowing signals from the 77 unique
ligand-receptor interactions identified by CellChat** analysis. FlowSig
identified 26 differentially inflowing signals (Fig. 3a) and 16 differen-
tially outflowing signals (Fig. 3b), including FGF and BMP (see ‘Identi-
fying differentially flowing signal variables’ in the Methods). We used
pYLIGER® to construct 20 GEMs from 2,793 highly variable genes
(Fig. 3c and Supplementary Fig. 8a-c). Cells from the D18 timepoint
were more enriched for GEM-2 through GEM-4, GEM-7, GEM-10, GEM-18
and GEM-19, whereas cells from the D35 timepoint were enriched for
GEM-8, GEM-11, GEM-12, GEM-16 and GEM-20. Altogether, FlowSig con-
structed 62 variables for intercellular flow inference. After inference, we
aggregated signal inflow variables by their parent signaling pathway.
For example, we classified both FGFR1 and FGFR3 inflows under the
FGF signaling pathway, whichwere activated by received FGF2 ligand.

Todetermine the dominantdrivers of intercellular flow, we ranked
signalinflow variables by their total edge frequency. We found that FGF,

midkine (MK), pleiotrophin (PTN) and neuregulin (NRG) were drivers
of intercellular flow. FGF inflow, in particular, drove signal outflow,
including BMP4, insulin-like growth factor-1I (IGF-II), nerve growth
factor (NGF), NRG1 and NRG3, through numerous GEMs (Fig. 3d).
By examining the top GEM-specific TFs mediated by FGF-induced flow
(see‘Interpreting gene expression modules’inthe Methods), we found
that EOMES could be a potential regulatory candidate of FGF inflow.
We observed that BMP inflow was regulated through many fewer GEMs
(Fig. 3e) and could be mediated by PAX6 or NR2F1.

To verify FlowSig analysis, we analyzed a perturbed organoid
culture in which we activated the FGF and BMP signaling pathways by
adding FGF8b and BMP4, respectively, between D15 and D21. We col-
lected organoid samples at D35 and subjected them to quantitative
reverse transcription PCR (RT-qPCR) for gene expression analysis
(Fig. 3f,g). Compared with the non-exposed control organoids, we
observed that activating FGF signaling significantly downregulated
the expression of EOMES (Fig. 3f), whereas elevating BMP signaling
simultaneously downregulated PAX6 and upregulated NR2F1 (Fig. 3g).
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These experimental datademonstrate that FlowSig accurately captures
the dominantdrivers of intercellular flows from real biological datasets.

FlowSig identifies changesinintercellular flows due to
stimulation

To demonstrate how FlowSig recovers intercellular flows driven by
anexternal perturbation, we analyzed scRNA-seq data of human pan-
creaticislets stimulated by interferon-y (IFN-y)**. We constructed ten
GEMs using pyLIGER that aligned with the five cell-type clusters, alpha,
betalto 3, and delta, that we identified independently (Fig. 4a and
Supplementary Fig. 9a-c). We used these cell type annotations as input
for preliminary CellChatanalysis; thatis, for each condition, CellChat
infers significant pairwise ligand-receptor interactions between the
cell groups defined by these cell-type labels.

IFN-y stimulation increased inflow of the FGF signaling path-
way through FGFR1 (through ligands FGF7 and FGF9, specifi-
cally), interleukin-6 (IL-6) through IL-6R and IL-6ST, MIF through
CD74 and CD44, MDK through NCL and SST through SSTR2 (Fig. 4b).
IFN-y stimulation increased outflow of GCG, INHBA and NAMPT, and
decreased outflow of ANGPTL2, SPP1, transforming growth factor 31
(TGFp1), tumor necrosis superfactor family member 12 (TNFSF12) and
UCNS3 (Fig. 4c). FlowSig identified that FGF, IL-6, MDK and SST were
the dominant drivers of intercellular flows that drove the outflow
of GCG, INHBA, NAMPT, SPP1, TGFB1, TNFSF12 and UCN3 through
GEM-1, GEM-3, GEM-5 and GEM-6 (Fig. 4d). We observed that GEM-1is
enriched in both the alpha and beta 1 clusters, GEM-3 and GEM-5 are
enriched in the alpha cluster, GEM-4 is enriched in the beta 2 cluster
and GEM-6 is enriched in the beta 1 cluster (Fig. 4a), suggesting that
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intercellular flows are driven by cell type. These results agree with
previous work establishing that, in the pancreas, alpha cells are the
main secretors of GCG and beta cells are the main secretors of UCN3,
and that SST regulates both GCG and UCNS3 (ref. 37). We observed that
the same TFs contributed to all of these GEMs—ID1, NR1D1, TFF3 and
ZNF419—-suggesting that these TFs mediate intercellular flows across
both conditions.

