
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Towards an Empirical Understanding of Open Source Ideologies

Permalink
https://escholarship.org/uc/item/73g1d8bq

Author
Yue, Yang

Publication Date
2024

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/73g1d8bq
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Towards an Empirical Understanding of Open Source Ideologies

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Software Engineering

by

Yang Yue

Dissertation Committee:
Professor David Redmiles, Chair
Associate Professor James Jones

Professor Yi Wang

2024

Portion of Chapter 1 © 2021 IEEE
Chapter 2 © 2021 IEEE

All other materials © 2024 Yang Yue

DEDICATION

To my parents, Aizhi Wan and Guisheng Yue.

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES vii

LIST OF TABLES viii

ACKNOWLEDGMENTS ix

VITA x

ABSTRACT OF THE DISSERTATION xii

1 Introduction 1

2 Background 7
2.1 A Brief History of Ideology . 7

2.1.1 Origin of the Concept of “Ideology” 8
2.1.2 Marx’s Contribution to Ideology . 9
2.1.3 Modern and Post-modern Development 10

2.2 Exploration of OSS Ideology . 12
2.3 Defining OSS Ideology . 15

3 Developing an Empirical Theory of OSS Ideology 17
3.1 Research Methodology . 17

3.1.1 Data Sources . 18
3.1.2 Data Collection . 20
3.1.3 Data Analysis . 24

3.2 Empirical Theory of OSS Ideology . 26
3.2.1 Norms/Values . 26
3.2.2 Membership . 37
3.2.3 Goals . 43
3.2.4 Activities . 49
3.2.5 Resources . 59
3.2.6 Positions/Group Relations . 65

3.3 Implications . 70
3.3.1 Theoretical Implications . 70
3.3.2 Practical Implications . 74

iii

4 Developing an Assessment Framework of OSS Ideology 76
4.1 Motivation . 76
4.2 Designing Assessment Framework . 78
4.3 Pilot Case Study . 81

5 Applying Assessment Framework on Open Source Project: Case Study 89
5.1 Study Design . 89
5.2 Three Case Studies . 92

5.2.1 Case 1: D3 . 92
5.2.2 Case 2: Zephyr . 95
5.2.3 Case 3: PyTorch . 99

5.3 Cross-Case Comparison & Implications . 103
5.4 Feedback from Stakeholders . 106

6 Discussion & Implications 109
6.1 Theoretical Implications . 109
6.2 Practical Implications . 111
6.3 Limitations . 113

7 Conclusions 115

Bibliography 117

Appendix A Interview Protocol 127
A.1 Interview Script . 128

A.1.1 Briefing and Verbal Consent . 128
A.1.2 Interview Questions . 128

Appendix B Assessment Framework for OSS Ideologies 130
B.1 Category: Values/Norms . 130

B.1.1 Appreciation & Recognition . 130
B.1.2 Autonomy . 131
B.1.3 Comparative Advantages . 132
B.1.4 Constantly Changing & Evolving . 133
B.1.5 Ethics . 133
B.1.6 Openness & Transparency . 135
B.1.7 Meritocracy . 135
B.1.8 Reciprocity at Multiple Levels . 137
B.1.9 Trust . 137
B.1.10 Universal Accessibility & Availability 138

B.2 Category: Goals . 139
B.2.1 Broad Impacts . 139
B.2.2 Built-in Product & Quality Orientations 139
B.2.3 Outreach . 140
B.2.4 Sustainability . 142
B.2.5 Innovation . 142

iv

B.2.6 Ubiquitous Penetration . 142
B.3 Category: Activities . 144

B.3.1 Copyright, Licensing, & Legal Implications 144
B.3.2 Governance & Decision Making . 144
B.3.3 Personal Development . 145
B.3.4 Social Production . 146
B.3.5 Work Organization & Practices . 147

B.4 Category: Membership . 147
B.4.1 Individual Identity . 147
B.4.2 Ideological Leadership . 149
B.4.3 Interpersonal Relationships . 149
B.4.4 Member Hierarchy & Roles . 151

B.5 Category: Resources . 151
B.5.1 Dealing with Barriers & Restrictions 151
B.5.2 Incentives, Financing, & Funding . 152
B.5.3 Knowledge & Expertise . 152
B.5.4 Supportive Facilities & Mechanisms 154

B.6 Category: Position/Group Relations . 155
B.6.1 Interaction with Emerging Technologies 155
B.6.2 Interaction with Commercial Software Development 156
B.6.3 Market & Users . 156

Appendix C Report of Assessment on Zephyr 158
C.1 Category: Values/Norms . 158

C.1.1 Theme: Appreciation & Recognition 158
C.1.2 Theme: Autonomy . 159
C.1.3 Theme: Comparative Advantages . 159
C.1.4 Theme: Constantly Changing & Evolving 161
C.1.5 Theme: Ethics . 161
C.1.6 Theme: Openness & Transparency 163
C.1.7 Theme: Meritocracy . 163
C.1.8 Theme: Reciprocity at Multiple Levels 164
C.1.9 Theme: Trust . 164
C.1.10 Theme: Universal Accessibility & Availability 165

C.2 Category: Goals . 165
C.2.1 Broad Impacts . 165
C.2.2 Built-in Product & Quality Orientations 165
C.2.3 Outreach . 166
C.2.4 Sustainability . 166
C.2.5 Innovation . 168
C.2.6 Ubiquitous Penetration . 168

C.3 Category: Activities . 169
C.3.1 Copyright, Licensing, & Legal Implications 169
C.3.2 Governance & Decision Making . 169
C.3.3 Personal Development . 170

v

C.3.4 Social Production . 170
C.3.5 Work Organization & Practices . 171

C.4 Category: Membership . 171
C.4.1 Individual Identity . 171
C.4.2 Ideological Leadership . 172
C.4.3 Interpersonal Relationships . 173
C.4.4 Member Hierarchy & Roles . 173

C.5 Category: Resources . 174
C.5.1 Dealing with Barriers & Restrictions 174
C.5.2 Incentives, Financing, & Funding . 174
C.5.3 Knowledge & Expertise . 174
C.5.4 Supportive Facilities & Mechanisms 175

C.6 Category: Position/Group Relations . 175
C.6.1 Interaction with Emerging Technologies 175
C.6.2 Interaction with Commercial Software Development 176
C.6.3 Market & Users . 176

vi

LIST OF FIGURES

Page

2.1 The simplified key fundamental developments of ideology theories. 7
2.2 The top ten research focuses in the publications related to human factors in

SE between 2016 and 2020 [117]. 14

3.1 Overview of the research process to investigate OSS ideology. 18
3.2 Examples of collected public speeches’ snapshots (left-to-right, top-to-bottom:

Tracy Hinds, Leslie Hawthorn, Guido van Rossum, and Brian Behlendorf). . 22
3.3 The overview of the empirical theory of OSS ideology 27

4.1 Three assessment types in the assessment framework. 79
4.2 The workflow of assessing Meritocracy. 82
4.3 The process of the pilot case study. 83

5.1 The process of three case studies. 90
5.2 The distribution of centrality degrees across five roles in PyTorch. 102
5.3 The commit activity heatmap of three projects. 105

vii

LIST OF TABLES

Page

2.1 Distribution of the papers relevant to ideology in SE[117]. 14

3.1 Demographics of 22 recruited participants. 21
3.2 Lists of current† and emeritus OSI board members (as of 2022). 23

4.1 Summary of the assessment results on Norms/Values in pilot case study. . . 85

5.1 Summary of the collected data from project repositories (April 2023). 91
5.2 The statistical summary of the centrality degrees across five roles in PyTorch. 102
5.3 The summary of three case studies. 103

viii

ACKNOWLEDGMENTS

I would like to express my deepest gratitude to my advisor and committee chair, Professor
David Redmiles. This dissertation would not have been possible without his guidance and
patience. I feel extremely fortunate to have him as my advisor, as he has given me enormous
support over the past six years.

I would like to thank my committee members, Professor Yi Wang, and Professor Jim Jones.
Prof. Wang not only inspired my research ideas in this dissertation, but also provided gener-
ous help in conducting the research. The discussions with Prof. Jones were always construc-
tive, and helped frame this dissertation. I also would like to thank additional members of
my advancement committee: Professor Rebecca Black, and Professor Sergio Gago-Masagué.

The studies in this dissertation involved participants recruited from the open source com-
munities, I would like to express my appreciation to those participants for sharing their
valuable insights. I also would like to thank the Center for Organizational Research and the
Department of Informatics for supporting the studies.

Throughout my years at UCI, it has been a fantastic journey with the support and help from
many mentors, lab mates, and friends here. Although I cannot mention everyone, I would
like to particularly thank Professor Hadar Ziv, Professor Matthew Bietz, Dr. Zhendong
Wang, and Zheng Jiang (BUPT).

I would not have been able to complete my Ph.D. without the support of my family and
friends in both the U.S. and China. A special thanks to my parents, Aizhi Wan and Guisheng
Yue, who have given me unconditional love across the Pacific Ocean to support my adventure
at UCI.

Part of the text in this dissertation is a reprint of the materials as they appear in (Yue, et
al., 2021), used with permission from IEEE. Two of the co-authors listed in this publication
directed and supervised research which forms the basis for the dissertation.

ix

VITA

Yang Yue

EDUCATION

Doctor of Philosophy in Software Engineering 2024
University of California, Irvine Irvine, CA

Master of Engineering in Software Engineering 2018
Peking University Beijing, China

Bachelor of Engineering in Software Engineering 2015
East China Normal University Shanghai, China

RESEARCH EXPERIENCE

Graduate Research Assistant 2018–2024
University of California, Irvine Irvine, California

TEACHING EXPERIENCE

Instructor 06/2023–08/2023
University of California, Irvine Irvine, CA

Teaching Assistant 09/2020–12/2023
University of California, Irvine Irvine, CA

Reader 09/2018–12/2019
University of California, Irvine Irvine, CA

x

SELECTED PUBLICATIONS

1. Y. Yue, Y. Wang and D. Redmiles, “Off to a Good Start: Dynamic Contribution
Patterns and Technical Success in an OSS Newcomer’s Early Career,” in IEEE Trans-
actions on Software Engineering, vol. 49, no. 2, pp. 529-548, 1 Feb. 2023, doi:
10.1109/TSE.2022.3156071.

2. Y. Yue, X. Yu, X. You, Y. Wang and D. Redmiles, “Ideology in Open Source De-
velopment,” 2021 IEEE/ACM 13th International Workshop on Cooperative and Hu-
man Aspects of Software Engineering (CHASE), Madrid, Spain, 2021, pp. 71-80, doi:
10.1109/CHASE52884.2021.00016.

3. Y. Yue, I. Ahmed, Y. Wang and D. Redmiles, “Collaboration in Global Software
Development: An Investigation on Research Trends and Evolution,” 2019 ACM/IEEE
14th International Conference on Global Software Engineering (ICGSE), Montreal,
QC, Canada, 2019, pp. 78-79, doi: 10.1109/ICGSE.2019.00028.

MANUSCRIPT IN PROGRESS

1. Y. Yue, Y. Wang, and D. Redmiles, “Towards an Empirical Theory of OSS Ideology,”
in Revision.

2. Y. Yue, Y. Wang, and D. Redmiles, “A Semi-automated Assessment Framework for
OSS Ideology,” in Preparation.

xi

ABSTRACT OF THE DISSERTATION

Towards an Empirical Understanding of Open Source Ideologies

By

Yang Yue

Doctor of Philosophy in Software Engineering

University of California, Irvine, 2024

Professor David Redmiles, Chair

Open source development is not only a software development paradigm that is widely adopted

nowadays, but also a social movement that has profound impacts in our society. Ideology, as

“heart and soul”, drives such social movements, and so does open source software ideology

(OSS ideology) to open source movement. Thus, it is essential to understand OSS ideology.

However, SE literature only conducted preliminary explorations towards OSS ideology, or

only focused on particular elements within OSS ideology. In this dissertation, we report our

efforts in developing an empirical understanding towards OSS ideology. First, we defined

OSS ideology based on a general and explicit definition to encompass our research. Following

grounded theory methodology, we collected data from 21 semi-structured interviews with

OSS practitioners, and 41 videos of Open Source Initiative (OSI)’s board members’ public

interviews/speeches; then we developed an empirical theory of OSS ideology. Such a theory

consisted of 42 themes that emerged from the collected data, under six broad categories, i.e.,

Norms/Values, Membership, Goals, Activities, Resources, and Positions/Group Relations.

Then, based on the empirical theory of OSS ideology, we developed an assessment framework

to investigate the OSS ideologies within particular open source projects. The assessment only

relied on public data sources, and reflected OSS ideologies at the project level. Furthermore,

we conducted three case studies by applying the assessment framework to three selected

open source projects, D3, Zephyr, and PyTorch. The assessment results demonstrated

xii

how open source projects uphold OSS ideology in practice.

This dissertation contributed to SE literature with a foundational understanding of OSS

ideology. First, the empirical theory of OSS ideology, featuring comprehensive, contemporary,

and empirically-grounded characteristics, significantly extended the SE literature with new

themes identified in the study. It also provides an ideological lens to examine open source

development. Second, the practical and extensive assessment framework could facilitate

both OSS researchers and practitioners to investigate open source development with an

ideological lens. Third, the three case studies provided insights into the practices of open

source development from an ideological perspective. Moreover, the studies in this dissertation

yielded rich theoretical and practical implications regarding open source movement, they also

indicated various future research opportunities to further our understanding of OSS ideology

and open source movement.

xiii

Chapter 1

Introduction

Open source software (OSS) is not only just a software development paradigm that is preva-

lent nowadays [37], but also a social movement [24] since OSS realizes the sociological “coming

together” of various types of individuals and organizations to form a collective identity for

certain purposes on Internet-based platforms [29, 30, 110]. It brings not only substantial

changes in the software industry [41], but also has profound implications beyond the techni-

cal realm [29]. Its scalability, continuous improvements, and community-driven innovations,

offer great opportunities to champion social good and help address many challenging issues

such as climate change [75], human trafficking [64], pandemic outbreaks [120], etc.

Understanding a social movement should not neglect its underpinning “heart and soul”

[105]. Such “heart and soul” is exactly the ideology guiding its membership and members’

actions, its issue and agenda selections, its ideas about solutions to problems, and its choice of

tactics [66]. Ideology has been recognized for its critical role in driving such social movements

[77, 108, 119]. For example, according to Leveille’s case study, the dynamic of the Occupy

Wall Street (OWS) movement between the fall of 2011 and 2012 was determined by the

movement’s ideological orientations, which also connected an inner core and an outer range

1

of more or less active participants [70]. Similar to any other social movements, the open

source software movement in the last several decades is also driven by its own ideology,

namely OSS ideology.

OSS ideology could be defined as “the basis of social representations regarding open

source development shared by open source community” [117]. These social represen-

tations enable OSS ideology to influence the OSS movement at multiple micro-, meso-, and

macro-levels. At the micro-level, OSS ideology influences individuals’ beliefs, preferences,

decisions, and actions [18], such as choosing particular open source projects to contribute

to, and when to leave a project. Then, at the project and community (meso-) level, OSS

ideology also influences a team’s governance participation, and dynamics [102, 26], e.g., why

a project has a BDFL – Benevolent Dictator For Life, and how to achieve high productivity

with voluntary contributions. Finally, at the broader societal (macro-) level, OSS ideology

accounts for the emergence of open innovation systems [7, 57], or the harnessing of collective

intelligence in addressing mission-critical global issues [28]. Thus, developing a deep under-

standing of OSS ideology would inform us how the OSS movement has grown and exhibited

diversities in its practices while maintaining its core premises; and provide an evaluative

framework for identifying and assessing the potential misfits among multiple participating

entities’ ideological orientations [9].

While the impacts of OSS ideology are ubiquitous in almost every aspect of the OSS move-

ment, a striking fact is that relatively little research focuses on it in SE literature, in contrast

to increasingly investigated many other issues in OSS [117]. Ideological elements often dis-

pense in the literature studying motivation [46, 98], collaboration and coordination [78, 59],

in a fragmented manner. One reason for the dearth of such studies might be that the term

“ideology” is inherently vague, or even ambiguous, in its conceptualization. Researchers of-

ten took a convenient way of focusing on a very narrow proportion of it, e.g., the ideology of

effectiveness [102]. Moreover, applying an ideological lens to investigate the OSS movement

2

also suffered from the absence of agreed-upon essential elements and an empirically-grounded

theoretical framework overarching these elements [117].

Aiming to fill the above knowledge gaps, this dissertation reports our efforts in building a

foundational understanding of OSS ideology, and gaining insights on the current OSS move-

ment from an ideological perspective. We intend to develop a comprehensive, contemporary,

and empirically-grounded theory of OSS ideology. We designed a qualitative grounded theory

study to build the theory. During the entire grounded theory process, we interviewed 22 OSS

participants with diverse backgrounds, and compiled a dataset containing 41 Open Source

Initiative (OSI) 1 current and emeritus members’ most recent public speeches/interviews.

The data were analyzed and interpreted in an interactive coding and memo-writing proce-

dure. A substantive theory, as a set of themes that are related to one another under the

cohesive umbrella of the OSS ideology, emerged from the data. It consisted 42 themes in six

broader categories: membership, norms/values, goals, activities, position and group-relations,

and resources, which extends the literature significantly.

The empirical theory reflects the ideologies that are commonly shared across open source

community. However, in practice, ideologies upheld by particular open source projects tend

to vary, i.e., some themes of OSS ideology might be missing, while the same themes might be

upheld to different extend across different projects. Literature has confirmed the existence of

such heterogeneity of ideologies in OSS movement, and revealed potential impacts on open

source development, i.e., the ideological misfit between contributors and open source projects

could influence OSS practices [26]. Thus, an assessment system for OSS ideology tends to be

a necessity, as it could benefit open source development, i.e., it could help identify the misfit,

avoid potential conflicts in OSS development, and help match projects and contributors with

similar OSS ideologies.

Based on the empirical theory of OSS ideology, we developed an assessment framework by

1OSI was established in 1998 as a steward organization for the OSS movement.

3

operationalizing each theme in the empirical theory. The assessment framework was designed

with two principles: “focusing on open source projects,” and “relying on public data source.”

32 out of 42 themes in the empirical theory were successfully operationalized with qualitative

or quantitative assessment methods. Furthermore, the assessment framework was refined

with a pilot study on project D3.

The assessment framework provides a practical ideological lens to examine the current open

source projects, e.g., whether open source projects follow particular themes, or how they re-

alize the particular themes in practice. With the assessment framework, we conducted case

studies to investigate how current open source projects follow OSS ideology, to gain insights

on current open source movement. Three open source projects, D3, Zephyr, and PyTorch,

were selected as study subjects. We collected the data required by the assessment frame-

work, including repository data (commits, issues, issues comments, etc.), documentation

data (tutorials, and official documents), and related news articles. Then we conducted as-

sessments on the ideologies within each study subject by applying the assessment framework.

With the assessment results, we recruited participants from three projects and collected their

evaluation and feedback on the assessment results...

This dissertation develops an empirical understanding of OSS ideology, and contributes to

the software engineering literature in the following ways:

• A comprehensive, contemporary, and empirically-grounded theory of OSS ideology un-

der a cohesive framework that reflects the current OSS movement;

• A collection of detailed descriptions of ideological themes offering critical empirical and

theoretical insights and/or opportunities for future research;

• A practical and extensive assessment framework, based on the empirical theory, with

thorough workflows to conduct the analysis on OSS ideology;

4

• A set of implications regarding insights into the OSS movement, future research oppor-

tunities, and practices, with the ideological lens offered by the empirical understanding.

The rest of the dissertation is organized as follows:

Chapter 2 first briefly introduces the history of ideology. It provides an overview of the

development of the conception of ideology in history, to understand the inherent vagueness

nature of this concept. Then we derive the definition of OSS ideology from the literature to

help encompass our research inquiries. In addition, we also present a few studies related to

OSS ideology in SE literature, and briefly discuss the necessity of developing an empirical

theory of OSS ideology.

Chapter 3 presents the study to develop an empirical theory of OSS ideology. We introduce

our research process following grounded theory methodology, and present each theme in

the emerged empirical theory of OSS ideology, with the empirical evidence from the anal-

ysis. Furthermore, we discuss both theoretical and practical implications derived from the

empirical theory.

Chapter 4 introduces the assessment framework based on the empirical theory of OSS ideol-

ogy. We present two design principles to develop the framework, and the process of defining

workflows for each theme. Then we refine the assessment framework with the result of pilot

study on project D3.

Chapter 5 reports the case study to investigate the ideologies within current open source

projects by applying the assessment framework. We introduce the study design, and present

the results of case study on three selected open source projects, D3, Zephyr, and PyTorch.

We also discuss some insights into the current practice of open source movement, derived

from the case study.

Chapter 6 discusses a set of implications derived from the results of the major studies in this

5

dissertation, including both theoretical and practical implications, and potential directions

for future research on open source development. We also discussed the limitations of the

studies in this dissertation.

Chapter 7 summarizes and concludes this dissertation.

6

Chapter 2

Background

In this chapter, we first briefly introduce the history of ideology, to understand the conception

of ideology. We also derived the definition of OSS ideology to help encompass our research

inquiries. Then we present a few studies related OSS ideology in SE literature, to highlight

the need of developing a comprehensive theory of OSS ideology.

2.1 A Brief History of Ideology

1796 1840s 1920s 1950s

de Tracy:
Origin of ideology

Marx:
Polemical,

Epiphenomenal,
and

Latent conceptions

Lenin:
Socialist ideology

Lukacs:
Proletarian ideology

Mannheim:
Ideology of sociology

Bendix:
Organizational

Ideology

…

…

Figure 2.1: The simplified key fundamental developments of ideology theories.

7

The term “ideology” has a circuitous history [104], and it has been used by different people

with various meanings for over two centuries, in the areas of social science, political analysis,

etc. Fig. 2.1 shows some key fundamental developments of ideology theories in history.

2.1.1 Origin of the Concept of “Ideology”

French philosopher Destutt de Tracy first used the term “ideology” in 1796. He proposed a

new project of systematic analysis of ideas and sensations, and argued that we could only

know the ideas formed by our sensation of them, instead of the things themselves, which is

our scientific knowledge. Thus, ideology at that time was a “science of ideas”, originally a

positive, useful, and rigorous concept [65], which de Tracy considered as “the pre-eminent

science that would facilitate progression human affairs,” [104] corresponding with the spirit

of the Enlightenment. Later, he extended the scope of ideology to the social and political

areas, analyzing the experience, feeling, thinking, etc. The focus of ideology also shifted to

the ideas themselves, instead of the science of ideas at the beginning, and ideology gradually

became abstract and illusory ideas [104].

However, Napoleon Bonaparte criticized the idea of ideology in the political context at the

time [104]. He argued that ideology intended to determine political principles based on

abstract reasoning, which would actually encourage rebellion. Thus, the concept of ideology

was viewed as a political threat from republicanism, and he also blamed it for the collapse

of his empire. With de Tracy’s exploration and Napoleon’s opposition, the term “ideology”

emerged and started its circuitous history and fuzzy life.

8

2.1.2 Marx’s Contribution to Ideology

Karl Marx played a critical and unique role in the development of the concept of ideology

[109]. Marx studied de Tracy’s work and Napoleon’s attack on ideology, when he was in

Paris. Initially, he followed Napoleon’s negative view on ideology, and utilized it to criticize

the ideas of the “Young Hegelians.” In The German Ideology, Marx argued that their views

are “ideological,” and they overestimated the value and role of ideas in history and social

life [76]. Consequently, the polemical conception of ideology was derived, and was defined

as “a theoretical doctrine and activity which erroneously regards ideas as autonomous and

efficacious and which fails to grasp the real conditions and characteristics of social-historical

life.” [104] Although this conception is a negative view inherited from Napoleon, Marx

developed it beyond the original scope, where the ideas should be emerged based on the

practice of activity, instead of autonomy.

Then Marx, along with Engels, considered the concept of ideology from a more general

perspective, analyzing the production and the relations between classes. They intended to

empower the ideology a more general role in the socio-historical analysis, and defined the

epiphenomenal conception, which referred as “a system of ideas that expresses the interests

of the dominant class but represents class relations in an illusory form.” [104]. Thus ideology

serves a systematic role in Marx’s theoretical framework, and generally reflects “the ideals of

the ruling class.” In his well-known workManifesto of the Communist Party, Marx explained

the socio-economic transformation, unmasked the ideological forms of consciousness of the

dominant class in the society, and anticipated the victory of proletariat ideology, with the

demise of bourgeois ideology.

Furthermore, in his work, Marx also analyzed symbols in society. He intended to characterize

the phenomena of symbolic life in society, such as slogans and traditions. These symbols,

even though not abstract enough, play a significant role in orienting people to specific di-

9

rections. Thus, he developed the latent conception of ideology, referred as “a system of

representations which serves to sustain existing relations of class domination by orientation

individuals towards the past rather than the future, or towards images and ideals which

conceal class relations and detract from the collective pursuit of social change.” [104]

The concept of ideology had a giant leap and advanced to a higher level with the unique

contribution of Marx, while it also gradually became abstract with various conceptions.

2.1.3 Modern and Post-modern Development

Since Marx, the concept and discussion of ideology are widely viewed in terms of its roots

in individual and group interests. It has been used in many fields of social science, and has

been developed with rich interpretations, not just limited to Marxism. As Marx took over

the concept of ideology from Napoleon, it had a negative sense in most of his work. One of

the major tendencies in modern and post-modern development, however, was neutralizing

the concept of ideology [104].

The neutralization was first started by some Marxists when Marxist social movements in

Europe had challenges in particular social-historical circumstances. Lenin faced the polarized

political situation in Russia, and he intended to combat the bourgeois ideology and realize

the revolution, thus he elaborated “socialist ideology”. Lukaćs, facing a similar situation

in the working-class movement, emphasized the importance of “proletarian ideology”, which

both helped the proletarian class understand their situation and class consciousness [104]. In

both Lenin’s and Lukaćs’s work, the concept of ideology generally remains consistent, since

it was inherited from Marx’s theory. However, their conceptions tend to be generalized–the

ideas to express the interests of the major classes, not associating with a strong negative

sense [104].

10

Besides Marxists, other scholars also contributed to the neutralization process, and they

covered a wide spectrum in politics, social science, philosophy, etc. Karl Mannheim’s work

is representative of them. Different from Marxists, Mannheim did not view ideology as a

weapon of a class for the revolution. Instead, he considered it as a method of research in

social and intellectual history, which is similar to de Tracy’s idea, referring to “the sociol-

ogy of knowledge” [104]. He intended to use his new approach to analyze all the factors

that influence thought or ideas in the social context, which was called the general forma-

tion of the total conception of ideology. Thus, the conception of ideology in his theory is

“the interwoven systems of thought and modes of experience which are conditioned by social

circumstances and shared by groups of individuals, including the individuals engaged in ide-

ological analysis.”[104] Moreover, in La production de l’idéologie dominate, Pierre Bourdieu

and Luc Boltanski offered critical insights into the principal characteristics and functions

of ideologies in advanced capitalist societies [13]. For example, they argued that ideology’s

primary function is to “orient an action or a set of action,” which indicated the shift from

ideology’s theoretical dimensions to practical dimensions in real-life situations.

Since the late 1950s, the concept of ideology started gaining popularity in many social

science fields [51], and one strand of work is usually referred to as “organizational ideology.”

Reinhard Bendix studied the social relations in four centuries to identify the nature, origins,

and consequences of “managerial ideologies,” an early notion of “organizational ideology.”

He defined it as “all ideas which are exposed by or for those who seek authority in economic

enterprises, and which seek to explain and justify that authority.” [8] Under the umbrella of

organizational ideology, researchers have used the theoretical lens of ideology to study many

aspects of organizations at both individual and organizational levels [47, 55, 63, 74, 115], to

name a few, organizational cohesion, performance, structure, innovation, social responsibility,

knowledge sharing, individual social action, engagement, and so on.

In summary, the concept of ideology has been embodied with rich interpretations by various

11

scholars in history. It tends to be general and abstract, but also vague and ambiguous

at times. However, it becomes clear that the contemporary uses of ideology have already

deviated from the original emphasis on conflicts and tensions among social classes, and come

to have considerable overlap with its social psychological impacts on individuals and groups,

and their actions.

2.2 Exploration of OSS Ideology

Researchers have been studying the OSS movement and exploring its ideology since its incep-

tion. Scholars from multiple disciplines advanced OSS ideology theories. Ljungberg defined

OSS ideology from two dimensions [73], One dimension was zealotry, i.e., people believe that

OSS is either a new way of life, or a good way to build software. The other dimension was

the degree of hostility to commercial software. Steward and Gosain developed the three-tent

(beliefs, values, and norms) framework by combining famous advocates’ narratives and the

prior literature [102]. For example, “open source development methods produce better code

than closed source” is a belief in their framework. However, their framework is preliminary

and far from comprehensive; even they admitted that [102]. Researchers further applied these

frameworks to study OSS ideology’s impacts. At the project level, OSS ideology could affect

the effectiveness in attracting and retaining contributors, the production of project outputs,

and so on [102]. At the individual level, the misfit of OSS ideology between contributors

and projects could influence contributors’ commitment [26]. For example, the under-fit of

OSS ideology–contributors embrace OSS ideology more than their projects do–would lower

contributors’ commitment.

Besides, researchers also studied various aspects of OSS ideology, but in an implicit and

fragmented manner. At the individual level, researchers first investigated the motivations

to participate in open source development [11, 46, 112, 94]. Recently, monetary incentives’

12

effects in motivating contributors were also examined [122]. Then individuals’ activities in

OSS projects were also studied by researchers, to name a few, communication and social

learning [127], contributing and evaluating [42, 48, 107], maintainers’ invisible work [45].

Contributors’ improper or unethical behaviors and such behaviors’ impacts recently received

much attention, particularly uncivil comments, and toxic language [39, 87].

Moreover, many project/community-level phenomena have been related to ideology. As

the fundamental element of ideology, values continuously received researchers’ attention,

for example, transparency [25], diversity [12, 111, 15], and code of conduct enforcing these

values [72]. Some work extended the focus to individual and group activities that are guided

by values. These activities include collaboration and coordination [59, 67, 78], licensing

[21, 41], governance & decision making [40, 59, 79], and knowledge sharing [58, 118]. From a

structural perspective, researchers deconstructed how individuals form communities. They

found that different roles of contributors consist of a centralized, layer-upon-layer structure

[60], with pathways to allow leadership to emerge [106, 52].

Furthermore, we conducted a brief literature survey on the studies related to ideology in

software engineering. First, papers from four top-tier conferences and journals in software

engineering (SE) were selected, i.e., the International Conference on Software Engineering

(ICSE), the ACM Joint European Software Engineering Conference and Symposium on

the Foundations of Software Engineering (ESEC/FSE), the IEEE Transactions on Software

Engineering (TSE), and the ACM Transactions on Software Engineering and Methodology

(TOSEM). Regarding ICSE, we included the main track, as well as the Software Engineering

in Practice (SEIP), and the Software Engineering in Society (SEIS) tracks, since the papers

in those tracks often focus on human or social aspects in SE, which potentially related to

ideology in SE; regarding ESEC/FSE, we only considered papers from main track; for both

TSE and TOSEM, we included all published papers. In total, 1,698 papers published in

those venues from 2016 to 2020 were selected. Then two researchers manually reviewed

13

and screened the selected papers as relevant or not relevant to ideology, based on the title,

abstract, and keywords, and jointly resolved the disagreements. Finally, 119 papers were

relevant to ideology, as shown in Tab. 2.1.

Table 2.1: Distribution of the papers relevant to ideology in SE[117].

Venue & Track 2016 2017 2018 2019 2020 Total

ICSE-Main Track 4 4 10 7 13 38
ICSE-SEIP 2 2 6 1 1 12
ICSE-SEIS 4 3 3 4 6 20
ESEC/FSE-Main Track 6 2 4 3 10 25
TSE 2 3 0 5 8 18
TOSEM 0 1 0 2 3 6
Total 18 15 23 22 41 119

Figure 2.2: The top ten research focuses in the publications related to human factors in SE
between 2016 and 2020 [117].

