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Soft network composite materials with
deterministic and bio-inspired designs
Kyung-In Jang1, Ha Uk Chung1, Sheng Xu1, Chi Hwan Lee1, Haiwen Luan2, Jaewoong Jeong3, Huanyu Cheng2,

Gwang-Tae Kim1, Sang Youn Han1,4, Jung Woo Lee1,5, Jeonghyun Kim1,5, Moongee Cho1, Fuxing Miao2,6,

Yiyuan Yang1, Han Na Jung1, Matthew Flavin1, Howard Liu1, Gil Woo Kong1, Ki Jun Yu1, Sang Il Rhee1,

Jeahoon Chung1, Byunggik Kim1, Jean Won Kwak1, Myoung Hee Yun1,7, Jin Young Kim7, Young Min Song8,

Ungyu Paik5, Yihui Zhang2,9, Yonggang Huang2 & John A. Rogers1

Hard and soft structural composites found in biology provide inspiration for the design of

advanced synthetic materials. Many examples of bio-inspired hard materials can be found in

the literature; far less attention has been devoted to soft systems. Here we introduce

deterministic routes to low-modulus thin film materials with stress/strain responses that can

be tailored precisely to match the non-linear properties of biological tissues, with application

opportunities that range from soft biomedical devices to constructs for tissue engineering.

The approach combines a low-modulus matrix with an open, stretchable network as a

structural reinforcement that can yield classes of composites with a wide range of desired

mechanical responses, including anisotropic, spatially heterogeneous, hierarchical and

self-similar designs. Demonstrative application examples in thin, skin-mounted electro-

physiological sensors with mechanics precisely matched to the human epidermis and in soft,

hydrogel-based vehicles for triggered drug release suggest their broad potential uses in

biomedical devices.
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C
oncepts in materials science that draw inspiration from
the natural world have yielded an impressive collection
of important advances in recent years1–10. Structural

materials are of particular interest, due to their essential roles in
nearly every engineered system. Biology provides examples of two
general classes of such materials: (1) hierarchically assembled
composites that combine hard (BGPa) inorganic minerals such
as calcium carbonate or hydroxyapatite with organic polymer
additives and (2) non-mineralized, soft (BMPa) materials that
embed sparse networks of wavy, fibrous materials such as
collagen, elastin or keratin in extracellular matrices11,12. The first
offers linear elastic response for strains up to a fraction of a per
cent, with a ‘brick-and-mortar’ arrangement of organic and
inorganic constituents to impart levels of fracture toughness that
are essential to seashell nacre, dentine and bone. Many
sophisticated examples of synthetic materials that exploit these
design concepts can be found in the literature12–17. The second
involves tangled networks of coiled fiberous polymers, typically in
a ground substance that includes interstitial fluid, cell adhesion
proteins and proteoglycans18. Tensile loads cause these fibres to
unfurl, straighten, buckle, twist and stretch in a manner that
imparts a low-modulus response for relative small strains (for
example, ligament: B0–2%, epidermis: less than B10%) with a
sharp transition to a high modulus regime for larger strains (for
example, ligament: B5%, epidermis: B30%)19–22. This ‘J-shaped’
stress–strain response combines soft, compliant mechanics and
large levels of stretchability, with a natural ‘strain-limiting’
mechanism that protects biological tissues from excessive
strain23,24. Although such soft, non-mineralized biological
structures offer great potential in areas ranging from artificial
tissue constructs to bio-integrated devices, they have received far
less attention compared with their mineralized counterparts25,26.

Here we introduce a type of bio-inspired, soft deterministic
composite that can quantitatively reproduce the mechanics of
non-mineralized biological materials, including the precise non-
linear stress/strain response of human skin and its subtle spatial
variations across different locations on the body. The concepts
use planar, lithographically defined networks related to those
found in lightweight, impact resistant, loading bearing struc-
tures27–29 with serpentine microstructures originally developed
for interconnects in stretchable electronics. A low-modulus
elastomer or hydrogel provides a supporting matrix30,31. When
formed with network geometries optimized using tools
of computational mechanics, such composites can yield a wide
range of desired mechanical properties, including isotropic and
anisotropic responses and spatially heterogeneous characteristics.
Successful experimental demonstrations of these soft network
composites in combination with electrophysiological sensors and
drug-release vehicles indicate their potential for practical
applications in biomedical devices.

