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Microarray Gene Expression Data with Linked Survival

Phenotypes: Diffuse Large-B-Cell Lymphoma Revisited

Mark R. Segal

Division of Biostatistics, University of California, San Francisco, CA 94143-0560

Abstract: Diffuse large-B-cell lymphoma (DLBCL) is an aggressive malignancy of mature

B lymphocytes and is the most common type of lymphoma in adults. While treatment ad-

vances have been substantial in what was formerly a fatal disease, less than 50% of patients

achieve lasting remission. In an effort to predict treatment success and explain disease het-

erogeneity clinical features have been employed for prognostic purposes, but have yielded only

modest predictive performance. This has spawned a series of high profile microarray-based

gene expression studies of DLBCL, in the hope that molecular level information could be used

to refine prognosis. The intent of this paper is to reevaluate these microarray-based prognostic

assessments, and extend the statistical methodology that has been used in this context.

Methodological challenges arise in using patients’ gene expression profiles to predict survival

endpoints on account of the large number of genes and their complex interdependence. We

initially focus on the Lymphochip data and analysis of Rosenwald et al., (2002). After describ-

ing relationships between the analyses performed and gene harvesting (Hastie et al., 2001), we

argue for the utility of penalized approaches, in particular LARS-Lasso (Efron et al., 2004).

While these techniques have been extended to the proportional hazards / partial likelihood

framework, the resultant algorithms are computationally burdensome. We develop residual-

based approximations that eliminate this burden yet perform similarly. Comparisons of predic-

tive accuracy across both methods and studies are effected using time-dependent ROC curves.

These indicate that gene expression data, in turn, only delivers modest predictions of post

therapy DLBCL survival. We conclude by outlining possibilities for further work.

KEY WORDS: Diffuse large-B-cell lymphoma; Gene harvesting; Least angle regression; Mi-

croarray; Proportional hazards; Time-dependent ROC curve



1 Introduction

Diffuse large-B-cell lymphoma is an aggressive malignancy of mature B lymphocytes. It is the

most common type of lymphoma in adults with an annual incidence exceeding 25,000 cases

in the United States and accounting for 40% of cases of non-Hodgkins lymphoma. While

treatment advances have been substantial in what was formerly a fatal disease, less than 50%

of patients achieve lasting remission. In an effort to predict treatment success and explain

disease heterogeneity five clinical features (age, tumor stage, serum lactate dehydrogenase

concentration, performance status, number of extranodal disease sites) were synthesized into

the International Prognostic Index (IPI). The modest predictive performance of the IPI and

other variables has spawned a series of high profile DNA microarray investigations into DLBCL,

in the hope that molecular level information could be used to refine prognosis.

DNA microarray technology, fast emerging as one of the most widely used and powerful tools

for a suite of genomic applications, can profile gene expression of an organism on a whole

genome scale. Due to a variety of factors the data structures and attendant research ques-

tions surrounding microarray studies are not amenable to standard “off-the-shelf” analyses.

Consequently, there has been a correspondingly rapid rate of development of new statistical

methodologies; see for example Parmigiani et al., (2003) and Speed (2003). Much of this at-

tention has focused on preprocessing, clustering, identifying differentially expressed genes or

discrimination. Less effort has been directed to regression problems where we have a linked,

continuous phenotype (outcome). Here, we address the situation where the phenotype is a

(right censored) survival time – time from DLBCL treatment to death.

The paper is organized as follows. The suite of DLBCL microarray studies is briefly overviewed

next. Chronologically tracing this progression is informative with regard the evolution of statis-

tical approaches. This provides motivation for application of the gene harvesting methodology

proposed by Hastie et al., (2001) as detailed in Section 2. Results so obtained, along with

some putative shortcomings of gene harvesting, further motivate use of LARS-Lasso proce-

dures (Efron et al., 2004). Extension of these methods to censored survival phenotypes was

developed by Gui and Li (2004), as outlined in Section 3.1. The resultant techniques are, how-
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ever, very computationally intensive. A “residual finesse” strategy, described in Section 3.2, is

established to mitigate these concerns. Results from applying these methods, as well as several

others advanced in the literature for this data, are presented in Section 3.4. Parallel analyses

straddling different microarray platforms are summarized in Section 3.5. One tool used to facil-

itate comparisons between methods and datasets is time-dependent ROC curves (Heagerty et

al., 2000), briefly described in Section 3.3. Finally, Section 4 offers some concluding discussion

and possibilities for further work.

1.1 Microarray Studies of DLBCL

One of the early success stories showcasing microarray technology was the work of Alizadeh

et al., (Nature, 2000). This paper introduced the “Lymphochip”, a custom designed cDNA

microarray that was enriched with genes that are preferentially expressed in lymphoid cells as

well as with genes implicated in processes pertinent to cancer or immunology. We reanalyze

data deriving from Lymphochip experiments in subsequent sections. Substantively, Alizadeh

et al., use Lymphochip gene expression data to effect molecular subtyping of DLBCL, iden-

tifying two novel and distinct forms corresponding to cell of origin: “germinal center B-like”

and “activated B-like”, with the former exhibiting significantly better overall survival. Such

molecular subtyping represents a consequential advance in explaining the considerable clinical

heterogeneity implicit in the DLCBL diagnostic category that had resisted attempts based

morphologic and pre-microarray molecular parameters.

Importantly, subtype delineation did not make recourse to the linked survival data, but rather

was based solely on gene expression data using only unsupervised methods. In particular,

hierarchical clustering using average linkage and correlation distance (Eisen et al., 1998) was

used to generate the now familiar “heat map” matrix. This graphically depicts gene expression

profiles across differing samples, with the gene order rearranged according to the cluster den-

drogram. Informal, visual inspection of this heat map led to the identification of “signatures” –

gene clusters possessing ostensibly coherent expression patterns that can be labeled according

to the function, or cell type where expressed, of the constituent genes. Subsequently, sur-

2



vival differences between select signatures are evaluated and served to establish these as novel

molecular subtypes.