With the selected papers, we further analyzed their research focuses. In general, none

of those papers explicitly mentioned the notion of “ideology”, nor defined the ideology in

SE. However, those papers touched on some elements related to OSS ideology, and the

14

research interests were increasing [24, 117]. The research interests often focused on ten

themes: gender, fairness, human value, documentation, code review, requirement, software

engineer, community, sustainability, and testing [117], as shown in Fig. 2.2. However, most

studies tended to be knowledge fragments that focus on particular aspects, and there were

few efforts to integrate them into a coherent body [24]. One of the reasons could be the

lack of an explicit definition of OSS ideology [117]. Moreover, the samples in these studies

often focused on high-profile OSS projects and famous technical icons, and almost half of

them were skewed toward a single project [24]. That potentially overlooked the voice of

grassroots and non-technical contributors in the open source movement [117]. Therefore, we

first derive an explicit definition of OSS ideology. Then we collect data from both first-line

OSS participants and OSI board members, and build an empirical theory of OSS ideology

based on the collected data.

2.3 Defining OSS Ideology

The first step to investigating any social construct is to define it in its context. Considering

the vagueness of the concept of ideology, it is necessary to explicitly define OSS ideology to

help encompass the research inquiries. We derived the definition of OSS ideology based on

van Dijk’s work [109], as

Definition 2.1 (OSS Ideology). The basis of social representations regarding open source

development shared by open source community.

This definition also indicates two ways to approach OSS ideology, i.e., cognitive and social

ways. First, ideology characterizes the basis of the social representations in the context

of open source movement, such as ideas and beliefs related, terms used in cognitive science.

They reflect how open source participants perceive open source development. Then, the

15

social way reflects that ideology emerges within social groups, through the interaction and

communication among members of the open source community, e.g., what kind of people

could become members of the open source community. When most of the members reach

an agreement on particular things regarding open source development, these usually become

part of the ideology. In addition, ideology is the things that are shared in common by the

whole community, and reflects the common interests of the open source community [109].

However, the two ways are neither opposite nor separate when approach ideology. Indeed,

cognitive and social ways define ideology at different levels. Individuals’ social representa-

tions (ideas and beliefs) characterize ideology at the micro-level, while the interests of the

social groups capture ideology at the meso/macro-level. The individual’s ideas and beliefs

could be considered as an initial set of ideology; then they interact with others who also have

similar ideas and beliefs, and later they could reach an agreement and share the common

interests as a whole group. Hence, according to its definition, OSS ideology is intertwined

with both cognitive and social ways, which is how we approach and develop an empirical

theory of OSS ideology.

16

Chapter 3

Developing an Empirical Theory of

OSS Ideology

3.1 Research Methodology

The study design followed grounded theory methodology [17]. First, there was very lim-

ited extant theory examining the ideologies in the OSS movement [117]. Second, empirical

evidence related to OSS ideologies was also lacking. Under such circumstances, grounded

theory entailed the discovery of concepts from data in an inductive process [17], allowing

the generation of novel and accurate insights into the topic under study. Moreover, the

grounded theory utilizes an iterative process of data collection and analysis, such a process

makes the theory falsifiable, dependent on context, and never completely final [49]. Thus, we

could approach OSS ideology by learning from OSS participants’ experiences and reflections

within particular contexts, rather than the intent to measure something against pre-existing

theories. Fig. 3.1 provides an overview of the whole research process to investigate OSS

ideology.

17

A: an open-ended beginning
and research goals

B: ethical review

C: initial purposive sampling
from GitHub

D: interview-coding and memo
writing after each interview

E: research protocol
modification and ethical

review

F: theoretical sampling

F1: sampling from Twitter F2: sampling from personal
connections

F3: sampling OSI members’
public interviews and

speeches

G: interview-coding and memo
writing after each interview

H: video transcripts-coding
and memo writing after
transcripting each video

I: theoretical memo writing
and concept refinement with

pre-existing framework
(van Dijk 1998)

Saturated theory of OSS
ideology

Figure 3.1: Overview of the research process to investigate OSS ideology.

3.1.1 Data Sources

We followed an iterative process of theoretical sampling to collect data [17]. Data was

collected based on the gaps in the emerging theory identified in data analysis [17, 22]. The

18

data was collected from two sources: (1) interviews with OSS practitioners, and (2) video-

recorded public interviews or speeches of current and former OSI board members. Both

constituted legitimate data sources in grounded theory methodology, since grounded theory

accommodates “interviews, field observations, documents, videos, etc.” [22].

The two data sources were not chosen randomly. In particular, with the progress of the

interviews and data analysis, we noticed that most interviewees were technical staff, and

their experiences were hardly beyond the project level. Thus, such a sample was insufficient

for our theory development. Meanwhile, the potential informants representing non-technical

aspects of OSS, such as legal counsels, and high-level leaders, were often hard to access

directly to arrange interviews. Therefore, we resorted to secondary data sources.

After careful consideration, we chose the video recordings of public interviews or speeches of

OSI board members on YouTube and other video-sharing sites. Those board members were

often renowned contributors or highly respected individuals in the OSS world and leading

proponents of the OSS movement, e.g., Josh Berkus was well known for his contributions to

multiple high-profile projects, such as Linux and PostgreSQL. This secondary data source

had three advantages. First, OSI board members consisted of a wide range of OSS par-

ticipants. Many of them were opinion leaders, activists, and lawyers, thus forming a good

complementarity with the interviews, as well as satisfying grounded theory’s requirement of

theoretical saturation [17, 22]. Second, public interviews and speeches of this sample often

contained rich ideology-related content and influenced many OSS participants. Third, these

videos were available to the public, either falling within the public domain or allowing for

fair use, without incurring any additional ethical or copyright concerns.

19

3.1.2 Data Collection

The data collection started with initial purposive sampling (Step C in Fig. 3.1). We recruited

participants and had interviews with each of them. Then we had another iteration of data

collection, i.e., theoretical sampling (Step F in Fig. 3.1), based on the analysis of the previous

collected data. The theoretical sampling included recruiting more participants for interviews

(Step F1 & F2 in Fig. 3.1), and collecting secondary data (Step F3 in Fig. 3.1).

Participants Recruitment and Interview

We recruited participants for interviews in a three-wave process. The first wave (Step C in

Fig. 3.1), as the initial purposive sampling, recruited participants from GitHub through

emails. We sampled 20 open source projects from multiple domains and of multiple sizes

on GitHub, and collected their contributors’ emails (N = 540) from their public profiles

if existed. Then we sent emails to invite potential participants, and 19 of them expressed

willingness to join the study (response rate: 3.5%). In the second wave, we shared the

recruitment post on X/Twitter to reach broader audiences. Those who signed up were

screened and selected based on their responses. However, most of them either lacked OSS

experiences, or were scammers, except one eligible participant. The third wave focused on

the research team’s contacts who were veteran or active OSS practitioners. We asked them

if they would like to participate, and two agreed to have interviews. In total, we recruited

22 participants from 14 countries around the world, as shown in Tab. 3.1. They had diverse

backgrounds in jobs, experiences, and other demographic factors.

With each participant, we had semi-structured, online interviews to collect data 1. Each

interview was around 30 minutes. First, we asked questions about their demographics and

background in software development. The second part was used to collect their personal

1The interview protocol is in Appendix A.

20

Table 3.1: Demographics of 22 recruited participants.

Occupation Country
Experience in SE

(in Years)
Experience in OSS

(in Years)

P1 Software Engineer/Freelancer Australia 30 16
P2 Undergraduate Student India 3 0.5
P3 Graduate Student Spain 1 0.5
P4 Software Engineer US 25 22
P5 Senior Manager US 30 10
P6 Technical Support Engineer Spain 3 3
P7 Senior Software Engineer US 12 8
P8 Senior Software Engineer US 8 3
P9 Technical Solution Engineer Spain 10 6
P10 Lead Software Engineer Ireland 5 4.5
P11 QA Engineer US 9 9
P12 Graduate Student Austria 10 10
P13 Development Lead Switzerland 32 27
P14 Software Engineer Austria 20 10
P15 Graphic Designer US 10 6
P16 Freelancer/Consultant Germany N/A 20
P17 Back-end Developer Brazil 5 5
P18 Software Engineer Russia 9 7
P19 Senior Software Engineer Armenia 5 6
P20 Front-end Engineer Iran 8 3
P21 Senior Software Engineer Norway 10 10
P22 Computer Engineer Columbia 20 16

opinions and stories about the OSS development. We asked a series of open-ended ques-

tions, such as “What is your understanding of open source?”, “What makes you start the

contribution in open source projects?”, and so on. Based on their narratives, we asked some

follow-up questions for more details, clarifications, and provoking further reflections. More-

over, the participants also had the freedom to share anything relevant to OSS. Upon the

participants’ consent, all their narratives were recorded or noted; then, these narratives were

transcribed as interview data for further analysis. In total, we collected 635 minutes of

interviews.

21

Collecting Secondary Video Data

As shown in Fig. 3.1, video data collection was performed after the first wave of interviews

started. Note that we had decided to use OSI board members’ public interviews/speeches on

video-sharing sites (mostly YouTube) as the secondary data source, and the usage of these

videos constituted “fair use” under copyright law. First, we compiled a list of 51 people,

including both 10 current OSI board members and 41 emeritus members from OSI’s website.

Then, we searched online for their most recent public interviews or speeches related to open

source. In total, 41 of them had such videos available online, as listed in Tab. 3.2, and Fig.

3.2 are some snapshots of the example videos we collected. These videos were transcribed

for further analysis.

Figure 3.2: Examples of collected public speeches’ snapshots (left-to-right, top-to-bottom:
Tracy Hinds, Leslie Hawthorn, Guido van Rossum, and Brian Behlendorf).

22

Table 3.2: Lists of current† and emeritus OSI board members (as of 2022).

No. Name Link

1 Catharina Maracke† https://www.youtube.com/watch?v=XrDfZaoesj0

2 Thierry Carrez† https://www.youtube.com/watch?v=svaCMh7SYpc

3 Amanda Brock† https://www.youtube.com/watch?v=c5pYZJEM5Vk

4 Justin Colannino† https://www.youtube.com/watch?v=WDjh_nbAAeg

5 Pamela Chestek† https://www.youtube.com/watch?v=HAc-wSAW3Ig

6 Hong Phuc Dang† https://www.youtube.com/watch?v=otmDmwVmKbM

7 Aeva Black† https://www.youtube.com/watch?v=gTR_AtJVXkw

8 Tracy Hinds† https://www.youtube.com/watch?v=Z7HCxsFJkoA

9 Josh Berkus† https://www.youtube.com/watch?v=WnOKjfe3TUM

10 Carlo Piana† https://www.youtube.com/watch?v=W8za1gOlIWY

11 Eric Raymond https://www.youtube.com/watch?v=5e0FNskVeRk

12 Bruce Perens https://www.youtube.com/watch?v=08Xxaaijdgk

13 Matt Asay https://www.youtube.com/watch?v=iBQ1HL7ia2g

14 Brian Behlendorf https://www.youtube.com/watch?v=oy2NWfBbfaI

15 VM (Vicky) Brasseur https://archive.org/details/

camundameetup2022-copyrightlicensingbasics

16 Deborah Bryant https://www.youtube.com/watch?v=YbjO4Jf7sPQ

17 Ken Coar https://www.youtube.com/watch?v=900T8_WjJx8

18 Danese Cooper https://www.youtube.com/watch?v=WjPBz5QhQCQ

19 Chris DiBona https://www.youtube.com/watch?v=wJ5gW0s5olE

20 Karl Fogel https://www.youtube.com/watch?v=sZnZMow20hk

21 Richard Fontana https://www.youtube.com/watch?v=ncXa0LFeQY0

22 Rishab Aiyer Ghosh https://www.youtube.com/watch?v=O0B9bfPEsj8

23 Leslie Hawthorn https://www.youtube.com/watch?v=dM0F961xze4

24 Joichi Ito https://www.youtube.com/watch?v=Bkd29EADdpw

25 Jim Jagielski https://www.youtube.com/watch?v=tipdkR3dr_U

26 Patrick Masson https://www.youtube.com/watch?v=Y9GkMCod97Q

27 Martin Michlmayr https://www.youtube.com/watch?v=WNw-aq8qGiw

28 Mike Milinkovich https://www.youtube.com/watch?v=rltdJ5TNorI

29 Ian Murdock https://www.youtube.com/watch?v=nyL2Fx0iNZ0

30 Russell Nelson https://www.youtube.com/watch?v=kHEk7pRXTWU

31 Nnenna Nwakanma https://www.youtube.com/watch?v=I2lNgUdGXIw

32 Simon Phipps https://www.youtube.com/watch?v=oOYiXGYTq2E

33 Carol Smith https://www.youtube.com/watch?v=kzHwc19p3jI

34 Bruno Souza https://www.youtube.com/watch?v=JYJVQhYbIb8

35 Michael Tiemann https://www.youtube.com/watch?v=Y51FDukxSKA

36 Guido van Rossum https://www.youtube.com/watch?v=7kn7NtlV6g0

37 Italo Vignoli https://www.youtube.com/watch?v=2pMKed601ro

38 Luis Villa https://www.youtube.com/watch?v=d7YE2TI9eDg

39 Tony Wasserman https://www.youtube.com/watch?v=hgn3tFymDOM

40 Sanjiva Weerawarana https://www.youtube.com/watch?v=jmDQW8s3Cjs

41 Stefano Zacchiroli https://www.youtube.com/watch?v=oQ3y695SPXM

23

https://www.youtube.com/watch?v=XrDfZaoesj0
https://www.youtube.com/watch?v=svaCMh7SYpc
https://www.youtube.com/watch?v=c5pYZJEM5Vk
https://www.youtube.com/watch?v=WDjh_nbAAeg
https://www.youtube.com/watch?v=HAc-wSAW3Ig
https://www.youtube.com/watch?v=otmDmwVmKbM
https://www.youtube.com/watch?v=gTR_AtJVXkw
https://www.youtube.com/watch?v=Z7HCxsFJkoA
https://www.youtube.com/watch?v=WnOKjfe3TUM
https://www.youtube.com/watch?v=W8za1gOlIWY
https://www.youtube.com/watch?v=5e0FNskVeRk
https://www.youtube.com/watch?v=08Xxaaijdgk
https://www.youtube.com/watch?v=iBQ1HL7ia2g
https://www.youtube.com/watch?v=oy2NWfBbfaI
https://archive.org/details/camundameetup2022-copyrightlicensingbasics
https://archive.org/details/camundameetup2022-copyrightlicensingbasics
https://www.youtube.com/watch?v=YbjO4Jf7sPQ
https://www.youtube.com/watch?v=900T8_WjJx8
https://www.youtube.com/watch?v=WjPBz5QhQCQ
https://www.youtube.com/watch?v=wJ5gW0s5olE
https://www.youtube.com/watch?v=sZnZMow20hk
https://www.youtube.com/watch?v=ncXa0LFeQY0
https://www.youtube.com/watch?v=O0B9bfPEsj8
https://www.youtube.com/watch?v=dM0F961xze4
https://www.youtube.com/watch?v=Bkd29EADdpw
https://www.youtube.com/watch?v=tipdkR3dr_U
https://www.youtube.com/watch?v=Y9GkMCod97Q
https://www.youtube.com/watch?v=WNw-aq8qGiw
https://www.youtube.com/watch?v=rltdJ5TNorI
https://www.youtube.com/watch?v=nyL2Fx0iNZ0
https://www.youtube.com/watch?v=kHEk7pRXTWU
https://www.youtube.com/watch?v=I2lNgUdGXIw
https://www.youtube.com/watch?v=oOYiXGYTq2E
https://www.youtube.com/watch?v=kzHwc19p3jI
https://www.youtube.com/watch?v=JYJVQhYbIb8
https://www.youtube.com/watch?v=Y51FDukxSKA
https://www.youtube.com/watch?v=7kn7NtlV6g0
https://www.youtube.com/watch?v=2pMKed601ro
https://www.youtube.com/watch?v=d7YE2TI9eDg
https://www.youtube.com/watch?v=hgn3tFymDOM
https://www.youtube.com/watch?v=jmDQW8s3Cjs
https://www.youtube.com/watch?v=oQ3y695SPXM

3.1.3 Data Analysis

The data analysis process started immediately after some data was collected (Step D, G, &

H in Fig. 3.1), rather than waiting until all the data was gathered. Both interview data and

secondary video data were treated equally in the analysis. The theory emerged during data

analysis and formed the basis of further theoretical sampling (Step F in Fig. 3.1), so we

need to go back and forth between data collection and data analysis. Such iterative process

of data collection and data analysis stopped when Theoretical Saturation was reached [80].

The data analysis started with Open Coding when provisional codes were assigned to them

based on the meanings identified by the authors [22, 17]. Concepts that delineated OSS ide-

ology in the data emerged in this step. Some concepts were grouped together as higher-level

categories, and they would be refined in the following steps. Two researchers coded the data

independently but met virtually almost every day to discuss the codes and resolve disagree-

ments (marked with meeting icons in Fig. 3.1). Thus, the notion of inter-rater reliability

was not applicable; rather, the two researchers came to an agreement with most codes. In

some rare cases of lack of agreement on certain codes, the researchers chose an inclusive

attitude regarding each other’s proposed codes, postponing the validation of the codes until

the time when more data were collected and analyzed [95]. Doing so helped expose each

researcher’s individual interpretive act as early as possible, thus avoiding potential misun-

derstandings and inconsistencies resulting from coders’ different theoretical backgrounds to

be real, long-lasting threats [32].

In Axial Coding, the identified concepts and categories were put together and examined again

to find the connection or relations among them. Based on these connections or relations, we

could cluster some concepts together as categories. Then we further identified the properties

and dimensions of these categories.

After that, we returned to the data again, and re-coded them with these concepts that

24

emerged from the data. Constant Comparisons were performed from the beginning, and

through the entire process of data analysis. First, the emerging theory of OSS ideology was

repeatedly compared with old and new data. the gaps were identified and provided guidance

for theoretical sampling to collect more data. When there were no new concepts emerged

from the new data, Theoretical Saturation was achieved.

The Selective Coding focuses on important categories and concepts, without considering

the others. The selection was based on the frequency of codes’ occurrences or the patterns

that appeared in the data. For example, some concepts that were frequently mentioned in

multiple interviews might be more important. Meanwhile, since an OSS ideology theory

was desired, categories and concepts less relevant to OSS ideology might not be important.

The process of selective coding resulted in a set of critical categories, as well as an in-depth

understanding of them.

We further finalized theory building through Theoretical Memo Writing and Concept Re-

finement (Step I in Fig. 3.1). It was the pivotal step in grounded theory [22, 17]. With the

space created through theoretical memo writing, we compared the data, codes, categories,

and concepts in our analysis, and focused on the theoretical propositions linking them to-

gether [80]. Then, we refined the emerging categories and concepts. When the collected data

well supported all the emerging categories and concepts, and new data could not provide any

further refinements, Theoretical Saturation was thus reached, which indicated the collected

was sufficient, and we could end the iterative process of data collection and analysis [80].

Moreover, instead of excluding any literature, we reused a pre-existing theoretical frame-

work proposed by van Dijk [109] to facilitate the theory development in this step, guided by

[17, 80]. We discussed the emerging categories and concepts, sorted them, and mapped them

into the framework. We paid particular attention to ensuring that the framework would be

adapted to fit these categories and concepts well, rather than altering the categories and

concepts to match the framework. Finally, the empirical theory of OSS ideology emerged

25

from the analysis.

3.2 Empirical Theory of OSS Ideology

Fig. 3.3 provides an overview of the empirical theory of OSS ideology that emerged from

the data. In general, the empirical theory consists of 42 themes in six key categories, i.e.,

norms/values, membership, goals, activities, positions/group relations, and resources ; the

code frequency of each theme is also listed. In the remainder of this section, we discuss

the identified themes by categories. Note that some themes tend to be straightforward and

have been well covered by the extant literature, for example, Individual Motivation has been

well-examined in [11, 46, 94, 98]. Therefore, when discussing each category, we focus on

key themes that either have the potential to offer new empirical and theoretical insights or

opportunities for future research.

3.2.1 Norms/Values

Norms/values are commonly defined as guiding principles in people’s lives. In addition to the

functions at the individual level, human norms/values’ social-cultural nature makes them be

shared, known, and applied by members in a large variety of OSS practices. The literature on

values/norms is vast [90]. For example, values were defined as guiding principles in people’s

lives in Schwartz’s theory of universal content and structure of human values [97]. Our data

analysis revealed 14 themes related to norms/values in OSS movement, i.e., (1) Altruism,

(2) Appreciation & Recognition, (3) Autonomy, (4) Comparative Advantages, (5) Constantly

Changing & Evolving, (6) Ethics, (7) Freedom, (8) Historical Heritage, (9) Meritocracy, (10)

Openness & Transparency, (11) Reciprocity at Multiple Levels, (12) Reflection & Improving,

(13) Trust, and (14) Universal Accessibility & Availability.

26

A
lt

ru
is

m

A
p

p
re

ci
a

ti
o

n
 &

R
e

co
g

n
it

io
n

A
u

to
n

o
m

y

C
o

m
p

a
ra

ti
ve

A
d

va
n

ta
g

e
s

C
o

n
st

a
n

tl
y

C
h

a
n

g
in

g

&
 E

vo
lv

in
g

E
th

ic
s

Fr
e

e
d

o
m

M
e

ri
to

cr
a

cy

O
p

e
n

n
e

ss
 &

T
a

n
sp

a
re

n
cy

R
e

ci
p

ro
ci

ty
 a

t

M
u

lt
ip

le
 L

e
ve

ls

H
is

to
ri

ca
l

H
e

ri
ta

g
e

R
e

fl
e

ct
io

n
 &

Im
p

ro
vi

n
g

T
ru

st

U
n

iv
e

rs
a

l

A
cc

e
ss

ib
ili

ty
 &

A
va

ila
b

ili
ty

B
ro

a
d

e
r

Im
p

a
ct

s
O

u
tr

e
a

ch

In
n

o
va

ti
o

n

B
u

ilt
-i

n
 P

ro
d

u
ct

 &

Q
u

a
lit

y

O
ri

e
n

ta
ti

o
n

s

Su
st

a
in

a
b

ili
ty

U
b

iq
u

it
o

u
s

P
e

n
e

tr
a

ti
o

n

C
o

m
m

u
n

it
y

o
f

P
ra

ct
ic

e
s

C
o

p
yr

ig
h

t,

Li
ce

n
si

n
g

,
&

 L
e

g
a

l

Im
p

lic
a

ti
o

n
s

H
u

m
a

n
 R

e
so

u
ce

D
e

ve
lo

p
m

e
n

t

G
o

ve
rn

a
n

ce
 &

D
e

ci
si

o
n

 M
a

ki
n

g

P
e

rs
o

n
a

l

D
e

ve
lo

p
m

e
n

t

So
ci

a
l

P
ro

d
u

ct
io

n

W
o

rk
 O

rg
a

n
iz

a
ti

o
n

 &

P
ra

ct
ic

e
s

In
d

iv
id

u
a

l C
h

o
ic

e
s

In
d

iv
id

u
a

l I
d

e
n

ti
ty

In
d

iv
id

u
a

l

M
o

ti
va

ti
o

n

Id
e

o
lo

g
ic

a
l

Le
a

d
e

rs
h

ip

In
te

rp
e

rs
o

n
a

l

R
e

la
ti

o
n

sh
ip

s

M
e

m
b

e
r

H
ie

ra
rc

h
y

&

R
o

le
s

P
e

rs
o

n
a

l E
xp

e
ri

e
n

ce
s

D
e

a
lin

g
 w

it
h

B
a

rr
ie

rs
 &

R
e

st
ri

ct
io

n
s

In
ce

n
ti

ve
s,

Fi
n

a
n

ci
n

g
,

&

Fu
n

d
in

g

K
n

o
w

le
d

g
e

&
 E

xp
e

rt
is

e

Su
p

p
o

rt
iv

e

Fa
ci

lit
ie

s
&

M
e

ch
a

n
is

m
s

In
te

ra
ct

io
n

 w
it

h

E
m

e
rg

in
g

T
e

ch
n

o
lo

g
ie

s

In
te

ra
ct

io
n

 w
it

h

C
o

m
m

e
rc

ia
l

So
ft

w
a

re

D
e

ve
lo

p
m

e
n

t

D
if

fe
re

n
ti

a
ti

n
g

fr
o

m
 F

re
e

So
ft

w
a

re
M

a
rk

e
t

&
 U

se
rs

Va
lu

es
/N

or
m

s
Go

al
s

Ac
tiv

iti
es

M
em

be
rs

hi
p

Re
so

ur
ce

s
Po

sit
io

n
an

d
Gr

ou
p

Re
la

tio
ns

12
29

24

19
1

39

54 3

41
21

2

2
9

66

49

995

730

13

7

35
54

23
43

63 84

13
51

85
12

13
82

6
6

61 7

46 14

18
39 22

A
lt

ru
is

m

A
p

p
re

ci
a

ti
o

n
 &

R
e

co
g

n
it

io
n

A
u

to
n

o
m

y

C
o

m
p

a
ra

ti
ve

A
d

va
n

ta
g

e
s

C
o

n
st

a
n

tl
y

C
h

a
n

g
in

g

&
 E

vo
lv

in
g

E
th

ic
s

Fr
e

e
d

o
m

M
e

ri
to

cr
a

cy

O
p

e
n

n
e

ss
 &

T
a

n
sp

a
re

n
cy

R
e

ci
p

ro
ci

ty
 a

t

M
u

lt
ip

le
 L

e
ve

ls

H
is

to
ri

ca
l

H
e

ri
ta

g
e

R
e

fl
e

ct
io

n
 &

Im
p

ro
vi

n
g

T
ru

st

U
n

iv
e

rs
a

l

A
cc

e
ss

ib
ili

ty
 &

A
va

ila
b

ili
ty

B
ro

a
d

e
r

Im
p

a
ct

s
O

u
tr

e
a

ch

In
n

o
va

ti
o

n

B
u

ilt
-i

n
 P

ro
d

u
ct

 &

Q
u

a
lit

y

O
ri

e
n

ta
ti

o
n

s

Su
st

a
in

a
b

ili
ty

U
b

iq
u

it
o

u
s

P
e

n
e

tr
a

ti
o

n

C
o

m
m

u
n

it
y

o
f

P
ra

ct
ic

e
s

C
o

p
yr

ig
h

t,

Li
ce

n
si

n
g

,
&

 L
e

g
a

l

Im
p

lic
a

ti
o

n
s

H
u

m
a

n
 R

e
so

u
ce

D
e

ve
lo

p
m

e
n

t

G
o

ve
rn

a
n

ce
 &

D
e

ci
si

o
n

 M
a

ki
n

g

P
e

rs
o

n
a

l

D
e

ve
lo

p
m

e
n

t

So
ci

a
l

P
ro

d
u

ct
io

n

W
o

rk
 O

rg
a

n
iz

a
ti

o
n

 &

P
ra

ct
ic

e
s

In
d

iv
id

u
a

l C
h

o
ic

e
s

In
d

iv
id

u
a

l I
d

e
n

ti
ty

In
d

iv
id

u
a

l

M
o

ti
va

ti
o

n

Id
e

o
lo

g
ic

a
l

Le
a

d
e

rs
h

ip

In
te

rp
e

rs
o

n
a

l

R
e

la
ti

o
n

sh
ip

s

M
e

m
b

e
r

H
ie

ra
rc

h
y

&

R
o

le
s

P
e

rs
o

n
a

l E
xp

e
ri

e
n

ce
s

D
e

a
lin

g
 w

it
h

B
a

rr
ie

rs
 &

R
e

st
ri

ct
io

n
s

In
ce

n
ti

ve
s,

Fi
n

a
n

ci
n

g
,

&

Fu
n

d
in

g

K
n

o
w

le
d

g
e

&
 E

xp
e

rt
is

e

Su
p

p
o

rt
iv

e

Fa
ci

lit
ie

s
&

M
e

ch
a

n
is

m
s

In
te

ra
ct

io
n

 w
it

h

E
m

e
rg

in
g

T
e

ch
n

o
lo

g
ie

s

In
te

ra
ct

io
n

 w
it

h

C
o

m
m

e
rc

ia
l

So
ft

w
a

re

D
e

ve
lo

p
m

e
n

t

D
if

fe
re

n
ti

a
ti

n
g

fr
o

m
 F

re
e

So
ft

w
a

re
M

a
rk

e
t

&
 U

se
rs

Va
lu

es
/N

or
m

s
Go

al
s

Ac
tiv

iti
es

M
em

be
rs

hi
p

Re
so

ur
ce

s
Po

sit
io

n
an

d
Gr

ou
p

Re
la

tio
ns

Figure 3.3: The overview of the empirical theory of OSS ideology

27

Altruism

Baytiyeh & Pfaffman once wrote “Open source software: A community of altruists” [6], which

well captured such a Utopian value in open source community. Open source development is

often driven by Altruism. Contributors are voluntarily spending their own time and effort

in open source projects, to help others or make something good for others. Our informants

shared similar thoughts:

“For me, it’s (open source) really about making life better for others, maybe not

their life specifically, but just helping them solve problems.” (P13)

“Most of my projects, I started by myself. Most of the tools that I was writing

for myself and I started to publish [as open source projects] to help other people.”

(P17)

Appreciation & Recognition

Every contribution in open source development should be recognized by the community.

People should “acknowledge and respect” (Deborah Bryant) altruists’ contribution, both

technical and non-technical contribution, and give them proper credit. Moreover, in open

source projects, there are various ways to express recognition and appreciation to those

contributors, as Hong Phuc Dang explained “recognition is not only about the financial

reward, but there is also many things that you can do.” Sometimes it does not need to be

very formal, a simple “thank you” could be enough, while other ways include mentioning in

comments, listing in release notes, giving a reference letter or certificate, and so on:

“Mentioned the name on the issue of the pull requests.”

28

“For young developers and students, it is a certificate and a reference letter that

had them for their job seeking or higher education.”(Hong Phuc Dang)

Autonomy

People in open source development tend to be self-governed and self-determined in making

choices and decisions, as Martin Michlmayr mentioned:

“There isn’t really any one in open source who tells you, oh, you should be do-

ing this, you should be doing that. It’s very like people very self-determined.”

(Martin Michlmayr)

In open source development, individuals have the autonomy to decide when to contribute,

or what to contribute. There is neither a “contributor agreement,” nor a “bonding employ-

ment,” to enforce the contribution in open source projects:

“There is not much of a daily routine... I pretty much done nothing now, I have

free time and for some reason I enjoy spending that free time on hacking an open

source project. It’s very variable in that sense, there is no fixed commitments.”

(P12)

“Actually, sometimes I do it [open source development] in my working hours,

sometimes I do it in holiday, Sunday, or weekends.” (P18)

Comparative Advantages

Open source community shares a strong belief that open source software and its develop-

ment model have various advantages compared to other types or models. Our informants

29

mentioned several advantages including faster development pace, better quality, enhanced

security, widespread, and so on:

“You’re getting a much broader access to experts, and so the pace of development

increases, the quality of the software increases, and there are benefits that are

only possible through open source development.” (Patrick Masson)

“I would put security because you can check the sources. You can see what the

program is doing. You can compile by yourself and you can have more trust that

the software you are using is doing only what you are expecting and not something

else.” (P22)

“I believe Libre Office is better and could be way better than Microsoft Office.”

(P16)

“I don’t see any other model for software which is spreading that fast.” (Amanda

Brock)

Constantly Changing & Evolving

Open source community “changes over time” (P1). Due to the norms of altruism and

autonomy in open source development, newcomers might join open source community, while

existing contributors might leave. Thus, the open source community is constantly changing

with such dynamics of membership, and gradually evolves over time.