Results
Bio-inspired soft and thin film composites. Figure 1 presents a
schematic illustration of the strategy in the context of an artificial
skin construct. Here a two-dimensional (2D) network of photo-
lithographically defined polyimide filaments28,31 (HD-4110, HD
Microsystems, USA) resides in the middle of a soft, ‘skin-
phantom’ matrix that is vapour permeable (B10 g h� 1 m� 2 at a
thickness of 100 mm), ultra soft (EB3 kPa), highly elastic (up to
B250% tensile strain), biocompatible and adherent to biological
materials such as skin (B2 kPa) (Silbione RT Gel 4717A/B,
Bluestar Silicones, USA). See Fig. 1a–d and Supplementary Figs 1
and 2. The deterministic architecture of the former component,
here in a uniform triangular lattice configuration of repeating,
filamentary building block units with ‘horseshoe’ geometries

(as shown in the inset of Fig. 1d, which consists of two identical
circular arcs, each with an arc angle of y, radius of R and width
of w), defines the mechanical properties, through a role that is
analogous to that of collagen and elastin in biological systems. As
in biology, this composite exhibits tensile responses to mechanical
loading that consist of three phases, as reflected in the
experimental data of Fig. 1e. The first phase (‘toe’ region)
involves large-scale, bending-dominated deformations of the
constituent filaments, to yield an ultralow effective modulus
(approximately few or few tens of kPa). In the second phase
(‘heel’ region), continued stretching causes the filaments to rotate,
twist and align to the direction of the applied stress, with a
corresponding increase in modulus. Complete extension defines a
transition point of the J-shaped stress–strain curve into the third
phase, ‘linear’, region, where stretching of the filaments
themselves dominates the response. The modulus in this phase
can be several orders of magnitude higher than that in the initial
phase. Deformation finally continues until the point of ultimate
tensile strength, where plastic yielding and rupture of the network
defines a fourth region of behaviour.

The local slope of stress–strain curve (that is, the tangent
modulus) increases slowly at low strains (for example, o40%),
where bending motions dominate the deformation of the
network, as in Fig. 1f (B36% strain). As the horseshoe shapes
begin to reach full extension (B57% strain), the slope of the
stress–strain curve increases rapidly due to the transition into a
stretching-dominated deformation mode (as shown in Fig. 1f).
With further stretching, the strain in the constituent network
material (that is, polyimide) rapidly increases, finally terminating
with rupture at the ultimate tensile strength (B3 MPa).
Dilatation of the triangular shaped unit cell at low strains leads
to a negative Poisson effect in this region (Fig. 1f and
Supplementary Fig. 3), with a disappearance of this behaviour
as the horseshoe shapes reach full extension. The experimental
and computational (finite element analysis, FEA, see Methods
section for details) results exhibit quantitative agreement
in both the nature of the physical deformations and the
stress–strain curves, throughout the entire range of stretching.
The net effect is a compliant artificial structure with non-linear
properties, that is, B30-fold increase in the tangent modulus
(that is, local slope of stress–strain curve) with strain, of potential
value in active or passive devices that integrate intimately with
the human body, as illustrated in conformal wrapping on flat
and curved regions of the skin (Fig. 1a,b and Supplementary
Fig. 4)32,33.

Deterministically defined non-linear mechanical responses.
The mechanical properties can be adjusted to match, precisely,
the properties of the skin or other organs. This tunability follows
from the ability, via a simple lithographic process, to render
the networks into nearly any 2D configuration29,34–36. Here
theoretical descriptions of the mechanics represent essential tools
for optimized selection of key design parameters, including the
material type, the network topology, the filament dimensions and
the microstructure geometry, to meet requirements of interest.
Spatially homogeneous or heterogeneous mechanical properties
are possible, with isotropic or anisotropic responses. In all cases,
the design is inherently scalable in terms of a limited set of non-
dimensional parameters that define the microstructure geometry.