It is worth re-emphasizing the informal nature of this process. No criteria or algorithm is

invoked in the initial signature selection. While the eye-brain interface is adept at such vi-

sual tasks, the dimensions and variation common to microarray studies imparts difficulty to

this clearly subjective signature extraction process. The heterogeneity of clusters so extracted

motivated the development of “tight clustering” (Tseng and Wong, 2004). Further, the use of

unsupervised methods with after-the-fact assessment of phenotype (here survival) differences

has been criticized relative to direct, supervised methods (Smyth et al., 2003). We revisit these

concerns subsequently, but note here that it is possible to imbue the signature selection task

with some formalism. Firstly, a method for determining an appropriate number of clusters

is applied. Examples of such techniques include permutation based (Tibshirani et al., 2001;

Fridlyand and Dudoit, 2002) or model based (Yeung et al., 2001) approaches. Secondly, the pu-

tative labeling of these clusters can be pursued using tools such as GoMiner, MAPPFinder and

EASE that identify enriched functional or other categories relative to nominated, annotated

databases.

Shipp et al., (Nature Medicine, 2002) use gene expression data obtained from use of Affymetrix

Hu6800 oligonucleotide microarrays (Affymetrix, Santa Clara, CA). Again, they have linked

survival phenotypes. However, in addition to arguing for the value of microarray-based profil-

ing, they forcefully emphasize differences between unsupervised and supervised analyses. Fail-

ure to reproduce Alizadeh et al’s association between cell-of-origin subtypes and survival out-

come is partly ascribed to these differences. Yet, while advocating supervised methods, Shipp

et al acknowledge that their approach of reducing the survival phenotype into a dichotomy

(cured versus fatal/refractory disease), as opposed to using actual survival times, is limiting.

In dealing with a dichotomous outcome the machine learning term “supervised” equates to the

statistical term “classification”. The classifier employed by Shipp et al is so-called “weighted

voting” which was previously used in a celebrated microarray classification study to discrimi-

nate between acute lymphocytic leukemia and acute mylogenous leukemia (Golub et al., 1999).

It has been shown (Dudoit et al., 2002; Tibshirani et al., 2002) that weighted voting essen-
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tially coincides with a penalized version of linear discriminant analysis wherein the sample

covariance matrix is replaced by its diagonal. Some such (strong) regularization has been

widely demonstrated to be effective in microarray-based prediction/classification problems on

account of dimensional considerations – the number (p) of covariates (genes) greatly exceeds

the number (n) of samples (arrays). The bias-variance tradeoff implications of this p � n

configuration necessitate regularization and/or simple methods and this frequently dovetails

with interpretability concerns whereby interest is in selecting small subsets of important genes.

We subsequently (Section 3.2) adopt a similar strategy, employing regularization via L1 pe-

nalization that simultaneously confers gene selection, and using diagonal approximations to

enhance computational practicality.

The next article of note is that of Rosenwald et al., (New England Journal of Medicine, 2002).

This paper not only utilizes supervised methods applied directly to survival outcomes but does

so in the context of a relatively large study comprizing some 240 patients. Expression profiling

again makes recourse to Lymphochip DNA microarrays. It is to this dataset that our primary

re-analyses are applied. A detailed description of the analytic approach adopted by Rosenwald

et al., along with salient results, is provided in the next section, where relationships with gene

harvesting are indicated.

The paper by Wright et al., (PNAS, 2002) was primarily concerned with attempting to rec-

oncile the disparate findings (Alizadeh et al., vs. Shipp et al.,) with regard the role (or lack

thereof) of cell-of-origin subtypes. A central methodologic component is the use of “compound

covariates” (called linear predictor scores) to discriminate between subtypes. Such a base clas-

sifier is closely connected to weighted voting and shrunken centroid approaches; see Tibshirani

et al., (2002). The latter is distinguished by its use of soft, rather than hard, threshholding

in constructing the classifier, a strategy that has been advocated in other settings (Donoho

and Johnstone, 1994), and which we employ subsequently. Wright et al., demonstrate that

subtypes and attendant survival differences can be elicited from the (Affymetrix) expression

profiling data obtained by Shipp et al.

Finally, we summarize the work of Lossos et al., (NEJM, 2004). Motivated by the desire to
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devise a simple, clinically practicable prediction model for survival in DLBCL patients based on

gene expression, they retreat from microarray-based expression profiling in favor of quantitative

reverse-transcriptase polymerase chain reaction (RT-PCR) expression measurements applied

to a select and targeted list of 36 genes. This list derives in part from the abovementioned

microarray studies. The fact that no overlap exists among the genes included in the prediction

models derived by Shipp et al., and Rosenwald et al., further motivates Lossos et al to devise an

alternate prediction scheme. Univariate Cox proportional hazards models are used to associate

each of the 36 genes with survival for 66 patients. A somewhat arbitrary thresholding of the

associated Wald z statistic is used to select the 6 most significant genes. These are then

included in a multivariate proportional hazards model and the resultant coefficients used as

the basis for a survival prediction model and, via stratification, the construction of prognostic

groups. Validation of these predictions and groups is assessed by applying the derived 6 gene

model to the Shipp et al., and Rosenwald et al., microarray data. We further evaluate both

the 6 gene model and this approach to validation in Sections 3.4 and 3.5.