To further explore the effects of IFN-y stimulation, we split the
global intercellular flow network into two networks. First, we con-
structed a network corresponding to outflow signals upregulated by
IFN-y stimulation by taking outflowing signals that were differentially
expressed for the IFN-y condition (adjusted P < 0.05 and log,(fold
change (FC)) > 0.5), the GEMs that connected to these outflow vari-
ables and the signal inflows nodes connected to these GEMs. From
this node set, we then extracted the subgraph from the global inter-
cellular flow network (Fig. 4e). The second network corresponded to
the intercellular flow network of outflowing signals downregulated
by IFN-y (adjusted P < 0.05 and log,(FC) < -0.5) and was constructed
in a similar manner (Fig. 4f). Both networks contain the same signal
inflow nodes and share near-identical GEMs. However, GEM-3, which
drives GCG and NAMPT outflow and is itself regulated by SSTR2 (SST)
signaling, is present only in the ‘upregulated’ network, suggesting
that it has a specialized role activated by IFN-y stimulation. GEM-3
is primarily enriched within alpha cells, suggesting that stimulation
drives outflow of GCG and NAMPT from alpha cells. All other inflowing
signals and GEMs are shared across both conditions, suggestive of dual
regulatoryroles. For example, IL-6 signaling drives both upregulation
of INHBA and NAMPT and downregulation of SPP1, TGFB1 and UCN3
(through GEM-4).

FlowSig uses multiple perturbations to find disease-driven
changes

To demonstrate that FlowSig can handle multiple perturbations, we
analyzed scRNA-seq of human bronchoalveolar lavage fluid (BALF)
cells sampled from healthy controls and from people with either
moderate or severe COVID-19 (ref. 38). We used CellChat and the
cell-type annotations from the original study to infer significant
ligand-receptorinteractions, and found 46, 55 and 54 active signaling
pathways for healthy controls and the moderate and severe COVID-19
groups, respectively.

We constructed 20 GEMs using pyLIGER (Supplementary Fig.10a
b) that captured differences across both condition (Fig. 5a) and cell
type (Fig. 5b). FlowSig identified differentially inflowing and outflow-
ing signals specific to each COVID-19 condition with respect to healthy
controls (Fig. 5cand Supplementary Fig.10c,d). We note the differential
expression of many inflammatory CC chemokines (CCLs) in severe
COVID-19, including CCL2, CCL3, CCL8, CCL3L1and CCL7, and CXC
chemokines such as CXCL2 and CXCLS8 (Supplementary Fig. 10d). In
moderate COVID-19, we observed differential outflow of fewer inflam-
matory cytokines, including CCL5and CCL23.

To analyze the intercellular flows driving these differential out-
flows, for each set of differentially outflowing signals, we extracted
the upstream inflowing signals for which there was a directed path
to at least one of the outflowing signals and the corresponding GEMs
from the inferred FlowSig network (Fig. 5d-f). Despite the number of
differentially outflowing signals increasing with COVID-19 severity,
the number of inferred signal inflows decreased from 37 to 32 (loss of
AXL, CD4, F2RL1, ITGAX and ITGB2, TNFRSF12A and TNFRSF14; gain
of CAP1) to 25 (loss of CD27, CXCR3, FPR1, IL-6R and IL-6ST, LTBR, NCL,
NRP2 and PLXNA2, SDC1, TNFRSF13B, TNFRSF17 and TNFRSF25; gain
of AXL, CD4, F2RL1and TNFRSF14). GEMs showed a similar trend: the
number of regulatory GEMs decreased from 16 to 13 between healthy
and moderate COVID-19 (loss of GEM-4, GEM-10, GEM-12 and GEM-14;
gain of GEM-7). The results from Figure 5a,b suggest that the shift from
healthy to moderate COVID-19 is associated with a downregulation

in intercellular flows through epithelial cells (GEM-4), plasma and
T cells (GEM-10) and macrophages and neutrophils (GEM-12), but an
upregulation of intercellular flows through mast cells (GEM-7). From
moderate to severe COVID-19, there was a decrease from 13 to 8 (loss
of GEM-1, GEM-2, GEM-5, GEM-11, GEM-13, GEM-18 and GEM-19; gain of
GEM-12 and GEM-14).

We also calculated theintersections between the signal inflow sets
(Fig. 5g) and GEM sets (Fig. 5h) driving signal outflows. We observed
that 20 out of 37 signal inflows are shared across all three conditions.
There were no signal inflows unique to either moderate or severe
COVID-19 alone, whereas inflow through TNFRSF12A (due to TNFSF12)
and ITGAX and ITGB2 (due to C3) drive outflows in only healthy con-
trols. Only inflow through CAP (from RETNI) is shared between mod-
erate and severe COVID-19 but is absent in healthy controls. There
were more signal inflows shared between the healthy and moderate
COVID-19 groups thanbetween the healthy and severe COVID-19 groups
or between the moderate and severe COVID-19 groups. We observed
a similar trend amongst inferred regulatory GEMs. The most shared
GEMs were between only the healthy and moderate COVID-19 groups
(7outof17) and acrossall three conditions (5 out 0of 17). GEM-4 and GEM-
10, which are associated with epithelial cells and T cells, respectively,
mediated signal outflows in only healthy individuals. Only GEM-7,
whichisassociated with mast cells, was shared between the moderate
and severe COVID-19 groups but not healthy controls. No GEMs that
regulate the differential outflows in severe COVID-19 were unique to
the severe COVID-19 group. These results demonstrate how FlowSig
canuse multiple perturbations toidentify trendsinintercellular flows.
Here, FlowSig identified that increasing severity of COVID-19 is asso-
ciated with (1) a gradual loss of regulatory intercellular inflows and
(2) anincrease of inflammatory chemokine outflow that is driven by
macrophages and neutrophils.