Figure 2 summarizes a collection of theoretical and experi-
mental results on network topologies corresponding to triangular,
Kagome and honeycomb lattices. Because of their six-fold
symmetry, these networks each offer isotropic elastic properties
at small strain. Diamond and square networks represent
examples of topologies that provide anisotropic elastic responses
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(Supplementary Fig. 5). The building blocks for all such cases
(Fig. 1d and 2a and Supplementary Fig. 5) can be represented
by three non-dimensional parameters that characterize the

horseshoe shape, that is, the arc angle y, normalized width
w*¼w/R and normalized thickness t*¼ t/R. The relative density
�rð Þ, defined by the ratio of the mass density of the network to that
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Figure 1 | Soft, deterministic network composites in designs inspired by non-mineralized biological materials. (a) Optical images and an exploded view

schematic illustration (lower left inset) of a skin-like composite that consists of a lithographically defined wavy filamentary network of polyimide, analogous

to a collagen/elastin structure, embedded in a soft breathable elastomer, analogous to a biological ground substance. The image shows this material

wrapped onto the tip of the thumb. (b) Optical image of a similar material partially peeled away from the skin of the forearm. (c) Optical image of the

polyimide network during removal from a PMMA-coated silicon wafer. (d) Schematic illustration of a wavy network constructed from a collection of

‘horseshoe’ building blocks configured into a triangular array; the inset at the bottom right provides the key geometrical parameters of the building block.

(e) Experimental (denoted by line) and computational (FEA; denoted by line plus square symbol) results for the stress–strain response of this type of

network (triangular lattice geometry with y¼ 180�, R¼400 mm, w*¼0.15 and thickness¼ 55mm). Blue and green colours represent the soft materials with

and without network mesh, respectively. The three regimes of behavior are analogous to those that occur in biological materials. The network responds

primarily by bending and stretching in regimes of small (toe) and large (linear) strain, respectively. The intermediate regime (heel) marks the transition.

(f) Optical images with overlaid FEA results for the composite shown in (a) evaluated at different tensile strains. The polyimide network is in a lattice

geometry as in (d). The colour in e,f denotes the magnitude of maximum principal strain. All scale bars are 1 cm.
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of a corresponding solid film, is approximately linearly propor-
tional to the normalized cell width, as given by

�rtriangular ¼
ffiffiffi
3
p

4
w�y

sin2 y=2ð Þ ;

�rKagome ¼
ffiffiffi
3
p

8
w�y

sin2 y=2ð Þ ;

�rhoneycomb ¼
ffiffiffi
3
p

12
w�y

sin2 y=2ð Þ : ð1Þ

These results show that the triangular and honeycomb
networks are the most and least densely distributed, respectively,
in accordance with the total number of connected filaments
per node (Z), that is, Ztriangular¼ 6, Zhoneycomb¼ 3, ZKagome¼ 4
(ref. 26). Mechanical evaluation of a complete design set reveals
the influence of the key parameters on the stress/strain behaviour,
as in Fig. 2b–e. The data indicate that the triangular network
exhibits the most prominent strain-limiting behaviour for a given
relative density. Studies of other design parameters (direction, arc

angle and arc width) show that moderate anisotropic mechanical
responses arise from different strains ex

trans ¼ y= 2 sin y=2ð Þ½ �� 1�

and ey
trans ¼

ffiffiffi
3
p

y= 3 sin y=2ð Þ½ �� 1Þ (See Supplementary Note I and
Supplementary Fig. 6 for details) needed to fully align the
horseshoe microstructures along the x and y directions. Fig. 2d,e
illustrate that the arc angle controls the transition from low to
high tangent modulus (that is, the transition strain) and the
normalized width defines the sharpness in this transition.
The quantitative agreement between FEA predictions and
experimental measurement in all of these cases further establishes
the computational approaches as reliable design tools.

The underlying nature of the deformations in the networks that
lead to these different effective properties is important to
understand. These motions consist, in general, of a combination
of twisting, translations and in- and out-of-plane bending. Fig. 3
demonstrates that the geometry of the building block micro-
structures defines the extent of out-of-plane deformations
induced by buckling30,31. Here the cross-sectional aspect ratio
(that is, w/t) plays a prominent role because it determines the
ratio of the stiffness (pwt3) for out-of-plane deformations
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Figure 2 | Wavy network architectures and design rules for tailored, non-linear stress–strain responses. (a) Schematic illustrations of three different

wavy network architectures, in which the node connection between the unit cells forms triangular (left), honeycomb (centre) and Kagome (right) lattices.