2 Gene Harvesting for Lymphochip

As indicated, Rosenwald et al., (2002) employ the Lymphochip cDNA microarray in devel-

oping predictive models of survival (from time of chemotherapy) in DLBCL patients. These

Lymphochips contain 7399 features that represent 4128 genes. Loosely, we will use the terms

genes and features interchangeably. Initially, a hierarchical clustering of the expression data

is performed in order to elicit gene signatures. This clustering, which employs average linkage

and correlation distance, was applied to a superset of the data for which survival prediction is

pursued. Importantly, both training and test (validation) DLBCL cases are used.

The process whereby signatures are identified is, as mentioned, quite subjective. Indeed, in the

concluding remarks of the article cited re the signature extraction process (Shaffer et al., 2001),

it is stated “The concept of a gene expression signature is somewhat fluid and operationally

defined.” However, it is unclear what constitutes “operationally defined” here – no algorithmic
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or computable definitions are proffered; rather there is sole reliance on visual inspection of

heatmaps. Beyond the concerns with this visual approach that were stated previously and

led to the development of tight clustering, there are further issues surrounding the clustering

itself. Even with regard hierarchical clustering there are choices for linkage type and distance

metric, there being nothing sacrosanct about average linkage and correlation distance. Some

sensitivity analysis and stability assessment of designated signatures with respect to differing

specifications seems warranted. And, of course, there are numerous alternative clustering

schemes.

In parallel, univariate – one gene at a time – Cox proportional hazards regressions are fitted to

relate expression to survival. This is done on the training data (ntrain = 160). The partitioning

into training and test data is somewhat unorthodox with (some) selection based on survival

phenotype being applied, as opposed to random assignment. The 35 genes that achieved uni-

variate significance, and which satisfied variability and missingness criteria, were then molded

into a multivariate predictor as follows. Where possible, the 35 genes were assigned to the

previously identified signatures: 9 to the major histocompatibility complex (MHC) class II

signature, 3 to the germinal-center B-cell signature, 3 to the proliferation signature, and 6

were to the lymph-node signature. The remaining 14 genes were not associated with any par-

ticular gene-expression signature. Expression values for those genes ascribed to each of the

four signatures were then averaged (within patients) yielding four signature expression profiles.

An exception was made for the MHC class II signature where only the 4 (of 9) most significant

genes were used, due to high between-gene correlations.

These steps provided the building blocks for development of a multivariate predictor. Initially,

all four of the signature expression profiles are forced into a Cox proportional hazards regres-

sion. Then forward stepwise methods were used to add genes from the set of 14 genes that

were not affiliated with any of the signatures. This resulted in the inclusion of one additional

gene, BMP6. The resultant linear predictor score, based on these five terms and attendant

coefficients, constitutes Rosenwald et al’s gene-expression-based survival predictor. This is

validated using the test data by testing the corresponding predictor (retaining training data-

based coefficients) for association with survival, as well as by stratifying (into quartiles) based
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on predictor score, and testing between strata survival differences.

While this prediction strategy moves beyond the earlier unsupervised approach of Alizadeh

et al., (2000) by direct use of survival outcomes, it nonetheless retains the subjectivity and

arbitrariness surrounding use of cluster-based signatures as outlined above. Furthermore, sev-

eral selection criteria are invoked (univariate significance level, variability, within-signature

correlation, stepwise entry significance level). Evaluating the performance characteristics of

the resultant predictor requires evaluation of the entire model-building process – this is par-

ticularly consequential in the microarray setting due to dimensionality concerns; see Hastie,

Tibshirani and Friedman (2001), West et al., (2001), Simon et al., (2003) and Pittman et al.,

(2004).

We address the central concern – signature arbitrariness/subjectivity – by appeal to method-

ology devised expressly for supervised analysis of microarray data, namely gene harvesting

(Hastie et al., 2001). In fact, gene harvesting represents a formalization of the approach

pursued by Rosenwald et al. that overcomes some of the shortcomings. Gene harvesting com-

mences with the same hierarchical clustering scheme as used by Rosenwald et al., (2002) to

elicit signatures. But, in our application while using the same 7399 Lymphochip features, we

restrict to expression data derived from the 160 DLBCL patients constituting the training

data, thereby avoiding any possible “data re-use” concerns. Rather than visual extraction of

signatures, gene harvesting treats the average expression profile from each node (cluster) in the

resulting dendrogram as a potential covariate. So, if we start with p features, this procedure

augments with an additional p − 1 expression profiles that serve as covariates for the super-

vised (regression) modeling. With survival outcomes, this modeling is forward stepwise Cox

proportional hazards regression, akin to that employed by Rosenwald et al., (2002). However,

rather than using significance criteria, whose known distortion in the face of greedy selection

algorithms will be compounded here due to large p, gene harvesting uses cross-validation to

determine the number of terms retained. Provision is also made for between-gene interactions,

non-linear effects, and for biasing results toward selection of larger clusters.

Hastie et al., (2001) claim two advantages for this approach. Firstly, because of the familiarity
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of hierarchical clustering (e.g., Eisen et al., 1998) in unsupervised analyses of microarray ex-

pression data, the usage of clusters as covariates will be convenient for interpretation. Indeed,

it is arguably this familiarity that led to the signature-based approaches. Secondly, by using

clusters as covariates, selection of correlated sets of genes is favored, which in turn potentially

reduces overfitting. However, it has been demonstrated that gene harvesting can give rise to

artifactual results (Segal et al., 2003) as we discuss in conjunction with the results obtained.

But first we give a brief overview of the gene harvesting algorithm.

The available data from Rosenwald et al., (2002) consists of the n×p matrix of gene expression

values x = [xij] where xij is the expression level of the jth feature (j = 1, . . . , p = 7399) for

the ith DLBCL patient (i = 1, . . . , n = 240). Each patient also provides a potentially right

censored survival outcome yi, along with a corresponding censoring indicator δi. A hierarchical

clustering algorithm is applied to the expression matrix corresponding to the ntrain = 160

patients constituting the training data and, for each of the resulting clusters ck, k = 1, . . . , 2p−

1, the average expression profile x̄ck
= (x̄1,ck

, x̄2,ck
, . . . , x̄ntrain,ck

) where x̄i,ck
= 1/|ck|

∑
j∈ck

xij is

obtained. Note that we have included the individual genes (the tips/leaves of the dendrogram)

as clusters (of size 1) in this formulation – their average expression profile coinciding with the

individual gene profile.