Ethics

“The ethical compass become necessary in defining how we deal with new tech-

nologies.” (Simon Phipps)

30

Ethics play a critical role in open source movement. First, people believe that open source

movement should incorporate ethics, but in more programmatic ways:

“Open source software like a way to use software in a more ethical way.” (P17)

“Open source is the pragmatic approach to ethics.” (Simon Phipps)

The reason to highlight programmatic ways is to avoid overemphasizing, which was a lesson

drawn from the free software movement:

“The open source needs to be decided not to focus on the ethical dimensions of

software freedom because they felt those were already being over addressed by the

free software movement.” (Simon Phipps)

Our informants further shared their thoughts on the importance of being ethical in open

source movement:

“Being ethical is what makes [open source software] not that risky for everybody

who actually uses these given software... Also a few months ago, there was a

scandal, Linus and Greg got really angry about that. When a university, I don’t

even remember which one was. I think they put some malicious pull-requests and

leave there for months. And at times, people started to realize that and they got

very angry about that. That is something that’s really unethical. Although you’ve

got passed through, I mean, under the light, that was really risky for the whole

project, for the whole software.” (P9)

Then, there are particular ethical values, i.e., diversity and inclusion, that the open source

community should embrace. Our informants believe they are essential to the whole commu-

nity:

31

“Recognize that each individual person is a human with unique experiences and

knowledge and background” (P1)

“It is crucial we continue to build spaces where all people are welcome, regardless

of race or gender or sexually.” (Aeva Black)

Freedom

Influenced by the free software movement, open source movement also values software free-

dom but in a more practical view. People have full freedom to participate in open source

development, as some of our informants shared their experiences:

“Open source means you can do whatever you want, and that includes taking the

software proprietary.” (Martin Michlmayr)

“I usually get like a couple of emails per day regarding the project. I reply to

some, I don’t reply to others, I do whatever I want. There’s complete freedom.”

(P12)

“If you’re just like helping out in your spare time, or if you’re just not doing it

professionally, then you can do it, you don’t need to to professional. It’s likely

you can do what you want.” (P21)

Historical Heritage

Open source movement should respect the historical heritages of its earlier predecessors,

such as the Linux Foundation, and the free software movement. Some of our informants

mentioned them when they learned the concept of open source during their careers:

32

“That [open source] model originated from Linux, because the way Linux took off

is, a bunch of companies kept on looking to hire Linux, and they decided to put

a foundation in a place where it was neutral. It’s everyone sort of chipped in a

bit.” (P5)

“You always heard things like Linux for open source...” (P8)

Meritocracy

In open source community, power should be assigned according to merit only, which is

determined by the value of the contribution in open source projects:

“Merit is really what you provide to the project, the value of our contribution

weighed against how much time you have to put towards it.” (Jim Jagielski)

The reason that open source projects should value meritocracy is because it enables natural

collaboration:

“Because inside of meritocracy, you’re gonna be having natural collaboration.”

(Jim Jagielski)

Openness & Transparency

The values of openness and transparency are endogenous to open source movement, and

should be honored in every aspect of OSS. Generally, in open source projects, the software

artifacts, the design and development process, and even the project community should be

open and transparent to the public. On the one hand, being open and transparent in open

source projects means the public can check or track the artifacts or activities:

33

“Openness, obviously like the ability of being able to see the internals [software].”

(P1)

“Open source development would be like publicly visible code bases or teams that

work in the public eye.” (P10)

“Everything appending in development should be transparent and accessible to

everyone.” (Thierry Carrez)

On the other hand, openness and transparency indicate that the public can easily participate

in open source projects:

“I would say, that [open source projects] should be open to any kind of member

that is interested in learning.” (P3)

“You have a level of playing field for different voices and opinions to be heard...

making sure that all voices get heard and we get the diversity of opinions and

thoughts to make good decisions.” (P5)

“They [open source projects] do allow contribution from external sources.” (P8)

Reciprocity at Multiple Levels

Reciprocal expectations are prevalent, and they bring mutual benefit for both individuals

and projects in open source community. At the individual level, OSS practitioners are willing

to offer help to others in open source projects:

“How other people help me, I want to help other people [in the same way].” (P14)

34

At the project/community level, OSS practitioners who previously benefited from open

source projects would like to give back to the projects in return

“I seldom met any developer that doesn’t want to give back to open source some

ways. The good news is everyone that I’ve ever met has been like, you know, has

at least some interest in working on or giving back to open source.” (P8)

“Our product is proprietary, but it’s solidly built on open source projects, and we

just tried to give back to those open source projects in return, basically.” (P13)

Reflection & Improving

Open source projects should be able to frequently self-reflect, and then continuously improve

their practices in the development process and community management, as mentioned by

our informants:

“There is potential for self-correcting [in open source projects].” (P5)

“Taking a deep look at what we need to change to modify behavior.” (Tracy

Hinds)

Trust

Open source practitioners should maintain certain levels of mutual trust towards each other

to ensure cooperation. In open source community, gaining trust tends to be easy, i.e., “doing

what you say you are going to do.” (P5) Once the trust is earned, it can positively influence

the contribution in open source development, for example:

35

“When someone has built up trust and has full trust... It is found efficient and

has been working really well.” (P5)

“They know they can trust, they know that if you do something, it’s gonna be

high-quality.” (Martin Michlmayr)

Universal Accessibility & Availability

First, OSS practitioners share a belief that “source code access was a utilitarian good,” (Luis

Villa) thus, the source code of open source projects is always publicly available, and anyone

can access it without asking for permissions:

“Open source means you can see the code.” (P7)

“Anybody can go and look at the code.” (P10)

Moreover, such accessibility and availability of source code empower OSS practitioners “the

ability to use, modify, and redistribute the software,” (Patrick Masson) and no permissions

are required. Our informants shared some experiences:

“[In open source] Take any code, take any software, and create my own fork of it

and make my own modifications, and publish it.” (P2)

“Be able to add changes, make changes, and easily move code around.” (P11)

“[Open source] software that anyone can modify and share with anyone with no

restrictions on how you can change the code or what you do with the code or with

whom you share it.” (Karl Fogel)

36

“You are given something [source code], if you want to modify it in whatever way

you want, for whatever conditions you feel the need to change it, that’s perfectly

acceptable. We are not going to restrict you from doing that.” (Jim Jagielski)

3.2.2 Membership

Membership defines the people involved in OSS, including where they came from, why and

how they joined, etc. In general, “people with the same interests” (P18) were welcome to

join OSS community of their free will. Seven themes were identified in our data analysis:

(1) Individual Choices, (2) Individual Identity, (3) Individual Motivation, (4) Ideological

Leadership, (5) Interpersonal Relationships, (6) Member Hierarchy & Roles, and (7) Personal

Experiences.

Individual Choices

Individual Choices indicated that people’s memberships and actions in open source develop-

ment are of their own choices. There is no time requirement for individuals who participate

in open source movement, as most of them choose to spend their spare time in contributing

to open source projects:

“You need to have a balance between your work time and time spent on open

source projects. There are no rules that you can’t contribute to open source during

working time.” (P7)

“It [open source development] is not my day-to-day job, I’m not contributing

every single day.” (P11)

37

Moreover, some informants also chose to view contributing to open source projects as a

hobby in their spare time:

“It [open source development] takes time, not just the time that I’m behind the

computer, but sometimes I’m just thinking about, I have this problem, how would

I fix it? What I’m excited about the problem, it’s really like solving a puzzle or

totally a hobby at that point. And my wife isn’t always happy with me being fully

there... But it’s the same as if I were really into aquariums or fishing.” (P13)

Individual Identity

Individual Identity refers to people’s representation of self in constructing themselves as OSS

members. It organizes the beliefs regarding what a member essentially is, thus forming the

foundation for the social cognition of one’s membership. OSS members’ identity is built

on the shared understanding of their communities. However, the shared understanding

was not necessarily dominating, i.e., people constructed themselves as being a member of

several groups rather than a single one [109], and so did our informants. Many contributors

developed strategies to manage multiple identities:

“I do not mix with the working one [identity] and the private one, and I do use

separate computers..., also emails and so on.” (P9)

However, identity struggles might be caused by one’s multiple identities [3]. We observed

such struggles among OSS contributors, particularly those sent to OSS projects by their

employers. Meanwhile, other contributors were also skeptical of these company employees:

“He is like an employee of [company], is working in the project because [company]

wants to drive these projects” (P16)

38

Such employees participating in open source development blur the boundary, and make

themselves “just as much capital as they are labor” (Karl Fogel). Therefore, interper-

sonal conflicts and tensions might arise between these “employed” contributors and other

“voluntary” contributors.

Individual Motivation

Individual Motivation reflects what motivated OSS practitioners to contribute to open source

projects, including intrinsic and extrinsic ones [11, 112]. Motivation to contribute to open

source projects has been extensively studied in the literature. For example, in a recent

study, Gerosa et al. identified a set of motivations by surveying OSS contributors, such as

fun, reputation, learning, own-use, career, and pay [46]. The motivation identified in our

analysis was generally consistent with the existing literature:

“I started my first software in my computers and started to play around with open

source, so I pretty much transformed my hobby into work with open source.” (P9)

“Like an inner need, if I feel the itch, I will scratch it. That’s basically it [moti-

vation].” (P13)

“But I think that the main reason that people contribute to open source software

is portfolio, fame, hope of getting a better job by your contributions, like someone

sees your work here and gives you a job.” (P17)

“I have two sides: one side is the egoist, individual side of, like, I want to show

the world that I know how to code, contribute to these projects; and the other side

is like, okay, I want people to help the people that don’t know how to write code,

people use the tools that I’m contributing to.” (P17)

39

“I like programming, want others to see my code review, give suggestions, help

me out, I can grow professionally.” (P19)

Ideological Leadership

Ideological Leadership is about the connection between a shared set of OSS ideologies and

leadership in communities and the movement, which had been well characterized in [81].

Our informants first shared how such leadership rose from open source projects, and how

the leadership was organized within the projects:

“Allow for leadership and activities to come from anywhere, don’t pick your fa-

vorites and create channels that really just only allow certain people to partici-

pate.” (Patrick Masson)

“Having that [leadership] as an elected position periodically.” (P5)

“Depending on the given project, the size of the contributors, even if it’s hori-

zontal, it doesn’t make sense to have just one leader. And also for huge projects,

it makes sense for me to have one leader or at least one leader and a few sub-

leaders.” (P9)

Then our informants further described the responsibilities of these leadership roles in open

source projects, including single consistent vision, agenda adjuster, and final decider:

“Single consistent vision, like having one or two people who really understand

what it is they’re trying to do, and building software that makes the vision hap-

pen.” (P1)

40

“The technical steering committee chair acts as a sort of final decider, the adjuster

of agendas.” (P5)

Interpersonal Relationships

Interpersonal Relationships describe the relationships between individuals in open source

development. Most tend to be in a friendly and professional manner:

“Be polite, be friendly, I think. Some contributors are new, be friendly to these

new people. Everyone starts from a beginner.” (P7)

“I tried to be as professional as possible, I think being professional really kind of

helps.” (P11)

However, conflicts also arise in the relationships sometimes, as Tracy Hinds and other

informants pointed out:

“Modern theories consider conflict a natural and inevitable outcome of human

interaction.” (Tracy Hinds)

“People did a lot of conflicts in a [open source] project I worked on before.” (P10)

Member Hierarchy & Roles

Member Hierarchy & Roles identifies the hierarchical social structure of contributors in open

source projects, and their privileges and responsibilities defined by their roles in the mem-

bership pyramid. First, the hierarchical social structure of contributors is usually described

as a pyramid structure:

41

“I have a theory of this that I call the pyramid of participation, which is kind of

like food pyramid. You just have like a bottom layer that has the least trust but

the most people, and then they gradually go up to the project leadership at the

top... like there should be some people at various different levels, and it needs to

be like a fat pyramid.” (P4)

Then, within this membership pyramid along the path from the bottom to the top, there exist

several roles: “bug hunter,” “maintainer,” “developer,” “project manager,” “fundraiser,”

etc. (P1, P7, P17, P20) These different roles also associate with different Role-defined

Privileges & Responsibilities. Take maintainers as an example, maintainers in open source

projects usually have control privileges to have “full access to everything,” such as “approve

the change.” (P19) In addition, maintainers also need to have more commitment and take

more responsibilities to keep project “well-maintained.” (P17)

While such as Membership Hierarchy & Roles system made open source project community

more organized and “guarantees some continuity,” (P4) it also raises ideological concerns.

First, the pyramid social structure effectively created elite and non-elite social classes, which

might threaten the ethical value of equity [50]. Second, maintainers are increasingly putting

extra burdens beyond their willingness [103], which constitutes violations to Autonomy. How

to balance these circumstances should be addressed in future research and practices.

Personal Experiences

Personal Experiences capture the personal feelings in open source development. Most of our

informants shared positive feelings and experiences, such as fun and nice, for example:

“That is really interesting for my own curiosity.” (P6)

42

“It’s very fun to collaborate with other folks [in open source development].” (P12)

“It’s actually a pretty nice feeling to find the bug, to fix the bug, and to have a

little bit of my code in there.” (P12)

However, some of our informants also mentioned their unpleasant experiences in open source

development:

“Open source development broadly has a massive problem with burnout because

so much of the work is being carried by volunteers.” (P1)

“Maintainer burnout is a real thing where people feel committed to their projects.”

(Patrick Masson)

Open source practitioners need to carefully deal with the unpleasant feelings, as it could

negatively influence the open source development:

“For example, some people go into your repository and start to say, you should

do this or you shouldn’t do this, and it’s very annoying for some people. They

may decide to stop all activities.” (P18)

3.2.3 Goals

Goals describe what members want to achieve or realize in the OSS movement. Six themes

emerged in our data analysis, i.e., (1) Broader Impacts, (2) Built-in Product & Quality Ori-

entations, (3) Outreach, (4) Sustainability, (5) Innovation, and (6) Ubiquitous Penetration.

43

Broader Impacts

Broader Impacts capture the goals that the OSS movement would like to achieve beyond

software productions. First, our informants pointed out open source development’s influence

on the software industry:

“I think open source as a development methodology has changed software engi-

neering as an industry. Practices around version control, code review, documen-

tation, and continuous integration have advanced significantly.” (P1)

“We started this impossible [open source] movement, if you can imagine, to com-

pletely recreate the world of computing.” (Danese Cooper)

Then, beyond the software industry, open source practitioners believe open source software

can benefit the public and society, as shared by our informants:

“The last ten years I’ve got into open source, it gave me the opportunities to

figure out how we can make things better for other people, and just make things

better... You’ve made other people’s lives easier.” (P5)

“Especially some of the [open source] projects I worked on, for example, with

a humanitarian toolbox. They build an app that helps children in third world

countries, they help find missing children in third world countries after disasters,

kind of like a real charity kind of project.” (P10)

Furthermore, open source practitioners share an ambitious vision of the open source move-

ment, i.e., “bringing humanity forward”:

44

“I do think that every open source software should have the same goal, which is

bringing humanity forward.” (P9)

“They [open source projects] are a proof point of how we as one planet and one

humanity can work together to empower everyone.” (Aeva Black)

Built-in Product & Quality Orientations

Built-in Product & Quality Orientations is the fundamental goal for all the other goals of

the open source movement. Without high-quality products, none of the other goals could

be realized. This goal was built in the open source movement and considered to be a key

component in Steward & Gosain’s OSS ideology model, i.e., “better quality – open source

development methods produce better code than closed source,” [102] since it directly deter-

mined many activities in development. Our findings are consistent with the literature that

the open source movement aims to provide better quality software products:

“Obviously, the quality [of open source software] is going to be much much better

than the proprietary in counterparts.” (P2)

“Open source methods really are able to produce higher-quality software faster.”

(Danese Cooper)

Outreach

Outreach describes the open source movement’s goal of promoting open source software to

reach a broader spectrum of users and communities, for example:

45

“I think it [open source project] is getting really stable, I should promote more,

and then maybe I find all the people that are interested in this particular solution.”

(P13)

“I tried to make it [open source project] heat, and known by the community, which

they can use it, they can test it.” (P20)

Open source practitioners utilize various channels and approaches to promote open source

projects, such as “social media” (P11). For example, X/Twitter has been proven as an ef-

ficient platform to promote open source projects [33, 34], and many open source practitioners

actively share and promote their projects there.

Sustainability

Sustainability refers to open source communities’ goal of achieving sustainable community

dynamics and growth. This goal and its antecedents have been well documented in literature

such as Chengalur-Smith et al. and Gamalielsson et al., regarding its importance to open

source projects [19, 44]. Similarly, our informants also recognized that open source projects

need to be “long-term sustainable” (P1), and open source communities should “keep project

sustain and grow” (Hong Phuc Dang).

Innovation

Open source development aims to drive Innovation:

“The real value of open source is that it lets you innovate without having to ask

anyone’s permission.” (Simon Phipps)

46

However, innovation in open source development was often neglected in the software en-

gineering literature. Only a few scholars had worked on it [38, 88]. Even those related

studies almost always focused on innovations resulting from micro-level adoption of OSS

products [41, 54], e.g., using OSS solutions in products. The limited scope of the extant

work restricted our understanding of innovation as a goal of open source movement, which

repeatedly emerged in our study.

First, the open source movement aims at providing Discruptive Environment for Innovation,

which “removes obstacles and boundaries” (Thierry Carrez, Simon Phipps) of different

organizations and institutions. Levine & Prietula’s four open collaboration principles– goods

of economic value, open access to contribute and consume, interaction and exchanges, and

purposeful yet loosely coordinated work– were all present in open source development [71].

Then, our informants suggested a much more aggressive belief that the open source move-

ment creates “Free Market of Both Ideas and Software” (Mike Milinkovich), beyond a

playground for open collaboration provided by the disruptive environment in open source

development. In open source development, practitioners could break technical rules, explore

and experiment with rich technical connotations, and exercise minimal degrees of creativity

for selective innovations, with very low or even no cost, as our informants shared:

“What you will want is a more broad collection of ideas and directions being

brought into the [open source] projects.” (P1)

“That you’ve made it possible for something to exist that didn’t exist before.”

(P5)

“The good thing is with open source, you don’t have to give the guys money, they

can go ahead and do it because the cost of innovation is so low.” (Joichi Ito)

47

All indicate opportunities in future software engineering research on open source innova-

tions. Moreover, the OSS innovation’s complex and multi-faceted empirical realities make

its theoretical significance lie in its interdisciplinary nature. Regarding our current knowl-

edge, the intellectual exchanges between software engineering and innovation management

were limited. Software engineering researchers interested in OSS innovations might con-

sider integrating rich open innovation theories developed in their future research to enable

cross-fertilization between disciplines [27].

Ubiquitous Penetration

Ubiquitous Penetration reflects the open source movement’s goal of penetrating into ev-

ery aspect of modern society. First, open source software is widely adopted as Founda-

tion/Infrastructure of Technology, such as cloud computing infrastructure, and Internet in-

frastructure, as our informants pointed out:

“Open source is foundational to all of modern technology.” (Luis Villa)

“Open source has become the heart of most new software.” (Simon Phipps)

“[Open source] providing infrastructure for others to build and deploy applications

on.” (Thierry Carrez)

Second, our informants noticed Open Source in Everyday Life, open source movement nowa-

days is gradually becoming “a way of life” (P9), for example:

“It [open source development] is not just now recognized, it is becoming part of

the day-to-day operations and expectations.” (Patrick Masson)

48

“I think what the major trend has been in the software world over the last 15-20

years is that open source is ‘eating’ software, if software is ‘eating’ the world,

open source is becoming the mechanism by which that is happening.” (Mike

Milinkovich)

3.2.4 Activities

The category of Activities deals with questions such as “What do OSS contributors do?” and

“What are expected activities in open source projects?” This category is the most important

one among the six categories. According to van Dijk ([109], pp. 70-71), an ideology system

could be identified by one particular category. For open source ideology, its distinctions

mainly lie in the activities, particularly the activities related to copyright & licensing that

define it (The Open Source Definition, ver. 1.9, available at https://opensource.org/osd).

Thus, OSS ideology was typically an activity ideology representing that OSS contributors

loosely gather to form communities for producing software under specific OSS licenses. We

identified seven themes in this category, including (1) Community of Practices, (2) Copyright,

Licensing, & Legal Implications, (3) Governance & Decision Making, (4) Human Resource

Development, (5) Personal Development, (6) Social Production, and (7) Work Organization

& Practices.

Community of Practices

Community of Practices refers to open source community members’ collective learning ac-

tivities as a group of people who “share a concern or a passion for something they do and

learn how to do it better as they interact regularly” [68]. Our informants shared similar

perceptions within the open source community:

49

https://opensource.org/osd

“Whenever you start working on a [open source] repository, for whatever reason,

you certainly start to come across the same people who are most likely working

there, and other people are simply there for helping. There is certainly a sense

of community in directs.” (P6)

“You should try to blend in [open source community], you try to learn the culture

and do things in the way that the community expects.” (Martin Michlmayr)

Copyright, Licensing, & Legal Implications

Copyright, Licensing, & Legal Implications refer to the legal activities and practices in open

source development, particularly about dealing with copyright and patent, using open source

license, and so on. These legal activities provide explicit guarantees on the aforementioned

norms/values.

There are no trade secrets in open source software since the source code must be open,

no matter under which open source license. Thus, there should be some ways to protect

intellectual property. Open source practitioners have certain Rationales of Dealing with

Legal Issues. First, licensing is required by the definition of open source software, as OSI

president Simon Phipps pointed out:

“It [software] doesn’t become open source until you put an open source license on

it.” (Simon Phipps)

Second, licensing is a way of explicitly offering permissions with software and its source code:

“Legally, if there is no license, it is automatically all rights reserved. That means

the work owner gives no permission, no rights to anyone else to do anything at

all.” (VM Brasseur)

50

Third, licensing has practical benefits by simplifying and hiding many legal details, and open

source licenses are designed to be reused in open source community:

“While they [open source licenses] are written by lawyers, they are intended to be

reused, they are also intended to be reused by people who aren’t lawyers, whereas

most other licenses in the world, they are not... This makes everything easier for

all of us.” (VM Brassuer)

Fourth, licenses could be “the constitution of a community” (Simmon Phipps), because

the licensing reflects the common expectation in open source projects, and contributors’

participation decision implied their agreements on licensing:

“Licenses tend to be constitutions of communities. They serve as a foundation

for how the project that picks the license wants to operate, how it wants to engage

with its contributors, what its expectations are for the community of users and

contributors.” (Patrick Masson)

Indeed, open source software has complicated relations with some troublesome laws, mainly

on Copyright vs. License. Under the current copyright law, copyright is often viewed as

“a control point” (Simon Phipps), and “a form of protection” (VM Brasseur) for the

copyright owners. Licenses offer solutions to copyright owners to retain the rights while

giving someone else the right to exercise some of them:

“By selecting the different open source licenses, you can limit how much of that

control you give up, or you can open up the amount of control you give up.” (Jim

Jagielski)

The legal definitions of these two terms, copyright and license, imply certain ambiguities.

Meanwhile, practitioners have different ideas about who owns the copyright, what could be

51

given to other parties, and more importantly, whether they would (partially) lose control

over the work. For example, being asked to sign a Contributor License Agreement (CLA)

to transfer copyright to the project/organization often triggers some boycotts. Therefore, it

is not surprising that many practitioners agree that there is still “no flawless license” even

when a large pool of legal professionals is serving the OSI board:

“You can find fault with any widely used open source license, whether it’s the

Apache license or the MIT license or any of the copyleft licenses... You can’t

easily revise the license, if a flaw or an interpretive ambiguity is later high-

lighted, that’s just sort of a general challenge of open source licenses.” (Richard

Fontana)

Licensing and other related legal issues not only influence the business model and operations

in open source movement, but also have Consequences on Development. Licensing is pow-

erful to enable the development and distribution models, which makes open source software

“unprecedentedly spreading across all of the categories of software” (Amanda Brock). Our

participants also acknowledged the significant impacts of licensing in open source develop-

ment, for example:

“There’s different dynamic behind some of these [open source] communities, like

depends on the licensing to some extend, and the licensing shapes the community

dynamic in my mind.” (P5)

“I think the licenses govern the [open source] communities.” (P5)

“Their [open source projects’] licenses are slightly different, where I got one that

has like a database for mechanical keyboard switches and the source code for that

52

is all public, it’s MPL license as opposed to MIT, so that no one can trade market

essentially.” (P8)

Note that such consequences are not necessarily to be positive. Former chief policy advisor of

United States Patent and Trademark Office (USPTO), Arti Rai once said “law can sometimes

pose, rather than resolve, problem,” when discussing open source and legal issues [89]. For

example, some company-sponsored projects may use restrictive licenses to avoid competition,

which de facto betrayed the OSS ideology.

Legal professionals mostly did the design of the licensing systems. Ordinary developers of-

ten had minimal legal knowledge, and as Pamela Chestek said, “I don’t think that most

human beings are interested at all in legal instruments;” so they might be confused about

why they need to bother with legal issues. Therefore, when encountering these issues, Reluc-

tance & Resistance in Development is not uncommon. Developers naturally preferred more

permissive licenses:

“I started off with stuff that was under GPL licensing, and then basically emerged

to doing more work under the more permissive licenses.” (P5)

“There was a trend of developers putting tools and libraries under permissive

licenses in this time period.” (Richard Fontana)

“In these sorts of scenarios, the more permissive licenses are the ones that usually

work out better... You really want to reduce the amount of conflict that goes into

creating a software project.” (Jim Jagielski)

In addition, open source practitioners also proposed alternative legal arrangements to solve

the limitations of licensing. For example, trademarks received some attention recently, as

pointed out by Pam Chestek:

53

“A trademark is owned by the entity that controls the mark and controls the

quality of the goods and services with it... If I talk about the trademark, then

all of a sudden people grasp it because trademarks are so part of our human

experience that everyone understands them.” (Pam Chestek)

Governance & Decision Making

Governance & Decision Making refers to several governance structures in open source projects,

i.e., benevolent dictator, walled garden, and true meritocracy, as well as the different decision-

making processes that correspond to them.

The first governance structure is called benevolent dictator, sometimes also called benevolent

dictator for life (BDFL). In some open source projects, a particular member or a group of

members are appointed as the leaders, who are usually the project owners. As the benevolent

dictator, they retain the final say regarding the project development:

“In the benevolent dictator for life, that power exchange is actually bequeath by

the community. The open source community says, we trust this individual or this

set of individuals to make these controlling decisions for us.” (Jim Jagielski)

The second governance structure is the walled garden. Although the project is available to

the public as open source project, the involvement in the development is restricted to certain

members only, as Jim Jagielski explained:

“There is a governance model for an open source project called the walled gar-

den. The idea behind the walled garden is that it’s available under an open source

license, but the community, the external community involvement, as far as fig-

uring out the direction of the project or the list of features that will be included

54

in a project is significantly restricted. These are the kinds of projects which are

usually controlled and managed by a single company. So unless you are an em-

ployee of the company, you probably don’t even have commit bits to this open

source project... The goal is to make sure that the company or the single entity

has overriding control over how that project grows, where it goes, what features

are added and things of that nature.”(Jim Jagielski)

The third governance structure is called true meritocracy, where “all the members of the [open

source] community could contribute and not only contribute but lead if based on meritocracy.”

(Italo Vignoli) Every member in such open source projects could gain control of the project

based on their merit, which is different from the walled garden and benevolent dictator

governance structures that only certain members have control privileges. The development

and decision-making processes within the true meritocracy governance structure are driven

by “consensus-based collaboration” (Jim Jagielski)

Human Resource Development

Human Resource Development reflects the developing a workforce for open source develop-

ment, including Attracting, Recruiting, and Retaining Contributors, and facilitating Growth

of Contributors. First, software engineering literature has revealed the importance of Attract-

ing, Recruiting, and Retaining Contributors for open source projects [24], and the findings

from our analysis remained consistent:

“We have been attracting new developers on a regular basis [in open source

projects].” (Italo Vignoli)

“You definitely don’t want to turn them away, but try to work with them [in open

source projects].” (P11)

55

“I think the most important part of open source development is to remain, people

should remain [in open source projects].” (P19)

Furthermore, open source community should not overlook theGrowth of Contributors in open

source projects, for example, making the project easily accessible to newcomers, encouraging

them to actively contribute, allowing them to choose tasks that suit them, etc. (P8, P11,

Nnenna Nwakanma)

Personal Development

Personal Development is about the activities related to an individual’s professional skills,

and seeking career opportunities. Some informants intended to build/enrich their portfolio

to demonstrate experiences and skills regarding software development by participating in

open source development, which could benefit their career, for example:

“Basically what got me into my PhD was sending my advisor an email, ‘hi, I’m

interested in this and I worked on this open source project,’ and the next day I

had an appointment with them. Of course you can do that without open source,

but it’s a very good way if you have those projects as show case.” (P12)

“Actually, when I joined the company, one of the deciding factors of my employ-

ment is the participating in open source, like the employer could easily verified

that I was capable of writing good code.” (P19)

“When I applied to jobs, you can show them, here I have worked on this [open

source] software, and you can see the code, the pull requests, some of comments,

some reviews and all that stuff.” (P21)

56

Then, open source community is also full of professionals nowadays. Within open source

development, practitioners also aim to improve their professional skills:

“Treating our contributors as tech professionals as they are, not as cultural hob-

byists. This is 2022, people aren’t using doing open source for a hobby anymore.

And if professionals working for you, they should be treated as one.” (Deborah

Bryant)

“Actually, I like programming, want others to see my code review, give sugges-

tions, help me our, I can grow professionally.” (P19)

Social Production

Social Production refers to the collaborative nature of its members’ activities that features

the collective efforts of multiple entities. People around the world can collaborate together

within open source development, which makes open source development “a global effort,

multi-timezone efforts” (P4), and further foster a strong sense of community:

“We have now created a global community of software developers who have for the

first time, the ability to truly cooperate on a global basis.” (Michael Tiemann)

“Open source is ultimately about community, it’s ultimately about people, about

enabling those people.” (Matt Asay)

In addition, such mass collaboration in open source development is also cross-organization

and with no boundaries:

“Pulling together communities of like-minded developers working for different

companies on common infrastructural technology.” (Brian Behlendorf)

57

“We will need to collaborate without boundaries all of our communities, and not

limit ourselves to the project that we jointly support.” (Thierry Careez)

Work Organization & Practices

Work Organization & Practices refers to practices regarding how work is organized in open

source development, such as communication and coordination activities, and routines of de-

velopment activities. It includes Decentralized Mass Collaboration, Communication & Coor-

dination, and Regulations, Routines, & Rituals (3Rs). Software Engineering and Computer-

Supported Cooperative Work researchers have spent tremendous efforts in investigating the

first two practices since late 1990s. However, the 3Rs received much less attention than it

was deemed in the related literature.

These 3Rs are derivatives of the Values/Norms in the OSS ideology. As concrete social control

mediums, they ensure the realization of Values/Norms in daily activities. First, regulations

are explicit rules defining uncompromising boundaries of activities [2]. It helps produce

appropriate individuals and excludes those who did not respect community values/norms.

Regulations could be applied to both technical and social activities. For example, Tracy

Hinds mentioned “how peer conflict regulation work to dismiss an individual do not respect

community value” in the Node.js Foundation. Second, routines are a repetitive patterns of

interdependent activities that can be learned and exercised by members. We observed that

routines widely existed in the practice of open source development. Moreover, our informants

also pointed out that routines might be evolving along with the development of communi-

ties and projects. In open source projects, the performances of routines are continuously

evaluated, which opens opportunities for changes. Thus, an informant (P12) claimed that

“no routine work in open source.” This coincided with findings from organizational theorists

such as Martha Feldman and Brian Pentland [35, 36]. Given that the dynamics of routines

could be reproduced from software repositories, there are opportunities for further theory

58

development. Third, rituals can be characterized as standardized behaviors undertaken in

conditions demanding explicit expectations. For example, one of our informants shared some

rituals of bug fixing: “one type of contribution is they open issues seen in repository, they

report bugs that would be considered as contribution, too, and they participating in testing

software.” (P19)

Another vital function of the 3Rs is their channeling roles among organizational cognition of

values/norms, activities, and community/project development. Studying such roles would

probably lead to establishing a complete network from values/norms to products, by em-

bedding these constructs’ complex relationships. Thus, we could answer critical questions

such as how value/norms were reflected in activities and project outcomes or how to leverage

such channels to ensure the values/norms were honored, and hereby offer insights for making

open source movement more value-sensitive [85].

3.2.5 Resources

Resources are essential for a community to survive and develop. Conservation of Resources

(COR) theory argues that an individual or a group shall preserve and protect those resources

that they value [56]. Resources are not restricted to tangible resources but also include vari-

ous intangible ones. We identified four themes: (1) Dealing with Barriers & Restrictions, (2)

Incentives, Financing & Funding, (3) Knowledge & Expertise, and (4) Supportive Facilities

& Mechanisms ; only the second theme, Incentives, Financing & Funding falls into the class

of tangible resources, while other themes are intangible resources.