Key parameters of these networks define the non-linear mechanical responses: lattice topology, direction of applied stress and arc angle (y) and the

normalized width (w*) of the horseshoe building blocks, as illustrated in frames b–e, respectively. In b–e, the experimental and FEA results are denoted by

line, and line plus square symbol, respectively. The triangular lattice exhibits the most pronounced transition from low to high tangent modulus. Results of

parametric studies of this type of mesh appear in d and e. The filament thicknesses are 55mm in all cases.
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(that is, twisting and bending) to that (pw3t) for in-plane
bending. Figure 3a–d shows buckling and non-buckling
deformations in networks with w/tE1.82 and 0.73, respectively.
The FEA results are consistent with observations from scanning
electron microscope (SEM) images. Generally, out-of-plane
buckling can be constrained by embedding the network
structure in a solid elastomer. The modulus and thickness of
the elastomer determine the extent of this constraint. For the
ultralow modulus (B3 kPa) elastomer and the thickness (100 mm)
used in the examples of Fig. 1, the resulting reduction in the
out-of-plane displacement of buckling is B4% (relative) for
stretching of B40%, for the network material shown in Fig. 3a,b

(with t¼ 27.5 mm, w¼ 50mm). Since buckling usually leads to a
softening in the overall mechanics (Fig. 3e,f), reductions in
thickness lead to increases in the slope of the stress–strain curve
across the transition strain, that is, they enhance the sharpness of
the transition. Compared with the parameters of Fig. 2, the effect
of thickness is relatively minor. With increasing applied strain,
the tangent modulus (Fig. 3f) increases slowly and then more
sharply until it reaches a maximum at epeakE60%, after which it
decreases. This final softening occurs in a regime of behaviour
where the network material dominates; here the tangent modulus
decreases at high strain levels (as shown in Supplementary Fig. 7),
for stresses calculated by the reaction force divided by the initial
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Figure 3 | Buckling mechanics of triangular network architectures under uniaxial tensile loading. (a–d) Colourized scanning electron microscope

(SEM) images and overlaid FEA results of two different polyimide network structures uniaxially stretched to 40%. When w4t the structures exhibit

significant out-of-plane buckling. All scale bars are 2 mm. FEA results on (e) stress–strain responses and (f) corresponding tangent moduli for

networks with three different thicknesses, with y¼ 180� and w*¼0.15. (g) Critical thickness as a function of filament width for y¼ 180� and R¼ 200mm.

(h) Critical thickness as a function of arc angle for w¼ 30 mm and R¼ 200mm.
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area, due to a reduction in the cross-sectional area that follows
from the Poisson effect. For any given network, a critical
thickness exists below which buckling will occur on stretching to
epeak. This critical thickness (see Methods section) appears as
function of width and arc angle in Fig. 3g,h, indicating that large
widths and/or arc angles facilitate buckling.

Hierarchical and self-similar network configurations. Hier-
archical layouts occur frequently in biological tissues where they
provide additional levels of control over the key properties10,23,37.
Similar strategies can be exploited as extensions to the network
configurations of Figs 1–3. The building block for the example in
Fig. 4a adopts a self-similar geometry formed by connecting
horseshoe microstructures in layouts that reproduce the same
overall geometry, but at a larger scale (as illustrated in
Supplementary Fig. 8). Figure 4b shows that FEA predictions of
stress–strain curves agree remarkably well with experimental
results, even for these complex cases (see Supplementary Fig. 9 for
detailed dimensions). The results indicate that this type of

hierarchical design (that is, 2nd order) offers a much higher
stretchability (Fig. 4b) than the corresponding non-hierarchical
design (that is, 1st order) because of the increased lengths of the
constituent filaments and associated reduced levels of strain in
these materials. Figure 4c,d show that this system exhibits two
transition points due to a deformation mechanism that involves
sequential unravelling of the 1st order and then the 2nd order
microstructure, illustrated in Fig. 4e. Below a strain of B57%, the
large scale, 1st order structure unravels, with little change in
the 2nd order; beyond B57%, the 2nd order unravels until the
ultimate strength is reached at full extension. Related mechanisms
occur in recently reported classes of electrical interconnects in
stretchable electronics38,39. These concepts can be extended to
higher order designs, thereby expanding the range of mechanical
responses that can be realized.

