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Abstract

On the Statistical Complexity of Offline Policy Evaluation for Tabular Reinforcement
Learning

by

Ming Yin

Offline Policy Evaluation (OPE) aims at evaluating the expected cumulative reward of a tar-
get policy 𝜋 when offline data are collected by running a logging policy𝜇. Standard importance-
sampling based approaches for this problem suffer from a variance that scales exponentially
with time horizon 𝐻 , which motivates a splurge of recent interest in alternatives that break
the “Curse of Horizon”. In the Second chapter of this thesis, we prove the modification of
Marginalized Importance Sampling (MIS) method can achieve the Cramer-Rao lower bound,
provided that the state space and the action space are finite.

In the Third chapter of the thesis, we go beyond the off-policy evaluation setting and propose
a new uniform convergence for OPE. The Uniform OPE problem requires evaluating all the poli-
cies in a policy class Π simultaneously, and we obtain nearly optimal error bounds for a number
of global / local policy classes. Our results imply that the model-based planning achieves an
optimal episode complexity of 𝑂(𝐻3∕𝑑𝑚𝜖2) in identifying an 𝜖-optimal policy under the time-
inhomogeneous episodic MDP model. Here 𝑑𝑚 is the minimal marginal state-action visitation
probability for the current MDP under the behavior policy 𝜇. We further improve the sample
complexity guarantee to 𝑂(𝐻2∕𝑑𝑚𝜖2) under the time-homogeneous episodic MDPs, using a
novel singleton-absorbing MDP technique in the Fourth chapter. Both results are known to be
optimal under their respective settings. In the final part of the thesis, we summarise our work
in reinforcement learning and conclude with potential future directions.
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OPE Offline Policy Evaluation
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Chapter 1

Introduction

In offline Reinforcement Learning (offline RL [1, 2]), the goal is to learn a reward-maximizing
policy in an unknown environment which forms a Markov Decision Process (MDP), using
the historical data coming from a (fixed) behavior policy 𝜇. Unlike an online RL, where the
agent can keep interacting with the environment and gain new feedback by exploring unvisited
state-action space, offline RL usually is needed when such online interplays are expensive or
even unethical. Due to its nature of having no access to interact with the MDP model (which
causes distributional mismatches), most of the literature that studies the sample complexity /
provable efficiency of offline RL (e.g. [3, 4, 5, 6, 7, 8, 9, 10, 11]) relies on making different data-
coverage assumptions for making the problem learnable, and provide near-optimal worst-case
performance bounds that depend on their data-coverage coefficients.

Offline Policy evaluation (OPE), which predicts the performance of a policy with data only
sampled by a logging/behavior policy [12], plays a key role for using reinforcement learning
(RL) algorithms responsibly in many real-world decision-making problems such as marketing,
finance, robotics, and healthcare. Deploying a policy without having an accurate evaluation of
its performance could be costly, illegal, and can even break down the machine learning sys-
tem. There is a large body of literature that studied the off-policy evaluation problem in both
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Introduction Chapter 1

theoretical and application-oriented aspects. From the theoretical perspective, OPE problem
is extensively studied in contextual bandits [13, 14, 15, 16] and reinforcement learning (RL)
[17, 18, 19, 20, 21] and the results of OPE studies have been applied to real-world applications
including marketing [22, 23] and education [24].

In this thesis, we provide non-asymptotic analysis of the point OPE estimators, explaining
how the statistical error is characterized by the sample size, distributional shift, planning hori-
zon, and its connections to the policy optimization problems via the uniform convergence. Our
contribution can be summarized as follows:

• In Chapter 2, we consider the problem of off-policy evaluation for a finite horizon, non-
stationary, episodic MDP under tabular MDP setting. We propose and analyze Tabular-
MIS estimator, which closes the gap between Cramer-Rao lower bound provided by [18]
and the MSE upper bound of State-MIS estimator [21]. We also provide a high prob-
ability result by introducing a data-splitting type Tabular-MIS estimator, which retains
the asymptotic efficiency while having an exponential tail. Moreover, the calculation of
Tabular-MIS estimator and Split-TMIS does not explicitly incorporate the importance
weights, which in turn implies our off-policy evaluation algorithm can be implemented
without needing to know logging probabilities 𝜇. Such logging-policy-free feature makes
our Tabular-MIS estimator estimator more practical in the real-world applications. Fi-
nally, we conduct a numerical simulation to empirically validate our theoretical results.
We see that Tabular-MIS estimator improves over State-MIS estimator in MSE by a factor
of 𝐻 , as expected.

• In Chapter 3, we represent the first systematic study of uniform convergence in offline
policy evaluation. For the global policy class (deterministic or stochastic), we use fully
model-based OPEMA estimator to obtain an 𝜖-uniform OPE with episode complexity
𝑂(𝐻4𝑆∕𝑑𝑚𝜖2) (Theorem 3.5.1) and in some cases this can be reduced to 𝑂(𝐻4∕𝑑𝑚𝜖2),

2
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where 𝑑𝑚 is minimal marginal state-action occupancy probability depending on logging
policy 𝜇. For the global deterministic policy class, we obtain an 𝜖-uniform OPE with
episode complexity 𝑂(𝐻3𝑆∕𝑑𝑚𝜖2) with an optimal dependence on 𝐻 (Theorem 3.5.2).
For a (data-dependent) local policy class that cover all policies are in the 𝑂(√𝐻∕𝑆)-
neighborhood of the empirical optimal policy (see the definition in Section 4.4), we obtain
𝜖-uniform OPE with 𝑂(𝐻3∕𝑑𝑚𝜖2) episodes (Theorem 3.5.3). Our uniform OPE over
the local policy class implies that ERM (VI or PI with empirically estimated MDP), as
well as any sufficiently accurate model-based planning algorithm, has an optimal episode
complexity of 𝑂(𝐻3∕𝑑𝑚𝜖2) (Theorem 3.6.1). To the best of our knowledge, this is the
first rate-optimal algorithm in the offline RL setting.

• In Chapter 4, we study the uniform convergence problems for offline policy evalua-
tion (OPE) and provide complete answers for their optimality behavior. We derive the
𝑂̃(𝐻2∕𝑑𝑚𝜖2) optimal episode complexity for local uniform OPE (Theorem 4.6.1) via the
model-based method and this implies optimal offline learning with the same rate. We
characterize the statistical limit for the global uniform convergence by proving a min-
imax lower bound Ω(𝐻2𝑆∕𝑑𝑚𝜖2) (over all model-based approaches) (Theorem 4.5.1).
This result answers the question left by [7] that the global uniform OPE is generically
harder than the local uniform OPE / offline learning by a factor of 𝑆, such a difference
will dominate when the state space is exponentially large. Critically, our model-based
frameworks naturally generalize to the more challenging settings like task-agnostic and
reward-free settings. In particular, we establish the 𝑂̃(𝐻2 log(𝐾)∕𝑑𝑚𝜖2) (Theorem 4.7.1)
and 𝑂̃(𝐻2𝑆∕𝑑𝑚𝜖2) (Theorem 4.7.2) complexities for offline task-agnostic learning and
offline reward-free learning.

We conclude the thesis by summarizing our work and mentioning possible future research
directions in Chapter 5.
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Chapter 2

Offline Policy Evaluation for Tabular

Reinforcement Learning

In this chapter, we focus on offline policy evaluation (OPE), a fundamental problem in Rein-
forcement Learning (RL). OPE is concerned with estimating the mean cumulative reward of a
given decision policy, known as the target/evaluation policy, using historical data generated by
a potentially different policy, known as the behavior/logging policy. OPE is most crucial for
offline RL, where we only have access to a historical dataset and are not allowed to explore the
environment.

2.1 Offline Policy Evaluation Setup

In the reinforcement learning problem the agent interacts with an underlying unknown dy-
namic which is modeled as a Markov decision process (MDP). An MDP is defined by the quan-
tities𝑀 = ( ,, 𝑟, 𝑃 , 𝑑1,𝐻), where  and  are the state and action spaces, 𝑃𝑡 ∶ ×× →

[0, 1] is the transition kernel with 𝑃𝑡(𝑠′|𝑠, 𝑎) representing the probability of seeing state 𝑠′ after
taking action 𝑎 at state 𝑠, 𝑟𝑡 ∶  × → ℝ is the mean reward function with 𝑟𝑡(𝑠, 𝑎) being the

4



Offline Policy Evaluation for Tabular Reinforcement Learning Chapter 2

average immediate reward of (𝑠, 𝑎) at time 𝑡, 𝑑1 denotes the initial state distribution, and 𝐻 is
the time horizon. The subscript 𝑡 in 𝑃𝑡 indicates that the transition dynamics are non-stationary
and could be different at each time 𝑡. A (non-stationary) policy 𝜋 ∶  → ℙ𝐻


1 assigns each

state 𝑠𝑡 ∈  a distribution over actions at each time 𝑡, i.e. 𝜋𝑡(⋅|𝑠𝑡) is a probability simplex with
dimension ||.

Given a target policy of interest 𝜋, then the distribution of one H-step trajectory 𝜏 =

(𝑠1, 𝑎1, 𝑟1, ..., 𝑠𝐻 , 𝑎𝐻 , 𝑟𝐻 , 𝑠𝐻+1) is specified by 𝜋 ∶= (𝑑1, 𝜋)2 as follows: 𝑠1 ∼ 𝑑𝜋1 , for 𝑡 =

1, ...,𝐻 , 𝑎𝑡 ∼ 𝜋𝑡(⋅|𝑠𝑡) and random reward 𝑟𝑡 has mean 𝑟𝑡(𝑠𝑡, 𝑎𝑡). Then value function under
policy 𝜋 is defined as:

𝑣𝜋 = 𝔼𝜋

[ 𝐻
∑

𝑡=1
𝑟𝑡

]

.

The OPE problem aims at estimating 𝑣𝜋 while given that 𝑛 episodic data3  =
{

(𝑠(𝑖)𝑡 , 𝑎
(𝑖)
𝑡 , 𝑟

(𝑖)
𝑡 )

}𝑡∈[𝐻]

𝑖∈[𝑛]

are actually coming from a different logging policy 𝜇.

2.2 Traditional Methods for OPE and Related Settings

The classical way to tackle the problem of OPE relies on incorporating importance sampling
weights (IS), which corrects the mismatch in the distributions under the behavior policy and
target policy. Specifically, define the 𝑡-step importance ratio as 𝜌𝑡 ∶= 𝜋𝑡(𝑎𝑡|𝑠𝑡)∕𝜇𝑡(𝑎𝑡|𝑠𝑡), then it

1Here ℙ𝐻 = ℙ ×ℙ ×ℙ × ... ×ℙ, where “×” represents Cartesian product and the product is performed
for 𝐻 times.

2For brevity, ∀𝜋 we use 𝜋 to denote the pair (𝑑1, 𝜋). This can be understood as: ∀𝜋, 𝑑𝜋1 = 𝑑1.
3To distinguish the data from different episodes, we use superscript to denote which episode they belong to

throughout the rest of the work.
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uses the cumulative importance ratio 𝜌1∶𝑡 ∶= ∏𝑡
𝑡′=1 𝜌𝑡′ to create IS based estimators:

𝑉IS ∶= 1
𝑛

𝑛
∑

𝑖=1
𝑉 (𝑖)

IS , 𝑉 (𝑖)
IS ∶= 𝜌(𝑖)1∶𝐻 ⋅

𝐻
∑

𝑡=1
𝑟(𝑖)𝑡 ;

𝑉step-IS ∶= 1
𝑛

𝑛
∑

𝑖=1
𝑉 (𝑖)

step-IS, 𝑉 (𝑖)
step-IS ∶=

𝐻
∑

𝑡=1
𝜌(𝑖)1∶𝑡𝑟

(𝑖)
𝑡 ,

where 𝜌(𝑖)1∶𝑡 =
∏𝑡

𝑡′=1 𝜋𝑡′(𝑎
(𝑖)
𝑡′ |𝑠

(𝑖)
𝑡′ )∕𝜇𝑡′(𝑎

(𝑖)
𝑡′ |𝑠

(𝑖)
𝑡′ ). There are different versions of IS estimators in-

cluding weighted IS estimators and doubly robust estimators [25, 26, 14, 18].
Even though IS-based off-policy evaluation methods possess a lot of advantages (e.g. unbi-

asedness), the variance of the cumulative importance ratios 𝜌1∶𝑡 may grow exponentially as the
horizon goes long. Attempts to break the barriers of horizon have been tried using model-based
approaches [27, 28], which builds the whole MDP using either parametric or nonparametric
models for estimating the value of target policy. [29] considers breaking the curse of horizon
of time-invariant MDPs by deploying importance sampling on the average visitation distribu-
tion of state-action pairs, [30] considers leveraging the stationary ratio of state-action pairs to
replace the trajectory weights in an online fashion and [31] further applies the same idea in the
deep reinforcement learning regime. Recently, [32, 33] propose double reinforcement learning
(DRL), which is based on doubly robust estimator with cross-fold estimation of 𝑞-functions
and marginalized density ratios. It was shown that DRL is asymptotically efficient when both
components are estimated at fourth-root rates, however no finite sample error bounds are given.

Markov Decision Processes have a long history of associated research [34, 35], but many
theoretical problems in the basic tabular setting remain an active area of research as of today.
In particular, other than off-policy setting, there are two types of questions: Regret bound and

sample complexity in the online setting and Sample complexity with a generative model. A
detailed discussion can be found in Section A.1 in appendix.

The OPE setting is different in two ways compared to those mentioned above. First, we

6
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consider a fixed pair of logging and target policy 𝜇 and 𝜋, so our bounds can depend explicitly
on 𝜋 and 𝜇 instead of 𝑆,𝐴. Second, we do not have either online access to the environment (to
change policies) or a generative model. Our high-probability bound with a direct union bound
argument, implies a sample complexity of 𝑂(𝐻3𝑆2𝐴∕𝜖2) for identifying the optimal policy,
which is suboptimal up to a factor of 𝑆, but notably has the optimal dependence in 𝐻 . We
remark that achieving the optimal dependence in the planning horizon 𝐻 is generally tricky
(see, e.g., the COLT open problem [36] for more details). The current thesis is among the few
instances where we know how to obtain the optimal parameters.

2.3 Our Goal in Tabular OPE and Assumptions

In this chapter, our goal is to obtain the optimality of IS-based methods through marginal-
ized importance sampling (MIS). In an earlier attempt, [21] constructs MIS estimator by ag-
gregating all trajectories that share the same state transition patterns to directly estimate the
state distribution shifts after the change of policies from the behavioral to the target. How-
ever, as pointed in Remark 4 in [21], the MSE upper bound of MIS estimator is asymptotically
inefficient by a multiplicative factor of 𝐻 . [21] conjectures that the lower bound is not achiev-
able in their infinite action setting. To bridge the gap and ultimately achieve the optimality,
we consider the Tabular MDPs, where both the state space and action space are finite (i.e.

𝑆 = || < ∞, 𝐴 = || < ∞) and each state-action pair can be visited frequently as long
as the logging policy 𝜇 does sufficient exploration (which corresponds to Assumption 4.4.1).
Under the Tabular MDP setting, we can show the MSE upper bound of MIS estimator matches
the Cramer-Rao lower bound provided by [18]. To distinguish the difference, throughout the
rest of paper we call the modified MIS estimator Tabular-MIS (TMIS) and the MIS estimator
in [21] State-MIS (SMIS).

7
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2.3.1 Notions, Objective and Assumptions

In addition to the non-stationary, finite horizon tabular MDP 𝑀 = ( ,, 𝑟, 𝑇 , 𝑑1,𝐻)

(where 𝑆 ∶= || < ∞ and 𝐴 ∶= || < ∞), non-stationary logging policy 𝜇 and target
policy 𝜋, we denote 𝑑𝜇𝑡 (𝑠𝑡, 𝑎𝑡) and 𝑑𝜋𝑡 (𝑠𝑡, 𝑎𝑡) the induced joint state-action distribution at time 𝑡
and the state distribution counterparts 𝑑𝜇𝑡 (𝑠𝑡) and 𝑑𝜋𝑡 (𝑠𝑡), satisfying 𝑑𝜋𝑡 (𝑠𝑡, 𝑎𝑡) = 𝑑𝜋𝑡 (𝑠𝑡) ⋅𝜋(𝑎𝑡|𝑠𝑡).4
The initial distributions are identical 𝑑𝜇1 = 𝑑𝜋1 = 𝑑1. Moreover, we use 𝑃 𝜋

𝑖,𝑗 ∈ ℝ𝑆×𝑆 , ∀𝑗 < 𝑖 to
represent the state transition probability from step 𝑗 to step 𝑖 under policy 𝜋, where 𝑃 𝜋

𝑡+1,𝑡(𝑠
′
|𝑠) =

∑

𝑎 𝑃𝑡+1,𝑡(𝑠′|𝑠, 𝑎)𝜋𝑡(𝑎|𝑠). The marginal state distribution vector 𝑑𝜋𝑡 (⋅) satisfies 𝑑𝜋𝑡 = 𝑃 𝜋
𝑡,𝑡−1𝑑

𝜋
𝑡−1.

Historical data  =
{

(𝑠(𝑖)𝑡 , 𝑎
(𝑖)
𝑡 , 𝑟

(𝑖)
𝑡 )

}𝑡∈[𝐻]

𝑖∈[𝑛]
was obtained by logging policy 𝜇 and we can

only use  to estimate the value of target policy 𝜋, i.e. 𝑣𝜋 . Suppose we only assume knowledge
about 𝜋 and do not observe 𝑟𝑡(𝑠𝑡, 𝑎𝑡) for any actions other than the noisy immediate reward 𝑟(𝑖)𝑡
after observing 𝑠(𝑖)𝑡 , 𝑎(𝑖)𝑡 . The goal is to find an estimator which minimizes the mean-square error
(MSE), namely:

MSE(𝜋, 𝜇,𝑀) = 𝔼𝜇[(𝑣𝜋 − 𝑣𝜋)2].

Assumption 2.3.1 (Bounded rewards). ∀ 𝑡 = 1, ...,𝐻 and 𝑖 = 1, ..., 𝑛, 0 ≤ 𝑟(𝑖)𝑡 ≤ 𝑅max.

The bounded reward assumption can be relaxed to: ∃𝑅max, 𝜎 < +∞ such that 0 ≤ 𝔼[𝑟𝑡|𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1] ≤

𝑅max, Var[𝑟𝑡|𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1] ≤ 𝜎2 (as in [21]), for achieving Cramer-Rao lower bound. However,
the boundedness will become essential for applying concentrate inequalities in deriving high
probability bounds.

Assumption 2.3.2 (Sufficient exploration). Logging policy 𝜇 obeys that 𝑑𝑚 ∶= min𝑡,𝑠𝑡 𝑑
𝜇
𝑡 (𝑠𝑡) >

0.

In fact this assumption can be relaxed to: require 𝑑𝜇𝑡 (𝑠𝑡) > 0 whenever 𝑑𝜋𝑡 (𝑠𝑡) > 0, and
the corresponding 𝑑𝑚 ∶= min𝑡,𝑠𝑡{𝑑

𝜇
𝑡 (𝑠𝑡) ∶ 𝑑

𝜇
𝑡 (𝑠𝑡) > 0}. However, for the illustration purpose

4For 𝜇, 𝑑𝜇𝑡 (𝑠𝑡, 𝑎𝑡) = 𝑑𝜇𝑡 (𝑠𝑡) ⋅ 𝜇(𝑎𝑡|𝑠𝑡).
8
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we stick to the above assumption. This assumption is always required for the consistency of
off-policy evaluation estimator.

Assumption 2.3.3 (Bounded weights). 𝜏𝑠 ∶= max𝑡,𝑠𝑡
𝑑𝜋𝑡 (𝑠𝑡)
𝑑𝜇𝑡 (𝑠𝑡)

< +∞ and 𝜏𝑎 ∶= max𝑡,𝑠𝑡,𝑎𝑡
𝜋(𝑎𝑡|𝑠𝑡)
𝜇(𝑎𝑡|𝑠𝑡)

<

+∞.

Assumption 2.3.3 is also necessary for discrete state and actions, as otherwise the second
moments of the importance weight would be unbounded and the MSE of estimators will become
intractable . The bound on 𝜏𝑠 is natural since 𝜏𝑠 ≤ max𝑡,𝑠𝑡

1
𝑑𝜇𝑡 (𝑠𝑡)

= 1
min𝑡,𝑠𝑡 𝑑

𝜇
𝑡 (𝑠𝑡)

= 1
𝑑𝑚

and it is finite
by the Assumption 4.4.1; similarly, 𝜏𝑎 <∞ is also automatically satisfied if min𝑡,𝑠𝑡,𝑎𝑡 𝜇(𝑎𝑡|𝑠𝑡) >

0. Finally, as we will see in the results, explicit dependence on 𝜏𝑠, 𝜏𝑎 and 𝑑𝑚 only appear in the
low-order terms of the error bound.

2.4 Tabular-MIS estimator

To overcome the barrier caused by cumulative importance weights in IS type estimators,
marginalized importance sampling directly estimates the marginalized state visitation distribu-
tion 𝑑𝑡 and defines the MIS estimator:

𝑣𝜋𝑀𝐼𝑆 = 1
𝑛

𝑛
∑

𝑖=1

𝐻
∑

𝑡=1

𝑑𝜋𝑡 (𝑠
(𝑖)
𝑡 )

𝑑𝜇𝑡 (𝑠
(𝑖)
𝑡 )
𝑟̂𝜋𝑡 (𝑠

(𝑖)). (2.1)

and 𝑑𝜇𝑡 (⋅) is directly estimated using the empirical mean, i.e. 𝑑𝜇𝑡 (𝑠𝑡) ∶=
1
𝑛

∑

𝑖 𝟏(𝑠
(𝑖)
𝑡 = 𝑠𝑡) ∶=

𝑛𝑠𝑡
𝑛

whenever 𝑛𝑠𝑡 > 0 and 𝑑𝜋𝑡 (𝑠𝑡)∕𝑑𝜇𝑡 (𝑠𝑡) = 0 when 𝑛𝑠𝑡 = 0. Then the MIS estimator (2.1) becomes:

𝑣𝜋𝑀𝐼𝑆 =
𝐻
∑

𝑡=1

∑

𝑠𝑡

𝑑𝜋𝑡 (𝑠𝑡)𝑟̂
𝜋
𝑡 (𝑠𝑡) (2.2)

Construction of State-MIS estimator. Based on the estimated marginal state transition 𝑑𝜋𝑡 =

𝑃 𝜋
𝑡 𝑑

𝜋
𝑡−1, State-MIS estimator in [21] directly estimates the state transition 𝑃 𝜋

𝑡 (𝑠𝑡|𝑠𝑡−1) and state
9
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reward 𝑟𝜋𝑡 (𝑠𝑡) as:

𝑃 𝜋
𝑡 (𝑠𝑡|𝑠𝑡−1) =

1
𝑛𝑠𝑡−1

𝑛
∑

𝑖=1

𝜋(𝑎(𝑖)𝑡−1|𝑠𝑡−1)

𝜇(𝑎(𝑖)𝑡−1|𝑠𝑡−1)
(2.3)

⋅ 𝟏((𝑠(𝑖)𝑡−1, 𝑠
(𝑖)
𝑡 , 𝑎

(𝑖)
𝑡 ) = (𝑠𝑡−1, 𝑠𝑡, 𝑎𝑡)); (2.4)

𝑟̂𝜋𝑡 (𝑠𝑡) =
1
𝑛𝑠𝑡

𝑛
∑

𝑖=1

𝜋(𝑎(𝑖)𝑡 |𝑠𝑡)

𝜇(𝑎(𝑖)𝑡 |𝑠𝑡)
𝑟(𝑖)𝑡 ⋅ 𝟏(𝑠(𝑖)𝑡 = 𝑠𝑡). (2.5)

State-MIS estimator directly constructs state transitions 𝑃 𝜋
𝑡 (𝑠𝑡|𝑠𝑡−1) without explicitly mod-

eling actions. Therefore, it is still valid when action space  is unbounded. However, impor-
tance weights must be explicitly utilized for compensating the discrepancy between 𝜇 and 𝜋
and the knowledge of 𝜇(𝑎|𝑠) at each state-action pair (𝑠, 𝑎) is required.

Construction of Tabular-MIS estimator. Alternatively, we can go beyond importance weights
and construct empirical estimates for 𝑃𝑡+1(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡) and 𝑟̂𝑡(𝑠𝑡, 𝑎𝑡) as:

𝑃𝑡+1(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡) =
∑𝑛
𝑖=1 𝟏[(𝑠

(𝑖)
𝑡+1, 𝑎

(𝑖)
𝑡 , 𝑠

(𝑖)
𝑡 ) = (𝑠𝑡+1, 𝑠𝑡, 𝑎𝑡)]

𝑛𝑠𝑡,𝑎𝑡

𝑟̂𝑡(𝑠𝑡, 𝑎𝑡) =
∑𝑛
𝑖=1 𝑟

(𝑖)
𝑡 𝟏[(𝑠(𝑖)𝑡 , 𝑎

(𝑖)
𝑡 ) = (𝑠𝑡, 𝑎𝑡)]

𝑛𝑠𝑡,𝑎𝑡
,

(2.6)

where we set𝑃𝑡+1(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡) = 0 and 𝑟̂𝑡(𝑠𝑡, 𝑎𝑡) = 0 if 𝑛𝑠𝑡,𝑎𝑡 = 0, with 𝑛𝑠𝑡,𝑎𝑡 the empirical visitation
frequency to state-action (𝑠𝑡, 𝑎𝑡) at time 𝑡. The corresponding estimation of𝑃 𝜋

𝑡 (𝑠𝑡|𝑠𝑡−1) and 𝑟̂𝜋𝑡 (𝑠𝑡)
are defined as:

𝑃 𝜋𝑡 (𝑠𝑡|𝑠𝑡−1) =
∑

𝑎𝑡−1

𝑃𝑡(𝑠𝑡|𝑠𝑡−1, 𝑎𝑡−1)𝜋(𝑎𝑡−1|𝑠𝑡−1),

𝑟̂𝜋𝑡 (𝑠𝑡) =
∑

𝑎𝑡

𝑟̂𝑡(𝑠𝑡, 𝑎𝑡)𝜋(𝑎𝑡|𝑠𝑡), 𝑑𝜋𝑡 = 𝑃 𝜋𝑡 𝑑
𝜋
𝑡−1.

(2.7)

In conclusion, by using the same estimator for 𝑑𝜇𝑡 , 𝑣𝜋TMIS and 𝑣𝜋SMIS share the same form
of (2.2). However, Tabular-MIS estimator constructs a different estimation of component 𝑑𝜋𝑡
though (2.6)-(2.7) by leveraging the fact that each state-action pair is visited frequently under
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Tabular setting.
The motivation of MIS-type estimators comes from the fact that we have a nonstationary

MDP model and its underlying state marginal transition follows 𝑑𝜋𝑡 = 𝑃 𝜋
𝑡 𝑑

𝜋
𝑡−1. The MIS estima-

tors are then obtained by using corresponding plug-in estimators for each different components
(i.e. 𝑑𝜋𝑡 for 𝑑𝜋𝑡 , 𝑃 𝜋

𝑡 for 𝑃 𝜋
𝑡 ). On the other hand, IS-type estimators design the value function in a

more straightforward way without needing to estimate the transition environment [37]. There-
fore in this sense MIS-type estimators are essentially model-based estimators with the model
of interactive environment 𝑀 = ( ,, 𝑟, 𝑇 , 𝑑1,𝐻).

2.5 Mean-Square Error Bound for TMIS

We now show that our Tabular-MIS estimator achieves the asymptotic Cramer-Rao lower
bound for DAG-MDP [18] and therefore is asymptotically sample efficient. To formalize our
statement, we pre-specify the following boundary conditions: 𝑟0(𝑠0) ≡ 0, 𝜎0(𝑠0, 𝑎0) ≡ 0,𝑑𝜋0 (𝑠0)

𝑑𝜇0 (𝑠0)
≡

1, 𝜋(𝑎0|𝑠0)
𝜇(𝑎0|𝑠0)

≡ 1, 𝑉 𝜋
𝐻+1 ≡ 0, and, as a reminder, 𝜏𝑎 ∶= max𝑡,𝑠𝑡,𝑎𝑡

𝜋(𝑎𝑡|𝑠𝑡)
𝜇(𝑎𝑡|𝑠𝑡)

and 𝜏𝑠 ∶= max𝑡,𝑠𝑡
𝑑𝜋𝑡 (𝑠𝑡)
𝑑𝜇𝑡 (𝑠𝑡)

.

Theorem 2.5.1. Suppose the 𝑛 episodic historical data  =
{

(𝑠(𝑖)𝑡 , 𝑎
(𝑖)
𝑡 , 𝑟

(𝑖)
𝑡 )

}𝑡=1,...,𝐻

𝑖=1,...,𝑛
is obtained

by running a logging policy 𝜇 and 𝜋 is the new target policy which we want to test. If the number

of episodes 𝑛 satisfies

𝑛 > max

[

16 log 𝑛
min𝑡,𝑠𝑡,𝑎𝑡 𝑑

𝜇
𝑡 (𝑠𝑡, 𝑎𝑡)

,
4𝐻𝜏𝑎𝜏𝑠

min𝑡,𝑠𝑡 max{𝑑𝜋𝑡 (𝑠𝑡), 𝑑
𝜇
𝑡 (𝑠𝑡)}

]

then under Assumption 3.3.1-2.3.3 our Tabular-MIS estimator 𝑣𝜋TMIS has the following Mean-

11
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Square-Error upper bound:

𝔼[(𝑣𝜋TMIS − 𝑣
𝜋)2] ≤ 1

𝑛

𝐻
∑

ℎ=0

∑

𝑠ℎ,𝑎ℎ

𝑑𝜋ℎ (𝑠ℎ)
2

𝑑𝜇ℎ (𝑠ℎ)
𝜋(𝑎ℎ|𝑠ℎ)2

𝜇(𝑎ℎ|𝑠ℎ)
⋅ Var

[

(𝑉 𝜋
ℎ+1(𝑠

(1)
ℎ+1) + 𝑟

(1)
ℎ )||

|

𝑠(1)ℎ = 𝑠ℎ, 𝑎
(1)
ℎ = 𝑎ℎ

]

⋅

(

1 +

√

16 log 𝑛
𝑛min𝑡,𝑠𝑡 𝑑

𝜇
𝑡 (𝑠𝑡)

)

+ 𝑂(
𝜏2𝑎𝜏𝑠𝐻

3

𝑛2 ⋅ 𝑑𝑚
),

(2.8)
where the value function is defined as: 𝑉 𝜋

ℎ (𝑠ℎ) ∶= 𝔼𝜋
[

∑𝐻
𝑡=ℎ 𝑟

(1)
𝑡
|

|

|

𝑠(1)ℎ = 𝑠ℎ
]

, ∀ℎ ∈ {1, 2, ...,𝐻}.

The proof of this theorem and related technical results that are presented in this section,
are deferred to the Appendix. We summarize the novel ingredients in the proof in Section 2.6.
Before that, we make a few remarks about this interesting result.

Remark 1 (Asymptotic efficiency and local minimaxity). The error bound implies that

lim𝑛→∞ 𝑛 ⋅ 𝔼[(𝑣𝜋TMIS − 𝑣
𝜋)2]

𝐻
∑

𝑡=0
𝔼𝜇

[

𝑑𝜋(𝑠(1)𝑡 , 𝑎
(1)
𝑡 )2

𝑑𝜇(𝑠(1)𝑡 , 𝑎
(1)
𝑡 )2

Var
[

𝑉 𝜋
𝑡+1(𝑠

(1)
𝑡+1) + 𝑟

(1)
𝑡
|

|

|

𝑠(1)𝑡 , 𝑎
(1)
𝑡

]

]

.

This exactly matches the CR-lower bound in [18, Proposition 3] for DAG-MDP5. In contrast,

the State-MIS estimator in [21] achieves an asymptotic MSE of

𝐻
∑

𝑡=0
𝔼𝜇

[

𝑑𝜋(𝑠(1)𝑡 )2

𝑑𝜇(𝑠(1)𝑡 )2
Var

[𝜋(𝑎(1)𝑡 |𝑠(1)𝑡 )

𝜇(𝑎(1)𝑡 |𝑠(1)𝑡 )
(𝑉 𝜋

𝑡+1(𝑠
(1)
𝑡+1) + 𝑟

(1)
𝑡 )||

|

𝑠(1)𝑡
]

]

. (2.9)

We note that while in classical literature CR-lower bound is often used as the lower bound
for the variance of unbiased estimators, the modern theory of estimation establishes that it is
also the correct asymptotic minimax lower bound for the MSE of all estimators in every local
neighborhood of the parameter space [38, Chapter 8]. In other words, our results imply that

5[18] focused on the special case with deterministic reward only at 𝑡 = 𝐻 . It is straightforward to show that
the above expression is the CR-lower bound in the general tabular setting.
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Tabular-MIS estimator is asymptotically, locally, uniformly minimax optimal, namely, optimal
for every problem instance separately.
Algorithm 1 Tabular MIS Off-Policy Evaluation
Input: Logging data  = {{𝑠(𝑖)𝑡 , 𝑎

(𝑖)
𝑡 , 𝑟

(𝑖)
𝑡 }𝐻𝑡=1}

𝑛
𝑖=1 from the behavior policy 𝜇. A target policy 𝜋

which we want to evaluate its cumulative reward.
1: Calculate the on-policy estimation of initial distribution 𝑑1(⋅) by 𝑑1(𝑠) ∶= 1

𝑛

∑𝑛
𝑖=1 𝟏(𝑠

(𝑖)
1 =

𝑠), and set 𝑑𝜇1 (⋅) ∶= 𝑑1(⋅), 𝑑𝜋1 (𝑠) ∶= 𝑑1(⋅).
2: for 𝑡 = 2, 3,… ,𝐻 do

3: Choose all transition data at time step 𝑡, {𝑠(𝑖)𝑡 , 𝑎(𝑖)𝑡 , 𝑟(𝑖)𝑡 }𝑛𝑖=1.
4: Calculate the on-policy estimation of 𝑑𝜇𝑡 (⋅) by 𝑑𝜇𝑡 (𝑠) ∶= 1

𝑛

∑𝑛
𝑖=1 𝟏(𝑠

(𝑖)
𝑡 = 𝑠).

5: Set the off-policy estimation of 𝑃𝑡(𝑠𝑡|𝑠𝑡−1, 𝑎𝑡−1):

𝑃𝑡(𝑠𝑡|𝑠𝑡−1, 𝑎𝑡−1)

∶=
∑𝑛

𝑖=1 𝟏[(𝑠
(𝑖)
𝑡 , 𝑎

(𝑖)
𝑡−1, 𝑠

(𝑖)
𝑡−1) = (𝑠𝑡, 𝑠𝑡−1, 𝑎𝑡−1)]

𝑛𝑠𝑡−1,𝑎𝑡−1

when 𝑛𝑠𝑡−1,𝑎𝑡−1 > 0. Otherwise set it to be zero.
6: Estimate the reward function

𝑟̂𝑡(𝑠𝑡, 𝑎𝑡) ∶=
∑𝑛

𝑖=1 𝑟
(𝑖)
𝑡 𝟏(𝑠

(𝑖)
𝑡 = 𝑠𝑡, 𝑎

(𝑖)
𝑡 = 𝑎𝑡)

∑𝑛
𝑖=1 𝟏(𝑠

(𝑖)
𝑡 = 𝑠𝑡, 𝑎

(𝑖)
𝑡 = 𝑎𝑡)

.

when 𝑛𝑠𝑡,𝑎𝑡 > 0. Otherwise set it to be zero.
7: Set 𝑑𝜋𝑡 (⋅) according to 𝑑𝜋𝑡 = 𝑃 𝜋

𝑡 𝑑
𝜋
𝑡−1, with 𝑃 𝜋

𝑡 defined according to (2.7). Also, set 𝑟̂𝜋𝑡 (⋅)
according to (2.7).

8: end for

9: Substitute all the estimated values above into (2.1) to obtain 𝑣𝜋 , the estimated value of 𝜋.

While asymptotically efficient estimators for this problem in related settings have been pro-
13



Offline Policy Evaluation for Tabular Reinforcement Learning Chapter 2

posed in independent recent work [32, 33], our estimator is the first that comes with finite
sample guarantees with an explicit expression on the low-order terms. Moreover, our estimator
demonstrates that doubly robust estimation techniques is not essential for achieving asymptotic
efficiency.

Remark 2 (Simplified finite sample error bound). The theory implies that there is universal

constants 𝐶1, 𝐶2 such that for all 𝑛 ≥ 𝐶1𝐻
𝜏𝑎
𝑑𝑚

, i.e., when we have a just visited every state-

action pair for Ω(𝐻) times, 𝔼[(𝑣𝜋TMIS − 𝑣
𝜋)2] = 𝐶2𝐻2𝜏𝑎𝜏𝑠𝑅2

max∕𝑛.

In deriving the above remark, we used the somewhat surprising observation that

𝐻
∑

𝑡=1
𝔼𝜋

[

Var
[

𝑉 𝜋
𝑡+1(𝑠

(1)
𝑡+1) + 𝑟

(1)
𝑡
|

|

|

𝑠(1)𝑡 , 𝑎
(1)
𝑡

]]

≤ 𝐻2𝑅2
max.

Note that we are summing 𝐻 quantities that are potentially on the order of 𝐻2𝑅2
max, yet no

additional factors of 𝐻 shows up. This observation is folklore and has been used in deriving
tight results for tabular RL in e.g. [39]. It can be proven using the following decomposition of
the variance of the empirical mean estimator and the fact it is bounded by 𝐻2𝑅2

max.

Lemma 2.5.1. For any policy 𝜋 and any MDP.

Var𝜋

[ 𝐻
∑

𝑡=1
𝑟(1)𝑡

]

=
𝐻
∑

𝑡=1

(

𝔼𝜋
[

Var
[

𝑟(1)𝑡 + 𝑉 𝜋
𝑡+1(𝑠

(1)
𝑡+1)

|

|

|

𝑠(1)𝑡 , 𝑎
(1)
𝑡

]]

+ 𝔼𝜋
[

Var
[

𝔼[𝑟(1)𝑡 + 𝑉 𝜋
𝑡+1(𝑠

(1)
𝑡+1)|𝑠

(1)
𝑡 , 𝑎

(1)
𝑡 ]||

|

𝑠(1)𝑡
]] )

.

The proof, which applies the law-of-total-variance recursively, is deferred to the appendix.

Remark 3 (When 𝜋 = 𝜇). One surprising observation is that Tabular-MIS estimator improves

the efficiency even for the on-policy evaluation problem when 𝜋 = 𝜇. In other words, the

natural Monte Carlo estimator of the reward in the on-policy evaluation problem is in fact

asymptotically inefficient.
14
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2.6 Outline of Proof of Theorem 2.5.1

At a higher level the techniques we used include the idea of fictitious estimator and peeling
the variance (expectation) of fictitious estimator 𝑣𝜋 from behind by applying the total law of
variances (expectations) repeatedly, as in [21].

In addition to the above techniques, we leverage the fact of frequent state-action visitations
in our design of TMIS estimator and based on that we are able to achieve an asymptotic lower
Mean Square Error (MSE) bound. The main components are the following.
Fictitious Tabular-MIS estimator. Fictitious Tabular-MIS estimator 𝑣𝜋TMIS is a modified ver-
sion of 𝑣𝜋TMIS with 𝑃 𝜋

𝑡+1(⋅|𝑠𝑡, 𝑎𝑡), 𝑟̂𝜋𝑡 (𝑠𝑡, 𝑎𝑡) replaced by the underlying true 𝑃 𝜋
𝑡+1(⋅|𝑠𝑡, 𝑎𝑡), 𝑟𝜋𝑡 (𝑠𝑡, 𝑎𝑡)

when the visitation frequency of state-action pair (𝑠𝑡, 𝑎𝑡) is insufficient (e.g. 𝑛𝑠𝑡,𝑎𝑡 < 𝑂(𝑛𝑑
𝜇
𝑡 (𝑠𝑡, 𝑎𝑡))).

Specifically, fictitious Tabular-MIS estimator 𝑣𝜋TMIS remains every part of 𝑣𝜋TMIS unchanged ex-
cept the following:

𝑟̃𝑡(𝑠𝑡, 𝑎𝑡) =

⎧

⎪

⎨

⎪

⎩

𝑟̂𝑡(𝑠𝑡, 𝑎𝑡) if 𝑛𝑠𝑡,𝑎𝑡 ≥ 𝑛𝑑𝜇𝑡 (𝑠𝑡, 𝑎𝑡)(1 − 𝜃)

𝑟𝑡(𝑠𝑡, 𝑎𝑡) otherwise;
(2.10)

and

𝑃𝑡+1,𝑡(⋅|𝑠𝑡, 𝑎𝑡) =

⎧

⎪

⎨

⎪

⎩

𝑃𝑡+1,𝑡 if 𝑛𝑠𝑡,𝑎𝑡 ≥ 𝑛𝑑𝜇𝑡 (𝑠𝑡, 𝑎𝑡)(1 − 𝜃)

𝑃𝑡+1,𝑡 otherwise,
(2.11)

where 𝜃 is the parameter constrained by 0 < 𝜃 < 1, which we will choose later in the proof.
This slight modification makes 𝑣𝜋TMIS no longer implementable using the logging data , but

it does provide an unbiased estimator of 𝑣𝜋 (Lemma A.2.5 in appendix) and, most importantly,
it is easier to do theoretical analysis on 𝑣𝜋TMIS than on 𝑣𝜋TMIS. Moreover, Multiplicative Chernoff
bound helps to find the connection between 𝑣𝜋TMIS and 𝑣𝜋TMIS.
Peeling arguments using the total law of variance (expectation). The core idea in analyzing

15
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the variance of 𝑣𝜋 is to peel the variance from behind (start from time 𝐻 to 1) and the peeling
tool we used here is through marrying the standard Bellman equations with the total law of
variance. Lemma A.2.2 (in appendix) shows this spirit and it is used repeatedly throughout the
whole analysis. Beyond that, the peeling argument can be used to prove the dependence in 𝐻
is only 𝐻2 for our Tabular-MIS estimator. This result explicates that 𝐻2 is enough for TMIS
to evaluate a particular policy and this is different from SMIS, which in general requires the
dependence of 𝐻3 for off-policy evaluation.