FlowSigidentifies regulators of spatial intercellular flow

We applied FlowSig to spatial Stereo-seq data of mouse embryogen-
esis sampled at stage E9.5 of embryogenesis®. We used non-negative
spatial factorization® to construct 20 spatially resolved GEMs from
712 spatially variable genes (Fig. 6a and Supplementary Fig. 11a). We
identified Shh outflow to be highly spatially variable (Moran’s/=0.37;
adjusted P=0.014; Supplementary Fig. 11b), and inferred Shh inflow
acrossthe tissue (Supplementary Fig.11c), inline with Shh’simportance
in development*’. FlowSig identified several upstream drivers of Shh
outflow, including Bmp4, Cxcl12, Fgfi5, Mdk, Ptn and Wnt5a, which regu-
late Shh outflow through GEM-2, GEM-5, GEM-11 and GEM-14 (Fig. 6b)
and inferred that received Shh inflow (denoted for brevity as r-Shh)
drives outflow of several signal ligands through GEM-2, GEM-5, GEM-9,
GEM-11, GEM-12, GEM-14, GEM-15 and GEM-17 (Fig. 6¢).

We used these spatially resolved measurements to infer both
specific upstream regulators of Shh outflow and downstream tar-
gets of r-Shh inflow. For each GEM, we extracted the top 10 TFs by
module membership (see ‘Interpreting gene expression modules’ in
the Methods). We identified potential upstream TFs of Shh outflow
using random forest models*, where we ranked TFs by feature (Gini)
importancerelative to all potential upstream TFs of Shh (see ‘Inferring
upstream TF regulators of spatial signals’in the Methods; Fig. 6d). We
identified Foxa2, Foxp2, Myc, Zc3h7a and Foxal as the top five upstream
regulatory TFs of Shh outflow. Of these, Foxal and Foxa2 have been
established to regulate Shh*?, as has Foxp2 (ref. 43). Although Myc has
been established to be regulated downstream of Shh signaling***, its
role as an upstream regulator is less clear.

Toidentify downstream targets of r-Shh inflow, we used pyGAM*®
(cubic splines, agamma error distribution, and log link) to fit expres-
sion of the top 10 TFs of each inferred downstream GEM as a function
of r-Shh inflow. We ranked TFs by the Spearman correlation between
predicted TF expression and r-Shhitself (Fig. 6e). The downstream TFs
that correlated least with r-Shh included known downstream targets
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Barhl1 (ref. 47) and Nkx2-1 (ref. 48), as well as Meox1, Tcf21 and Foxp2,

whereasthe TFs that were most correlated included known targets like
Foxel (ref. 49) and Nkx2-2 (ref. 50), as well as Pou3f1, TIx2 and Nkx2-4.
We observe that Foxa2is implicated both upstream and downstream
of Shh outflow and inflow, respectively, suggesting that Foxa2 could

drive self-production of Shh.

We observed potential bidirectional flows between Shh and

Bmp4, Cxcl12, Igf2, Mdk and Wnt5a. To validate these flows further,
we performed the following analysis. For each ligand, we extracted
the top GEM-specific TFs that were both upstream of the ligand and
downstream of r-Shh. We used random forest modeling to calculate

feature importance for each TF to ligand outflow. Only Wnt5a was
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significantly regulated by TFs that were also downstream targets of
r-Shhinflow through GEM-5 (Fig. 6f). Furthermore, outflowing WntSa
and inflowing r-Wnt5a were spatially colocalized with inflowing r-Shh
and outflowing Shh (Supplementary Fig. 11d,e). Foxa2, Nkx6-1 and
Sox21 were the top upstream regulators of Wnt5a through GEM-5, in
which Foxa2is known to regulate Wnt5a®. To infer whether inflowing
r-WntSa regulated Shh outflow, we used pyGAM to fit the top TFs of
GEM-11 as functions of r-Wnt5a inflow and ranked them by Spearman
correlation of the predicted values with r-Wnt5a (Fig. 6g). We observed
that Myc, one of the top upstream regulators of Shh outflow, negatively
correlated with r-WntSainflow.

These observations suggested the following bidirectional flow
between Shh and Wnt5a (Fig. 6h). First, outflow and diffusion of Shh
drives inflow of r-Shh, self-amplifying Shh outflow through Foxa2.
Inflow of r-Shh also drives Wnt5a outflow through Foxa2, Nkx6-1 and/
or Sox21. Inflow of r-Wnt5a through spatial diffusion downregulates
Shhoutflow through Myc. Thismodule resembles an activator-inhibi-
tor system that can generate potential Turing patterns®?, with three
key features. First, one or both signals can propagate—here, both Shh
and WntSa ligands diffuse. Second, one of the signals—Shh—upregu-
lates both itself through Foxa2 and the other signal, WntSa through
Foxal, Nkx6-1 and Sox21. Third, the other signal, Wnt5a, inhibits the
activating signal, Shh. We found that Wnt5a inhibits Shh by down-
regulating Myc, an upstream regulator of Shh. It has been shown that
activator-inhibitor systems can generate Turing patterns, which are
defined by their complex spatial variation and are known to drive cell
fate patterning in development®*~>, suggesting that at 9.5, Shh and
Wnt5a play similar roles.

Discussion

We developed FlowSigtoinfer intercellular communication activities
that may depend on one another through coordinated GEMs. Key to
ourmethod isthe construction of variables that measure either inter-
cellularinformation (received and sent) or intracellular information.
FlowSigapplies graphical causal modeling and causalstructure learning
to scRNA-seq and ST data. As high-dimensional omics data continue
to accumulate, the field will shift towards more predictive analyses,
for which causal inference and causal structure learning models are
likely to be key.