59

Dealing with Barriers & Restrictions

Dealing with Barriers & restrictions mentions the resources that individuals and a commu-

nity used to deal with barriers & restrictions they faced. A typical individual-level resource

is some personality traits, e.g., resilience, since they could help people deal with burnout

and frustrations, particularly in one’s onboarding and early career phase, which is identified

by both the literature [101] and our informants:

“I didn’t know how to navigate the big codebase by myself. I tried a lot of times

and kept failing.” (P15)

“At the same time for people who are new to open source, sometimes it can be a

little bit challenging in how you get started.” (Martin Michlmayr)

“I do want to focus today on developers and contributors because they are expe-

riencing burnout in a big way.” (Deborah Bryant)

Incentives, Financing & Funding

While the contributions in open source development tend to be voluntary mostly, a healthy

cash flow is still quite important for many open source projects, especially the large ones, to

maintain community infrastructures, e.g., paying for project communication services [126].

However, Incentives, Financing & Funding was often overlooked or purposefully ignored by

researchers in contrast to voluntary contributions.

First, Project Donation & Sponsorship is the major way to fund an open source project

[84], if not the only one, because most open source projects have no revenue stream. The

financial support to the project might be viewed as commercial entities’ obligation to open

60

source communities. Open source development helped many companies save substantial

costs in their business. Therefore, paying back to open source is not only a philanthropic

action but also a way to engage in a mutually beneficial endeavor. Nevertheless, there are no

effective mechanisms to force a company to offer donations or other forms of funding. Some

of our informants pointed out this issue:

“Companies that use open source often get to it because it is free... But they are

not obligated to give back even when they are making a lot of money with that.”

(P1)

“If there wasn’t this core infrastructure available as free and open source soft-

ware... Scale up to a huge number of servers if they are paying a per license

cost for every single one of them, that just would be have been possible.” (Leslie

Hawthorn)

Therefore, many open source projects lack reliable funding support. Indeed, the donations

are not necessarily to be large; our informants mentioned that even “small donation is a great

booster” (P12). Besides, many informants shared that they would like to keep a vigilant

attitude to donations from companies, because sometimes “money backs up decision” (P14).

If an open source project overly relies on the donation from a company, it would be inevitable

influenced by the donor, which is probably not aligned with its own objectives and interests.

Then, Financing Individual Developers, providing financial support to individuals, is con-

sidered to be legitimate for certain contributors. For instance, if someone worked full-time

for open source and without other means to support their basic life needs, receiving money

as their living income would be acceptable and appropriate. However, Monetization of Con-

tribution as Incentives, i.e., “providing monetary incentives for contributors” is much more

controversial. There are opposite opinions on this issue. The arguments from incentive

61

supporters include:

“I think it would be nice to get paid to make contributions to open source projects...

A lot of work isn’t fun like writing tests, and you are testing on different devices.

I think it’ll lead to higher quality work because I can justify if spending more time

on it personally.” (P15)

“The lack of incentive in a lot of open source projects is the main reason to limit

the prosperity [of those projects].” (P17)

In contrast, more practitioners held neutral to negative views of money incentives beyond

supporting contributors’ basic needs, for example:

“When you contribute [to open source project], it means you want that project

to be better. But when you contribute because of money, that totally changes the

intention of contribution, it’s more like a job.” (P7)

“I’m okay with it [money incentive], within boundaries, I guess. If I know some-

one is being paid one million a year for an open source project, good for them. But

if I have worked on it for months and months, and I don’t get any compensation,

that might be hurt a little bit.” (P13)

Even those who are neutral to incentive schemes agree that the money incentive should be

within boundaries, unfortunately, drawing such boundaries is non-trivial.

Some influential figures, such as Eric Raymond – the author of The Cathedral & the

Bazaar, emphasized that the current supports for individuals should be reformed because

“no money goes to people maintaining critical infrastructures.” Those load-bearing people

62

often work full-time for open source projects, but current open source operations “fail in

funding the people institutionally.” Thus, he proposed a decentralized patron system to fund

these developers. In such a system, not companies but ordinary people who have regular

jobs provide small amounts of money gift, e.g., $30 per month, to those load-bearing open

source contributors directly. The decentralized patron mechanism, if well executed, might

help solve some problems in funding open source and some individual developers in need.

There have been several experimental platforms for decentralized funding, for example. But

almost all of them are incentivizing/rewarding work rather than providing living income to

people in need.

To sum up, there are many unsolved and controversial issues in establishing funding sys-

tems for open source projects and contributors. Researchers and practitioners should pay

extra attention to financial issues and develop innovative solutions to ensure the financial

sustainability of projects and load-bearding individuals.

Knowledge & Expertise

Knowledge & Expertise is another important resource in open source development. First,

open source projects provide a knowledge sharing platform, practitioners could freely share

their knowledge and expertise with others, and various knowledge and expertise, e.g., pro-

gramming knowledge, development experience, discipline, and practices, could be shared

across open source community:

“The open source community is partly how we share these practices.” (P4)

“Professionally, when I’m working as a technical support, I think there are ac-

tually many solutions are supported, contributed by the community. And it’s

definitely a great thing because one person may not have all the knowledge ob-

63

viously. But the community can, in a sense, and we can help each other find

different solutions.” (P6)

“The main thing I see from open source is the fact that we are sharing code, and

we are sharing ways of doing stuff.” (P10)

Then, any individuals involved in open source development could learn and benefit from those

shared knowledge and expertise, as our informants mentioned their learning experiences:

“I have a PhD in computer science, but I never learned how to build anything

to do with the web. And [open source project] documentation was the first time

that I read something about the web and got ‘Oh, that’s what you’re trying to do,’

because they actually explained it. I went through a tutorial process that that got

you from knowing nothing to knowing how the project work.” (P1)

“Discipline is important and people learn discipline by learning it in school, but

also they learn discipline from seeing others practice that same discipline [in open

source development].” (P4)

In addition, according to Michel Foucault, power is based on knowledge and makes use of

it; on the other hand, power reproduces knowledge by shaping it in accordance with its

anonymous intentions [43]. The dynamics between Knowledge & Expertise and power in

open source development should be well worth some future investigations.

Supportive Facilities & Mechanisms

Open source community has implemented various Supportive Facilities & Mechanisms, such

as tutorials/documentation of the open source projects, mentorship for newcomers, and

contribution template/guideline, for example:

64

“I think it’s good to have people that will help guide you, and mentor you, and

things like that.” (P11)

“I think that is really useful for newbies, like in that template, there’s also a guide

on how to do a bug report, what kind of information people need to provide.”

(Hong Phuc Dang)

Note that all of those supportive facilities and mechanisms have been well documented in

the related literature [48, 101, 100], and our findings are consistent with the literature.

3.2.6 Positions/Group Relations

Position and Group Relations deals with a series of questions such as “What is our social

position?” “Who are like us, and who are different?” “Who are our opponents?” For

this category, four themes were identified: (1) Interaction with Emerging Technologies, (2)

Interaction with Commercial Software Development, (3) Differentiating from Free Software,

and (4) Market & Users.

Interaction with Emerging Technologies

Interaction with Emerging Technologies reflects the fundamental positions of open source

software in enabling emerging technologies, such as cloud computing, and AI, and forming

Internet-wide infrastructures together with these technologies. Take cloud computing as an

example, Matt Asay explained the complex relationship between open source software and

cloud computing. First, open source software made cloud computing possible, or enabled

cloud computing:

65

“The cloud [computing] would not be possible without open source, and I think

that’s true... With open source, you don’t really have to think about that. With

traditional enterprise software, proprietary software, you did. And it makes such

that the cloud would be, if not impossible, and I would argue impossible, at lease

extraordinarily difficult... So we know that open source enables the cloud.” (Matt

Asay)

Then those cloud computing companies contribute to open source software as a return:

“If you’re playing your odds of the top ten open source contributors, seven of

these top ten are our cloud vendors [cloud companies].”

“It’s because cloud companies don’t really have anything to lose by contributing

software, they don’t sell software, they sell services... This is the sort of thing

that the cloud enables because it takes away the competitive need to keep software

proprietary. If you run some sort of calculus as two contributes equals two bene-

fits. Well, it also makes sense that the cloud companies would be big contributors

because we’re benefiting a great deal from open source.” (Matt Asay)

Interaction with Commercial Software Development

Proprietary software produced in commercial development has a lot to do with open source

software. To some degree, they are enemies. However, the relationships are much more com-

plicated, even only from the ideological perspective. Open source practitioners have diverse

views, i.e., Coexisting, Competing, & Replacing. Some believe most proprietary software al-

ready has open source counterparts, so the commercial offerings could be eventually replaced

by open source software, as our informants shared an example in their organization:

66

“Then it [open source software] became the basis, it replaced the commercial of-

ferings.” (P4)

A less optimistic view is that these two types of software are competing with each other,

and it is still too early to conclude who will dominate the software market in the long run.

Karl Fogel explained this view with an example:

“Suppose you wrote an online service... But as soon as someone wants to chal-

lenge you in that marketplace, the easiest way for them to do it is to build some-

thing that’s open source or take something that is already open source.” (Karl

Fogel)

A few others hold the opinion that both could coexist:

“Certainly there’s room for proprietary software in the world.” (Brian Behlen-

dorf)

“Open source and proprietary software, it can coexist.” (Tony Wasserman)

Interestingly, those practitioners’ narratives often put open source in an inferior position by

downplaying open source software as “non-core business” (P4) or something similar.

Meanwhile, there is a consensus that the participation of commercial companies is not mo-

tivated by ideological reasons, but practical benefits, which is consistent with Wagstrom’s

findings of vertical integration of commercial and open source software [113]. For a com-

mercial company, they usually consider Involving Open Source as Strategic Decisions. Our

informants discussed dozens of such practical benefits, including branding and promotion on

the market, cost-reduction by reusing and trimming down product portfolios, diversifying

assets, experimenting with innovations, and hiring, among many others:

67

“Many companies are formalizing their strategies, and creating open source offices

and programs.” (Deborah Bryant)

“Implied value for the branding.”

“It’s a business that needs to reduce cost, so open source helps reduce cost.” (P4)

In addition, the involvement of commercial entities has profound impacts (Positive & Neg-

ative Impacts Combined) on the practice of open source development, and may reshape the

ideologies subtly. Prior literature often emphasized the positive impacts of a company’s

engagements [125], which was also confirmed by our informants:

“You could increase the number of participants by a lot [in open source develop-

ment].” (P4)

“Some stuff like writing excellent documentation in multiple languages is just

nothing you see in those personal projects, because it’s not a lot of fun, and nobody

pays you to do it. There is something where say [companies], they just throw

money at the problem and then they have those multilingual documentation.”

(P12)

However, some recent studies revealed the negative impacts [124, 123], many informants

expressed similar worried and concerns that companies would manipulate the open source

projects to maximize their benefits or some misbehavior:

“My company also donates to open source development, and donates a lot more,

and I think that they do sort of expect some, at least the owner to have a con-

versation with them sometimes. I do know that there is one of the projects that

68

my company does donate to, the owner explicitly says if you donate this much

money, I’ll make sure or I’ll consult with you if it breaks one of your releases or

something like that.” (P8)

Differentiating from Free Software

Another group that is relevant to the open source movement is the free software from which

the latter emerged. The relations between them were much simpler. From the historical

perspective, as Luis Villa claimed: “there is a lot of overlap [between free software and open

source software].” For instance, they both share the idea of making source code available,

and most open source software is actually free to use. However, they stand for views based

on fundamentally different values [99]. The free software movement is an ethical imperative,

while open source movement is a pragmatic approach to ethics, as one of our informants

explained:

“The open source movement was a lot more about the removing the extremist

political dogma from the side of the free software project, and a free software as

an idea and making it more business compatible.” (P1)

Therefore, the free software movement and open source movement are not enemies, but

compete in the ideological and philosophical views in people’s mindsets. [41]

Market & Users

Market & Users summaries the relationships among open source software, market, and users

from multiple perspectives such as economics, management, HCI, etc,. The narratives of our

informants are generally consistent with findings in the extant literature [4, 20, 41, 69, 23],

such as no liability to users, and marketing and promoting the projects:

69

“I think it [open source project] is getting really stable, I should promote more, and

then maybe I find people that are interested in this particular solution.” (P13)

“There is a form which says that we are not responsible for anything at open

source.” (P20)

3.3 Implications

3.3.1 Theoretical Implications

The major contribution of this study to the literature is the development of the theory of open

source ideology. Our theory features three characteristics: comprehensive, contemporary, and

empirically-grounded.

A Comprehensive Framework

The study realized the transition from fragmented knowledge pieces of open source ideol-

ogy to a comprehensive framework. Open source ideology in extant literature appeared as

knowledge fragments, and mostly limited to particular topics, such as gender, fairness, and

community, as shown in Fig. 2.2 [117]. Our empirical theory in total contained 42 themes

under six broad categories, i.e., Norms/Values, Membership, Goals, Activities, Resources, and

Positions/Group Relations. The topics in extant literature are all covered in our empirical

theory, thus, our empirical theory helps organize, connect, and synthesize extant literature

regarding open source development systematically. While the newly added themes would

inform researchers various future research opportunities, and reminder them to not overly

focus on a narrow set of themes.

70

Moreover, the empirical theory with these themes is organized under a cohesive framework,

and provides a panoramic overview of open source ideology for research community. Such

an advance facilitates multidisciplinary academic exchanges, and offers references for future

research involving ideological issues in the open source movement. The empirical theory

provides a terminological system that allows the discovery of analogy or relation between

two academic fields, which leads to each helping the other’s progress, repeatedly proven in

the modern history of natural and social sciences [1].

A Contemporary Understanding

Being contemporary contained the meanings of two aspects. First, when people thought of

“open source ideology”, they might come the the early-days manifestos, i.e., Eric Raymond’s

The Cathedral and the Bazaar [91]. However, after two decades, open source movement has

became a polymorphic movement involving millions of diverse participants, which brought

new ideas and interpretations into open source ideology. For example, former Microsoft CEO

Steve Ballmer once said that “Linux is a cancer that attaches itself in an intellectual property

sense to everything it touches,” and considered open source software as a significant threat

to Microsoft’s business [5]. However, Microsoft later changed the stance, started embracing

open source development, and heavily involved in various open source projects [114]. Thus,

modern theories should update these early manifestos and metaphors, and our empirical

theory could serve this purpose well.

Second, being contemporary also means that our theory reflects the current social reality of

the open source movement. It servers as a snapshot of current open source movement, also

as a referential point when examining the future evolution of the open source movement. In

addition, we identified some tensions and ongoing discussion existed in current open source

ideology, such as ethical licensing, and paid participation. Take ethical licensing as an

example, current open source licensing allow any individuals and organizations to use open

71

source projects, but open source practitioners started to be concerned about using open

source projects for unethical purposes, such as malware development, and mass surveillance

and censorship. Thus, some informants shared ideas of ethical licensing in open source

movement:

“The moral problem [in open source development], the ethical open source li-

censes, for example, licensee shall use the software in a manner consistent with

the human rights principles, where the human rights principles are defined, among

other things, in the United Nations Universal Declaration of Human Rights.”

(Luis Villa)

These tensions and ongoing discussions indicated potential evolution of open source move-

ment, and shed lights on the future directions of open source movement.

An Empirically-Grounded Approach

Ideological theories were conventionally developed deductively from several key principles

rather than inductively from empirical evidence, which neglected the direct experiences and

opinions of members of social movements, particularly the grassroots [92]. Extant literature

usually explored open source ideology with high-profile open source projects through case

studies [24]. However, in our study, we collected data from opinion leaders, experts, and

first-line contributors in open source community, a broader and more diverse sample of open

source practitioners. Furthermore, we followed grounded theory methodology, to inductively

develop the empirical theory of open source ideology [17, 80]. Such a methodological shift

is not arbitrary, it is based on the critical changes of the open source movement in the last

couple of decades. Open source software has penetrated almost every aspect of our society,

and no longer a hacker culture [41, 16]. Both the collected data and research methodology are

72

empirically-grounded thus provides a partial remedy by improving the breadth of theoretical

scope. The enhancements to the extant work evidence that exactly. Moreover, an empirical

theory could also help avoid metaphysical arguments of ideologies and inform practitioners

of some applicable solutions [10].

The empirical theory also enhanced our understanding of many phenomena in open source

development across micro-, meso-, and macro-levels. The discussions of the newly identified

themes suggest various potential research opportunities. We list a few as examples in the

form of research questions:

• How to deal with identity struggles of members from companies sponsoring the project?

How to reduce tensions and conflicts resulting from that? (Membership, see §3.2.2)

• What are the impacts of licensing on open source development? How to encourage

ordinary contributors’ involvement in licensing conversations? How to reduce the legal

complications in open source development? (Activities, see §3.2.4)

• How do routines evolve in open source development? How do the 3Rs’ channeling

functions work? (Activities, see §3.2.4)

• How to balance companies’ donations and projects’ independence? How to design

effective and efficient mechanisms to fund load-bearing contributors? (Resources, see

§3.2.5)

• How to ensure that commercial agencies honor rather than distort open source ideolo-

gies in their business agenda? What should be done to compete contributors’ minds

with free software? (Position and Group Relations, see §3.2.6)

Note that the above research questions have not enumerated all potential opportunities

inspired by the empirical theory. Then also exhibits the breadth and depth of the knowledge

73

body around open source ideology, where interdisciplinary research becomes the unrivaled

choice to tackle them.

3.3.2 Practical Implications

Anchors for Dealing with Ideological Issues

Open source practitioners have to deal with ideological issues. In our collected data, Tracy

Hinds mentioned that projects’ conflict management involved many ideological issues. How-

ever, people may overlook some critical ideological elements. Our theory provides anchors

for them to fulfill such tasks. Besides, many communities would like to explicitly establish

ideological guidelines for regulating individual and organizational practices and branding

themselves, but in an overly simplified way. One example is the “Four Opens” of Open-

Stack. While the “Four Opens” contains some ideologies, e.g., “Open Community” means

“ensuring that the community is a cohesive, inclusive, level playing ground where all the

voices are heard and anyone can rise to leadership positions,” many other ideological ele-

ments are ignored in the guidelines but caught in our theory. For example, Eric Raymond

emphasized that infrastructure developers build and maintain the most critical backbones of

the Internet but often have to worry about tomorrow’s lunch, because they have little means

to monetize their work. As an infrastructure foundation, OpenInfra should make some re-

sources for supporting these developers’ basic living needs explicitly, but not yet. With our

theory of open source ideology, practitioners could check if their ideological guidelines include

all necessary parts without missing any important ones.

74

Theory as An Assessment Framework

The empirical theory could also serve as an assessment framework for open source prac-

titioners to investigate if contributors and projects uphold the desirable ideologies and to

what extend. Researchers revealed that hte misfit of open source ideology between con-

tributors and projects could influence open source development, e.g., the under-fit of open

source ideology (individuals embrace OSS ideology more than they perceive others do) de-

creases individuals’ commitment to open source community [26]. Thus, such assessment is

of high necessity to facilitate efficient open source development. Our empirical theory set a

solid foundation for developing an assessment system for ideologies, whether qualitative or

quantitative [31]. Such as assessment system could help identify the misfit, avoid potential

conflicts in open source development, and help match projects and contributors with similar

open source ideologies to improve productivity.

75

Chapter 4

Developing an Assessment Framework

of OSS Ideology

4.1 Motivation

The aforementioned theory of open source ideology provides an overview of ideologies within

the open source community, it reflects the ideologies that are commonly shared across the

open source community. However, the heterogeneity of open source ideology is evident

within the open source community. In practice, ideologies upheld by open source projects

tend to vary, i.e., some themes of OSS ideology may not be followed in certain open source

projects, while some other themes may be upheld, but to various degrees across different open

source projects. In addition, the individuals who participate in open source development also

perceive open source ideology differently, based on their backgrounds and understanding of

open source development.

Extant literature has identified such heterogeneity in the perception and adoption of open

source ideology, and further explored its potential impacts on open source development.

76

Steward and Gosain [102] explored the impact of open source ideology on the project ef-

fectiveness, and they found that the adherence to open source ideology would impact the

effectiveness of open source development in open source projects, i.e., communication, and

trust. Later, Daniel et al. [26] defined the differences in ideology between company em-

ployees and open source projects as “OSS ideology misfit”, i.e., OSS ideology over-fit means

employees perceive that their colleagues embrace the OSS ideology more than they do, while

OSS ideology under-fit means employees embrace the OSS ideology more than they perceive

their colleagues do. Their investigation revealed that both OSS ideology under-fit and over-

fit would decrease employees’ commitment to open source project, but OSS ideology over-fit

would increase employees’ commitment to the company. Both studies indicate the existence

of heterogeneity of open source ideology, and its significant impact on open source devel-

opment. Therefore, it is a necessity to be able to assess how individuals and open source

projects perceive and follow open source ideology in practice.

Although the extant literature developed some methods to assess the ideologies perceived

by individuals in open source development or upheld within open source projects, those as-

sessment methods were constrained by several limitations. First, the assessment was based

on a three-tent framework of OSS ideology, i.e., norms, values, and beliefs [102]. Even the

authors themselves admitted that such a framework was preliminary, and some other impor-

tant tenets might not be revealed and included. Thus, it limited the scope of the assessment

results and insights. Second, the assessment method, particularly the data collection, was

through the survey method, which required researchers to carefully design the survey ques-

tions, and then analyze the collected data. Such a method is often knowledge-intensive and

labor-intensive, requiring substantial knowledge and effort from researchers. For example,

Daniel et al. [26] only sampled contributors from GNOME community to conduct an in-

vestigation on the misfit, which limited the generalization of the findings and implications.

Thus, the existing assessment methods are not practical, especially for ordinary open source

projects and practitioners.

77

Based on the empirical theory of open source ideology, we intended to develop a more

extensive and practical assessment framework to help the open source community examine

OSS ideologies within open source projects. Researchers and practitioners in open source

development would be able to conduct assessments on ideologies upheld by particular open

source projects, gain insights into open source development from an ideological perspective,

and improve the practice of open source development accordingly.

4.2 Designing Assessment Framework

First, we adopted two design principles in designing the assessment framework. The first

design principle is focusing on project-level ideologies. OSS ideologies could be reflected

at micro-, meso-, and macro-levels, i.e., individual open source contributors, open source

projects, open source organizations, and the overall open source community. The assessment

framework focuses on particular open source projects, and the assessment results should re-

flect the OSS ideologies within those projects. The rationale for having such design principle

is to set an explicit unit of analysis, so that the OSS practitioners could utilize the assessment

results accordingly.

The second design principle is utilizing public data sources only. The assessment framework is

designed to rely on data from public sources, such as project documentation, code repository,

and online media outlets. Any individual, no matter whether affiliated with the open source

projects, can easily access and collect these data, and then conduct assessment with the

framework. It would ensure the robustness and flexibility of the assessment framework.

Then, with the two design principles, we designed an assessment framework based on the

empirical theory of open source ideology. Note that the empirical theory of OSS ideology

contains 42 themes. With each theme within the theory, we went through a three-step design

78

Repository

Documentation

Online media outlets

Extract quantitative data

Extract text data

Extract document data

Quantitative assessment

LLM-​based qualitative
assessment

Conventional qualitative
assessment

Assessment
results

Figure 4.1: Three assessment types in the assessment framework.

process to develop the assessment framework, i.e., brainstorming potential methods, selecting

assessment methods, and developing assessment workflow. The first step was brainstorming

potential methods. In this step, two researchers worked independently. We reviewed the

interpretation of the theme to be assessed, and listed a set of potential assessment methods

that could reflect or indicate the theme. Then in the second step, selecting assessment

methods, we collectively discussed those potential assessment methods from the previous

step, and selected one or two methods as the assessment methods for the theme. The

selected methods might assess the given theme either quantitatively or qualitatively. In

the third step, we further developed a workflow to conduct assessment on the given theme,

with the selected assessment methods. The workflow generally included the type of data

required for the assessment, data processing, data analysis, and deriving assessment results.

In total, following this process, 32 of 42 themes within the empirical theory of OSS ideology

were operationalized, which constituted the assessment framework (see Appendix B for more

details). Note that there were ten themes we were unable to operationalize following the two

design principles, for example, the theme Individual Motivations mainly reflects OSS ideology

at the individual level, and are usually assessed through questionnaires and interviews with

contributors [46], rather than observed from external views, thus, this theme is excluded in

the assessment framework.

In general, there are three different types of assessments in the workflows, depending on

the data and the assessment methods, i.e., semi-automated quantitative assessment, Large

79

Language Model (LLM)-based qualitative assessment, and conventional qualitative assess-

ment, as shown in Fig. 4.1. The first type is semi-automated quantitative assessment. It

collects and extracts quantitative data from the project repository, such as commit time

data, and then processes and generates the results to reflect the themes. The results are

often presented as charts, e.g., heatmap charts and bar charts. Such type of assessment

could be implemented by computer programs and scripts, which could be semi-automated

in the assessment framework.

The second type is LLM-based qualitative assessment. We utilize LLM to facilitate the

analysis of text data extracted from the project repository, such as issue comments. The

rationale for utilizing LLM is determined by the large volume and complexity of the collected

text data. Within an active open source project community, there are often lots of contrib-

utors who actively participate in various discussions related to the project, e.g., reporting

bugs, requesting new features, reviewing pull-requests, etc. Some of the text is even em-

bedded with source code and system logs. All of those make human analysis very costly or

even impossible. Thus, some tools such as LLM could help perform such Natural Language

Processing (NLP) tasks in a more efficient way. Furthermore, there exist various tools for

NLP tasks in the literature and the marketplace. We choose to use LLM, such as GPT-3.5,

rather than some SE-specific tools, considering multiple types of NLP tasks in the assess-

ment framework, e.g., sentiment analysis, and trust estimation. Most SE-specific tools are

designed for particular NLP tasks [82], e.g., Senti4SD for sentiment analysis only [14], which

requires us to utilize different tools for different NLP tasks, with potential model tuning.

While LLMs such as GPT-3.5, as off-the-shelf models [96], are capable of various NLP tasks,

and are often provided as a cheap and reliable online service. Thus, it is a practical choice to

utilize LLM for text analysis in the assessment, Additionally, LLM could also automate the

process. In general, we only need to compile the collected text data, send it to LLM with

task prompts, and summarize the results, without dealing with different tools for different

tasks.

80

The last type of assessment is conventional qualitative assessment. With the collected doc-

uments from the project documentation and online media outlets, we intend to identify and

review the content that related to the themes to be assessed, and derive insights as the

assessment results. Generally, as a rigorous assessment, multiple individuals are involved to

review the collected documents, and then discuss collectively to derive the insights. However,

it is not necessary if the assessment is not for academic inquiries. Such a decision should be

based on the users of the assessment framework and the purpose of the assessment.

Note that more than one type of assessment might be adopted in the workflows that form the

assessment framework. For example, when assessing the theme Meritocracy (see Fig. 4.2), it

starts with the conventional qualitative assessment to identify different roles in the project

community, some typical roles could be contributor, maintainer, etc. Then, if such roles exist

in the project community, we would conduct a semi-automated quantitative assessment and

a conventional qualitative assessment. In the semi-automated quantitative assessment, we

collect the list of project contributors and their code commits, then calculate the centrality

degree [61] for each contributor, and group the centrality degrees based on the role of con-

tributors in the project. Then we compare and analyze the centrality degrees across those

groups to examine if there are significant differences between groups. With the conventional

assessment, we collect the project documentation related to these roles, review the collected

documents for the content regarding role nomination, removal, or promotion, and generate

the review result. Based on the results of two assessments, we could derive some insights

into Meritocracy, and write the assessment summary.

4.3 Pilot Case Study

With the designed assessment framework for OSS ideology, we conducted a pilot case study.

The goal of the pilot case study is to test and refine the assessment framework [116]. Fig.

81

Assessing Meritocracy

Start

Collecting the list of
contributors and their

code commits

Calculating centrality
degrees for each

contributor

Grouping centrality
degrees based on the
role of contributors

Comparing the centrality
degrees across groups

Collecting documentation
related to these roles

Reviewing the documents
for role nomination/
removal/ promotion

Generating the review
result

Deriving insights about
Meritocracy in project

Writing assessment
summary

End

If such
roles exist

Identifying roles in the
project community

No

Yes

Figure 4.2: The workflow of assessing Meritocracy.

4.3 provides an overview of the process of the pilot case study, and we will present the pilot

case study in detail in the remainder of this section.

Pilot Case Study Design

First, we selectedD3 1 as the study subject in the pilot case study. The rationale for choosing

this project is twofold. First, D3 project is a popular open source project widely adopted

1The project is hosted on GitHub at: https://github.com/d3/d3.

82

https://github.com/d3/d3

Initial
Assessment
Framework

Refined
Assessment
Framework

Select pilot project

Collect data

Conduct assessment

Reflect on pilot case study

Repository Data
Project

Documentation
News Articles

Figure 4.3: The process of the pilot case study.

83

for data visualization, and it has been established since 2011. The project contributors have

formed a community around the project, which could be an ideal subject to assess the OSS

ideology within the community. Second, D3 offers a rich yet manageable amount of data for

the pilot case study, i.e., 4355 commits, 3224 issues, 9127 issue comments, and 192 releases.

We would be able to complete the assessment efficiently for the pilot case study, and then

refine the assessment framework based on the results.

According to the assessment framework, we need to collect data from three sources, i.e.,

the project repository, the project documentation, and online media outlets. The first data

source is the project repository. We collected data in two ways, i.e., querying GitHub API,

and extracting from the code repository. In general, the commit data, issue data, issue

comment data, release data, and contributor data were collected. The second data source

is the project documentation. Project D3 provides documentation at two sites: the official

project website, and the GitHub repository site. The documents were accessed directly

through the hosting websites. The online media outlets are the third data source for the

assessment. We searched online for the news articles related to the project, and collected

them for the pilot case study.

With the collected data, we conduct the assessment on OSS ideology within D3 community.

Following the workflow of each theme in the assessment framework, we analyzed the 32

themes one by one. Then, based on the process of conducting assessments and the assessment

results, we further reflected on the pilot case study, and refined the assessment framework.

Result of Pilot Case Study

Tab. 4.1 provides a summary of the assessment results on category Norms/Values in the pilot

case study, as an example to demonstrate the results of the assessment on OSS ideology in

D3. Note that the goal of the pilot case study is to test and refine the assessment framework,

84

thus, we primarily focus on the assessment framework and the workflows, and the detailed

case study results will be presented in the next chapter.

Table 4.1: Summary of the assessment results on Norms/Values in pilot case study.

Theme Assessment Result

Appreciation & Recognition Sometimes express the appreciation to the contributors but
not always.

Autonomy A large number of contributors might voluntarily contribute,
while most commits were submitted during working time.

Comparative Advantages Several advantages in data visualization were listed with par-
ticular requirements.

Constantly Changing &
Evolving

The community tends to be stable rather than changing or
evolving.

Ethics Explicit guidelines on several ethics values, as well as report-
ing and enforcement process.

Openness & Transparency Limited guideline on openness, but nothing about trans-
parency.

Meritocracy No evidence.
Reciprocity at Multiple Lev-
els

Reciprocity exists, and tends to be positive and supportive.

Trust Trust exists, and is evident in collaboration, community sup-
port, etc.

Universal Accessibility &
Availability

Public code repository, allowing to view/fork, and submit
pull-requests, but no explicit documents.

Framework Refinement & Reflection

Two researchers who conducted the pilot case study collectively reviewed the whole pro-

cess of conducting the assessment, and refined the assessment framework accordingly. The

refinement of the workflow could be classified into three types:

• Adding new methods to the workflows. We noticed that some of the assessment meth-

ods might only partially reflect the given theme, or might not adequately capture the

essence of the given themes. Then we added new methods to enhance the assessment

workflow. For example, the initial workflow of assessing theme Innovation focused on

85

the issues related to new features or functions. Then we added a sentimental analysis

of the comments on those issues, to reflect the community’s reaction on those new fea-

tures or functions, such as accepting/welcoming the ideas, or rejecting the ideas. The

additional method could provide more insights into the Innovation within the open

source project.

• Improving current methods in the workflows. When following some of the workflows

to assess the themes, some issues emerged, particularly with some steps within the

assessment methods. We revised those steps with more well-defined instructions or

adjusted some steps. For example, in the workflow of assessing Ideological Leadership,

we revised the step of “analyzing the comments with LLM tool” to “identify leadership

content in the comments with LLM tool,” which tends to be more explicit. Another

example was assessing Individual Identity, in the initial method, we grouped the com-

ments by contributors before the analysis. Then we realized that the results would

reflect individuals rather than the whole project community. Thus, we removed such

grouping step, and analyzed all the comments directly.