2.7 A High-Probability Bound with Data-Splitting TMIS.

Tabular-MIS estimator provides the asymptotic optimal variance bound of order𝑂(𝐻2𝑆𝐴∕𝑛)

and based on that it is natural to ask the related learning question: whether TMIS can further
achieve a high probability bound with the same sample complexity? We figure out that the
standard concentration inequalities (e.g. Hoeffding’s inequality, Bernstein inequality) cannot
be directly applied because of the highly correlated structures of the Tabular-MIS estimator. To
address this problem we design the following data split version of TMIS and as we will see, the
original TMIS is essentially a special case of data-splitting TMIS.
Data splitting Tabular-MIS estimator. Assume the total number of episodes 𝑛 can be factor-
ized as 𝑛 = 𝑀 ⋅𝑁 , where 𝑀,𝑁 > 1 are two integers,6 and we can partition the data  into
𝑁 folds with each fold (𝑖) (𝑖 = 1, ..., 𝑁) has 𝑀 different episodes, or in other words, we split
the 𝑛 episodes evenly. Then by the i.i.d. nature of 𝑛 episodes, we have (1),(2), ...,(𝑁) are
independent collections.

For each (𝑖), we can create a Tabular-MIS estimator 𝑣𝜋(𝑖)TMIS (for notation simplicity we use
𝑣𝜋(𝑖) to denote 𝑣𝜋(𝑖)TMIS in the future discussions) using its own 𝑀 episodes. Then 𝑣𝜋(1), 𝑣𝜋(2), ..., 𝑣𝜋(𝑁)

are independent of each other and we can use the empirical mean to define the data splitting
6In general this might not be true, e.g. if 𝑛 is prime number. However, we can resolve it by choosing 𝑀 =

⌊𝑛∕𝑁⌋.
16
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Tabular-MIS estimatorand the corresponding fictitious version:

𝑣𝜋split =
1
𝑁

𝑁
∑

𝑖=1
𝑣𝜋(𝑖), 𝑣𝜋split =

1
𝑁

𝑁
∑

𝑖=1
𝑣𝜋(𝑖), (2.12)

where each 𝑣𝜋(𝑖) is the fictitious estimator of 𝑣𝜋(𝑖).
The data splitting TMIS estimator explicitly characterizes the independence of 𝑛 different

episodes by grouping them into𝑁 chunks. Chunks are independent of each other and taking the
average over all 𝑣𝜋(𝑖) 𝑖 = 1, ..., 𝑁 will guarantee the validity of using concentration inequalities.

More importantly, the data splitting TMIS estimator holds the same information-theoretical
variance lower bound as the non-data splitting TMIS estimator, which is not surprising since
the non-data splitting TMIS estimator is just the special case of the data splitting Tabular-MIS
estimator with 𝑁 = 1. This idea is summarized into the following theorem:

Theorem 2.7.1. Using 𝑛 i.i.d. episodic data from a near-uniform7 logging policy 𝜇 and suppose

𝑀 , the number of episodes for each (𝑖), satisfies:

𝑀 > max
[

𝑂(𝑆𝐴 ⋅ Polylog(𝑆,𝐻,𝐴, 𝑛)), 𝑂(𝐻𝜏𝑎𝜏𝑠)
]

,

then the data splitting Tabular-MIS estimator obeys:

𝔼[(𝑣𝜋split − 𝑣
𝜋)2] ≤ 𝑂(𝐻

2𝑆𝐴
𝑛

). (2.13)

Remark 4. The condition in Theorem 2.7.1 is achievable. For example, choose𝑀 ≈
√

𝑛, then

the condition holds when 𝑛 is sufficiently large.

High probability bound. By coupling the data splitting techniques with the boundedness of
Tabular-MIS estimator (i.e. 𝑣𝜋 ≤ 𝐻𝑅max, 𝑣𝜋 ≤ 𝐻𝑅max, see Lemma A.2.3 in appendix), we

7Near-uniform here means: min𝑡,𝑠𝑡,𝑎𝑡 𝑑
𝜇
𝑡 (𝑠𝑡, 𝑎𝑡) > Ω(1∕(𝑆𝐴)).

17
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can apply concentration inequalities to show the difference between 𝑣𝜋split and 𝑣𝜋 is bounded by
order 𝑂(√𝐻2𝑆𝐴∕𝑛), which is summarized into the following theorem.
Theorem 2.7.2. Suppose 𝑛 i.i.d. episodic historical data comes from a near-uniform logging

policy 𝜇 and suppose𝑀 , the number of episodes in each (𝑖), satisfies: 𝑂(
√

𝑛 ⋅ 𝑆𝐴) ≥𝑀 and

𝑀 > max
[

𝑂(𝑆𝐴 ⋅ Polylog(𝑆,𝐻,𝐴, 𝑛, 1∕𝛿)), 𝑂(𝐻𝜏𝑎𝜏𝑠)
]

. Then we have with probability 1−𝛿,

the data splitting Tabular-MIS estimator obeys:

|𝑣𝜋split − 𝑣
𝜋
| ≤ 𝑂(

√

𝐻2𝑆𝐴
𝑛

).

The proof Theorem 2.7.2 relies on bounding the difference between 𝑣𝜋split and 𝑣𝜋split using
Multiplicative Chernoff bound and bounding the difference between 𝑣𝜋split and 𝑣𝜋 using Bernstein
inequality. During the process of bounding |𝑣𝜋split − 𝑣𝜋split| we observe that a stronger uniform
bound can be derived. In fact, this bound is 0. We formalize it into the following lemma.

Lemma 2.7.1. Suppose 𝑛 i.i.d. episodic historical data comes from a near-uniform logging

policy 𝜇 and suppose 𝑀 , the number of episodes in each (𝑖), satisfies:

𝑀 > max
[

𝑂(𝑆𝐴 ⋅ Polylog(𝑆,𝐻,𝐴,𝑁, 1∕𝛿)), 𝑂(𝐻𝜏𝑎𝜏𝑠)
]

.

Then we have with probability 1 − 𝛿,

sup
𝜋∈

∏

|𝑣𝜋split − 𝑣
𝜋
split| = 0

Since 𝑛 = 𝑁 ⋅𝑀 , therefore let 𝑁 = 1, 𝑀 = 𝑛, then if

𝑀 > max
[

𝑂(𝑆𝐴 ⋅ Polylog(𝑆,𝐻,𝐴, 1∕𝛿)), 𝑂(𝐻𝜏𝑎𝜏𝑠)
]

,

sup
𝜋∈

∏

|𝑣𝜋TMIS − 𝑣
𝜋
TMIS| = 0

18
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holds with probability 1 − 𝛿, where
∏

consists of all the 𝐻-step nonstationary policies.

Remark 5. The uniform difference bound between 𝑣𝜋TMIS and 𝑣𝜋TMIS is obtained by observing the

construction of fictitious estimator (2.10) and (2.11) are independent of the specific target policy

𝜋. This result tells the sup𝜋∈∏ |𝑣𝜋TMIS−𝑣
𝜋
TMIS| can be arbitrarily small with high probability and

therefore does not depend on 𝐻 factor. This fact will help us to derive the correct dependence

in 𝐻 for uniform convergence problem.

2.8 Empirical validation

In this section, we present some empirical studies to demonstrate that our main theoretical
results about Tabular-MIS estimator presented in Theorem 2.5.1 are empirically verified.
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Figure 2.1: Different Episode 𝑛, Rela-
tive RMSE (√MSE∕𝑣𝜋) on Non-stationary
Non-mixing MDP
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Figure 2.2: Different Horizon 𝐻 , Rela-
tive RMSE (√MSE∕𝑣𝜋) on Non-stationary
Non-mixing MDP

Time-varying, non-mixing Tabular MDP. We test our approach in simulated MDP environ-
ment where both the states and the actions are binary. Concretely, there are two states 𝑠0 and 𝑠1
and two actions 𝑎1 and 𝑎2. State 𝑠0 always has probability 1 going back to itself, regardless of
the actions, i.e. 𝑃𝑡(𝑠0|𝑠0, 𝑎1) = 1 and 𝑃𝑡(𝑠0|𝑠0, 𝑎2) = 1. For state 𝑠1, at each time step there is one
action (we call it 𝑎) that has probability 2∕𝐻 going to 𝑠0 and the other action (we call it 𝑎′) has
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probability 1 going back to 𝑠1, i.e. 𝑃𝑡(𝑠0|𝑠1, 𝑎) = 2∕𝐻 = 1 − 𝑃𝑡(𝑠1|𝑠1, 𝑎) and 𝑃𝑡(𝑠1|𝑠1, 𝑎′) = 1.
Moreover, which action will make state 𝑠1 go to state 𝑠0 with probability 2∕𝐻 is decided by a
random parameter 𝑝𝑡 ∈ [0, 1]. If 𝑝𝑡 < 0.5, 𝑎 = 𝑎1 and if 𝑝𝑡 ≥ 0.5, 𝑎 = 𝑎2. One can receive
reward 1 at each time step if 𝑡 > 𝐻∕2 and is in state 𝑠0, and will receive reward 0 otherwise.
Lastly, for state 𝑠0, we set 𝜇(⋅|𝑠0) = 𝜋(⋅|𝑠0); for state 𝑠1, we set 𝜇(𝑎1|𝑠1) = 𝜇(𝑎2|𝑠1) = 1∕2 and
𝜋(𝑎1|𝑠1) = 1∕4 = 1 − 𝜋(𝑎2|𝑠1).

Figure 2.1 shows the asymptotic convergence rates of relative RMSE with respect to the
number of episodes, given fixed horizon 𝐻 = 100. Both SMIS and TMIS has a 𝑂(1∕√𝑛)
convergence rate. The saving of √𝐻 of TMIS over SMIS in this log-log plot is reflected in
the intercept. Figure 2.2 has fixed 𝑛 = 1024 with varying horizon 𝐻 . Note since 𝑣𝜋 ≈ 𝑂(𝐻),
therefore for TMIS our theoretical result implies √MSE∕𝑣𝜋 = 𝑂(

√

𝐻2∕𝐻) = 𝑂(1), which
is consistent with the horizontal line when 𝐻 is large. Moreover, for SMIS √MSE∕𝑣𝜋 =

𝑂(
√

𝐻3∕𝐻) = 𝑂(
√

𝐻), so after taking the log(⋅) we should have asymptotic linear trend with
coefficient 1∕2. The red line in Figure 2.2 empirically verifies this result. More empirical study
discussions are deferred to Appendix A.4.

2.9 Discussion

Logging policy free algorithm. We point out that the implementation of Tabular-MIS estima-
tor does not require the knowledge of logging policy 𝜇, as shown in Algorithm 3,2.8 This is
critical in the sense that in the real-world sequential decision making problems, it is very likely
the complete information about logging policy is not available. This may happen due to mis-
records or the lack of maintenance. By only using the historical data, tabular MIS off-policy
evaluation is able to achieve the asymptotic efficiency. In contrast, the state MIS estimator
always requires the full information about the logging policy.

8Algorithm 2 is deferred to appendix due to space constraint.
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Connection to approximate MDP estimation. Our TMIS is essentially an approximate MDP
estimator (with the non-stationary dynamic transitions 𝑃𝑡 estimated by maximum likelihood

estimator (MLE)) except that we marginalize out the action in both 𝑟̂𝜋𝑡 (𝑠) and 𝑑𝜋𝑡 (𝑠) and provide
an importance sampling interpretation. To the best of our knowledge, existing analysis of the
fully model-based approach does not provide tight bounds. We give two examples. The seminal
“simulation lemma” in [40] together with a naive concentration-type analysis gives only an
𝑂(

√

𝐻4𝑆3𝐴∕𝑛) bound in our setting. In a very recent compilation of improvements over this
bound [41], this bound can be improved to either𝑂(√𝐻4𝑆2𝐴∕𝑛) or𝑂(√𝐻6𝑆𝐴∕𝑛). Our result
is the first that achieves the optimal 𝑂(√𝐻2𝑆𝐴∕𝑛) rate regardless of whether it is the model-
based or model-free approach.
From off-policy evaluation to offline learning. A real offline reinforcement learning system
is equipped with both offline learning algorithms and off-policy evaluation algorithms. The
decision maker should first run the offline learning algorithm to find a near optimal policy and
then use off-policy evaluation methods to check if the obtained policy is good enough. Under
our tabular MDP setting, we point out it is possible to find a 𝜖-optimal policy in near optimal
time and sample complexity 𝑂(𝐻3𝑆𝐴∕𝜖2)using the 𝑄-value iteration (QVI) based algorithm
designed by [42]. Their QVI algorithm assumes a generative model which can provide inde-
pendent sample of the next state 𝑠′ given any current state-action (𝑠, 𝑎). At a first glance, this
assumption seems too strong for offline learning since we cannot force the agent to stay in any
arbitrary location. In fact, the Assumption 4.4.1 on 𝜇 actually reveals that the underlying log-
ging policy can be considered as the surrogate of the generative model. As 𝑛 gets large, the
visitation frequency of any (𝑠𝑡, 𝑎𝑡) will be large enough with high probability, as guaranteed by
Multiplicative Chernoff bound.
From off-policy evaluation to uniform off-policy evaluation. The high probability result
achieves 𝑂(√𝐻2𝑆𝐴∕𝑛) complexity. Following this discovery line, then it is natural to ask
whether uniform convergence over a class of policies (e.g. all deterministic policies) can be
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achieved with optimal sample complexity. This problem is interesting since it will guarantee
the strong performance of off-policy evaluation methods over all policies in certain policy class
∏. By a direct application of union bound, we can obtain the following result:

Theorem 2.9.1. Let
∏

contains all the deterministic 𝐻-step policies. Then under the same

condition as Theorem 2.7.2, the data splitting Tabular-MIS estimator satisfies:

sup
𝜋∈

∏

|𝑣𝜋split − 𝑣
𝜋
| ≤ 𝑂

(

√

𝐻3𝑆2𝐴
𝑛

)

,

with probability 1 − 𝛿.

The uniform convergence bound implies that the empirical best policy 𝜋̂ = argmax𝜋 𝑣𝜋split
is within 𝜖 = 𝑂(

√

𝐻3𝑆2𝐴
𝑛

) of the optimal policy. This matches the sample complexity lower
bound for learning the optimal policy [43] in all parameters except a factor of 𝑆.

In this chapter, we proposed a new marginalized importance sampling estimator for the
off-policy evaluation (OPE) problem under the episodic tabular setting. We show that this
estimator has a finite sample error bound that matches the exact Cramer-Rao lower bound up
to low-order factors. We also provide an extension with high probability error bound. To the
best of our knowledge, these results are the first of their kind. Future work includes resolving
the open problems mentioned above and generalizing the results to more practical settings.
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Chapter 3

Uniform Convergence in Offline Policy

Evaluation

3.1 Introduction

In offline reinforcement learning (offline RL), there are mainly two fundamental parts: of-

fline policy evaluation (OPE) and offline learning (also known as batch RL) [12]. OPE addresses
the statistical estimation problem of predicting the performance of a fixed target policy 𝜋 with
only data collected by a logging/behavioral policy 𝜇. On the other hand, offline learning is a
statistical learning problem that aims at learning a near-optimal policy using an offline dataset
alone [2].

As offline RL methods do not require interacting with the task environments or having
access to a simulator, they are more suitable for real-world applications of RL such as those
in marketing [23], targeted advertising [44, 45], finance [46], robotics [47, 48], language [49]
and health care [50, 51, 52, 53]. In these tasks, it is usually not feasible to deploy an online RL
algorithm to trials-and-error with the environment. Instead, we are given a large offline dataset
of historical interaction to come up with a new policy 𝜋 and to demonstrate that this new policy

23



Uniform Convergence in Offline Policy Evaluation Chapter 3

𝜋 will perform better using the same dataset without actually testing it online.
In this chapter, we present our solution via a statistical learning perspective by studying the

uniform convergence in OPE under non-stationary transition, finite horizon, episodic Markov

decision process (MDP) model with finite states and actions. Informally, given a policy class Π
and a logging policy 𝜇, uniform convergence problem in OPE (Uniform OPE for short) focuses
on coming up with OPE estimator 𝑣𝜋 and characterizing the number of episodes 𝑛 we need
(from 𝜇) in order for 𝑣𝜋 to satisfies that with high probability

sup
𝜋∈Π

|

|

𝑣𝜋 − 𝑣𝜋|
|

≤ 𝜖.

The focus of research would be to characterizing the episode complexity: the number of episodes
𝑛 needed as a function of 𝜖, failure probability 𝛿, the parameters of the MDP as well as the
logging policy 𝜇.

We highlight that even though uniform convergence is the main workhorse in statistical
learning theory see, e.g.,[54], few analogous results have been established for the offline rein-
forcement learning problem. The overarching theme of this work is to understand what a natural
complexity measure is for policy classes in reinforcement learning and its dependence in the
size of the state-space and planning horizon.

In addition, uniform OPE has two major consequences (which we elaborate in detail in the
following motivation section), but briefly: (1) allowing any accurate planning algorithm to work
as sample efficient offline learning algorithm with our model-based method; (2) providing finite
sample guarantee for offline evaluation uniformly for all policies in the policy class.

3.1.1 Motivation of Uniform Convergence in OPE

Existing research in offline RL usually focuses on designing specific algorithms that learn
the optimal policy 𝜋⋆ ∶= argmax𝜋 𝑣𝜋 with given static offline data . In the rich literature of
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statistical learning theory, however, learning bounds are often obtained via a stronger uniform
convergence argument which ensures an arbitrary learner to output a model that generalizes.
Specifically, the empirical risk minimizer (ERM) that outputs the empirical optimal policy has
been shown to be sufficient and necessary for efficiently learning almost all learnable problems
[54, 55].

The natural analogy of ERM in the RL setting would be to find the empirical optimal policy

𝜋⋆ ∶= argmax𝜋 𝑣𝜋 for some OPE estimator 𝑣𝜋 . If we could establish a uniform convergence
bound for 𝑣𝜋 , then it implies that 𝜋⋆ is nearly optimal too via

0 ≤ 𝑣𝜋⋆ − 𝑣𝜋⋆ = 𝑣𝜋⋆ − 𝑣𝜋⋆ + 𝑣𝜋⋆ − 𝑣𝜋⋆

≤ |𝑣𝜋⋆ − 𝑣𝜋⋆| + |𝑣𝜋⋆ − 𝑣𝜋⋆| ≤ 2 sup
𝜋

|𝑣𝜋 − 𝑣𝜋|.

Thus, uniform OPE is a stronger setting than offline learning with the additional benefit of
accurately evaluating any other (possibly heuristic) policy optimization algorithms that are used
in practice.

From the OPE perspective, there is often a need to evaluate the performance of a data-

dependent policy, and uniform OPE becomes useful. For example, when combined with exist-
ing methods, it will allow us to evaluate policies selected by safe-policy improvements, proximal
policy optimization, UCB-style exploration-bonus as well as any heuristic exploration criteria
such as curiosity, diversity and reward-shaping techniques.
Model-based estimator for OPE. The OPE estimator we consider here is the standard model-
based estimator, i.e. estimating the transition dynamics and immediate rewards, then simply
plug in the parameters of empirically estimated MDP 𝑀 to obtain 𝑣̂𝜋 for any 𝜋. This model-
based approach has several benefits. 1. It enables flexible choice of policy search methods since
it converts the problem to planning over the estimated MDP 𝑀 . 2. Uniform OPE with model-
based estimator avoids the use of data-splitting that leads to inefficient data use. For example,
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[42] learns the 𝜖-optimal policy with the optimal rate in the generative model setting, where in
each subroutine new independent data 𝑠(1)𝑠,𝑎, ..., 𝑠(𝑚)𝑠,𝑎 need to be sampled to estimate 𝑃𝑠,𝑎 and sam-
ples from previous rounds cannot be reused. A uniform convergence result could completely
avoid data splitting during the learning procedure.

3.2 Related Literature

1. OPE: Most existing work on OPE focuses on the Importance Sampling (IS) methods
[13, 14, 17, 19] or their doubly robust variants [18, 56]. These methods are more generally
applicable even if the the Markovian assumption is violated or the states are not observable,
but has an error (or sample complexity) that depends exponential dependence in horizon 𝐻 .
Recently, a family of estimators based on marginalized importance sampling (MIS) [29, 21, 32,
33, 57] have been proposed in order to overcome the “curse of horizon” under the additional
assumption of state observability. In the tabular setting, [57] design the Tabular-MIS estimator
which matches the Cramer-Rao lower bound constructed by [18] up to a low order term for
every instance (𝜋, 𝜇 and the MDP), which translates into an 𝑂(𝐻2∕𝑑𝑚𝜖2) episode complexity
in the (pointwise) OPE problem we consider for all 𝜋 (as we discussed in Chapter 2). Tabular-
MIS, however, is identical to the model-based plug-in estimator we use, off-policy empirical

model approximator (OPEMA), as we will discuss further in this chapter.
2. Offline Learning: For the offline learning, most theoretical work considers the infinite

horizon discounted setting with function approximation. [4, 3] first raises the information-
theoretic considerations for offline learning and uses Fitted Q-Iteration (FQI) to obtain 𝜖𝑉max-
optimal policy using sample complexity𝑂((1−𝛾)−4𝐶𝜇∕𝜖2)where𝐶𝜇 is concentration coefficient

[58] that is similar to our 1∕𝑑𝑚. More recently, [5] improves the result to 𝑂̃((1 − 𝛾)−2𝐶𝜇∕𝜖2).
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However, these bounds are not tight in terms of the dependence on the effective horizon1 (1 −

𝛾)−1. More recently, [6, 59] explore weaker settings for batch learning but with sub-optimal
sample complexity dependencies. Our result is the first that achieves the optimal rate, although
restricted to the finite horizon episodic setting.

3. Uniform convergence in RL: There are few existing work that deals with uniform con-
vergence in OPE. However, we notice that the celebrated simulation lemma [40] is actually
an uniform bound with an episode complexity of 𝑂(𝐻4𝑆2∕𝑑𝑚𝜖2). Several existing work uses
uniform-convergence arguments over value function classes for online RL [60]. The closest to
our work is perhaps [61], which studies model-based planning in the generative model setting.
We are different in that we are in the offline learning setting. In addition, our local policy class
is optimal for a larger region of 𝜖opt (independent to 𝑛), while their results (Lemma 10) imply
optimal OPE only for empirically optimal policy with 𝜖opt ≤

√

(1 − 𝛾)−5𝑆𝐴∕𝑛. Lastly, we dis-
covered the thesis of [62, Ch.3 Theorem 1], which discusses the pseudo-dimension of policy
classes. The setting is not compatible to ours, and does not imply a uniform OPE bound in our
setting.

3.3 Uniform Convergences Problems

We first review the tabular RL setting we discussed in Chapter 2. RL environment is usually
modeled as a Markov Decision Process (MDP) which is denoted by 𝑀 = ( ,, 𝑟, 𝑃 , 𝑑1,𝐻).
The MDP consists of a state space , an action space and a transition kernel 𝑃𝑡 ∶ ×× ↦

[0, 1] with 𝑃𝑡(𝑠′|𝑠, 𝑎) representing the probability transition from state 𝑠, action 𝑎 to next state
𝑠′ at time 𝑡. In particular here we consider non-stationary transition dynamics so 𝑃𝑡 varies over
time 𝑡. Besides, 𝑟𝑡 ∶  × 𝐴 ↦ ℝ is the expected reward function and given (𝑠𝑡, 𝑎𝑡), 𝑟𝑡(𝑠𝑡, 𝑎𝑡)

1The optimal rate should be (1 − 𝛾)−1𝐶∕𝜖2, analogous to our 𝐻3∕𝑑𝑚𝜖2 bound. The additional 𝐻2 is due to
scaling — we are obtaining 𝜖-optimal policy and they obtain 𝜖𝑉max-optimal policy (𝑉max = 𝐻 in our case). See
Table 3.1 for a consistent comparison.
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specifies the average reward obtained at time 𝑡. 𝑑1 is the initial state distribution and 𝐻 is
the horizon. Moreover, we focus on the case where state space  and the action space  are
finite, i.e. 𝑆 ∶= || < ∞, 𝐴 ∶= || < ∞. A (non-stationary) policy is formulated by
𝜋 ∶= (𝜋1, 𝜋2, ..., 𝜋𝐻 ), where 𝜋𝑡 assigns each state 𝑠𝑡 ∈  a probability distribution over actions
at each time 𝑡. Any fixed policy 𝜋 together with MDP 𝑀 induce a distribution over trajectories
of the form (𝑠1, 𝑎1, 𝑟1, 𝑠2, ..., 𝑠𝐻 , 𝑎𝐻 , 𝑟𝐻 , 𝑠𝐻+1) where 𝑠1 ∼ 𝑑1, 𝑎𝑡 ∼ 𝜋𝑡(⋅|𝑠𝑡), 𝑠𝑡+1 ∼ 𝑃𝑡(⋅|𝑠𝑡, 𝑎𝑡)

and 𝑟𝑡 has mean 𝑟𝑡(𝑠𝑡, 𝑎𝑡) for 𝑡 = 1, ...,𝐻 .2
In addition, we denote 𝑑𝜋𝑡 (𝑠𝑡, 𝑎𝑡) the induced marginal state-action distribution and 𝑑𝜋𝑡 (𝑠𝑡)

the marginal state distribution, satisfying 𝑑𝜋𝑡 (𝑠𝑡, 𝑎𝑡) = 𝑑𝜋𝑡 (𝑠𝑡) ⋅ 𝜋(𝑎𝑡|𝑠𝑡). Moreover, 𝑑𝜋1 = 𝑑1 ∀𝜋.
We use the notation 𝑃 𝜋

𝑡 ∈ ℝ𝑆⋅𝐴×𝑆⋅𝐴 to represent the state-action transition (𝑃 𝜋
𝑡 )(𝑠,𝑎),(𝑠′,𝑎′) ∶=

𝑃𝑡(𝑠′|𝑠, 𝑎)𝜋𝑡(𝑎′|𝑠′), then the marginal state-action vector 𝑑𝜋𝑡 (⋅, ⋅) ∈ ℝ𝑆×𝐴 satisfies the expres-
sion 𝑑𝜋𝑡+1 = 𝑃 𝜋

𝑡+1𝑑
𝜋
𝑡 . We define the quantity 𝑉 𝜋

𝑡 (𝑠) = 𝔼𝜋[
∑𝐻

𝑡′=𝑡 𝑟𝑡′|𝑠𝑡 = 𝑠] and the Q-function
𝑄𝜋
𝑡 (𝑠, 𝑎) = 𝔼𝜋[

∑𝐻
𝑡′=𝑡 𝑟𝑡′|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎] for all 𝑡 = 1, ...,𝐻 . The ultimate measure of the perfor-

mance of policy 𝜋 is the value function:

𝑣𝜋 = 𝔼𝜋

[

𝐻
∑

𝑡=1
𝑟𝑡

]

.

Lastly, for the standard OPE problem, the goal is to estimate 𝑣𝜋 for a given 𝜋 while assuming
that 𝑛 episodic data  =

{

(𝑠(𝑖)𝑡 , 𝑎
(𝑖)
𝑡 , 𝑟

(𝑖)
𝑡 , 𝑠

(𝑖)
𝑡+1)

}𝑡∈[𝐻]

𝑖∈[𝑛]
are rolling from a different policy 𝜇.

Uniform OPE extends the pointwise OPE to a family of policies. Specifically, for an policy
class Π of interest, we aim at showing that sup𝜋∈Π |𝑣𝜋 − 𝑣𝜋| < 𝜖 with high probability with
optimal dependence in all parameters. In this paper, we consider three policy classes.
The global policy class. The policy classΠwe considered here consists of all the non-stationary
policies, deterministic or stochastic. This is the largest possible class we can consider and hence
the hardest one.

2Here 𝑟𝑡 without any argument is random reward and 𝔼[𝑟𝑡|𝑠𝑡, 𝑎𝑡] = 𝑟𝑡(𝑠𝑡, 𝑎𝑡).
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The global deterministic policy class. Here class consists of all the non-stationary determin-
istic policies. By the standard results in reinforcement learning, there exists at least one de-
terministic policy that is optimal [12]. Therefore, the deterministic policy class is rich enough
for evaluating any learning algorithm (e.g. Q-value iteration in [42]) that wants to learn to the
optimal policy.
The local policy class: in the neighborhood of empirical optimal policy. Given empirical
MDP 𝑀 (i.e. the transition kernel is replaced by 𝑃𝑡(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡) ∶= 𝑛𝑠𝑡+1,𝑠𝑡,𝑎𝑡∕𝑛𝑠𝑡,𝑎𝑡 if 𝑛𝑠𝑡,𝑎𝑡 > 0

and 0 otherwise, where 𝑛𝑠𝑡,𝑎𝑡 is the number of visitations to (𝑠𝑡, 𝑎𝑡) among all 𝑛 episodes3), it
is convenient to learn the empirical optimal policy 𝜋⋆ ∶= argmax𝜋 𝑣𝜋 since the full empirical
transition 𝑃 is known. Standard methods like Policy Iteration (PI) and Value Iteration (VI) can
be leveraged for finding 𝜋⋆. This observation allows us to consider the following interesting
policy class: Π1 ∶= {𝜋 ∶ 𝑠.𝑡. ||𝑉 𝜋

𝑡 − 𝑉 𝜋⋆
𝑡 ||∞ ≤ 𝜖opt , ∀𝑡 = 1, ...,𝐻} with 𝜖opt ≥ 0 a parameter.

Here we consider 𝜋⋆ (instead of 𝜋⋆) since by defining with empirical optimal policy, we can
use data  to really check class Π1, therefore this definition is more practical.

3.3.1 Assumptions

Next we present some mild necessary regularity assumptions for uniform convergence OPE
problem.

Assumption 3.3.1 (Bounded rewards). ∀ 𝑡 = 1, ...,𝐻 and 𝑖 = 1, ..., 𝑛, 0 ≤ 𝑟(𝑖)𝑡 ≤ 1.

Assumption 3.3.2 (Exploration requirement). Logging policy 𝜇 obeys that min𝑡,𝑠𝑡 𝑑
𝜇
𝑡 (𝑠𝑡) > 0,

for any state 𝑠𝑡 that is “accessible”. Moreover, we define quantity 𝑑𝑚 ∶= min{𝑑𝜇𝑡 (𝑠𝑡, 𝑎𝑡) ∶

𝑑𝜇𝑡 (𝑠𝑡, 𝑎𝑡) > 0}.

State 𝑠𝑡 is “accessible” means there exists a policy 𝜋 so that 𝑑𝜋𝑡 (𝑠𝑡) > 0. If for any policy 𝜋 we
always have 𝑑𝜋𝑡 (𝑠𝑡) = 0, then state 𝑠𝑡 can never be visited in the given MDP. Assumption 4.4.1

3Similar definition holds for 𝑛𝑠𝑡+1,𝑠𝑡,𝑎𝑡 .
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simply says 𝜇 have the right to explore all “accessible” states. This assumption is required for
the consistency of uniform convergence estimator since we have “sup𝜋∈Π” and is similar to the
standard concentration coefficient assumption made by [58, 3]. As a short comparison, offline
learning problems (e.g. offline policy optimization in [63]) only require 𝑑𝜇𝑡 (𝑠𝑡) > 0 for any state
𝑠𝑡 satisfies 𝑑𝜋⋆𝑡 (𝑠𝑡) > 0. Last but not least, even though our target policy class is deterministic,
by the above assumptions 𝜇 is always stochastic.

3.4 Method: Offline Policy Empirical Model Approximator

The method we use for doing OPE in uniform convergence is the offline policy empirical

model approximator (OPEMA). OPEMA uses off-policy data to build the empirical estimators
for both the transition dynamic and the expected reward and then substitute the related compo-
nents in real value function by its empirical counterparts. First recall for any target policy 𝜋,
by definition: 𝑣𝜋 =

∑𝐻
𝑡=1

∑

𝑠𝑡,𝑎𝑡
𝑑𝜋𝑡 (𝑠𝑡, 𝑎𝑡)𝑟𝑡(𝑠𝑡, 𝑎𝑡), where the marginal state-action transitions

satisfy 𝑑𝜋𝑡+1 = 𝑃 𝜋
𝑡+1𝑑

𝜋
𝑡 . OPEMA then directly construct empirical estimates for 𝑃𝑡+1(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡)

and 𝑟̂𝑡(𝑠𝑡, 𝑎𝑡) as:

𝑃𝑡+1(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡) =
∑𝑛

𝑖=1 𝟏[(𝑠
(𝑖)
𝑡+1, 𝑎

(𝑖)
𝑡 , 𝑠

(𝑖)
𝑡 ) = (𝑠𝑡+1, 𝑠𝑡, 𝑎𝑡)]

𝑛𝑠𝑡,𝑎𝑡
, 𝑟̂𝑡(𝑠𝑡, 𝑎𝑡) =

∑𝑛
𝑖=1 𝑟

(𝑖)
𝑡 𝟏[(𝑠

(𝑖)
𝑡 , 𝑎

(𝑖)
𝑡 ) = (𝑠𝑡, 𝑎𝑡)]

𝑛𝑠𝑡,𝑎𝑡
.

and 𝑃𝑡+1(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡) = 0 and 𝑟̂𝑡(𝑠𝑡, 𝑎𝑡) = 0 if 𝑛𝑠𝑡,𝑎𝑡 = 0 (recall 𝑛𝑠𝑡,𝑎𝑡 is the visitation frequency to
(𝑠𝑡, 𝑎𝑡) at time 𝑡) and then the estimates for state-action transition𝑃 𝜋

𝑡 is defined as: 𝑃 𝜋
𝑡 (𝑠𝑡+1, 𝑎𝑡+1|𝑠𝑡, 𝑎𝑡) =

𝑃𝑡(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡)𝜋(𝑎𝑡+1|𝑠𝑡+1).The initial distribution is also constructed using empirical estimator
𝑑𝜋1 (𝑠1) = 𝑛𝑠1∕𝑛. Based on the construction, the empirical marginal state-action transition fol-
lows 𝑑𝜋𝑡+1 = 𝑃 𝜋

𝑡+1𝑑
𝜋
𝑡 and the final estimator for 𝑣𝜋 is:

𝑣𝜋OPEMA =
𝐻
∑

𝑡=1

∑

𝑠𝑡,𝑎𝑡

𝑑𝜋𝑡 (𝑠𝑡, 𝑎𝑡)𝑟̂𝑡(𝑠𝑡, 𝑎𝑡). (3.1)
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OPEMA is model-based method as it uses plug-in estimators (𝑑𝜋𝑡 and 𝑟̂𝑡) for each model compo-
nents (𝑑𝜋𝑡 and 𝑟𝑡). Traditionally, the error of OPEMA is obtained via the simulation lemma [40],
with 𝑂(𝐻4𝑆2∕𝑑𝑚𝜖2)-episode complexity. Recent work in [21, 57, 64] reveals that there is an
importance sampling interpretation of OPEMA

𝑣𝜋OPEMA = 1
𝑛

𝑛
∑

𝑖=1

𝐻
∑

𝑡=1

𝑑𝜋(𝑠(𝑖)𝑡 )

𝑑𝜇𝑡 (𝑠
(𝑖)
𝑡 )
𝑟̂𝜋𝑡 (𝑠

(𝑖)), (3.2)

and the effectiveness of MIS of recent work partially explains why OPEMA could work, even
for the Uniform OPE problem.

3.5 Main Results for Uniform OPE

In this section, we present our results for uniform OPE problems. For brevity, we use 𝑣𝜋 to
denote 𝑣𝜋OPEMA in the rest of the presentattion. Proofs of all technical results are deferred to the
appendix. We start with the following Lemma:

Lemma 3.5.1 (martingale decomposition). For fixed 𝜋:

𝐻
∑

𝑡=1
⟨𝑑𝜋𝑡 − 𝑑

𝜋
𝑡 , 𝑟𝑡⟩ =

𝐻
∑

ℎ=2
⟨𝑉 𝜋

ℎ , (𝑇ℎ − 𝑇ℎ)𝑑
𝜋
ℎ−1⟩ + ⟨𝑉 𝜋

1 , 𝑑
𝜋
1 − 𝑑𝜋1 ⟩

where 𝑇ℎ+1 ∈ ℝ𝑆×(𝑆𝐴) be the one step transition matrix, i.e. 𝑇𝑠ℎ+1,(𝑠ℎ,𝑎ℎ) = 𝑃ℎ+1(𝑠ℎ+1|𝑠ℎ, 𝑎ℎ). the

inner product on the left hand side is taken w.r.t state-action and the inner product on the left

hand side is taken w.r.t state only. Proof can be found in Appendix B.

Remark 6. Note when the reward is deterministic, the left hand side is simply 𝑣𝜋 − 𝑣𝜋 , and

the right hand side has a martingale structure which enables the applicability of concentration

analysis that gives rise to the following theorems. Moreover, this decomposition is essentially

“primal-dual” formulation since the LHS can be viewed as the primal form through marginal
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distribution representation and RHS is the dual form with value function representation.

3.5.1 Uniform OPE for global policy class

We present the following result Theorem 3.5.1 for global policy class.

Theorem 3.5.1. Let Π consists of all policies, then there exists an absolute constant 𝑐 such that

if 𝑛 > 𝑐 ⋅ 1∕𝑑𝑚 ⋅ log(𝐻𝑆𝐴∕𝛿), then with probability 1 − 𝛿, we have:

sup
𝜋∈Π

|

|

𝑣𝜋 − 𝑣𝜋|
|

≤ 𝑐

⎛

⎜

⎜

⎜

⎝

√

√

√

√

𝐻4 log(𝐻𝑆𝐴
𝛿

)

𝑑𝑚 ⋅ 𝑛
+

√

𝐻4𝑆 log(𝑛𝐻𝑆𝐴)
𝑑𝑚 ⋅ 𝑛

⎞

⎟

⎟

⎟

⎠

.

Moreover, if failure probability 𝛿 < 𝑒−𝑆 , then above can be further bounded by 2𝑐
√

𝐻4

𝑑𝑚⋅𝑛
log( 𝑛𝐻𝑆𝐴

𝛿
).

The first term in the bound reflects the concentration of sup𝜋∈Π ||𝑣𝜋 − 𝑣𝜋|| around its mean,
via McDiarmid inequality. The second term is a bound of 𝔼[sup𝜋∈Π ||𝑣𝜋 − 𝑣𝜋||]. The analysis of
both terms rely on the Martingale decomposition from Lemma 3.5.1.

Our result improves over the simulation lemma by a factor of𝐻𝑆 but is sub-optimal by an-
other factor𝐻𝑆 compared to the lower bound (Theorem 3.5.4). In the small failure probability
regime ( 𝛿 < 𝑒−𝑆) we can get rid of the dependence on 𝑆 except for the implicit dependence
through 𝑑𝑚. This is meaningful since we usually consider deriving results with high confidence.

3.5.2 Uniform OPE for deterministic policies

The Martingale decomposition also allows us to derive a high-probability OPE bound via
a concentration argument, which complements the optimal bounds on mean square error from
[57].
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Lemma 3.5.2 (Convergence for fixed policy). Fix any policy 𝜋. Then there exists absolute

constants 𝑐, 𝑐1, 𝑐2 such that if 𝑛 > 𝑐 ⋅ 1∕𝑑𝑚 ⋅ log(𝐻𝑆𝐴∕𝛿), then with probability 1− 𝛿, we have:

|

|

𝑣𝜋 − 𝑣𝜋|
|

≤ 𝑐1

√

√

√

√

𝐻2 log( 𝑐2𝐻𝑆𝐴
𝛿

)

𝑛 ⋅ 𝑑𝑚
+ 𝑂̃

(

𝐻2
√

𝑆𝐴
𝑛 ⋅ 𝑑𝑚

)

.

Note if we absorb the higher order term, our result implies sample complexity of𝑂(𝐻2∕𝑑𝑚𝜖2)

for evaluating any fixed target policy 𝜋. Notice that the total number of deterministic policies is
𝐴𝐻𝑆 in our problem, a standard union bound over all deterministic policies yields the following
result.

Theorem 3.5.2. Let Π consists of all deterministic policies, then there exists absolute constants

𝑐, 𝑐1, 𝑐2 such that if 𝑛 > 𝑐 ⋅ 1∕𝑑𝑚 ⋅ log(𝐻𝑆𝐴∕𝛿), then with probability 1 − 𝛿, we have:

sup
𝜋∈Π

|

|

𝑣𝜋 − 𝑣𝜋|
|

≤ 𝑐1

√

√

√

√

𝐻3𝑆 log( 𝑐2𝐻𝑆𝐴
𝛿

)

𝑛 ⋅ 𝑑𝑚
+ 𝑂̃

(

𝐻3𝑆1.5𝐴0.5

𝑛 ⋅ 𝑑𝑚

)

.

