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Abstract

This research investigates the impact of time pressure and
individual differences on learning in a Real-Time Dynamic
Decision Making (RTDDM) task. Our empirical results
indicate that high time pressure generates high cognitive
loads inhibiting learning. The results also show that high
time pressure have a differential impact on the learning of
individuals with high or low Working Memory (WM)
capacity. We present a cognitive model based on ACT-R
intended to explain learning in this task. Our cognitive
model simulates learning by recognizing regularities in the
decision task, and building “chunks” that guide decision
making (instance-based learning). We describe how the
model will be used to explain the impact of time pressure and
WM capacity by varying the number of chunks acquired by
the system given alternative time pressure conditions and
individual differences.

Introduction

Real-Time Dynamic Decision Making (RTDDM) tasks have
three main characteristics: a) the decision maker has to
make a series of interdependent decisions; b) the
environment changes because of exogenous events and
because of prior decisions; and c) the pacing of decisions is
dictated by the task rather than by the decision maker
(Brehmer, 1990). This research investigates the impact of
time pressure and individual differences on learning in a
RTDDM task. It attempts to explain these phenomena by
building a detailed cognitive model of the decision maker.
The rationale for the cognitive model is to have a more in-
depth understanding of why time pressure and individual
differences foster or inhibit learning. We expect this
detailed understanding would help us build better training
and decision aids for RTDDM tasks.

Theory

In most RTDDM tasks the rules for making individual
decisions are simple. For example, air traffic controllers
need to identify if two airplanes are in a collision course. If
this is the case, they need to ask one of the airplanes to
change direction. But the tasks are rather complex because
of the interdependency of decisions and the time pressure to
make them, Under these conditions, we expect most
learning will be instance-based learning. That is, decision
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makers will learn chunks expressing under which task
conditions specific decisions have the desired effect on the
system.

WM is the system for holding and manipulating
information during the performance of cognitive tasks
(Baddeley, 1990). Limitations in WM capacity have been
recognized as a major bottleneck in human cognitive
processing. We expect that differences in WM capacity will
have a great impact on how individuals perform and learn in
RTDDM tasks because these environments impose a high
cognitive workload. More specifically, we expect that
individuals with high WM resources will learn faster
because they have the additional cognitive resources to
reflect on the impact of their prior decisions, and to store
more and better chunks. Also, since WM capacity is used
for both performance and learning, we expect that decision
makers will learn faster if they are first trained in a low time
pressure environment, and then they are asked to make
decisions in the higher time pressure environment,
Conversely, individuals that are trained from the beginning
in the high time pressure environment should find it harder
to learn because all their cognitive resources are devoted to
executing the task, and they have less spare resources
devoted to learning. This prediction should be mediated by
individual differences in WM.

WM is divided into two subsystem: 1) a linguistic sub-
system, and 2) a spatial sub-system. In the linguistic sub-
system, information is kept in linguistic code, and the
processing can be characterized as sequential and
propositional. In the spatial sub-system, information is kept
in visual code, and the processing can be characterized as
more parallel and analogical. There is strong evidence that
language processing and spatial thinking are supported by
separate pools of WM capacity (Shah and Miyake, 1996).
Prior studies have shown that individuals with high
linguistic WM capacity perform better than individuals with
low linguistic WM capacity in a variety of real-time tasks
such as reading comprehension (Just and Carpenter, 1992)
and phone-based interaction (Huguenard, Lerch, Junker,
Patz and Kass, 1997). Our RTDDM task is highly spatial so
we expect that individuals with high spatial WM capacity
will perform and learn better than individuals with low
spatial WM capacity.
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In our research we use traditional measurements of
linguistic and spatial WM capacity. We also use the Raven
Progressive Matrices Test (Raven, 1962) as an additional
measurement of spatial WM. Prior research using detailed
eye-tracking analysis has shown that differences in Raven
tests can be explained by the ability to induce abstract spatial
relations and the ability to dynamically manage a large set of
problem-solving goals in WM (Carpenter, Just and Shell,
1990).

Laboratory Study

We used a simulation tool called Pipes. Pipes is an
abstraction of a resource management task that can be
performed by a single individual or a group. The task is an
isomorph of a real-world task in an organization with large-
scale logistical operations (the United States Postal Service).
We have built a realistic simulation of the task, but this
simulation is too complex and takes too long to learn to be
practical in laboratory studies (See Lerch, Ballou and Harter,
1997 for a detailed description of the realistic simulation).
On the other hand, Pipes can be learned in approximately
one hour, and a complete trial can be run in few minutes.
Pipes simulates a water distribution system (isomorph to
mail sorting) with multiple deadlines for alternative tanks in
the system. The whole simulation is spatial. Decision
makers have to decide when to activate or de-activate pumps
given that the number of pumps working at any given time is
restricted (this is isomorphic to having a limited number of
sorting machines in the USPS). The task is highly dynamic
because water may arrive into a tank at any time, and the
level of water in each tank depends on prior decisions (i.e.,
the pumps that were activated or de-activated by the decision
maker in the past). The task is also real-time because pumps
are activated or de-activated as the simulation clock is
running (See Figure 1 for the main layout of the simulation).