FlowSig complements the growing suite of methods for construct-
ing multicellular representation programs. For example, DIALOGUE®
uses multilevel modeling to extract coordinated programs involving
two or more cell types that have significantly correlated gene expres-
sion. Such coordinated programs are likely mediated through the
communication-driven intercellular flows that FlowSig can infer.
Other methods, such as MOFAcellular?? and scITD?°, decompose gene
expression datainto sample-specific and sample-shared latent GEMs
that do not distinguish intercellular signal genes from intracellular
signal-processing genes. MOFAtalk* and Tensor-cell2cell” extract
coordinated programs of intercellular signaling from ligand-receptor
interaction scores. Of the methods to which we compared FlowSig, the
most similar is MultiNicheNet?, which also constructs anintercellular
signaling dependency network using pretrained signaling databases
to construct the dataset-specific network; FlowSig uses conditional
independence and conditional invariance testing to determine depend-
encies directly from the data.

To construct signal inflow and outflow variables, we used CellChat
for non-spatial applications and COMMOT for spatial applications.
There is a wide range of cell-cell communication inference meth-
ods", albeit with limited overlap in results®. Therefore, the choice
of method can affect FlowSig output. Alternative communication
methods, including CellPhoneDB** and LIANA*, as well as alternative
GEM construction methods, such as cNMF’, can be used as input.

Toreduce computation time, we inferred ‘coarse-grained’ intercel-
lular flows, inwhichintracellular processing mechanisms are modeled

through multigene GEMs. We assume that these GEMs contain regu-
latory TFs that mediate signal inflow and outflow. Although we can
extract downstream TFs from GEMs, we do not know the precise gene
regulatory networks (GRNs) that mediate these signals. One could
use methods such as SCENIC*® to infer cellwise enrichment for sig-
nificant regulons or incorporate data that measure open chromatin
accessibility” to identify activated TFs. New data modalities, such as
Phospho-seq*®, that measure post-translational response and thus
signal inflow, will become useful for validation.

Itis worth discussing FlowSig’s limitations. As FlowSig uses con-
ditional independence invariance testing based on partial correla-
tion, the analyzed datasets must have sufficiently large sample sizes
to estimate dependencies with sufficient statistical significance®.
Furthermore, partial correlation assumes that the dataare distributed
according to a linear Gaussian model, which can be an unrealistic
assumption®. Furthermore, as the number of variables increases,
so too does the number of false positive relations inferred by the
graph learning algorithms used by FlowSig. For non-spatial applica-
tions, to learn intercellular flows accurately, the perturbation must
significantly shift the distribution of one or more variables. However,
if the perturbation completely reduces signal variable expression to
zero or induces expression of a variable not expressed in the control
condition, partial correlation testing cannot be performed for the
perturbed variable because it will have an s.d. of zero. One key limita-
tion is that FlowSig infers a static graph, when intercellular flows are
dynamic. Therefore, it will be important to extend FlowSig to capture
spatiotemporal flows.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butions and competinginterests; and statements of dataand code avail-
ability are available at https://doi.org/10.1038/s41592-024-02380-w.
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Methods

FlowSig model

FlowSig’s analyses are the same when applied to either non-spatial
scRNA-seq or ST data. However, to compensate for the reduced preci-
sion of inflowing signals measurements from non-spatial scRNA-seq,
we apply FlowSig to only scRNA-seq studies with an appropriate control
condition and one or more perturbed conditions representing disease,
external stimulation or biological time. We require input from inter-
cellular communication inference and recommend using CellChat®
and COMMOT" for non-spatial and spatial data, respectively. FlowSig
provides functionality to construct GEMs from non-spatial data and
NSF using pyLIGER. However, FlowSig flexibly allows users to use input
from other cell-cell communication methods, such as CellPhoneDB®
or LIANA*, or from other GEM construction methods, such as cNMF’.
We assume that, for each condition, the gene expression matrix (X)
has been filtered and variance stabilized, for example by library-size
normalization and log transformation. We note that original, unnor-
malized counts are also needed to construct GEMs. We use the input
to construct augmented ‘flow expression’ matrices for each biological
condition that measure inflowing signals, GEM enrichment and out-
flowing signals, which we define using three methods:

1. Wedefine inflowing signals differently for non-spatial versus
spatial data. For non-spatial scRNA-seq data, for each signifi-
cant ligand-receptor interaction inferred from cell-cell
communication analysis (L-R), we define the inflowing signal
amount as R x TF, where Ris the receptor gene expression and
TF = (TF, + - + TF,,) /mis the average gene expression of the
known immediate downstream TF targets that we infer from
pathway knowledge databases, such as OmniPath® or
exFINDER®, where m is the number of known TF targets (see
‘Constructing downstream TF target sets to measure signal
inflow’ in the next section). For interactions involving receptor
multi-units, L-R; + ... R,, where n is the number of receptor
sub-units, we use the geometric mean of receptor sub-unit gene
expression values, R = (R; ... R,) =, to calculate the inflow signal
amount. Our rationale is that receptor gene expression
quantifies a cell’s ‘potential’ to receive intercellular signals, and
the weighting by average downstream TF expression quantifies
the actual downstream activation due to ligand-receptor
binding and thus provides a more accurate measure of whether
the cell actually received the signal. However, this definition is
not exactly the same as the amount of ‘received ligand, which
may not necessarily trigger downstream activation. By contrast,
for ST data, we can measure the inflowing signal directly at each
spatial spot using output from spatial CCC inference methods,
such as COMMOT", For a general method, for a given ligand (L)
at ST spot (S), for every L-R in which L is inferred to partake, we
define the inflowing signal amount as 3,,C{" ™, where c{"®is
the inferred communication score for interaction L-R at spot S.