Materials that reproduce the mechanics of human skin.
Figure 5 and Supplementary Fig. 4 present results of designs that
exploit the physics of these deterministic network composites to
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achieve stress/strain responses that precisely match those of skin,
while also providing spatial control over the characteristics, with
relevance to tissue engineering, bio-integrated electronics and
other applications. We note that the Poisson’s ratio is another,
related parameter that can be considered. Here we focus only on
the stress–strain behaviours. The sample in Fig. 5a is a soft and
breathable sheet consisting of thin elastomer (B100 mm thick-
ness) with an embedded network structure of polyimide (PI)
(20B50 mm thickness). As shown by results in Fig. 5b, the stress–
strain curves of real human skin (extracted from refs 40,41) at
different areas across the body can be accurately reproduced.
Here an iterative process that uses FEA as a design tool
determines the necessary parameters of the building block
microstructures (mesh material: PI for back I, back, II and
abdomen; filling material: Silbione RT 4717A/B for back I and
abdomen, Silbione HS FIRM LV A/B for back II; lattice pattern:
triangular/w*¼ 0.15/y¼ 110�/R¼ 400 mm for back I, triangular/
w*¼ 0.11/y¼ 150�/R¼ 400 mm for back II and triangular/
w*¼ 0.12/y¼ 200�/R¼ 400 mm for abdomen).

The lithographic processes for creating the networks afford
access to gradient forms of this type of artificial skin, in which
spatially varying values of the widths of the horseshoe micro-
structures yield corresponding variations in the effective mechan-
ical properties (Fig. 5a,b). Fig. 5c presents a simple example that
incorporates a microstructure with enhanced stiffness (that is,
100mm versus 40 mm in width) in the central region; the resulting
mechanics leads to reductions in the levels of strain in this region
(by a factor of B2.3, as compared to the case of uniform
microstructures) on overall stretching of the skin, as shown in
Fig. 5d,e. The deformations predicted by FEA match those
observed in experiment (Supplementary Fig. 10). Figure 5f–h
shows advanced designs that incorporate isotropic and aniso-
tropic gradients in properties, respectively, and the corresponding
deformations under bi-axial stretching. Comparisons of the
resulting distributions in strain to those of uniform microstruc-
tures (Supplementary Figs 11 and 12) illustrate the capability of
such layouts to achieve nearly any desired spatial variation in
strain, where FEA can guide the selection of designs to match
requirements (Supplementary Figs 12 and 13). These ideas are
fully compatible with existing chemistries and materials
approaches in tissue engineering, in the sense that embedded
lattice structures can provide the necessary mechanical response
without altering the physicochemical and biochemical properties
of the matrix, as shown for the example in Fig. 1 (ref. 42).

Substrates for bio-integrated electronics. These types of bio-
inspired soft composites represent ideal platforms for stretchable
electronic systems that intimately integrate with the human
body43–47. Figure 6a–c and Supplementary Fig. 14 shows an
example that consist of a thin (2 mm), filamentary metal mesh
that rests on a layer of silicone (B60 mm) with an embedded
network structure (described in Methods section) designed to
match the mechanical properties of the epidermis. The result is a
skin-mounted sensor for electrocardiography (ECG) that has
sufficiently small thickness and low modulus (at low strain) to
maintain conformal contact with the skin, but with skin-like
physical toughness (Fig. 6b) to allow multiple cycles of
application and removal without damage to the device or the
skin (Fig. 6c). Fig. 6d–h and Supplementary Fig. 15 presents a
different type of system in which a similar platform acts as a
support for a responsive hydrogel48,49 that can be activated
wirelessly by exposing an integrated dipole antenna (30 mm for
each branch, for operation at B2.4 GHz without hydrogel, and at
1.9 GHz with hydrogel as shown in Fig. 6f) with filamentary mesh
layout (Cu traces, 3-mm thick and 10-mm wide, encapsulated

above and below with polyimide) to radio frequency radiation.
The collected energy creates oscillating current in a connected
Joule heating element (Au/Cr 50/5 nm thick) to increase locally
the temperature of the hydrogel (inset infrared image in Fig. 4d).
Above the low critical solution temperature (Fig. 6g), the hydrogel
undergoes a change from a swollen (transparent) to shrunken
(white colour) state, thereby releasing its contents (that is, water-
soluble drug) to the surroundings (that is, skin), as shown in
Fig. 6h. These simple devices, along with other examples that
appear in the Supplementary Figs 16 and 17, including active
semiconductor devices such as transistors and light-emitting
diodes, provide evidence for the utility of bio-inspired soft
composite materials of the type introduced here.