We ran 33 participants using this simulation. Each
participant was run in five consecutive days, and paid $50 at
the end of the 5 days. In the first two days, each participant
completed three psychological tests: the Reading Span Test
(Daneman and Carpenter, 1980) that measures WM capacity
for language processing; the Spatial Span Test (Shah and
Miyake, 1996) that measures WM capacity for spatial
thinking; and the Raven Progressive Matrices Test (Raven,
1962).

We manipulated time pressure by changing the speed of
events. In the last three days, each participant was randomly
assigned to one of two groups: the Fast-Fast (FF) condition
and the Very Slow-Fast (VSF) condition. The exogenous
events in all trials were identical. The simulation was run
either in a Fast mode (8 minutes trials), or in a Very Slow
mode (24 minutes trials). In the FF condition, participants
ran the simulation 6 times for three days in the Fast mode
(18 trials over three days). In the VSF condition,
participants ran the simulation in the Very Slow mode for
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the first ;two days. In these rwo days, they only ran 2 trials
per day, so their total time on task was the same as the time
on task for Fast-Fast participants (Very Slow-Fast: 2 trials x
24 minutes = 48 minutes per day; Fast-Fast: 6 trials x 8
minutes = 48 minutes per day). In the third (last) day, the
Very Slow-Fast participants ran the simulation 6 times in the
Fast mode (8 minutes trials), the same as the Fast-Fast
participants. We expect Very Slow-Fast (VSF) participants
will exhibit more learning than Fast-Fast (FF) participants.
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Figure 1. The Pipes simulation

Experimental Results

Figure 2 shows that all three measures of individual
differences are correlated. Also, as expected, they show that
Raven is more highly correlated to spatial WM capacity than
to linguistic WM capacity.

We averaged the results of each participant across trials
for each day so each participant had only three repeated
performance measures (one for each day). Our performance
measure is the number of water buckets that were not
pumped in time, therefore the higher the number of water
buckets missed, the worse the performance of the decision
maker.

We first ran an analysis of variance with three repeated
measures with only spatial WM as a covariate. The results
show that individuals with high spatial WM capacity
performed better than those with low spatial WM capacity
[F(1,29)=4.813, p=.036)]. Second, we ran the same analysis
with only linguistic WM capacity as a covariate. Linguistic
WM capacity was not significant [F(1,29)=.341,ns]. We
then ran the same analysis with spatial WM capacity and
Raven as covariates. The results are shown in Figure 3.



Raven Linguistic WM | Spatial WM
Raven 1
Linguistic WM 0.391 1
Spatial WM 0.504 0.545 1
Figure 2. Correlations Among the Three Tests.
Between-Subjects Effects
Observed
df |Mean Squarq F Sig Power
Condition 1 3638.89 0.879| 0.357 0.148|
Spatial WM 1 2140.571] 0.517] 0.478 0.107|
Condition*Spatial WM 1 7816.479 1.888| 0.181 0.263
RAVEN 1| 29031.594 7.013| 0.01 0.723]
Condition*Raven 1 671 0.01d 1.621| 0.214 0.233
Error 27 4139.791
Within-Subjects Effects
Observed
df |Mean Squarq F Power

Trial 2 683.558 1.065 0.227
Trial*Condition 2 4587.988 7.149 0.919|
Trial*Spatial WM 2 312.358 0.487 0.126]
Trial*Condition*Spatial WM| 2 515.578 0.803 0.180
Trial"RAVEN 2 186.38 0.290 0.094]
Trial*Condition*RAVEN 2 4158.304 6.480 0.890
Error (Trial) 54 641.757

Figure 3. Between and Within Subjects Effects

These results indicate that when both covariates are used
only Raven is significant (p=.013). The analysis of variance
also shows two significant interaction effects: Trial X
Condition interaction (p=.002) and Trial X Condition X
Raven interaction (p=.003).

Figure 4 shows the interaction between trial and time
pressure. The graph shows that performance was very
similar the first day between the FF and VSF participants.
But VSF participants improved their performance faster than
FF participants. It is important to remember that VSF
participants only had 4 trials in the first two days (2 trials per
day) while FF participants ran the simulation 12 times (6
times per day). All participants ran the simulation 6 times
the last day under high time pressure.