This set of 2p − 1 average expression profiles constitutes the covariate set (C). A forward

stepwise Cox proportional hazards regression is performed as follows. Initially, the first term in

the model (M) is the covariate that maximizes a modified partial log-likelihood score statistic,

hereafter termed the score. The modification consists of a variance penalty used to inflate

the score statistic denominator. This is motivated by stability concerns deriving from small

variances; see Tusher et al., (2001). At each subsequent stage, candidates for inclusion consist

of all products between a term in M and a term in C. The term chosen for inclusion is that

which most improves fit, again measured by maximizing the score, but subject to biasing in

favor of selection of larger clusters. This biasing is effected by selecting the largest cluster whose

score is within 100× (1−α)% of the maximal attained score, where α is a user specified tuning

parameter. The process continues until some prespecified maximum number of terms, m, have

been added to the model. The number of terms retained is subsequently determined by cross-
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validation. However, we note that the cross-validation results presented for the illustrative

gene harvesting survival analysis in Hastie et al., (2001) are puzzling in that resubstitution

“error” significantly exceeds cross-validated error.

Hastie et al., (2001) restrict to second order interaction terms; i.e., product terms are limited

to pairwise products. This is partly motivated by interpretational considerations and borrows

from the multivariate additive regression spline (MARS) methodology of Friedman (1991).

The gene harvesting model for the hazard function λ(·) for the ith patient is then

λ(ti; x) = λ0(ti) exp{
∑
k∈S1

βkx̄i,ck
+

∑
k,k′∈S2

βk,k′x̄i,ck
x̄i,ck′}. (1)

Here, λ0(ti) is the baseline hazard and S1 connotes the set of clusters that enter singly while

S2 is the set of clusters that enter as product terms. So, m = |S1| + |S2|. Estimation makes

recourse to partial likelihood (Cox, 1972) which we outline further in the next section.

Results from applying gene harvesting using average linkage and Euclidean distance are pre-

sented in Table 1. Interactions were not allowed; i.e. S2 = φ. Additionally, biasing toward the

selection of larger clusters was employed with α = 0.1.

Table 1: Gene harvesting using average linkage.

Step Cluster Score Size
1 3498 3.83 14
2 3383 3.06 9
3 2357 3.61 2
4 g5730 3.34 1
5 3450 2.76 2
6 6223 2.47 4

The first cluster selected, #3498 with 14 members, contains exclusively MHC class II genes

of particular subtypes. We note that MHC class II was one of the four signatures chosen by

Rosenwald et al., (2002) and that there is overlap with regard subtypes.

The potential for gene harvesting to produce artifactual solutions derives from the selection of

clusters for which the average gene expression profile is strongly associated with outcome, but
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the cluster itself is heterogeneous so that individual constituent gene profiles are not associated

with outcome, and the average does not provide a meaningful summary. That this potential

can be realized was demonstrated in Segal et al., (2003) and is exacerbated by (i) the small

sample sizes typically encountered in microarray studies, and (ii) gene harvesting’s use of all

clusters as candidate covariates, irrespective of their coherence. Here, the MHC class II cluster

identified by gene harvesting was not artifactual in that there are strong correlations between

all 14 constituent genes and all are individually associated with survival.

An additional concern for gene harvesting is sensitivity to the hierarchical clustering scheme

and/or distance metric used. However, here the clusters chosen were essentially invariant to

linkage method (average, single, complete).

Nonetheless, selection of the MHC class II cluster was predicated on biasing covariate selection

in favor of larger clusters. If this biasing is turned off (α = 0) then the resultant selections are all

singletons, i.e., individual genes. Moreover, the underlying forward selection strategy represents

a very greedy algorithm (Efron et al., 2004). Such greediness is likely to be detrimental

to predictive performance in the microarray p � n setting which, as previously mentioned,

rewards simple methods. Indeed, in Section 3.4 we show that here gene harvesting does

relatively poorly in predicting survival in the test dataset. One avenue toward simpler models

is via regularization, as considered in the next section.

3 LARS-Lasso for Survival Phenotypes

Forward stepwise regression is an adaptive, greedy algorithm. Gene harvesting combines this

with “basis expansion”, the addition of (numerous, derived) covariates, as constituted by

the cluster averaged expression profiles. In the microarray p � n context, this combination

proves extremely costly from the perspective of effective number of parameters or (adaptive)

degrees-of-freedom. Methods for estimating these quantities based on simulation (Ye, 1998)

or permutation (Tibshirani and Knight, 1999) have been proposed. Applying the latter to a

microarray study featuring a continuous response, Segal et al., (2003) showed that a single

10



gene harvesting step cost ≈ 0.5n, while five steps cost 0.9n. While the quantifications are

certainly problem specific, the message is that microarray regression problems are preferably

tackled using some form of regularization in order to contain these costs. This same conclusion

has been reached for microarray classification problems (Dudoit et al., 2002; Tibshirani et al.,

2002). We employ a recently devised regularized regression technique, LARS-Lasso, (Efron et

al., 2004), for which the form of regularization, an L1 penalty, leads to interpretable predictors.