Theorem 3.5.2 implies an episode complexity of 𝑂(𝐻3𝑆∕𝑑𝑚𝜖2), which is optimal in 𝐻 but
suboptimal by a factor of 𝑆. While the deterministic policy class seems restrictive, it could be
useful in many cases because the optimal policy is deterministic, and many exploration-bonus
based exploration methods use deterministic policy throughout.

3.5.3 Uniform OPE for the local (near empirically optimal) policy class

For the local (near empirically optimal) policy class, the following theorem obtains the
optimal episode complexity.

Theorem 3.5.3. Suppose 𝜖opt ≤
√

𝐻∕𝑆 and Π1 ∶= {𝜋 ∶ 𝑠.𝑡. ||𝑉 𝜋
𝑡 − 𝑉 𝜋⋆

𝑡 ||∞ ≤ 𝜖opt, ∀𝑡 =

1, ...,𝐻}. Then there exists constant 𝑐1, 𝑐2 such that for any 0 < 𝛿 < 1, when 𝑛 > 𝑐1𝐻2 log(𝐻𝑆𝐴∕𝛿)∕𝑑𝑚,
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we have with probability 1 − 𝛿,

sup
𝜋∈Π1

‖

‖

‖

𝑄̂𝜋
1 −𝑄

𝜋
1
‖

‖

‖∞
≤ 𝑐2

√

𝐻3 log(𝐻𝑆𝐴∕𝛿)
𝑛 ⋅ 𝑑𝑚

.

This uniform convergence result is presented with 𝑙∞ norm over (𝑠, 𝑎). A direct corollary is
sup𝜋∈Π1

‖

‖

‖

𝑉 𝜋
1 − 𝑉 𝜋

1
‖

‖

‖∞
achieves the same rate. Theorem 3.5.3 provides the sample complexity

of 𝑂(𝐻3 log(𝐻𝑆𝐴∕𝛿)∕𝑑𝑚𝜖2) and the dependence of all parameters are optimal up to the loga-
rithmic term. Note that our bound does not explicitly depend on 𝜖opt, which is an improvement
over agarwal2020model as they have an additional 𝑂(𝜖opt∕(1 − 𝛾)) error in the infinite horizon
setting. Besides, our assumption on 𝜖opt is mild since the required upper bound is proportional
to √

𝐻 . Lastly, this result implies a 𝑂(𝜖 + 𝜖opt)-optimal policy for offline/batch learning of the
optimal order𝑂(𝐻3 log(𝐻𝑆𝐴∕𝛿)∕𝑑𝑚𝜖2), which means statistical learning result enables offline
learning.

3.5.4 Information-theoretical lower bound

Finally, we present a fine-grained sample complexity lower bound of the uniform OPE prob-
lem that captures the dependence of all parameters including 𝑑𝑚.

Theorem 3.5.4 (Minimax lower bound for uniform OPE). For all 0 < 𝑑𝑚 ≤ 1
𝑆𝐴

. Let the class

of problems be

𝑑𝑚 ∶=
{

(𝜇,𝑀) ||
|

min
𝑡,𝑠𝑡,𝑎𝑡

𝑑𝜇𝑡 (𝑠𝑡, 𝑎𝑡) ≥ 𝑑𝑚
}

.

There exists universal constants 𝑐1, 𝑐2, 𝑐3, 𝑝 (with 𝐻,𝑆,𝐴 ≥ 𝑐1 and 0 < 𝜖 < 𝑐2) such that

inf
𝑣

sup
(𝜇,𝑀)∈𝑑𝑚

ℙ𝜇,𝑀

(

sup
𝜋∈Π

|𝑣𝜋 − 𝑣𝜋| ≥ 𝜖
)

≥ 𝑝

if 𝑛 ≤ 𝑐3𝐻3∕𝑑𝑚𝜖2. Here Π consists of all deterministic policies.
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The proof uses a reduction argument that shows if a stronger uniform OPE bound exists,
then it implies an algorithm that breaks an offline learning lower bound (Theorem B.6.2), which
itself is proven by embedding many stochastic multi-armed bandits problems in a family of hard
MDPs. Our construction is inspired by the MDPs in [65] and a personal communication with
Christopher Dann but involve substantial modifications to account for the differences in the
assumption about rewards. The part in which we obtain explicit dependence on 𝑑𝑚 is new and
it certifies that the offline learning (and thus uniform OPE) problem strictly more difficult than
their online counterpart.
On optimality. The above result provides the minimax lower bound of complexityΩ(𝐻3∕𝑑𝑚𝜖2).
As a comparison, Theorem 3.5.2 gives 𝑂(𝐻3𝑆∕𝑑𝑚𝜖2) is a factor of 𝑆 away from the lower
bound and Theorem 3.5.3 has the same rate of the lower bound up to logarithmic factor.

3.6 Main Results for Offline Learning

In this section we discuss the implication of our results on offline learning. As we discussed
earlier in the introduction, a uniform OPE bound of 𝜖 implies that the corresponding ERM
algorithm finds a 2𝜖-suboptimal policy. But it also implies that all other offline policy-learning
algorithms that are not ERM, we could gracefully decompose their error into optimization error
and statistical (generalization) error.

Theorem 3.6.1. Let 𝜋̂∗ = argmax𝜋 𝑣̂𝜋 — the empirically optimal policy. Let 𝜋̂ be any data-

dependent choice of policy such that 𝑣̂𝜋̂∗ − 𝑣̂𝜋̂ ≤ 𝜖opt, then. There is a universal constant 𝑐 such

that w.p. ≥ 1 − 𝛿

1. 𝑣𝜋∗ − 𝑣𝜋̂ ≤ 𝑐
√

𝐻4𝑆 log(𝐻𝑆𝐴∕𝛿)
𝑑𝑚⋅𝑛

+ 𝜖opt.

2. If 𝛿 < 𝑒−𝑆 , the bound improves to 𝑐
√

𝐻4𝑆 log(𝐻𝑆𝐴∕𝛿)
𝑑𝑚⋅𝑛

+ 𝜖opt. And if in addition 𝜋̂ is deter-

ministic, the bound further improves to 𝑐
√

𝐻3 min{𝐻,𝑆} log(𝐻𝑆𝐴∕𝛿)
𝑑𝑚⋅𝑛

+ 𝜖opt.
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3. If 𝜖opt ≤
√

𝐻∕𝑆 and that ||𝑉 𝜋̂
𝑡 − 𝑉 𝜋⋆

𝑡 ||∞ ≤ 𝜖opt, ∀𝑡 = 1, ...,𝐻 , then 𝑣𝜋∗ − 𝑣𝜋̂ ≤

𝑐
√

𝐻3 log(𝐻𝑆𝐴∕𝛿)
𝑑𝑚⋅𝑛

+ 𝜖opt.

Table 3.1: A comparison of related offline policy learning results.
Method/Analysis Setting Guarantee Sample complexity𝑏

[61] Generative model 𝜖 + 𝑂(𝜖opt∕(1 − 𝛾))-optimal 𝑂(𝑆𝐴∕(1 − 𝛾)3𝜖2)
[3, 4] ∞-horizon offline 𝜖-optimal policy 𝑂((1 − 𝛾)−6𝐶𝜇∕𝜖2)

[5] ∞-horizon offline 𝜖-optimal policy 𝑂((1 − 𝛾)−4𝐶𝜇∕𝜖2)
SIMPLEX for exact empirical optimal𝑎 𝐻-horizon offline 𝜖-optimal policy 𝑂(𝐻3∕𝑑𝑚𝜖2)

PI/VI for 𝜖opt-empirical optimal 𝐻-horizon offline (𝜖 + 𝜖opt)-optimal policy 𝑂(𝐻3∕𝑑𝑚𝜖2)
Minimax lower bound (Theorem B.6.2) 𝐻-horizon offline over class 𝑑𝑚 Ω(𝐻3∕𝑑𝑚𝜖2)

𝑎 PI/VI or SIMPLEX is not essential and can be replaced by any efficient empirical MDP solver.
𝑏 Episode complexity in 𝐻-horizon setting is comparable to step complexity in ∞-horizon setting because our

finite-horizon MDP is time-inhomogeneous. Informally, we can just take (1 − 𝛾)−1 ≍ 𝐻 and 𝐶𝜇 ≍ 1∕𝑑𝑚.

The third statement implies that all sufficiently accurate planning algorithms based on the
empirically estimated MDP are optimal. For example, we can run value iteration or policy
iteration to the point that 𝜖opt ≤ 𝑂(𝐻3∕𝑛𝑑𝑚).
Comparison to existing work. Previously no algorithm is known to achieve the optimal sample
complexity in the offline setting. Our result also applies to the related generative model setting
by replacing 1∕𝑑𝑚 with 𝑆𝐴, which avoids the data-splitting procedure usually encountered by
specific algorithm design [42]. The analogous policy-learning results In the generative model
setting [61, Theorem 1] , achieves a suboptimality of 𝑂̃((1 − 𝛾)−3𝑆𝐴∕𝑛 + (1 − 𝛾)−1𝜖opt) with
no additional assumption on 𝜖opt. Informally, if we replace (1 − 𝛾)−1 with 𝐻 , then our result
improves the bound from 𝐻𝜖opt to just 𝜖opt for 𝜖opt ≤

√

𝐻∕𝑆. These results are summarized in
Table 3.1.
Sparse MDP estimate. We highlight that the result does not require the estimated MDP to
be an accurate approximation in any sense. Recall that the true MDP has 𝑂(𝑆2) parameters
(ignoring the dependence on 𝐻,𝐴 and logarithmic terms), but our result is valid provided that
𝑛 = Ω̃(1∕𝑑𝑚) which is Ω(𝑆). This suggests that we may not even exhaustively visit all pairs to
state-transitions and that the estimator of 𝑃𝑡 is allowed to be zero in many coordinates.
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Optimal computational complexity. Lastly, from the computational perspective, we can lever-
age the best existing solutions for solving optimization 𝜋⋆ ∶= argmax𝜋∈Π𝑣𝜋 . For example, with
𝜖opt > 0, as explained by [61], value iteration ends in 𝑂(𝐻 log 𝜖−1opt) iteration and takes at most
𝑂(𝐻𝑆𝐴) time after the model has been estimated with one pass of the data (𝑂(𝑛𝐻) time). We
have a total computational complexity of 𝑂(𝐻4∕(𝑑𝑚𝜖2) +𝐻2𝑆𝐴 log(1∕𝜖)) time algorithm for
obtaining the 𝜖-suboptimal policy using 𝑛 = 𝑂(𝐻4∕(𝑑𝑚𝜖2) episodes. This is essentially optimal
because the leading term 𝐻4𝑆𝐴∕𝜖2 is required even to just process the data needed for the re-
sult to be information-theoretically possible. In comparison, the algorithm that obtains an exact
empirical optimal policy 𝜋⋆, the SIMPLEX policy iteration runs in time 𝑂(poly(𝐻,𝑆,𝐴, 𝑛))
[66].

3.7 An Overview of the Proof

Our uniform convergence analysis in Section 3.5.1, relies on creating an unbiased version of
𝑣OPEMA (which we call it 𝑣OPEMA) artificially and use concentration to guarantee 𝑣OPEMA is identi-
cal to 𝑣OPEMA in most situations. By doing so we can reduce our analysis from sup𝜋∈Π ||𝑣𝜋 − 𝑣𝜋||
to sup𝜋∈Π ||𝑣𝜋 − 𝑣𝜋||. Specifically, 𝑣𝜋 replaces 𝑃𝑡, 𝑟̂𝑡 in 𝑣𝜋 by its fictitious counterparts 𝑃𝑡, 𝑟̃𝑡,
defined as:

𝑟̃𝑡(𝑠𝑡, 𝑎𝑡) = 𝑟̂𝑡(𝑠𝑡, 𝑎𝑡)𝟏(𝐸𝑡) + 𝑟𝑡(𝑠𝑡, 𝑎𝑡)𝟏(𝐸𝑐
𝑡 ),

𝑃𝑡+1(⋅|𝑠𝑡, 𝑎𝑡) = 𝑃𝑡+1(⋅|𝑠𝑡, 𝑎𝑡)𝟏(𝐸𝑡) + 𝑃𝑡+1(⋅|𝑠𝑡, 𝑎𝑡)𝟏(𝐸𝑐
𝑡 ).

where 𝐸𝑡 denotes the event {𝑛𝑠𝑡,𝑎𝑡 ≥ 𝑛𝑑𝜇𝑡 (𝑠𝑡, 𝑎𝑡)∕2}. This is saying, if observation 𝑛𝑠𝑡,𝑎𝑡 is
large enough (𝐸𝑡 is true), we use 𝑃 ; otherwise we directly use 𝑃 instead. This track helps
dealing with out-of-sample state-action pairs. The next key is the martingale decomposition
(Lemma 3.5.1). On one hand, by using the structure of sup𝜋∈Π⟨𝑉 𝜋

ℎ , (𝑇ℎ − 𝑇ℎ)𝑑
𝜋
ℎ−1⟩ we can relax

it into a “Rademacher-type complexity” which corresponds to 𝑂̃(√𝐻4𝑆∕𝑑𝑚𝑛) term in Theo-
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rem 3.5.1. On the other hand, this decomposition has a natural martingale structure so martin-
gale concentration inequalities can be appropriately applied, i.e. Theorem 3.5.2. In addition,
each term ⟨𝑉 𝜋

ℎ , (𝑇ℎ − 𝑇ℎ)𝑑
𝜋
ℎ−1⟩ separates the non-stationary policy into two parts with empirical

distribution only depends on 𝜋1∶ℎ−1 that governs how the data “roll in” and the long term value
function 𝑉 𝜋

ℎ only depends on 𝜋ℎ∶𝐻 that governs how the reward “roll out”.
For local uniform convergence, by Bellman equations we can obtain a similar decomposition

on 𝑄-function:

𝑄̂𝜋
𝑡 −𝑄

𝜋
𝑡 =

𝐻
∑

ℎ=𝑡+1
Γ𝜋𝑡+1∶ℎ−1(𝑃ℎ − 𝑃ℎ)𝑉

𝜋
ℎ ,

where Γ𝜋𝑡∶ℎ =
∏ℎ

𝑖=𝑡 𝑃
𝜋
𝑖 is the multi-step state-action transition and Γ𝜋𝑡+1∶𝑡 ∶= 𝐼 . Since 𝜋 is any

policy in Π1 which may dependent on ′ so we cannot directly apply concentration inequalities
on (𝑃ℎ − 𝑃ℎ)𝑉 𝜋

ℎ . Instead, we overcome this hurdle by doing concentration on (𝑃ℎ − 𝑃ℎ)𝑉 𝜋∗
ℎ

since 𝑉 𝜋∗
ℎ and 𝑃ℎ are independent, and we connect 𝑉 𝜋∗

ℎ back to 𝑉 𝜋
ℎ by using they are 𝜖opt close

(Theorem 3.5.3). This idea helps avoiding the technicality of absorbing MDP used in [61] for
infinite horizon case because of our non-stationary transition setting. For the uniform con-
vergence lower bound, our analysis relies on reducing the problem to identifying 𝜖-optimal
policy and proving any algorithm that learns a 𝜖-optimal policy requires at least Ω(𝐻3∕𝑑𝑚𝜖2)

episodes in the non-stationary episodic setting. Previously, [65] proves the Ω(𝐻𝑆𝐴∕𝜖2) lower
bound with assumption ∑𝐻

𝑖=1 𝑟𝑖 ≤ 1. Our proof uses a modified version of their hard-to-learn
MDP instance to achieve the desired result. To produce extra 𝐻2 dependence, we leverage the
Assumption 3.3.1 that ∑𝐻

𝑖=1 𝑟𝑖 may be of order𝑂(𝐻). We only present the high-level ideas here
due the space constraint, detailed proofs are in Appendix B.
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3.8 Numerical Simulations

In this section we use a simple simulated environment to empirically demonstrate the correct
scaling in𝐻 . Direct evaluating sup𝜋∈Π |𝑣𝜋−𝑣𝜋| empirically is computationally infeasible since
the policy classes we considered here contains either 𝐴𝐻𝑆 or ∞ many policies. Instead, in the
experiment we will plot the sub-optimality gap |𝑣⋆ − 𝑣𝜋⋆| with 𝜋̂⋆ being the outputs of policy
planning algorithms. The sub-optimality gap is considered as a surrogate for the lower bound
of sup𝜋∈Π |𝑣𝜋 − 𝑣𝜋|. Concretely, the non-stationary MDP has 2 states 𝑠0, 𝑠1 and 2 actions 𝑎1, 𝑎2
where action 𝑎1 has probability 1 going back the current state and for action 𝑎2, there is one
state s.t. after choosing 𝑎2 the dynamic transitions to both states with equal probability 1

2
and

the other one has asymmetric probability assignment (1
4

and 3
4
). The transition after choosing

𝑎2 is changing over different time steps therefore the MDP is non-stationary and the change is
decided by a sequence of pseudo-random numbers (Figure 3.1 shows the transition kernel at a
particular time step). Moreover, to make the learning problem non-trivial we use non-stationary
rewards with 4 categories, i.e. 𝑟𝑡(𝑠, 𝑎) ∈ {1

4
, 2
4
, 3
4
, 1} and assignment of 𝑟𝑡(𝑠, 𝑎) for each value is

changing over time (see Section B in appendix for more details). Lastly, the logging policy in
Figure 3.2 is uniform with 𝜇𝑡(𝑎1|𝑠) = 𝜇𝑡(𝑎2|𝑠) =

1
2

for both states.
Figure 3.2 use a fixed number of episodes 𝑛 = 2048while varying𝐻 to examine the horizon

dependence for uniform OPE. We can see for fixed pointwise OPE with OPEMA (blue line),
|𝑣𝜋 − 𝑣𝜋| scales as 𝑂(

√

𝐻2) which reflects the bound of Lemma 3.5.2; for the model-based
planning, we ran both VI and PI until they converge to the empirical optimal policy 𝜋⋆. The
figure shows that for this MDP example |𝑣⋆ − 𝑣𝜋⋆| scales as 𝑂(√𝐻3∕𝑑𝑚) for fixed 𝑛 since it
is parallel to the reference magenta line. This fact empirically shows 𝑂(√𝐻3∕𝑑𝑚) bound is
required confirms the scaling of our theoretical results.
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Figure 3.1: A non-stationary MDP
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Figure 3.2: Log-log plot showing the depen-
dence on horizon of uniform OPE and point-
wise OPE via learning (|𝑣⋆ − 𝑣𝜋⋆|)

3.9 Discussion

The efficiency of model-based methods. There had been a long-lasting debate about model-
based vs model-free methods in RL. The model-based methods were considered inefficient
in both space and sample complexity, due to the need to represents the transition kernel in
𝑂(𝐻𝑆2𝐴). Most sample-efficient methods with the right dependence in𝑆 are model-free meth-
ods that directly represents and updates the 𝑄-function. Our analysis reveals that direct model-
based plug-in estimator is optimal in both pointwise and uniform prediction problems, which
helps to correct the commonly held misunderstanding that purely model plug-in estimator is
loose due to simulation lemma.
Simulation Lemma. Our result can be viewed as a strengthened version of the simulation

lemma [40] (see also the exposition in [41], which uses similar notations to us). The OPE
bound that can be obtained by applying the simulation lemma is

|𝑣𝜋 − 𝑣𝜋| ≤ 𝐻2 sup
𝑡,𝑠𝑡,𝑎𝑡

‖

‖

‖

𝑃 (⋅|𝑠𝑡, 𝑎𝑡) − 𝑃 (⋅|𝑠𝑡, 𝑎𝑡)
‖

‖

‖1
≤ 𝑂

(
√

𝐻4𝑆2

𝑛𝑑𝑚

)
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which implies an episode complexity4 of𝑂(𝐻4𝑆2∕𝑑𝑚𝜖2). The main limitation of the simulation
lemma is that it does not distinguish between pointwise / uniform convergence (and their bound
is in fact a uniform OPE bound), thus will suffer from a loose bound when applied to fixed
policies or data-dependent policies that qualify for the smaller policy classes that we considered.
For example, our Lemma 3.5.2 shows that for the same plug-in estimator, the bound improves
to 𝑂(𝐻2∕𝑑𝑚𝜖2) for pointwise OPE and Theorem 3.5.3 shows that we can knock out a factor
of 𝐻𝑆2 in the uniform convergence of near empirically optimal policies. Finally, there is a
factor of 𝑆improvement in the global policy class unconditionally. These savings can be used
as drop-in replacements to many instances where the simulation lemma is applied to improve
the parameters of the analysis therein.

This chapter represents the first systematic study of uniform convergence in offline policy
evaluation. We derive near optimal results for three representative policy classes. By viewing
offline policy evaluation from the uniform convergence perspective, we are able to unify two
central topics in offline RL, OPE and offline learning while establishing optimal rates in a subset
of these settings including the first rate-optimal offline reinforcement learning method. The
work focuses on the episodic tabular MDP with nonstationary transitions. Carrying out the
same analysis for the stationary transition case, infinite horizon case, as well as the linear MDP
setting is highly tractable with the techniques presented. Formalizing these is left as a future
direction of work. More generally, a natural complexity measure for the policy class of RL
remains elusive. We hope this work would inspire a more general statistical learning theory for
RL in the near future.

4See Section B for more calculation details.
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Chapter 4

Optimal Uniform Offline Policy

Evaluation in Time-Homogeneous

Tabular MDPs

4.1 Introduction

In the last chapter, which is the work in [7] initiates studies for offline RL from the new per-
spective of uniform convergence in OPE (uniform OPE for short) which unifies OPE and offline
learning tasks. Generally speaking, given a policy class Π and offline data with 𝑛 episodes, uni-
form OPE seeks to come up with OPE estimators 𝑉 𝜋

1 and 𝑄̂𝜋
1 that satisfy with high probability

sup
𝜋∈Π

||𝑄̂𝜋
1 −𝑄

𝜋
1 ||∞ < 𝜖. (4.1)

The task is to achieve (4.1) with the optimal episode complexity: the “minimal” number of
episodes 𝑛 needed as a function of 𝜖, failure probability 𝛿, the parameters of the MDP as well
as the behavior policy 𝜇 in the minimax sense.
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To further motivate the readers why uniform OPE is important, we state its relation to offline
learning. Indeed, uniform OPE in RL is analogous to uniform convergence of empirical risk
in statistical learning theory [67]. In supervised learning, it has been proven that almost all
learnable problems are learned by an (asymptotic) empirical risk minimizer (ERM) [55].

In offline RL, the natural counterpart would be the empirical optimal policy𝜋⋆ ∶= argmax𝜋 𝑉 𝜋
1

and with uniform OPE it further ensures 𝜋⋆ is a near optimal policy for offline learning task via
(element-wise):

0 ≤ 𝑄𝜋⋆
1 −𝑄𝜋⋆

1 = 𝑄𝜋⋆
1 − 𝑄̂𝜋⋆

1 + 𝑄̂𝜋⋆
1 − 𝑄̂𝜋⋆

1 + 𝑄̂𝜋⋆
1 −𝑄𝜋⋆

1

≤ |𝑄𝜋⋆
1 − 𝑄̂𝜋⋆

1 | + |𝑄̂𝜋⋆
1 −𝑄𝜋⋆

1 | ≤ 2 sup
𝜋

|𝑄𝜋
1 − 𝑄̂

𝜋
1 |.

(4.2)

On the policy evaluation side, there is often a need to evaluate the performance of a data-

dependent policy. Uniform OPE suffices for this purpose since it will allow us to evaluate poli-
cies selected by safe-policy improvements, proximal policy optimization, UCB-style exploration-
bonus as well as any heuristic exploration criteria (for further discussion and motivation, we
refer to [7] and the references therein).

In this chapter, we study the uniform OPE problem under the finite horizon episodic MDP

with stationary transitions and focus on the model-based approaches. Specifically, we consider
two representative class: global policy class Π𝑔 (contains all (deterministic) policies) and lo-
cal policy class Π𝑙 (contains policies near the empirical optimal one). We ask the following
question:

What is the statistical limit for global/local uniform OPE

and what is its connection to optimal offline learning?

We answer the first part by showing global uniform OPE requires a lower bound ofΩ(𝐻2𝑆∕𝑑𝑚𝜖2)1

1Here 𝑑𝑚 is the minimal marginal state-action occupancy, see Assumption 4.4.1.
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for the family of model-based approach and answer the second part by showing the model-
based offline plug-in estimator for local uniform OPE achieves 𝑂̃(𝐻2∕𝑑𝑚𝜖2) minimax rate and
it implies optimal offline learning. Importantly, the procedure of the model-based approach via
learning 𝜋⋆ through planning over the empirical MDP has a wider range of use in offline setting
as it naturally adapts to the new challenging tasks like offline task-agnostic learning and offline

reward-free learning. Specifically, we have the following contributions, stated as Theorems
and Corollaries in this chapter.

4.1.1 Optimal local uniform OPE

First and foremost, we derive the 𝑂̃(𝐻2∕𝑑𝑚𝜖2) optimal episode complexity for local uniform
OPE (Theorem 4.6.1) via the model-based method and this implies optimal offline learning
with the same rate (Corollary 4.6.1); this result strictly improves upon the Theorem 3.7 in [7]
(𝑂̃(𝐻3∕𝑑𝑚𝜖2)) by a factor 𝐻 in a non-trivial way through our new singleton-absorbing MDP

technique.

4.1.2 Information-theoretical characterization of the global uniform OPE

We explicitly characterize the statistical limit for the global uniform convergence by proving
global uniform OPE has minimax lower bound Ω(𝐻2𝑆∕𝑑𝑚𝜖2) (over the family of all model-
based approaches) (Theorem 4.5.1). This result answers the question left open in [7] that the
global uniform OPE is generically harder than local uniform OPE / offline learning due to the
required additional dependence on 𝑆, and such a difference will be dominant when the state
space is large.
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4.1.3 Generalize to the new offline settings

Critically, our model-based frameworks naturally generalize to the more challenging set-
tings like task-agnostic and reward-free settings. In particular, we establish the 𝑂̃(𝐻2 log(𝐾)∕𝑑𝑚𝜖2)

(Theorem 4.7.1) and 𝑂̃(𝐻2𝑆∕𝑑𝑚𝜖2) (Theorem 4.7.2) complexity for offline task-agnostic learn-

ing and offline reward-free learning respectively. Both results are new and optimal.

4.1.4 Singleton-absorbing MDP: a sharp analysis tool for episodic sta-

tionary transition case

On the technical end, our major contribution is the novel design of singleton-absorbing

MDP which handles the data-dependence hurdle encountered in the stationary transition set-
ting. To decouple the data-dependence between 𝑃𝑠,𝑎 − 𝑃𝑠,𝑎 and 𝑉 , the traditional 𝑠-absorbing
MDP proposed in [61] uses 𝑠-absorbing MDP 𝑉𝑠 (in lieu of 𝑉 ) for each state to recover the inde-
pendence. Further, to control the error propagation between 𝑉𝑠 and 𝑉 , standard 𝜖-net covering
were used such that the value of 𝑉𝑠 traverse the evenly-spaced grid over [0, (1 − 𝛾)−1] in their
infinite horizon setting. However, when applied to finite horizon case, there are 𝐻 different
quantities (𝑉1, ..., 𝑉𝐻 ) and the covering argument need to cover 𝐻-dimensional space [0,𝐻]𝐻 .
This result in a exponential-𝐻 covering number and the metric entropy blows up by a factor𝐻
which makes sample complexity suboptimal. In contrast, the singleton-absorbing MDP tech-
nique designs a single absorbing MDP that can also control the error propagation sufficiently
well. This sharp analysis tool negates the conjecture of [68] that absorbing MDP is not well
suitable for finite horizon stationary MDP (Section 4.6.3).
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4.1.5 Significance: Unifying different offline settings

In addition to studying the statistical limit of uniform OPE, this work solves the sample opti-
mality problems for local uniform OPE (Theorem 4.6.1), offline task-agnostic (Theorem 4.7.1)
and offline reward-free (Theorem 4.7.2) problems. If we take a deeper look, the algorithmic
frameworks utilized are all based on the model-based empirical MDP construction and plan-
ning. Therefore, as long as we can analyze such framework sharply (e.g. via novel absorbing-
MDP technique), then it is hopeful that our techniques can be generalized to tackle more so-
phisticated settings. On the other hand, things could be more tricky for online RL since the
exploration phases need to be specifically designed for each settings and there may not be one
general algorithmic pattern that dominates. Our findings reveal the model-based framework is
fundamental for offline RL as it subsumes settings like local uniform OPE, offline task-agnostic
and offline reward-free learning into the identical learning pattern. Considering these tasks were
originally proposed in the online regime under different contexts, such a unified view from the
model-based perspective offers a new angle for understanding offline RL.

4.2 Related Literature

Offline reinforcement learning. Information-theoretical considerations for offline RL are first
proposed for infinite horizon discounted setting via Fitted Q-Iteration (FQI) type function ap-
proximation algorithms [4, 3, 6, 5] which can be traced back to [58, 69, 70, 71]. Later, [6]
considered the offline RL under only the realizability assumption and [59] considers the offline
RL without good exploration. Those are all challenging problems but with they only provide
sub-optimal polynomial complexity in terms of (1 − 𝛾)−1.

For the finite horizon case, [7] first achieves 𝑂̃(𝐻3∕𝑑𝑚𝜖2) complexity under non-stationary
transition but their results cannot be further improved in the stationary setting. Concurrent
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with our work, a recently released work [8] designs the offline variance reduction algorithm for
achieving the optimal 𝑂̃(𝐻2∕𝑑𝑚𝜖2) rate. Their result is for a specific algorithm that uses data
splitting while our results work for any algorithms that returns a nearly empirically optimal
policy via a uniform convergence guarantee. Our results on the offline task-agnostic and the
reward-free settings are entirely new. Another concurrent work [9] considers the horizon-free
setting but does not provide uniform convergence guarantee. Even more recently, [10] considers
the single concentrability coefficient 𝐶⋆ ∶= max𝑠,𝑎

𝑑𝜋⋆ (𝑠,𝑎)
𝑑𝜇(𝑠,𝑎)

and obtains the sample complexity
𝑂̃[(1 − 𝛾)−5𝑆𝐶⋆∕𝜖2].

In the linear MDP case, [72] studies the pessimism-based algorithms for offline policy op-
timization under the weak compliance assumption and [73, 74] provide some negative results
(exponential lower bound) for offline RL with linear MDP structure.
Model-based approaches with minimaxity. It is known model-based methods are minimax-
optimal for online RL with regret 𝑂̃(√𝐻𝑆𝐴𝑇 ) (e.g. [39, 75]). For linear MDP, In the genera-
tive model setting, [61] shows model-based approach is still minimax optimal 𝑂̃((1−𝛾)−3𝑆𝐴∕𝜖2)
by using a 𝑠-absorbing MDP construction and this model-based technique is later reused for
other more general settings (e.g. Markov games [76] and linear MDPs [68]) and also for im-
proving the sample size barrier [77]. In offline RL, [78, 79] use model-based approaches for
continuous policy optimization and [7] uses the model-based methods to achieve 𝑂̃(𝐻3∕𝑑𝑚𝜖2)

complexity.
Task-agnostic and Reward-free problems. The reward-free problem is initiated in the online
RL [80] where the agent needs to efficiently explore an MDP environment without using any
reward information. It requires high probability guarantee for learning optimal policy for any

reward function, which is strictly stronger than the standard learning task that one only needs
to learn to optimal policy for a fixed reward. Later, [81, 82] establish the 𝑂̃(𝐻3𝑆2𝐴∕𝜖2) com-
plexity and [83] further tightens the dependence to 𝑂̃(𝐻2𝑆2𝐴∕𝜖2).2 Recently, [84] proposes

2We translate [83] their dimension-free result to 𝑂̃(𝐻2𝑆2𝐴∕𝜖2) under the standard assumption 𝑟 ∈ [0, 1].
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the task-agnostic setting where one needs to use exploration data to simultaneously learn 𝐾
tasks and provides a upper bound with complexity 𝑂̃(𝐻5𝑆𝐴 log(𝐾)∕𝜖2). For linear MDP set-
ting, [85] achieves the sample complexity 𝑂̃(𝑑3𝐻6∕𝜖2) and [86] considers such problem in the
online two-player Markov game. However, although these settings remain critical in the offline
regime, no statistical result has been formally derived so far.

4.3 The Setup for Time-Homogeneous MDPs

Episodic time-homogeneous reinforcement learning. A finite-horizon Markov Decision

Process (MDP) is denoted by a tuple 𝑀 = ( ,, 𝑃 , 𝑟,𝐻, 𝑑1), which is identical to the Defini-
tion in Section 3.3. The only exception is the time-homogeneous transition kernel that has the
form 𝑃 ∶  × ×  ↦ [0, 1] with 𝑃 (𝑠′|𝑠, 𝑎) representing the probability transition from state
𝑠, action 𝑎 to next state 𝑠′. This is different from non-stationary setting where 𝑃𝑡 can change
across different times. Besides, 𝑟 ∶  ×𝐴↦ ℝ is the expected reward function and given (𝑠, 𝑎)

which satisfies 0 ≤ 𝑟 ≤ 1.3 A policy is formulated by 𝜋 = (𝜋1, ..., 𝜋𝐻 ), where each 𝜋ℎ assigns
each state 𝑠 ∈  a probability distribution over actions, i.e. 𝜋ℎ ∶  → Δ() (where Δ() is the
set of probability distributions over the actions) ∀ℎ ∈ [𝐻]. We emphasize although transition
𝑃 is stationary, policy 𝜋 ∶= 𝜋1∶𝐻 itself can be non-stationary. An MDP together with a policy
𝜋 induces a random trajectory 𝑠1, 𝑎1, 𝑟1,… , 𝑠𝐻 , 𝑎𝐻 , 𝑟𝐻 , 𝑠𝐻+1 with the following data generating
process: 𝑠1 ∼ 𝑑1, 𝑎𝑡 ∼ 𝜋(⋅|𝑠𝑡), 𝑟𝑡 = 𝑟(𝑠𝑡, 𝑎𝑡), 𝑠𝑡+1 ∼ 𝑃 (⋅|𝑠𝑡, 𝑎𝑡),∀𝑡 ∈ [𝐻].

3Note here we assume mean reward function is known. It is widely-known that the randomness in the reward
has lower order influence on the error than the randomness in the transition 𝑃 in RL.
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𝑄-values and Bellman (optimality) equations. For any policy 𝜋 and any ℎ ∈ [𝐻], we
incorporate standard value function 𝑉 𝜋

ℎ (⋅) ∈ ℝ𝑆 and Q-value function 𝑄𝜋
ℎ(⋅, ⋅) ∈ ℝ𝑆×𝐴 as:

𝑉 𝜋
ℎ (𝑠) = 𝔼𝜋[

𝐻
∑

𝑡=ℎ
𝑟𝑡|𝑠ℎ = 𝑠], 𝑄𝜋

ℎ(𝑠, 𝑎) = 𝔼𝜋[
𝐻
∑

𝑡=ℎ
𝑟𝑡|𝑠ℎ, 𝑎ℎ = 𝑠, 𝑎], ∀𝑠, 𝑎 ∈  ,.

We always enumerate 𝑉 𝜋
ℎ , 𝑄

𝜋
ℎ as column vectors and the (𝑠, 𝑎)-th row of 𝑃 as the row vector

𝑃 (⋅|𝑠, 𝑎), then Bellman (optimality) equation follows ∀ℎ ∈ [𝐻]:

𝑄𝜋
ℎ(𝑠, 𝑎) = 𝑟(𝑠, 𝑎) + 𝑃 (⋅|𝑠, 𝑎)𝑉 𝜋

ℎ+1, 𝑉
𝜋
ℎ = 𝔼𝑎∼𝜋ℎ[𝑄

𝜋
ℎ]

𝑄⋆
ℎ (𝑠, 𝑎) = 𝑟(𝑠, 𝑎) + 𝑃 (⋅|𝑠, 𝑎)𝑉 ⋆

ℎ+1, 𝑉
⋆
ℎ = max

𝑎
𝑄⋆
ℎ (⋅, 𝑎)

The goal of RL is to find a policy 𝜋⋆ such that 𝑣𝜋 ∶= 𝔼𝜋
[

∑𝐻
𝑡=1 𝑟𝑡

]

is maximized, which is
equivalent to simultaneously maximize 𝑉 𝜋

1 (𝑠) (or 𝑄𝜋
1 (𝑠, 𝑎)) for all 𝑠 (or 𝑠, 𝑎) [12]. Therefore,

for a targeted accuracy 𝜖 > 0 it suffices to find a policy 𝜋alg such that ‖‖
‖

𝑄⋆
1 −𝑄𝜋alg

1
‖

‖

‖∞
≤ 𝜖.

Additional notations. We denote the per-step marginal state-action occupancy 𝑑𝜋𝑡 (𝑠, 𝑎) as:

𝑑𝜋𝑡 (𝑠, 𝑎) ∶= ℙ[𝑠𝑡 = 𝑠|𝑠1 ∼ 𝑑1, 𝜋] ⋅ 𝜋𝑡(𝑎|𝑠), (4.3)

which is the marginal state-action probability at time 𝑡. Moreover, we define state-action tran-
sition matrix 𝑃 𝜋ℎ ∈ ℝ𝑆𝐴×𝑆𝐴 with 𝑃 𝜋ℎ

(𝑠,𝑎),(𝑠′,𝑎′) = 𝑃 (𝑠′|𝑠, 𝑎)𝜋ℎ(𝑎′|𝑠′), note 𝜋ℎ is indexed by ℎ since
policy 𝜋1∶𝐻 can be non-stationary.

Offline setting. The offline RL assumes that episodes  =
{(

𝑠(𝑖)𝑡 , 𝑎
(𝑖)
𝑡 , 𝑟

(𝑖)
𝑡 , 𝑠

(𝑖)
𝑡+1

)}𝑡∈[𝐻]

𝑖∈[𝑛]
are

rolling from some behavior policy 𝜇 a priori. In particular, we cannot change 𝜇 and do not
assume the functional knowledge of 𝜇.
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Model-based RL. We focus our attention on model-based methods, which has witnessed nu-
merous successes (both theoretically and empirically) and is one of the most critical components
of theoretical RL as a whole (as introduced in Section A.1). To make the presentation precise,
we define the following:

Definition 4.3.1. Model-based RL: Solving RL problems (either learning or evaluation) through

learning / modeling transition dynamic 𝑃 .

We emphasize that the model-based approaches in general (e.g. [87, 88, 79]) follow the
procedure of modeling the full MDP 𝑀 = ( ,, 𝑃 , 𝑟,𝐻, 𝑑1) instead of only the transition 𝑃 .
Nevertheless, we (by convention) assume the mean reward function is known and the initial
state distribution 𝑑1 will not affect the choice of optimal policy 𝜋⋆. Thus, Definition 4.3.1
suffices for our purposes.

4.4 Uniform convergence in offline RL Recap

We study offline RL from uniform convergence offline policy evaluation (uniform OPE)
perspective. Concretely, uniform OPE extends the point-wise (fixed target policy) OPE to a
family of policies Π. The goal is to construct estimator 𝑄̂𝜋

1 such that sup𝜋∈Π ‖‖
‖

𝑄𝜋
1 − 𝑄̂

𝜋
1
‖

‖

‖

< 𝜖,
which automatically ensures point-wise OPE for any 𝜋 ∈ Π. More importantly, uniform OPE
directly implies offline learning when Π contains optimal policies. Let 𝜋⋆ ∶= argmax𝜋 𝑉 𝜋

1 be
the empirical optimal policy for some OPE estimator 𝑣𝜋 , then by (4.2) 𝜋⋆ is a near-optimal
policy given uniform OPE guarantee.

We consider the following two policy classes that are of the interests and explain why they
should be considered.

Definition 4.4.1 (The global (deterministic) policy class.). The global policy class Π𝑔 consists

of all the non-stationary (deterministic) policies.
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It is well-known [12] there exists at least one deterministic policy that is optimal, therefore
Π𝑔 is sufficiently rich for evaluating algorithms that aim at learning the optimal policy.
Definition 4.4.2 (The local policy class). Given empirical MDP 𝑀 and 𝑉 𝜋

ℎ is the value under

𝑀 . Let 𝜋⋆ ∶= argmax𝜋 𝑉 𝜋
1 be the empirical optimal policy, then the local policy class Π𝑙 is

defined as:

Π𝑙 ∶=
{

𝜋 ∶ s.t. ‖

‖

‖

𝑉 𝜋
ℎ − 𝑉 𝜋⋆

ℎ
‖

‖

‖∞
≤ 𝜖opt ,∀ℎ ∈ [𝐻]

}

where 𝜖opt ≥ 0 is a parameter. This class characterizes all the policies in the neighborhood of

empirical optimal policy.

In above 𝑀 transition kernel uses 𝑃 in lieu of 𝑃 where 𝑃 (𝑠′|𝑠, 𝑎) = 𝑛𝑠′ ,𝑠,𝑎
𝑛𝑠,𝑎

if 𝑛𝑠,𝑎 > 0 and
1∕𝑆 otherwise.4 Moreover, once given 𝑃 , it is efficient to obtain 𝜋⋆ using Value/Policy Iter-
ation, therefore it is more practical to consider the neighborhood of 𝜋⋆ (instead of 𝜋⋆) since
practitioners can use data  to really check Π𝑙 whenever needed.