• Replacing with new methods in the workflows. After reviewing the results of the pilot

case study, some of the methods might not be ideal for reflecting the given themes,

thus, we need to replace those methods. Take assessing Personal Development as an

example, we intended to find evidence in the comments that contributors indicated

that they learned from the project, or improved themselves in the project. However,

contributors rarely shared those through comments on the projects, they might mention

that on their personal websites or blogs, which is out of the scope of our data collection.

Therefore, we adopted contributors’ trace of centrality degrees within the project as

the indicator of personal development, and updated the workflow accordingly.

Furthermore, the pilot case study also provides some guidelines regarding the usage and

implementation of the assessment framework. First, there are some traditional qualitative

86

methods in the assessment framework. In the pilot case study, two researchers were involved

in the assessment process, which is a typical strategy in Consensus Qualitative Research

(CQR) to guarantee the quality of the analysis [53]. However, it is not specified in the

assessment framework that multiple individuals are required for the assessment, instead, we

only specify the general assessment workflow. The rationale was that we aim to provide a

practical assessment framework with high usability. Both open source practitioners and re-

searchers could utilize the framework to conduct assessments on OSS ideology, i.e., following

the same workflows, researchers could adopt a rigorous CQR process to conduct qualitative

assessments, while individual practitioners could also conduct the same assessment on their

own and gain some insights into open source projects.

Second, LLM could be a reliable proxy in analyzing large volumes of text data, and extracting

key information for the assessment. However, we encountered some challenges in prompt

engineering and hallucination. There were several NLP tasks included in the assessment

framework, such as sentiment analysis and trust estimation. We need to develop appropriate

prompts for those NLP tasks, since task performance significantly depends on the quality of

the prompts [128]. For example, when extracting text data from issue comments related to

discussions among different contributors, and using LLM to analyze the sentiment, the LLM

occasionally failed to perform the NLP task, instead, it generated responses such as “You’re

welcome! If you have any more questions or need further assistance, feel free to ask,” as if

it were participating in the discussion. Since we adopted GPT-3.5 provided by OpenAI in

the pilot case study, we followed the official guideline on prompt engineering [83] to develop

prompt templates for each NLP task. Note that the prompts are closely related to the LLM

adopted in the assessments, prompt engineering is required when adopting different LLMs

or even different versions of the LLM.

Hallucination is another challenge with LLM. Although the research community has ded-

icated lots of efforts to mitigate hallucination, LLM still generates hallucinate unintended

87

text [62]. To reduce hallucination and its negative impact on the assessment, we adopted

two strategies in the pilot case study, one is aforementioned prompt engineering, and the

other is answer traceability. With answer traceability, we recorded both the requests sent

to LLM and the responses received from LLM. With these records as references, human

experts could efficiently examine whether the hallucination happened in the particular re-

sponse, then remove or current them to avoid misinformation. Thus, answer traceability is

recommended when implementing the assessment framework with LLM to reduce the impact

of hallucination.

88

Chapter 5

Applying Assessment Framework on

Open Source Project: Case Study

We conducted three case studies, by applying the refined assessment framework on open

source projects, to investigate how those projects follow the OSS ideology in practice, and

gain insights into the open source movement.

5.1 Study Design

In general, the study included six key steps, i.e., selecting projects, collecting data, conduct-

ing assessments, writing assessment reports, collecting feedback, and conducting cross-case

comparisons. Fig. 5.1 shows the overall process of the case studies.

First, we selected three open source projects as the subjects for case studies, i.e., D3,

Zephyr, PyTorch. D31 is an open source JavaScript library for data visualization, es-

1https://d3js.org/

89

https://d3js.org/

Assessment of project
PyTorch

Assessment of project
Zephyr

Cross-​Case
Comparison

Data Collection

Assessment of project
D3

Project Selection

Assessment
Framework

Feedback

Assessment
results of

Zephyr

Assessment
results of D3

Assessment
results of
PyTorch

Figure 5.1: The process of three case studies.

tablished in 2011; Zephyr2 is an open source real-time operating system since 2016; Py-

Torch3 is an open source framework widely adopted for deep learning, launched in 2016.

These three projects are popular open source projects that attract lots of contributors to

build communities around them, which are ideal subjects to assess the OSS ideology within

their communities. Then all three projects host their project repositories on GitHub, thus,

making it convenient to collect data under the same schema. Moreover, these three projects

could well represent diverse open source projects and communities, i.e., D3 was released as

an open source project in data visualization field but solely governed by Observable; Zephyr

originated as a commercial project but later became an open source projects under Linux

Foundation; PyTorch represents the machine learning/deep learning community, and it

2https://www.zephyrproject.org/
3https://pytorch.org/

90

https://www.zephyrproject.org/
https://pytorch.org/

was initially developed by Meta (formerly known as Facebook), then released as an open

source projects governed by PyTorch Foundation. The diversity and representativeness of

the three projects could provide various insights into open source movement in the case

studies.

Then, with the selected three open source projects as case study subjects, we collected data

for assessment. The data sources were the same as those in the pilot case study, i.e., project

repository, project documentation, and public news (see Sec. ??). Tab. 5.1 shows the

collected data from project repositories.

Table 5.1: Summary of the collected data from project repositories (April 2023).

Project #Commits #Issues
#Issue

Comments
#Releases

D3 4,355 3,224 9,127 192
Zephyr 78,319 56,363 174,183 106
PyTorch 58,701 98,659 404,614 44

With the collected data, we followed the same procedure in the pilot case study to conduct

assessments with each of the selected projects. Furthermore, based on the assessment results

of three study subjects, we compared across three study subjects to gain more insights into

OSS ideologies in practice.

After completing the assessment, we also recruited OSS practitioners to collect their feedback

on the assessment. The goal of collecting feedback was not to examine the assessment

results, but to investigate if the assessment results could provide valuable information for

OSS practitioners to better understand the projects, such as inspiring some reflection on open

source development, and providing information to facilitate decision-making. To achieve this

goal, we recruited three participants to conduct feedback sessions. The criteria to recruit

participants included familiarity with open source development but not limited to the study

subjects; independence from our case studies; and the availability to provide feedback after

reading the assessment results. Three participants were recruited from our department

91

based on the criteria. The assessment results were sent to the participants as a report,

and their feedback was collected through interviews. Since the feedback sessions aimed at

the assessment in general, rather than particular open source projects, it was not necessary

to conduct feedback sessions in all three case studies. Therefore, we only conducted such

feedback sessions in the case study of Zephyr with multiple participants.

5.2 Three Case Studies

In this section, we present the results of the case study, i.e., the assessment results of each

selected open source project. To keep this section concise, we briefly summarize the overall

assessment results4, and then present assessment results of some selected themes in detail,

which serve as best practice examples.

Disclaimer: The assessment results were based on public data sources, some of them might

not represent the official opinion of the projects. The assessment we conducted was a snap-

shot of the OSS ideologies in the project at a particular time, the assessment results for

particular projects were limited to this snapshot, and could not reflect the future changes

within the projects. The data and assessments were indicators that reflect the themes, they

might not reflect all practices related to the assessed themes.

5.2.1 Case 1: D3

We were able to compile evidence from the collected data to assess 25 out of 32 themes in the

project, and the remaining seven themes remained unclear with the collected data. Note that

it did not necessarily indicate the non-existence of those seven themes in the project. Rather,

it suggested that we were unable to assess them with the current assessment framework. The

4see Appendix C for a detailed report.

92

assessment results are summarized as follows:

• Values/Norms: eight of the ten assessed themes were evident in the project, except

Constantly Changing & Evolving and Meritocracy. The project sometimes expressed

Appreciation & Recognition in the release notes and the comments, but only a few

times. A large number of contributors were not affiliated with the project, and the

submission time of code commits tended to spread across both working time and after-

work time, which indicated Autonomy in the project. Several Comparative Advantages

were listed in the documentation, such as “high flexibility for creativity,” “works di-

rectly with web standards,” and “maximal expressiveness for bespoke visualization.”

Both the monthly commit frequency and newcomers tended to be stable and slightly

decreasing, which indicated the project was not Constantly Changing & Evolving. The

Code of Conduct documents provided guidelines on some values of Ethics, as well as

the reporting and enforcement process. For Openness & Transparency, there were lim-

ited guidelines on openness, but nothing about transparency. No evidence was found

to reflect Meritocracy, as no explicit description or different roles in the project. Reci-

procity at Multiple Levels existed in the project community, and tended to be positive

and supportive in general. Trust was positively identified in the project community,

and was evident in collaboration, community support, etc. No documentation related

to Universal Accessibility & Availability, but the code repository on GitHub could

partially guarantee that.

• Goals: five themes were assessed, except Innovation. Built-in Product & Quality Ori-

entations were reflected by the relatively stable bug reports and fixes. According to

the documentation, the major Broader Impacts of the project was to make data visu-

alization easier and more accessible for both technical and non-technical users. The

project utilized various social media platforms, e.g., YouTube, and X/Twitter, and

meetup events to achieve the goal of Outreach. The project has been widely adopted

93

in data analysis and visualization fields, in both industry and academia, which re-

flected its Ubiquitous Penetration. The number of newcomers who participated in code

contribution and issue discussion tended to decrease, which indicated some potential

challenges with Sustainability. Since there was no way to identify new feature/function

requests, Innovation remained unclear.

• Activities: we were only able to assess four of five themes with supporting evidence.

For Copyright, Licensing, & Legal Implications, the project was under ISC license, a

permission open source license. No Contributor License Agreement or other documents

are required for external contribution. Governance & Decision Making was unclear,

since there was no description in the documentation. Personal Development was only

evident with some of the contributors, while the centrality degrees of the majority

of contributors were relatively low and not in an increasing trend. Social Production

was reflected by multiple contributors involved in issue discussions. For Work Orga-

nization & Practice, multi-timezone collaboration existed but was not prevalent, since

the majority of code commits were submitted from three timezones; GitHub issues,

community forum, and Slack were three communication channels, but exclusively for

project development.

• Membership: only three of four assessed themes were reflected in the assessment. For

Individual Identity, most contributors addressed themselves as individuals, while only

a small number of them addressed themselves as part of the community. Ideological

Leadership was evident in the issue discussions, particularly in providing guidance,

sharing important information, etc. Interpersonal Sentiment in the project tended to

be neutral to slightly positive, with friendly, supportive, and collaborative sentiments.

No documentation was found to describe Member Hierarchy & Roles.

• Resources: three of the four assessed themes were reflected. For Dealing with Bar-

riers & Restrictions, the project provided some guidelines about “Getting Involved”,

94

but it was primarily for the project users rather than developers. No resources related

to Incentives, Financing, & Funding were found in the project. Knowledge & Exper-

tise were only limited to detailed documentation on project APIs and tutorials. No

documentation on Supportive Facilities & Mechanisms, except adopting GitHub for

development, and Slack for communication.

• Position/Group Relations: only two of three themes were indicated by the col-

lected data. No documentation or news articles indicated Interaction with Emerging

Technologies. For Interaction with Commercial Software Development, only one com-

pany, Observable, participated in the development, since the company owned and

managed the project; the project was adopted in the company’s commercial prod-

uct/service, and no other adoption identified. The project’s Market & Users were

primarily data analysis and visualization market, e.g., media, consultant, and users

with those data analysis and visualization requirements.

Since most of the assessed themes had room for improvement based on the results, it was

impossible to find one as the example of the best practice in this case study. Thus, we will

not select a theme and present it in detail.

5.2.2 Case 2: Zephyr

In general, we found evidence to assess 31 out of 32 themes in the project, Broader Impacts

was the one we were unable to find evidence. The assessment results are summarized as

follows:

• Values/Norms: all ten themes were evident. The project would sometimes express

Appreciation & Recognition to contributors in the release notes and the comments of

pull requests, but such behaviors often depended on the discretion of the members or

95

reviewers involved. The majority of contributors were not affiliated with the project,

and some code commits were submitted outside of the regular working time, while the

majority were submitted during working time, which indicated Autonomy existed in

the project but to a limited extent. The project’s Comparative Advantages included

“extensive suite of kernel services,” “cross architecture,” “memory protection,” and so

on. The monthly commit frequency and newcomers were increasing, which indicated

Constantly Changing & Evolving in the project community. We found a Code of

Conduct document to discuss some values of Ethics within the project, as well as some

examples of acceptable/unacceptable behaviors and enforcing processes. Openness &

Transparency was partially addressed in the documentation, i.e., mentioning openness

as one of the values in the community without emphasizing transparency. Meritocracy

existed in the community according to centrality degrees of different role groups, but

lacked of explicit description in the documentation. Reciprocity at Multiple Levels

tended to be neutral most of the time, while slightly positive in some discussions. Trust

was evident, and tended to be at a high level. Universal Accessibility & Availability

was mentioned in the documentation, and also guaranteed by the hosting repository

on GitHub.

• Goals: we found evidence to reflect five themes, except Broader Impacts. Built-in

Product & Quality Orientations was indicated by the slightly increasing trends of re-

ported and fixed bugs. The project took advantage of multiple social media platforms,

such as Facebook and YouTube, as well as meetup events, to achieve the goal of

Outreach. Sustainability was evident with newcomers joining every month for code

contributions and issue discussions. Innovation was reflected by the slightly increas-

ing trend of new features/functions requests, but the general sentiments towards when

were not always welcoming. Ubiquitous Penetration was achieved by the wide adoption

of the project in many commercial products.

96

• Activities: all five assessed themes were evident. The project followed a good practice

regarding Copyright, Licensing, & Legal Implications, i.e., adopting standard permis-

sive open source license, and not requesting copyright transfer from contributors. A

Technical Steering Committee (TSC) formed by a group of contributors was responsible

for Governance & Decision Making, and also reflected true meritocracy. All contribu-

tors’ centrality degrees were increasing, which indicated Personal Development in the

project. Social Production was evident as the majority of issue discussions were in-

volved with more than one contributor. Work Organization & Practices was reflected

by multi-timezone effort on the development, and different communication channels to

facilitate collaboration.

• Membership: all four assessed themes were reflected in the assessment. For Indi-

vidual Identity, a limited number of contributors addressed themselves as part of the

community, while many of them tended to address themselves as individuals. Ideolog-

ical Leadership was reflected in the issue discussions, primarily focusing on technical

aspects. Interpersonal Relationships generally tended to be positive, with professional

and collaborative sentiments. For Member Hierarchy & Roles, three roles, i.e., Main-

tainers, Collaborators, and Contributors, were clearly defined, and they formed a hi-

erarchical structure in the project.

• Resources: all four assessed themes were indicated in the project. Detailed contribu-

tor guidelines were provided for Dealing with Barriers & Restrictions. Some Incentives,

Financing, & Funding were identified, i.e., members for project sponsorship, and career

opportunities within the project ecosystem and community, but no support for individ-

ual donations. Knowledge & Expertise were reflected by detailed and well-structured

documentation for both developers and users. A set of tools/toolchains and three dif-

ferent communication channels were adopted as Supportive Facilities & Mechanisms.

• Position/Group Relations: all three assessed themes were supported by the evi-

97

dence from the documentation and related news. Robotics, AI, Ultra-Wideband RTLS

would be Emerging Technologies that the project mostly interacted with. Interaction

with Commercial Software Development was reflected in the official website and news

articles, i.e., commercial companies such as Google and T-Mobile were platinum/silver

members in the project community, and their employees were active in the project; the

project has been widely adopted in many commercial products. The project’s Market

& Users were primarily IoT and embedded system markets, and the developers in

those fields.

Next, we choose the assessment on the theme Copyright, Licensing, & Legal Implications

as an illustration example in this case study. First, the project was under Apache 2.0 li-

cense, a permissive open source license. It is a standard license without any modification or

customization by the project. The license was listed in the code repository, with a short ex-

planation of the rights granted to the public, i.e., “allows you to freely use, modify, distribute,

and sell your own products that include Apache 2.0 licensed software.” [121] Moreover, the

licensing documentation also informed that some components were under different licenses,

and provided a list of those components and the corresponding licenses.

Second, unlike some open source projects that require contributors to sign a Contributor Li-

cense Agreement (CLA) to transfer the copyright, Zephyr only required a signed Developer

Certification of Origin (DCO), attached to contributions. A DCO is a short legal document

to certify that the contributors own the work and have the right to submit to the project.

It does not require contributors to transfer the copyright of their work. The signing process

tends to be simple and easy, i.e., adding the statement “Signed-off-by: Name <Email>” in the

commit message. Compared with CLA, DCO tends to be less complex and intimidating for

contributors, since it does not involve copyright transfer, but still ensures licensing criteria

are met.

98

In summary, the project was under a standard permissive open source license, with an

explanation of the rights granted by the license. The DCO simplified the legal implications,

which potentially made contributors less intimated by the licensing and legal issues.

5.2.3 Case 3: PyTorch

All 32 themes were reflected by the evidence in the project, and the assessment results are

summarized as follows:

• Values/Norms: all ten themes were reflected in the project. The project only ex-

pressed Appreciation & Recognition to the community in general, but did not explicitly

thank individual contributors. The majority of the contributors were not affiliated with

the project, but the majority of the code commits were submitted during working time,

which reflected a limited extent of Autonomy in the project. The project documenta-

tion listed several Comparative Advantages, such as “distributed training,” and “robust

ecosystem.” Both monthly commit frequency and newcomers were increasing in gen-

eral, which indicated the project community was Constantly Changing & Evolving.

The project followed a standard Code of Conduct with explicit guidelines to deal with

Ethics related issues. Openness & Transparency were reflected by the public reposi-

tory on GitHub, and were partially addressed in documentation, i.e., “an open and

welcoming environment.” Meritocracy existed in the project, different roles existed in

the project community, and their centrality degrees indicated merit-based promotion.

Reciprocity at Multiple Levels tended to be neutral mostly, but sometimes slightly posi-

tive. Trust was evident in the project, and tended to be strong. Universal Accessibility

& Availability was guaranteed by the public code repository, but direct code commit

was only restricted to particular contributors.

• Goals: all six themes were evident in the project. Built-in Product & Quality Orienta-

99

tion was indicated by the increasing number of bug reports, and clear documentation

to explain the project testing; but the overall bug-fix ratio was relatively low. The

project’s Broader Impacts was presented as “providing advanced and accessible deep

learning tooling to the public,” and “fostering collaboration on development/research

at local and regional levels.” The project utilized various popular social media plat-

forms, and conference events to engage with the public, for Outreach purpose. Ubiqui-

tous Penetration was reflected by the wide adoption of the project as the key machine

learning infrastructure. Newcomers actively joined and participated in the develop-

ment process, i.e., code commits, and issue discussions, which indicated Sustainability

in the project. Innovation was evident in the project, the number of proposed new

features/functions was increasing in general, and the sentiments towards them tended

to be positive and enthusiastic.

• Activities: all five themes were reflected in the project. For Copyright, Licensing,

& Legal Implications, the project was under BSD-3-Clause license, a permissive open

source license, and a Contributor License Agreement (CLA) was required for contrib-

utors. For Governance & Decision Making, the project community followed a hierar-

chical governance structure, and collective discussion in the decision-making process.

The centrality degree traces of most contributors tended to be increasing, indicating

Personal Development in the project. Social Production was evident, as most issues

were commented by multiple contributors. For Work Organization & Practice, four

communication avenues were adopted for development, i.e., RFC, Design Docs, fo-

rum, and Slack, as well as developer meetup events; the code commits were submitted

mostly from three timezones, while a small portion was submitted from 18 different

timezones.

• Membership: all four themes were evident in the project. For Individual Identity,

many contributors tended to address themselves as individuals, while some contributors

100

addressed themselves as part of the community. Ideological Leadership was reflected

in issue comments, primarily focusing on technical aspects of the project development.

Interpersonal Relationships tended to be positive, with collaborative, supportive, and

professional sentiments. For Member Hierarchy & Roles, five roles, i.e., Lead Core

Maintainer, Core Maintainers, Model-level maintainers, Library-level maintainers, and

Contributors, were clearly defined in the documentation.

• Resources: all four themes were reflected in the project. The project provided de-

tailed documents on contribution guide, onboarding guide, developer workflow, etc., for

Dealing with Barriers & Restrictions. For Incentives, Financing, & Funding, project

donation and sponsorship were through PyTorch Foundation, but no support for indi-

vidual developers. Knowledge & Expertise were reflected with detailed documentation

for both developers and users. Documentation, bots, automatic tools, and meetup

events were Supportive Facilities & mechanisms in the project.

• Positions/Group Relations: all three themes were reflected by the collected data.

For Interaction with Emerging Technologies, the project primarily focused on machine

learning/deep learning technologies, and also expanded to edge devices. For Interaction

with Commercial Software Development, many commercial companies participated in

the project development, and the project has been widely adopted in various industries

and commercial products. The primary Market & Users were related to machine

learning and AI, and users included both researchers and developers.

We select Meritocracy as an example to illustrate the OSS ideology within project Py-

Torch. First, five different roles, i.e., Lead Core Maintainer, Core Maintainers, Model-level

maintainers, Library-level maintainers, and Contributors, were clearly defined in the project

documentation, as well as their rights and responsibilities. For example, the responsibilities

of Core Maintainers included “articulating a cohesive long-term vision for the project,” “ne-

gotiating and resolving contentious issues in ways acceptable to all parties involved,” and

101

“receiving broad requests for changes from stakeholders of PyTorch and evaluating/accepting

them.” [86] Moreover, the processes of nominating, confirming, and removing those main-

tainers were also explicitly described in the documentation, and merit basis is the first

principle in such processes.

Then, we calculated contributors’ centrality degrees and grouped them based on those roles,

as shown in Fig. 5.2 and Tab. 5.2. In general, as individuals progressed from Contributors to

Lead Core Maintainers, their centrality tended to increase, reflecting merit-based promotion

in the project. Therefore, we could conclude that Meritocracy was evident in the project,

it was not only clearly described in the project documentation, but also indicated by the

increasing centrality degrees across different roles.

Lead Core Maintainer Core Maintainers Model‑level maintainers Library‑level maintainers Contributors

0

2

4

6

8

10

12

14

C
en
tr
al
it
y

Figure 5.2: The distribution of centrality degrees across five roles in PyTorch.

Table 5.2: The statistical summary of the centrality degrees across five roles in PyTorch.

Role Mean Median SD.

Lead Core Maintainer 2.02 2.02 0.00
Core Maintainers 2.10 0.53 2.76

Model-level maintainers 0.88 0.23 1.33
Library-level maintainers 0.46 0.04 1.44

Contributors 0.08 0.01 0.44

102

5.3 Cross-Case Comparison & Implications

Table 5.3: The summary of three case studies.

Category Theme D3 Zephyr PyTorch

Norms/Values

Appreciation & Recognition
√ √ √

Autonomy
√ √ √

Comparative Advantages
√ √ √

Constantly Changing & Evolving
√ √

Ethics
√ √ √

Openness & Transparency
√ √ √

Meritocracy
√ √

Reciprocity at Multiple Levels
√ √ √

Trust
√ √ √

Universal Accessibility & Availability
√ √ √

Goals

Broad Impacts
√ √

Built-in Product & Quality Orientations
√ √ √

Outreach
√ √ √

Sustainability
√ √

Innovation
√ √

Ubiquitous Penetration
√ √ √

Activities

Copyright, Licensing, & Legal Implications
√ √ √

Governance & Decision Making
√ √

Personal Development
√ √ √

Social Production
√ √ √

Work Organization & Practices
√ √ √

Membership

Individual Identity
√ √ √

Ideological Leadership
√ √ √

Interpersonal Relationships
√ √ √

Member Hierarchy & Roles
√ √

Resources

Dealing with Barriers & Restrictions
√ √ √

Incentives, Financing, & Funding
√ √ √

Knowledge & Expertise
√ √ √

Supportive Facilities & Mechanisms
√ √

Position/Group
Relations

Interacting with Emerging Technologies
√ √

Interaction with Commercial Software Devel-
opment

√ √ √

Market & Users
√ √ √

With the three case studies, we further compared the assessment results, to gain more insights

103

into how open source projects nowadays uphold OSS ideology in practice. Tab. 5.3 provides

a summary of the themes we found evidence across three selected projects.

First, although the three selected open source projects were in different fields, i.e., data

visualization, machine learning, and operating system, some of the themes were very similar

or even the same across the three projects. For example, the theme Universal Accessibility

& Availability was basically the same across three projects, i.e., they all provided code

repositories for the public, and the source code was publicly available. Another example was

Copyright, Licensing, & Legal Implications. Three selected open source projects were under

different licenses, but those licenses were all open source licenses, and they basically granted

similar rights to the public. Thus, those themes tended to be more fundamental for open

source projects, and open source projects usually uphold them to a similar extent.

Second, some themes might be associated with each other, and potentially affect each other.

In D3, we noticed that no newcomers joined the project since May 2021, which negatively

affected Constantly Changing & Evolving of the community. Then, without a growing project

community, there would be no need for Member Hierarchy & Roles. Furthermore, since no

newcomers were joining the project, it was impossible to achieve the goal of Sustainability

as well. However, with Zephyr and PyTorch, newcomers were joining the projects every

month, and those themes within those two projects were completely different compared

to D3. However, the case studies conducted were not sufficient to confirm or prove such

associations among themes, and further investigation is essential to confirm these findings.

Third, the case studies indicated the heterogeneity in the perception and adoption of OSS

ideology in the open source community. Different open source projects might uphold OSS

ideology differently and to different extents, and there was no universal best practice for

following OSS ideology. Take Autonomy as an example, Fig. 5.3 shows the commit activity

within three projects, there were commits submitted to the three projects outside of the

regular working hours, indicating autonomy existed across three projects. However, there

104

was a pattern in both Zephyr and PyTorch, in which the majority of the commits were

submitted during regular working hours, and the pattern tended to be more significant in

Zephyr; while such pattern was not explicit in D3. Those differences reflected the varying

extents of Autonomy across the three projects.

0 2 4 6 8 10 12 14 16 18 20 22

Monday

Tuesday

Wednesday

Thursday

Friday

Saturday

Sunday

0

20

40

60

80

100

Hour of Day

6 4 2 2 7 3 1 3 24 50 33 83 53 48 37 50 42 35 35 15 16 36 22 21

13 3 9 1 0 0 2 5 43 38 53 47 38 88 70 64 50 42 24 15 24 37 24 21

11 5 6 0 1 2 0 16 32 57 104 93 65 40 47 55 49 53 35 20 34 36 32 31

18 0 1 0 0 0 2 20 29 66 57 59 46 32 47 76 49 62 13 22 22 30 27 33

9 2 0 1 0 0 1 4 20 44 67 42 47 26 50 42 57 27 27 23 25 23 27 19

26 6 0 0 0 0 0 3 24 43 34 39 46 35 34 29 26 23 23 13 32 24 18 14

7 0 1 0 0 0 0 9 13 33 38 35 19 27 19 19 29 25 16 19 31 20 21 25

D3

0 2 4 6 8 10 12 14 16 18 20 22

Monday

Tuesday

Wednesday

Thursday

Friday

Saturday

Sunday

200

400

600

800

1000

1200

1400

Hour of Day

74 34 20 9 24 33 59 134 426 658 1172 1232 1137 1252 1361 1429 1187 985 465 312 316 316 318 263

142 93 61 25 24 64 81 181 480 930 1295 1410 1193 1245 1423 1537 1386 881 495 397 330 385 361 257

200 82 37 52 47 70 116 238 540 859 1393 1367 1202 1366 1500 1546 1318 960 567 336 363 413 463 317

170 78 66 37 60 84 128 202 474 883 1198 1381 1213 1233 1419 1477 1234 923 532 351 360 361 392 279

178 104 62 33 32 70 99 255 432 872 1355 1250 1177 1174 1371 1388 1128 741 438 274 259 349 249 218

114 55 30 36 33 73 81 111 198 197 208 257 214 201 204 187 207 155 161 129 146 170 127 140

76 46 40 12 24 35 74 58 94 163 170 149 170 198 188 158 190 169 158 124 146 127 163 160

Zephyr

0 2 4 6 8 10 12 14 16 18 20 22

Monday

Tuesday

Wednesday

Thursday

Friday

Saturday

Sunday

200

400

600

800

Hour of Day

68 58 51 57 61 60 115 259 394 413 581 637 623 642 784 681 623 580 576 478 477 505 389 341

272 181 166 130 122 112 197 398 475 596 761 783 725 776 824 753 759 672 573 496 482 496 429 407

259 213 167 123 109 128 211 390 529 605 755 857 751 756 886 760 735 770 597 563 452 513 439 404

336 220 159 151 148 117 193 344 493 593 733 751 678 761 761 722 651 692 473 424 486 461 435 358

249 183 165 150 111 115 197 373 443 551 717 799 634 700 660 656 634 580 455 363 290 291 275 236

176 107 103 91 43 37 62 59 90 103 109 116 120 107 116 123 132 138 91 108 110 89 102 85

67 53 46 38 35 28 36 38 53 52 78 78 98 103 89 107 110 85 105 121 144 151 126 108

PyTorch

Figure 5.3: The commit activity heatmap of three projects.

105

5.4 Feedback from Stakeholders

The assessment results were sent to three recruited participants (FP1-3), and their feedback

was collected through interviews. Note that the goal of collecting feedback was to investigate

whether the assessment could provide valuable and helpful information for OSS practitioners

and stakeholders, thus, it is not necessary to provide assessment results of all three projects

to the recruited participants. We chose Zephyr in the feedback sessions since it is less well-

known than PyTorch, helping to avoid potential bias, and it has more assessed themes

than D3.

The recruited participants provided various feedback regarding the assessment of OSS ide-

ologies. First, the participants were surprised that open source development involves various

aspects, including both technical and social aspects within the community, and the assess-

ment helped them be aware of them. For example, some participants shared:

“Open source development, and the community, could be studied from many per-

spectives, including technical stuff, social things... We cannot limit ourselves on

a few perspectives.” (FP1)

The assessment provided a thorough analysis of various aspects of the open source devel-

opment. The assessment framework covered a comprehensive set of aspects of open source

development, as our recruited participants mentioned:

“The framework is very comprehensive, it covers every aspect, like not only the

developers, but also covers user aspect, interactions between developers, so it is

very comprehensive from my understanding.” (FP2)

Moreover, all three participants were not very familiar with the project, i.e., some of them

only heard the name of the project. Our assessment results provided a comprehensive

106

overview of the project, and helped them learn more about the project. For example, one

participant shared:

“I feel the project is very good, according to the report, only one theme was missed,

so the project [basically] touched every aspect... It’s good to know how the project

is going on, from all perspectives.” (FP2)

Furthermore, the information presented in the assessment results was informative, and could

potentially help OSS practitioners make decisions, such as motivating them to join open

source projects. OSS practitioners usually search for information regarding open source

projects to help them make decisions, and our assessment could serve that purpose perfectly,

as indicated by the participants:

“If I want to participate in open source projects, the more context and information

I have from the community, the easier I can get involved, like their values, how

they welcome the newcomers, etc. I think this report is basically a thorough

analysis of the repository. Instead of me going through the repository, I can just

walk through the report, and see the parts that I’m interested in.” (FP1)

“I usually check the Github repository, to check everything, it is intuitive. If we

have the [assessment] report, we can have everything in a single glance.”

“Particularly to this project first, as the assessment results suggest, the project

is very good, they maintain everything, in that sense, it motivates me to join

their contributor list. It also motivates me to join open source development in

general.”(FP2)

“The [assessment] results make me curious to learn more about open source,

maybe will try to commit one day to see how open source works.” (FP3)

107

One participant also mentioned the potential of the assessment framework when applied to

multiple open source projects:

“If I have several projects, and have their assessment results that they [might]

not cover every aspect, then I can compare.” (FP2)

Moreover, the participants also shared feedback regarding some detailed information they

would like to have, and the format of the assessment results, to improve the accessibility

to the provided information. For example, a high-level informative summary could attract

audiences to read more detailed assessment results.

Therefore, the feedback from stakeholders indicated the significant values of the assessment

framework and the assessment results, as well as the various benefits provided by such

assessments:

• The assessment framework captures various aspects of open source development, and

helps stakeholders be aware of multiple aspects.

• The assessment results provide a comprehensive overview of the open source projects,

and help stakeholders better understand open source development.

• The information provided in the assessment plays a positive role in facilitating decision-

making in open source development.

108

Chapter 6

Discussion & Implications

The empirical theory of OSS ideology, the assessment framework on OSS ideology, and the

three case studies to investigate the OSS ideologies within open source projects not only pro-

vided significant insights into the open source movement, but also yielded rich implications

and shed light on future research opportunities. We discuss both theoretical and practical

implications, as well as limitations, in the remainder of this chapter.