3.1 LARS-Lasso for Cox Proportional Hazards Models

Consider a standard Cox regression model of the form

λ(t) = λ0(t) exp(β1X1 + β2X2 + . . . βpXp)

= λ0(t) exp(β
′
X) (2)

where λ0(t) is an unspecified baseline hazard function, β = (β1, . . . , βp) is the vector of the

regression coefficients, and X = (X1, . . . , Xp) is the vector of gene expression levels with the

corresponding Lymphochip values of xi = (xi1, . . . , xip) for the ith patient.

The partial likelihood (Cox, 1972) is then

L(β) =
∏
r∈D

exp(β
′
xr)∑

j∈Rr
exp(β ′xj))

(3)

where D is the set of patient indices for those experiencing the event (here death) and Rr

denotes the set of indices of patients at risk at time tr−. Let l(β) = logL(β).

In the case of continuous response Tibshirani (1996) demonstrated that penalized least squares,

using an L1 bound on the coefficients, offered advantages over the heretofore used L2 bound,

as employed by ridge regression and, more recently, support vector machines (Cristianini and

Shawe-Taylor, 2000). In particular, in addition to improving on prediction accuracy through

shrinkage the nature of the L1 constraint is such that interpretation is enhanced by “zeroing

out” many covariates. That is, the least absolute deviation (L1) constraint simultaneously
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effects shrinkage and selection, spawning the acronym “lasso”: least absolute shrinkage and

selection operator.

For survival outcomes Tibshirani (1997) defined the lasso estimate β via constrained partial

likelihood:

β̂(s) = argmaxl(β); subject to

p∑
j=1

|βj| ≤ s. (4)

Here s is a tuning parameter that determines how many coefficients are non-zero. Accordingly,

varying s provides a continuous form of subset regression and thereby overcomes the instability

associated with conventional, discrete versions. For estimation, Tibshirani (1997) uses an

iteratively reweighted least squares (IRLS) based linearization to reformulate this constrained

optimization problem as an L1 penalized linear regression model and then applies the same

quadratic programming approach used for continuous outcomes. The linearization utilizes the

following components: η = β
′
X; µ = ∂l/∂η; A = −∂2l/∂ηηT ; z = η + A−µ. A one

term Taylor series approximation for the negative log partial likelihood, −l(β) is then given

by (z − η)T A(z − η) and the iterative estimation scheme is

1. Fix s and initialize β̂ = 0.

2. Compute η, µ,A and z based on the current value of β̂.

3. Minimize (z − β̂
′
X)T A(z − β̂

′
X) subject to

∑
| β̂j |≤ s.

4. Iterate between steps 2 and 3 until β̂ converges.

The quadratic programming approach used for the minimization in step 3 starts from the least

squares solution. Hence it does not handle the p > n case and so is inapplicable to microarray

applications. This limitation, along with efficiency concerns, motivated Osborne et al. (2000)

to regard the lasso as a convex programming problem and to devise an algorithm based on

homotopy methods. While the objectives of handling p > n and improving efficiency were

realized, the algorithm remained problematic for microarray settings as described in Segal et

al., (2003). A highly efficient algorithm, least angle regression (LARS), that includes lasso

as a special case, was recently devised for the continuous outcome setting by Efron et al.,
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(2004). Remarkably, LARS has the same computational cost as a standard (unconstrained)

multiple least squares fit. A software package, lars() for R and Splus is available from

http://www-stat.stanford.edu/˜hastie/Papers/LARS/. We loosely treat LARS and lasso as

interchangeable here, results being equivalent for models of reasonable size and refer to the

procedure as LARS-Lasso.

LARS-Lasso has been extended to survival outcomes by Gui and Li (2004). They employ a

slightly modified LARS-Lasso algorithm to solve the step 3 minimization. The modification

consists of mapping the minimization into the original, unweighted problem via Cholesky de-

composition of A. Gui and Li apply the resultant methodology to the DLBCL Lymphochip

data as analyzed by Rosenwald et al., (2002). They obtain interpretable results with good pre-

dictive performance (described subsequently) in concordance with LARS-Lasso goals. However,

embedding the modified LARS-Lasso estimation scheme within the IRLS strategy for handling

survival endpoints serves to undo much of the computational efficiency that LARS-Lasso for-

merly delivered. For example, run times were 8 hours for a single solution and 2 days for ten

fold cross-validation of the tuning parameter s on a Dell desktop with Intel Pentium 4 3.2GHz

and 2.00GB of RAM (Jiang Gui, personal communication). Next, we describe an estimation

strategy that restores the computational efficiency of LARS-Lasso.

3.2 Residual Finesse

The computational burden associated with Gui and Li’s (2004) adaptation of LARS-Lasso

to survival outcomes derives from embedding the (modified) LARS-Lasso algorithm within

the iterative reweighted least squares algorithm, which in turn is required to cope with the

complexities of the Cox proportional hazards model. However, at the expense of some approxi-

mation, these can be eliminated using what we term a “residual finesse”. This strategy involves

substituting suitably chosen residuals for the survival endpoint, enabling inheritance of simple

algorithms applicable to continuous outcomes and bypassing difficulties deriving from censor-

ing. Residual finesse has been employed to adapt additive (Cox) models (Grambsch, Therneau

and Fleming, 1995; Segal et al., 1995), multiple adaptive regression splines (MARS) (LeBlanc

13
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and Crowley, 1999) and regression trees (LeBlanc and Crowley, 1992; Keleş and Segal, 2002)

to censored survival outcomes. Perhaps anticipating such a strategy Gui and Li (2004) pose

two questions/objections: (i) which residuals should be used amongst the competing types

available for survival data, and (ii) there are no guarantees that optimizing resultant residual

sums of squares (RSS) improves fit to the survival data (Therneau and Grambsch, 2000). In

response to (i) we next make a case for use of deviance residuals, and defer consideration of

(ii) to the Discussion.