Next we present the regularity assumption required for uniform convergence OPE problem.
Assumption 4.4.1 (Exploration requirement). Logging policy 𝜇 obeys that min𝑠 𝑑

𝜇
𝑡 (𝑠) > 0,

for any state 𝑠 that is “accessible”. Moreover, we define the quantity 𝑑𝑚 ∶= min{𝑑𝜇𝑡 (𝑠, 𝑎) ∶

𝑑𝜇𝑡 (𝑠, 𝑎) > 0} (recall 𝑑𝜇𝑡 (𝑠, 𝑎) in (4.3)) to be the minimal marginal state-action probability.

This is identical to 4.4.1. State 𝑠 is “accessible” means there exists a policy 𝜋 so that
𝑑𝜋(𝑠) > 0. If for any policy 𝜋 we always have 𝑑𝜋(𝑠) = 0, then state 𝑠 can never be visited
in the given MDP. Assumption 4.4.1 says 𝜇 have the right to explore all “accessible” states.
Assumption 4.4.1 is the minimal assumption needed for the consistency of uniform OPE task
and is similar to concentrability coefficient data coverage assumption [58] made for function
approximation learning. This assumption can be potentially relaxed for pure offline learning
problems, e.g. [63, 10], where they only require 𝑑𝜇(𝑠)(𝑑𝜇(𝑠, 𝑎)) > 0 for any state 𝑠 (𝑠, 𝑎) satis-
fies 𝑑𝜋⋆(𝑠)(𝑑𝜋⋆(𝑠, 𝑎)) > 0.

4Here 𝑛𝑠,𝑎 is the number of pair (𝑠, 𝑎) being visited among 𝑛 episodes. 𝑛𝑠′,𝑠,𝑎 is defined similarly.
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4.5 Statistical Hardness for Model-based Global Uniform OPE

From (4.2) and Definition 4.4.1, it is clear the global uniform OPE implies offline RL, there-
fore it is natural to wonder whether they just are “the same task" (their sample complexities have
the same minimax rates). If this conjecture is true, then deriving sample efficient global OPE
method is just as important as deriving efficient offline learning algorithm (plus the additional
benefit of evaluating data-dependent algorithms)! [7] proves the 𝑂̃(𝐻3𝑆∕𝑑𝑚𝜖2) upper bound
and Ω(𝐻3∕𝑑𝑚𝜖2) lower bound for global uniform OPE, but it is unclear whether the additional
𝑆 is essential. We answer the question affirmatively by providing a tight lower bound result
with a concise proof to show no model-based algorithm can surpass Ω(𝑆∕𝑑𝑚𝜖2) information-
theoretical limit.

Theorem 4.5.1 (Minimax lower bound for global uniform OPE). Let 𝑑𝑚 be a parameter such

that 0 < 𝑑𝑚 ≤ 1
𝑆𝐴

. Let the problem class be 𝑑𝑚 ∶=
{

(𝜇,𝑀) ∣ min𝑡,𝑠𝑡,𝑎𝑡 𝑑
𝜇
𝑡

(

𝑠𝑡, 𝑎𝑡
)

≥ 𝑑𝑚
}

.

Then there exists universal constants 𝑐, 𝐶, 𝑝 > 0 such that: for any 𝑛 ≥ 𝑐𝑆∕𝑑𝑚 ⋅ log(𝑆𝐴𝑝),

inf
𝑄̂1,mb

sup
𝑑𝑚

ℙ𝜇,𝑀

(

sup
𝜋∈Π𝑔

‖

‖

‖

𝑄̂𝜋
1,mb −𝑄

𝜋
1
‖

‖

‖∞
≥ 𝐶

√

𝐻2𝑆
𝑛𝑑𝑚

)

≥ 𝑝,

where 𝑄̂1,mb is the output of any model-based algorithm and Π𝑔 is defined in Definition 4.4.1.

By setting 𝜖 ∶=
√

𝐻2𝑆
𝑛𝑑𝑚

, Theorem 4.5.1 establishes the global uniform convergence lower
bound of Ω(𝐻2𝑆∕𝑑𝑚𝜖2) over model-based methods, which builds the hard statistical threshold
between the global uniform OPE and the local uniform OPE tasks by a factor of 𝑆 since the
local case has achievable 𝑂̃(1∕𝑑𝑚𝜖2) rate on the dependence for state-actions. This result also
reveals the global uniform convergence bound in [7] (𝑂̃(𝐻3𝑆∕𝑑𝑚𝜖2)) is essentially minimax
rate-optimal for their non-stationary setting5 and complements the story on the optimality be-

5To be rigorous, we remark that it is rate-optimal since for the non-stationary setting the dependence for horizon
is higher by a factor 𝐻 .
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havior for global uniform OPE. Moreover, from the generative model view the lower bound
degenerates to 𝑆∕𝑑𝑚𝜖2 ≈ Θ(𝑆2𝐴∕𝜖2) which is linear in the model size 𝑆2𝐴. This means in
order to achieve global uniform convergence any algorithm needs to estimate each coordinate
of transition kernel 𝑃 (𝑠′|𝑠, 𝑎) accurately. We now provide a brief sketch of the proof with the
full proof being deferred to Appendix C.

Proof: [Proof Sketch] We only explain the case where 𝐻 = 2 in this proof sketch. Our
proof relies on the following novel reduction to 𝑙1 density estimation

sup
𝜋∈Π𝑔

‖

‖

‖

𝑄̂𝜋
1 −𝑄

𝜋
1
‖

‖

‖∞
≥ sup

𝑠,𝑎

1
2
‖

‖

‖

𝑃 (⋅|𝑠, 𝑎) − 𝑃 (⋅|𝑠, 𝑎)‖‖
‖1

and leverages the Minimax rate for estimating discrete distribution under 𝑙1 loss is 𝑂(√𝑆∕𝑛𝑠,𝑎)
[89]. Concretely, by Definition 4.3.1, let 𝑃 be the learned transition by any arbitrary model-
based method. Since we assume 𝑟 is known and by convention 𝑄𝜋

𝐻+1 = 0 for any 𝜋, then by
Bellman equation

𝑄̂𝜋
ℎ = 𝑟ℎ + 𝑃 𝜋ℎ+1𝑄̂𝜋

ℎ+1, ∀ℎ ∈ [𝐻].

In particular, 𝑄̂𝜋
𝐻+1 = 𝑄𝜋

𝐻+1 = 0, and this implies 𝑄̂𝜋
𝐻 = 𝑄𝜋

𝐻 = 𝑟𝐻 . Now, again by definition
of Bellman equation 𝑄̂𝜋

𝐻−1 = 𝑟𝐻−1 + 𝑃 𝜋𝐻 𝑄̂𝜋
𝐻 = 𝑟𝐻−1 + 𝑃 𝜋𝐻 𝑟𝐻 and 𝑄𝜋

𝐻−1 = 𝑟𝐻−1 + 𝑃 𝜋𝐻 𝑟𝐻 ,
therefore (recall 𝐻 = 2 and note 𝑟𝐻 ∈ ℝ𝑆⋅𝐴, 𝑟𝜋𝐻𝐻 ∈ ℝ𝑆 )

sup
𝜋∈Π𝑔

‖

‖

‖

𝑄̂𝜋
𝐻−1 −𝑄

𝜋
𝐻−1

‖

‖

‖∞
= sup

𝜋∈Π𝑔

‖

‖

‖

‖

(

𝑃 𝜋𝐻 − 𝑃 𝜋𝐻
)

𝑟𝐻
‖

‖

‖

‖∞

= sup
𝜋∈Π𝑔

‖

‖

‖

‖

(

𝑃 − 𝑃
)

𝑟𝜋𝐻𝐻
‖

‖

‖

‖∞
≈ sup

𝑟∈{0,1}𝑆

‖

‖

‖

‖

(

𝑃 − 𝑃
)

𝑟
‖

‖

‖

‖∞

≥ sup
𝑠,𝑎

1
2
‖

‖

‖

𝑃 (⋅|𝑠, 𝑎) − 𝑃 (⋅|𝑠, 𝑎)‖‖
‖1

≥ 𝑂(
√

𝑆∕𝑛𝑠,𝑎);

Lastly, using exponential tail bound to obtain 𝑂(√𝑆∕𝑛𝑠,𝑎) ≳ 𝑂(
√

𝑆∕𝑛𝑑𝑚) with high probabil-
ity. See Appendix C for the full proof for the general 𝐻 .
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4.6 Optimal local uniform OPE via model-based plug-in method

Global uniform OPE is intrinsically harder than the offline learning problem due to the addi-
tional state-space dependence and such a gap will amplify when𝑆 is (exponentially) large. This
motivates us to switch to the local uniform convergence regime that enables optimal learning
but also has sub-linear state-action size 𝑂̃(1∕𝑑𝑚) in the policy evaluation. [7] Theorem 3.7 first
obtains the 𝑂̃(𝐻3∕𝑑𝑚𝜖2) local uniform convergence for Π𝑙 (recall Definition 4.4.2) and also ob-
tains the same rate for the learning task. Unfortunately, their technique cannot further reduces
the dependence of 𝐻 for stationary transition case. In this section we show the model-based
plug-in approach ensures optimal local uniform OPE and further implies optimal offline learn-
ing with episode complexity 𝑂̃(𝐻2∕𝑑𝑚𝜖2). To this end, we design the new singleton-absorbing

MDP to handle the challenge in the stationary transition setting, which uses the absorbing MDP
with one single 𝐻-dimensional reference point and is our major technical contribution. The
singleton-absorbing MDP technique avoids the exponential 𝐻 cover used in [68] and answers
their conjecture that absorbing MDP is not well suitable for finite horizon stationary MDP.6

4.6.1 Model-based Offline Plug-in Estimator

Recall 𝑛𝑠,𝑎 ∶= ∑𝑛
𝑖=1

∑𝐻
ℎ=1 𝟏[𝑠

(𝑖)
ℎ , 𝑎

(𝑖)
ℎ = 𝑠, 𝑎] be the total counts that visit (𝑠, 𝑎) pair, then the

model-based offline plug-in estimator constructs estimator 𝑃 as:

𝑃 (𝑠′|𝑠, 𝑎) =
∑𝑛

𝑖=1
∑𝐻

ℎ=1 𝟏[(𝑠
(𝑖)
ℎ+1, 𝑎

(𝑖)
ℎ , 𝑠

(𝑖)
ℎ ) = (𝑠′, 𝑠, 𝑎)]

𝑛𝑠,𝑎
,

if 𝑛𝑠,𝑎 > 0 and 𝑃 (𝑠′|𝑠, 𝑎) = 1
𝑆

if 𝑛𝑠,𝑎 = 0. As a consequence, the estimators 𝑄̂𝜋
ℎ, 𝑉

𝜋
ℎ are computed

as:
𝑄̂𝜋
ℎ = 𝑟 + 𝑃 𝜋ℎ+1𝑄̂𝜋

ℎ+1 = 𝑟 + 𝑃𝑉 𝜋
ℎ+1,

6See their Section 7, first bullet point for a discussion.
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with the initial distribution 𝑑1(𝑠) = 𝑛𝑠∕𝑛. Under the above setting, we can define the empirical
Bellman optimality equations (as well as the population version for completeness) as ∀𝑠 ∈

 , ℎ ∈ [𝐻]:

𝑉 ⋆
ℎ (𝑠) = max

𝑎

{

𝑟(𝑠, 𝑎) + 𝑃 (⋅|𝑠, 𝑎)𝑉 ⋆
ℎ+1

}

,

𝑉 ⋆
ℎ (𝑠) = max

𝑎

{

𝑟(𝑠, 𝑎) + 𝑃 (⋅|𝑠, 𝑎)𝑉 ⋆
ℎ+1

}

.

Now we can state our local uniform OPE result with this construction.

4.6.2 Main results for local uniform OPE and offline learning

Recall 𝜋⋆ ∶= argmax𝜋 𝑉 𝜋
1 is the empirical optimal policy and the local policy class Π𝑙 ∶=

{𝜋 ∶ s.t. ‖

‖

‖

𝑉 𝜋
ℎ − 𝑉 𝜋⋆

ℎ
‖

‖

‖∞
≤ 𝜖opt ,∀ℎ ∈ [𝐻]}.

Theorem 4.6.1 (optimal local uniform OPE). Let 𝜖opt ≤
√

𝐻∕𝑆 and denote 𝜄 = log(𝐻𝑆𝐴∕𝛿).

For any 𝛿 ∈ [0, 1], there exists universal constants 𝑐, 𝐶 such that when 𝑛 > 𝑐𝐻 ⋅log(𝐻𝑆𝐴∕𝛿)∕𝑑𝑚,

with probability 1 − 𝛿,

sup
𝜋∈Π𝑙

‖

‖

‖

𝑄̂𝜋
1 −𝑄

𝜋
1
‖

‖

‖∞
≤ 𝐶

[√

𝐻2𝜄
𝑛𝑑𝑚

+ 𝐻2.5𝑆0.5𝜄
𝑛𝑑𝑚

]

.

Theorem 4.6.1 establishes the 𝑂̃(𝐻2∕𝑑𝑚𝜖2) complexity bound and directly implies the up-
per bound for sup𝜋∈Π𝑙 ||𝑉 𝜋

1 − 𝑉 𝜋
1 ||∞ with the same rate. This result improves the local uniform

convergence rate 𝑂̃(𝐻3∕𝑑𝑚𝜖2) in [7] (Theorem 3.7) by a factor of 𝐻 and is near-minimax opti-
mal (up to the logarithmic factor). Such result is first achieved by our novel singleton absorbing

MDP technique. We explain this technique in detail in the next section.
On the other hand, characterizing policy class through the distance in value (like Π𝑙) is more

flexible than characterizing the distance between policies themselves (e.g. via total variation).
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Figure 4.1: Related comparisons of sample complexities for offline RL
Result/Method Setting Type Complexity Uniform guarantee?

[3] ∞-horizon FQI variants 𝑂̃((1 − 𝛾)−6𝛽𝜇∕𝜖2) No
FQI [4] ∞-horizon FQI variants 𝑂̃((1 − 𝛾)−6𝐶∕𝜖2) No

MSBO/MABO [5] ∞-horizon FQI variants 𝑂((1 − 𝛾)−4𝐶𝜇∕𝜖2) No
OPEMA [7] 𝐻-horizon Non-splitting 𝑂(𝐻3∕𝑑𝑚𝜖2)

√

𝐻∕𝑆-local uniform
OPDVR [8] 𝐻-horizon Data splitting 𝑂(𝐻2∕𝑑𝑚𝜖2) No

Model-based Plug-in (Corollary 4.6.1) 𝐻-horizon Non-splitting 𝑂(𝐻2∕𝑑𝑚𝜖2)
√

𝐻∕𝑆-local uniform
Task-Agnostic (Theorem 4.7.1) 𝐻-horizon Non-splitting 𝑂(𝐻2 log(𝐾)∕𝑑𝑚𝜖2) —
Reward-Free (Theorem 4.7.2) 𝐻-horizon Non-splitting 𝑂(𝐻2𝑆∕𝑑𝑚𝜖2) —

∗ 𝐾 is the number of tasks for Task-agnostic setting and 𝛽𝜇, 𝐶 and 1∕𝑑𝑚 are data coverage parameters that
measure the state-action dependence and are qualitative similar under their respective assumptions.

This is because: if two policies are “close”, then their values are also similar; but the reverse may
not be true since two very different policies could possibly generate similar values. Therefore
the consideration of Π𝑙 is generic and conceptually reflects the fundamental principle of RL: as
long as two policies yield the same value, they are considered “equally good”, no matter how
different they are.7

Most importantly, Theorem 4.6.1 guarantees near-minimax optimal offline learning:

Corollary 4.6.1 (optimal offline learning). If 𝜖opt ≤
√

𝐻∕𝑆 and that sup𝑡 ||𝑉 𝜋
𝑡 −𝑉

𝜋⋆
𝑡 ||∞ ≤ 𝜖opt ,

when 𝑛 > 𝑂(𝐻 ⋅ 𝜄∕𝑑𝑚), then with probability 1 − 𝛿, element-wisely,

𝑉 ⋆
1 − 𝑉 𝜋

1 ≤ 𝐶
[

√

𝐻2𝜄
𝑛𝑑𝑚

+ 𝐻2.5𝑆0.5𝜄
𝑛𝑑𝑚

]

𝟏 + 𝜖opt 𝟏.

Corollary 4.6.1 first establishes the minimax rate for offline learning for any policy 𝜋 with
the measurable gap 𝜖opt ≤

√

𝐻∕𝑆. This extends the standard concept of offline learning by
allowing any empirical planning algorithm (e.g. VI/PI) to find an inexact 𝜋 as an (𝑂̃√𝐻2∕𝑛𝑑𝑚+

𝜖opt )-optimal policy (instead of finding exact 𝜋⋆). The use of inexact 𝜋 could encourage early
stopping (e.g. for VI/PI) therefore saves computational iterations. Besides, we leverage full data
to construct empirical MDP for planning and, on the contrary, [8] uses data-splitting (split data

7We recognize that in the specific settings (e.g. safe policy improvement) some of the policies that yield high
values are not feasible. These considerations are beyond the scope of this paper.
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into mini-batches and only apply each mini-batch at each specific iteration) to enable Variance
Reduction technique, which could cause inefficient data use for the practical purpose. By the
following lower bound result from [8], our Corollary 4.6.1 is near minimax optimal.

Theorem 4.6.2 (Theorem 4.2. [8]). Let 𝑑𝑚 be the same as Theorem 4.5.1. There exists uni-

versal constants 𝑐1, 𝑐2, 𝑐, 𝑝 (with𝐻,𝑆,𝐴 ≥ 𝑐1 and 0 < 𝜖 < 𝑐2) such that when 𝑛 ≤ 𝑐𝐻2∕𝑑𝑚𝜖2,8

inf
𝑉
𝜋𝑎𝑙𝑔
1

sup
(𝜇,𝑀)∈𝑑𝑚

ℙ𝜇,𝑀
(

||𝑉 ⋆
1 − 𝑉 𝜋𝑎𝑙𝑔

1 ||∞ ≥ 𝜖
)

≥ 𝑝.

In the rest of the section, we briefly explain the main ideas needed for the proof by intro-
ducing the singleton-absorbing MDP technique, and the full proofs of Theorem 4.6.1, Corol-
lary 4.6.1 are given in Appendix C.

4.6.3 Singleton absorbing MDP for finite horizon MDP

For the ease of illustration, we explain our idea via bounding ||𝑄̂𝜋⋆
ℎ − 𝑄𝜋⋆

ℎ ||∞ (instead of
sup𝜋∈Π𝑙 ||𝑄̂

𝜋
1 − 𝑄𝜋

1 ||∞) and choose related quantity 𝜋⋆ (instead of 𝜋) and 𝑉 ⋆
ℎ (instead of 𝑉 𝜋

ℎ )
to discuss. Essentially, the key challenge in obtaining the optimal dependence in stationary
setting is the need to decouple the dependence between 𝑃 −𝑃 and 𝑉 ⋆

ℎ as we aggregate all data
for constructing both 𝑃 and 𝑉 ⋆

ℎ . This issue is not encountered in the non-stationary setting in
general due to the flexibility to estimate different transition 𝑃𝑡 at each time [7] and 𝑃𝑡 and 𝑉 ⋆

𝑡+1

preserve conditional independence. However, when confined to stationary case, their complex
𝑂̃(𝐻3∕𝑑𝑚𝜖2) becomes sub-optimal. Moreover, the direct use of 𝑠-absorbing MDP in [61] does
not yield tight bounds for the finite horizon stationary setting, as it requires 𝑠-absorbing MDPs
with𝐻-dimensional fine-grid cover to make sure 𝑉 ⋆

ℎ is close to one of the elements in the cover
(which has size ≈ 𝐻𝐻 and it is not optimal [68]). We overcome this hurdle by choosing only

8The original Theorem uses 𝑣⋆ but we use 𝑉 ⋆
1 here. It does not matter since we can manually add a default

state at the beginning of the MDP and obtain the result for our version.
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one delicate absorbing MDP to approximate 𝑉 ⋆
ℎ which will not incur additional dependence on

horizon𝐻 caused by the union bound. We begin with the general definition of absorbing MDP
initialized in [61] and then introduce the singleton absorbing MDP.

Standard 𝑠-absorbing MDP in the finite horizon setting. The general 𝑠-absorbing MDP is
defined as follows: for a fixed state 𝑠 and a sequence {𝑢𝑡}𝐻𝑡=1, MDP 𝑀𝑠,{𝑢𝑡}𝐻𝑡=1

is identical to 𝑀
for all states except 𝑠, and state 𝑠 is absorbing in the sense 𝑃𝑀𝑠,{𝑢𝑡}𝐻𝑡=1

(𝑠|𝑠, 𝑎) = 1 for all 𝑎, and the
instantaneous reward at time 𝑡 is 𝑟𝑡(𝑠, 𝑎) = 𝑢𝑡 for all 𝑎 ∈ , 𝑡 ∈ [𝐻]. For convenience, we use
the shorthand notation 𝑉 𝜋

{𝑠,𝑢𝑡}
to denote 𝑉 𝜋

𝑠,𝑀𝑠,{𝑢𝑡}𝐻𝑡=1

and similarly for 𝑄𝑡, 𝑟 and transition 𝑃 . Also,
𝑉 ⋆
{𝑠,𝑢𝑡}

(𝑄⋆
{𝑠,𝑢𝑡}

) is the optimal value under 𝑀𝑠,{𝑢𝑡}𝐻𝑡=1
.

Before defining singleton absorbing MDP, we first present the following Lemma 4.6.1 and
Lemma 4.6.2 which support the our design.

Lemma 4.6.1. 𝑉 ⋆
𝑡 (𝑠) − 𝑉

⋆
𝑡+1(𝑠) ≥ 0, ∀𝑠 ∈  , 𝑡 ∈ [𝐻].

Lemma 4.6.2. Fix a state 𝑠. If we choose 𝑢⋆𝑡 ∶= 𝑉 ⋆
𝑡 (𝑠) − 𝑉

⋆
𝑡+1(𝑠), then we have the following

vector form equation

𝑉 ⋆
ℎ,{𝑠,𝑢⋆𝑡 }

= 𝑉 ⋆
ℎ,𝑀 ∀ℎ ∈ [𝐻].

Similarly, if we choose 𝑢̂⋆𝑡 ∶= 𝑉 ⋆
𝑡 (𝑠) − 𝑉

⋆
𝑡+1(𝑠), then 𝑉 ⋆

ℎ,{𝑠,𝑢̂⋆𝑡 }
= 𝑉 ⋆

ℎ,𝑀 , ∀ℎ ∈ [𝐻].

The proofs are deferred to Appendix C. Note by Lemma 4.6.1 the assignment of 𝑢⋆𝑡 (∶=
𝑟𝑡,{𝑠,𝑢⋆𝑡 }) is well-defined. Lemma 4.6.2 is crucial since, under the specification of 𝑢⋆𝑡 , the optimal
value in𝑀𝑠,{𝑢⋆𝑡 }

𝐻
𝑡=1

is identical to the optimal value in original𝑀 . Based on these, we define the
following:

Definition 4.6.1 (Singleton-absorbing MDP). For each state 𝑠, the singleton-absorbing MDP

is chosen to be 𝑀𝑠,{𝑢⋆𝑡 }
𝐻
𝑡=1

, where 𝑢⋆𝑡 ∶= 𝑉 ⋆
𝑡 (𝑠) − 𝑉

⋆
𝑡+1(𝑠) for all 𝑡 ∈ [𝐻].
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Using Definition 4.6.1, for each (𝑠, 𝑎) row the term (𝑃𝑠,𝑎 − 𝑃𝑠,𝑎)𝑉 ⋆
ℎ can be substituted by

(𝑃𝑠,𝑎−𝑃𝑠,𝑎)𝑉 ⋆
ℎ,{𝑠,𝑢⋆𝑡 }

, where 𝑃𝑠,𝑎 and 𝑉 ⋆
ℎ,{𝑠,𝑢⋆𝑡 }

are independent by construction and Bernstein con-
centration applies. Furthermore, by the selection of 𝑢⋆𝑡 , we can control the error of ||𝑉 ⋆

ℎ −

𝑉 ⋆
ℎ,{𝑠,𝑢⋆𝑡 }

||∞ to have rate 𝑂(
√

1
𝑛
) which forces the term (𝑃𝑠,𝑎−𝑃𝑠,𝑎)(𝑉 ⋆

ℎ −𝑉 ⋆
ℎ,{𝑠,𝑢⋆𝑡 }

) to have higher
order error. These are the critical building blocks for bounding ||𝑄̂𝜋⋆

ℎ −𝑄𝜋⋆
ℎ ||∞.

Indeed, by Bellman equations we have the decomposition:

𝑄̂𝜋⋆
ℎ −𝑄𝜋⋆

ℎ = … =
𝐻
∑

𝑡=ℎ
Γ𝜋⋆ℎ+1∶𝑡

(

𝑃 − 𝑃
)

𝑉 ⋆
𝑡+1,

where Γ𝜋ℎ+1∶𝑡 =
∏𝑡

𝑖=ℎ+1 𝑃
𝜋𝑖 is multi-step state-action transition and Γℎ+1∶ℎ ∶= 𝐼 . Then for each

(𝑠, 𝑎) row
(𝑃𝑠,𝑎 − 𝑃𝑠,𝑎)𝑉 ⋆

ℎ

=(𝑃𝑠,𝑎 − 𝑃𝑠,𝑎)(𝑉 ⋆
ℎ − 𝑉 ⋆

ℎ,{𝑠,𝑢⋆𝑡 }
) + (𝑃𝑠,𝑎 − 𝑃𝑠,𝑎)𝑉 ⋆

ℎ,{𝑠,𝑢⋆𝑡 }

≲||𝑃𝑠,𝑎 − 𝑃𝑠,𝑎||1||𝑉 ⋆
ℎ − 𝑉 ⋆

ℎ,{𝑠,𝑢⋆𝑡 }
||∞ +

√

√

√

√

Var𝑠,𝑎(𝑉 ⋆
ℎ,{𝑠,𝑢⋆𝑡 }

)

𝑛𝑠,𝑎

≲

√

𝑆
𝑛𝑠,𝑎

‖

‖

‖

𝑉 ⋆
ℎ − 𝑉 ⋆

ℎ,{𝑠,𝑢⋆𝑡 }
‖

‖

‖∞
+

√

√

√

√

Var𝑠,𝑎(𝑉 ⋆
ℎ )

𝑛𝑠,𝑎
(⋆)

(4.4)

where (⋆) is the place where the traditional technique uses the union bound over their exponen-

tial large 𝜖-net, which we do not have! Next, by Lemma 4.6.2 and Lemma C.1.2 in Appendix

||𝑉 ⋆
ℎ − 𝑉 ⋆

ℎ,{𝑠,𝑢⋆𝑡 }
||∞ = ||𝑉 ⋆

ℎ,{𝑠,𝑢̂⋆𝑡 }
− 𝑉 ⋆

ℎ,{𝑠,𝑢⋆𝑡 }
||∞

≤𝐻 max
𝑡

|

|

𝑢̂⋆𝑡 − 𝑢
⋆
𝑡
|

|

≤ 2𝐻 max
𝑡

|𝑉 ⋆
𝑡 − 𝑉 ⋆

𝑡 |,

by a crude bound (Lemma D.0.11), max𝑡 |𝑉 ⋆
𝑡 − 𝑉 ⋆

𝑡 | ≲ 𝐻2
√

𝑆
𝑛𝑠,𝑎

which makes
√

1
𝑛𝑠,𝑎

||𝑉 ⋆
ℎ −

𝑉 ⋆
ℎ,{𝑠,𝑢⋆𝑡 }

||∞ have order 1∕𝑛𝑠,𝑎. Finally, to reduce the horizon dependence we apply
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∑𝐻
𝑡=ℎ Γ

𝜋
ℎ+1∶𝑡

√

Var𝑠,𝑎
(

𝑉 𝜋
𝑡+1

)

≤
√

(𝐻 − ℎ)3 for any 𝜋. This (informally) bounds 𝑄̂𝜋⋆
ℎ −𝑄𝜋⋆

ℎ by

||𝑄̂𝜋⋆
ℎ −𝑄𝜋⋆

ℎ ||∞ ≲

√

𝐻3

𝑛𝑠,𝑎
+
𝑃𝑜𝑙𝑦(𝐻,𝑆)

𝑛𝑠,𝑎
.

Lastly, use min𝑠,𝑎 𝑛𝑠,𝑎 ≳ 𝐻 ⋅ 𝑑𝑚 to finish the proof.

Remark 7. We emphasize the appropriate selection of 𝑀𝑠,{𝑢⋆𝑡 }
𝐻
𝑡=1

(𝑀𝑠,{𝑢⋆𝑡 }
𝐻
𝑡=1

) is the key for

achieving optimality. It guarantees two things: 1. 𝑉 ⋆
ℎ,{𝑠,𝑢⋆𝑡 }

approximates 𝑉 ⋆
ℎ with sufficient

accuracy (has rate
√

1∕𝑛𝑠,𝑎); 2. it avoids the fine-grid design with exponential union bound in

the dominate term (
√

Var𝑠,𝑎(𝑉 ⋆
ℎ ) log(|𝑈𝑠,𝑎|∕𝛿)

𝑁
with |𝑈𝑠,𝑎| to be at least 𝐻𝐻 [68].)

4.7 New Settings: Offline Task-Agnostic and Offline Reward-

Free Learning

From Corollary 4.6.1, our model-based offline learning algorithm has two steps: 1. con-
structing offline empirical MDP𝑀 using the offline dataset = {(𝑠(𝑖)𝑡 , 𝑎

(𝑖)
𝑡 , 𝑟(𝑠

(𝑖)
𝑡 , 𝑎

(𝑖)
𝑡 ), 𝑠

(𝑖)
𝑡+1)}

𝑡∈[𝐻]
𝑖∈[𝑛] ;

2. performing any accurate black-box planning algorithm and returning 𝜋⋆(or 𝜋) as the final
output. However, the only effective data (data that contains stochasticity) is′ = {(𝑠(𝑖)𝑡 , 𝑎

(𝑖)
𝑡 )}

𝑡∈[𝐻]
𝑖∈[𝑛] .

This indicates we are essentially using the state-action space exploration data ′ to solve the
task-specific problem with reward 𝑟. With this perspective in mind, it is natural to ask: given
only the offline exploration data ′, can we efficiently learn a set of potentially conflicting 𝐾
tasks (𝐾 rewards) simultaneously? Even more, can we efficiently learn all tasks (any reward)
simultaneously? This brings up the following definitions.

Definition 4.7.1 (Offline Task-agnostic Learning). Given a offline exploration datatset ′ =

{(𝑠(𝑖)𝑡 , 𝑎
(𝑖)
𝑡 )}

𝑡∈[𝐻]
𝑖∈[𝑛] by 𝜇 with 𝑛 episodes. Given𝐾 tasks with reward {𝑟𝑘}𝐾𝑘=1 and the corresponding
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𝐾 MDPs 𝑀𝑘 = ( ,, 𝑃 , 𝑟𝑘,𝐻, 𝑑1). Can we use ′ to output 𝜋̂1,… , 𝜋̂𝐾 such that

ℙ
[

∀𝑟𝑘, 𝑘 ∈ [𝐾], ‖‖
‖

𝑉 ⋆
1,𝑀𝑘

− 𝑉 𝜋̂𝑘
1,𝑀𝑘

‖

‖

‖∞
≤ 𝜖

]

≥ 1 − 𝛿?

Definition 4.7.2 (Offline Reward-free Learning). Given a offline exploration datatset ′ =

{(𝑠(𝑖)𝑡 , 𝑎
(𝑖)
𝑡 )}

𝑡∈[𝐻]
𝑖∈[𝑛] by 𝜇 with 𝑛 episodes. For any reward 𝑟 and the corresponding MDP 𝑀 =

( ,, 𝑃 , 𝑟,𝐻, 𝑑1). Can we use ′ to output 𝜋̂ such that

ℙ
[

∀𝑟, ‖‖
‖

𝑉 ⋆
1,𝑀 − 𝑉 𝜋̂

1,𝑀
‖

‖

‖∞
≤ 𝜖

]

≥ 1 − 𝛿?

Definition 4.7.1 and Definition 4.7.2 are the offline counterparts of [84] and [80] in online
RL. Those settings are of practical interests in the offline regime as well since in practice reward
functions are often iteratively engineered to encourage desired behavior via trial and error and
using one shot of offline exploration data ′ to tackle problems with different reward functions
(different tasks) could help improve sample efficiency significantly.

Our singleton absorbing MDP technique adapts to those settings and we have the following
two theorems, Theorems 4.7.1, 4.7.2, whose proofs are found in Appendix C.

Theorem 4.7.1 (optimal offline task-agnostic learning). Given ′ = {(𝑠(𝑖)𝑡 , 𝑎
(𝑖)
𝑡 )}

𝑡∈[𝐻]
𝑖∈[𝑛] by 𝜇.

Given𝐾 tasks with reward {𝑟𝑘}𝐾𝑘=1 and the corresponding𝐾 MDPs𝑀𝑘 = ( ,, 𝑃 , 𝑟𝑘,𝐻, 𝑑1).

Denote 𝜄 = log(𝐻𝑆𝐴∕𝛿). Let 𝜋⋆𝑘 ∶= argmax𝜋 𝑉 𝜋
1,𝑀𝑘

∀𝑘 ∈ [𝐾], when 𝑛 > 𝑂(𝐻 ⋅ [𝜄 +

log(𝐾)]∕𝑑𝑚), then with probability 1 − 𝛿,

‖

‖

‖

‖

𝑉 ⋆
1,𝑀𝑘

− 𝑉 𝜋⋆𝑘
1,𝑀𝑘

‖

‖

‖

‖∞
≤ 𝑂

⎡

⎢

⎢

⎣

√

𝐻2(𝜄 + log(𝐾))
𝑛𝑑𝑚

+
𝐻2.5𝑆0.5(𝜄 + log(𝐾))

𝑛𝑑𝑚

⎤

⎥

⎥

⎦

. ∀𝑘 ∈ [𝐾]

Theorem 4.7.2 (optimal offline reward-free learning). Given ′ = {(𝑠(𝑖)𝑡 , 𝑎
(𝑖)
𝑡 )}

𝑡∈[𝐻]
𝑖∈[𝑛] by 𝜇. For
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any reward 𝑟 denote the corresponding MDP𝑀 = ( ,, 𝑃 , 𝑟,𝐻, 𝑑1). Denote 𝜄 = log(𝐻𝑆𝐴∕𝛿).

Let 𝜋⋆𝑀 ∶= argmax𝜋 𝑉 𝜋
1,𝑀 ∀𝑟, when 𝑛 > 𝑂(𝐻𝑆 ⋅ 𝜄∕𝑑𝑚), then with probability 1 − 𝛿,

‖

‖

‖

‖

𝑉 ⋆
1,𝑀 − 𝑉 𝜋⋆𝑀

1,𝑀

‖

‖

‖

‖∞
≤ 𝑂

[√

𝐻2𝑆 ⋅ 𝜄
𝑛𝑑𝑚

+ 𝐻2𝑆 ⋅ 𝜄
𝑛𝑑𝑚

]

. ∀𝑟,𝑀.

By a direct translation of both theorems, we have sample complexity of order𝑂(𝐻2 log(𝐾)∕𝑑𝑚𝜖2)

and𝑂(𝐻2𝑆∕𝑑𝑚𝜖2). All the parameters have the optimal rates, see the lower bounds in [84] and
[80].9 The higher order dependence in Theorem 4.7.2 is also tight comparing to Theorem 4.7.1.
Such statistically optimal results reveal the model-based methods generalize well to those seem-
ingly challenging problems in the offline regime. Changing to these harder problems would not
affect the optimal statistical efficiency of the model-based approach.

4.7.1 A Visualization of the Singleton Absorbing MDP

(1 − $)!"

&'∗ &'$∗

Figure 4.2: Covering-based Absorbing: 1-D case

[0, +]

[0, +]

( &'"∗, &'%∗)

( &'",$"∗ , &'%,$#∗ )

Figure 4.3: Covering-based Absorbing: 2-D case

9To be rigorous, we add a discussion in Appendix C to explain more clearly why our rates are optimal for
these problems. We do not formalize these lower bounds in the offline cases as theorems since they are not novel
contributions.
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(1 − $)!"

&'∗ &'$∗∗

Figure 4.4: Singleton Absorbing: 1-D case

[0, +]

[0, +]

( &'"∗, &'%∗)

( &'",$"∗
∗ , &'%,$#∗

∗ )

Figure 4.5: Singleton Absorbing: 2-D case

We provide a visualization for understanding the singleton absorbing MDP technique. 4.2,
4.4 demonstrate the infinite horizon case and 4.3, 4.5 demonstrate the finite horizon case. In
particular, it should be a𝐻-dimensional hypercube [0,𝐻]𝐻 (that contains 𝑉 ⋆

1 ,… , 𝑉 ⋆
ℎ ) instead

of only the square [0,𝐻] × [0,𝐻] (𝑉 ⋆
1 , 𝑉

⋆
2 ). This is only for the ease of visualization.

The standard absorbing MDP technique [61, 68] leverages a set of absorbing MDPs to cover
the range of value functions (following the standard covering principle) to make sure 𝑉 ⋆ is close
to one of the element (absorbing MDP) in the set (Figure 4.2,4.3). The size of the covering set
(i.e. the covering number) grows exponentially in 𝐻 4.3 in the finite horizon setting and this
is due to the fact that there are 𝑉 ⋆

1 , 𝑉
⋆
2 ,… , 𝑉 ⋆

𝐻 quantities to cover. This results in the metric
entropy (the log of the covering number) to blow up by a factor of𝐻 and incurs sub-optimality.
On the other hand, by the nifty chosen singleton absorbing MDP 𝑉 ⋆

ℎ,𝑢⋆ (Figure 4.4,4.5), we
completely get rid of the covering issue. To cover the𝐻-dimensional space requires exponential
𝐻 in size, maintain the independence, and control the error propagation (i.e. ‖‖

‖

𝑉 ⋆ − 𝑉 ⋆
𝑢⋆
‖

‖

‖∞
is

sufficiently small).
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4.8 Extension to Linear MDP with Anchor Representations

The principle of our Singleton absorbing MDP technique (with model-based construction)
in decoupling the dependence between 𝑃𝑠,𝑎 and 𝑉 ⋆ is not confined to tabular MDPs and there-
fore it is natural to generalize such idea for the episodic stationary transition setting for other
problems. As an example, we further present a sharp result for the setting of finite horizon lin-
ear MDP with anchor points. We narrate by assuming a generative oracle (that allows sampling
from 𝑠′ ∼ 𝑃 (⋅|𝑠, 𝑎)) for the ease of exposition.

Definition 4.8.1 (Linear MDP with anchor points [90, 68]). Let  be the exponential large

space and  be the infinite (or even continuous) spaces. Assume there is feature map 𝜙 ∶

 × → ℝ𝐾 (where 𝐾 ≪ ||), i.e. 𝜙(𝑠, 𝑎) = [𝜙1(𝑠, 𝑎),… , 𝜙𝐾(𝑠, 𝑎)]. Transition 𝑃 admits a

linear representation:

𝑃 (𝑠′|𝑠, 𝑎) =
∑

𝑘∈[𝐾]
𝜙𝑘(𝑠, 𝑎)𝜓𝑘(𝑠′)

where 𝜓1(⋅),… , 𝜓𝐾(⋅) are unknowns. We further assume there exists a set of anchor state-

action pairs  such that any (𝑠, 𝑎) can be represented as a convex combination of the anchors

{(𝑠𝑘, 𝑎𝑘)|𝑘 ∈ }:

∃
{

𝜆𝑠,𝑎𝑘
}

∶ 𝜙(𝑠, 𝑎) =
∑

𝑘∈
𝜆𝑠,𝑎𝑘 𝜙

(

𝑠𝑘, 𝑎𝑘
)

,
∑

𝑘∈
𝜆𝑠,𝑎𝑘 = 1, 𝜆𝑘 ≥ 0,∀𝑘 ∈ , (𝑠, 𝑎) ∈ ( ,).

Under the definition, denote 𝑁 be the number of samples at each anchor pairs. Then we
have the following (see Appendix C for the proof):

Theorem 4.8.1 (Optimal sample complexity). Under Definition 4.8.1, let 𝜋⋆ = argmax𝜋 𝑉 𝜋
1 .

Then if𝑁 ≥ 𝑐𝐻2
|| log(𝐾𝐻∕𝛿), we have with probability 1−𝛿, ||𝑄⋆

1−𝑄
𝜋⋆
1 ||∞ ≤ 𝑂(

√

𝐻3∕𝑁).

Comparing to Theorem 4 of [68], Theorem 4.8.1 removes the additional dependencemin{|𝑆|, 𝐾,𝐻}.
In term of the total sample complexity, Theorem 4.8.1 gives 𝑂̃(𝐾𝐻3∕𝜖2)while [68] has𝑂(𝐾𝐻4∕𝜖2)
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(see their Section 7, first bullet point). Our result again reveals the model-based method is sta-
tistically optimal for the current setting.