6.1 Theoretical Implications

The empirical theory of OSS ideology, featuring comprehensive, contemporary, and empirically-

grounded characteristics, provided an ideological lens to examine open source development.

First, the theory reflected the ideologies across micro-, meso-, and macro-levels, i.e., individ-

uals, projects, organizations, and society. It enabled us to understand the dynamics within

open source movement across multiple levels with different granularity. Second, the theory

consisted of 42 themes, organized under six broad categories. It covered various aspects of

open source movements, and connected the fragmented knowledge from the literature under a

109

cohesive framework. It also established a common foundation to facilitate multi-disciplinary

research endeavors in open source movement. Third, the assessment framework we devel-

oped was one implementation of the ideological lens provided by the theory, and it offered a

more comprehensive investigation and in-depth understanding of the open source projects.

Moreover, the open source movement, as an ongoing social movement, is still evolving. We

identified various tensions and ongoing discussions within the open source community, which

could be some potential directions that open source movement evolves. We could track those

potential directions, keep the understanding of OSS ideology up-to-date, and gain insights

into the evolution of the open source movement.

The case studies indicated the existence of the heterogeneity of OSS ideologies within open

source projects, but further investigation would be necessary to have a more comprehensive

understanding. First, different themes within the theory could influence particular dynamics

and outcomes of open source development. Some of them tended to be straightforward to

understand their influence, such as Built-in Product & Quality Orientations, while some have

been explored in the extant literature, for example, Individual Motivations were one of the

topics that were extensively explored [112, 11, 46, 94]. However, some themes, particularly

newly identified themes, have not yet been studied comprehensively, such as the negative im-

pacts of Interaction with Commercial Software Development, and Innovation in open source

projects. Second, different themes might be associated with each other, i.e., the changes in

one theme might affect another theme, even though under different categories. Investigating

such associations could provide more insights into the dynamics of open source development

from ideological perspectives, and potential could improve open source development.

Based on the research in this dissertation, we further list a few future directions toward a

more comprehensive understanding of open source ideology:

• How would those themes within the OSS ideology affect the dynamics and outcomes

110

of the open source development?

• Which themes would associate with or affect other themes within the OSS ideology?

• How could the knowledge from other disciplines, such as organizational science, social

science, and cognitive science, help gain more insights into open source development

with such an ideological lens?

• What are the current tensions within the open source community, and how would those

tensions influence the evolution of the open source movement?

6.2 Practical Implications

The empirical theory of OSS ideology could be a guideline and a checklist for open source

practitioners to reflect on their practice in open source development, e.g., identifying po-

tentially overlooked themes, resolving conflicts from the ideological perspective, attracting

contributors who share a similar perception of OSS ideology, and so on. Based on the case

studies, some themes tended to be fundamental across different open source projects, which

could significantly distinguish open source development from other software development

paradigms, such as fauxpen source [93]. Those fundamental themes could be the priorities

for OSS practitioners when they identify open source projects to join, and examine their

practice in open source development.

The assessment framework provided a practical tool to investigate the ideologies within

particular open source projects. The project owners and maintainers could improve their

practice according to the assessment results; open source contributors could find open source

projects that match their perceptions of OSS ideology to join and contribute. The assessment

framework could reduce the ideological misfit [26], and facilitate more efficient open source

development. The feedback from OSS practitioners also indicated that the assessment could

111

provide a comprehensive and informative overview of open source projects, and potentially

benefit their involvement in open source development.

We refined the assessment framework with the pilot case study, and many assessment work-

flows were improved based on the results. However, further refinement of the framework was

still needed to provide a more accurate and comprehensive assessment of OSS ideology. First,

there were ten themes that we have not yet operationalized and included in the assessment

framework with the two design principles. Some methods might be explored and developed

to assess those ten themes in the future, and the assessment framework could be a direct and

complete mapping from the empirical theory of OSS ideology, which provides a comprehen-

sive assessment of OSS ideology. Second, with new data and new methods introduced for the

themes in the current assessment framework, we would be able to assess the themes utilizing

multiple sources of evidence. Such improvement could significantly enhance the assessment

results, making them more comprehensive and thorough. Third, the current design of the

assessment framework includes automated or semi-automated assessment processes, by uti-

lizing computer scripts and LLM. Automating the assessment could significantly improve the

usability of the assessment framework, i.e., more OSS practitioners could conduct their as-

sessments on the open source projects they are interested in, and make decisions accordingly.

Moreover, the current assessment results were mostly descriptive, rather than quantitative.

It would be more intuitive for OSS practitioners to quantify the results, making it easier to

compare across different projects.

Therefore, there are rich research opportunities to further improve the practical aspects of

both the empirical theory and assessment framework of OSS ideology:

• Providing detailed guidelines based on OSS ideology for OSS practitioners to examine

the open source development.

• Further refining the workflows in the assessment framework to provide more accurate

112

and comprehensive assessment results.

• Automating the assessment framework to improve its usability for OSS practitioners.

• Exploring the possibility of quantifying the assessment results to facilitate cross-project

comparison.

6.3 Limitations

Our studies in this dissertation are subjected to some limitations:

Regarding the empirical theory of OSS ideology, first, the concept of ideology is abstract

and vague, sometimes ambiguous. We chose not to mention the term “ideology” during the

interview, to avoid misleading the participants. However, they might not be able to explicitly

express their perceptions of OSS ideology, and the collected data might not reflect their un-

derstanding of OSS ideology. Then, we compiled a diverse sample, including both grassroots

OSS practitioners and OSI board members, to reflect the population of OSS community,

but it was still impossible to claim that the sample was exhaustive enough to represent the

whole OSS community. New concepts and themes might emerge when more sampled par-

ticipants are in the study. Third, the empirical theory developed in our study only served

as a contemporary understanding of OSS ideology, and it became “outdated” immediately

after its establishment, like any other empirical theories related to social phenomena. With

the evolution of OSS movement, further inquiries on OSS ideology are needed to keep the

empirical understanding up-to-date.

Regarding the assessment framework and case studies on selected open source projects, the

first limitation was the scope of the assessment framework only reflected OSS ideology at the

project level. Since the OSS ideology is across multiple levels, we might expand the scope

of the assessment framework in the future to reflect the multi-level nature of OSS ideology.

113

Second, we collected data from public data sources, some particular information might not

be disclosed through those data sources, potentially limiting access to all data related to the

open source projects. New findings and insights might emerge when collecting more related

data within the selected projects. Third, we defined workflow for each assessed theme within

the framework, we intended to use multiple sources of evidence, but for some themes, we were

unable to develop other assessment methods with different data sources, which potentially

became a threat to construct validity. It could be improved with new data sources and new

assessment methods in the future refinement of the assessment framework. Fourth, the three

selected open source projects were high-profile projects within the open source community,

but it was still impossible for them to represent all open source projects, thus, the findings

and results might not be generalized enough for other open source projects.

114

Chapter 7

Conclusions

Open source development is not only a software development paradigm that is widely adopted

nowadays, but also a social movement that has profound impacts beyond technical realms.

Ideology, as the “heart and soul”, plays a critical role in motivating such social movements,

and so does OSS ideology in the open source movement. Understanding open source ide-

ology could help us gain more insights into open source development, which benefits both

practitioners and researchers in open source development.

In this dissertation, we developed an empirical understanding of open source ideologies from

both theoretical and practical perspectives. First, we developed an empirical theory of OSS

ideology. Following grounded theory methodology, we recruited 22 OSS practitioners for

semi-structured interviews to collect their narratives regarding open source development,

and collected 41 videos of OSI board members’ public interviews/speeches as a secondary

data source. The collected data were analyzed through the coding process, and the empirical

theory emerged from the collected. The empirical theory consisted of 42 themes under six

broad categories, i.e., Norms/Values, Membership, Goals, Activities, Resources, and Posi-

tions/Group Relations. Such theory featured comprehensive, contemporary, and empirically-

115

grounded characteristics, reflecting our understanding of the open source movement from the

ideological perspective.

Then, based on the emerging theory of OSS ideology, we developed a practical and extensive

assessment framework to examine the ideologies within open source projects. The assessment

framework utilizes data from public sources, i.e., project repository, documentation, and

news articles, and provides assessments on OSS ideology at the project level. Moreover, we

conducted three case studies by applying the assessment framework to three selected open

source projects. The results demonstrated how open source projects uphold OSS ideology

in practice, i.e., they indicated the existence of the heterogeneity of OSS ideology in open

source projects, and its influences on the different dynamics and outcomes in open source

development.

The research in this dissertation set a foundation to understand and investigate open source

development from an ideological perspective. The empirical theory of OSS ideology reflected

the collective perception within the whole open source community. It connected the frag-

mented knowledge, and provided an ideological lens for researchers to examine open source

development, even facilitating interdisciplinary research inquiries. The assessment frame-

work provided a practical way to utilize such an ideological lens for both OSS researchers

and practitioners, i.e., OSS researchers would gain in-depth insights from an ideological per-

spective; OSS practitioners would find open source projects that match their perception,

and improve the practice of open source development with the guidance of OSS ideology.

Furthermore, we discussed a few future directions to continue the exploration toward the

empirical understanding of open source ideology and open source movement.

116

Bibliography

[1] G. Abramo, C. A. D’Angelo, and F. Di Costa. The effect of multidisciplinary collabo-
rations on research diversification. Scientometrics, 116:423–433, 2018.

[2] M. Alvesson and H. Willmott. Identity regulation as organizational control: Producing
the appropriate individual. Journal of management studies, 39(5):619–644, 2002.

[3] B. E. Ashforth, S. H. Harrison, and K. G. Corley. Identification in organizations: An
examination of four fundamental questions. Journal of Management, 34(3):325–374,
2008.

[4] R. P. Bagozzi and U. M. Dholakia. Open source software user communities: A study
of participation in linux user groups. Management Science, 52(7):1099–1115, 2006.

[5] S. Ballmer. Ballmer: ’linux is a cancer’. The Register, June 2001. Accessed: 2024-04-17.

[6] H. Baytiyeh and J. Pfaffman. Open source software: A community of altruists. Com-
puters in Human Behavior, 26(6):1345–1354, 2010.

[7] S. Beck, C. Bergenholtz, M. Bogers, T.-M. Brasseur, M. L. Conradsen, D. Di Marco,
A. P. Distel, L. Dobusch, D. Dörler, A. Effert, et al. The open innovation in science
research field: a collaborative conceptualisation approach. Industry and Innovation,
29(2):136–185, 2022.

[8] R. Bendix. Work and Authority in Industry: Ideologies of Management in the Course
of Industrialization. Harper & Row, 1956.

[9] Y. S. Bermiss and R. McDonald. Ideological misfit? political affiliation and employee
departure in the private-equity industry. Academy of Management Journal, 61(6):2182–
2209, 2018.

[10] M. Bianchin. Explaining ideology: Mechanisms and metaphysics. Philosophy of the
Social Sciences, 50(4):313–337, 2020.

[11] J. Bitzer, W. Schrettl, and P. J. Schröder. Intrinsic motivation in open source software
development. Journal of Comparative Economics, 35(1):160–169, 2007.

[12] A. Bosu and K. Z. Sultana. Diversity and inclusion in open source software (OSS)
projects: Where do we stand? In 2019 ACM/IEEE International Symposium on

117

Empirical Software Engineering and Measurement, ESEM 2019, Porto de Galinhas,
Recife, Brazil, September 19-20, 2019, pages 1–11. IEEE, 2019.

[13] P. Bourdieu and L. Boltanski. La production de l’idéologie dominante. Actes de la
Recherche en Sciences Sociales, 2(2):3–73, 1976.

[14] F. Calefato, F. Lanubile, F. Maiorano, and N. Novielli. Sentiment polarity detection
for software development. Empir. Softw. Eng., 23(3):1352–1382, 2018.

[15] E. D. Canedo, R. Bonifácio, M. V. Okimoto, A. Serebrenik, G. Pinto, and E. Monteiro.
Work practices and perceptions from women core developers in OSS communities. In
M. T. Baldassarre, F. Lanubile, M. Kalinowski, and F. Sarro, editors, ESEM ’20:
ACM / IEEE International Symposium on Empirical Software Engineering and Mea-
surement, Bari, Italy, October 5-7, 2020, pages 26:1–26:11. ACM, 2020.

[16] M. Castells. The Internet galaxy: Reflections on the Internet, business, and society.
Oxford University Press, USA, 2002.

[17] K. Charmaz. Constructing Grounded Theory: A Practical Guide through Qualitative
Analysis. SAGE, 2006.

[18] S. Chen. The relation between ideology and decision-making. The Journal of Global
Business Management, 2(3):140–50, 2006.

[19] I. Chengalur-Smith, A. Sidorova, and S. L. Daniel. Sustainability of free/libre open
source projects: A longitudinal study. Journal of the Association for Information
Systems, 11(11):657–683, 2010.

[20] J. Coelho and M. T. Valente. Why modern open source projects fail. In E. Bodden,
W. Schäfer, A. van Deursen, and A. Zisman, editors, Proceedings of the 2017 11th
Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2017, Paderborn,
Germany, September 4-8, 2017, pages 186–196. ACM, 2017.

[21] J. A. Colazo and Y. Fang. Impact of license choice on open source software development
activity. J. Assoc. Inf. Sci. Technol., 60(5):997–1011, 2009.

[22] J. Corbin and A. Strauss. Basics of Qualitative Research: Techniques and Procedures
for Developing Grounded Theory. SAGE, 2008.

[23] K. Crowston and B. Scozzi. Open source software projects as virtual organisations:
competency rallying for software development. IEE Proc. Softw., 149(1):3–17, 2002.

[24] K. Crowston, K. Wei, J. Howison, and A. Wiggins. Free/libre open-source software de-
velopment: What we know and what we do not know. ACM Comput. Surv., 44(2):7:1–
7:35, 2012.

[25] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb. Social coding in github: trans-
parency and collaboration in an open software repository. In S. E. Poltrock, C. Simone,
J. Grudin, G. Mark, and J. Riedl, editors, CSCW ’12 Computer Supported Cooperative
Work, Seattle, WA, USA, February 11-15, 2012, pages 1277–1286. ACM, 2012.

118

[26] S. L. Daniel, L. M. Maruping, M. Cataldo, and J. D. Herbsleb. The impact of ide-
ology misfit on open source software communities and companies. MIS Quarterly,
42(4):1069–1096, 2018.

[27] A. Davies, S. Manning, and J. Söderlund. When neighboring disciplines fail to learn
from each other: The case of innovation and project management research. Research
Policy, 47(5):965–979, 2018.

[28] F. P. Deek and J. A. McHugh. Open source: Technology and Policy. Cambridge
University Press, 2007.

[29] M. Diani. The concept of social movement. The Sociological Review, 40(1):1–25, 1992.

[30] M. Diani. Social movement networks virtual and real. Information, Communication
& Society, 3(3):386–401, 2000.

[31] P. L. Elkin. Terminology and Terminological Systems. Springer Science & Business
Media, 2012.

[32] G. L. Evans. A novice researcher’s first walk through the maze of grounded theory:
Rationalization for classical grounded theory. Grounded Theory Review, 12(1), 2013.

[33] H. Fang, D. Klug, H. Lamba, J. D. Herbsleb, and B. Vasilescu. Need for tweet: How
open source developers talk about their github work on twitter. In S. Kim, G. Gousios,
S. Nadi, and J. Hejderup, editors, MSR ’20: 17th International Conference on Mining
Software Repositories, Seoul, Republic of Korea, 29-30 June, 2020, pages 322–326.
ACM, 2020.

[34] H. Fang, H. Lamba, J. D. Herbsleb, and B. Vasilescu. ”this is damn slick!” estimating
the impact of tweets on open source project popularity and new contributors. In
44th IEEE/ACM 44th International Conference on Software Engineering, ICSE 2022,
Pittsburgh, PA, USA, May 25-27, 2022, pages 2116–2129. ACM, 2022.

[35] M. Feldman. Organizational routines as a source of continuous change. Organization
Science, 11(6):611–629, 2000.

[36] M. Feldman and B. Pentland. Reconceptualizing organizational routines as a source
of flexibility and change. Administrative Science Quarterly, 48(1):94–118, 2003.

[37] J. Feller and B. Fitzgerald. A framework analysis of the open source software develop-
ment paradigm. In S. Ang, H. Krcmar, W. J. Orlikowski, P. Weill, and J. I. DeGross,
editors, Proceedings of the Twenty-First International Conference on Information Sys-
tems, ICIS 2000, Brisbane, Australia, December 10-13, 2000, pages 58–69. Association
for Information Systems, 2000.

[38] J. Feller, B. Fitzgerald, W. Scacchi, and A. Sillitti. Open Source Development, Adoption
and Innovation: IFIP Working Group 2.13 on Open Source Software. Springer, 2007.

119

[39] I. Ferreira, J. Cheng, and B. Adams. The ”shut the f**k up” phenomenon: Charac-
terizing incivility in open source code review discussions. Proc. ACM Hum. Comput.
Interact., 5(CSCW2):1–35, 2021.

[40] R. T. Fielding. Shared leadership in the apache project. Commun. ACM, 42(4):42–43,
1999.

[41] B. Fitzgerald. The transformation of open source software. MIS Quarterly, 30(3):587–
598, 2006.

[42] D. Ford, M. Behroozi, A. Serebrenik, and C. Parnin. Beyond the code itself: how
programmers really look at pull requests. In R. Kazman and L. Pasquale, editors,
Proceedings of the 41st International Conference on Software Engineering: Software
Engineering in Society, ICSE 2019, Montreal, QC, Canada, May 25-31, 2019, pages
51–60. ACM, 2019.

[43] M. Foucault. The history of sexuality: An introduction, volume i. Trans. Robert
Hurley. New York: Vintage, 95, 1990.

[44] J. Gamalielsson and B. Lundell. Sustainability of open source software communities
beyond a fork: How and why has the libreoffice project evolved? Journal of Systems
and Software, 89:128–145, 2014.

[45] R. S. Geiger, D. Howard, and L. Irani. The labor of maintaining and scaling free and
open-source software projects. Proc. ACM Hum. Comput. Interact., 5(CSCW1):1–28,
2021.

[46] M. A. Gerosa, I. Wiese, B. Trinkenreich, G. Link, G. Robles, C. Treude, I. Steinmacher,
and A. Sarma. The shifting sands of motivation: Revisiting what drives contributors in
open source. In 43rd IEEE/ACM International Conference on Software Engineering,
ICSE 2021, Madrid, Spain, 22-30 May 2021, pages 1046–1058. IEEE, 2021.

[47] J. L. Gibbs, N. A. Rozaidi, and J. Eisenberg. Overcoming the “ideology of openness”:
Probing the affordances of social media for organizational knowledge sharing. Journal
of Computer-Mediated Communication, 19(1):102–120, 2013.

[48] G. Gousios, M. D. Storey, and A. Bacchelli. Work practices and challenges in pull-
based development: the contributor’s perspective. In L. K. Dillon, W. Visser, and
L. A. Williams, editors, Proceedings of the 38th International Conference on Software
Engineering, ICSE 2016, Austin, TX, USA, May 14-22, 2016, pages 285–296. ACM,
2016.

[49] B. D. Haig. Grounded theory as scientific method. Philosophy of Education, 28(1):1–11,
1995.

[50] Y. Han, Z. Wang, Y. Feng, Z. Zhao, and Y. Wang. Cross-status communication and
project outcomes in oss development–a language style matching perspective. Empirical
Software Engineering, 28(3):78, 2023.

120

[51] J. F. Hartley. Ideology and organizational behavior. International Studies of Manage-
ment & Organization, 13(3):7–34, 1983.

[52] J. Hergueux and S. Kessler. Follow the leader: Technical and inspirational leadership
in open source software. In S. D. J. Barbosa, C. Lampe, C. Appert, D. A. Shamma,
S. M. Drucker, J. R. Williamson, and K. Yatani, editors, CHI ’22: CHI Conference
on Human Factors in Computing Systems, New Orleans, LA, USA, 29 April 2022 - 5
May 2022, pages 303:1–303:15. ACM, 2022.

[53] C. E. Hill, S. Knox, B. J. Thompson, E. N. Williams, S. A. Hess, and N. Ladany. Con-
sensual qualitative research: An update. Journal of counseling psychology, 52(2):196,
2005.

[54] M. Hinchey, B. Fitzgerald, F. Krehbiel, B. Donnellan, and T. Margaria. Innovation
Potential of Software Technologies in the context of Horizon 2020. European Commis-
sion, 2016.

[55] C. Hinings, L. Thibault, T. Slack, and L. Kikulis. Values and organizational structure.
Human relations, 49(7):885–916, 1996.

[56] S. E. Hobfoll, J. Halbesleben, J.-P. Neveu, and M. Westman. Conservation of resources
in the organizational context: The reality of resources and their consequences. Annual
Review of Organizational Psychology and Organizational Behavior, 5:103–128, 2018.

[57] E. K. Huizingh. Open innovation: State of the art and future perspectives. Technova-
tion, 31(1):2–9, 2011.

[58] Z. Iskoujina and J. Roberts. Knowledge sharing in open source software communities:
motivations and management. J. Knowl. Manag., 19(4):791–813, 2015.

[59] C. Jensen and W. Scacchi. Collaboration, leadership, control, and conflict negotiation
and the netbeans.org open source software development community. In 38th Hawaii
International Conference on System Sciences (HICSS-38 2005), CD-ROM / Abstracts
Proceedings, 3-6 January 2005, Big Island, HI, USA. IEEE Computer Society, 2005.

[60] C. Jensen and W. Scacchi. Role migration and advancement processes in OSSD
projects: A comparative case study. In 29th International Conference on Software
Engineering (ICSE 2007), Minneapolis, MN, USA, May 20-26, 2007, pages 364–374.
IEEE Computer Society, 2007.

[61] C. Jergensen, A. Sarma, and P. Wagstrom. The onion patch: migration in open
source ecosystems. In T. Gyimóthy and A. Zeller, editors, SIGSOFT/FSE’11 19th
ACM SIGSOFT Symposium on the Foundations of Software Engineering (FSE-19)
and ESEC’11: 13th European Software Engineering Conference (ESEC-13), Szeged,
Hungary, September 5-9, 2011, pages 70–80. ACM, 2011.

[62] Z. Ji, N. Lee, R. Frieske, T. Yu, D. Su, Y. Xu, E. Ishii, Y. Bang, A. Madotto, and
P. Fung. Survey of hallucination in natural language generation. ACM Comput. Surv.,
55(12):248:1–248:38, 2023.

121

[63] B. Kabanoff. Equity, equality, power, and conflict. Academy of management Review,
16(2):416–441, 1991.

[64] M. Kejriwal, J. Ding, R. Shao, A. Kumar, and P. Szekely. Flagit: A system for mini-
mally supervised human trafficking indicator mining. Advances in Neural Information
Processing Systems, 2017.

[65] E. Kennedy and T. Marshall. A Philosophe in The Age of Revolution : Destutt de
Tracy and The Origins of ‘Ideology’. Les Études philosophiques, (4):455–459, dec 1982.

[66] L. King. Ideology, strategy and conflict in a social movement organization: The sierra
club immigration wars. Mobilization: An International Quarterly, 13(1):45–61, 2008.

[67] D. Klug, C. Bogart, and J. D. Herbsleb. ”they can only ever guide”: How an open
source software community uses roadmaps to coordinate effort. Proc. ACM Hum.
Comput. Interact., 5(CSCW1):1–28, 2021.

[68] R. Krishnaveni and R. Sujatha. Communities of practice: An influencing factor for
effective knowledge transfer in organizations. IUP Journal of Knowledge Management,
10(1):26–40, 01 2012.

[69] J. Lerner and J. Tirole. Some simple economics of open source. The Journal of
Industrial Economics, 50(2):197–234, 2002.

[70] J. Leveille. Searching for Marx in the Occupy Movement. Rowan & Littlefield, 2017.

[71] S. S. Levine and M. J. Prietula. Open collaboration for innovation: Principles and
performance. Organization Science, 25(5):1414–1433, 2014.

[72] R. Li, P. Pandurangan, H. Frluckaj, and L. Dabbish. Code of conduct conversations
in open source software projects on github. Proc. ACM Hum. Comput. Interact.,
5(CSCW1):1–31, 2021.

[73] J. Ljungberg. Open source movements as a model for organising. Eur. J. Inf. Syst.,
9(4):208–216, 2000.

[74] M. Maclean, C. Harvey, J. A. Sillince, and B. D. Golant. Living up to the past? ideo-
logical sensemaking in organizational transition. Organization, 21(4):543–567, 2014.

[75] T. W. Malone and M. Klein. Harnessing collective intelligence to address global climate
change. Innovations: Technology, Governance, Globalization, 2(3):15–26, 2007.

[76] C. Marx and F. Engels. The German Ideology. 1845.

[77] A. M. McCright and R. E. Dunlap. The nature and social bases of progressive social
movement ideology: Examining public opinion toward social movements. Sociological
Quarterly, 49(4):825–848, 2008.

122

[78] A. Mockus, R. T. Fielding, and J. D. Herbsleb. Two case studies of open source software
development: Apache and mozilla. ACM Trans. Softw. Eng. Methodol., 11(3):309–346,
2002.

[79] J. Y. Moon and L. S. Sproull. Essence of distributed work: The case of the linux
kernel. First Monday, 5(11), 2000.

[80] M. J. Muller and S. Kogan. Grounded theory method in hci and cscw. Cambridge:
IBM Center for Social Software, 28(2):1–46, 2010.

[81] M. D. Mumford. Pathways to Outstanding Leadership: A Comparative Analysis of
Charismatic, Ideological, and Pragmatic Leaders. Lawrence Erlbaum Associates Pub-
lishers, 2006.

[82] F. N. A. A. Omran and C. Treude. Choosing an NLP library for analyzing soft-
ware documentation: a systematic literature review and a series of experiments. In
J. M. González-Barahona, A. Hindle, and L. Tan, editors, Proceedings of the 14th In-
ternational Conference on Mining Software Repositories, MSR 2017, Buenos Aires,
Argentina, May 20-28, 2017, pages 187–197. IEEE Computer Society.

[83] OpenAI. Prompt engineering guide. https://platform.openai.com/docs/guides/

prompt-engineering, 2023. Accessed: 2023-04-10.

[84] C. Overney, J. Meinicke, C. Kästner, and B. Vasilescu. How to not get rich: an
empirical study of donations in open source. In G. Rothermel and D. Bae, editors, ICSE
’20: 42nd International Conference on Software Engineering, Seoul, South Korea, 27
June - 19 July, 2020, pages 1209–1221. ACM, 2020.

[85] H. Perera, W. Hussain, J. Whittle, A. Nurwidyantoro, D. Mougouei, R. A. Shams,
and G. Oliver. A study on the prevalence of human values in software engineering
publications, 2015 - 2018. In G. Rothermel and D. Bae, editors, ICSE ’20: 42nd
International Conference on Software Engineering, Seoul, South Korea, 27 June - 19
July, 2020, pages 409–420. ACM, 2020.

[86] PyTorch. Governance model of pytorch. https://github.com/pytorch/pytorch/

blob/main/docs/source/community/governance.rst, 2023. Accessed: 2023-04-10.

[87] H. S. Qiu, B. Vasilescu, C. Kästner, C. Egelman, C. Jaspan, and E. Murphy-Hill.
Detecting interpersonal conflict in issues and code review: Cross pollinating open-
and closed-source approaches. In 44th IEEE/ACM International Conference on Soft-
ware Engineering: Software Engineering in Society ICSE (SEIS) 2022, Pittsburgh, PA,
USA, May 22-24, 2022, pages 41–55. IEEE/ACM, 2022.

[88] C. Raasch, V. Lee, S. Spaeth, and C. Herstatt. The rise and fall of interdisciplinary
research: The case of open source innovation. Research Policy, 42(5):1138–1151, 2013.

[89] A. K. Rai. ” open source” and private ordering: A commentary on dusollier. Chicago-
Kent Law Review, 82(3):1439, 2007.

123

https://platform.openai.com/docs/guides/prompt-engineering
https://platform.openai.com/docs/guides/prompt-engineering
https://github.com/pytorch/pytorch/blob/main/docs/source/community/governance.rst
https://github.com/pytorch/pytorch/blob/main/docs/source/community/governance.rst

[90] P. Railton et al. Facts, values, and norms: Essays toward a morality of consequence.
Cambridge University Press, 2003.

[91] E. S. Raymond. The cathedral and the bazaar. First Monday, 3(3), 1998.

[92] G. W. Remmling. The Sociology of Karl Mannheim: With a Bibliographical Guide
to the Sociology of Knowledge, Ideological Analysis, and Social Planning. Routledge,
2020.

[93] D. Riehle. The future of the open source definition. Computer, 56(12):95–99, 2023.

[94] J. A. Roberts, I. Hann, and S. Slaughter. Understanding the motivations, participation,
and performance of open source software developers: A longitudinal study of the apache
projects. Manag. Sci., 52(7):984–999, 2006.

[95] S. Sarker, F. Y. Lau, and S. Sahay. Using an adapted grounded theory approach for
inductive theory building about virtual team development. Data Base, 32(1):38–56,
2001.

[96] Z. Schillaci. Llm adoption trends and associated risks. Large, page 121, 2024.

[97] S. H. Schwartz et al. An overview of the schwartz theory of basic values. Online
Readings in Psychology and Culture, 2, 2012.

[98] H. Sharp, N. Baddoo, S. Beecham, T. Hall, and H. Robinson. Models of motivation in
software engineering. Information and Software Technology, 51(1):219–233, 2009.

[99] R. M. Stallman. Viewpoint - why ”open source” misses the point of free software.
Commun. ACM, 52(6):31–33, 2009.

[100] I. Steinmacher, S. Balali, B. Trinkenreich, M. Guizani, D. Izquierdo-Cortazar, G. G. C.
Zambrano, M. A. Gerosa, and A. Sarma. Being a mentor in open source projects. J.
Internet Serv. Appl., 12(1):7, 2021.

[101] I. Steinmacher, M. A. Gerosa, T. U. Conte, and D. F. Redmiles. Overcoming so-
cial barriers when contributing to open source software projects. Comput. Support.
Cooperative Work., 28(1-2):247–290, 2019.

[102] K. J. Stewart and S. Gosain. The impact of ideology on effectiveness in open source
software development teams. MIS Quarterly, 30(2):291–314, 2006.

[103] X. Tan, M. Zhou, and B. Fitzgerald. Scaling open source communities: an empirical
study of the linux kernel. In G. Rothermel and D. Bae, editors, ICSE ’20: 42nd
International Conference on Software Engineering, Seoul, South Korea, 27 June - 19
July, 2020, pages 1222–1234. ACM, 2020.

[104] J. B. Thompson. Ideology and Modern Culture. Polity Press, 1990.

[105] W. E. Thompson, J. V. Hickey, and M. L. Thompson. Society in Focus: An Introduc-
tion to Sociology. Rowman & Littlefield, 2016.

124

[106] B. Trinkenreich, M. Guizani, I. Wiese, A. Sarma, and I. Steinmacher. Hidden fig-
ures: Roles and pathways of successful OSS contributors. Proc. ACM Hum. Comput.
Interact., 4(CSCW2):180:1–180:22, 2020.

[107] J. Tsay, L. Dabbish, and J. D. Herbsleb. Influence of social and technical factors
for evaluating contribution in github. In 36th International Conference on Software
Engineering, ICSE ’14, Hyderabad, India - May 31 - June 07, 2014, pages 356–366.
ACM, 2014.

[108] S. Valocchi. The emergence of the integrationist ideology in the civil rights movement.
Social Problems, 43(1):116–130, 1996.

[109] T. A. van Dijk. Ideology: A multidisciplinary Approach. SAGE, 1998.

[110] J. Van Laer and P. Van Aelst. Internet and social movement action repertoires: Op-
portunities and limitations. Information, Communication & Society, 13(8):1146–1171,
2010.

[111] B. Vasilescu, D. Posnett, B. Ray, M. G. van den Brand, A. Serebrenik, P. Devanbu,
and V. Filkov. Gender and tenure diversity in github teams. In Proceedings of the
33rd Annual ACM Conference on Human Factors in Computing Systems, CHI 2015,
Seoul, Republic of Korea, April 18-23, 2015, pages 3789–3798. ACM, 2015.