For the Rosenwald et al., (2002) lympochip study, we are in the simple setting where there

are no time-dependent covariates, at most one event per patient, and each patient is under

observation from time t = 0 (time of treatment). The martingale residual for the ith patient

then takes a simple nonintegral form and can be interpreted as the difference between observed

and expected number of events. This expected number is

Êi = Êi(β) = exp(β̂
′
xi)Λ̂0(ti; β̂) (5)

and the Martingale residual is M̂i = δi − Êi. Deviance residuals are derived from the highly

skewed martingale residuals by a normalizing transformation analogous to deviance residuals

for Poisson regression:

D̂i = sign(M̂i)×
√
−M̂i − δi log((δi − M̂i)/δi

≈ δi − Êi√
Êi

(6)

where the approximation follows from a one-term Taylor expansion (Therneau and Grambsch,

2000).

Returning to the LARS-Lasso Cox proportional hazards estimation scheme of Gui and Li,

we can show that (diag(A))i ≈ Êi. Further, these diagonal elements of A dominate the off-

diagonals of A by an order of magnitude (Tibshirani, 1997). Also, we have that (z − β̂
′
X) =
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A−M . Accordingly, the minimization (step 3) can be approximated as

(z − β̂
′
X)T A(z − β̂

′
X) = (A−M)T A(A−M)

≈
n∑

i=1

(δi − Êi)
2/Êi

≈ RSS(D̂) (7)

the residual sum-of-squares of (first order Taylor approximation) deviance residuals.

So, in order to effect the L1 constrained minimization of step 3 we initially compute null

deviance residuals and using these as outcomes for the computationally efficient standard

(continuous response) LARS-Lasso algorithm. Null deviance residuals can be obtained simply

in Splus or R by specifying residual type and zero iterations in the call to coxph().

3.3 Time-Dependent ROC Curves

Typically, in the microarray - DLBCL survival literature, the evaluation of how well a predictive

model performs is done as follows: (i) risk scores based on the fitted model are computed for

patients in a (withheld) test dataset, (ii) strata (usually two) are created based on thresholding

these scores, and (iii) log-rank testing of between-strata survival differences is performed. The

greater the achieved significance the more predictive the model is deemed. Limitations of this

approach include not just the arbitrariness of the imposed stratification but, more importantly,

the familiar shortcoming of p-values not necessarily capturing effect size / explained variation.

A more refined approach is afforded by use of time-dependent ROC curves, proposed by Hea-

gerty et al., (2000) and used in the present context by Gui and Li (2004). Denote the predictive

model as f(X) and define time-dependent sensitivity and specificity functions at cutoff point

c as

sensitivity(c, t|f(X)) = Pr{f(X) > c|δ(t) = 1} (8)

specificity(c, t|f(X)) = Pr{f(X) ≤ c|δ(t) = 0} (9)
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where δ(t) is the event indicator at time t. The corresponding time-dependent ROC curve at

time t, ROC(t|f(X)), is then just the plot of sensitivity(c, t|f(X)) vs 1− specificity(c, t|f(X))

with cutoff point c varying. We use the analogous area under the time-dependent ROC(t|f(X))

curve, AUC(t|f(X)), as a summary in the next sections. In order to estimate the conditional

probabilities in (8) and (9), accounting for possible censoring, we follow Heagerty et al., in

employing a nearest neighbor estimator for the bivariate distribution function (Akritas, 1994).

3.4 Results

Figure 1 shows coefficient trajectories as obtained by applying LARS-Lasso to the training

data with null deviance residuals as outcome on expression data as covariates. The individual

trajectories correspond to individual genes and can best be interpreted when viewed as func-

tions of increasing values of the L1 constraint s. When s = 0 there are no terms (genes) in the

model. As s increases successively more genes enter. Note that while the magnitude of the

coefficients tend to increase with increasing s, there are instances of non-monotonicity. This

is due to between-gene correlation. From both an interpretative and predictive standpoint the

critical issue is determining an appropriate value of s.

We approached determination of s using the built-in cross-validation routines provided by

lars(). However, results were unstable, showing considerable variation according to changes

in number of cross-validation folds. Gui and Li (2004) report that a model with 4 genes

minimizes cross-validated partial likelihood, but they do not provide standard errors. For

comparison purposes we focus on similarly sized models. However, we emphasize that such

determinations are inherently unstable in the p � n microarray setting as detailed in Segal et

al., (2003) and further discussed in Section 4.

The top 4 genes selected, and the order in which they are chosen, using L1 penalized partial

likelihood (Gui and Li, 2004) coincide with the top 4 selections (and order) that result from use

of our deviance residual finesse. Indeed, the agreement extends appreciably further, providing

some indication that the approximations employed in arriving at the deviance residual finesse
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Figure 1: Gene coefficient profiles obtained by applying LARS-Lasso to null deviance residuals.

are reasonable. These top 4 genes are itemized (in order of selection) in Table 2. Strikingly,

they represent 3 of the 4 signatures identified by Rosenwald et al., (2002). If we extend to

the top 10 genes then 7/10 (coincident with Gui and Li’s results) are representative of the

signatures, with the remaining 3 having putative biological relevance.

Table 2: Top four genes selected by L1 penalized proportional hazards and the deviance residual
based approximation thereof.

GenBank ID Signature Description
AA805575 Germ thyroxine-binding globulin precursor
LC 29222 Lymph
X00452 MHC major histocompatibility complex, class II, DQ alpha 1
X59812 Lymph cytochrome P450, subfamily XXVIIA polypeptide 1

Next, we illustrate the standard approach to evaluating the predictive performance of models

using the test data. Following Li and Gui (2004) and Gui and Li (2004) we a priori elect to

stratify into two (high and low) risk groups by using a risk score cutpoint of zero. Results for

17



6 competing methods are given in Table 3.

Table 3: Stratification results for six competing predictive models.