Remark 8. The rate 𝑂̃(𝐾𝐻3∕𝜖2) with anchor point assumption has the linear dependence on

𝐾 and for the standard linear bandit [91] Ω(
√

𝑑2𝑇 ) or the linear (mixture) MDP [60, 92]

Ω(
√

𝑑2𝐻2𝑇 ) the lower bound dependence on the feature dimension 𝑑 is quadratic. We believe

one reason for this to happen is that the anchor representations assumption is somewhat strong

as it abstracts the whole state action space by only finite points (via convex combination).

4.9 Conclusion

This work [93] studies the uniform convergence problems for offline policy evaluation
(OPE) and provides complete answers for their optimality behaviors. We achieve the opti-
mal sample complexity for stationary-transition case using a novel adaptation of the absorbing
MDP trick, which is more generally applicable to the new offline task-agnostic and reward-free
settings combined with the model-based approach and we hope it can be applied to a broader
range of future problems. We end the section by two future directions.
On the higher order error term. Our main result (Theorem 4.6.1) has an additional √𝐻𝑆
dependence in the higher order error term and we cannot further remove it based on our current
technique. Nevertheless, this is already among the best higher order results to our knowledge.
In fact, most state-of-the-art works (e.g. [39, 94, 95]) have additional 𝑆 dependence in the
higher order and [96] has only extra √𝑆 in the higher order term but it also has additional √𝐴
(see Table 1 of [95] for a clear reference). How to obtain optimality not only for the main term
but also for the higher order error terms remains elusive for the community.
Uniform OPE and beyond. The current study of uniform OPE derives results with expres-
sion using parameter dependence and deriving instance-dependent uniform convergence result
will draw a clearer picture on the individual behaviors for each policy. Besides, this work
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concentrates on Tabular MDPs and generalizing uniform convergence to more practical set-
tings like linear MDPs, game environments and multi-agent settings are promising future di-
rections. Specifically, general complexity measure (mirroring VC-dimensions and Rademacher
complexities for statistical learning problems) that precisely captures local and global uniform
convergence would be of great interest.
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Conclusions and Future Directions

5.1 Conclusions and Summary

In this thesis, we analyzed the Marginalized Importance Sampling (MIS) estimator for Of-
fline Policy Evaluation (Chapter 1), proposed the uniform convergence problem in such OPE
(Chapter 2), and obtained the near-optimal sample complexity (Chapter 2, Chapter 3) in the
time-homogeneous and time-inhomogeneous settings respectively. In (Chapter 4, we also stud-
ied a variety of topics that are not covered in the previous chapters.

• Offline Policy Learning. For the policy learning task, we propose the Double Vari-

ance Reduction algorithm (DVR)[7] for the tabular reinforcement learning, which at-
tains the near-optimal minimax sample complexity guarantees for finite-horizon time-
homogenuous, time-inhomogenuous, and infinite horizon discounted settings respectively.
Furthermore, we improve the previous worst-case guarantees to the instance-adaptive
guarantee [97], which subsumes nearly all the previous optimality results. Later, we con-
sider the linear function approximation [98, 99] and the differentiable parametric function
approximation [100] for offline RL.
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• Stochastic Shortest Path. We initiated the stochastic shortest path setting in the offline
regime under the tabular setting (there are finite number of states and actions) [101]. We
consider both the offline policy learning and the offline policy evaluation tasks for this
goal-orientated setting.

• Low-switching RL. In many real-world reinforcement learning (RL) tasks, it is costly
to run fully adaptive algorithms that update the exploration policy frequently. Instead,
collecting data in large batches using the current policy deployment is usually cheaper.
Those problems can be cast as the low-switching RL problem, and [102] first achieves
the log log 𝑇 switching cost with √

𝑇 regret.

• Deep Reinforcement Learning. We design the Closed-Form Policy Improvement (CFPI)
[103] operator for tackling the locomotion tasks. We initiate offline RL algorithms with
our novel policy improvement operators and empirically demonstrate their effectiveness
over state-of-the-art algorithms on the standard D4RL benchmark [104].

5.2 Future Directions

Some Open problems:

As noted earlier, the conjecture posed in [21] remains unsolved. This has to do with the
infinite  case, where we can never observe any (𝑠, 𝑎) pair more than once, hence not able to
estimate the transition dynamics or the expected reward. The minimax lower bound in [16]
(for the contextual bandit setting) already establishes that the Cramer-Rao lower bound is not
achievable in this setting even if 𝐻 = 1 and 𝑆 = 1. It remains open question as to whether
𝐻3 is required. Another problem concerns better dependence for stationary transition case. We
conjecture the dependence of 𝐻2 can be further reduced in the stationary transition case. Our
current analysis cannot further reduce the dependence for stationary transition setting.
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Uniform OPE that depends on 𝜋. In this work, we primarily considered obtaining uniform
bound independent to 𝜋; however, given a logging policy 𝜇, it is often easier to evaluate certain
policies than others, as revealed in the pointwise OPE bound of [57]. Specifically, obtaining
a high probability bound of the form sup𝜋

√

𝑛|𝑣̂𝜋−𝑣𝜋 |
𝛾(𝜋,𝜇,𝑀,𝛿)

≤ 𝐶 for some function 𝛾 and constant 𝐶
would be of great interest. We could already get such a bound by applying union bound to the
data-dependent high probability pointwise convergence of either [57] or [64] but it comes with
an additional 𝑂(𝑆) factor. Characterizing the optimal per-instance OPE bound is an interesting
future direction.

This thesis focuses on the tabular Reinforcement Learning (RL) with discrete states and
actions. Recently, there has been a surge of studies in RL with general function approximation
[105, 106, 107] that goes beyond the tabular setting and under a wide range of problem classes.
However, while these algorithms have nice statistical guarantees, most of the algorithms are
computationally inefficient. In the future, it would be exciting to study RL with general function
approximation classes that can bridge the gap between the theory and practice (say via neural
network approximations).
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Supplementary Material to Chapter 2

A.1 Related settings to OPE
Markov Decision Processes have a long history of associated research [34, 35], but many

theoretical problems in the basic tabular setting remain an active area of research as of today.
We briefly review the other settings and connect them to our results.
Regret bound and sample complexity in the online setting. The bulk of existing work focuses
on online learning, where the agent interacts with the MDP with the interests of identifying
the optimal policy or minimizing the regret against the optimal policy. The optimal regret
is obtained by [39] using a model-based approach which translates into a sample complexity
bound of 𝑂(𝐻3𝑆𝐴∕𝜖2), which matches the lower bound of Ω(𝐻3𝑆𝐴∕𝜖2)[43]. The method is
however not “uniform PAC” where the state of the art sample complexity remains𝑂(𝐻4𝑆𝐴∕𝜖2)
[108]. Model-free approaches that require a space constraint of 𝑂(𝐻𝑆𝐴) were studied by [96]
which implies a sample complexity bound of 𝑂(𝐻4𝑆𝐴∕𝜖2).
Sample complexity with a generative model. Another sequence of work assumes access to a
generative model where one can sample from 𝑠𝑡+1 and 𝑟𝑡 given any 𝑠𝑡, 𝑎𝑡 in time𝑂(1) [109]. [42]
is the first that establishes the optimal sample complexity of Θ̃(𝐻3𝑆𝐴∕𝜖2) under this setting
(counting 𝐻 generative model calls as one episode). [110] establishes a similar results by
estimating the parameters of the MDP model using maximum-likelihood estimation.

A.2 Proof of the main Theorem 2.5.1
To analyze the MSE upper bound 𝔼𝜇[(𝑣𝜋TMIS − 𝑣

𝜋)2], we create a fictitious surrogate 𝑣𝜋TMIS,
which is an unbiased version of 𝑣𝜋TMIS. A few auxiliary lemmas are first presented and Bell-
man equations are used for deriving variance decomposition in a recursive way. Second order
moment of marginalized state distribution 𝑑𝜋𝑡 can then be bounded by analyzing its variance.
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A.2.1 Fictitious tabular MIS estimator.
The fictitious estimator1 𝑣𝜋 fills in the gap of state-action location (𝑠𝑡, 𝑎𝑡) of the true estimator

𝑣𝜋 where 𝑛𝑠𝑡,𝑎𝑡 = 0. Specifically, it replaces every component in 𝑣𝜋 with a fictitious counterpart,
i.e. 𝑣𝜋 ∶=

∑𝐻
𝑡=1⟨𝑑

𝜋
𝑡 , 𝑟̃

𝜋
𝑡 ⟩, with 𝑑𝜋𝑡 = 𝑃 𝜋

𝑡 𝑑
𝜋
𝑡−1 and 𝑃 𝜋

𝑡 (𝑠𝑡|𝑠𝑡−1) =
∑

𝑎𝑡−1
𝑃𝑡(𝑠𝑡|𝑠𝑡−1, 𝑎𝑡−1)𝜋(𝑎𝑡−1|𝑠𝑡−1),

𝑟̃𝜋𝑡 (𝑠𝑡) =
∑

𝑎𝑡
𝑟̃𝑡(𝑠𝑡, 𝑎𝑡)𝜋(𝑎𝑡|𝑠𝑡). In particular, let𝐸𝑡 denotes the event {𝑛𝑠𝑡,𝑎𝑡 ≥ 𝑛𝑑𝜇𝑡 (𝑠𝑡, 𝑎𝑡)(1−𝜃)}2,

then
𝑟̃𝑡(𝑠𝑡, 𝑎𝑡) = 𝑟̂𝑡(𝑠𝑡, 𝑎𝑡)𝟏(𝐸𝑡) + 𝑟𝑡(𝑠𝑡, 𝑎𝑡)𝟏(𝐸𝑐

𝑡 )

𝑃𝑡+1(⋅|𝑠𝑡, 𝑎𝑡) = 𝑃𝑡+1(⋅|𝑠𝑡, 𝑎𝑡)𝟏(𝐸𝑡) + 𝑃𝑡+1(⋅|𝑠𝑡, 𝑎𝑡)𝟏(𝐸𝑐
𝑡 ).

where 0 < 𝜃 < 1 is a parameter that we will choose later.
The name "fictitious" comes from the fact that 𝑣𝜋 is not implementable using the data3, but

it creates a bridge between 𝑣𝜋 and 𝑣𝜋 because of its unbiasedness, see Lemma A.2.5. Also, for
simplicity of the proof, throughout the rest of the paper we denote: 𝑡 ∶=

{

𝑠(𝑖)1∶𝑡, 𝑎
(𝑖)
1∶𝑡, 𝑟

(𝑖)
1∶𝑡−1

}𝑛

𝑖=1
.

Also, in the base case, we denote 1 ∶=
{

𝑠(𝑖)1 , 𝑎
(𝑖)
1

}𝑛

𝑖=1
and that 𝑟𝜋𝑡 (𝑠𝑡) ∶= 𝔼𝜋[𝑟

(1)
𝑡 |𝑠(1)𝑡 = 𝑠𝑡] =

∑

𝑎𝑡
𝔼[𝑟(1)𝑡 |𝑠(1)𝑡 = 𝑠𝑡, 𝑎

(1)
𝑡 = 𝑎𝑡]𝜋(𝑎𝑡|𝑠𝑡) ∶=

∑

𝑎𝑡
𝑟𝑡(𝑠𝑡, 𝑎𝑡)𝜋(𝑎𝑡|𝑠𝑡). Then we have the following

preliminary auxiliary lemmas.
Lemma A.2.1. 𝑑𝜋𝑡 and 𝑟̃𝜋𝑡−1 are deterministic given 𝑡. Moreover, given 𝑡, 𝑃 𝜋

𝑡+1,𝑡 is unbiased
of 𝑃 𝜋

𝑡+1,𝑡 and 𝑟̃𝜋𝑡 is unbiased of 𝑟𝜋𝑡 .

Proof: [Proof of Lemma A.2.1] By construction of the estimator, 𝑑𝜋𝑡 and 𝑟̃𝜋𝑡−1 only depend
on 𝑡, therefore 𝑑𝜋𝑡 and 𝑟̃𝜋𝑡−1 given 𝑡 are constants. For the second argument, we have ∀𝑠𝑡, 𝑠𝑡+1,

𝔼[𝑃 𝜋
𝑡+1,𝑡(𝑠𝑡+1|𝑠𝑡)|𝑡] =

∑

𝑎𝑡

𝔼[𝑃𝑡+1,𝑡(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡)|𝑡]𝜋(𝑎𝑡|𝑠𝑡)

=
∑

𝑎𝑡

(

𝟏(𝐸𝑡)𝔼[𝑃𝑡+1,𝑡(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡)|𝑡] + 𝟏(𝐸𝑐
𝑡 )𝑃𝑡+1,𝑡(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡)

)

𝜋(𝑎𝑡|𝑠𝑡)

=
∑

𝑎𝑡

(

𝟏(𝐸𝑡)𝑃𝑡+1,𝑡(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡) + 𝟏(𝐸𝑐
𝑡 )𝑃𝑡+1,𝑡(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡)

)

𝜋(𝑎𝑡|𝑠𝑡)

=
∑

𝑎𝑡

𝑃𝑡+1,𝑡(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡)𝜋(𝑎𝑡|𝑠𝑡) = 𝑃 𝜋
𝑡+1,𝑡(𝑠𝑡+1|𝑠𝑡),

1We replcace the notation of 𝑣𝜋TMIS with just 𝑣𝜋 throughout the proof. 𝑣𝜋 always denotes fictitious tabular MIS
estimator.

2More rigorously,𝐸𝑡 depends on the specific pair 𝑠𝑡, 𝑎𝑡 and should be written as𝐸𝑡(𝑠𝑡, 𝑎𝑡). However, for brevity
we just use 𝐸𝑡 and this notation should be clear in each context.

3It depends on unknown information such as 𝑑𝜇𝑡 , 𝑃 𝜋𝑡,𝑡−1, exact conditional expectation of the reward 𝑟𝜋𝑡 and so
on.
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where the third equal sign comes from the fact that conditional on 𝐸𝑡, 𝑃 (𝑠𝑡+1|𝑠𝑡, 𝑎𝑡) — the
empirical mean — is unbiased. The result about 𝑟𝜋𝑡 can be derived using a similar fashion.

Using Lemma A.2.1, we can derive the following recursions for expectation and variance:
Lemma A.2.2. For ℎ = 1, ...,𝐻 , we have

𝔼

[

⟨𝑑𝜋ℎ , 𝑉
𝜋
ℎ ⟩ +

ℎ−1
∑

𝑡=1
⟨𝑑𝜋𝑡 , 𝑟̃

𝜋
𝑡 ⟩

|

|

|

|

|

|

ℎ−1

]

= ⟨𝑑𝜋ℎ−1, 𝑉
𝜋
ℎ−1⟩ +

ℎ−2
∑

𝑡=1
⟨𝑑𝜋𝑡 , 𝑟̃

𝜋
𝑡 ⟩, (A.1)

Var

[

⟨𝑑𝜋ℎ+1, 𝑉
𝜋
ℎ+1⟩ +

ℎ
∑

𝑡=1
⟨𝑑𝜋𝑡 , 𝑟̃

𝜋
𝑡 ⟩

]

= 𝔼
[

Var
[

⟨𝑑𝜋ℎ+1, 𝑉
𝜋
ℎ+1⟩ + ⟨𝑑𝜋ℎ , 𝑟̃

𝜋
ℎ⟩
|

|

|

ℎ

]]

+ Var

[

⟨𝑑𝜋ℎ , 𝑉
𝜋
ℎ ⟩ +

ℎ−1
∑

𝑡=1
⟨𝑑𝜋𝑡 , 𝑟̃

𝜋
𝑡 ⟩

]

(A.2)
Proof: The proof of Lemma A.2.2 can be found in Lemma B.2 and Lemma 4.1 in

xie2019towards by coupling the standard Bellman equation:
𝑉 𝜋
ℎ = 𝑟𝜋ℎ + [𝑃 𝜋

ℎ+1,ℎ]
𝑇𝑉 𝜋

ℎ+1 (A.3)
with the total law of expectations and the total law of variances.
Lemma A.2.3 (Boundedness of Tabular MIS estimators). 0 ≤ 𝑣𝜋 ≤ 𝐻𝑅max, 0 ≤ 𝑣𝜋 ≤ 𝐻𝑅max.

Proof: we show 𝑃 𝜋
𝑡 (⋅|𝑠𝑡−1) is a (degenerated) probability distribution for all 𝑡, 𝑠𝑡−1.

∑

𝑠𝑡

𝑃 𝜋
𝑡 (𝑠𝑡|𝑠𝑡−1) =

∑

𝑠𝑡

∑

𝑎𝑡−1

𝑃𝑡(𝑠𝑡|𝑠𝑡−1, 𝑎𝑡−1)𝜋(𝑎𝑡−1|𝑠𝑡−1)

=
∑

𝑎𝑡−1

∑

𝑠𝑡

𝑃𝑡(𝑠𝑡|𝑠𝑡−1, 𝑎𝑡−1)𝜋(𝑎𝑡−1|𝑠𝑡−1) This is since ||, || <∞

=
∑

𝑎𝑡−1

∑

𝑠𝑡

𝑛𝑠𝑡,𝑠𝑡−1,𝑎𝑡−1
𝑛𝑠𝑡−1,𝑎𝑡−1

𝜋(𝑎𝑡−1|𝑠𝑡−1)

≤
∑

𝑎𝑡−1

𝜋(𝑎𝑡−1|𝑠𝑡−1) = 1

(A.4)

The last line is inequality since 𝑃𝑡(𝑠𝑡|𝑠𝑡−1, 𝑎𝑡−1) = 0 when 𝑛𝑠𝑡−1,𝑎𝑡−1 = 0. Following the same
logic, it is easy to show 𝑃 𝜋

𝑡 (⋅|𝑠𝑡−1) is a non-degenerated probability distribution.
Next note ∑

𝑠1
𝑑𝜋1 (𝑠1) =

∑

𝑠1
𝑑𝜇1 (𝑠1) =

∑

𝑠1

𝑛𝑠1
𝑛

= 1. Suppose 𝑑𝜋𝑡−1(⋅) is a (degenerated)
probability distribution, then from 𝑑𝜋𝑡 = 𝑃 𝜋

𝑡 𝑑
𝜋
𝑡−1 and (A.4), by induction we know 𝑑𝜋𝑡 (⋅) is a

(degenerated) probability distribution for all 𝑡.
Using Assumption 3.3.1, it is easy to show 𝑟̂𝜋𝑡 (𝑠𝑡) ≤ 𝑅max for all 𝑠𝑡, then combining all

results above we have 𝑣𝜋 ∶= ∑𝐻
𝑡=1⟨𝑑

𝜋
𝑡 , 𝑟̂

𝜋
𝑡 ⟩ ≤ 𝐻𝑅max. Similarly, 𝑣𝜋 ≤ 𝐻𝑅max.The boundedness of Tabular-MIS estimator cannot be inherited by the State-MIS estimator

since 𝑣𝜋SMIS explicitly uses importance weights and there is no reason for it to be less than𝐻𝑅max.
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As a result, we do not need an extra projection step for our estimation to be valid. Thanks to
the following lemma, throughout the rest of the analysis we only need to consider 𝑣𝜋 .
Lemma A.2.4. Let 𝑣𝜋 be the Tabular-MIS estimator and 𝑣𝜋 be the fictitious version of TMIS
we described above with parameter 𝜃. Then the MSE of the TMIS and fictitious TMIS satisfies

𝔼[(𝑣𝜋 − 𝑣𝜋)2] ≤ 𝔼[(𝑣𝜋 − 𝑣𝜋)2] + 3𝐻3𝑆𝐴𝑅2
max𝑒

−
𝜃2𝑛min𝑡,𝑠𝑡,𝑎𝑡 𝑑

𝜇
𝑡 (𝑠𝑡,𝑎𝑡)

2

Proof: [Proof of Lemma A.2.4] Define 𝐸 ∶= {∃𝑡, 𝑠𝑡, 𝑎𝑡 s.t. 𝑛𝑠𝑡,𝑎𝑡 < 𝑛𝑑𝜇𝑡 (𝑠𝑡, 𝑎𝑡)(1 − 𝜃)}.
Similarly to Lemma B.1 in the appendix of [21], we have

𝔼[(𝑣𝜋 − 𝑣𝜋)2] ≤ 𝔼[(𝑣𝜋 − 𝑣𝜋)2] = 𝔼[(𝑣𝜋 − 𝑣𝜋)2] + 2𝔼[(𝑣𝜋 − 𝑣𝜋)(𝑣𝜋 − 𝑣𝜋)] + 𝔼[(𝑣𝜋 − 𝑣𝜋)2]

=ℙ[𝐸]𝔼
[

(𝑣𝜋 − 𝑣𝜋)2 + 2(𝑣𝜋 − 𝑣𝜋)(𝑣𝜋 − 𝑣𝜋)||
|

𝐸
]

+ ℙ[𝐸𝑐] ⋅ 0 + 𝔼[(𝑣𝜋 − 𝑣𝜋)2]

≤3ℙ[𝐸]𝐻2𝑅2
max + 𝔼[(𝑣𝜋 − 𝑣𝜋)2],

where the last inequality uses Lemma A.2.3. Then combining the multiplicative Chernoff
bound and a union bound over each 𝑡,𝑠𝑡 and 𝑎𝑡, we get that

ℙ[𝐸] ≤
∑

𝑡

∑

𝑠𝑡

∑

𝑎𝑡

ℙ[𝑛𝑠𝑡,𝑎𝑡 < 𝑛𝑑
𝜇
𝑡 (𝑠𝑡, 𝑎𝑡)(1 − 𝜃)] ≤ 𝐻𝑆𝐴𝑒−

𝜃2𝑛min𝑡,𝑠𝑡,𝑎𝑡 𝑑
𝜇
𝑡 (𝑠𝑡,𝑎𝑡)

2 ,

which provides the stated result.
Lemma A.2.4 tells that MSE of two TMISs differs by a quantity 3𝐻3𝑆𝐴𝑅2

max𝑒
−
𝜃2𝑛min𝑡,𝑠𝑡,𝑎𝑡 𝑑

𝜇
𝑡 (𝑠𝑡,𝑎𝑡)

2

and this illustrates that the gap between two MSE’s can be sufficiently small as long as 𝑛 ≥
polylog(𝑆,𝐴,𝐻,𝑛)
min𝑡,𝑠𝑡,𝑎𝑡 𝑑

𝜇
𝑡 (𝑠𝑡,𝑎𝑡)

.

A.2.2 Variance and Bias of Fictitious tabular MIS estimator.
Lemma A.2.5 ([21] Lemma B.2). Tabular-MIS estimator is unbiased: 𝔼[𝑣𝜋] = 𝑣𝜋 for all 𝜃 < 1.

Lemma A.2.6 (Variance decomposition).

Var[𝑣𝜋] =
Var[𝑉 𝜋

1 (𝑠
(1)
1 )]

𝑛

+
𝐻
∑

ℎ=1

∑

𝑠ℎ

∑

𝑎ℎ

𝔼

[

𝑑𝜋ℎ (𝑠ℎ)
2

𝑛𝑠ℎ,𝑎ℎ
𝟏(𝐸ℎ)

]

𝜋(𝑎ℎ|𝑠ℎ)2Var
[

(𝑉 𝜋
ℎ+1(𝑠

(1)
ℎ+1) + 𝑟

(1)
ℎ )||

|

𝑠(1)ℎ = 𝑠ℎ, 𝑎
(1)
ℎ = 𝑎ℎ

]

.

(A.5)
where 𝑉 𝜋

𝑡 (𝑠𝑡) denotes the value function under 𝜋 which satisfies the Bellman equation

𝑉 𝜋
𝑡 (𝑠𝑡) = 𝑟𝜋𝑡 (𝑠𝑡) +

∑

𝑠𝑡+1

𝑃 𝜋
𝑡 (𝑠𝑡+1|𝑠𝑡)𝑉

𝜋
𝑡+1(𝑠𝑡+1).
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Remark 9. Note even though the construction of TMIS and SMIS are different, both fictitious
estimators are unbiased for 𝑣𝜋 . Therefore the MSE of MIS estimators are dominated by the
variance of the fictitious estimators. Comparing Lemma A.2.6 with Lemma 4.1 in [21] we can
see our Tabular-MIS estimator achieves a lower bound, and it is essentially asymptotic optimal,
as explained by Remark 1.

Proof: [Proof of Lemma A.2.6] The proof relies on applying Lemma A.2.2 in a recur-
sive way. To begin with, we use the following variance decomposition, which applies (A.2)
recursively.

Var[𝑣𝜋] =𝔼Var[𝑣𝜋|𝐻 ] + Var[𝔼[𝑣𝜋|𝐻 ]]

=𝔼
[

Var[⟨𝑑𝜋𝐻 , 𝑟̃
𝜋
𝐻⟩|𝐻 ]

]

+ Var[𝔼[⟨𝑑𝜋𝐻 , 𝑟̃
𝜋
𝐻⟩|𝐻 ] +

𝐻−1
∑

𝑡=1
⟨𝑑𝜋𝑡 , 𝑟̃

𝜋
𝑡 ⟩]

=𝔼
[

Var[⟨𝑑𝜋𝐻 , 𝑟̃
𝜋
𝐻⟩|𝐻 ]

]

+ Var[⟨𝑑𝜋𝐻 , 𝑟
𝜋
𝐻⟩ +

𝐻−1
∑

𝑡=1
⟨𝑑𝜋𝑡 , 𝑟̃

𝜋
𝑡 ⟩]

=𝔼
[

Var[⟨𝑑𝜋𝐻 , 𝑟̃
𝜋
𝐻⟩|𝐻 ]

]

+ Var[⟨𝑑𝜋𝐻 , 𝑉
𝜋
𝐻⟩ +

𝐻−1
∑

𝑡=1
⟨𝑑𝜋𝑡 , 𝑟̃

𝜋
𝑡 ⟩]

=𝔼
[

Var[⟨𝑑𝜋𝐻 , 𝑟̃
𝜋
𝐻⟩|𝐻 ]

]

+ 𝔼
[

Var
[

⟨𝑑𝜋𝐻 , 𝑉
𝜋
𝐻⟩ + ⟨𝑑𝜋𝐻−1, 𝑟̃

𝜋
𝐻−1⟩

|

|

|

𝐻−1

]]

+ Var

[

⟨𝑑𝜋𝐻−1, 𝑉
𝜋
𝐻−1⟩ +

𝐻−2
∑

𝑡=1
⟨𝑑𝜋𝑡 , 𝑟̃

𝜋
𝑡 ⟩

]

= ...

=𝔼
[

Var[⟨𝑑𝜋𝐻 , 𝑟̃
𝜋
𝐻⟩|𝐻 ]

]

+
𝐻−1
∑

ℎ=1
𝔼
[

Var
[

⟨𝑑𝜋ℎ+1, 𝑉
𝜋
ℎ+1⟩ + ⟨𝑑𝜋ℎ , 𝑟̃

𝜋
ℎ⟩
|

|

|

ℎ

]]

+ Var
[

⟨𝑑𝜋1 , 𝑉
𝜋
1 ⟩

]

Now let us analyze 𝔼
[

Var
[

⟨𝑑𝜋ℎ+1, 𝑉
𝜋
ℎ+1⟩ + ⟨𝑑𝜋ℎ , 𝑟̃

𝜋
ℎ⟩
|

|

|

ℎ

]]

. Note 𝑃 𝜋
ℎ+1,ℎ(⋅, 𝑠ℎ) and 𝑟̃𝜋ℎ(𝑠ℎ) for

each 𝑠ℎ are conditionally independent given ℎ, since ℎ partitions the 𝑛 episodes into 𝑆 dis-
joint sets according to the states 𝑠(𝑖)ℎ at time ℎ. Similarly, 𝑃ℎ+1(⋅|𝑠ℎ, 𝑎ℎ) and 𝑟𝜋ℎ(𝑠ℎ, 𝑎ℎ) for each
(𝑠ℎ, 𝑎ℎ) are also conditionally independent given ℎ. These observations imply:
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𝔼
[

Var
[

⟨𝑑𝜋ℎ+1, 𝑉
𝜋
ℎ+1⟩ + ⟨𝑑𝜋ℎ , 𝑟̃

𝜋
ℎ⟩
|

|

|

ℎ

]]

=𝔼

[

∑

𝑠ℎ

Var
[

𝑑𝜋ℎ (𝑠ℎ)⟨𝑃
𝜋
ℎ+1,ℎ(⋅, 𝑠ℎ), 𝑉

𝜋
ℎ+1⟩ + 𝑑

𝜋
ℎ (𝑠ℎ) ⋅ 𝑟̃

𝜋
ℎ(𝑠ℎ)

|

|

|

ℎ

]

]

=𝔼

[

∑

𝑠ℎ

𝑑𝜋2ℎ (𝑠ℎ)Var

[

∑

𝑎ℎ

⟨𝑃ℎ+1(⋅|𝑠ℎ, 𝑎ℎ) ⋅ 𝜋(𝑎ℎ|𝑠ℎ), 𝑉 𝜋
ℎ+1⟩ +

∑

𝑎ℎ

𝑟̃ℎ(𝑠ℎ, 𝑎ℎ) ⋅ 𝜋(𝑎ℎ|𝑠ℎ)
|

|

|

|

|

|

ℎ

]]

=𝔼

[

∑

𝑠ℎ

𝑑𝜋ℎ (𝑠ℎ)
2
∑

𝑎ℎ

𝜋(𝑎ℎ|𝑠ℎ)2Var
[

⟨𝑃ℎ+1(⋅|𝑠ℎ, 𝑎ℎ), 𝑉 𝜋
ℎ+1⟩ + 𝑟̃ℎ(𝑠ℎ, 𝑎ℎ)

|

|

|

ℎ

]

]

=𝔼
⎡

⎢

⎢

⎣

∑

𝑠ℎ

𝑑𝜋ℎ (𝑠ℎ)
2
∑

𝑎ℎ

𝜋(𝑎ℎ|𝑠ℎ)2𝟏(𝐸𝑡)Var
⎡

⎢

⎢

⎣

1
𝑛𝑠ℎ,𝑎ℎ

∑

𝑖|𝑠(𝑖)ℎ =𝑠ℎ,𝑎
(𝑖)
ℎ =𝑎ℎ

(𝑉 𝜋
ℎ+1(𝑠

(𝑖)
ℎ+1) + 𝑟

(𝑖)
ℎ )

|

|

|

|

|

|

|

ℎ

⎤

⎥

⎥

⎦

⎤

⎥

⎥

⎦

=𝔼

[

∑

𝑠ℎ

𝑑𝜋ℎ (𝑠ℎ)
2
∑

𝑎ℎ

𝜋(𝑎ℎ|𝑠ℎ)2 ⋅
𝟏(𝐸𝑡)
𝑛𝑠ℎ,𝑎ℎ

⋅ Var
[

(𝑉 𝜋
ℎ+1(𝑠

(𝑖)
ℎ+1) + 𝑟

(𝑖)
ℎ )

|

|

|

𝑠(𝑖)ℎ = 𝑠ℎ, 𝑎
(𝑖)
ℎ = 𝑎ℎ

]

]

=
∑

𝑠ℎ

∑

𝑎ℎ

𝜋(𝑎ℎ|𝑠ℎ)2 ⋅ 𝔼

[

𝑑𝜋ℎ (𝑠ℎ)
2

𝑛𝑠ℎ,𝑎ℎ
⋅ 𝟏(𝐸𝑡)

]

⋅ Var
[

(𝑉 𝜋
ℎ+1(𝑠

(𝑖)
ℎ+1) + 𝑟

(𝑖)
ℎ )

|

|

|

𝑠(𝑖)ℎ = 𝑠ℎ, 𝑎
(𝑖)
ℎ = 𝑎ℎ

]

.

(A.6)
The second line and the fourth line use the conditional independence for 𝑠𝑡 and (𝑠𝑡, 𝑎𝑡) respec-
tively. The fifth line uses that when 𝑛𝑠ℎ,𝑎ℎ < 𝑛𝑑𝜇ℎ (𝑠ℎ, 𝑎ℎ)(1 − 𝜃), the conditional variance is 0.
The sixth line uses the fact that episodes are iid.

Plug (A.6) into the above variance decomposition and uses 𝑉𝐻+1 = 0, we finally get

Var[𝑣𝜋] =
Var[𝑉 𝜋

1 (𝑠
(1)
1 )]

𝑛

+
𝐻
∑

ℎ=1

∑

𝑠ℎ

∑

𝑎ℎ

𝔼

[

𝑑𝜋ℎ (𝑠ℎ)
2

𝑛𝑠ℎ,𝑎ℎ
𝟏(𝐸ℎ)

]

𝜋(𝑎ℎ|𝑠ℎ)2Var
[

(𝑉 𝜋
ℎ+1(𝑠

(1)
ℎ+1) + 𝑟

(1)
ℎ )||

|

𝑠(1)ℎ = 𝑠ℎ, 𝑎
(1)
ℎ = 𝑎ℎ

]

.

A.2.3 Bounding the variance of 𝑑𝜋ℎ (𝑠ℎ).
Applying the definition of variance, we directly have

𝔼

[

𝑑𝜋ℎ (𝑠ℎ)
2

𝑛𝑠ℎ,𝑎ℎ
𝟏(𝐸ℎ)

]

≤ (1 − 𝜃)−1

𝑛𝑑𝜇ℎ (𝑠ℎ, 𝑎ℎ)
𝔼
[

𝑑𝜋ℎ (𝑠ℎ)
2
]

=
(1 − 𝜃)−1

𝑛𝑑𝜇ℎ (𝑠ℎ, 𝑎ℎ)
(𝑑𝜋ℎ (𝑠ℎ)

2 + Var[𝑑𝜋ℎ (𝑠ℎ)]), (A.7)

where we use the fact that 𝑑𝜋ℎ (𝑠ℎ) is unbiased (which can be proved by induction through apply-
ing total law of expectations and the recursive relationship 𝑑𝜋𝑡 = 𝑃 𝜋

𝑡 𝑑
𝜋
𝑡−1). Therefore the only
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thing left is to bound the the variance of 𝑑𝜋ℎ (𝑠ℎ). To tackle it, we consider bounding the covari-
ance matrix of 𝑑𝜋ℎ (𝑠ℎ). As we shall see in Lemma A.2.7, fortunately, we are able to derive an
identical result of Lemma B.4 in xie2019towards for our Tabular-MIS estimator, which helps
greatly in bounding the the variance of 𝑑𝜋ℎ (𝑠ℎ).
Lemma A.2.7 (Covariance of 𝑑𝜋ℎ with TMIS).

Cov(𝑑𝜋ℎ ) ⪯
(1 − 𝜃)−1

𝑛

ℎ−1
∑

𝑡=1
ℙ𝜋
ℎ+1,𝑡+1diag

[

∑

𝑠𝑡,𝑎𝑡

𝑑𝜋𝑡 (𝑠𝑡)
2 + Var(𝑑𝜋𝑡 (𝑠𝑡))
𝑑𝜇𝑡 (𝑠𝑡)

𝜋(𝑎𝑡|𝑠𝑡)2

𝜇(𝑎ℎ|𝑠𝑡)
ℙ𝑡+1,𝑡(⋅|𝑠𝑡, 𝑎𝑡)

]

[

ℙ𝜋
ℎ+1,𝑡+1

]𝑇

+ 1
𝑛
ℙ𝜋
ℎ,1diag

[

𝑑𝜋1
]

[ℙ𝜋
ℎ,1]

𝑇 .

where ℙ𝜋
ℎ,𝑡 = ℙ𝜋

ℎ,ℎ−1 ⋅ ℙ
𝜋
ℎ−1,ℎ−2 ⋅ ... ⋅ ℙ

𝜋
𝑡+1,𝑡 — the transition matrices under policy 𝜋 from time 𝑡

to ℎ (define ℙ𝜋
ℎ,ℎ ∶= 𝐼).

Proof: [Proof of Lemma A.2.7] We start by applying the law of total variance to obtain
the following recursive equation

Cov[𝑑𝜋ℎ ] = 𝔼
[

Cov
[

ℙ̃𝜋
ℎ,ℎ−1𝑑

𝜋
ℎ−1

|

|

|

ℎ−1

]]

+ Cov
[

𝔼
[

ℙ̃𝜋
ℎ,ℎ−1𝑑

𝜋
ℎ−1

|

|

|

ℎ−1

]]

(A.8)

= 𝔼

[

Cov

[

∑

𝑠ℎ−1

ℙ̃𝜋
ℎ,ℎ−1(⋅|𝑠ℎ−1)𝑑

𝜋
ℎ−1(𝑠ℎ−1)

|

|

|

|

|

|

ℎ−1

]]

+ Cov
[

𝔼
[

ℙ̃𝜋
ℎ,ℎ−1𝑑

𝜋
ℎ−1

|

|

|

ℎ−1

]]

(A.9)
= 𝔼

[

∑

𝑠ℎ−1

Cov
[

ℙ̃𝜋
ℎ,ℎ−1(⋅|𝑠ℎ−1)

|

|

|

ℎ−1

]

𝑑𝜋ℎ−1(𝑠ℎ−1)
2

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
(∗)

+ℙ𝜋
ℎ,ℎ−1Cov[𝑑

𝜋
ℎ−1][ℙ

𝜋
ℎ,ℎ−1]

𝑇 .

(A.10)
The decomposition of the covariance in the third line uses that Cov(𝑋+𝑌 ) = Cov(𝑋)+Cov(𝑌 )
when 𝑋 and 𝑌 are statistically independent and the columns of ℙ̃ℎ,ℎ−1 are independent when
conditioning on ℎ−1.
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(∗) =𝔼

[

∑

𝑠ℎ−1

∑

𝑎ℎ−1

𝜋(𝑎ℎ−1|𝑠ℎ−1)2Cov
[

ℙ̃ℎ(⋅|𝑠ℎ−1, 𝑎ℎ−1)
|

|

|

Dataℎ−1
]

𝑑𝜋ℎ−1(𝑠ℎ−1)
2

]

(A.11)

=𝔼

[

∑

𝑠ℎ−1

∑

𝑎ℎ−1

𝜋(𝑎ℎ−1|𝑠ℎ−1)2𝟏(𝐸ℎ−1)Cov
[

ℙ̂ℎ(⋅|𝑠ℎ−1, 𝑎ℎ−1)
|

|

|

Dataℎ−1
]

𝑑𝜋ℎ−1(𝑠ℎ−1)
2

]

(A.12)

=𝔼

[

∑

𝑠ℎ−1

∑

𝑎ℎ−1

𝜋(𝑎ℎ−1|𝑠ℎ−1)2
𝟏(𝐸ℎ−1)
𝑛𝑠ℎ−1,𝑎ℎ−1

Cov
[

𝐞𝑠(1)ℎ
|

|

|

𝑠(1)ℎ−1 = 𝑠ℎ−1, 𝑎
(1)
ℎ−1 = 𝑎ℎ−1

]

𝑑𝜋ℎ−1(𝑠ℎ−1)
2

]

(A.13)

=
∑

𝑠ℎ−1,𝑎ℎ−1

𝜋(𝑎ℎ−1|𝑠ℎ−1)2𝔼

[

𝑑𝜋ℎ−1(𝑠ℎ−1)
2

𝑛𝑠ℎ−1,𝑎ℎ−1
𝟏(𝐸ℎ−1)

]

[

diag[ℙℎ(⋅|𝑠ℎ−1, 𝑎ℎ−1)] (A.14)

− ℙℎ(⋅|𝑠ℎ−1, 𝑎ℎ−1) ⋅ ℙℎ(⋅|𝑠ℎ−1, 𝑎ℎ−1)𝑇
]

(A.15)

≺
∑

𝑠ℎ−1

∑

𝑎ℎ−1

{𝑑𝜋ℎ−1(𝑠ℎ−1)
2 + Var[𝑑𝜋ℎ−1(𝑠ℎ−1)]

𝑛𝑑𝜇ℎ−1(𝑠ℎ−1)(1 − 𝜃)
𝜋(𝑎ℎ−1|𝑠ℎ−1)2

𝜇(𝑎ℎ−1|𝑠ℎ−1)
diag[ℙℎ,ℎ−1(⋅|𝑠ℎ−1, 𝑎ℎ−1)]

}

(A.16)
The second line uses the fact that conditional on 𝐸𝑐

ℎ−1, the variance of ℙ̃(⋅|𝑠ℎ−1, 𝑎ℎ−1) is zero
given Dataℎ. The third line uses the basic property of empirical average, and the fourth line
comes from the fact

Cov
[

𝐞𝑠(1)ℎ
|

|

|

𝑠(1)ℎ−1 = 𝑠ℎ−1, 𝑎
(1)
ℎ−1 = 𝑎ℎ−1

]

=𝔼
[

𝐞𝑠(1)ℎ ⋅ 𝐞𝑇
𝑠(1)ℎ

|

|

|

|

𝑠(1)ℎ−1 = 𝑠ℎ−1, 𝑎
(1)
ℎ−1 = 𝑎ℎ−1

]

− 𝔼
[

𝐞𝑠(1)ℎ
|

|

|

𝑠(1)ℎ−1 = 𝑠ℎ−1, 𝑎
(1)
ℎ−1 = 𝑎ℎ−1

]

⋅ 𝔼
[

𝐞𝑠(1)ℎ
|

|

|

𝑠(1)ℎ−1 = 𝑠ℎ−1, 𝑎
(1)
ℎ−1 = 𝑎ℎ−1

]𝑇

=diag(ℙℎ,ℎ−1(⋅|𝑠ℎ−1, 𝑎ℎ−1)) − ℙℎ,ℎ−1(⋅|𝑠ℎ−1, 𝑎ℎ−1)[ℙℎ,ℎ−1(⋅|𝑠ℎ−1, 𝑎ℎ−1)]𝑇

The last line (A.16) uses the fact that ℙ𝜋
ℎ,ℎ−1(⋅|𝑠ℎ−1)[ℙ

𝜋
ℎ,ℎ−1(⋅|𝑠ℎ−1)]

𝑇 is positive semidefinite,
𝑛𝑠ℎ−1,𝑎ℎ−1 ≥ 𝑛𝑑𝜇ℎ−1(𝑠ℎ−1, 𝑎ℎ−1)(1 − 𝜃) and the definition of variance for 𝑑𝜋ℎ−1(𝑠ℎ−1). Combining
(A.10) and (A.16) and by recursively apply them, we get the stated results.