Time Pressure*Trial

——FF
VSF

Performance

Day 3

Figure 4. Trial - Time pressure interaction.
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Finally, Figure 5 shows the triple interaction. The left
panel shows the results of the Low Raven subjects (we
divided subjects by using the mean of our sample). The
graph shows that Low Raven subjects greatly benefited by
first being trained in the low time pressure condition before
being exposed to the high time pressure version of the
simulation (VSF condition). Although Low Raven subjects
in the FF condition performed better the first days than
subjects in the VSF condition, they exhibited little learning
throughout the three days.

The right panel graph shows the results for the High
Raven subjects. In this case, the benefits of the VSF
condition on learning and performance are very small
throughout the 3 days. It also shows that High Raven
subjects had a better performance than Low Raven subjects
consistently (compare left and right panels).

Low Raven Subjects

High Raven Subjects

Figure 5. Triple interaction

What Was Learned?

Our next step was to analyze each decision made by each
subject in order to figure out what subjects were learning.
We hypothesized that subjects would learn chunks
representing under which task conditions specific decisions
improve performance rather than learning decision rules (or
improving their implementation of these rules). In our
analysis, we compared each decision in each trial (between
30 and 60 decision per trial) for each day (6 trials in the Fast
condition and 2 trials in the Very-Slow condition) for each
subject (33 participants) against standard decision rules.
These rules were derived from the scheduling literature and
the verbal protocols of pilot subjects. For example, a
standard rule is the slack rule. In the slack rule you take into
account the time left before the deadline and the volume of
water in each tank, and select to activate the pump(s) of the
tank with the lowest slack (we call this strategy the Time-
Volume rule). We did this analysis using several decision
rules. For each decision and for each decision rule we
calculated a goodness of fit coefficient using the following
formula:
Goodness of fit = 1 - ((slack - minimum) / (maximum - minimum))

This coefficient has values between 0 and 1 and represents
the similarity between a decision rule and each decision
made by the subject. A coefficient fit of 1 means perfect



agreement (i.e., the slack of the subject’s decision is the same
as the minimum slack in the environment). In such a case
the subject has chosen the best decision according to the
Time-Volume rule. On the other hand, a coefficient fit of ()
is equivalent to the subject selecting the maximum slack in
the environment. In this case, the subject has chosen the
worst decision according to this rule. In this paper we only
report the results of the fit for the Time-Volume rule since
the results are similar for the other rules (and because of
space constraints).

Figure 6 shows the results of the average fit of all
decisions for each day (several trials per day) across all
subjects in the FF and VSF conditions. The graph shows
that the rule fit declines through time, that is, subjects follow
the rule less as they are learning. It also shows that VSF
subjects (the best learners) had a more pronounced decline in
their rule-following fit. Similar declines were found for
simpler and for more complex rules. Those subjects that
learn the most are those that learn to follow the standard
rules less often. These subjects seem to make decisions by
being more data driven, that is, by exploiting specific task
conditions and making decisions that may have worked in
the past.

Day 1 Day2 Day 3

Figure 6. Average fit of all decisions per day

Figure 7 shows the results of the average fit for the Time-
Volume decision rule for Low and High Raven subjects. We
would expect that Low Raven subjects may be less able to
exploit the specific conditions of the task environment
because they have less cognitive resources to analyze and
store chunks on what decisions worked under which task
conditions, especially if they are trained in the high time
pressure simulation (FF condition). The left panel shows
that Low Raven subjects in the FF condition in fact increase
their fit to the Time-Volume rule from day 1 to day 3. These
are the subjects who exhibited the worst learning. On the
other hand, Low Raven subjects in the VSF condition started
with a high fit coefficient but lower this coefficient through
time. The right panel shows the results for the High Raven
subjects. Their rule fit coefficients were lower than for the
Low Raven subjects, and decline through time for both
experimental conditions.