Method #{high risk} log-rank p-value R2

Gui, Li – L1 penalized PH 36 0.0004 0.138
LARS-Lasso – Deviance residuals 33 0.0013 0.113
Lossos et al – 6 gene model 42 0.0136 0.074
Rosenwald et al – Signatures 32 0.0005 0.128
Harvesting – α = 0 33 0.20 0.02
Bair, Tibshirani – SuperPC 34 0.0213 0.061

The gene harvesting entry corresponds to a model with four terms. These correspond to two

singleton genes, one cluster of size two and one cluster of size three. One of the singletons is

thyroxine-binding globulin precursor (AA805575) which was also chosen by the L1 penalized

approaches and is included in the germinal-center B-cell signature. The selected harvesting

model did not favor inclusion of larger clusters (α = 0). The Bair and Tibshirani (2004) model

is based on 23 genes selected by thresholding univariate Cox regression test statistics (akin to

Lossos et al., 2004) obtained from fitting individual genes to survival on the training data. A

multivariate predictor is then obtained by combining these genes using principal components

analysis. More than half (13/23) the genes belong to the MHC class II signature/cluster.

R2 values are those provided by the coxph() R function and are based on partial likelihood

differences as described in Nagelkerke (1991). We consider these further in the Discussion.

To overcome the arbitrariness of stratification into low and high risk groups we next obtain

time-dependent ROC curves for the same six models. The corresponding time-dependent areas

under the ROC curves are displayed in Figure 2.

Both the stratified and time-dependent ROC curve analyses are consistent and support the

following findings.

1. The deviance residual based approximation to direct L1 penalization seems empirically

reasonable. This is no surprise given the previously noted correspondence in gene selections.

But, the agreement evidenced here is additionally affirming since the associated coefficients
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Figure 2: Areas under time-dependent ROC curves for six competing models.

are estimated under different criteria (Cox partial likelihood, squared error loss).

2. The best results are obtained by both L1 penalization schemes and the signatures approach.

Again, this is not surprising in view of the overlap in gene selections. Further, as already

illustrated with the MHC Class II signature, the genes constituting the signatures themselves

are strongly correlated and so the corresponding average expression profile is similar to the

profile of any individual member gene.

Given that this set of methods yield the best results it is purposeful to further compare amongst

them. Arguably, the deviance residual based LARS-Lasso approach is the easiest to implement

and affords a more direct, less ad hoc approach than the use of signatures. That the signature

approach does so well is a tribute to the perspicacity with which the signatures themselves

were chosen. However, the fact the test data were used as part of this selection process is a

concern. It is difficult to assess how much of a concern since the process itself is so subjective.

3. The relatively lesser performance of the Lossos et al., (2004) model and the Bair and Tibshi-

rani (2004) model comes despite (or because) these methods use more genes (6 and 23 respec-
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tively) than the above methods. This is presumably attributable to the gene selection process

which, in both instances, is based on thresholding univariate significance levels. That Bair

and Tibshirani (2004) observe diminished predictive performance when such univariate-based

preselection is not employed testifies to the need for some form of regularization/selection. The

results here suggest that gains can be achieved by pursuing this in a multivariate fashion as per

LARS-Lasso. Of further note are the comparison studies undertaken by Bair and Tibshirani

that, for the DLBCL data as analyzed here, show superior performance of their supervised

principal components technique versus a suite of competitors. By extension, the L1 penalized

approaches perform better still.

4. The worst performance belongs to gene harvesting. Quite simply we ascribe this to greed-

iness. As mentioned previously, gene harvesting, with its basis expansion and unpenalized

forward selection strategy, is extravagant when cost is measured via effective number of pa-

rameters. Of further interest is the performance disparity between gene harvesting and the

Rosenwald et al., (2002) signature approach. To the extent that the latter represents a model

reachable via the former, the superior results for signatures again illustrate the perspicacity of

signature selection and/or the re-use of test data.

5. These performance rankings should not be over-interpreted since the overall differences as

measured by the time-dependent ROC areas (Figure 2) are modest. Moreover, even the best

predictive performance when (properly) assessed in this fashion is modest – recall that an ROC

area of 0.5 corresponds to predicting a binary outcome by a coin toss. This perspective corrects

the overly optimistic viewpoint conveyed by log-rank testing of derived high/low risk groups

(Table 3) and gives pause to use of the associated models / genes as the basis for treatment

decisions or prognosis as has been advocated.

3.5 Cross Study Comparisons

To further assess the generality of the models specified by use of the LARS-Lasso strategy

we investigated how well methods performed when applied to gene expression data obtained
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under alternate platforms, for which linked, post-therapy, DLBCL survival was also available.

In particular, we applied the LARS-Lasso model as developed using Lymphochip to data

obtained using Affymetrix Hu6800 arrays (Shipp et al., 2002). We then undertook the reverse

operation, developing a model using Affymetrix data and evaluating against the Lymphochip

study. Effecting these comparisons requires processing to convert (absolute) intensity measures

as yielded by single channel platforms such as Affymetrix to the (relative) log-ratio expression

values provided by a competitive hybridization scheme (two channel arrays in general and

Lymphochip in particular). Since there is no definitive way to do this we (separately) applied

two processing schemes that have been used in this setting (Wright et al., 2003; Lossos et

al., 2004). Additionally, it is necessary to match genes (where possible) between platforms.

We used the NetAffx resource (Liu et al., 2003) and Lymphochip GenBank accessions for this

purpose.

Again, we summarize results via the area under time-dependent ROC curves. The left panel

of Figure 3 presents results where the evaluation data is the same Lymphochip test set as used

above. We have reproduced the curve corresponding to the six gene model of Lossos et al.,

(2004). Recall that this model was developed by selecting from genes implicated in studies

using both Lymphochip and Affymetrix platforms. We have modified the model obtained

using L1 penalized proportional hazards from that graphed in Figure 2 and summarized in

Table 3. The modification consists of eliminating the LC 29222 gene since this gene is not

represented on the Affymetrix Hu6800 chip. Finally, we have used the Lymphochip test data

to appraise a model developed using L1 penalized proportional hazards on the Affymetrix data.