Benefitting from the identical semidefinite ordering bound on Cov(𝑑𝜋ℎ ) for TMIS and SMIS,
we can borrow the following results from [21] for our Tabular-MIS estimator.
Lemma A.2.8 (Corollary 2 of [21]). For ℎ = 1, we have Var[𝑑𝜋1 (𝑠1)] =

1
𝑛
(𝑑𝜋ℎ (𝑠1) − 𝑑

𝜋
ℎ (𝑠1)

2),
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and for ℎ = 2, 3, ...,𝐻 , we have:

Var[𝑑𝜋ℎ (𝑠ℎ)] ≤
(1 − 𝜃)−1

𝑛

ℎ
∑

𝑡=2

∑

𝑠𝑡

ℙ𝜋
ℎ,𝑡(𝑠ℎ|𝑠𝑡)

2𝜚(𝑠𝑡) +
1
𝑛
∑

𝑠1

ℙ𝜋
ℎ,1(𝑠ℎ|𝑠1)

2𝑑1(𝑠1)

where 𝜚(𝑠𝑡) ∶=
∑

𝑠𝑡−1

(

𝑑𝜋𝑡−1(𝑠𝑡−1)
2+Var(𝑑𝜋𝑡−1(𝑠𝑡−1))

𝑑𝜇𝑡−1(𝑠𝑡−1)

∑

𝑎𝑡−1
𝜋(𝑎𝑡−1|𝑠𝑡−1)2

𝜇(𝑎𝑡−1|𝑠𝑡−1)
ℙ𝑡,𝑡−1(𝑠𝑡|𝑠𝑡−1, 𝑎𝑡−1)

)

.

Lemma A.2.9 (Error propagation: Theorem B.1 of [21]). Let 𝜏𝑎 ∶= max𝑡,𝑠𝑡,𝑎𝑡
𝜋(𝑎𝑡|𝑠𝑡)
𝜇(𝑎𝑡|𝑠𝑡)

and 𝜏𝑠 ∶=

max𝑡,𝑠𝑡
𝑑𝜋𝑡 (𝑠𝑡)
𝑑𝜇𝑡 (𝑠𝑡)

. If 𝑛 ≥ 2(1−𝜃)−1𝑡𝜏𝑎𝜏𝑠
max{𝑑𝜋𝑡 (𝑠𝑡),𝑑

𝜇
𝑡 (𝑠𝑡)}

for all 𝑡 = 2, ...,𝐻 , then for all ℎ = 1, 2, ...,𝐻 and 𝑠ℎ, we
have that:

Var[𝑑𝜋ℎ (𝑠ℎ)] ≤
2(1 − 𝜃)−1ℎ𝜏𝑎𝜏𝑠

𝑛
𝑑𝜋ℎ (𝑠ℎ).

Before giving the proof of Theorem 2.5.1, we first prove Lemma B.4.4.
Proof: [Proof of Lemma B.4.4] Let value function 𝑉 𝜋

ℎ (𝑠ℎ) = 𝔼𝜋[
∑𝐻

𝑡=ℎ 𝑟
(1)
𝑡 |𝑠(1)ℎ = 𝑠ℎ] and

𝑄-function 𝑄𝜋
ℎ(𝑠ℎ, 𝑎ℎ) = 𝔼𝜋[

∑𝐻
𝑡=ℎ 𝑟

(1)
𝑡 |𝑠(1)ℎ = 𝑠ℎ, 𝑎

(1)
ℎ = 𝑎ℎ], then by total law of variance we
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obtain (let’s suppress the policy 𝜋 for simplicity):

Var

[

ℎ
∑

𝑡=1
𝑟(1)𝑡 + 𝑉ℎ+1(𝑠

(1)
ℎ+1)

]

=𝔼

[

Var
[ ℎ
∑

𝑡=1
𝑟(1)𝑡 + 𝑉ℎ+1(𝑠

(1)
ℎ+1)

|

|

|

|

ℎ

]

]

+ Var

[

𝔼
[ ℎ
∑

𝑡=1
𝑟(1)𝑡 + 𝑉ℎ+1(𝑠

(1)
ℎ+1)

|

|

|

|

ℎ

]

]

=𝔼
[

Var
[

𝑟(1)ℎ + 𝑉ℎ+1(𝑠
(1)
ℎ+1)

|

|

|

|

𝑠(1)ℎ , 𝑎
(1)
ℎ

]]

+ Var

[

ℎ−1
∑

𝑡=1
𝑟(1)𝑡 + 𝔼

[

𝑉ℎ+1(𝑠
(1)
ℎ+1) + 𝑟

(1)
ℎ

|

|

|

|

𝑠(1)ℎ , 𝑎
(1)
ℎ

]

]

=𝔼
[

Var
[

𝑟(1)ℎ + 𝑉ℎ+1(𝑠
(1)
ℎ+1)

|

|

|

|

𝑠(1)ℎ , 𝑎
(1)
ℎ

]]

+ Var

[

ℎ−1
∑

𝑡=1
𝑟(1)𝑡 +𝑄ℎ(𝑠

(1)
ℎ , 𝑎

(1)
ℎ )

]

=𝔼
[

Var
[

𝑟(1)ℎ + 𝑉ℎ+1(𝑠
(1)
ℎ+1)

|

|

|

|

𝑠(1)ℎ , 𝑎
(1)
ℎ

]]

+ 𝔼

[

Var
[ ℎ−1
∑

𝑡=1
𝑟(1)𝑡 +𝑄ℎ(𝑠

(1)
ℎ , 𝑎

(1)
ℎ )

|

|

|

|

|

|

𝑠(1)ℎ , 𝑟
(1)
1∶ℎ−1

]

]

+Var

[

𝔼
[ ℎ−1
∑

𝑡=1
𝑟(1)𝑡 +𝑄ℎ(𝑠

(1)
ℎ , 𝑎

(1)
ℎ )

|

|

|

|

|

|

𝑠(1)ℎ , 𝑟
(1)
1∶ℎ−1

]

]

=𝔼
[

Var
[

𝑟(1)ℎ + 𝑉ℎ+1(𝑠
(1)
ℎ+1)

|

|

|

|

𝑠(1)ℎ , 𝑎
(1)
ℎ

]]

+ 𝔼
[

Var
[

𝑄ℎ(𝑠
(1)
ℎ , 𝑎

(1)
ℎ )

|

|

|

|

|

𝑠(1)ℎ , 𝑟
(1)
1∶ℎ−1

]]

+Var

[

ℎ−1
∑

𝑡=1
𝑟(1)𝑡 + 𝔼

[

𝑄ℎ(𝑠
(1)
ℎ , 𝑎

(1)
ℎ )

|

|

|

|

|

|

𝑠(1)ℎ

]

]

=𝔼
[

Var
[

𝑟(1)ℎ + 𝑉ℎ+1(𝑠
(1)
ℎ+1)

|

|

|

|

𝑠(1)ℎ , 𝑎
(1)
ℎ

]]

+ 𝔼
[

Var
[

𝑄ℎ(𝑠
(1)
ℎ , 𝑎

(1)
ℎ )

|

|

|

|

|

𝑠(1)ℎ

]]

+ Var

[

ℎ−1
∑

𝑡=1
𝑟(1)𝑡 + 𝑉ℎ(𝑠

(1)
ℎ )

]

,

(A.17)
where we use Markovian property that (𝑉ℎ+1(𝑠(1)ℎ+1)|ℎ) equals (𝑉ℎ+1(𝑠(1)ℎ+1)|𝑠(1)ℎ , 𝑎(1)ℎ ) in distribu-
tion and 𝔼

[

𝑉ℎ+1(𝑠
(1)
ℎ+1) + 𝑟

(1)
ℎ

|

|

|

|

𝑠(1)ℎ , 𝑎
(1)
ℎ

]

= 𝑄ℎ(𝑠
(1)
ℎ , 𝑎

(1)
ℎ ). Then by applying (A.17) recursively and

letting ℎ = 𝐻 , we get the stated result.
Remark 10. A straight forward implication of Lemma B.4.4 is the following:

𝐻
∑

𝑡=1
𝔼𝜋

[

Var
[

𝑉 𝜋
𝑡+1(𝑠

(1)
𝑡+1) + 𝑟

(1)
𝑡
|

|

|

𝑠(1)𝑡 , 𝑎
(1)
𝑡

]]

≤ 𝐻2𝑅2
max.

Combing Lemma A.2.6 and A.2.9, we are now ready to prove the main Theorem 2.5.1.
Proof: [Proof of Theorem 2.5.1] Plug the result of Lemma A.2.9 into Lemma A.2.6 and
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uses the unbiasedness of 𝑣𝜋TMIS (Lemma A.2.5) we obtain ∀ 0 < 𝜃 < 1:
𝔼[(𝑣𝜋TMIS − 𝑣

𝜋)2]

≤
Var[𝑉 𝜋

1 (𝑠
(1)
1 )]

𝑛
+

𝐻
∑

ℎ=1

∑

𝑠ℎ,𝑎ℎ

(1 − 𝜃)−1

𝑛𝑑𝜇ℎ (𝑠ℎ, 𝑎ℎ)
𝑑𝜋ℎ (𝑠ℎ)

2𝜋(𝑎ℎ|𝑠ℎ)2Var
[

(𝑉 𝜋
ℎ+1(𝑠

(1)
ℎ+1) + 𝑟

(1)
ℎ )||

|

𝑠(1)ℎ = 𝑠ℎ, 𝑎
(1)
ℎ = 𝑎ℎ

]

.

+
(1 − 𝜃)−1

𝑛

𝐻
∑

ℎ=1

∑

𝑠ℎ,𝑎ℎ

2(1 − 𝜃)−1ℎ𝜏𝑎𝜏𝑠
𝑛

𝑑𝜋ℎ (𝑠ℎ)
𝑑𝜇ℎ (𝑠ℎ)

𝜋(𝑎ℎ|𝑠ℎ)2

𝜇(𝑎ℎ|𝑠ℎ)
Var

[

(𝑉 𝜋
ℎ+1(𝑠

(1)
ℎ+1) + 𝑟

(1)
ℎ )||

|

𝑠(1)ℎ = 𝑠ℎ
]

(A.18)
Choose 𝜃 =

√

4 log(𝑛)∕(𝑛min𝑡,𝑠𝑡,𝑎𝑡 𝑑
𝜇
𝑡 (𝑠𝑡, 𝑎𝑡)). Then by assumption 𝑛 > 16 log 𝑛

min𝑡,𝑠𝑡,𝑎𝑡 𝑑
𝜇
𝑡 (𝑠𝑡,𝑎𝑡)

we have
𝜃 < 1∕2, which allows us to write (1 − 𝜃)−1 ≤ (1 + 2𝜃) in the leading term and (1 − 𝜃)−1 ≤ 2
in the subsequent terms. The condition of Lemma A.2.9 is satisfied by The second assumption
on 𝑛. Then, combining (A.18) with Lemma A.2.4 we get:

𝔼[(𝑣𝜋TMIS − 𝑣
𝜋)2] ≤ 1

𝑛

𝐻
∑

ℎ=0

∑

𝑠ℎ,𝑎ℎ

𝑑𝜋ℎ (𝑠ℎ)
2

𝑑𝜇ℎ (𝑠ℎ)
𝜋(𝑎ℎ|𝑠ℎ)2

𝜇(𝑎ℎ|𝑠ℎ)
Var

[

(𝑉 𝜋
ℎ+1(𝑠

(1)
ℎ+1) + 𝑟

(1)
ℎ )||

|

𝑠(1)ℎ = 𝑠ℎ, 𝑎
(1)
ℎ = 𝑎ℎ

]

⋅

(

1 +

√

16 log 𝑛
𝑛min𝑡,𝑠𝑡 𝑑

𝜇
𝑡 (𝑠𝑡)

)

+ 3
𝑛2
𝐻3𝑆𝐴𝑅2

max

+
8𝜏𝑎𝜏𝑠
𝑛2

𝐻
∑

ℎ=1

∑

𝑠ℎ,𝑎ℎ

ℎ ⋅ 𝑑𝜋ℎ (𝑠ℎ)
𝑑𝜇ℎ (𝑠ℎ)

𝜋(𝑎ℎ|𝑠ℎ)2

𝜇(𝑎ℎ|𝑠ℎ)
⋅ Var

[

(𝑉 𝜋
ℎ+1(𝑠

(1)
ℎ+1) + 𝑟

(1)
ℎ )||

|

𝑠(1)ℎ = 𝑠ℎ, 𝑎
(1)
ℎ = 𝑎ℎ

]

,

(A.19)
now use Lemma B.4.4, we can bound the last term in (A.19) by

8𝜏2𝑎𝜏𝑠𝐻
𝑛2 ⋅ 𝑑𝑚

𝐻
∑

𝑡=1
𝔼𝜋

[

Var
[

𝑉 𝜋
𝑡+1(𝑠

(1)
𝑡+1) + 𝑟

(1)
𝑡
|

|

|

𝑠(1)𝑡 , 𝑎
(1)
𝑡

]]

≤
8𝜏2𝑎𝜏𝑠𝐻

3𝑅2
max

𝑛2 ⋅ 𝑑𝑚
,

Combine this term with 3
𝑛2
𝐻3𝑆𝐴𝑅2

max we obtain the higher order term 𝑂( 𝜏
2
𝑎𝜏𝑠𝐻

3𝑅2
max

𝑛2⋅𝑑𝑚
), where we

use that pigeonhole principle implies that 𝑆 < 𝜏𝑠, 𝐴 < 𝜏𝑎.This completes the proof.

A.3 Proofs of data splitting Tabular-MIS estimator.
We define the fictitious data splitting Tabular-MIS estimator as:

𝑣𝜋split =
1
𝑁

𝑁
∑

𝑖=1
𝑣𝜋(𝑖),
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where each 𝑣𝜋(𝑖) is the fictitious Tabular-MIS estimator of 𝑣𝜋(𝑖). Moreover, we set all 𝑣𝜋(1), 𝑣𝜋(2), ..., 𝑣𝜋(𝑁)jointly share the same fictitious parameter 𝜃𝑀 .
Proof: [Proof of Theorem 2.7.1] Let 𝐸′ ∶= {∃ 𝑣𝜋(𝑖) ∶ 𝑠.𝑡.𝑣

𝜋
(𝑖) ≠ 𝑣𝜋(𝑖)}, then an argument

similar to Lemma A.2.4 can be derived:
𝔼[(𝑣𝜋split − 𝑣

𝜋)2] ≤ 3ℙ[𝐸′]𝐻2𝑅2
max + 𝔼[(𝑣𝜋split − 𝑣

𝜋)2],

and

ℙ[𝐸′] ≤ 𝑁
∑

𝑡

∑

𝑠𝑡

∑

𝑎𝑡

ℙ[𝑛𝑠𝑡,𝑎𝑡 < 𝑀 ⋅ 𝑑𝜇𝑡 (𝑠𝑡, 𝑎𝑡)(1 − 𝜃𝑀 )] ≤ 𝑁𝐻𝑆𝐴𝑒−
𝜃2𝑀𝑀 min𝑡,𝑠𝑡,𝑎𝑡 𝑑

𝜇
𝑡 (𝑠𝑡,𝑎𝑡)

2 ,

therefore ℙ[𝐸′] will be sufficiently small if 𝑀 ≥ 𝑂(Polylog(𝐻,𝑆,𝐴, 𝑛)∕min𝑡,𝑠𝑡,𝑎𝑡 𝑑
𝜇
𝑡 (𝑠𝑡, 𝑎𝑡)).By near-uniformity we𝑀 ≥ 𝑂(Polylog(𝐻,𝑆,𝐴, 𝑛)𝑆𝐴) ≥ 𝑂(Polylog(𝐻,𝑆,𝐴, 𝑛)∕min𝑡,𝑠𝑡,𝑎𝑡 𝑑

𝜇
𝑡 (𝑠𝑡, 𝑎𝑡)).Moreover, by i.i.d and unbiasedness of 𝑣𝜋(𝑖), we have

𝔼[(𝑣𝜋split − 𝑣
𝜋)2] = 1

𝑁
𝔼[(𝑣𝜋(1) − 𝑣

𝜋)2] ≤ 1
𝑁

⋅ 𝑂(𝐻
2𝑆𝐴
𝑀

) = 𝑂(𝐻
2𝑆𝐴
𝑛

),

by the second assumption on 𝑀 and Theorem 2.5.1.
We now proof Lemma 2.7.1, since it will be used to as the intermediate step for proving

Theorem 2.7.2.
Proof: [Proof of Lemma 2.7.1] Note that

ℙ
[{

∃𝜋 ∈
∏

𝑠.𝑡. 𝑣𝜋split ≠ 𝑣𝜋split
}]

≤ 𝑁 ⋅ ℙ
[{

∃𝜋 ∈
∏

, 𝑠.𝑡. 𝑣𝜋(1) ≠ 𝑣𝜋(1)
}]

≤ 𝑁 ⋅ ℙ
[

{∃𝑡, 𝑠𝑡, 𝑎𝑡 s.t. 𝑛(1)𝑠𝑡,𝑎𝑡 < 𝑛𝑑
𝜇
𝑡 (𝑠𝑡, 𝑎𝑡)(1 − 𝜃𝑀 )}

]

≤ 𝑁𝐻𝑆𝐴𝑒−
𝜃2𝑀𝑀 min𝑡,𝑠𝑡,𝑎𝑡 𝑑

𝜇
𝑡 (𝑠𝑡,𝑎𝑡)

2 ,

therefore by near-uniformity 𝑀 > max
[

𝑂(𝑆𝐴 ⋅ Polylog(𝑆,𝐻,𝐴,𝑁, 1∕𝛿)), 𝑂(𝐻𝜏𝑎𝜏𝑠)
] is suf-

ficient to guarantee the stated result.
Now we can prove Theorem 2.7.2.
Proof: [Proof of Theorem 2.7.2] First of all, we have

ℙ
(

|𝑣𝜋split − 𝑣
𝜋
| > 𝜖

)

≤ ℙ
(

|𝑣𝜋split − 𝑣
𝜋
split| > 0

)

+ ℙ
(

|𝑣𝜋split − 𝑣
𝜋
| > 𝜖

)

, (A.20)
Now by Bernstein inequality we have

ℙ
(

|𝑣𝜋split − 𝑣
𝜋
| > 𝜖

)

= ℙ

(

|

1
𝑁

𝑁
∑

𝑖=1
(𝑣𝜋(𝑖) − 𝑣

𝜋)| ≥ 𝜖

)

≤ exp

(

− 𝑁𝜖2

2Var(𝑣𝜋(1)) + 2𝐻𝑅max𝜖∕3

)

∶= 𝛿∕2.

(A.21)

81



Supplementary Material to Chapter 2 Chapter A

Solving (A.21) and apply Theorem 2.5.1, we obtain

𝜖 ≤

√

2Var(𝑣𝜋(1)) log(2∕𝛿)

𝑁
+
2𝐻𝑅max log(2∕𝛿)

3𝑁
≤ 𝑂(

√

𝐻2𝑆𝐴 log(2∕𝛿)
𝑀 ⋅𝑁

)+
2𝐻𝑅max log(2∕𝛿)

3𝑁
.

(A.22)
As 𝑁 goes large, the square root term in (A.22) will dominate and it seems we only need to
consider the square root term in𝑁 and treat the second term as the higher order term. However,
since 𝑀 > max

[

𝑂(𝑆𝐴 ⋅ Polylog(𝑆,𝐻,𝐴,𝑁, 1∕𝛿)), 𝑂(𝐻𝜏𝑎𝜏𝑠)
], 𝑁 cannot be arbitrary large

given 𝑛. An example is: when 𝑁 = 𝑛, then 𝑀 = 𝑛∕𝑁 = 1 does not satisfy the condition.
Therefore to make the square root term dominates we need

√

𝐻2𝑆𝐴 log(2∕𝛿)
𝑀 ⋅𝑁

≥ 𝑂(
𝐻𝑅max log(2∕𝛿)

𝑁
).

This translates to
𝑀 ≤ 𝑂(

√

𝑛𝑆𝐴), (A.23)
where 𝑂 absorbs all the Polylog terms.

Therefore under the condition (A.23), we can really absorb the second term in (A.22) (as
higher order term) and combine it with Lemma 2.7.1 to get that with probability 1 − 𝛿,

|𝑣𝜋split − 𝑣
𝜋
| ≤ 0 + 𝑂(

√

𝐻2𝑆𝐴
𝑀 ⋅𝑁

) = 𝑂(
√

𝐻2𝑆𝐴
𝑛

).

Proof: [Proof of Theorem 2.9.1] The non-uniform result of Theorem 2.7.2 gives:

|𝑣𝜋split − 𝑣
𝜋
| ≤ 𝑂(

√

𝐻2𝑆𝐴
𝑛

)

Note that all nonstationary deterministic polices class have cardinality |

∏

| = 𝐴𝐻𝑆 , which
implies log |∏ | = 𝐻𝑆 log𝐴, therefore combine Lemma 2.7.1 with a direct union bound and
Multiplicative Chernoff bound we obtain

sup
𝜋∈

∏

|𝑣𝜋split − 𝑣
𝜋
| ≤ 𝑂(

√

𝐻3𝑆2𝐴
𝑛

)
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Algorithm 2 Data Splitting Tabular MIS OPE
Input: Logging data  = {{𝑠(𝑖)𝑡 , 𝑎

(𝑖)
𝑡 , 𝑟

(𝑖)
𝑡 }𝐻𝑡=1}

𝑛
𝑖=1 from the behavior policy 𝜇. A tar-

get policy 𝜋 which we want to evaluate its cumulative reward. Splitting data size
𝑀 .

1: Randomly splitting the data  evenly into 𝑁 folds, with each fold |(𝑖)
| =𝑀 .

2: for 𝑖 = 1, 2,… , 𝑁 do
3: Use Algorithm 3 to estimate 𝑣𝜋(𝑖) with data (𝑖).
4: end for
5: Use the mean of 𝑣𝜋(1), 𝑣𝜋(2), ..., 𝑣𝜋(𝑁) as the final estimation of 𝑣𝜋 .

A.4 More details about Empirical Results.
Restate Time-varying, non-mixing Tabular MDP in Section 2.8.

There are two states 𝑠0 and 𝑠1 and two actions 𝑎1 and 𝑎2. State 𝑠0 always has probability 1
going back to itself, regardless of the actions, i.e. 𝑃𝑡(𝑠0|𝑠0, 𝑎1) = 1 and 𝑃𝑡(𝑠0|𝑠0, 𝑎2) = 1. For
state 𝑠1, at each time step there is one action (we call it 𝑎) that has probability 2∕𝐻 going to 𝑠0and the other action (we call it 𝑎′) has probability 1 going back to 𝑠1,

𝑃𝑡(𝑠|𝑠1, 𝑎) =

{

2
𝐻

if 𝑠 = 𝑠0;
1 − 2

𝐻
if 𝑠 = 𝑠1.

𝑃𝑡(𝑠|𝑠1, 𝑎′) =

{

0 if 𝑠 = 𝑠0;
1 if 𝑠 = 𝑠1.

and which action will make state 𝑠1 go to state 𝑠0 with probability 2∕𝐻 is decided by a random
parameter 𝑝𝑡 uniform sampled in [0, 1]. If 𝑝𝑡 < 0.5, 𝑎 = 𝑎1 and if 𝑝𝑡 ≥ 0.5, 𝑎 = 𝑎2. These
𝑝1, ..., 𝑝𝐻 are generated by a sequence of pseudo-random numbers. Moreover, one can receive
reward 1 at each time step if 𝑡 > 𝐻∕2 and is in state 𝑠0, and will receive reward 0 otherwise.
Lastly, for logging policy, we define it to be uniform:

𝜇(⋅|𝑠0) =

{

1
2

if ⋅ = 𝑎1;
1
2

if ⋅ = 𝑎2.
and 𝜇(⋅|𝑠1) =

{

1
2

if ⋅ = 𝑎1;
1
2

if ⋅ = 𝑎2.

For target policy 𝜋, we define it as:

𝜋(⋅|𝑠0) =

{

1
2

if ⋅ = 𝑎1;
1
2

if ⋅ = 𝑎2.
and 𝜋(⋅|𝑠1) =

{

1
4

if ⋅ = 𝑎1;
3
4

if ⋅ = 𝑎2.

We run this non-stationary MDP model in the Python environment and pseudo-random num-
bers 𝑝𝑡’s are generated by keeping numpy.random.seed(100).

We run each methods under𝐾 = 100macro-replications with data(𝑘) =
{

(𝑠(𝑖)𝑡 , 𝑎
(𝑖)
𝑡 , 𝑟

(𝑖)
𝑡 )

}𝑖∈[𝑛],𝑡∈[𝐻]

(𝑘)
,

and use each (𝑘) (𝑘 = 1, ..., 𝐾) to construct a estimator 𝑣𝜋[𝑘], then the (empirical) RMSE is com-
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puted as:

RMSE =

√

∑𝐾
𝑘=1(𝑣

𝜋
[𝑘] − 𝑣

𝜋
true)2

𝐾
,

where 𝑣𝜋true is obtained by calculating 𝑃 𝜋
𝑡+1,𝑡(𝑠

′
|𝑠) =

∑

𝑎 𝑃𝑡+1,𝑡(𝑠′|𝑠, 𝑎)𝜋𝑡(𝑎|𝑠), the marginal state
distribution 𝑑𝜋𝑡 = 𝑃 𝜋

𝑡,𝑡−1𝑑
𝜋
𝑡−1, 𝑟𝜋𝑡 (𝑠𝑡) =

∑

𝑎𝑡
𝑟𝑡(𝑠𝑡, 𝑎𝑡)𝜋𝑡(𝑎𝑡|𝑠𝑡) and 𝑣𝜋true =

∑𝐻
𝑡=1

∑

𝑠𝑡
𝑑𝜋𝑡 (𝑠𝑡)𝑟

𝜋
𝑡 (𝑠𝑡).Then Relative-RMSE equals to RMSE∕𝑣𝜋true.

Other generic IS-based estimators. There are other Importance Sampling based estima-
tors including weighted importance sampling (WIS) and importance sampling with stationary
state distribution (SSD-IS, [29]). The empirical comparisons including these methods are well-
demonstrated in [21] and it was empirically shown that they are worse than SMIS. Because of
that, we only focus on comparing SMIS and TMIS in our simulation study.
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B.1 On error metric for OPE
In this section, we discuss the metric considered in this work. Traditionally, most works

directly use Mean Square Error (MSE)𝔼[(𝑣𝜋−𝑣𝜋)2] as the criterion for measuring OPE methods
e.g. [19, 111, 23, 56], or equivalently, by proposing unbiased estimators and discussing its
variance e.g. [18]. Alternately, one can consider bounding the absolute difference between 𝑣𝜋
and 𝑣𝜋 with high probability (e.g. [64]), i.e. |𝑣𝜋 − 𝑣𝜋| ≤ 𝜖prob w.h.p. Generally speaking, high
probability bound can be seen as a stricter criterion compared to MSE since

𝔼[(𝑣𝜋 − 𝑣𝜋)2] = 𝔼[(𝑣𝜋 − 𝑣𝜋)2𝟏𝐸] + 𝔼[(𝑣𝜋 − 𝑣𝜋)2𝟏𝐸𝑐 ]
≤ 𝜖prob(𝛿)2 ⋅ (1 − 𝛿) +𝐻2 ⋅ 𝛿,

(B.1)

where 𝐸 is the event that 𝜖prob error holds and 𝛿 is the failure probability. As a result, if both 𝛿
and 𝜖prob(𝛿) can be controlled small, then the high probability bound implies a result for MSE
bound. This is realistic, since 𝛿 mostly appears inside the logarithmic term of 𝜖prob(𝛿) so the
second term can be scaled to sufficiently small without affecting the polynomial dependence
for the first term.

B.2 Some preparations
In this section we present some results that are critical for proving the main theorems.

Lemma B.2.1. For any 0 < 𝛿 < 1, there exists an absolute constant 𝑐1 such that when total
episode 𝑛 > 𝑐1 ⋅ 1∕𝑑𝑚 ⋅ log(𝐻𝑆𝐴∕𝛿), then with probability 1 − 𝛿,

𝑛𝑠𝑡,𝑎𝑡 ≥ 𝑛 ⋅ 𝑑𝜇𝑡 (𝑠𝑡, 𝑎𝑡)∕2, ∀ 𝑠𝑡, 𝑎𝑡.
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If state 𝑠𝑡 is not accessible, then 𝑛𝑠𝑡,𝑎𝑡 = 𝑑𝜇𝑡 (𝑠𝑡, 𝑎𝑡) = 0 so the lemma holds trivially.1
Proof: [Proof of Lemma B.2.1] Define 𝐸 ∶= {∃𝑡, 𝑠𝑡, 𝑎𝑡 s.t. 𝑛𝑠𝑡,𝑎𝑡 < 𝑛𝑑𝜇𝑡 (𝑠𝑡, 𝑎𝑡)∕2}. Then

combining the multiplicative Chernoff bound and a union bound over each 𝑡,𝑠𝑡 and 𝑎𝑡, we obtain
ℙ[𝐸] ≤

∑

𝑡

∑

𝑠𝑡

∑

𝑎𝑡

ℙ[𝑛𝑠𝑡,𝑎𝑡 < 𝑛𝑑
𝜇
𝑡 (𝑠𝑡, 𝑎𝑡)∕2]

≤ 𝐻𝑆𝐴 ⋅ 𝑒−
𝑛⋅min𝑡,𝑠𝑡,𝑎𝑡 𝑑

𝜇
𝑡 (𝑠𝑡,𝑎𝑡)

8 = 𝐻𝑆𝐴 ⋅ 𝑒−
𝑛⋅𝑑𝑚
8 ∶= 𝛿

solving this for 𝑛 then provides the stated result.
Now we define: 𝑁 ∶= min𝑡,𝑠𝑡,𝑎𝑡 𝑛𝑠𝑡,𝑎𝑡 , then above implies𝑁 ≥ 𝑛𝑑𝑚∕2 (recall 𝑑𝑚 in Assump-

tion 4.4.1). Now we aggregate only the first 𝑁 pieces of data in each state-action (𝑠𝑡, 𝑎𝑡)2 of
off-policy data  and they consist of a new dataset ′ = {(𝑠𝑡, 𝑎𝑡, 𝑠

(𝑖)
𝑡+1, 𝑟

(𝑖)
𝑡 ) ∶ 𝑖 = 1, ..., 𝑁 ; 𝑡 ∈

[𝐻]; 𝑠𝑡 ∈  , 𝑎𝑡 ∈ }, and is a subset of . For the rest of paper, we will use either ′ or the
original  to create OPEMA 𝑣𝜋 (only for theoretical analysis purpose). Whether  or ′ is
used will be stated clearly in each context.
Remark 11. It is worth mentioning that when use ′ to construct 𝑣𝜋 , 𝑛′

𝑠𝑡,𝑎𝑡
= 𝑁 for all 𝑠𝑡, 𝑎𝑡.

Also, 𝑁 ∶= min 𝑛𝑠𝑡,𝑎𝑡 (note 𝑛𝑠𝑡,𝑎𝑡 is the count from ) itself is a random variable and in the
extreme case we could have 𝑁 = 0 and if that happens 𝑣𝜋 = 0 (since in that case 𝑃𝑡 ≡ 0 and
𝑑𝜋𝑡 is degenerated). However, there is only tiny probability 𝑁 will be small, as guaranteed by
Lemma B.2.1.

We wanted to point out that this technique of dropping certain amount of data, is not uncom-
mon for analyzing model-based method in RL: e.g. Rmax exploration [112] for online episodic
setting (see [[41], Notes on Rmax exploration] Section 2 Algorithm for tabular MDP. The data
they use is the “known set”𝐾 with parameter𝑚, in step3 data pairs observed more than𝑚 times
are not recorded).

B.2.1 Fictitious OPEMA estimator.
Similar to [21, 57], we introduce an unbiased version of 𝑣𝜋 to fill in the gap at (𝑠𝑡, 𝑎𝑡) where

𝑛𝑠𝑡,𝑎𝑡 is small. Concretely, every component in 𝑣𝜋 is substituted by the fictitious counterpart,
i.e. 𝑣𝜋 ∶=

∑𝐻
𝑡=1⟨𝑑

𝜋
𝑡 , 𝑟̃

𝜋
𝑡 ⟩, with 𝑑𝜋𝑡 = 𝑃 𝜋

𝑡 𝑑
𝜋
𝑡−1 and 𝑃 𝜋

𝑡 (𝑠𝑡|𝑠𝑡−1) =
∑

𝑎𝑡−1
𝑃𝑡(𝑠𝑡|𝑠𝑡−1, 𝑎𝑡−1)𝜋(𝑎𝑡−1|𝑠𝑡−1).In particular, consider the high probability event in Lemma B.2.1, i.e. let 𝐸𝑡 denotes the event

1In general, non-accessible state will not affect our results so to make our presentation succinct we will not
mention non-accessible state for the rest of paper unless necessary.

2Note we can do this since by definition 𝑁 ≤ 𝑛𝑠𝑡,𝑎𝑡 for all 𝑠𝑡, 𝑎𝑡.
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{𝑛𝑠𝑡,𝑎𝑡 ≥ 𝑛𝑑𝜇𝑡 (𝑠𝑡, 𝑎𝑡)∕2}3, then we define
𝑟̃𝑡(𝑠𝑡, 𝑎𝑡) = 𝑟̂𝑡(𝑠𝑡, 𝑎𝑡)𝟏(𝐸𝑡) + 𝑟𝑡(𝑠𝑡, 𝑎𝑡)𝟏(𝐸𝑐

𝑡 )

𝑃𝑡+1(⋅|𝑠𝑡, 𝑎𝑡) = 𝑃𝑡+1(⋅|𝑠𝑡, 𝑎𝑡)𝟏(𝐸𝑡) + 𝑃𝑡+1(⋅|𝑠𝑡, 𝑎𝑡)𝟏(𝐸𝑐
𝑡 ).

Similarly, for the OPEMA estimator uses data ′, the fictitious estimator is set to be
𝑟̃𝑡(𝑠𝑡, 𝑎𝑡) = 𝑟̂𝑡(𝑠𝑡, 𝑎𝑡)𝟏(𝐸) + 𝑟𝑡(𝑠𝑡, 𝑎𝑡)𝟏(𝐸𝑐)

𝑃𝑡+1(⋅|𝑠𝑡, 𝑎𝑡) = 𝑃𝑡+1(⋅|𝑠𝑡, 𝑎𝑡)𝟏(𝐸) + 𝑃𝑡+1(⋅|𝑠𝑡, 𝑎𝑡)𝟏(𝐸𝑐)

where 𝐸 denote the event {𝑁 ≥ 𝑛𝑑𝑚∕2}.
𝑣𝜋 creates a bridge between 𝑣𝜋 and 𝑣𝜋 because of its unbiasedness and it is also bounded by

𝐻 (see Lemma B.3 and Lemma B.5 in [57] for those preliminary results). Also, 𝑣𝜋 is identical
to 𝑣𝜋 with high probability, as stated by the following lemma.
Lemma B.2.2. For any 0 < 𝛿 < 1, there exists an absolute constant 𝑐1 such that when total
episode 𝑛 > 𝑐1𝑑𝑚 ⋅ log(𝐻𝑆𝐴∕𝛿), then with probability 1 − 𝛿,

sup
𝜋∈Π

|𝑣𝜋 − 𝑣𝜋| = 0.

Proof: This Lemma is a direct corollary of Lemma B.2.1 by considering the event 𝐸1 ∶=
{∃𝑡, 𝑠𝑡, 𝑎𝑡 s.t. 𝑛𝑠𝑡,𝑎𝑡 < 𝑛𝑑𝜇𝑡 (𝑠𝑡, 𝑎𝑡)∕2} or {𝑁 < 𝑛𝑑𝑚∕2} since 𝑣𝜋 and 𝑣𝜋 are identical on 𝐸𝑐

1 .
Note 𝑣𝜋 and 𝑣𝜋 even equal to each other uniformly over all 𝜋 in Π. This is not surprising

since only logging policy 𝜇 will decide if they are equal or not. This lemma shows how close
𝑣𝜋 and 𝑣𝜋 are. Therefore in the following it suffices to consider the uniform convergence of
sup𝜋∈Π |𝑣𝜋 − 𝑣𝜋|.Next by using a fictitious analogy of state-action expression as in equation (3.1), we have:

sup
𝜋∈Π

|𝑣𝜋 − 𝑣𝜋| = sup
𝜋∈Π

|

𝐻
∑

𝑡=1
⟨𝑑𝜋𝑡 , 𝑟̃𝑡⟩ −

𝐻
∑

𝑡=1
⟨𝑑𝜋𝑡 , 𝑟𝑡⟩|

= sup
𝜋∈Π

|

𝐻
∑

𝑡=1
⟨𝑑𝜋𝑡 , 𝑟̃𝑡⟩ −

𝐻
∑

𝑡=1
⟨𝑑𝜋𝑡 , 𝑟𝑡⟩ +

𝐻
∑

𝑡=1
⟨𝑑𝜋𝑡 , 𝑟𝑡⟩ −

𝐻
∑

𝑡=1
⟨𝑑𝜋𝑡 , 𝑟𝑡⟩|

≤ sup
𝜋∈Π

|

𝐻
∑

𝑡=1
⟨𝑑𝜋𝑡 − 𝑑

𝜋
𝑡 , 𝑟𝑡⟩|

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
(∗)

+ sup
𝜋∈Π

|

𝐻
∑

𝑡=1
⟨𝑑𝜋𝑡 , 𝑟̃𝑡 − 𝑟𝑡⟩|

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
(∗∗)

(B.2)

We first deal with (∗∗) by the following lemma.
3More rigorously,𝐸𝑡 depends on the specific pair 𝑠𝑡, 𝑎𝑡 and should be written as𝐸𝑡(𝑠𝑡, 𝑎𝑡). However, for brevity

we just use 𝐸𝑡 and this notation should be clear in each context.
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Lemma B.2.3. We have with probability 1 − 𝛿:

sup
𝜋∈Π

|

𝐻
∑

𝑡=1
⟨𝑑𝜋𝑡 , 𝑟̃𝑡 − 𝑟𝑡⟩| ≤ 𝑂(

√

𝐻2 log(𝐻𝑆𝐴∕𝛿)
𝑛 ⋅ 𝑑𝑚

)

Proof: [Proof of Lemma B.2.3]
Since |⟨𝑑𝜋𝑡 , 𝑟̃𝑡 − 𝑟𝑡⟩| ≤ ||𝑑𝜋𝑡 ||1 ⋅ ||𝑟̃𝑡 − 𝑟𝑡||∞, we obtain

|

𝐻
∑

𝑡=1
⟨𝑑𝜋𝑡 , 𝑟̃𝑡 − 𝑟𝑡⟩| ≤

𝐻
∑

𝑡=1
||𝑑𝜋𝑡 ||1 ⋅ ||𝑟̃𝑡 − 𝑟𝑡||∞ =

𝐻
∑

𝑡=1
||𝑟̃𝑡 − 𝑟𝑡||∞,

where we used 𝑑𝜋𝑡 (⋅) is a probability distribution. Therefore above expression further indicates
sup𝜋∈Π |

∑𝐻
𝑡=1⟨𝑑

𝜋
𝑡 , 𝑟̃𝑡− 𝑟𝑡⟩| ≤

∑𝐻
𝑡=1 ||𝑟̃𝑡− 𝑟𝑡||∞. Now by a union bound and Hoeffding inequality,

ℙ(sup
𝑡
||𝑟̃𝑡 − 𝑟𝑡||∞ > 𝜖) = ℙ(sup

𝑡,𝑠𝑡,𝑎𝑡
|𝑟̃𝑡(𝑠𝑡, 𝑎𝑡) − 𝑟𝑡(𝑠𝑡, 𝑎𝑡)| > 𝜖)

≤ 𝐻𝑆𝐴 ⋅ ℙ(|𝑟̃𝑡(𝑠𝑡, 𝑎𝑡) − 𝑟𝑡(𝑠𝑡, 𝑎𝑡)| > 𝜖)
= 𝐻𝑆𝐴 ⋅ ℙ(|𝑟̂𝑡(𝑠𝑡, 𝑎𝑡) − 𝑟𝑡(𝑠𝑡, 𝑎𝑡)|𝟏(𝐸𝑡) > 𝜖)
≤ 2𝐻𝑆𝐴 ⋅ 𝔼[𝔼[𝑒−2𝑛𝑠𝑡,𝑎𝑡𝜖2|𝐸𝑡]]

≤ 2𝐻𝑆𝐴 ⋅ 𝔼[𝔼[𝑒−𝑛𝑑𝑚𝜖2|𝐸𝑡]] = 2𝐻𝑆𝐴 ⋅ 𝑒−𝑛𝑑𝑚𝜖2 ∶= 𝛿
2
.

where we use ℙ(𝐴) = 𝔼[𝟏𝐴] = 𝔼[𝔼[𝟏𝐴|𝑋]]. Solving for 𝜖, then it follows:

sup
𝜋∈Π

|

𝐻
∑

𝑡=1
⟨𝑑𝜋𝑡 , 𝑟̃𝑡 − 𝑟𝑡⟩| ≤

𝐻
∑

𝑡=1
||𝑟̃𝑡 − 𝑟𝑡||∞ ≤ 𝑂(

√

𝐻2 log(𝐻𝑆𝐴∕𝛿)
𝑛 ⋅ 𝑑𝑚

)

with probability 1 − 𝛿. The case for 𝐸 = {𝑁 ≥ 𝑛𝑑𝑚∕2} can be proved easily in a similar way.
Note that in order to measure the randomness in reward, sample complexity 𝑛 only has de-

pendence of order 𝐻2, this result implies random reward will only cause error of lower order
dependence in 𝐻 . Therefore, in many RL literature deterministic reward is directly assumed.
Next we consider (∗) in (B.2) by decomposing ∑𝐻

𝑡=1⟨𝑑
𝜋
𝑡 − 𝑑𝜋𝑡 , 𝑟𝑡⟩ into a martingale type repre-

sentation. This is the key for our proof since with it we can use either uniform concentration
inequalities or martingale concentration inequalities to prove efficiency.