Our hypothesis here is that subjects that are more data
driven should perform better and learn more. If this is true,
then we should expect that the best performers were not only
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those that followed the rule the least, but are also more
adaptive. One measure of adaptation is the standard
deviation of the goodness of fit coefficients within a trial.
Two subjects may have the same average goodness of fit
coefficient in a trial, but very different standard deviations.
The subject with the high standard deviation follows the rule
very closely for some decisions, and not all for others, while
the subject with the low standard deviation follows the rule
at the same level for all decisions. To test this hypothesis we
ran a regression of performance for each trial ( 450 trials for
all subjects)against the following variables:

a)  Raven score

b)  Average rule fit per trial

c) Standard deviation of rule fit per trial

d)  Two other measurements of how well subjects used
the task environments resources (i.e., pump time)

The results were highly significant (Adjusted R? = .785).
There are no co-linearity problems among the explanatory
variables. The highest standardized coefficients were for the
two measurements of resource utilization (-.647 and -.320;
negative coefficients mean performance improvements). The
standardized coefficients for the other three variables are:
Raven = -.161 (p<.001), Average fit = .114 (p=.015), and
Standard Deviation of fit = 208 (p<.001). These
coefficients indicate that subjects with higher Raven scores
have better performance, trials with a higher average rule fit
have worse performance (after controlling for Raven score
and resource utilization), and finally, trials with higher
standard deviation have higher performance. The last
coefficient suggests that the less consistent subjects are
following the Time-Volume rule (after controlling for
average fit), the better their performance. Similar results
apply to other decision rules. These results indicate that data

driven decision making is beneficial in this task
environment.
Ko Ravia Subleila - T ok e i ]
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Figure 7. Average fit for Time-Volume Rule for Low and
High Raven.

The Act-R Theory

ACT-R is a theory of cognition that has been applied to a
wide range of cognitive tasks since its introduction in 1993
(Anderson and Lebiere, 1998). ACT-R assumes two types
of memory: procedural and declarative. Procedural memory
contains skills in the form of productions or rules of action.



Declarative memory holds explicit knowledge represented as
chunks. Production rules specify how the chunks are used to
solve problems. ACT-R is a goal-directed architecture. At
each cycle, one goal is designated as the top goal or focus of
attention. A production is then selected that matches that
goal, retrieves a chunk from memory (if necessary), then
transforms the goal. This i1s a symbolic description of ACT-
R in terms of how productions and chunks interact.

ACT-R has also a sub-symbolic level. At this level, ACT-
R provides real-valued quantities associated with declarative
and procedural knowledge to produce a more accurate
picture of the graduated nature of human cognition. Their
purpose is to resolve conflicts: when several productions
match the current goal or several chunks match a production
condition, the sub-symbolic parameters associated with
those symbolic structures will determine which is selected,
and how quickly. Those parameters are learned to optimize
the model to the structure of the environment.

In this model, we will concentrate on the acquisition and
use of declarative knowledge. We will assume that the
productions used to manipulate those chunks, and their
parameters, reflect some general, well-established
knowledge on how to solve problems of this type.

For declarative knowledge, a chunk is defined as a
collection of slots, each of which can hold another chunk as
value, and is associated to a quantity called activation which
represents the chunk’s history of use and determines its
availability. Specifically, the activation A; of chunk i is

defined by the formula:
Ai = B'+ZWJSJI+N(0,O')
i

B; is called the base-level activation. It increases with the

number of references to the chunk (practice) and decays with
time (forgetting). The second term represents the activation
spread from each source j according to its source level Wj

Sji’ to the chunk. The values
of the current goal are the sources of activation, which
evenly share a total source amount W. Finally, zero-mean
Gaussian noise of standard deviation ¢ is added to the
activation.

In a task such as this featuring continuously evolving
quantities such as time and amount of water, no match to
declarative memory is ever likely to be perfect because no
situation is ever encountered precisely the same way twice.
A mechanism called partial matching allows a chunk to be
retrieved even if it only partially matches a production
condition. A quantity called the match score of chunk i to
production p is defined by subtracting from the chunk
activation an amount proportional to the degree of
mismatch:

and its strength of association,

Mip= A —MP- ¥ (1-Sim(v,d))
v,d
MP is a scaling parameter called the mismatch penalty and
Sim(v,d) is the similarity between each production condition
d and corresponding chunk value v. The chunk with the
highest match score will be retrieved from memory if its
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score is above the activation threshold t. Otherwise, the
production fails and another is selected. Finally, the latency
to retrieve a chunk is inversely proportional to its match
score, making more active, better-matching chunks faster to
access. The addition of noise to the activation makes
declarative retrieval a probabilistic process, and the
mechanism of partial matching makes it an approximate
process. Stochasticity and generalization are two human
qualities in constant display in this task.

These mechanisms of ACT-R can be used to implement a
"user model" of the task that will generate detailed
predictions for each action and its latency at every step of
the problem-solving process.

An ACT-R Model of the Pipes RTDDM
Task.

ACT-R has successfully modeled phenomena of memory,
problem solving and skill acquisition (Anderson and
Lebiere, 1998). However, most of the tasks modeled up to
now are static, relatively simple tasks. Recently, there has
been more interest in modeling more dynamic and complex
tasks in ACT-R. Figure 8 represents our proposed ACT-R
model for the Pipes task. The overall goal is represented as
a set of deadline chunks. The focus of attention is the
deadline closest to the current simulation time.