The converse set of curves obtained when using these same models but evaluated on Affymetrix

data are given in the right panel of Figure 3. The analysis leading to these curves employed

the conversion approach of Lossos et al., (2004), but similar results and conclusions pertain

if the conversion approach of Wright et al., (2003) is used. Since there were only 66 patients

in this study for the purposes of these comparisons we have not partitioned into training and

test sets. Results for the 6 gene L1 penalized model developed on this same data are therefore

optimistic. Some conclusions regarding the generalizability across datasets in particular, and

the utility of microarray expression profiling for predicting DLBCL survival more broadly, can

be drawn by contrasting the two panels.
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Figure 3: Areas under time-dependent ROC curves for three models compared across platforms.

The intermediary performance of the Lossos et al., (2004) model can be ascribed to the manner

in which it was developed. While appeal was made to both microarray platforms in distill-

ing a list of 36 candidate genes for construction of a multivariate predictor, the model itself

was based on direct RT-PCR measurement of corresponding gene expression. Accordingly, it

does not perform as well as models developed under the respective platforms that reemploy

microarray-based expression measurements. Analogously, the Lympochip based model is best

with Lympochip data and vice versa for the Affymetrix based model. But, what is additionally

notable is poor performance of all models away from the settings in which they were developed.

Lossos et al., (2004) also reapply their model to these Lymphochip and Affymetrix datasets

and contend that their predictor validates. Their stated objective was “to devise a model that

was technically simple and applicable for routine clinical use.” When validity is assessed via

time-dependent ROC curves, instead of risk group stratification, it appears that this goal has

not been realized, more accurate predictions being required for clinical prognosis.
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4 Discussion

In our reanalysis of microarray studies of gene expression with linked DLBCL survival phe-

notypes, a number of interesting findings emerged from both a methodologic and substantive

standpoint, summarized in Sections 3.4 and 3.5 respectively. These results are perhaps sur-

prising to the extent that (i) the performance of gene harvesting, which ostensibly generalizes

the signature based approach of Rosenwald et al., (2002), is notably inferior, and (ii) there is

striking agreement between the algorithmic, L1 penalized proportional hazards methods and

the subjective, signature-based approach. For (i), the explanation lies in the greediness of the

gene harvesting selection process which is averted by the explicit hand-picking of signatures.

That this hand-picking does so well, as indicated by (ii) and the results given in Table 3 and

Figure 2, is likely attributable to a combination of investigator insight and/or signature ex-

traction using test as well as training data. In any event, the use of L1 penalized methods for

microarray studies affords a good technique that balances prediction and interpretation. For

linked continuous phenotypes this approach is made computationally viable through use of the

LARS algorithm, with the deviance residual finesse enabling extension to survival phenotypes.

As always, there are several avenues for further work. In order to couple the sparse variable se-

lection attributes of L1 penalties with clustering/signature constructs, whereby sets of strongly

correlated variables are either jointly included or excluded, Zou and Hastie (2003) developed

the “elastic net” which combines L1 and L2 penalties for continuous phenotypes. Extensions

to survival outcome analogous to that devised for LARS-Lasso warrant development and ex-

ploration.

As indicated in Section 3.4 model selection via cross-validation is highly unstable in this (mi-

croarray) setting, the p � n data configuration accentuating this well known attribute of

cross-validation. Indeed, Efron (2004) shows that covariance penalty based model selection

schemes (e.g., AIC) can be viewed as Rao-Blackwellized versions of cross-validation and there-

fore are conferred with greater stability. This leads Efron to advocate use of covariance penalty

methods despite these approaches requiring additional model assumptions. However, another

required ingredient is an estimate of error variance, σ2. Typically, it is recommended that this
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be obtained from a “big” model. While some guidelines have been advanced for specifying

such big models these pertain to the n > p situation and breakdown for microarray problems.

Trying to mimic specifications based on degrees of freedom or effective numbers of parameters

(see Section 3) is circular since these also require an estimate of σ2. In the particular case

of LARS-Lasso we could base model size on the onset of non-monotonicity in the coefficient

traces (cf Figure 1) as discussed in Section 3.4.

We return to the issue of minimizing residual based R2’s not equating to improving fit for

censored survival data, as raised by Therneau and Grambsch (2000); see Section 3.2. A key

consideration is how fit is measured in this context. The R2 measure provided by Therneau’s

R function coxph, and featured in Table 3, is based on information theoretic ideas (Nagelkerke,

1991). However, O’Quigley and Xu (2001) show that an equivalent criterion can be expressed

as a weighted R2 involving Schoenfeld residuals. Heagerty and Zheng (2003) describe analo-

gies between the underpinnings of O’Quigley and Xu’s formulation and time-dependent ROC

curves.

We view the superior performance of the L1 penalized approaches noted in Section 3.4, as

being illustrative of the “principle” enunciated by Rosset et al., (2004): “Working in high

dimension and regularizing is statistically preferable to a two-step procedure of first reducing

the dimension, then fitting a model in the reduced space.” Zhu and Hastie (2004) use L2

penalized logistic regression to pursue classification in the context of microarray cancer studies

with categorical outcomes. Because the L2 penalty does not possess the built-in selection

property of L1 penalties, they need to employ feature (gene) elimination strategies. We are

presently investigating LARS-Lasso style L1 penalized algorithms for such categorical outcome

types and, more generally the entire class of generalized linear models, based on analogous

deviance residual finesses to that used here for survival outcomes.
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