B.2.2 Decomposition of
∑𝐻
𝑡=1⟨𝑑

𝜋
𝑡 − 𝑑

𝜋
𝑡 , 𝑟𝑡⟩

Let 𝑑𝜋𝑡 ∈ ℝ𝑆⋅𝐴 denote the marginal state-action probability vector, 𝜋𝑡 ∈ ℝ(𝑆⋅𝐴)×𝑆 is the
policy matrix with (𝜋𝑡)(𝑠𝑡,𝑎𝑡),𝑠𝑡 = 𝜋𝑡(𝑎𝑡|𝑠𝑡) and (𝜋𝑡)(𝑠𝑡,𝑎𝑡),𝑠 = 0 for 𝑠 ≠ 𝑠𝑡. Moreover, let state-
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action transition matrix 𝑇𝑡 ∈ ℝ𝑆×(𝑆⋅𝐴) to be (𝑇𝑡)𝑠𝑡,(𝑠𝑡−1,𝑎𝑡−1) = 𝑃𝑡(𝑠𝑡|𝑠𝑡−1, 𝑎𝑡−1), then we have
𝑑𝜋𝑡 = 𝜋𝑡𝑇𝑡𝑑

𝜋
𝑡−1 (B.3)

𝑑𝜋𝑡 = 𝜋𝑡𝑇𝑡𝑑
𝜋
𝑡−1. (B.4)

Therefore we have
𝑑𝜋𝑡 − 𝑑

𝜋
𝑡 = 𝜋𝑡(𝑇𝑡 − 𝑇𝑡)𝑑𝜋𝑡−1 + 𝜋𝑡𝑇𝑡(𝑑

𝜋
𝑡−1 − 𝑑

𝜋
𝑡−1) (B.5)

recursively apply this formula, we have

𝑑𝜋𝑡 − 𝑑
𝜋
𝑡 =

𝑡
∑

ℎ=2
Γℎ+1∶𝑡𝜋ℎ(𝑇ℎ − 𝑇ℎ)𝑑𝜋ℎ−1 + Γ1∶𝑡(𝑑𝜋1 − 𝑑𝜋1 ) (B.6)

where Γℎ∶𝑡 =
∏𝑡

𝑣=ℎ 𝜋𝑣𝑇𝑣 and Γ𝑡+1∶𝑡 ∶= 1. Now let 𝑋 =
∑𝐻

𝑡=1⟨𝑟𝑡, 𝑑
𝜋
𝑡 − 𝑑𝜋𝑡 ⟩, then we have the

following:
Theorem B.2.1 (martingale decomposition of𝑋: Restate of the fictitious version of Lemma 3.5.1).
We have:

𝑋 =
𝐻
∑

ℎ=2
⟨𝑉 𝜋

ℎ (𝑠), ((𝑇ℎ − 𝑇ℎ)𝑑
𝜋
ℎ−1)(𝑠)⟩ + ⟨𝑉 𝜋

1 (𝑠), (𝑑
𝜋
1 − 𝑑𝜋1 )(𝑠)⟩,

where the inner product is taken w.r.t states.

Proof: [Proof of Theorem B.2.1] By applying (B.6) and the change of summation, we have

𝑋 =
𝐻
∑

𝑡=1

(

𝑡
∑

ℎ=2
⟨𝑟𝑡,Γℎ+1∶𝑡𝜋ℎ(𝑇ℎ − 𝑇ℎ)𝑑𝜋ℎ−1⟩ + ⟨𝑟𝑡,Γ1∶𝑡(𝑑𝜋1 − 𝑑𝜋1 )⟩

)

=
𝐻
∑

𝑡=1

(

𝑡
∑

ℎ=2
⟨𝑟𝑡,Γℎ+1∶𝑡𝜋ℎ(𝑇ℎ − 𝑇ℎ)𝑑𝜋ℎ−1⟩

)

+
𝐻
∑

ℎ=1
⟨𝑟𝑡,Γ1∶𝑡(𝑑𝜋1 − 𝑑𝜋1 )⟩

=
𝐻
∑

𝑡=2

(

𝑡
∑

ℎ=2
⟨𝑟𝑡,Γℎ+1∶𝑡𝜋ℎ(𝑇ℎ − 𝑇ℎ)𝑑𝜋ℎ−1⟩

)

+
𝐻
∑

ℎ=1
⟨𝑟𝑡,Γ1∶𝑡(𝑑𝜋1 − 𝑑𝜋1 )⟩

=
𝐻
∑

ℎ=2

(

𝐻
∑

𝑡=ℎ
⟨𝑟𝑡,Γℎ+1∶𝑡𝜋ℎ(𝑇ℎ − 𝑇ℎ)𝑑𝜋ℎ−1⟩

)

+
𝐻
∑

ℎ=1
⟨(𝜋𝑇1 Γ

𝑇
1∶𝑡𝑟𝑡)(𝑠), (𝑑

𝜋
1 − 𝑑𝜋1 )(𝑠)⟩

=
𝐻
∑

ℎ=2

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⟨

𝐻
∑

𝑡=ℎ
𝜋𝑇ℎ Γ

𝑇
ℎ+1∶𝑡𝑟𝑡

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
𝑉 𝜋
ℎ (𝑠)

, (𝑇ℎ − 𝑇ℎ)𝑑𝜋ℎ−1⟩

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

+ ⟨(
𝐻
∑

ℎ=1
𝜋𝑇1 Γ

𝑇
1∶𝑡𝑟𝑡)(𝑠)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑉 𝜋
1 (𝑠)

, (𝑑𝜋1 − 𝑑𝜋1 )(𝑠)⟩

89



Supplementary Material to Chapter 3 Chapter B

B.3 Proof of uniform convergence in OPE with full policies
using standard uniform concentration tools: Theorem 3.5.1

As a reminder for the reader, the OPEMA estimator used in this section is with data subset
′. Also, by Lemma B.2.3 we only need to consider sup𝜋∈Π |∑𝐻

𝑡=1⟨𝑑
𝜋
𝑡 − 𝑑

𝜋
𝑡 , 𝑟𝑡⟩|.

Theorem B.3.1. There exists an absolute constant 𝑐 such that if 𝑛 > 𝑐 ⋅ 1
𝑑𝑚

⋅ log(𝐻𝑆𝐴∕𝛿), then
with probability 1 − 𝛿, we have:

sup
𝜋∈Π

|

|

|

|

|

|

𝐻
∑

𝑡=1
⟨𝑑𝜋𝑡 − 𝑑

𝜋
𝑡 , 𝑟𝑡⟩

|

|

|

|

|

|

≤ 𝑂(

√

𝐻4 log(𝐻𝑆𝐴∕𝛿)
𝑛𝑑𝑚

) + 𝔼

[

sup
𝜋∈Π

|

|

|

|

|

|

𝐻
∑

𝑡=1
⟨𝑑𝜋𝑡 − 𝑑

𝜋
𝑡 , 𝑟𝑡⟩

|

|

|

|

|

|

]

Proof: [Proof of Theorem B.3.1] Note in data ′ = {(𝑠𝑡, 𝑎𝑡, 𝑠
(𝑖)
𝑡+1) ∶ 𝑖 = 1, ..., 𝑁 ; 𝑡 =

1, ...,𝐻 ; 𝑠𝑡 ∈  , 𝑎𝑡 ∈ }4, not only 𝑠(𝑖)𝑡+1 but also 𝑁 are random variables.
We first conditional on 𝑁 , then (𝑠𝑡, 𝑎𝑡, 𝑠

(𝑖)
𝑡+1)’s are independent samples for all 𝑖, 𝑠𝑡, 𝑎𝑡 since

any sample will not contain information about other samples. Therefore we can regroup ′

into 𝑁 independent samples with ′ = {𝑋(𝑖) ∶ 𝑖 = 1, ..., 𝑁} where 𝑋(𝑖) = {(𝑠𝑡, 𝑎𝑡, 𝑠
(𝑖)
𝑡+1), 𝑡 =

1, ...,𝐻 ; 𝑠𝑡 ∈  , 𝑎𝑡 ∈ }. Now for any 𝑖0, change𝑋(𝑖0) to𝑋′(𝑖0) = {(𝑠𝑡, 𝑎𝑡, 𝑠
′(𝑖0)
𝑡+1 ), 𝑡 = 1, ...,𝐻 ; 𝑠𝑡 ∈

 , 𝑎𝑡 ∈ } and keep the rest 𝑁 − 1 data the same, use this data to create new estimator with
state-action transition 𝑑′𝜋 , then we have

|

|

|

|

|

|

sup
𝜋∈Π

|

𝐻
∑

𝑡=1
⟨𝑑𝜋𝑡 − 𝑑

𝜋
𝑡 , 𝑟𝑡⟩| − sup

𝜋∈Π
|

𝐻
∑

𝑡=1
⟨𝑑′𝜋

𝑡 − 𝑑𝜋𝑡 , 𝑟𝑡⟩|
|

|

|

|

|

|

≤ sup
𝜋∈Π

|

|

|

|

|

|

|

𝐻
∑

𝑡=1
⟨𝑑𝜋𝑡 − 𝑑

𝜋
𝑡 , 𝑟𝑡⟩| − |

𝐻
∑

𝑡=1
⟨𝑑′𝜋

𝑡 − 𝑑𝜋𝑡 , 𝑟𝑡⟩|
|

|

|

|

|

|

≤ sup
𝜋∈Π

|

|

|

|

|

|

𝐻
∑

𝑡=1
⟨𝑑𝜋𝑡 − 𝑑

𝜋
𝑡 , 𝑟𝑡⟩ −

𝐻
∑

𝑡=1
⟨𝑑′𝜋

𝑡 − 𝑑𝜋𝑡 , 𝑟𝑡⟩
|

|

|

|

|

|

= sup
𝜋∈Π

|

|

|

|

|

|

𝐻
∑

𝑡=1
⟨𝑑𝜋𝑡 − 𝑑

′𝜋
𝑡 , 𝑟𝑡⟩

|

|

|

|

|

|

= sup
𝜋∈Π

|

|

|

|

|

|

𝐻
∑

ℎ=2
⟨𝑉 ′𝜋

ℎ , (𝑇ℎ − 𝑇
′
ℎ)𝑑

𝜋
ℎ−1⟩ + ⟨𝑉 ′𝜋

1 , 𝑑
𝜋
1 − 𝑑′𝜋

1 ⟩

|

|

|

|

|

|

,

where the last equation comes from the trick that substitutes 𝑑𝜋𝑡 by 𝑑′𝜋
𝑡 in Theorem B.2.1. By

4Here we do not include 𝑟(𝑖)𝑡 since the quantity sup𝜋∈Π |

∑𝐻
𝑡=1⟨𝑑

𝜋
𝑡 − 𝑑𝜋𝑡 , 𝑟𝑡⟩| only contains the mean reward

function 𝑟𝑡.
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definition, the above equals to

= sup
𝜋∈Π

|

|

|

|

|

|

𝐻
∑

ℎ=2
⟨𝑉 ′𝜋

ℎ , (𝑇ℎ − 𝑇
′
ℎ)𝑑

𝜋
ℎ−1⟩ + ⟨𝑉 ′𝜋

1 , 𝑑
𝜋
1 − 𝑑′𝜋

1 ⟩

|

|

|

|

|

|

⋅ 𝟏(𝐸)

≤ sup
𝜋∈Π

(

𝐻
∑

ℎ=2
||(𝑇ℎ − 𝑇 ′

ℎ)
𝑇𝑉 ′𝜋

ℎ ||∞||𝑑
𝜋
ℎ−1||1 + |⟨𝑉 ′𝜋

1 , 𝑑
𝜋
1 − 𝑑′𝜋

1 ⟩|

)

⋅ 𝟏(𝐸)

≤ sup
𝜋∈Π

(

𝐻
∑

ℎ=2
||(𝑇ℎ − 𝑇 ′

ℎ)
𝑇𝑉 ′𝜋

ℎ ||∞ + |⟨𝑉 ′𝜋
1 , 𝑑

𝜋
1 − 𝑑′𝜋

1 ⟩|

)

⋅ 𝟏(𝐸)

Note the change of a single𝑋(𝑖0) will only change two entries of each row of (𝑇ℎ−𝑇 ′
ℎ)
𝑇 by 1∕𝑁

since with data ′, 𝑛𝑠𝑡,𝑎𝑡 = 𝑁 for all 𝑠𝑡, 𝑎𝑡. Or in other words, given 𝐸,

𝑇 𝑇ℎ − 𝑇 ′𝑇
ℎ =

⎡

⎢

⎢

⎢

⎢

⎣

0 ... 0 1
𝑁

0 ... − 1
𝑁

... 0
0 1

𝑁
0 ... − 1

𝑁
... ... ... 0

........
− 1
𝑁

0 ... 0 ... ... 0 ... 1
𝑁

⎤

⎥

⎥

⎥

⎥

⎦

,

where the locations of 1∕𝑁,−1∕𝑁 in each row are random as it depends on how different is
𝑋′(𝑖0) from 𝑋(𝑖0). However, based on this fact, it is enough for us to guarantee

||(𝑇ℎ − 𝑇 ′
ℎ)
𝑇𝑉 ′𝜋

ℎ ||∞ ≤ 2
𝑁

||𝑉 ′𝜋
ℎ ||∞ ≤ 2

𝑁
(𝐻 − ℎ + 1) ≤ 2

𝑁
𝐻

and same result holds for |⟨𝑉 ′𝜋
1 , 𝑑

𝜋
1 − 𝑑′𝜋

1 ⟩| ≤ 2𝐻∕𝑁 given 𝑁 .
Combine all the results above, for a single change of 𝑋(𝑖0) we have

|

|

|

|

|

|

sup
𝜋∈Π

|

𝐻
∑

𝑡=1
⟨𝑑𝜋𝑡 − 𝑑

𝜋
𝑡 , 𝑟𝑡⟩| − sup

𝜋∈Π
|

𝐻
∑

𝑡=1
⟨𝑑′𝜋

𝑡 − 𝑑𝜋𝑡 , 𝑟𝑡⟩|
|

|

|

|

|

|

≤ 2𝐻
2

𝑁
𝟏(𝐸) ≤ 2𝐻

2

𝑁

for any fixed 𝑁 . If we let 𝑍 = 𝑆(𝑋(1), ..., 𝑋(𝑁)) = sup𝜋∈Π |
∑𝐻

𝑡=1⟨𝑑
𝜋
𝑡 − 𝑑𝜋𝑡 , 𝑟𝑡⟩|, then for a

given 𝑁 by independence and above bounded difference condition we can apply Mcdiarmid
inequality (where 𝜉𝑖 = 2𝐻2∕𝑁) to obtain

ℙ(|𝑍 − 𝔼[𝑍]| ≥ 𝜖|𝑁) ≤ 2𝑒−
𝑁𝜖2

2𝐻4 ∶= 𝛿
2

(B.7)
Now note when 𝑛 > 𝑂( 1

𝑑𝑚
⋅ log(𝐻𝑆𝐴∕𝛿)), by Lemma B.2.1 we can obtain 𝑁 > 𝑛𝑑𝑚∕2 with
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probability 1 − 𝛿∕2, combining this result and solving 𝜖 in (B.7), we have

sup
𝜋∈Π

|

|

|

|

|

|

𝐻
∑

𝑡=1
⟨𝑑𝜋𝑡 − 𝑑

𝜋
𝑡 , 𝑟𝑡⟩

|

|

|

|

|

|

≤ 𝑂(

√

𝐻4 log(𝐻𝑆𝐴∕𝛿)
𝑛 ⋅ 𝑑𝑚

) + 𝔼

[

sup
𝜋∈Π

|

|

|

|

|

|

𝐻
∑

𝑡=1
⟨𝑑𝜋𝑡 − 𝑑

𝜋
𝑡 , 𝑟𝑡⟩

|

|

|

|

|

|

]

with probability 1 − 𝛿.
Next before bounding 𝔼

[

sup𝜋∈Π
|

|

|

∑𝐻
𝑡=1⟨𝑑

𝜋
𝑡 − 𝑑

𝜋
𝑡 , 𝑟𝑡⟩

|

|

|

]

, we first give a useful lemma.
Let 𝛾 ∈ (0, 1) to be any threshold parameter. Then we first have the following lemma:

Lemma B.3.1. Recall by definition 𝑃ℎ(𝑠ℎ, |𝑠ℎ−1, 𝑎ℎ−1) = 𝑇ℎ(𝑠ℎ, |𝑠ℎ−1, 𝑎ℎ−1). It holds that with
probability 1 − 𝛿, for all 𝑡, 𝑠𝑡, 𝑎𝑡 ∈ [𝐻], ,: if 𝑃ℎ(𝑠ℎ|𝑠ℎ−1, 𝑎ℎ−1) ≤ 𝛾 , then

|

|

|

𝑇ℎ(𝑠ℎ|𝑠ℎ−1, 𝑎ℎ−1) − 𝑇ℎ(𝑠ℎ|𝑠ℎ−1, 𝑎ℎ−1)
|

|

|

≤

√

𝛾 log(𝐻𝑆𝐴∕𝛿)
2𝑛𝑑𝑚

+
2 log(𝐻𝑆𝐴∕𝛿)

3𝑛𝑑𝑚
;

if 𝑃ℎ(𝑠ℎ, |𝑠ℎ−1, 𝑎ℎ−1) > 𝛾 , then

|

|

|

|

|

𝑇ℎ(𝑠ℎ|𝑠ℎ−1, 𝑎ℎ−1) − 𝑇ℎ(𝑠ℎ|𝑠ℎ−1, 𝑎ℎ−1)
𝑇ℎ(𝑠ℎ|𝑠ℎ−1, 𝑎ℎ−1)

|

|

|

|

|

≤

√

log(𝐻𝑆𝐴∕𝛿)
2𝑛𝑑𝑚𝛾

+
2 log(𝐻𝑆𝐴∕𝛿)

3𝑛𝑑𝑚𝛾
;

Proof: First consider the case where 𝑃ℎ(𝑠ℎ|𝑠ℎ−1, 𝑎ℎ−1) ≤ 𝛾 .

𝑇ℎ(𝑠ℎ|𝑠ℎ−1, 𝑎ℎ−1) − 𝑇ℎ(𝑠ℎ|𝑠ℎ−1, 𝑎ℎ−1) =
1

𝑛𝑠ℎ−1,𝑎ℎ−1

𝑛𝑠ℎ−1 ,𝑎ℎ−1
∑

𝑖=1

(

𝟏[𝑠(𝑖)ℎ ] − 𝑇ℎ(𝑠ℎ|𝑠ℎ−1, 𝑎ℎ−1)
)

𝟏(𝐸ℎ),

since Var[𝟏[𝑠(𝑖)ℎ ]|𝑠ℎ−1, 𝑎ℎ−1] = 𝑃ℎ(𝑠ℎ|𝑠ℎ−1, 𝑎ℎ−1)(1 − 𝑃ℎ(𝑠ℎ|𝑠ℎ−1, 𝑎ℎ−1)) ≤ 𝑃ℎ(𝑠ℎ|𝑠ℎ−1, 𝑎ℎ−1) ≤ 𝛾 ,
therefore by Bernstein Inequality,

|

|

|

𝑇ℎ(𝑠ℎ|𝑠ℎ−1, 𝑎ℎ−1) − 𝑇ℎ(𝑠ℎ|𝑠ℎ−1, 𝑎ℎ−1)
|

|

|

≤ 𝟏(𝐸ℎ)
(√

𝛾 log(1∕𝛿)
𝑛𝑠ℎ−1,𝑎ℎ−1

+
2 log(1∕𝛿)
𝑛𝑠ℎ−1,𝑎ℎ−1

)

≤

√

𝛾 log(1∕𝛿)
2𝑛𝑑𝑚

+
2 log(1∕𝛿)

3𝑛𝑑𝑚
;

Second, when 𝑃ℎ(𝑠ℎ|𝑠ℎ−1, 𝑎ℎ−1) > 𝛾 .
𝑇ℎ(𝑠ℎ|𝑠ℎ−1, 𝑎ℎ−1) − 𝑇ℎ(𝑠ℎ|𝑠ℎ−1, 𝑎ℎ−1)

𝑇ℎ(𝑠ℎ|𝑠ℎ−1, 𝑎ℎ−1)
= 1
𝑛𝑠ℎ−1,𝑎ℎ−1

𝑛𝑠ℎ−1 ,𝑎ℎ−1
∑

𝑖=1

(

𝟏[𝑠(𝑖)ℎ ]
𝑇ℎ(𝑠ℎ|𝑠ℎ−1, 𝑎ℎ−1)

− 1

)

𝟏(𝐸ℎ),

since

Var

[

𝟏[𝑠(𝑖)ℎ ]
𝑇ℎ(𝑠ℎ|𝑠ℎ−1, 𝑎ℎ−1)

|

|

|

|

|

|

𝑠ℎ−1, 𝑎ℎ−1

]

≤ 1
𝑇ℎ(𝑠ℎ|𝑠ℎ−1, 𝑎ℎ−1)2

Var
[

𝟏[𝑠(𝑖)ℎ ]
|

|

|

𝑠ℎ−1, 𝑎ℎ−1
]

≤ 1
𝑇ℎ(𝑠ℎ|𝑠ℎ−1, 𝑎ℎ−1)

≤ 1
𝛾
,
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and since 𝟏[𝑠(𝑖)ℎ ]

𝑇ℎ(𝑠ℎ|𝑠ℎ−1,𝑎ℎ−1)
≤ 1∕𝛾 , again be Bernstein inequality we have

|

|

|

|

|

𝑇ℎ(𝑠ℎ|𝑠ℎ−1, 𝑎ℎ−1) − 𝑇ℎ(𝑠ℎ|𝑠ℎ−1, 𝑎ℎ−1)
𝑇ℎ(𝑠ℎ|𝑠ℎ−1, 𝑎ℎ−1)

|

|

|

|

|

≤

√

log(1∕𝛿)
2𝑛𝑑𝑚𝛾

+
2 log(1∕𝛿)
3𝑛𝑑𝑚𝛾

;

apply the union bound over 𝑡, 𝑠𝑡, 𝑎𝑡 we obtain the stated result.

Bounding 𝔼
[

sup𝜋∈Π
|

|

|

∑𝐻
𝑡=1⟨𝑑

𝜋
𝑡 − 𝑑

𝜋
𝑡 , 𝑟𝑡⟩

|

|

|

]

. First note by Theorem B.2.1:

𝔼

[

sup
𝜋∈Π

|

|

|

|

|

|

𝐻
∑

𝑡=1
⟨𝑑𝜋𝑡 − 𝑑

𝜋
𝑡 , 𝑟𝑡⟩

|

|

|

|

|

|

]

≤
𝐻
∑

ℎ=2
𝔼
[

sup
𝜋∈Π

|

|

|

⟨𝑣𝜋ℎ(𝑠), ((𝑇ℎ − 𝑇ℎ)𝑑
𝜋
ℎ−1)(𝑠)⟩

|

|

|

]

+𝔼
[

sup
𝜋∈Π

|

|

|

⟨𝑉 𝜋
1 (𝑠), (𝑑

𝜋
1 − 𝑑𝜋1 )(𝑠)⟩

|

|

|

]

,

so it suffices to bound each 𝔼
[

sup𝜋∈Π
|

|

|

⟨𝑉 𝜋
ℎ (𝑠), ((𝑇ℎ − 𝑇ℎ)𝑑

𝜋
ℎ−1)(𝑠)⟩

|

|

|

]

. First of all,

𝔼
[

sup
𝜋∈Π

|

|

|

⟨𝑉 𝜋
ℎ (𝑠), ((𝑇ℎ − 𝑇ℎ)𝑑

𝜋
ℎ−1)(𝑠)⟩

|

|

|

]

=𝔼

[

sup
𝜋∈Π

|

|

|

|

|

|

∑

𝑠ℎ,𝑠ℎ−1,𝑎ℎ−1

𝑉 𝜋
ℎ (𝑠ℎ)(𝑇ℎ − 𝑇ℎ)(𝑠ℎ|𝑠ℎ−1, 𝑎ℎ−1)𝑑

𝜋
ℎ−1(𝑠ℎ−1, 𝑎ℎ−1)

|

|

|

|

|

|

]

≤𝔼

[

sup
𝜋∈Π

|

|

|

|

|

|

∑

𝑠ℎ,𝑠ℎ−1,𝑎ℎ−1

𝑉 𝜋
ℎ (𝑠ℎ)(𝑇ℎ − 𝑇ℎ)(𝑠ℎ|𝑠ℎ−1, 𝑎ℎ−1)𝑑

𝜋
ℎ−1(𝑠ℎ−1, 𝑎ℎ−1)

|

|

|

|

|

|

⋅ 𝟏[𝑇ℎ(𝑠ℎ|𝑠ℎ−1, 𝑎ℎ−1) > 𝛾]
]

+𝔼

[

sup
𝜋∈Π

|

|

|

|

|

|

∑

𝑠ℎ,𝑠ℎ−1,𝑎ℎ−1

𝑉 𝜋
ℎ (𝑠ℎ)(𝑇ℎ − 𝑇ℎ)(𝑠ℎ|𝑠ℎ−1, 𝑎ℎ−1)𝑑

𝜋
ℎ−1(𝑠ℎ−1, 𝑎ℎ−1)

|

|

|

|

|

|

⋅ 𝟏[𝑇ℎ(𝑠ℎ|𝑠ℎ−1, 𝑎ℎ−1) ≤ 𝛾]

]

=𝔼

[

sup
𝜋∈Π

|

|

|

|

|

|

∑

𝑠ℎ,𝑠ℎ−1,𝑎ℎ−1

𝑉 𝜋
ℎ (𝑠ℎ)𝑇ℎ(𝑠ℎ|𝑠ℎ−1, 𝑎ℎ−1)𝑑

𝜋
ℎ−1(𝑠ℎ−1, 𝑎ℎ−1)

𝑇ℎ − 𝑇ℎ
𝑇ℎ

(𝑠ℎ|𝑠ℎ−1, 𝑎ℎ−1)
|

|

|

|

|

|

⋅ 𝟏[𝑇ℎ > 𝛾]
]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
(𝑎)

+𝔼

[

sup
𝜋∈Π

|

|

|

|

|

|

∑

𝑠ℎ,𝑠ℎ−1,𝑎ℎ−1

𝑉 𝜋
ℎ (𝑠ℎ)𝑑

𝜋
ℎ−1(𝑠ℎ−1, 𝑎ℎ−1)(𝑇ℎ − 𝑇ℎ)(𝑠ℎ|𝑠ℎ−1, 𝑎ℎ−1)

|

|

|

|

|

|

⋅ 𝟏[𝑇ℎ(𝑠ℎ|𝑠ℎ−1, 𝑎ℎ−1) ≤ 𝛾]

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
(𝑏)

,
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Apply Lemma B.3.1 with 𝛿′∕2 where 𝛿′ = 𝛿∕𝐻 , then

(𝑎) ≤ sup
𝜋∈Π

|

|

|

|

|

|

∑

𝑠ℎ,𝑠ℎ−1,𝑎ℎ−1

𝑉 𝜋
ℎ (𝑠ℎ)𝑇ℎ(𝑠ℎ|𝑠ℎ−1, 𝑎ℎ−1)𝑑

𝜋
ℎ−1(𝑠ℎ−1, 𝑎ℎ−1)

(
√

log(2𝐻𝑆𝐴∕𝛿′)
2𝑛𝑑𝑚𝛾

+
2 log(2𝐻𝑆𝐴∕𝛿′)

3𝑛𝑑𝑚𝛾

)

|

|

|

|

|

|

(1 − 𝛿′

2
)

+𝐻𝛿′∕2

≤ sup
𝜋∈Π

|

|

|

|

|

|

|

∑

𝑠ℎ,𝑠ℎ−1,𝑎ℎ−1

𝑉 𝜋
ℎ (𝑠ℎ)𝑇ℎ(𝑠ℎ|𝑠ℎ−1, 𝑎ℎ−1)𝑑

𝜋
ℎ−1(𝑠ℎ−1, 𝑎ℎ−1)

⎛

⎜

⎜

⎝

√

log(2𝐻2𝑆𝐴∕𝛿)
2𝑛𝑑𝑚𝛾

+
2 log(2𝐻2𝑆𝐴∕𝛿)

3𝑛𝑑𝑚𝛾

⎞

⎟

⎟

⎠

|

|

|

|

|

|

|

+𝛿∕2

≤ sup
𝜋∈Π

|

|

|

|

|

|

|

𝐻
⎛

⎜

⎜

⎝

√

2 log(𝐻2𝑆𝐴∕𝛿)
2𝑛𝑑𝑚𝛾

+
2 log(2𝐻2𝑆𝐴∕𝛿)

3𝑛𝑑𝑚𝛾

⎞

⎟

⎟

⎠

|

|

|

|

|

|

|

+ 𝛿∕2 = 𝐻
⎛

⎜

⎜

⎝

√

log(2𝐻2𝑆𝐴∕𝛿)
2𝑛𝑑𝑚𝛾

+
2 log(2𝐻2𝑆𝐴∕𝛿)

3𝑛𝑑𝑚𝛾

⎞

⎟

⎟

⎠

+ 𝛿∕2,

(𝑏) ≤ sup
𝜋∈Π

|

|

|

|

|

|

∑

𝑠ℎ,𝑠ℎ−1,𝑎ℎ−1

𝑉 𝜋
ℎ (𝑠ℎ)𝑑

𝜋
ℎ−1(𝑠ℎ−1, 𝑎ℎ−1)

(
√

𝛾 log(2𝐻𝑆𝐴∕𝛿)
2𝑛𝑑𝑚

+
2 log(2𝐻𝑆𝐴∕𝛿)

3𝑛𝑑𝑚

)

|

|

|

|

|

|

(1 − 𝛿′

2
) +𝐻𝛿′

2

≤ sup
𝜋∈Π

|

|

|

|

|

|

|

𝐻𝑆
⎛

⎜

⎜

⎝

√

𝛾 log(2𝐻2𝑆𝐴∕𝛿)
2𝑛𝑑𝑚

+
2 log(2𝐻2𝑆𝐴∕𝛿)

3𝑛𝑑𝑚

⎞

⎟

⎟

⎠

|

|

|

|

|

|

|

+ 𝛿
2

=𝐻𝑆
⎛

⎜

⎜

⎝

√

𝛾 log(2𝐻2𝑆𝐴∕𝛿)
2𝑛𝑑𝑚

+
2 log(2𝐻2𝑆𝐴∕𝛿)

3𝑛𝑑𝑚

⎞

⎟

⎟

⎠

+ 𝛿
2
,

Hence we have for any 𝛾 ,

𝔼
[

sup
𝜋∈Π

|

|

|

⟨𝑉 𝜋
ℎ (𝑠), ((𝑇ℎ − 𝑇ℎ)𝑑

𝜋
ℎ−1)(𝑠)⟩

|

|

|

]

≤𝐻
⎛

⎜

⎜

⎝

√

log(2𝐻2𝑆𝐴∕𝛿)
2𝑛𝑑𝑚𝛾

+
2 log(2𝐻2𝑆𝐴∕𝛿)

3𝑛𝑑𝑚𝛾

⎞

⎟

⎟

⎠

+𝐻𝑆
⎛

⎜

⎜

⎝

√

𝛾 log(2𝐻2𝑆𝐴∕𝛿)
2𝑛𝑑𝑚

+
2 log(2𝐻2𝑆𝐴∕𝛿)

3𝑛𝑑𝑚

⎞

⎟

⎟

⎠

+ 𝛿

In particular, choose 𝛾 = 1∕𝑆 < 1, then above becomes

𝔼
[

sup
𝜋∈Π

|

|

|

⟨𝑉 𝜋
ℎ (𝑠), ((𝑇ℎ − 𝑇ℎ)𝑑

𝜋
ℎ−1)(𝑠)⟩

|

|

|

]

≤

√

2𝐻2𝑆 log(2𝐻2𝑆𝐴∕𝛿)
𝑛𝑑𝑚

+
4𝐻𝑆 log(2𝐻2𝑆𝐴∕𝛿)

3𝑛𝑑𝑚
+ 𝛿

94



Supplementary Material to Chapter 3 Chapter B

Critically, above holds for any∀1 > 𝛿 > 0. Based on theorem condition 𝑛 > 𝑐⋅1∕𝑑𝑚 log(𝐻𝑆𝐴∕𝜃) >
𝑐 ⋅ 1∕𝑑𝑚5, choose 𝛿 = 𝑐

𝑛𝑑𝑚
, then above is further less equal to

√

2𝐻2𝑆 log(2𝑛𝐻2𝑆𝐴)
𝑛𝑑𝑚

+
4𝐻𝑆 log(2𝑛𝐻2𝑆𝐴)

3𝑛𝑑𝑚
+ 𝑐
𝑛𝑑𝑚

≤

√

2𝐻2𝑆 log(2𝑛𝐻2𝑆𝐴)
𝑛𝑑𝑚

+𝐶⋅
𝐻𝑆 log(2𝑛𝐻2𝑆𝐴)

3𝑛𝑑𝑚

where 𝐶 is a new constant absorbs 1∕𝑛𝑑𝑚. If we further reducing it to
Finally, summing over all 𝐻 , and again using new constant 𝐶 ′ to absorb higher order term,

we obtain
𝔼

[

sup
𝜋∈Π

|

|

|

|

|

|

𝐻
∑

𝑡=1
⟨𝑑𝜋𝑡 − 𝑑

𝜋
𝑡 , 𝑟𝑡⟩

|

|

|

|

|

|

]

≤ 𝐶 ′

√

𝐻4𝑆 log(𝑛𝐻𝑆𝐴)
𝑛𝑑𝑚

Combing this with Theorem B.3.1 and Lemma B.2.3, we have proved Theorem 3.5.1.
Remark 12. The key for proving this uniform convergence bound is that applying concen-
tration inequality only to terms that are independent of the policies, i.e. 𝑇ℎ(𝑠ℎ|𝑠ℎ−1, 𝑎ℎ−1) −
𝑇ℎ(𝑠ℎ|𝑠ℎ−1, 𝑎ℎ−1). Therefore when taking supremum over policies, high probability event holds
with same probability without decay.

B.4 Proof of uniform convergence in OPE with determinis-
tic policies using martingale concentration inequalities:
Theorem 3.5.2

A reminder that all results in this section use data  for OPEMA estimator 𝑣𝜋 .

B.4.1 Martingale concentration result on
∑𝐻
𝑡=1⟨𝑑

𝜋
𝑡 − 𝑑

𝜋
𝑡 , 𝑟𝑡⟩.

Let 𝑋 =
∑𝐻

𝑡=1⟨𝑑
𝜋
𝑡 − 𝑑𝜋𝑡 , 𝑟𝑡⟩ and ℎ ∶= {𝑠(𝑖)𝑡 , 𝑎

(𝑖)
𝑡 ∶ 𝑡 = 1, ..., ℎ}𝑛𝑖=1. Since ℎ forms a

filtration, then by law of total expectation we have 𝑋𝑡 = 𝔼[𝑋|𝑡] is martingale. Moreover, we
have
Lemma B.4.1.

𝑋𝑡 ∶= 𝔼[𝑋|𝑡] =
𝑡

∑

ℎ=2
⟨𝑉 𝜋

ℎ , (𝑇ℎ − 𝑇ℎ)𝑑
𝜋
ℎ−1⟩ + ⟨𝑉 𝜋

1 , 𝑑
𝜋
1 − 𝑑𝜋1 ⟩.

Proof: [Proof of Lemma B.4.1] By martingale decomposition Theorem B.2.1 and note
5Note the 𝜃 in log(𝐻𝑆𝐴∕𝜃) is identical to the failure probability in Theorem B.3.1

95



Supplementary Material to Chapter 3 Chapter B

𝑇𝑖, 𝑑𝜋𝑖 are measurable w.r.t. 𝑡 for 𝑖 = 1, ..., 𝑡, so we have

𝔼[𝑋|𝑡] =
𝐻
∑

ℎ=𝑡+1
𝔼
[

⟨𝑉 𝜋
ℎ , (𝑇ℎ − 𝑇ℎ)𝑑

𝜋
ℎ−1⟩

|

|

|

𝑡

]

+
𝑡

∑

ℎ=2
⟨𝑉 𝜋

ℎ , (𝑇ℎ − 𝑇ℎ)𝑑
𝜋
ℎ−1⟩ + ⟨𝑉 𝜋

1 , (𝑑
𝜋
1 − 𝑑𝜋1 )⟩.

Note for ℎ ≥ 𝑡 + 1, 𝑡 ⊂ ℎ−1, so by total law of expectation (tower property) we have

𝔼
[

⟨𝑉 𝜋
ℎ , (𝑇ℎ − 𝑇ℎ)𝑑

𝜋
ℎ−1⟩

|

|

|

𝑡

]

=𝔼
[

𝔼
[

⟨𝑉 𝜋
ℎ , (𝑇ℎ − 𝑇ℎ)𝑑

𝜋
ℎ−1⟩

|

|

|

ℎ−1

]

|

|

|

|

𝑡

]

=𝔼
[

⟨𝑉 𝜋
ℎ ,𝔼

[

(𝑇ℎ − 𝑇ℎ)
|

|

|

ℎ−1

]

𝑑𝜋ℎ−1⟩
|

|

|

|

𝑡

]

= 0

where the last equality uses 𝑇ℎ is unbiased of 𝑇ℎ given ℎ−1. This gives the desired result.
Next we show martingale difference |𝑋𝑡 −𝑋𝑡−1| is bounded with high probability.

Lemma B.4.2. With probability 1 − 𝛿,

sup
𝑡
|𝑋𝑡 −𝑋𝑡−1| ≤ 𝑂(

√

𝐻2 log(𝐻𝑆𝐴∕𝛿)
𝑛 ⋅ 𝑑𝑚

).