2. Wedefined GEM enrichment using output from matrix
factorization methods, but GEM enrichment can be construct-
ed from other dimensionality reduction methods in a similar
manner. For matrix factorization methods, which decompose
the gene expression matrix X into X= WH" where, if Xisan N x G
matrix, where Nis the number of cells and G is the number of
genes, Wisan N x Kmatrix describing cell membership into K
GEMs, where K is the number of factors, and His a G x K matrix
describing the loadings of each GEM, and H" is the transpose of
matrix H, where the rows and columns have been interchanged
to ensure correct matrix multiplication. Then, if we define W to
be the normalized factor membership matrix such that the rows
sum to unity, we define each GEM enrichment variable as W,
where k=1, ..., K. To standardize GEM enrichment values so that
they are on the same scale as log-transformed gene expression

values, we use the log-transformed log (1 + ai?’), where a is the
scaling factor used to transform the original unnormalized
counts, ¥ = log (1 + aX), where X is the normalized gene expres-
sion matrix, such that the rows sum to unity.

3. Outflowing signals are defined as the gene expression of signal
ligands implicated from cell-cell communication analysis. In
the case of ligand multi-units, L, + ... L, — R, we use the geomet-
ric mean of ligand sub-unit gene expression values, (L; ... L,)".

Therefore, we associate cells with a vector containing three types
of measurements: signal inflow measurements, which are receptor
gene expression weighted by the average expression of their known
downstream TF genes; intracellular ‘module’ enrichment, whichisthe
cell'smembership weight to amultigene set module, which measures
how strongly the cell expresses those genes in the module; and sig-
nal outflow, which is ligand gene expression. When measuring signal
inflow, we are not measuring from which cells the signals were sent,
but rather how much signal has been received by the cell. Similarly,
when measuring signal outflow, we are not measuring how much of
the expressed signal ligand was actually received by other cells (as
measured by, for example, signal inflow), but simply how much of the
signal the cellis expressing.

FlowSig applies algorithms from causal structure learning that
arebased on the concepts of conditionalindependence testing and, if
perturbation dataare available, conditional invariance testing, tolearn
the directed intercellular flow network from the augmented flow
expression matrices. Conditional independence testinginfers the set
of statistical dependencies from the data, whereas conditional invari-
ance infers which variables shifted significantly in distribution after
perturbation, for example, owing to disease or external stimulation.
All conditional independence and conditional invariance testing are
performed using partial Pearson’s correlation to generate sufficient
statistics. Despite partial correlation testing relying on the potentially
unrealistic assumption that gene expression values are distributed
according to a linear multivariate Gaussian distribution, we use the
partial correlation method because it is significantly faster than other
methods that use nonparametric kernel-based tests, and we can correct
for biologically unrealistic edges by analyzing the learned CPDAGs
rather than a DAG. To learn the CPDAG, we use the UT-IGSP* algorithm
when analyzing non-spatial scRNA-seq with perturbation dataand the
GSP? algorithm for spatial data with no considered perturbation. Both
of these methods estimate a CPDAG containing both directed and
undirected edges that corresponds to the Markov equivalence class
inferred from conditional independence and conditional invariance
testing. Graphically, the Markov equivalence class is defined by the set
of graphs that have the same skeleton graph, which is the undirected
equivalent of the CPDAG, and v-structures, which are defined as
directed node triplets (x, y, z), where edges are oriented such that
x - z « y.FlowSig reorients undirected edges inferred from UT-IGSP
or GSP according to the assumption that inflow signal nodes must be
directed towards GEM nodes, GEM nodes must be directed towards
outflow signal nodes and edges between two GEM nodes can be
bidirectional.

We also use bootstrap aggregation to further validate thelearned
intercellular flow network. For non-spatial sCRNA-seq, we bootstrap
by resamplingindividual cells fromeach condition with replacement.
However, for ST data, we need to account for the spatial dependencies
thataffect correlation. Therefore, we performa version of block boot-
strapping®* as follows. For each bootstrap realization, we divide the
tissue into non-overlapping spatial regions, which we can obtain from
either k-means clustering on the spatial coordinates, leiden clustering
of the spatial connectivity graph or from predefined tissue region
annotations. Then, withineach ‘block, we resample with replacement.
For each bootstrap realization, FlowSig outputs an adjacency matrix
(4), that corresponds to the estimated CPDAG, where A;=1if an edge
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has been inferred and A; = 0 otherwise. For B bootstrap realizations,
where B>0isthe number of bootstrap samples, we then take the aver-
aged adjacency, A = B! ZgzlA(b), as the final CPDAG. To remove
low-confidence edges, for every edge in the equivalent undirected
skeleton graph of the CPDAG, we calculate the total edge weight as
w(i.j) = Ay +A;. For a specified threshold, defined by the parameter
w* < 1,ifw(i,j) < w*, weremove the edge from the network, thatis, we
set A; = A; = 0. Once the bootstrap aggregated CPDAG has been
learned, biologically unrealistic arcs or edges are removed or reori-
ented, respectively. For all directed arcs from the filtered CPDAG, we
retainonly arcs thatare directed frominflow signals to GEMs, GEMs to
other GEMs or from GEMs to outflow signals. Similarly, for undirected
edges, we orientedges such that nodes are directed in the same manner.
Inthe case that an edge connects one GEM to another, weinclude both
directionsinto the final intercellular flow network.