Declarative memory has two main chunk structures: “the
tank™ and “the decision.” The information provided in the
tank chunk corresponds to the physical representation of a
tank in the system, and what the user is aware of: the water
amount, the deadline, the connections with other tanks, and
the status of the pumps in that tank. The chunk called
“decision” stores the information on the evaluations
performed on the tanks during the course of the learning
process, namely water amount, time until the deadline and
evaluation. The first time the model is run, no decision
chunks exist. Decision chunks are created in the course of
solving the current problem: when a goal that was set to
evaluate a tank is completed, it becomes a declarative
memory chunk holding the information relevant to the
evaluation. If the same evaluations are made or retrieved in
future trials, the decision chunk increases its activation
value, increasing the probability of being retrieved in the
future. Decisions are updated according to the feedback
provided by the system (i.e., no missed buckets decreases
the evaluation because more slack was available whereas a
high number of missed buckets increases the evaluation that
generated this situation because the tank should have been
given a higher priority). Since an identical situation is
unlikely to occur, the partial matching mechanism provides a
certain amount of generalization in finding the “correct
decision, i.e. a particular decision chunk may be retrieved if
the time until deadline and amount of water in the tank is
close enough to the current situation.

Procedural memory consists of 5 basic activities: evaluate
tanks for which pumps may be turned on or off, turn specific
pumps on or off, and review the environment (e.g., re-start
the evaluation cycle). When the user evaluates the tanks, the



model assumes that the user will keep a value of "urgency"
for each tank and type of action (urgency to turn-pumps
associated with each tank on or off) in the chunks. Two
productions are available to evaluate a tank. The first one
will try to retrieve a prior decision closely matching the
characteristics of this tank (water, deadline). If no prior
decision is sufficiently active and matches closely enough to
reach the retrieval threshold, then that production will fail.
The second production then will be selected that evaluates
the chunk according to some general heuristic function.
After all the tanks have been evaluated, the user then decides
to turn on the pump associated to the most urgent tank if a
pump is available, or to turn off the pump associated to the
least urgent tank, thereby freeing a pump, assuming that the
urgency of that tank is significantly less than that of the tank
that needs to be turned on. Actions in the user model modify
the status of the environment, which is updated by the
simulation. According to the definition of RTDDM, the
environment also changes independently from user’s actions.
The system adds water to the tanks, pumps water from
previous tanks, automatically turns off pumps that
correspond to tanks with no more water, and turns on pumps
that have been queued by the user. The simulation also
verifies the deadlines to provide feedback to the user.

ACT-R symbalic representation: User Model

Action
| GOAL: Meet all deadlines l
Bocus on Environment: Simulation
P Actions caused by User:
Conflict Change Pump status
resolution Acuvation
Independent change of the
Procedural Memory Declarative Memory En:::l:ﬁl;“:r
Tank Structure .
Evaluate 1o ON Statws of pumps Pump Water from previous tanks
Tum-ON Water amount Verity cisakypiesied purips
Evaluate to OFF Deadline Verify deadlines
Lol i || Feedback actions
s Decisian Calculate missed buckets
Waler amount
Deadline
. Brlasion Percention
Simulation Time
Mumber of pumps in use

Figure 8. ACT-R Model for Pipes

Although very little work has been done in ACT-R to
model individual differences, work by Lovett, Reder, and
Lebiere (1999) indicate that the W parameter may be
manipulated to capture individual differences in WM.
However, that parameter controls the spreading activation
component, which is essential to accounts of memory
phenomena such as the fan effect, but not particularly
relevant in this model. Therefore, we will also investigate if
other parameters can account for individual differences,
including the decay rate of base-level activation d, the
mismatch penalty MP, the retrieval threshold t and the
activation noise magnitude ¢, All of these parameters affect
the activation that controls the availability of decisions
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chunks, but they act on separate components of the
activation and thus are expected to exhibit different effects.

Time pressure in the model is implemented by modifying
the rate at which the environment changes, and comparing
the ACT-R’s time to that rate. If the rate of change is very
low (no time pressure), the user model will have time to
complete more evaluations before the environment changes,
and to better reflect and update its evaluations following
system feedback. If the rate of change is very high, the user
may not have time to evaluate the environment completely
before it changes again, or to update its evaluations.

Conclusions
This research suggests that learning in real-time dynamic
decision tasks depends on the spare WM resources available
during task execution. It also suggests that most learning is
based on acquiring relevant decision instances that exploit
the task environment.
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