[112] G. von Krogh, S. Haefliger, S. Spaeth, and M. W. Wallin. Carrots and rainbows:
Motivation and social practice in open source software development. MIS Quarterly,
36(2):649–676, 2012.

[113] P. A. Wagstrom. Vertical Interaction in Open Software Engineering Communities.
PhD thesis, Pittsburgh, PA, 2009.

[114] T. Warren. Microsoft admits it was wrong about open source. The Verge, May 2020.
Accessed: 2024-04-17.

[115] R. M. Weiss and L. E. Miller. The concept of ideology in organizational analysis: The
sociology of knowledge or the social psychology of beliefs? Academy of Management
Review, 12(1):104–116, 1987.

[116] R. K. Yin. Case Study Research: Design and Methods. SAGE, 2014.

[117] Y. Yue, X. Yu, X. You, Y. Wang, and D. F. Redmiles. Ideology in open source
development. In 14th IEEE/ACM International Workshop on Cooperative and Human
Aspects of Software Engineering, CHASE@ICSE 2021, Madrid, Spain, May 20-21,
2021, pages 71–80. IEEE, 2021.

[118] A. Zagalsky, D. M. Germán, M. D. Storey, C. G. Teshima, and G. Poo-Caamaño. How
the R community creates and curates knowledge: an extended study of stack overflow
and mailing lists. Empirical Software Engineering, 23(2):953–986, 2018.

125

[119] M. Zald. Ideologically structured action: An enlarged agenda for social movement
research. Mobilization: An International Quarterly, 5(1):1–16, 2000.

[120] M. Zastrow. Open science takes on the coronavirus pandemic. Nature, 581(7806):109–
111, 2020.

[121] Zephyr Project. Licensing guidelines. https://docs.zephyrproject.org/latest/

contribute/guidelines.html#licensing, 2023. Accessed: 2023-04-11.

[122] X. Zhang, T. Wang, Y. Yu, Q. Zeng, Z. Li, and H. Wang. Who, what, why and
how? towards the monetary incentive in crowd collaboration: A case study of github’s
sponsor mechanism. In S. D. J. Barbosa, C. Lampe, C. Appert, D. A. Shamma,
S. M. Drucker, J. R. Williamson, and K. Yatani, editors, CHI ’22: CHI Conference
on Human Factors in Computing Systems, New Orleans, LA, USA, 29 April 2022 - 5
May 2022, pages 206:1–206:18. ACM, 2022.

[123] Y. Zhang, H. Liu, X. Tan, M. Zhou, Z. Jin, and J. Zhu. Turnover of companies in
openstack: Prevalence and rationale. ACM Trans. Softw. Eng. Methodol., 31(4):75:1–
75:24, 2022.

[124] Y. Zhang, K. Stol, H. Liu, and M. Zhou. Corporate dominance in open source ecosys-
tems: a case study of openstack. In A. Roychoudhury, C. Cadar, and M. Kim, editors,
Proceedings of the 30th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ESEC/FSE 2022, Singapore,
Singapore, November 14-18, 2022, pages 1048–1060. ACM, 2022.

[125] Y. Zhang, M. Zhou, K.-J. Stol, J. Wu, and Z. Jin. How do companies collaborate
in open source ecosystems?: an empirical study of openstack. In G. Rothermel and
D. Bae, editors, ICSE ’20: 42nd International Conference on Software Engineering,
Seoul, South Korea, 27 June - 19 July, 2020, pages 1196–1208. ACM, 2020.

[126] J. Zhou, S. Wang, Y. Kamei, A. E. Hassan, and N. Ubayashi. Studying donations
and their expenses in open source projects: a case study of github projects collecting
donations through open collectives. Empirical Software Engineering, 27(1):24:1–24:38,
2022.

[127] M. Zhou. Onboarding and Retaining of Contributors in FLOSS Ecosystem, pages 107–
117. Springer Singapore, Singapore, 2019.

[128] Y. Zhou, A. I. Muresanu, Z. Han, K. Paster, S. Pitis, H. Chan, and J. Ba. Large
language models are human-level prompt engineers. In The Eleventh International
Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023.
OpenReview.net, 2023.

126

https://docs.zephyrproject.org/latest/contribute/guidelines.html#licensing
https://docs.zephyrproject.org/latest/contribute/guidelines.html#licensing

Appendix A

Interview Protocol

Interview Subject: developers who participate in open source projects.

Length of Interview: 30 minutes.

Interview Strategy:

• Subject has a brief introduction about background, e.g., country, job/occupation, years

of experience in software development and open source projects, etc.

• Based on the background information, ask subject to share his/her experience in con-

tributing to open source projects.

• Ask subject follow-up questions to elaborate more details.

127

A.1 Interview Script

A.1.1 Briefing and Verbal Consent

Hello, I’m Yang Yue from the University of California, Irvine, Prof. David Redmiles is

the researcher in charge of this study. We appreciate your voluntary participation in our

study. We are interested in hearing about your thoughts and experiences in open source

development.

As a reminder, the interview will be recorded for internal use only, and we will take notes

during the interview. Your identity will remain anonymous in our study, other than your

email address, no other personal information will be collected. Participating in this study is

optional, and you cal tell me if you want to stop being in the study at any time.

Before we start, do you have any questions about the study?

(If no further questions from the subject)

Great, I’ll start the interview recording now.

A.1.2 Interview Questions

(The questions listed in this section are potential questions that might be asked during

interview, interviewer might also ask some other questions based on subject’s answer.)

Background Information

• Which country do you live in?

• What is your current occupation/job title?

128

• How many years of experience in software development?

• How long have you been participating in open source projects?

Perceptions/Experiences about Open Source

• What is your understanding of open source?

• When and where did you first learn the idea of open source? Could you explain what

it means to you?

• What makes you start contributing in open source projects?

• What is the process of contributing to open source projects?

• Who do you think could contribute to open source projects?

Debriefing

Thank you again for participating in our study. If you have any questions or think of any

other comments that you forgot to mention, please feel free to email me. And we might

contact later for more information.

129

Appendix B

Assessment Framework for OSS

Ideologies

In this section, we introduce the workflows for assessing 32 themes in the assessment frame-

work for OSS ideologies.

B.1 Category: Values/Norms

B.1.1 Appreciation & Recognition

Workflow for Assessing the Theme of Appreciation & Recognition

Start

Collecting PR and PR
comments

Compiling a file with
all PR comments

Reviewing the
comments for

expressing
appreciation

Generating the
review result of PR

comments

Collecting release
notes

Reviewing the
release notes for
contributor list

Generating review
result of release

notes

Deriving insights
about Appreciation

& Recognition in
project

Writing assessment
summary

End

Figure B.1: The workflow for assessing Appreciation & Recognition.

130

Fig. B.1 shows the workflow for assessing Appreciation & Recognition. Two assessment

methods are included in this workflow. First, we collect all the pull-requests and their

comments, and compile all the PR comments into a file. Then we review the PR comments,

particularly the comments that express appreciation towards the contributors, e.g., “Thank

you for submitting your PR!” Based on those PR comments, we generate the review results,

such as whether it is standard to express appreciation in PR comments, and the frequency

of such comments. The other assessment method focuses on release notes, we collect all

release notes, and review the content related to recognizing the contributors. For example,

some projects would list all contributors who have contributed to the releases. Then, we

generate the review results of release notes, such as whether there is a contributor list, and

the frequency of having such a list in the release notes. With the review results of two

assessment methods, we derive the insights about Appreciation & Recognition, and write the

assessment summary.

B.1.2 Autonomy

Workflow for Assessing the Theme of Autonomy

Start

Collecting the
commits from

repository

Identifying the
contributors who
are not affiliated

with project

Deriving insights
about Autonomy in

project

Writing assessment
summary

End

Collecting
contributor profile

from GitHub

Identifying commits'
submission time

Calculating the
proportion of these

non-​affiliated
contributors

Grouping the
commits based on
submission time

Plotting the commit
activity heatmap

Figure B.2: The workflow for assessing Autonomy

Fig. B.2 shows the workflow for assessing Autonomy. Two assessment methods are included,

i.e., one focuses on commit activity, while the other focuses on contributors’ affiliation. First,

we collect commit data from the project repository, and extract the submission time of the

commits. Then we group the commit based on submission time, i.e., time of the day, and

131

week of the day, and plot the data in a commit activity heatmap. The heatmap shows the

number of commits submitted on particular days and times, which indicates the distribution

of the commits submitted within the regular working time and non-working time. With the

other assessment method, we collect contributors from the project repository on GitHub.

Based on the collected contributor data, we further identify contributors’ affiliation, i.e.,

whether the contributors are listed as project members or not, and then provide the results

of affiliated and non-affiliated contributors. Based on the results of the two assessment

methods, we derive the insights about Autonomy, and write the assessment summary.

B.1.3 Comparative Advantages

Workflow for Assessing Comparative Advantages

Start

Collecting
documentations
and news articles
that introduce the

project

Reviewing the
description of

features/
advantages in the

documents

Generating the
review result of

these descriptions

Deriving insights
about Comparative

Advantages of
project

Writing assessment
summary

End

Figure B.3: The workflow for assessing Comparative Advantages

Fig. B.3 shows the workflow for assessing Comparative Advantages. First, we collect docu-

ments and online news articles that introduce the project. Then we review the content that

describes the features or advantages of the project, and generate the review results. Based

on the review results, we derive the insights about Comparative Advantages, and write the

assessment summary.

132

B.1.4 Constantly Changing & Evolving

Fig. B.4 shows the workflow for assessing Constantly Changing & Evolving. There are

two assessment methods with the collected commit data from the project repository. First,

we extract the contributor of each commit, and identify whether the commit was the first

commit of this contributor, which determines whether the contributor was a newcomer at

that commit. Then we compile the list of newcomers, and plot the dynamics of newcomers

in each month. The other assessment method also analyzes the commit data. We extract

the submission date of the commits, and group the commits into months. Then we plot

the dynamics of commit frequency in each month. Based on the results of two assessment

methods, we derive insights about Constantly Changing & Evolving, and write the assessment

summary.

B.1.5 Ethics

Fig. B.5 shows the workflow for assessing Ethics. Two assessment methods are included.

With the first assessment method, we collect documents about the project community, and

review the content about the community guidelines, such as ethical values emphasized in

the community. Then we identify those values and the corresponding enforcement process

from the documents, and generate the review results. The second assessment method utilizes

online media outlets. We search online for the news about the project, particularly public

scandals within the project. Then we review those news articles, and generate review results.

Based on the results of two assessment methods, we derive insights about Ethics, and write

the assessment summary.

133

Workflow for Assessing Constantly Changing & Evolving

Start

Extracting the
submission time of each

commit

Grouping the
submission time into

months

Plotting the dynamics of
commit frequency

Extracting the
contributor of each

commit

Identifying the first
commit of each

contributor

Compiling the
newcomer list based on

time of first commit

Deriving insights about
Constantly Changing &

Evolving in project

Writing assessment
summary

End

Collecting commits data

Plotting the dynamics of
newcomers

Figure B.4: The workflow for assessing Constantly Changing & Evolving

134

Workflow for Assessing Ethics

Start

Collecting
documentation

about community

Reviewing the
content about ethic

values

Identifying the
particular ethic

values and
enforcement

Generating the
review result of

ethic values

Searching public
news about the

project

Reviewing the news
articles about public

scandals

Generating the
review result of
public scandals

Deriving insights
about Ethicsin

project

Writing assessment
summary

End

Figure B.5: The workflow for assessing Ethics

Workflow for Assessing Openness & Transparency

Start

Collecting project documentation
Reviewing the content about
community and contribution

Identifying the statement related
to openness & transparency

Generating the review result
Deriving insights about Openness

& Transparency in project
Writing assessment summary

End

Figure B.6: The workflow for assessing Openness & Transparency

B.1.6 Openness & Transparency

Fig. B.6 shows the workflow for assessing Openness & Transparency. First, we collect the

documents, and review the content about community and contribution guidelines. Then we

identify the statements related to openness or transparency in the collected documents, and

generate the review results. Based on the results, we derive the insights about Openness &

Transparency, and write the assessment summary.

B.1.7 Meritocracy

Fig. B.7 shows the workflow for assessing Meritocracy. We first identify whether there are

different roles in the project, such as maintainers, and contributors. If such roles exist,

135

Assessing Meritocracy

Start

Collecting the list of
contributors and their

code commits

Calculating centrality
degrees for each

contributor

Grouping centrality
degrees based on the
role of contributors

Comparing the centrality
degrees across groups

Collecting documentation
related to these roles

Reviewing the documents
for role nomination/
removal/ promotion

Generating the review
result

Deriving insights about
Meritocracy in project

Writing assessment
summary

End

If such
roles exist

Identifying roles in the
project community

No

Yes

Figure B.7: The workflow for assessing Meritocracy.

we assess with two methods. We collect the documents related to those roles, review the

content regarding role nomination/removal/promotion, and generate the review results. We

also collect the list of contributors and their code commits from project repository. Then we

calculate the centrality degree of each contributor1, and group them based on the roles. We

further compare the difference of the centrality degrees across different role groups. Based

on the results of two assessment methods, we derive insights about Meritocracy, and write

the assessment summary.

1see [61] for more details on centrality degree

136

B.1.8 Reciprocity at Multiple Levels

Workflow for Assessing Reciprocity at Multiple Levels

Start

Collecting issues
and issue comments

Compiling a file with
all issue comments

Computing the
sentiments related
to reciprocity with

LLM tools

Reviewing the
comments and

sentimental analysis
result

Deriving insights
about Reciprocity at

Multiple Levels in
project

Writing assessment
summary

End

Figure B.8: The workflow for assessing Reciprocity at Multiple Levels.

Fig. B.8 shows the workflow for assessing Reciprocity at Multiple Levels. First, we collect

issues and issue comments from the project repository, and compile a file with all issue

comments. Then we use LLM to analyze the reciprocity in the collected data, an exam-

ple prompt for GPT models is “Check the sentiment related to reciprocity in the given

text: <issue comments>”. We review the response generated by LLM, derive insights about

Reciprocity at Multiple Levels, and write the assessment summary.

B.1.9 Trust

Fig. B.9 shows the workflow for assessing Trust. First, we collect issue/PR comments, and

compile a file. Then we use LLM to estimate the trust within the collected comments, an

example prompt for GPT models is “Estimate the trust among community members based

on the given text: <comments>”. We review the responses generated by LLM, derive insights

about Trust, and write the assessment summary.

137

Workflow for Assessing Trust

Start

Collecting issue/PR
comments

Compiling a file with
all comments

Conducting trust
estimation with LLM

tools

Reviewing the
comments and
analysis result

Deriving insights
about Trust in

project

Writing assessment
summary

End

Figure B.9: The workflow for assessing Trust.

B.1.10 Universal Accessibility & Availability

Workflow for Assessing Universal Accessibility & Availability

Start

Collecting
documentation of

the project

Reviewing the
contribution
guidelines

Identifying the hosts
of code repository

Generating the
review results

Deriving insights
about Universal
Accessibility &

Availability in project

Writing assessment
summary

End

Identifying the
permissions

required to access
the source code

Figure B.10: The workflow for assessing Universal Accessibility & Availability

Fig. B.10 shows the workflow for assessing Universal Accessibility & Availability. We first

collect the documents, and review the content about contribution guidelines. Then we iden-

tify the host of the code repository, and the permissions required to access the source code.

Based on the review results, we derive insights about Universal Accessibility & Availability,

and write the assessment summary.

138

B.2 Category: Goals

B.2.1 Broad Impacts

Workflow for Assessing Broad Impacts

Start

Collecting
documentation/
news related the

project

Reviewing the collected
documents for the content

related to social
challenges/concerns

Generateing the
review result of
project impact

Deriving insights
about project's
broad impacts

Writing
assessment

summary
End

Figure B.11: The workflow for assessing Broad Impacts.

Fig. B.11 shows the workflow for assessing Broad Impacts. First, we collect documents and

new articles related to the project. Then we review the content that describes the social

challenges or concerns that the project aims to resolve, and generate review results. Based

on the review results, we derive insights about Broad Impacts, and write the assessment

summary.

B.2.2 Built-in Product & Quality Orientations

Fig. B.12 shows the workflow for assessing Built-in Product & Quality Orientations. Two

assessment methods are included in this workflow. First, we collect all issues and PRs from

the project repository, and identify issue tags that related to bug and bug fix, e.g., “bug

report“ and “fix patch”. If such tags exist, we extract issues and PRs with those identified

tags, group them into months based on their submission time, and plot the dynamics of bug

report and fix. In the other assessment method, we collect the documents on testing, review

the content about testing suite and testing coverage, and generate the review results. Based

on the results of the two assessment methods, we derive insights about Built-in Product &

Quality Orientations, and write the assessment summary.

139

Workflow for Assessing Built-​in Product & Quality Orientations

Start

Collecting issues and pull-​
requests from repository

Identifying issue tags related to
bug or bug fix

Collecting documentations and
reports about test suite and
testing coverage in project

Reviewing the collected
documents/reports

Generating the review result of
test suites and testing

coverage

Deriving insights about Built-​in
Product & Quality Orientations

in project
Writing assessment summary

End

If such
issue
tags
exist

No

Extracting the isseus/PRs with
identified tags

Yes

Grouping the issues/PRs in to
months

Plotting the dynamics of bug
report and fix over the project

lifecycle

Figure B.12: The workflow for assessing Built-in Product & Quality Orientations.

B.2.3 Outreach

Fig. B.13 shows the workflow for assessing Outreach. First, we collect documents about

social media, and meetup events, and identify whether the project utilizes any social media

platforms, or has any public meetup events. If any platforms or events are identify, we

compile a list of those social media platforms and meetup events, then review the content

related to them, such as schedules of the meetup events, and frequency of posting on social

media, and generate the review results. Based on review results, we derive insights about

Outreach, and write the assessment summary.

140

Workflow for Assessing the Theme of Outreach

Start

Collecting documentations
about social media, and

events related to the project

Identifying the utilization of
social media platform and

meetup events

Generating the review
result of social media usage

and meetup events

Deriving insights about
Outreach in project

Writing assessment
summary

End

If social
platforms/

events
identified

Compiling a list of those
social platforms/events

Reviewing the
documentations related to

social platforms/events

Yes

No

Figure B.13: The workflow for assessing Outreach

Workflow for Assessing Sustainability

Start

Collecting commits, PRs, and
issues from repository.

Extracting newcomers' first
commit, PR, and issue

Grouping these
commits/PRs/issues into months

Calculating the proportion of
these commits/PRs/issues to all

Plotting the dynamics of
newcomers' contribution over the

project lifecycle
Writing assessment summary

End

Deriving insights about project's
Sustainability

Figure B.14: The workflow for assessing Sustainability.

141

B.2.4 Sustainability

Fig. B.14 shows the workflow for assessing Sustainability. First, we collect commits, issues,

and PRs from the project repository, and identify the ones submitted by newcomers. Then

we group those collected commits/issues/PRs into months, and calculate the proportion of

commits/issues/PRs submitted by newcomers. Next, we plot the dynamics of newcomers’

contribution with commits/issues/PRs every month. Note that various charts could be

generated, for commits, issues, and PRs, respectively. Based on the results, we derive insights

about Sustainability, and write the assessment summary.

B.2.5 Innovation

Fig. B.15 shows the workflow for assessing Innovation. Two assessment methods are in-

cluded. First, we collect issues and issue comments from the project repository, and identify

whether there are tags related to new features/functions, e.g., “new feature request”. If such

tags exist, we extract all issues with those tags, group them into months, and calculate the

proportion of them. Then we plot the dynamics of those issues. In the other assessment

method, we compile all comments for those issues, and utilize LLM to analyze the sentiments

in those comments, an example prompt for GPT-3.5 is “Given the following text, analyze

the sentiment towards the new functions or functions. The text is: <comment text>”. Based

on the charts and the responses generated by LLM, we derive insights about Innovation, and

write the assessment summary.

B.2.6 Ubiquitous Penetration

Fig. B.16 shows the workflow for assessing Ubiquitous Penetration. First, we collect docu-

ments and news articles about the use case of the project. Then we review the content for

142

Workflow for Assessing Innovation

Start

Collecting project's
issues and issue

comments

Identifying tags
related to new

features/functions

Deriving insights
about Innovation in

project

Writing assessment
summary

End

If such
tags
exist

Extracting all issues
with these tags

Yes

Grouping these
issues into months

Calculating the
proportion of these
issues to all issues

Plotting the
dynamics of these

issues over the
project lifecycle

Compiling all issues
and comments into

a text file

Computing the
sentiments towards
Innovation with LLM

tools

No

Figure B.15: The workflow for assessing Innovation.

Workflow for Assessing Ubiquitous Penetration

Start

Collecting
documentations

and news about the
use case of the

project

Reviewing the usage
of the project in

these cases

Generating the
review result

Deriving insights
about Ubiquitous
Penetration of the

project

Writing assessment
summary

End

Figure B.16: The workflow for assessing Ubiquitous Penetration.

143

how the project is used in practice, and generate the review results. Based on review results,

we derive insights about Ubiquitous Penetration, and write the assessment summary.

B.3 Category: Activities

B.3.1 Copyright, Licensing, & Legal Implications

Fig. B.17 shows the workflow for assessing Copyright, Licensing, & Legal Implications. Two

assessment methods are included. First, we search online for patent and legal conflicts related

to the project, and review the collected content. Then we identify the legal practice of the

project with licensing, and generate review results. In the other assessment method, we

collect documents from project documentation, and review the content related to licensing.

Then we analyze the type of license in the project, i.e., the type of license, permission and

rights granted, etc. We further identify whether additional legal documents, such as CLA,

are required for contribution. Then we generate the review results on the collected project

documents. Based on the review results of the two assessment methods, we derive insights

about Copyright, Licensing, & Legal Implications, and write the assessment summary.

B.3.2 Governance & Decision Making

Fig. B.18 shows the workflow for assessing Governance & Decision Making. First, we

collect the documents and review the content related to governance in the project. THen

we identify the governance structure in the project, as well as the decision-making process

with the governance structure, and generate review results. Based on the review results, we

derive insights about Governance & Decision Making, and write the assessment summary.

144

Workflow for Assessing Copyright, Licensing & Legal Implications

Start

Collecting documentation
in the project

Reviewing the content
related to licensing

Analyzing the type of
license and the practice

of using

Identifying the usage of
CLA

Searching for patent or
legal conflicts about the

project

Reviewing the related
news articles

Generating the review
result of these conflicts

Deriving insights about
Appreciation &

Recognition in project

Writing assessment
summary

End

Generating the review
result of licensing

Identifying the legal
practice with licensing

Figure B.17: The workflow for assessing Copyright, Licensing, & Legal Implications.

B.3.3 Personal Development

Fig. B.19 shows the workflow for assessing Personal Development. First, we collect commit

data from the project repository. Then we calculate the centrality degrees of contributors

after each of their commit2, and have their traces of centrality degrees in the project. We

plot the dynamics of the centrality degree traces of all contributors. Based on the plot-

2see [61] for more details on centrality degree

145

Workflow for Assessing Governance & Decision Making

Start

Collecting
documentation in

the project

Reviewing the
content related to

governance

Identifying the
governance

structure in the
project

Deriving insights
about Governance &
Decision Making in

project

Writing assessment
summary

End

Identifying the
decision-​making

process in the
project

Generating the
review result

Figure B.18: The workflow for assessing Governance & Decision Making.

Workflow for Assessing Personal Development

Start

Collecting commits
in the project

Calculating the
centrality degree of

contributor after
each commit

Plotting the
dynamics of
contributors'

centrality degrees

Deriving insights
about Personal
Development in

project

Writing assessment
summary

End

Figure B.19: The workflow for assessing Personal Development.

ted centrality degree trace, we derive insights about Personal Development, and write the

assessment summary.

B.3.4 Social Production

Workflow for Assessing Social Production

Start

Collecting issues
and issue comments

Calculating the
number of people

participated in each
issue thread

Plotting the
distribution of

people participated
in issues

Deriving insights
about Social

Production in
project

Writing assessment
summary

End

Figure B.20: The workflow for assessing Social Production.

Fig. B.20 shows the workflow for assessing Social Production. First we collect all issues and

issue comments. Then we count the number of people participated in the discussion in each

issue thread, and plot the distribution of people participated in issues. Based on analyzed

146

results, we derive insights about Social Production, and write the assessment summary.

B.3.5 Work Organization & Practices

Fig. B.21 shows the workflow for assessing Work Organization & Practices. Two assessment

methods are included in the workflow. First, we collect all commits in the project repository,

and extract the timezone information of the contributors who submitted the commits. Then

we compute and plot the distribution of the time zones. In the other assessment method,

we collect the documents, and review the content about communication during development

process. Then we identify the communication channels used by contributors to collaborate on

development; and the scheduled meetup events for project development. We generate review

results of the communication channels and developer meetup events. Based on the results of

the two assessment methods, we derive insights about Work Organization & Practices, and

write the assessment summary.

B.4 Category: Membership

B.4.1 Individual Identity

Fig. B.22 shows the workflow for assessing Individual Identity. First, we collect all issue/PR

comments, and compile a file with all comments. Then we utilize LLM to analyze the

usage of pronouns in the comments, an example prompt for GPT-3.5 is “Provide statistical

summary on the pronoun usage for the given text: <comment text>”. Based on the responses

generated by LLM, we derive insights about Individual Identity, and write the assessment

summary.

147

Workflow for Assessing Work Organization & Practices

Start

Collecting documentation in
the project

Reviewing the content
about communication

Identifying the usage of
different communication

channels

Identifying the scheduled
meeting events

Collecting the commits in
the project

Extracting the time zone
information of contributors

Computing the distribution
of the time zones

Deriving insights about
Work Organization &
Practices in project

Writing assessment
summary

End

Plotting the distribution of
the time zones

Generating the review
result of communication

Figure B.21: The workflow for assessing Work Organization & Practices.

148

Workflow for Assessing Individual Identity

Start

Collecting issue/PR
comments

Compiling a file with
comments

Analysis the usage
of person pronouns

in the comments
with LLM tool

Deriving insights
about Individual

Identity in project

Writing assessment
summary

End

Figure B.22: The workflow for assessing Individual Identity.

B.4.2 Ideological Leadership

Fig. B.23 shows the workflow for assessing Ideological Leadership. Two assessment methods

are included. First, we collect documents and contributor list, and identify whether there

is leadership role in the project. If such role exist, we review the content related to the

leadership role, and generate review results. In the other assessment method, we collect

issue/PR comments, and compile a file with all comments. Then we adopt LLM to identify

the content related to leadership, an example prompt for GPT-3.5 is “Identify the content

indicating ideological leadership in the given text: <comment text>”. Based on the review

results and the responses generated by LLM, we derive insights about Ideological Leadership,

and write the assessment summary.

B.4.3 Interpersonal Relationships

Fig. B.24 shows the workflow for assessing Interpersonal Relationships. First, we collect

all issue/PR comments, and compile a text file. Then we adopt LLM to analyze the sen-

149

Workflow for Assessing Ideological Leadership

Start

Collecting issue/PR comments

Compiling a file with all
comments

Identifying leardership
content in the comments with

LLM tool

Collecting documentation and
contributor list in the project

Identifying the leadership role

Generating the review result
of leadership

Deriving insights about
Ideological Leadership in

project
Writing assessment summary

End

If such
leadership
role exists

Reviewing the content about
leadership role

No

Reviewing the identified
content

Yes

Figure B.23: The workflow for assessing Ideological Leadership.

Workflow for Assessing Interpersonal Relationships

Start

Collecting issue/PR
comments

Compiling a file with
all comments

Analyzing the
sentiment of the

comments towards
others with LLM tool

Deriving insights
about Interpersonal

Relationships in
project

Writing assessment
summary

End

Figure B.24: The workflow for assessing Interpersonal Relationships.

150

timent towards others in the comments, an example prompt for GPT-3.5 is “Analyze the

interpersonal sentiment in the given text: <comment text>”. Based on the responses gener-

ated by LLM, we derive insights about Interpersonal Relationships, and write the assessment

summary.

B.4.4 Member Hierarchy & Roles

Workflow for Assessing Member Hierarchy & Roles

Start

Collecting
documentation in

the project

Reviewing the
content about

predefined roles
and privileges

Generating the
review result of

roles in the project

Deriving insights
about Member

Hierarchy & Roles in
project

Writing assessment
summary

End

Figure B.25: The workflow for assessing Member Hierarchy & Roles.

Fig. B.25 shows the workflow for assessing Member Hierarchy & Roles. First, we collect

documents in the project. Then we review the content related to predefined roles and their

privileges, and generate review results. Based on the review results, we derive insights about

Member Hierarchy & Roles, and write the assessment summary.

B.5 Category: Resources

B.5.1 Dealing with Barriers & Restrictions

Fig. B.26 shows the workflow for assessing Dealing with Barriers & Restrictions. We first

collect documents in the project, and review the content regarding tutorials/guidelines for

newcomers. With each of those documents, we analyze its depth and coverage in introducing

the project, and generate review results. Based on those review results, we derive insights

about Dealing with Barriers & Restrictions, and write the assessment summary.

151

Workflow for Assessing Dealing with Barriers & Restrictions

Start

Collecting
documentation in

the project

Reviewing the
newcomer

tutorials/guidelines

Generating the
review result of

tutorials/guidelines

Deriving insights
about Dealing with

Barriers &
Restrictions in

Writing assessment
summary

End

Analyzing the depth
and coverage of

each
tutorial/guideline

Figure B.26: The workflow for assessing Dealing with Barriers & Restrictions.

B.5.2 Incentives, Financing, & Funding

Fig. B.27 shows the workflow for assessing Incentives, Financing, & Funding. Two assess-

ment methods focused on the project documentation are included. First, we review the

content about supporting individual developers in the project, and identify whether the

project offers employment opportunities for developers, as well as other types of incentives

for individual developers. Then we generate review results on supporting individual de-

velopers. In the other assessment method, we review the content related to donation and

sponsorship, identify whether there are any donation/sponsorship mechanisms for companies

and organizations, and generate review results. Based on the review results of two assess-

ment methods, we derive insights about Incentives, Financing, & Funding, and write the

assessment summary.

B.5.3 Knowledge & Expertise

Fig. B.28 shows the workflow for assessing Knowledge & Expertise. First, we collect doc-

uments in the project, and identify and review the content related to tutorials. Then we

152

Workflow for Assessing Incentives, Financing, & Funding

Start

Collecting documentation in the
project

Review the content about
donation/sponsorship in the

project

Identifying
donation/sponsorship

mechanism

Generating the review result of
donation/sponsorship

Deriving insights about
Incentives, Financing, &

Funding in project
Writing assessment summary

End

Review the content about
supporting developers in the

project

Identifying employed developer
positions in the project

Identifying other types of
incentives for the developers in

the project

Generating the review result of
supporting developers

Figure B.27: The workflow for assessing Incentives, Financing, & Funding.

Workflow for Assessing Knowledge & Expertise

Start

Collecting
documentation in

the project

Identifying the
coverage of the

tutorials/documenta
tion in the project

Generating the
review result of

knowledge
management

Deriving insights
about Knowledge &
Expertise in project

Writing assessment
summary

End

Reviewing the
content about

tutorials/documenta
tion on the project

Identifying any
knowledge

management
tools/mechanisms

Figure B.28: The workflow for assessing Knowledge & Expertise.

153

identify the knowledge management tools/mechanisms mentioned in those tutorials. Next,

we generate review results on those collected documents. Based on the review results, we

derive insights about Knowledge & Expertise, and write the assessment summary.

B.5.4 Supportive Facilities & Mechanisms

Workflow for Assessing Supportive Facilities & Mechanisms

Start

Collecting the
documentation in the

project

Reviewing the content
about development

Identifying tools to
facilitate development in

the project

Generating the review
result of facilitating

development

Reviewing the content
about communication

Generating the review
result of facilitating

communication

Deriving insights about
Supportive Facilities &
Mechanisms in project

Writing assessment
summary

End

Identifying tools to
facilitate communication

in the project

Analyzing scheduled
meetings/communications

in the project

Figure B.29: The workflow for assessing Supportive Facilities & Mechanisms.

154

Fig. B.29 shows the workflow for assessing Supportive Facilities & Mechanisms. Two as-

sessment methods are included, and both analyze the project documentation. First, we

review the content about communication, and identify the communication tools adopted in

the project development; we also analyze whether there are scheduled meetings or commu-

nications in the project. Then we generate the review results of facilitating communication

in the project. In the other method, we review the content related to development, identity

tools/toolchains adopted to facilitate the project development, and generate review results.