Identifying differentially flowing signal variables

When inferring intercellular flows, we prioritize ‘informative’ inflow-
ing and outflowing signal variables. In the case of scRNA-seq analysis,
where perturbation data are available, we consider only ‘differentially
flowing’ inflow and outflow signals. For all applications in this study,
we use aMann-Whitney U (Wilcoxon rank-sum) test to assign variables
as differentially flowing if their adjusted P values (after correction
for multiple hypothesis testing) fall below a specified threshold (for
example, adjusted P < 0.05), indicating statistical significance, and
whoselog (FC) values are above aspecified threshold (for example, log
(FC)>0.5). We analyzed inflow signal variables separately from outflow
signal variables. That is, we performed two separate Mann-Whitney
Utests—one to identify differentially inflowing variables from only
the set of inflow signal variables and one to identify differentially out-
flowing variables from only the set of outflow signal variables. When
analyzing ST data, in which perturbation data are not as readily avail-
able, FlowSiginstead prioritizes inflow and outflow variables that are
spatially variable. For all applications considered, we retain variables
for which the graph-based global Moran’s /, which we calculate using
Squidpy®, is above a specified threshold, for example (/> 0.1).

Constructing downstream TF target sets to measure signal inflow
Tomeasure signal inflow more accurately from non-spatial sScRNA-seq
data, we used prior knowledge from OmniPath to weight the gene
expression of receptors that have been implicated in intercellular
communication from prior cell-cell communication inference. For
each ligand-receptor interaction, we searched the KinaseExtra and
PathwayExtra modules for TFs that are the first downstream targets
of the relevant receptors. Because OmniPath has been constructed
for human knowledge, when constructing the downstream TFs for
mouse data, we convert the mouse receptor genes implicated from
communication inference to their human orthologs and perform the
same procedure as for human data.

Interpreting gene expression modules

TFsare the mediators of signal transduction, that s, signal inflow, and
the primary regulators of gene transcription, that is, signal outflow.
To gain a deeper functional understanding of intercellular flows, it
isimportant to interpret FlowSig output both with respect to GEMs,
which describe the expression patterns of coordinated multigene
sets, as well as individual GEM-specific TFs. For both non-spatial and
spatial data, we consider only a priori known TFs, which in this case
are based on TF lists provided by pySCENIC*. Specifically, we use the
list provided in allITFs_mm.txt for mouse data and the list provided in
allTFs_hg38.txt for human data.

For non-spatial scRNA-seq data, we used pyLIGER® to construct
integrated GEMs. For adataset describing C conditions, pyLIGER uses
joint matrix factorization to decompose each condition-specific gene
expression counts matrix, X© e z¥§¢, where z,, is the set of all

nonnegative integers, N is the number of cells and G is the number of
genes, into K GEMs through X© = FO . (W + V(‘))T,whereATisthetrans-
pose of matrix A, where rows and columns have been swapped. Here,
FO e RYK is the condition-specific factors matrix, describing the
membership of the cells in condition c to each of the K GEMs, and
W e RGgKandV© e rG*arethe condition-shared and condition-specific
loadings matrix, describing the membership of genes to each of the K
GEMs. Larger values of F,(I? correspond to greater membership of cell
nincondition c to GEM k, while larger values of Wy, + V; correspond
togreater overallmembership of gene gto GEM k. We use the columns
of F©as our K GEM variables and use the columns of W + V(©to extract
thetop TFsforeach GEM. For eachmodule k, we sort genes by decreas-
ingorder of theloadings sum, Wy, + V9, and then extract the top con-
tributing TFsin the order by which they appear in the sorted lists.

For ST data, we use NSF* to construct spatially resolved GEMs. In
brief, NSF decomposes the gene expression counts, X € z¥s¢, which
has Nspots and G genes, into K GEMs (factors) through X = FW’, where
the factors matrix, F € RYg¥, describes the spotwise membership to
the KGEMs (factors) and is fit using Gaussian processes whose means
and covariances vary with spatial locations. The loadings matrix,
W e Rg¥ describes the gene weight membership to each of the K GEMs.
Larger values of F, indicate a higher enrichment of spot n for GEM k,
which describes a spatially varying gene expression pattern; larger
values of W, indicate greater membership of gene gto GEMk, that s,
how much gene g contributes to the gene expression pattern. We use
the columns of the factor matrix, F, as our KGEM variables and use the
columns of loadings matrix, W, to extract the top contributing TFs for
each spatial GEM. For each module k, we sort all genes by decreasing
order of their W, value. We then extract the top contributing TFs by
the order in which they appeared in the sorted list.