Discussion
The materials approach, fabrication strategies and mechanical
design methods reported here provide immediate access to soft
composites with deterministic tailored, non-linear mechanical
properties. These concepts are applicable to a wide range of
constituent materials for both the matrices and the networks.
Many application opportunities exist in tissue engineering and
biomedical devices. Integrating active functionality into the
networks and extending their coverage into three-dimensional
(3D) spaces represent some directions that might be interesting to
explore.

Methods
Finite element analysis. Three-dimensional FEA enabled analysis of the full
deformation mechanics and computation of small and large strain responses under
uniaxial and bi-axial loads. Experimentally measured non-linear stress–strain
curves of the constitutive materials (Supplementary Fig. 7) served as inputs.
Eight-node 3D solid elements and four-node shell elements were used for the cases
of wo2t and w42t, respectively, and refined meshes were adopted to ensure
the accuracy. Linear buckling analyses determined the critical buckling strains
and corresponding buckling modes. These results served as initial geometric
imperfections for post-buckling simulations. The critical thicknesses (in Fig. 3g,h)
were determined by comparing the critical buckling strain with the peak strain to
reach the peak tangent modulus. A sufficiently large number of unit cells was
adopted to avoid edge effects (Supplementary Fig. 18)50.

Fabrication of polyimide networks. Copper (50 nm) deposited on a glass slide
(75� 50� 1.0 mm3) served as a sacrificial layer to facilitate release. Spin casting on
top of this substrate yielded a film of photodefinable polyimide (PI; 55 mm in
thickness, HD Microsystems, USA). Photolithographic patterning of this PI
followed by thermal curing (2 h. at 250 �C in a vacuum oven) defined the
desired mesh structure. Wet etching eliminated the copper to allowed release
for subsequently integration with a soft matrix material.

Fabrication of the skin-like composite. Spin casting (30 s. at 1,000 r.p.m.) and
thermal curing (5 min. at 70 �C) yielded a tacky (adhesion B1.8 kPa), breathable
(penetration: 170 mm/10, DIN ISO 2137), and ultra soft (E B3 kPa) elastomer
(Silbione RT 4717A/B, Bluestar silicones, France) membrane on a water-soluble
tape composed of sodium carboxymethyl cellulose and wood pulp (Aquasol, USA).
Transfer printing a polyimide network onto the surface of this elastomer and
uniformly coating it with a layer of the same material completed the fabrication.

Fabrication of the electrophysiological (EP) sensor. Spin casting and baking
(3 min at 180 �C) formed a layer of poly(methylmethacrylate) (PMMA; 0.8 mm in
thickness, Microchem, USA) on a glass substrate. A spin cast and thermally cured
(2 h. at 250 �C) layer of PI served as an overcoat. Electron beam evaporation yielded
metal bilayers of Cr (7 nm)/Au (100 nm). Photolithography and wet chemical
etching defined the open mesh structure for the EP sensor. Reactive ion etching
(20 sccm O2, 300 mTorr, 200 W) removed the PI layers in regions not protected by
the patterned metal traces. Immersing the glass substrate in acetone dissolved the
PMMA and allowed retrieval of the sensor onto a water-soluble tape (3 M, USA)
for delivery to a substrate composed of a polyimide network embedded in a soft
silicone matrix (Ecoflex, USA).

Measurements of electrocardiogram (ECG) signals. The experiments used a
custom LABVIEW interface. EP sensors with and without composite substrates
were placed on the proximal left and right forearm for detection of ECG signal with
a common ground electrode on the human subject’s left hip. Voltage differences
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Figure 6 | Deterministic soft composite materials as substrates for skin-mounted electronics and wirelessly controlled responsive hydrogels.