Based on the review results of the two assessment methods, we derive insights about Sup-

portive Facilities & Mechanisms, and write the assessment summary.

B.6 Category: Position/Group Relations

B.6.1 Interaction with Emerging Technologies

Workflow for Assessing Interaction with Emerging Technologies

Start

Collecting
documentation in

the project

Collecting news
articles about the

project

Reviewing the content related to
emerging technologies

Identifying the emerging technologies
and interactions

Deriving insights about Interaction with
Emerging Technologies in project

Writing assessment summary

End

Generating the review result of
emerging technologies

Figure B.30: The workflow for assessing Interaction with Emerging Technologies.

Fig. B.30 shows the workflow for assessing Interaction with Emerging Technologies. First,

we collect documentation from the project, and online news articles about the project. We

review the content related to emerging technologies in the collected documents, i.e., the par-

ticular technologies and their relations with the project, and generate review results. Based

on the review results, we derive insights about Interactions with Emerging Technologies, and

155

write the assessment summary.

B.6.2 Interaction with Commercial Software Development

Workflow for Assessing Interaction with Commercial Software Development

Start

Collecting news
articles about the

project

Identifying the commercial
companies participated

Identifying the adoption of the
project in commercial products

Collecting the
documentation in

the project

Reviewing the content related to
commercial companies

Generating the review result of
interaction with commercial

companies

Deriving insights about
Interaction with Commercial

Software Development in project
Writing assessment summary

End

Figure B.31: The workflow for assessing Interaction with Commercial Software Development

Fig. B.31 shows the workflow for assessing Interaction with Commercial Software Devel-

opment. First, we collect documentation from the project and online news articles about

the project. We review the content related to commercial companies, and identify the com-

panies that participate in the project development. Then, we identify the adoption of the

project in commercial products. We generate review results based on the identified content.

Based on the review results, we derive insights about Interaction with Commercial Software

Development, and write the assessment summary.

B.6.3 Market & Users

Fig. B.32 shows the workflow for assessing Market & Users. First, we collect documentation

from the project and online news articles about the market and users. Then we identify

the project’s targeted market, and identify the targeted users. We generate review results

with the identified content. Based on the review results, we derive insights about Market &

Users, and write the assessment summary.

156

Workflow for Assessing Market & Users

Start

Collecting news
articles about the

project

Identifying the
targeted market of

the project

Collecting
documentation

about the project

Reviewing the
content about

market & users

Generating the
review result of
market & users

Deriving insights
about Market &
Users in project

Writing assessment
summary

End

Identifying the
targeted users of

the project

Figure B.32: The workflow for assessing Market & Users.

157

Appendix C

Report of Assessment on Zephyr

This chapter reports the detailed assessment on Zephyr. Before reading the assessment

results, we would like to issue a disclaimer: The assessment results were based on public

data sources, some of them might not represent the official opinion of the projects. The

assessment we conducted was a snapshot of the OSS ideologies in the project, the assessment

results for particular projects are limited to this snapshot, and could not reflect the future

changes within the projects. The data and assessments were indicators that reflected the

themes, they might not reflect all practices related to the assessed themes.

C.1 Category: Values/Norms

C.1.1 Theme: Appreciation & Recognition

The project would sometimes express appreciation and recognize contributors’ contributions,

and give them credits in the release notes or pull request comments, but not all the time.

For example, Fig. C.1 is an example of release notes, each contributor who contributed

158

to this release was listed with the items they contributed, which gave contributors proper

recognition. In some pull requests, as shown in Fig. C.2, sometimes the reviewer would ex-

plicitly thank contributors for their work in the comments. However, neither the recognition

in release notes nor the appreciation in pull request comments occurred every time, they

often depended on the discretion of the members or reviewers involved.

C.1.2 Theme: Autonomy

First, 58 contributors were affiliated with the project organization, while 339 contributors

were not, and some of the non-affiliated contributors might be involved in the development

without bonding to employment, which indicates self-determined contributions. Second,

according to the submission time of the code commits shown in Fig. C.3, the majority of the

code commits were submitted during working hours on workdays, while a relatively small

number of the code commits were submitted outside of the working time, which reflected

self-determined contribution from some contributors. Thus, autonomy exists in the project

community, but to a limited extent.

C.1.3 Theme: Comparative Advantages

In the project documentation, there is a section1 that lists some distinguishing features of

the project, as the comparative advantages compared with other similar projects, including

Extensive suite of Kernel services, Multiple Scheduling Algorithms, Cross Architecture, Mem-

ory Protection and so on. For example, the feature Cross Architecture reflected the project

“supports a wide variety of supported boards with different CPU architectures and develop-

ers tools. Contributions have added support for an increasing number of SoCs, platforms,

and drivers.”

1https://docs.zephyrproject.org/latest/introduction/index.html

159

https://docs.zephyrproject.org/latest/introduction/index.html

Figure C.1: Screenshot of an example release notes.

160

Figure C.2: Screenshot of an example pull request comment.

0 2 4 6 8 10 12 14 16 18 20 22

Monday

Tuesday

Wednesday

Thursday

Friday

Saturday

Sunday

200

400

600

800

1000

1200

1400

Hour of Day

74 34 20 9 24 33 59 134 426 658 1172 1232 1137 1252 1361 1429 1187 985 465 312 316 316 318 263

142 93 61 25 24 64 81 181 480 930 1295 1410 1193 1245 1423 1537 1386 881 495 397 330 385 361 257

200 82 37 52 47 70 116 238 540 859 1393 1367 1202 1366 1500 1546 1318 960 567 336 363 413 463 317

170 78 66 37 60 84 128 202 474 883 1198 1381 1213 1233 1419 1477 1234 923 532 351 360 361 392 279

178 104 62 33 32 70 99 255 432 872 1355 1250 1177 1174 1371 1388 1128 741 438 274 259 349 249 218

114 55 30 36 33 73 81 111 198 197 208 257 214 201 204 187 207 155 161 129 146 170 127 140

76 46 40 12 24 35 74 58 94 163 170 149 170 198 188 158 190 169 158 124 146 127 163 160

Figure C.3: The code commit activity heatmap.

C.1.4 Theme: Constantly Changing & Evolving

Fig. C.4 & C.5 show the monthly commit frequency and the number of newcomers in the

project, both the commit frequency and the number of newcomers were increasing in general,

which indicated the project community was constantly changing and evolving.

C.1.5 Theme: Ethics

The project provides a Code of Conduct document2 adapted from the Contributor Covenant

(version 2.1). There was a statement on the pledge of the project community:

“We as members, contributors, and leaders pledge to make participation in our

2https://github.com/pytorch/pytorch/blob/main/CODE_OF_CONDUCT.md

161

https://github.com/pytorch/pytorch/blob/main/CODE_OF_CONDUCT.md

0

50

100

150

200

250

300

20
12

-0
1

20
12

-0
4

20
12

-0
7

20
12

-1
0

20
13

-0
1

20
13

-0
4

20
13

-0
7

20
13

-1
0

20
14

-0
1

20
14

-0
4

20
14

-0
7

20
14

-1
0

20
15

-0
1

20
15

-0
4

20
15

-0
7

20
15

-1
0

20
16

-0
1

20
16

-0
4

20
16

-0
7

20
16

-1
0

20
17

-0
1

20
17

-0
4

20
17

-0
7

20
17

-1
0

20
18

-0
1

20
18

-0
4

20
18

-0
7

20
18

-1
0

20
19

-0
1

20
19

-0
4

20
19

-0
7

20
19

-1
0

20
20

-0
1

20
20

-0
4

20
20

-0
7

20
20

-1
0

20
21

-0
1

20
21

-0
4

20
21

-0
7

20
21

-1
0

20
22

-0
1

20
22

-0
4

20
22

-0
7

20
22

-1
0

20
23

-0
1

#C
om

m
its

Figure C.4: The monthly commit frequency.

0

50

100

150

200

250

20
14

-1
2

20
15

-0
3

20
15

-0
6

20
15

-0
9

20
15

-1
2

20
16

-0
3

20
16

-0
6

20
16

-0
9

20
16

-1
2

20
17

-0
3

20
17

-0
6

20
17

-0
9

20
17

-1
2

20
18

-0
3

20
18

-0
6

20
18

-0
9

20
18

-1
2

20
19

-0
3

20
19

-0
6

20
19

-0
9

20
19

-1
2

20
20

-0
3

20
20

-0
6

20
20

-0
9

20
20

-1
2

20
21

-0
3

20
21

-0
6

20
21

-0
9

20
21

-1
2

20
22

-0
3

20
22

-0
6

20
22

-0
9

20
22

-1
2

20
23

-0
3

#N
ew

co
m
er

Figure C.5: The number of newcomers each month.

community a harassment-free experience for everyone, regardless of age, body

size, visible or invisible disability, ethnicity, sex characteristics, gender identity

and expression, level of experience, education, socio-economic status, nationality,

personal appearance, race, caste, color, religion, or sexual identity and orienta-

tion.”

“We pledge to act and interact in ways that contribute to an open, welcoming,

diverse, inclusive, and healthy community.”

162

Moreover, the document listed some examples of acceptable and unacceptable behaviors

as community standards, and detailed guidelines to enforce that Code of Conduct in the

community. Therefore, the project followed the standard code of conduct with explicit and

detailed guidelines and enforcement processes.

C.1.6 Theme: Openness & Transparency

In the same Code of Conduct document, openness was mentioned in “an open, welcoming,

diverse, inclusive, and healthy community,” as one of the values in the community. However,

transparency was not explicitly emphasized in the project documentation. Moreover, the

project repository is hosted on GitHub, which guarantees a certain level of openness and

transparency in the community.

C.1.7 Theme: Meritocracy

Three different roles are defined in the documentation3, i.e., Maintainers, Collaborators, and

Contributors. However, there are no explicit criteria on how to nominate/promote to those

roles, or how to remove from those roles.

Moreover, based on the centrality degrees of the three role groups shown in Fig. C.6, there

are significant differences across those three different roles. In general, the centrality degrees

of Maintainers tend to be higher than Collaborators, and Contributors. Thus, meritocracy

exists in the project community according to the distribution of the centrality degrees, but

lack of explicit criteria/description.

3https://docs.zephyrproject.org/latest/project/project_roles.html

163

https://docs.zephyrproject.org/latest/project/project_roles.html

maintainers collaborators contributors

0

5

10

15

20

25
C
en
tr
al
it
y

Figure C.6: The distribution of centrality degrees across three roles.

C.1.8 Theme: Reciprocity at Multiple Levels

Based on the analysis of the issue comments, the reciprocity tended to be neutral mostly,

since the discussion in the comments primarily focused on technical aspects of the projects,

and exchanging some information. Sometimes the sentiment related to reciprocity tends to

be slightly positive, particularly when contributors provide constructive feedback to each

other, and actively engage in collaboration and communication. Thus, reciprocity was not

evident most of the time in the issue comments, while slightly positive sometimes.

C.1.9 Theme: Trust

Based on the trust estimation on the issue comments, the trust was evident and tended

to be at a high level in the project community. Contributors actively participate in open

and constructive conversations on the issue threads, including addressing concerns, sharing

feedback, finding solutions, and so on. All of those indicate the existence of trust among

contributors within the project community.

164

C.1.10 Theme: Universal Accessibility & Availability

The source code is publicly available, and people could access the source code through its

GitHub repository. Furthermore, the Contribution Guidelines4 also indicated such accessi-

bility and availability to the public:

“As an open-source project, we welcome and encourage the community to submit

patches directly to the project.”

C.2 Category: Goals

C.2.1 Broad Impacts

No statements that addressed social challenges/concerns are found in the project documen-

tation.

C.2.2 Built-in Product & Quality Orientations

Fig. C.7 shows the number of bugs reported and fixed every month. The number of bugs

reported tends to be slightly increasing, which indicates more bugs are identified; the number

of bugs fixed tends to be in a consistent trend as bugs reported, around 15%, which also

reflects the project quality was improving. Moreover, the project documentation5 provides

ways to generate coverage reports, which could also reflect the project quality. In general,

the project quality is improving, but the overall bug-fix ratio is not high enough, and it would

be better to provide the test coverage report directly, rather than generating by developers.

4https://docs.zephyrproject.org/latest/contribute/guidelines.html
5https://docs.zephyrproject.org/latest/develop/test/coverage.html

165

https://docs.zephyrproject.org/latest/contribute/guidelines.html
https://docs.zephyrproject.org/latest/develop/test/coverage.html

0

100

200

300

400

500

600

700

800

20
16

-0
2

20
16

-0
4

20
16

-0
6

20
16

-0
8

20
16

-1
0

20
16

-1
2

20
17

-0
2

20
17

-0
4

20
17

-0
6

20
17

-0
8

20
17

-1
0

20
17

-1
2

20
18

-0
2

20
18

-0
4

20
18

-0
6

20
18

-0
8

20
18

-1
0

20
18

-1
2

20
19

-0
2

20
19

-0
4

20
19

-0
6

20
19

-0
8

20
19

-1
0

20
19

-1
2

20
20

-0
2

20
20

-0
4

20
20

-0
6

20
20

-0
8

20
20

-1
0

20
20

-1
2

20
21

-0
2

20
21

-0
4

20
21

-0
6

20
21

-0
8

20
21

-1
0

20
21

-1
2

20
22

-0
2

20
22

-0
4

20
22

-0
6

20
22

-0
8

20
22

-1
0

20
22

-1
2

20
23

-0
2

#Bug #Bug Fix

Figure C.7: The number of bugs reported and fixed every month.

C.2.3 Outreach

First, there are scheduled meetup events6, i.e., developer summits, and local meetup events,

to engage with both local and worldwide project communities. Second, the project utilizes

several social media platforms, including Facebook, X/Twitter, LinkedIn, YouTube,

Discord, etc., to engage with broader and more diverse communities. Thus, the project

takes advantage of multiple platforms, and meetup formats to engage with the public.

C.2.4 Sustainability

Fig. C.8, C.9, C.10 show the number of newcomers and non-newcomers who submitted

commits, issues, and pull requests every month. First, the number of contributors each

month was increasing, reflecting more contributors were active in the project. Second, there

was a relatively stable percentage of newcomers contributed every month, which indicated

that the project constantly attracted newcomers to join. Thus, it is evident regarding the

sustainability in the project community.

6https://www.zephyrproject.org/events/

166

https://www.zephyrproject.org/events/

0

50

100

150

200

250

20
14

-1
2

20
15

-0
3

20
15

-0
6

20
15

-0
9

20
15

-1
2

20
16

-0
3

20
16

-0
6

20
16

-0
9

20
16

-1
2

20
17

-0
3

20
17

-0
6

20
17

-0
9

20
17

-1
2

20
18

-0
3

20
18

-0
6

20
18

-0
9

20
18

-1
2

20
19

-0
3

20
19

-0
6

20
19

-0
9

20
19

-1
2

20
20

-0
3

20
20

-0
6

20
20

-0
9

20
20

-1
2

20
21

-0
3

20
21

-0
6

20
21

-0
9

20
21

-1
2

20
22

-0
3

20
22

-0
6

20
22

-0
9

20
22

-1
2

20
23

-0
3

#Non-newcomer #Newcomer

Figure C.8: The number of newcomers and non-newcomers committed to the project every
month.

0

20

40

60

80

100

120

140

160

180

20
16

-0
2

20
16

-0
4

20
16

-0
6

20
16

-0
8

20
16

-1
0

20
16

-1
2

20
17

-0
2

20
17

-0
4

20
17

-0
6

20
17

-0
8

20
17

-1
0

20
17

-1
2

20
18

-0
2

20
18

-0
4

20
18

-0
6

20
18

-0
8

20
18

-1
0

20
18

-1
2

20
19

-0
2

20
19

-0
4

20
19

-0
6

20
19

-0
8

20
19

-1
0

20
19

-1
2

20
20

-0
2

20
20

-0
4

20
20

-0
6

20
20

-0
8

20
20

-1
0

20
20

-1
2

20
21

-0
2

20
21

-0
4

20
21

-0
6

20
21

-0
8

20
21

-1
0

20
21

-1
2

20
22

-0
2

20
22

-0
4

20
22

-0
6

20
22

-0
8

20
22

-1
0

20
22

-1
2

20
23

-0
2

#Non-newcomer #Newcomer

Figure C.9: The number of newcomers and non-newcomers submitted issues every month.

0

50

100

150

200

250

300

20
16

-1
1

20
17

-0
3

20
17

-0
5

20
17

-0
7

20
17

-0
9

20
17

-1
1

20
18

-0
1

20
18

-0
3

20
18

-0
5

20
18

-0
7

20
18

-0
9

20
18

-1
1

20
19

-0
1

20
19

-0
3

20
19

-0
5

20
19

-0
7

20
19

-0
9

20
19

-1
1

20
20

-0
1

20
20

-0
3

20
20

-0
5

20
20

-0
7

20
20

-0
9

20
20

-1
1

20
21

-0
1

20
21

-0
3

20
21

-0
5

20
21

-0
7

20
21

-0
9

20
21

-1
1

20
22

-0
1

20
22

-0
3

20
22

-0
5

20
22

-0
7

20
22

-0
9

20
22

-1
1

20
23

-0
1

20
23

-0
3

#Non-newcomer #Newcomer

Figure C.10: The number of newcomers and non-newcomers submitted pull requests every
month.

167

C.2.5 Innovation

Fig. C.11 shows the number of issues related to new features and functions, in general, it

tends to be stable and slightly increasing, which indicates innovation existed in the project.

Moreover, the sentiment towards those new features/functions in the issue comments tends

to be mixed with both positive and negative sentiments, which indicates that not all new

features or functions are welcomed in the project community, e.g., “No plans to implement

this on STM 32 in short/mid-term.” Thus, innovation happens in the project, as new fea-

tures/functions are proposed, however, the general sentiments towards them are not always

welcoming.

0

2

4

6

8

10

12

14

16

20
16

-0
5

20
16

-1
1

20
17

-0
2

20
17

-0
4

20
17

-0
6

20
17

-0
9

20
17

-1
1

20
18

-0
1

20
18

-0
3

20
18

-0
6

20
18

-0
8

20
18

-1
0

20
18

-1
2

20
19

-0
2

20
19

-0
4

20
19

-0
6

20
19

-0
8

20
19

-1
0

20
19

-1
2

20
20

-0
2

20
20

-0
4

20
20

-0
6

20
20

-0
8

20
20

-1
1

20
21

-0
1

20
21

-0
4

20
21

-0
6

20
21

-0
9

20
21

-1
1

20
22

-0
1

20
22

-0
3

20
22

-0
5

20
22

-0
7

20
22

-0
9

20
22

-1
1

20
23

-0
1

20
23

-0
3

Figure C.11: The number of issues related to new features/functions every month.

C.2.6 Ubiquitous Penetration

According to the official documentation7, the project has been widely adopted in industrial

IoT, asset tracking, wearable, automotive, healthcare, worker safety, etc. There is also a list8

of products running the project, e.g., Grid Pad 13, Lisios WaterAlarm, Open Collar, Mahi,

ProGlove, etc. Thus, the project has been penetrated in various fields and industries, and

7https://zephyrproject.org/zephyr-overview
8https://zephyrproject.org/products-running-zephyr/

168

https://zephyrproject.org/zephyr-overview
https://zephyrproject.org/products-running-zephyr/

has been widely adopted in many commercial products.

C.3 Category: Activities

C.3.1 Copyright, Licensing, & Legal Implications

First, the project is under Apache License (Version 2.0)9, which is a permissive open source

license, while some components of the project are under different licenses, i.e., GPLv2.

The licensing documentation10 also provides a brief description of the rights granted to the

developers, and further references to help developers better understand those rights. Second,

a Developer Certification of Origin (DCO)11 is required when accepting any contributed code

from contributors, to avoid potential patent or copyright issues. Moreover, there is no news

related to patent or copyright lawsuits with the project. In general, the project adopts

standard open source licensing, and the usage of DCO does not involve copyright transfer,

which tends to be simpler and less intimidating for contributors.

C.3.2 Governance & Decision Making

The governance structure of the project is the true meritocracy. There is a Technical Steering

Committee (TSC)12 formed by a group of contributors who were elected from the community.

The responsibilities are described as “defining and maintaining the technical vision for the

Zephyr project,” “serving as the highest technical decision body,” and “coordinating cross-

community collaboration.” The decisions should be made collectively with multiple members

of TSC, e.g., “minimal of 2 approvals” is required to merge pull requests.

9https://github.com/zephyrproject-rtos/zephyr?tab=Apache-2.0-1-ov-file#readme
10https://docs.zephyrproject.org/latest/contribute/guidelines.html#licensing
11https://docs.zephyrproject.org/latest/contribute/guidelines.html#dco
12https://www.zephyrproject.org/tsc/,

169

https://github.com/zephyrproject-rtos/zephyr?tab=Apache-2.0-1-ov-file##readme
https://docs.zephyrproject.org/latest/contribute/guidelines.html##licensing
https://docs.zephyrproject.org/latest/contribute/guidelines.html##dco
https://www.zephyrproject.org/tsc/

C.3.3 Personal Development

Fig. C.12 shows the distribution of Kendall Tau values for contributors’ centrality degree

traces, the range of Tau values is from -1.0 to 1.0, with the positive value indicating an in-

creasing trend of the centrality degree trace, while the negative value indicating a decreasing

trend. It is evident that all contributors’ centrality degrees are increasing, which reflects

personal development in the project.

0

1

2

3

4

−1 −0.5 0 0.5 1

Tau Value

Pr
ob
ab
ili
ty
 D
en
si
ty

Pr
ob
ab
ili
ty
 D
en
si
ty

Figure C.12: Distribution of Kendall Tau values for contributors’ centrality degree traces.

C.3.4 Social Production

Fig. C.13 shows the number of contributors who participated in the issue discussion, the

majority of the issue discussion involved a few contributors (around two to three), and some

issues even involved more than ten contributors. Thus, social production is evident in the

project.

170

0 5 10 15 20 25

1
2

5

10
2

5

100
2

5

1000
2

5

10k
2

#Contributors

#Contributors

#
Is
su
es

#
Is
su
es

0 5 10 15 20 25

1
2

5

10
2

5

100
2

5

1000
2

5

10k
2

#
Is
su
es

#
Is
su
es

Figure C.13: The number of contributors who participated in issue comments.

C.3.5 Work Organization & Practices

In total, the code commits were submitted from 22 different timezones, as shown in Fig.

C.14, which reflects the multi-timezone effort on the project development. Moreover, three

different communication channels were utilized, i.e., Discord Server, mailing list, and GitHub

Issues, to facilitate various types of collaboration within the project.

C.4 Category: Membership

C.4.1 Individual Identity

Based on the usage of different pronouns in the issue comments, around 36.04% of the

pronouns are “I”, “my”, and “me”, while 13.82% are “we”, “our”, and “us”. That reflects

171

36000

28800

25200

21600

18000

14400

10800

7200

0 ‑3600

‑7200

‑10800

‑14400

‑18000

‑19080

‑25200

‑28800

‑32400

‑36000

‑39600

‑43200

‑46800

0

5k

10k

15k

20k

Timezone

#
 o
f 
co
m
m
it
s

Figure C.14: The distribution of timezones with code commits.

that the contributors tend to address themselves as individuals, and only a limited number

of contributors address themselves as part of the community.

C.4.2 Ideological Leadership

The ideological leadership is reflected in the issue comments, and primarily focuses on tech-

nical aspects, e.g., a collaborative approach to decision-making, several contributors and

maintainers participated in the discussion regarding new feature proposals, design choices,

implementation, etc.

172

C.4.3 Interpersonal Relationships

In general, the interpersonal relationships reflected in the issue comments tend to be posi-

tive, particularly professional, collaborative sentiments. The interactions among contributors

mostly focused on resolving technical issues, and improving project development, profession-

ally and constructively.

C.4.4 Member Hierarchy & Roles

The project community follows a hierarchical structure, and three roles are explicitly defined

in the project documentation13, i.e., Maintainers, Collaborators, and Contributors, as well as

their rights and responsibilities. For example, “A Collaborator is a Contributor who is also

responsible for the maintenance of Zephyr source code,” and the responsibilities include “set

goals for the short and medium terms,” “participate in the feature development process,”

“review relevant code changes within reasonable time,” and so on. Thus, the hierarchical

structure and roles are clearly defined and described in the project documentation.

13https://docs.zephyrproject.org/latest/project/project_roles.html

173

https://docs.zephyrproject.org/latest/project/project_roles.html

C.5 Category: Resources

C.5.1 Dealing with Barriers & Restrictions

The project documentation provides detailed guidelines for contributors, including Contri-

bution Guidelines14, Contributor Expectations15, Coding Guidelines16, etc. Those docu-

ments cover a wide range of related topics, such as understanding source tree structure,

and following contribution workflow, to help contributors better understand the project and

development process, to overcome potential barriers or restrictions.

C.5.2 Incentives, Financing, & Funding

There is a membership mechanism, “Become a Member17,” as a way to support the project.

Membership fees are required for certain types of members, i.e., Platinum and Silver mem-

bers. Moreover, the project also offers some career opportunities18 within the project ecosys-

tem and community. However, there is no donation mechanism for individuals to have small

or one-time donations to support the project.

C.5.3 Knowledge & Expertise

In general, the project provides detailed documentation19 to cover various aspects of the

project. The documentation is prepared for both developers and users of the project,

14https://docs.zephyrproject.org/latest/contribute/guidelines.html#

contribute-guidelines
15https://docs.zephyrproject.org/latest/contribute/contributor_expectations.html#

contributor-expectations
16https://docs.zephyrproject.org/latest/contribute/coding_guidelines/index.html#

coding-guidelines
17https://www.zephyrproject.org/join/
18https://www.zephyrproject.org/careers/
19https://docs.zephyrproject.org/latest/

174

https://docs.zephyrproject.org/latest/contribute/guidelines.html##contribute-guidelines
https://docs.zephyrproject.org/latest/contribute/guidelines.html##contribute-guidelines
https://docs.zephyrproject.org/latest/contribute/contributor_expectations.html##contributor-expectations
https://docs.zephyrproject.org/latest/contribute/contributor_expectations.html##contributor-expectations
https://docs.zephyrproject.org/latest/contribute/coding_guidelines/index.html##coding-guidelines
https://docs.zephyrproject.org/latest/contribute/coding_guidelines/index.html##coding-guidelines
https://www.zephyrproject.org/join/
https://www.zephyrproject.org/careers/
https://docs.zephyrproject.org/latest/

e.g., Contribution Guidelines and Kernel documentation help developers to understand the

project and facilitate development; Samples and Demos, OS Services documents help users

learn how to use and run the project on supported boards and devices. Moreover, at the

end of every documentation page, there is a section to indicate the last updated time of the

page, and encourage readers to help keep the documentation update-to-date, by reporting

errors or improving the content.

C.5.4 Supportive Facilities & Mechanisms

First, a set of tools/toolchains20 is adopted to facilitate the project development. For exam-

ple, CLion is a C/C++ IDE for debugging, Coccinelle is adopted for kernel development, as

well as project SDK, ARM Compiler, etc. Second, GitHub Issue list, Discord, and mail-

ing list are utilized as communication channels regarding the project development. However,

there is no mentoring or similar mechanisms adopted in the project community.

C.6 Category: Position/Group Relations

C.6.1 Interaction with Emerging Technologies

According to the project documentation, and official website21, the project mostly interacts

with AI, Robotics, Ultra-Wideband RTLS technologies.

20https://docs.zephyrproject.org/latest/develop/tools/index.html, https://docs.

zephyrproject.org/latest/develop/toolchains/index.html
21https://zephyrproject.org/zephyr-rtos-emerging-technologies/

175

https://docs.zephyrproject.org/latest/develop/tools/index.html
https://docs.zephyrproject.org/latest/develop/toolchains/index.html
https://docs.zephyrproject.org/latest/develop/toolchains/index.html
https://zephyrproject.org/zephyr-rtos-emerging-technologies/

C.6.2 Interaction with Commercial Software Development

First, some commercial companies are involved as platinum/silver members in the project

community22, e.g., Google, Intel, Meta, and T-Mobile. Their employees also actively par-

ticipate in the project development. Then, the project has been widely adopted in many

commercial products, such as tablets, and wearable devices.

C.6.3 Market & Users

The project primarily focuses on the IoT, embedded system markets23, for smart, wireless

devices. The users of the projects are mostly the developers, they would deploy the project

to their products, and then deliver them to their end users.

22https://www.zephyrproject.org/project-members/
23https://www.zephyrproject.org/wp-content/uploads/sites/38/2024/03/zephyr_datasheet_

0328240-nobleed.pdf

176

https://www.zephyrproject.org/project-members/
https://www.zephyrproject.org/wp-content/uploads/sites/38/2024/03/zephyr_datasheet_0328240-nobleed.pdf
https://www.zephyrproject.org/wp-content/uploads/sites/38/2024/03/zephyr_datasheet_0328240-nobleed.pdf

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	VITA
	ABSTRACT OF THE Dissertation
	Introduction
	Background
	A Brief History of Ideology
	Origin of the Concept of ``Ideology''
	Marx's Contribution to Ideology
	Modern and Post-modern Development

	Exploration of OSS Ideology
	Defining OSS Ideology

	Developing an Empirical Theory of OSS Ideology
	Research Methodology
	Data Sources
	Data Collection
	Data Analysis

	Empirical Theory of OSS Ideology
	Norms/Values
	Membership
	Goals
	Activities
	Resources
	Positions/Group Relations

	Implications
	Theoretical Implications
	Practical Implications

	Developing an Assessment Framework of OSS Ideology
	Motivation
	Designing Assessment Framework
	Pilot Case Study

	Applying Assessment Framework on Open Source Project: Case Study
	Study Design
	Three Case Studies
	Case 1: D3
	Case 2: Zephyr
	Case 3: PyTorch

	Cross-Case Comparison & Implications
	Feedback from Stakeholders

	Discussion & Implications
	Theoretical Implications
	Practical Implications
	Limitations

	Conclusions
	Bibliography
	Appendix Interview Protocol
	Interview Script
	Briefing and Verbal Consent
	Interview Questions

	Appendix Assessment Framework for OSS Ideologies
	Category: Values/Norms
	Appreciation & Recognition
	Autonomy
	Comparative Advantages
	Constantly Changing & Evolving
	Ethics
	Openness & Transparency
	Meritocracy
	Reciprocity at Multiple Levels
	Trust
	Universal Accessibility & Availability

	Category: Goals
	Broad Impacts
	Built-in Product & Quality Orientations
	Outreach
	Sustainability
	Innovation
	Ubiquitous Penetration

	Category: Activities
	Copyright, Licensing, & Legal Implications
	Governance & Decision Making
	Personal Development
	Social Production
	Work Organization & Practices

	Category: Membership
	Individual Identity
	Ideological Leadership
	Interpersonal Relationships
	Member Hierarchy & Roles

	Category: Resources
	Dealing with Barriers & Restrictions
	Incentives, Financing, & Funding
	Knowledge & Expertise
	Supportive Facilities & Mechanisms

	Category: Position/Group Relations
	Interaction with Emerging Technologies
	Interaction with Commercial Software Development
	Market & Users

	Appendix Report of Assessment on Zephyr
	Category: Values/Norms
	Theme: Appreciation & Recognition
	Theme: Autonomy
	Theme: Comparative Advantages
	Theme: Constantly Changing & Evolving
	Theme: Ethics
	Theme: Openness & Transparency
	Theme: Meritocracy
	Theme: Reciprocity at Multiple Levels
	Theme: Trust
	Theme: Universal Accessibility & Availability

	Category: Goals
	Broad Impacts
	Built-in Product & Quality Orientations
	Outreach
	Sustainability
	Innovation
	Ubiquitous Penetration

	Category: Activities
	Copyright, Licensing, & Legal Implications
	Governance & Decision Making
	Personal Development
	Social Production
	Work Organization & Practices

	Category: Membership
	Individual Identity
	Ideological Leadership
	Interpersonal Relationships
	Member Hierarchy & Roles

	Category: Resources
	Dealing with Barriers & Restrictions
	Incentives, Financing, & Funding
	Knowledge & Expertise
	Supportive Facilities & Mechanisms

	Category: Position/Group Relations
	Interaction with Emerging Technologies
	Interaction with Commercial Software Development
	Market & Users