Inferring upstream TF regulators of spatial signals

To infer which TFs could potentially regulate inferred signal outflow
variables, we borrow the approach of Cang et al."* After FlowSig infers
the global intercellular flow network, for each signal outflow vari-
able that is connected in the network, we first backtrack through the
directed network to infer which spatial GEMs are connected to the
signal outflow node. For each GEM with a directed edge to the signal
outflow variable, we extract the top 10 contributing TFs (see ‘Interpret-
ing gene expression modules’in Methods). We then use the scikit-learn
implementation of the Random Forest regression model®® to model
thesignalligand gene expressionasafunctionofthe TF genes asinde-
pendent variables. We then ranked the TFs with respect to their fea-
tureimportance, whichis calculated from the Giniimportance (mean
decrease inimpurity).

Experimental validation

Human cortical organoid generation. All experiments using human
embryonic stem cells (hESCs) were approved by the University of
California, Irvine (UCI) Human Stem Cell Research Oversight (hnSCRO)
Committee. The hESC line H9 was obtained from the WiCell Institute
under a material-transfer agreement. The methods for hESC main-
tenance and cortical organoid production were previously estab-
lished®”*%. In brief, H9 cells were maintained with inactivated mouse
embryonic feeders (PMEF-CF, Millipore Sigma) on a 0.1% gelatin-coated
plate and cultured in DMEM/F12 (HyClone) with 20% knockout serum
replacement (KSR, Invitrogen), non-essential amino acids (NEAAs,
Invitrogen), GlutaMAX (Invitrogen), 100 mg ml™ primocin (Invi-
voGen), 0.1 mM B-mercaptoethanol (Invitrogen) and 10 ng ml™ of
fibroblast growth factor 2 (FGF2, Invitrogen) at 5% CO, at 37 °C. The
medium was refreshed daily. At ~70-80% confluency, H9 cells were
differentiated into cortical organoids. After dissociation, 9,000 cells
per well were plated into low-attachment V-bottom 96-well plates
(Sumitomo Bakelite, MS9096V) to form aggregates in medium con-
sisting of Glasgow’s Minimal Essential Medium (GMEM, Invitrogen),
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20% KSR, 0.1 nM non-essential amino acids, 100 mg ml™ primocin,
0.1 mM B-mercaptoethanol, sodium pyruvate (Invitrogen), Wnt inhibi-
tor IWR-1-endo (Calbiochem) and TGF-f inhibitor SB431542 (Stem-
gent). ROCK inhibitor Y-27632 (20 puM, BioPioneer) was added in the
medium from DO to D6 to prevent cell death. From DO to D18, the
organoids were maintained at 5% CO,, 37 °C, and half of the medium was
changed every2-3d.From D18 to D35, the organoids were transferred
to Petri dishes and cultured in the medium consisting of DMEM/F12
with N2 (Invitrogen), GlutaMAX, chemically defined lipid concentrate
(CDLC, Invitrogen) and 0.4% methylcellulose (Sigma) at 5% CO,, 40%
0,and 37 °C. The medium was refreshed every 2-3 d.

Sample preparation and scRNA-seq. Organoids were collected at
D18 (160 organoids) and D35 (25 organoids), dissociated into single
cellsand subjected to Evercode Cell Fixation (Parse Biosciences). The
organoids were dissociated into a single-cell suspension using Papain
Dissociation System (Worthington), following the manufacturer’s
manual. The dead cells in the single-cell suspension were removed
using EasySep Dead Cell Removal (Annexin V) Kit (STEMCELL Tech-
nologies), following the manufacturer’s manual. The cell suspension
was then passed through a 40 mm cell strainer before assessing cell
number and viability. Samples with total cell numbers >1,000,000
and >80% viability were further processed for cell fixation and freez-
ing following Parse Biosciences User Manual. The samples were then
sent to Genomics Research and Technology Hub, UCI, for barcoding
and library preparation using Evercode WT kit (Parse Biosciences). Ten
thousand cells per sample and 50,000 reads per cell were targeted for
sequencing. The sequencing was done using NovaSeq 6000 (Illumina).
Alignment was performed using Split-pipe (Parse Biosciences).

Growth factor exposure and RT-gPCR. Between D15 and D21, the
organoids were exposed to 400 ng ml™* FGFSb or 50 ng mI"' BMP4
(with 3 mM CHIR99021) in the culture medium. Untreated organoids
were used as a control group. The organoid samples were collected at
D35 and lysed using Buffer RLT (Qiagen). RNA was extracted using the
RNeasy MiniKit (Qiagen), following the manufacturer’s manual. Then,
1,000-3,000 ng RNA from each sample was converted to complemen-
tary DNA using SuperScript IV First-Strand Synthesis Reaction (Invitro-
gen). PowerTrack SYBR Green Master Mix (Applied Biosystems), cDNA
and primers were mixed and loaded into 384-well plates (Invitrogen).
The RT-qPCR was carried out by using QuantStudio 7 Real-Time PCR
System (Applied Biosystems). The following primers were used: EOMES
(amplicon size, 225 bp) forward 5’-CGACAATAACATGCAGGGCAA-3’,
reverse 5-TCATTCAAGTCCTCCACGCC-3’;PAX6 (amplicon size 48 bp)
forward 5’- TGTCCAACGGATGTGTGAGTA-3’, reverse 5-CAGTCTCGTA
ATACCTGCCCA-3’; CoupTF1(NR2F1) (amplicon size 104 bp) for-
ward 5-ATCGTGCTGTTCACGTCAGAC-3’, reverse 5"-TGGCTCCTCAC
GTACTCCTC-3’; GAPDH (amplicon size 69 bp) forward 5-CTCTCTG
CTCCTCCTGTTCGAC-3, reverse 5-TGAGCGATGTGGCTCGGCT-3'.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The human cortical organoid scRNA-seq are available at NCBI GEO at
accession number GSE239542. The human pancreatic islet sSCRNA-seq
data were originally published by Burkhardt et al.?®; the raw gene
expression counts and treatment condition metadata were down-
loaded from NCBI GEO at accession GSE161465. The scRNA-seq data
of human COVID-19 BALF samples were originally published in Liao
etal.’; the gene expression matrices and cell-type annotation metadata
were downloaded from NCBIGEO at GSE145926. The spatial Stereo-seq
of mouse embryogenesis at time E9.5 was published originally in
Chen et al.”; the annotated spatial data were extracted from the file