(a) Lamination and delamination of a soft, skin-like ECG sensor onto the forearm. The magnified view on the right illustrates the filamentary serpentine

metal mesh structures that define the electrodes. All scale bars are 1 cm. (b) Stress–strain measurements on this device and schematic cross-sectional

illustration. The wavy polyimide network used in the composite substrate adopts a triangular lattice of horseshoe building blocks, with y¼ 120�, w¼40mm,

t¼ 55mm. (c) ECG signals measured using devices without (I, blue) and with (II, purple) the soft composite substrate. The result (III, red) corresponds to a

measurement performed after applying and removing the device with composite substrate 20 times. All signals show expected PQRST features in the

waveforms. (d) Optical and infrared (IR) images of a wirelessly controlled responsive hydrogel delivery system. All scale bars are 1 mm. This system

consists of three functional layers: a thermally responsive hydrogel membrane, a stretchable radio frequency antenna with Joule heating element and a

composite substrate. As shown in inset IR image, the wirelessly activated heater locally increases the temperature of the hydrogel. As demonstrated in right

two magnified images, when the temperature exceeds the low critical solution temperature (LCST) of the hydrogel, the material changes in phase from a

swollen (transparent) to a shrunken (white) state, corresponding to a large volume contraction. This process induces release of the aqueous contents of

the hydrogel (that is, water-soluble drugs) to the surroundings. The wavy polyimide network used in the composite substrate adopts a triangular lattice of

horseshoe building blocks, with y¼ 150�, w¼40 mm, t¼ 55mm. The stress–strain response appears in (e). (f) S11 coefficient measured from the wireless

heating element, evaluated with and without the hydrogel. (g) Transient control of temperature of the hydrogel on the skin using the wireless heating

element, and measured using an IR camera. The temporal behaviour during heating and cooling defines the phase of the hydrogel and the resulting delivery

mode. (h) Total expelled water (weight ratio, %) as a function of number of exposures to RF radiation.
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between bipolar pairs of electrodes were amplified and digitized with data acqui-
sition (DAQ) system at 1,000 Hz with a 0.1–100 Hz online band-pass filter to
remove slow drifts and high-frequency non-physiological noise, and a 60-Hz notch
filter to attenuate electrical line noise. All experiments were conducted under
approval from Institutional Review Board at the University of Illinois at Urbana-
Champaign (protocol number: 13229). The eight subjects (age: 21B35 years, all
males) were all coauthors. All work involved informed consent from the subjects.

Fabrication of the wireless responsive hydrogel system. Spin casting and
baking (3 min at 180 �C) formed a layer of poly(methylmethacrylate) (PMMA;
0.8 mm in thickness, Microchem, USA) on a glass substrate. A spin cast and
thermally cured (2 h. at 250 �C) layer of PI served as an overcoat. The wireless
heater used photolithographically patterned multilayers of Cr (5 nm)/Au (50 nm)/
Cu (3 mm) deposited by electron beam evaporation. A spin cast layer of PI
(2,000 r.p.m.) passivated and isolated the devices. Reactive ion etching (20 s.c.c.m.
O2, 200 W, 200 mTorr) through a photolithographically patterned hard mask
(Cu, 100 nm thick) removed the PI in the regions between the devices. A film of
water-soluble tape (3 M, USA) allowed retrieval of the wireless heat unit from the
glass substrate and delivery to a composite substrate consisting of a polyimide
network embedded in a silicon matrix (Ecoflex) and coated with a thin layer of a
silicone adhesive (Silbione). Spin casting and polymerizing a precursor to a
responsive hydrogel yielded a thin (100B200 mm) coating on top of the wireless
antenna structure and Joule heating element. Immersion in water dissolved the
backing tape to complete the fabrication.

Characterization of wireless heater module and responsive hydrogel.
A network analyzer (E5602, Agilent technologies, USA) with calibration kit
(85033E, Agilent technologies, USA) enabled measurement of the return loss (S11)
and the resonance frequency of the RF antennas. An analogue signal generator
(N5181A, Agilent technologies, USA), an amplifier (1119, EMPOWER RF system,
USA) and a DC power supply (U8031A, Agilent technologies, USA) provided a
source of RF power. A directional antenna with 10.5 dBi gain (204411, Wilson
electronics, USA) and an RF power meter (43, Bird technologies, USA) allowed
controlled exposure of a wireless heater encapsulated in a hydrogel membrane to
RF radiation. An infrared (IR) camera (A655SC, FLIR) revealed the resulting
temperature distributions. Amounts of water expelled from the hydrogel were
evaluated by weighting.

Measurements of stress–strain responses. Mechanical responses of all samples
were measured with a dynamic mechanical analyzer (DMA; TA instruments,
Q800). Characterizing the applied force versus the displacement under uniaxial
tensile loading at room temperature yielded data for determination of the
mechanical modulus. Each of the reported results corresponds to an average of
measurements on four samples.
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