‘Mouse_embryo_all_stage.h5ad  hosted at https://db.cngb.org/stomics/
mosta/download/.

Code availability

FlowSig is available to install as a Python package from GitHub at
https://github.com/axelalmet/flowsig. All scripts used to generate
the analysis inthis manuscript are available at GitHub at https://github.
com/axelalmet/FlowSigAnalysis_2023. The processed versions of all
datasetsused inthis study, including cell-type annotation and cell-cell
communication output from CellChat and COMMOT for non-spatial
and spatial data, respectively, are available at: https://doi.org/10.5281/
zenodo.10850397 (ref. 69).
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
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|:| A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  No software was used.

Data analysis The code for the FlowSig is available on GitHub as a Python package (https://github.com/aalmet/FlowSig), along with all corresponding Python
and R analysis code to reproduce the results (https://github.com/aalmet/FlowSigAnalysis_2023). The processed versions of the analyzed
datasets are available at the following Zenodo repository: https://zenodo.org/doi/10.5281/zenodo.10850397

The following programming languages and versions were used:
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R4.2.3
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COMMOT 0.0.3
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graphical-models 0.1a19
GraphPad Prism 9




joblib 1.3.1
liana 1.0.4
Matplotlib 3.7.2
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Networkx 3.1
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- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

The human cortical organoid scRNA-seq is available at NCBI GEO at accession number GSE239542 and will be released upon publication. Gene expression count
matrices were constructed by aligning FASTQ files using Split-pipe v0.9.6 by Parse Biosciences. The alignment was done using the reference genome GRCh38.

The human pancreatic islet scRNA-seq data was originally published by Burkhardt et al.38; the raw gene expression counts and treatment condition metadata were
downloaded from NCBI GEO at accession GSE161465. The scRNA-seq data of human COVID-19 patient BALF samples was originally published in Liao et al.40; the
gene expression matrices and cell type annotation metadata were downloaded from NCBI GEO at GSE145926. The spatial Stereo-seq of mouse embryogenesis at
time E9.5 was published originally in Chen et al.41; the annotated spatial data was extracted from the file “Mouse_embryo_all_stage.h5ad” hosted at https://
db.cngb.org/stomics/mosta/download/.
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Reporting on sex and gender We used public data in the manuscript and human embryonic stem cell lines and there is no human research involved.

Population characteristics We used public data in the manuscript and human embryonic stem cell lines and there is no human research involved.
Recruitment We used public data in the manuscript and human embryonic stem cell lines and there is no human research involved.
Ethics oversight We used public data in the manuscript and human embryonic stem cell lines and there is no human research involved.
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Sample size considerations and the need to obtain a sufficient number of cells for subsequent analyses. For sequencing: at day 18 and day 35, two sets of
samples were collected. We pooled 160 cortical organoids into one sample for D18, and we pooled 25 cortical organoids into one sample for
D35. These numbers was chosen to ensure that we could obtain more than 1 million cells per sample, which was necessary to achieve
sufficient material for the fixing and freezing steps prior to sequencing. For RT-qPCR: samples were pool from 4 organoids per sample and 2-4
samples per group. The rationale for these sample sizes is that RT-qPCR is a highly sensitive assay capable of detecting changes in gene
expression even with relatively small sample sizes. Our results confirmed that pooling organoids in this manner provided enough RNA to
detect meaningful differences in gene expression.

Data exclusions  Cells expressing fewer than 500 unique genes, or more than 10,000 genes were removed. Cells with more than 5% of their total gene
expression contributed by mitochondrial genes were removed. No data exclusion for RT-gPCR experiment.

Replication All experiments were at least in duplicates. All attempts at replication were successful and included in data analyses.

Randomization  Randomization is not relevant to this study. For sequencing: the samples had to be collected at specific time points and processed into single
cell suspensions immediately. After all single cell suspensions were gathered, these samples were sent to sequencing core all together. For RT-
gPCR: the control and experimental groups were from the organoids produced in the same batch. Sample preparations for control and
experimental groups were collected at day 35 and RNA extractions were performed together.

Blinding Blinding is not necessary for this study. For sequencing: the samples had to be collected at specific time points and processed into single cell
suspensions immediately. Afterwards, the samples were handled by the core facility staff and the sequencing data handled by researchers
who had no prior assumption of the biology, as this is an exploratory study. For RT-gPCR: RNA extractions were done for all samples at the
same time in no particular order. Blinding is not relevant to the execution of RT-gPCR and technical replicates were included to avoid bias.
Data analysis was done in the same way for all groups with no data exclusion.
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Cell line source(s) Cortical organoids were generated using H9 (WAQ9; WAe009-A; WiCell) human embryonic stem cell. H9 originated from a
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