Proof:

|𝑋𝑡 −𝑋𝑡−1| = ⟨𝑉 𝜋
𝑡 , (𝑇𝑡 − 𝑇𝑡)𝑑

𝜋
𝑡−1⟩ ≤ ||(𝑇𝑡 − 𝑇𝑡)𝑇𝑉 𝜋

𝑡 ||∞||𝑑
𝜋
𝑡−1||1 = ||(𝑇𝑡 − 𝑇𝑡)𝑇𝑉 𝜋

𝑡 ||∞.
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For any fixed pair (𝑠𝑡, 𝑎𝑡), we have
((𝑇𝑡 − 𝑇𝑡)𝑇𝑉 𝜋

𝑡 )(𝑠𝑡−1, 𝑎𝑡−1)

=𝟏(𝐸𝑡−1) ⋅ ((𝑇𝑡 − 𝑇𝑡)𝑇𝑉 𝜋
𝑡 )(𝑠𝑡−1, 𝑎𝑡−1)

=𝟏(𝐸𝑡−1) ⋅
∑

𝑠𝑡

𝑉 𝜋
𝑡 (𝑠𝑡)(𝑇𝑡 − 𝑇𝑡)(𝑠𝑡|𝑠𝑡−1, 𝑎𝑡−1)

=𝟏(𝐸𝑡−1) ⋅
(

∑

𝑠𝑡

𝑉 𝜋
𝑡 (𝑠𝑡)𝑇𝑡(𝑠𝑡|𝑠𝑡−1, 𝑎𝑡−1) − 𝔼[𝑉 𝜋

𝑡 |𝑠𝑡−1, 𝑎𝑡−1]

)

=𝟏(𝐸𝑡−1) ⋅
(

∑

𝑠𝑡

𝑉 𝜋
𝑡 (𝑠𝑡)

1
𝑛𝑠𝑡−1,𝑎𝑡−1

𝑛
∑

𝑖=1
𝟏(𝑠(𝑖)𝑡 = 𝑠𝑡, 𝑠

(𝑖)
𝑡−1 = 𝑠𝑡−1, 𝑎

(𝑖)
𝑡−1 = 𝑎𝑡−1) − 𝔼[𝑉 𝜋

𝑡 |𝑠𝑡−1, 𝑎𝑡−1]

)

=𝟏(𝐸𝑡−1)
(

1
𝑛𝑠𝑡−1,𝑎𝑡−1

𝑛
∑

𝑖=1
𝑉 𝜋
𝑡 (𝑠

(𝑖)
𝑡 )𝟏(𝑠

(𝑖)
𝑡 = 𝑠𝑡, 𝑠

(𝑖)
𝑡−1 = 𝑠𝑡−1, 𝑎

(𝑖)
𝑡−1 = 𝑎𝑡−1) − 𝔼[𝑉 𝜋

𝑡 |𝑠𝑡−1, 𝑎𝑡−1]

)

=𝟏(𝐸𝑡−1)
⎛

⎜

⎜

⎝

1
𝑛𝑠𝑡−1,𝑎𝑡−1

∑

𝑖∶𝑠(𝑖)𝑡−1=𝑠𝑡−1,𝑎
(𝑖)
𝑡−1=𝑎𝑡−1

𝑉 𝜋
𝑡 (𝑠

(𝑖)
𝑡 ) − 𝔼[𝑉 𝜋

𝑡 |𝑠𝑡−1, 𝑎𝑡−1]
⎞

⎟

⎟

⎠

,

where the fourth line uses the definition of 𝑇𝑡 and the fifth line uses the fact ∑𝑠𝑡
𝑉 𝜋
𝑡 (𝑠𝑡)𝟏(𝑠

(𝑖)
𝑡 =

𝑠𝑡, 𝑠
(𝑖)
𝑡−1 = 𝑠𝑡−1, 𝑎

(𝑖)
𝑡−1 = 𝑎𝑡−1) = 𝑉 𝜋

𝑡 (𝑠
(𝑖)
𝑡 )𝟏(𝑠

(𝑖)
𝑡 = 𝑠𝑡, 𝑠

(𝑖)
𝑡−1 = 𝑠𝑡−1, 𝑎

(𝑖)
𝑡−1 = 𝑎𝑡−1).Note ||𝑉 𝜋

𝑡 (⋅)||∞ ≤ 𝐻 and also conditional on𝐸𝑡, 𝑛𝑠𝑡,𝑎𝑡 ≥ 𝑛𝑑𝜇𝑡 (𝑠𝑡, 𝑎𝑡)∕2, therefore by Hoeffd-
ing’s inequality and a Union bound we obtain with probability 1 − 𝛿

sup
𝑡
|𝑋𝑡 −𝑋𝑡−1| ≤ 𝑂(

√

𝐻2 log(𝐻𝑆𝐴∕𝛿)
𝑛 ⋅min𝑡,𝑠𝑡,𝑎𝑡 𝑑

𝜇
𝑡 (𝑠𝑡, 𝑎𝑡)

) = 𝑂(

√

𝐻2 log(𝐻𝑆𝐴∕𝛿)
𝑛 ⋅ 𝑑𝑚

).

Next we calculate the conditional variance of Var[𝑋𝑡+1|𝑡].
Lemma B.4.3. We have the following decomposition of conditional variance:

Var[𝑋𝑡+1|𝑡] =
∑

𝑠𝑡,𝑎𝑡

𝑑𝜋𝑡 (𝑠𝑡, 𝑎𝑡)
2 ⋅ 𝟏(𝐸𝑡)

𝑛𝑠𝑡,𝑎𝑡
⋅ Var[𝑉 𝜋

𝑡+1(𝑠
(1)
𝑡+1)|𝑠

(1)
𝑡 = 𝑠𝑡, 𝑎

(1)
𝑡 = 𝑎𝑡]
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Proof: Indeed,

Var[𝑋𝑡+1|𝑡] = Var

[

∑

𝑠𝑡,𝑎𝑡

∑

𝑠𝑡+1

𝑉 𝜋
𝑡+1(𝑠𝑡+1)(𝑇 − 𝑇 )(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡)𝑑𝜋𝑡 (𝑠𝑡, 𝑎𝑡)

|

|

|

|

|

|

𝑡

]

=
∑

𝑠𝑡,𝑎𝑡

Var

[

∑

𝑠𝑡+1

𝑉 𝜋
𝑡+1(𝑠𝑡+1)(𝑇 − 𝑇 )(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡)

|

|

|

|

|

|

𝑡

]

𝑑𝜋𝑡 (𝑠𝑡, 𝑎𝑡)
2

=
∑

𝑠𝑡,𝑎𝑡

𝟏(𝐸𝑡) ⋅ Var
[

∑

𝑠𝑡+1

𝑉 𝜋
𝑡+1(𝑠𝑡+1)𝑇 (𝑠𝑡+1|𝑠𝑡, 𝑎𝑡)

|

|

|

|

|

|

𝑡

]

𝑑𝜋𝑡 (𝑠𝑡, 𝑎𝑡)
2

=
∑

𝑠𝑡,𝑎𝑡

𝟏(𝐸𝑡) ⋅ Var
[

∑

𝑠𝑡+1

𝑉 𝜋
𝑡+1(𝑠𝑡+1)

1
𝑛𝑠𝑡,𝑎𝑡

𝑛
∑

𝑖=1
𝟏(𝑠(𝑖)𝑡+1 = 𝑠𝑡+1, 𝑠

(𝑖)
𝑡 = 𝑠𝑡, 𝑎

(𝑖)
𝑡 = 𝑎𝑡)

|

|

|

|

|

|

𝑡

]

𝑑𝜋𝑡 (𝑠𝑡, 𝑎𝑡)
2

=
∑

𝑠𝑡,𝑎𝑡

𝟏(𝐸𝑡)
𝑛2𝑠𝑡,𝑎𝑡

⋅ Var
⎡

⎢

⎢

⎣

∑

𝑖∶𝑠(𝑖)𝑡 =𝑠𝑡,𝑎
(𝑖)
𝑡 =𝑎𝑡

𝑉 𝜋
𝑡+1(𝑠

(𝑖)
𝑡+1)

|

|

|

|

|

|

|

𝑡

⎤

⎥

⎥

⎦

𝑑𝜋𝑡 (𝑠𝑡, 𝑎𝑡)
2

=
∑

𝑠𝑡,𝑎𝑡

𝑑𝜋𝑡 (𝑠𝑡, 𝑎𝑡)
2 ⋅ 𝟏(𝐸𝑡)

𝑛𝑠𝑡,𝑎𝑡
⋅ Var[𝑉 𝜋

𝑡+1(𝑠
(1)
𝑡+1)|𝑠

(1)
𝑡 = 𝑠𝑡, 𝑎

(1)
𝑡 = 𝑎𝑡]

(B.8)
where the second equal sign comes from the fact that when conditional on 𝑡, we can separate 𝑛
episodes into 𝑆𝐴 groups and episodes from different groups are independent of each other. The
third uses 𝟏(𝐸𝑡) is measurable w.r.t 𝑡. Similarly, the last equal sign again uses 𝑛𝑠𝑡,𝑎𝑡 episodes
are independent given 𝑡.
Lemma B.4.4 ([57] Lemma 3.4). For any policy 𝜋 and any MDP.

Var𝜋

[ 𝐻
∑

𝑡=1
𝑟(1)𝑡

]

=
𝐻
∑

𝑡=1

(

𝔼𝜋
[

Var
[

𝑟(1)𝑡 + 𝑉 𝜋
𝑡+1(𝑠

(1)
𝑡+1)

|

|

|

𝑠(1)𝑡 , 𝑎
(1)
𝑡

]]

+ 𝔼𝜋
[

Var
[

𝔼[𝑟(1)𝑡 + 𝑉 𝜋
𝑡+1(𝑠

(1)
𝑡+1)|𝑠

(1)
𝑡 , 𝑎

(1)
𝑡 ]||

|

𝑠(1)𝑡
]] )

.

This Lemma suggests if we can bound 𝑑𝜋𝑡 by𝑂(𝑑𝜋𝑡 )with high probability, then by Lemma B.4.3
we have w.h.p

𝐻
∑

𝑡=1
Var[𝑋𝑡+1|𝑡] ≤ 𝑂( 1

𝑛𝑑𝑚
⋅
𝐻
∑

𝑡=1
𝔼[Var[𝑉 𝜋

𝑡+1(𝑠
(1)
𝑡+1)|𝑠

(1)
𝑡 , 𝑎

(1)
𝑡 ]]) ≤ 𝑂(𝐻

2

𝑛𝑑𝑚
)

Note this gives only 𝐻2 dependence for ∑𝐻
𝑡=1Var[𝑋𝑡+1|𝑡] instead of a naive bound with 𝐻3

and helps us to save a 𝐻 factor.
Next we show how to bound 𝑑𝜋𝑡 .
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B.4.2 Bounding 𝑑𝜋𝑡 (𝑠𝑡, 𝑎𝑡) − 𝑑
𝜋
𝑡 (𝑠𝑡, 𝑎𝑡)

Our analysis is based on using martingale structure to derive bound on 𝑑𝜋𝑡 (𝑠𝑡, 𝑎𝑡)−𝑑𝜋𝑡 (𝑠𝑡, 𝑎𝑡)for fixed 𝑡, 𝑠𝑡, 𝑎𝑡 with probability 1 − 𝛿∕𝐻𝑆𝐴, then use a union bound to get a bound for all
𝑑𝜋𝑡 (𝑠𝑡, 𝑎𝑡) − 𝑑

𝜋
𝑡 (𝑠𝑡, 𝑎𝑡) with probability 1 − 𝛿.

Concretely, in (B.6) if we only extract the specific (𝑠𝑡, 𝑎𝑡), then we have

𝑑𝜋𝑡 (𝑠𝑡, 𝑎𝑡) − 𝑑
𝜋
𝑡 (𝑠𝑡, 𝑎𝑡) =

𝑡
∑

ℎ=2
(Γℎ+1∶𝑡𝜋ℎ(𝑇ℎ − 𝑇ℎ)𝑑𝜋ℎ−1)(𝑠𝑡, 𝑎𝑡) + (Γ1∶𝑡(𝑑𝜋1 − 𝑑𝜋1 ))(𝑠𝑡, 𝑎𝑡),

here 𝑑𝜋𝑡 (𝑠𝑡, 𝑎𝑡)−𝑑𝜋𝑡 (𝑠𝑡, 𝑎𝑡) already forms a martingale with filtration𝑡 = 𝜎(𝑡) and (Γℎ+1∶𝑡𝜋ℎ(𝑇ℎ−
𝑇ℎ)𝑑𝜋ℎ−1)(𝑠𝑡, 𝑎𝑡) is the corresponding martingale difference since

𝔼[(Γℎ+1∶𝑡𝜋ℎ(𝑇ℎ − 𝑇ℎ)𝑑𝜋ℎ−1)(𝑠𝑡, 𝑎𝑡)|ℎ−1] = (Γℎ+1∶𝑡𝜋ℎ𝔼[(𝑇ℎ − 𝑇ℎ)|ℎ−1]𝑑𝜋ℎ−1)(𝑠𝑡, 𝑎𝑡) = 0.

Now we fix specific (𝑠𝑡, 𝑎𝑡). Then denote (Γℎ+1∶𝑡𝜋ℎ)(𝑠𝑡, 𝑎𝑡) ∶= Γ′
ℎ∶𝑡 ∈ ℝ1×𝑆 , then we have

|(Γℎ+1∶𝑡𝜋ℎ(𝑇ℎ−𝑇ℎ)𝑑𝜋ℎ−1)(𝑠𝑡, 𝑎𝑡)| = |Γ′
ℎ∶𝑡(𝑇ℎ−𝑇ℎ)𝑑

𝜋
ℎ−1| = |⟨(𝑇ℎ−𝑇ℎ)𝑇Γ′𝑇

ℎ∶𝑡, 𝑑
𝜋
ℎ−1⟩| ≤ ||Γ′

ℎ∶𝑡(𝑇ℎ−𝑇ℎ)||∞⋅1.

Note here Γ′
ℎ∶𝑡(𝑇ℎ − 𝑇ℎ) is a row vector with dimension 𝑆𝐴.

Bounding ||Γ′
ℎ∶𝑡(𝑇ℎ − 𝑇ℎ)||∞ .

In fact, for any given (𝑠ℎ−1, 𝑎ℎ−1), we have
Γ′
ℎ∶𝑡(𝑇ℎ − 𝑇ℎ)(𝑠ℎ−1, 𝑠ℎ−1) = 𝟏(𝐸𝑡) ⋅ Γ′

ℎ∶𝑡(𝑇ℎ − 𝑇ℎ)(𝑠ℎ−1, 𝑎ℎ−1)

=𝟏(𝐸𝑡) ⋅ Γ′
ℎ∶𝑡

⎛

⎜

⎜

⎝

1
𝑛𝑠𝑡−1,𝑎𝑡−1

∑

𝑖∶𝑠(𝑖)ℎ−1=𝑠ℎ−1,𝑎
(𝑖)
ℎ−1=𝑎ℎ−1

e𝑠(𝑖)ℎ − 𝔼[e𝑠(1)ℎ |𝑠
(1)
ℎ−1 = 𝑠ℎ−1, 𝑎

(1)
ℎ−1 = 𝑎ℎ−1]

⎞

⎟

⎟

⎠

=𝟏(𝐸𝑡)
⎛

⎜

⎜

⎝

1
𝑛𝑠𝑡−1,𝑎𝑡−1

∑

𝑖∶𝑠(𝑖)ℎ−1=𝑠ℎ−1,𝑎
(𝑖)
ℎ−1=𝑎ℎ−1

Γ′
ℎ∶𝑡(𝑠

(𝑖)
ℎ ) − 𝔼[Γ′

ℎ∶𝑡(𝑠
(1)
ℎ )|𝑠(1)ℎ−1 = 𝑠ℎ−1, 𝑎

(1)
ℎ−1 = 𝑎ℎ−1]

⎞

⎟

⎟

⎠

Note by definition Γ′
ℎ∶𝑡(𝑠

(𝑖)
ℎ ) ≤ 1, since (Γℎ+1∶𝑡𝜋ℎ)(𝑠𝑡, 𝑎𝑡) ∶= Γ′

ℎ∶𝑡 ∈ ℝ1×𝑆 and Γℎ+1∶𝑡, 𝜋ℎ are just
probability transitions. Therefore by Hoeffding’s inequality and law of total expectation, we
have
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ℙ
(

|Γ′
ℎ∶𝑡(𝑇ℎ − 𝑇ℎ)(𝑠ℎ−1, 𝑎ℎ−1)| > 𝜖

)

= ℙ
(

|Γ′
ℎ∶𝑡(𝑇ℎ − 𝑇ℎ)(𝑠ℎ−1, 𝑎ℎ−1)| > 𝜖

|

|

|

𝐸𝑡
)

≤ 𝔼

[

exp(−
2𝑛𝑠ℎ−1,𝑎ℎ−1 ⋅ 𝜖

2

1
)
|

|

|

|

|

𝐸𝑡

]

≤ exp(−
𝑛𝑑𝜇ℎ−1(𝑠ℎ−1, 𝑎ℎ−1) ⋅ 𝜖

2

1
)

and apply a union bound to get
𝑃 (sup

ℎ
||Γ′

ℎ∶𝑡(𝑇ℎ − 𝑇ℎ)||∞ > 𝜖) ≤ 𝐻 ⋅ sup
ℎ
𝑃 (||Γ′

ℎ∶𝑡(𝑇ℎ − 𝑇ℎ)||∞ > 𝜖)

≤𝐻𝑆𝐴 ⋅ sup
ℎ,𝑠ℎ−1,𝑎ℎ−1

ℙ
(

|Γ′
ℎ∶𝑡(𝑇ℎ − 𝑇ℎ)(𝑠ℎ−1, 𝑎ℎ−1)| > 𝜖

)

≤𝐻𝑆𝐴 ⋅ exp(−
𝑛min 𝑑𝜇ℎ−1(𝑠ℎ−1, 𝑎ℎ−1) ⋅ 𝜖

2

1
) ∶= 𝛿

𝐻𝑆𝐴

(B.9)

Let the right hand side of (B.9) to be 𝛿∕𝐻𝑆𝐴, then we have w.p. 1 − 𝛿∕𝐻𝑆𝐴,

sup
ℎ

||Γ′
ℎ∶𝑡(𝑇ℎ − 𝑇ℎ)||∞ ≤ 𝑂(

√

1
𝑛 ⋅ 𝑑𝑚

log 𝐻
2𝑆2𝐴2

𝛿
). (B.10)

Go back to bounding 𝑑𝜋𝑡 (𝑠𝑡, 𝑎𝑡)−𝑑
𝜋
𝑡 (𝑠𝑡, 𝑎𝑡). By Azuma-Hoeffding’s inequality (Lemma D.0.5),

we have6

ℙ(|𝑑𝜋𝑡 (𝑠𝑡, 𝑎𝑡) − 𝑑
𝜋
𝑡 (𝑠𝑡, 𝑎𝑡)| > 𝜖) ≤ exp(− 𝜖2

∑𝑡
𝑖=1(supℎ ||Γ

′
ℎ∶𝑡(𝑇ℎ − 𝑇ℎ)||∞)2

) ∶= 𝛿∕𝐻𝑆𝐴,

where ∑𝑡
𝑖=1(supℎ ||Γ

′
ℎ∶𝑡(𝑇ℎ − 𝑇ℎ)||∞)2 is the sum of bounded square differences in Azuma-

Hoeffding’s inequality. Therefore we have w.p. 1 − 𝛿∕𝐻𝑆𝐴,

|𝑑𝜋𝑡 (𝑠𝑡, 𝑎𝑡) − 𝑑
𝜋
𝑡 (𝑠𝑡, 𝑎𝑡)| ≤ 𝑂(

√

𝑡 ⋅ (sup
ℎ

||Γ′
ℎ∶𝑡(𝑇ℎ − 𝑇ℎ)||∞)2 log

𝐻𝑆𝐴
𝛿

), (B.11)

combining (B.10) with above we further have that w.p. 1 − 2𝛿∕𝐻𝑆𝐴,

|𝑑𝜋𝑡 (𝑠𝑡, 𝑎𝑡) − 𝑑
𝜋
𝑡 (𝑠𝑡, 𝑎𝑡)| ≤ 𝑂(

√

𝑡
𝑛𝑑𝑚

log 𝐻
2𝑆2𝐴2

𝛿
log 𝐻𝑆𝐴

𝛿
)

6To be more precise here we actually use a weaker version of Azuma-Hoeffding’s inequality, see Remark 13.
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Lastly, by a union bound and simple scaling (from 2𝛿 to 𝛿) we have w.p. 1 − 𝛿

sup
𝑡
||𝑑𝜋𝑡 − 𝑑

𝜋
𝑡 ||∞ ≤ 𝑂(

√

𝐻
𝑛𝑑𝑚

log 𝐻
2𝑆2𝐴2

𝛿
log 𝐻𝑆𝐴

𝛿
).

This implies that w.p. 1 − 𝛿, ∀𝑡, 𝑠𝑡, 𝑎𝑡,

𝑑𝜋𝑡 (𝑠𝑡, 𝑎𝑡)
2 ≤ 2𝑑𝜋𝑡 (𝑠𝑡, 𝑎𝑡)

2 + 𝑂( 𝐻
𝑛𝑑𝑚

log 𝐻
2𝑆2𝐴2

𝛿
log 𝐻𝑆𝐴

𝛿
). (B.12)

Combining (B.12) with Lemma B.4.4 and Lemma B.4.3, we obtain:
Lemma B.4.5. With probability 1 − 𝛿,

𝐻
∑

𝑡=1
Var[𝑋𝑡+1|𝑡] ≤ 𝑂(𝐻

2

𝑛𝑑𝑚
) + 𝑂(𝐻

4𝑆𝐴
𝑛2𝑑2

𝑚
⋅ log 𝐻

2𝑆2𝐴2

𝛿
log 𝐻𝑆𝐴

𝛿
) (B.13)

Proof: [Proof of Lemma B.4.5] By (B.12) and Lemma B.4.3, we have ∀𝑡, with probability
ay least 1 − 𝛿,

Var[𝑋𝑡+1|𝑡] ≤
∑

𝑠𝑡,𝑎𝑡

𝑂(
𝑑𝜋𝑡 (𝑠𝑡, 𝑎𝑡)

2⋅

𝑛𝑑𝑚
) ⋅ Var[𝑉 𝜋

𝑡+1(𝑠
(1)
𝑡+1)|𝑠

(1)
𝑡 = 𝑠𝑡, 𝑎

(1)
𝑡 = 𝑎𝑡]

≤
∑

𝑠𝑡,𝑎𝑡

𝑂( 1
𝑛𝑑𝑚

)
(

2𝑑𝜋𝑡 (𝑠𝑡, 𝑎𝑡)
2 + 𝑂( 𝐻

𝑛𝑑𝑚
log 𝐻

2𝑆2𝐴2

𝛿
log 𝐻𝑆𝐴

𝛿
)
)

⋅ Var[𝑉 𝜋
𝑡+1(𝑠

(1)
𝑡+1)|𝑠

(1)
𝑡 = 𝑠𝑡, 𝑎

(1)
𝑡 = 𝑎𝑡]

≤
∑

𝑠𝑡,𝑎𝑡

𝑂( 1
𝑛𝑑𝑚

)
(

2𝑑𝜋𝑡 (𝑠𝑡, 𝑎𝑡) + 𝑂(
𝐻
𝑛𝑑𝑚

log 𝐻
2𝑆2𝐴2

𝛿
log 𝐻𝑆𝐴

𝛿
)
)

⋅ Var[𝑉 𝜋
𝑡+1(𝑠

(1)
𝑡+1)|𝑠

(1)
𝑡 = 𝑠𝑡, 𝑎

(1)
𝑡 = 𝑎𝑡]

≤ 𝑂( 1
𝑛𝑑𝑚

)𝔼
[

Var[𝑉 𝜋
𝑡+1(𝑠

(1)
𝑡+1)|𝑠

(1)
𝑡 , 𝑎

(1)
𝑡 ]

]

+ 𝑂( 1
𝑛𝑑𝑚

⋅
𝐻
𝑛𝑑𝑚

log 𝐻
2𝑆2𝐴2

𝛿
log 𝐻𝑆𝐴

𝛿
⋅𝐻2𝑆𝐴)

= 𝑂( 1
𝑛𝑑𝑚

)𝔼
[

Var[𝑉 𝜋
𝑡+1(𝑠

(1)
𝑡+1)|𝑠

(1)
𝑡 , 𝑎

(1)
𝑡 ]

]

+ 𝑂(𝐻
3𝑆𝐴
𝑛2𝑑2

𝑚
⋅ log 𝐻

2𝑆2𝐴2

𝛿
log 𝐻𝑆𝐴

𝛿
)

then sum over 𝑡 and apply Lemma B.4.4 gives the stated result.
Combining all the results, we are able to prove:

Theorem B.4.1. With probability 1 − 𝛿, we have

|

|

|

|

|

|

𝐻
∑

𝑡=1
⟨𝑑𝜋𝑡 − 𝑑

𝜋
𝑡 , 𝑟𝑡⟩

|

|

|

|

|

|

≤ 𝑂(

√

𝐻2 log(𝐻𝑆𝐴∕𝛿)
𝑛𝑑𝑚

+

√

𝐻4𝑆𝐴 ⋅ log(𝐻2𝑆2𝐴2∕𝛿) log(𝐻𝑆𝐴∕𝛿)
𝑛2𝑑2

𝑚
)

where 𝑂(⋅) absorbs only the absolute constants.

Proof: [Proof of Theorem B.4.1] Recall𝑋 =
∑𝐻

𝑡=1⟨𝑑
𝜋
𝑡 −𝑑

𝜋
𝑡 , 𝑟𝑡⟩ and by law of total expecta-

101



Supplementary Material to Chapter 3 Chapter B

tion it is easy to show𝐸[𝑋] = 0. Next denote 𝜎2 = 𝑂(𝐻
2

𝑛𝑑𝑚
)+𝑂(𝐻

4𝑆𝐴
𝑛2𝑑2𝑚

⋅ log 𝐻2𝑆2𝐴2

𝛿
log 𝐻𝑆𝐴

𝛿
) as in

Lemma B.4.5 and also let𝑀 = sup𝑡 |𝑋𝑡−𝑋𝑡−1|. Then by Freedman inequality (Lemma D.0.6),
we have with probability 1 − 𝛿∕3,

|𝑋 − 𝔼[𝑋]| ≤
√

8𝜎2 ⋅ log(3∕𝛿) + 2𝑀
3

⋅ log(3∕𝛿), Or 𝑊 ≥ 𝜎2.

where 𝑊 =
∑𝐻

𝑡=1Var[𝑋𝑡+1|𝑡]. Next by Lemma B.4.5, we have ℙ(𝑊 ≥ 𝜎2) ≤ 1∕3𝛿, this
implies with probability 1 − 2𝛿∕3,

|𝑋 − 𝔼[𝑋]| ≤
√

8𝜎2 ⋅ log(3∕𝛿) + 2𝑀
3

⋅ log(3∕𝛿).

Finally, by Lemma B.4.2, we have ℙ(𝑀 ≥ 𝑂(
√

𝐻2 log(𝐻𝑆𝐴∕𝛿)
𝑛𝑑𝑚

)) ≤ 𝛿∕3. Also use 𝔼[𝑋] = 0, we
have with probability 1 − 𝛿,

|𝑋| ≤
√

8𝜎2 ⋅ log(3∕𝛿) + 𝑂(

√

𝐻2 ⋅ log(𝐻𝑆𝐴∕𝛿)
𝑛𝑑𝑚

log(3∕𝛿)).

Plugging back the expression of 𝜎2 = 𝑂(𝐻
2

𝑛𝑑𝑚
) + 𝑂(𝐻

4𝑆𝐴
𝑛2𝑑2𝑚

⋅ log 𝐻2𝑆2𝐴2

𝛿
log 𝐻𝑆𝐴

𝛿
) and assimi-

lating the same order terms give the desired result.
Remark 13. Rigorously, standard Azuma-Hoeffding’s inequality does not apply to (B.11) since
supℎ ||Γ′

ℎ∶𝑡(𝑇ℎ − 𝑇ℎ)||∞ is not a deterministic upper bound, we only have the difference bound
with high probability sense, see (B.10). Therefore, strictly speaking, we need to apply Theo-
rem 32 in [113] which is a weaker Azuma-Hoeffding’s inequality allowing bounded difference
with high probability. The same logic applies for a weaker freedman’s inequality consisting of
Theorem 34 and Theorem 37 in [113] since our martingale difference 𝑀 = sup𝑡 |𝑋𝑡 −𝑋𝑡−1| in
the proof of Theorem B.4.1 is bounded with high probability. We avoid explicitly using them in
order to make our proofs more readable for our readers.

We end this section by giving the proofs of Theorem 3.5.2 and Theorem 3.5.2.
Proof: [Proof of Lemma 3.5.2 and Theorem 3.5.2] The proof of Lemma 3.5.2 comes

from Lemma B.2.2, Lemma B.2.3 and Theorem B.4.1. The proof of Theorem 3.5.2 relies on
applying a union bound overΠ in Theorem 3.5.2 (recall all non-stationary deterministic policies
have |Π| = 𝐴𝐻𝑆), then extra dependence of √log(|Π|) =

√

𝐻𝑆 log(𝐴) pops out. Note that
the higher order term has two trailing log terms (see the right hand side of (B.13)), so when
replacing 𝛿 by 𝛿∕|Π| with a union bound, both terms will give extra √

𝐻𝑆 dependence so in
higher order term we have extra 𝐻𝑆 dependence but not just √𝐻𝑆.
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B.5 Proof of uniform convergence problem with local policy
class.

In this section, we consider using OPEMA estimator with data ′. Also, WLOG we only
consider deterministic reward (as implied by Lemma B.2.3 random reward only causes lower
order dependence). Also, we fix 𝑁 > 0 for the moment. First recall for all 𝑡 = 1, ...,𝐻

𝑉 𝜋
𝑡 (𝑠𝑡) = 𝔼𝜋

[

𝐻
∑

𝑡′=𝑡
𝑟𝑡′(𝑠

(1)
𝑡′ , 𝑎

(1)
𝑡 )

|

|

|

|

|

|

𝑠(1)𝑡 = 𝑠𝑡

]

𝑄𝜋
𝑡 (𝑠𝑡, 𝑎𝑡) = 𝔼𝜋

[

𝐻
∑

𝑡′=𝑡
𝑟𝑡′(𝑠

(1)
𝑡′ , 𝑎

(1)
𝑡 )

|

|

|

|

|

|

𝑠(1)𝑡 = 𝑠𝑡, 𝑎
(1)
𝑡 = 𝑎𝑡

]

where 𝑟𝑡(𝑠, 𝑎) are deterministic rewards and 𝑠(1)𝑡 , 𝑎(1)𝑡 are random variables. Consider 𝑉 𝜋
𝑡 , 𝑄

𝜋
𝑡as vectors, then by standard Bellman equations we have for all 𝑡 = 1, ...,𝐻 (define 𝑉𝐻+1 =

𝑄𝐻+1 = 0)
𝑄𝜋
𝑡 = 𝑟𝑡 + 𝑃 𝜋

𝑡+1𝑄
𝜋
𝑡+1 = 𝑟𝑡 + 𝑃𝑡+1𝑉 𝜋

𝑡+1, (B.14)
where 𝑃 𝜋

𝑡 ∈ ℝ(𝑆𝐴)×(𝑆𝐴) is the state-action transition and 𝑃𝑡(⋅|⋅, ⋅) ∈ ℝ(𝑆𝐴)×𝑆 is the transition
probabilities. Also, we have bellman optimality equations:
𝑄⋆
𝑡 = 𝑟𝑡 + 𝑃𝑡+1𝑉 ⋆

𝑡+1, 𝑉 ⋆
𝑡 (𝑠𝑡) ∶= max

𝑎𝑡
𝑄⋆
𝑡 (𝑠𝑡, 𝑎𝑡), 𝜋

⋆
𝑡 (𝑠𝑡) ∶= argmax

𝑎𝑡
𝑄⋆
𝑡 (𝑠𝑡, 𝑎𝑡) ∀𝑠𝑡 (B.15)

where 𝜋⋆ is one optimal deterministic policy. The corresponding Bellman equations and Bell-
man optimality equations for empirical MDP 𝑀 are defined similarly. Since we consider de-
terministic rewards, by Bellman equations we have

𝑄̂𝜋
𝑡 −𝑄

𝜋
𝑡 = 𝑃 𝜋

𝑡+1𝑄̂
𝜋
𝑡+1 − 𝑃

𝜋
𝑡+1𝑄

𝜋
𝑡+1 = (𝑃 𝜋

𝑡+1 − 𝑃
𝜋
𝑡+1)𝑄̂

𝜋
𝑡+1 + 𝑃

𝜋
𝑡+1(𝑄̂

𝜋
𝑡+1 −𝑄

𝜋
𝑡+1)

for 𝑡 = 1, ...,𝐻 . By writing it recursively, we have ∀𝑡 = 1, ...,𝐻 − 1

𝑄̂𝜋
𝑡 −𝑄

𝜋
𝑡 =

𝐻
∑

ℎ=𝑡+1
Γ𝜋𝑡+1∶ℎ−1(𝑃

𝜋
ℎ − 𝑃 𝜋

ℎ )𝑄̂
𝜋
ℎ

=
𝐻
∑

ℎ=𝑡+1
Γ𝜋𝑡+1∶ℎ−1(𝑃ℎ − 𝑃ℎ)𝑉

𝜋
ℎ

where Γ𝜋𝑡∶ℎ =
∏ℎ

𝑖=𝑡 𝑃
𝜋
𝑖 is the multi-step state-action transition and Γ𝜋𝑡+1∶𝑡 ∶= 𝐼 .

Note 𝜋∗ to be the empirical optimal policy over 𝑀 , we are interested in how to obtain
uniform convergence for any policy 𝜋 that is close to 𝜋∗. More precisely, in this section we

103



Supplementary Material to Chapter 3 Chapter B

consider the policy class Π1 to be:
Π1 ∶= {𝜋 ∶ 𝑠.𝑡. ||𝑉 𝜋

𝑡 − 𝑉 𝜋⋆
𝑡 ||∞ ≤ 𝜖opt , ∀𝑡 = 1, ...,𝐻}

where 𝜖opt ≥ 0 is a parameter decides how large the policy class is. We now assume 𝜋 to be any
policy within Π1 throughout this section. Also, 𝜋 may be a policy learned from a learning
algorithm using the data . In this case, 𝜋 may not be independent of 𝑃 .

We start with the following simple calculation:7

|

|

|

𝑄̂𝜋
𝑡 −𝑄

𝜋
𝑡
|

|

|

≤
𝐻
∑

ℎ=𝑡+1
Γ𝜋𝑡+1∶ℎ−1

|

|

|

(𝑃ℎ − 𝑃ℎ)𝑉 𝜋
ℎ
|

|

|

≤
𝐻
∑

ℎ=𝑡+1
Γ𝜋𝑡+1∶ℎ−1

|

|

|

(𝑃ℎ − 𝑃ℎ)𝑉 𝜋⋆
ℎ

|

|

|

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
(∗∗∗)

+
𝐻
∑

ℎ=𝑡+1
Γ𝜋𝑡+1∶ℎ−1

|

|

|

(𝑃ℎ − 𝑃ℎ)(𝑉 𝜋⋆
ℎ − 𝑉 𝜋

ℎ )
|

|

|

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
(∗∗∗∗)

(B.16)

We now analyze (∗∗∗) and (∗∗∗∗).

B.5.1 Analyzing
∑𝐻
ℎ=𝑡+1 Γ

𝜋
𝑡+1∶ℎ−1

|

|

|

(𝑃ℎ − 𝑃ℎ)(𝑉 𝜋⋆
ℎ − 𝑉 𝜋

ℎ )
|

|

|

First, by vector induced matrix norm8 we have
‖

‖

‖

‖

‖

‖

𝐻
∑

ℎ=𝑡+1
Γ𝜋𝑡+1∶ℎ−1 ⋅

|

|

|

(𝑃ℎ − 𝑃ℎ)(𝑉 𝜋⋆
ℎ − 𝑉 𝜋

ℎ )
|

|

|

‖

‖

‖

‖

‖

‖∞

≤ 𝐻 ⋅ sup
ℎ

‖

‖

‖

Γ𝜋𝑡+1∶ℎ−1
‖

‖

‖∞

‖

‖

‖

|(𝑃ℎ − 𝑃ℎ)(𝑉 𝜋⋆
ℎ − 𝑉 𝜋

ℎ )|
‖

‖

‖∞

≤ 𝐻 ⋅ sup
ℎ

‖

‖

‖

|(𝑃ℎ − 𝑃ℎ)(𝑉 𝜋⋆
ℎ − 𝑉 𝜋

ℎ )|
‖

‖

‖∞

where the last equal sign uses multi-step transition Γ𝜋𝑡+1∶ℎ−1 is row-stochastic. Note given 𝑁 ,
𝑃𝑡(⋅|⋅, ⋅) all have 𝑁 in the denominator. Therefore, by Hoeffding inequality and a union bound
we have with probability 1 − 𝛿,

sup
𝑡,𝑠𝑡,𝑠𝑡−1,𝑎𝑡−1

|𝑃𝑡(𝑠𝑡|𝑠𝑡−1, 𝑎𝑡−1) − 𝑃𝑡(𝑠𝑡|𝑠𝑡−1, 𝑎𝑡−1)| ≤ 𝑂(
√

log(𝐻𝑆𝐴∕𝛿)
𝑁

),

this indicates

sup
ℎ

‖

‖

‖

|(𝑃ℎ − 𝑃ℎ)(𝑉 𝜋⋆
ℎ − 𝑉 𝜋

ℎ )|
‖

‖

‖∞
≤ 𝜖opt ⋅ sup

ℎ

‖

‖

‖

|𝑃ℎ − 𝑃ℎ| ⋅ 𝟏
‖

‖

‖∞
≤ 𝜖opt ⋅ 𝑂(𝑆

√

log(𝐻𝑆𝐴∕𝛿)
𝑁

),

where 𝟏 ∈ ℝ𝑆 is all-one vector. To sum up, we have
7Since all quantities in the calculation are vectors, so the absolute value | ⋅ | used is point-wise operator.
8For 𝐴 a matrix and 𝑥 a vector we have ‖𝐴𝑥‖∞ ≤ ‖𝐴‖∞ ‖𝑥‖∞.
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Lemma B.5.1. Fix 𝑁 > 0, we have with probability 1 − 𝛿, for all 𝑡 = 1, ...,𝐻 − 1

𝐻
∑

ℎ=𝑡+1
Γ𝜋𝑡+1∶ℎ−1

|

|

|

(𝑃ℎ − 𝑃ℎ)(𝑉 𝜋⋆
ℎ − 𝑉 𝜋

ℎ )
|

|

|

≤ 𝜖opt ⋅ 𝑂

(
√

𝐻2𝑆2 log(𝐻𝑆𝐴∕𝛿)
𝑁

⋅ 𝟏
)

Now we consider (∗∗∗).

B.5.2 Analyzing
∑𝐻
ℎ=𝑡+1 Γ

𝜋
𝑡+1∶ℎ−1

|

|

|

(𝑃ℎ − 𝑃ℎ)𝑉 𝜋⋆
ℎ

|

|

|

.

Lemma B.5.2. Given 𝑁 , we have with probability 1 − 𝛿, ∀𝑡 = 1, ...,𝐻 − 1

𝐻
∑

ℎ=𝑡+1
Γ𝜋𝑡+1∶ℎ−1

|

|

|

(𝑃ℎ − 𝑃ℎ)𝑉 𝜋⋆
ℎ

|

|

|

≤
𝐻
∑

ℎ=𝑡+1
Γ𝜋𝑡+1∶ℎ−1

(

4
√

log(𝐻𝑆𝐴∕𝛿)
𝑁

√

Var(𝑉 𝜋⋆
ℎ ) +

4(𝐻 − 𝑡)
3𝑁

log(𝐻𝑆𝐴
𝛿

) ⋅ 𝟏
)

where Var(𝑣𝜋𝑡 ) ∈ ℝ𝑆𝐴 and Var(𝑉 𝜋
𝑡 )(𝑠𝑡−1, 𝑎𝑡−1) = Var𝑠𝑡[𝑉

𝜋
𝑡 (⋅)|𝑠𝑡−1, 𝑎𝑡−1] and | ⋅ |,

√

⋅ are point-
wise operator.

Proof: [Proof of Lemma B.5.2] The key point is to guarantee 𝑃ℎ is independent of 𝑉 𝜋⋆
ℎ so

that we can apply Bernstein inequality w.r.t the randomness in 𝑃ℎ. In fact, note given𝑁 all data
pairs in ′ are independent of each other, and 𝑃ℎ only uses data from ℎ−1 to ℎ. Moreover, 𝑉 𝜋⋆

ℎ
only uses data from time ℎ to𝐻 since 𝑉 𝜋

ℎ uses data from ℎ to𝐻 by bellman equation (B.14) for
any 𝜋 and optimal policy 𝜋⋆ℎ∶𝐻 also only uses data from ℎ to 𝐻 by bellman optimality equation
(B.15).

Then by Bernstein inequality, with probability 1 − 𝛿

|

|

|

(𝑃ℎ − 𝑃ℎ)𝑉 𝜋⋆
ℎ

|

|

|

(𝑠𝑡−1, 𝑎𝑡−1) ≤ 4
√

log(1∕𝛿)
𝑁

√

Var(𝑉 𝜋⋆
ℎ )(𝑠𝑡−1, 𝑎𝑡−1) +

4(𝐻 − 𝑡)
3𝑁

log(1
𝛿
)

apply a union bound and take the sum we get the stated result.
Now combine Lemma C.1.5 and Lemma B.5.2 we obtain with probability 1 − 𝛿, for all

𝑡 = 1, ...,𝐻 − 1

|

|

|

𝑄̂𝜋
𝑡 −𝑄

𝜋
𝑡
|

|

|

≤
𝐻
∑

ℎ=𝑡+1
Γ𝜋𝑡+1∶ℎ−1

(

4
√

log(𝐻𝑆𝐴∕𝛿)
𝑁

√

Var(𝑉 𝜋⋆
ℎ ) +

4(𝐻 − 𝑡)
3𝑁

log(𝐻𝑆𝐴
𝛿

) ⋅ 𝟏
)

+ 𝑐1𝜖opt ⋅

√

𝐻2𝑆2 log(𝐻𝑆𝐴∕𝛿)
𝑁

⋅ 𝟏

≤ 4
√

log(𝐻𝑆𝐴∕𝛿)
𝑁

𝐻
∑

ℎ=𝑡+1
Γ𝜋𝑡+1∶ℎ−1

√

Var(𝑉 𝜋⋆
ℎ ) + 4𝐻2

3𝑁
log(𝐻𝑆𝐴

𝛿
) ⋅ 𝟏

+ 𝑐1𝜖opt ⋅

√

𝐻2𝑆2 log(𝐻𝑆𝐴∕𝛿)
𝑁

⋅ 𝟏,
(B.17)
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Next note √

Var(⋅) is a norm, therefore by norm triangle inequality we have
√

Var(𝑉 𝜋⋆
ℎ ) ≤

√

Var(𝑉 𝜋⋆
ℎ − 𝑉 𝜋

ℎ ) +
√

Var(𝑉 𝜋
ℎ − 𝑉 𝜋

ℎ ) +
√

Var(𝑉 𝜋
ℎ )

≤ ‖

‖

‖

𝑉 𝜋⋆
ℎ − 𝑉 𝜋

ℎ
‖

‖

‖∞
⋅ 𝟏 + ‖

‖

‖

𝑉 𝜋
ℎ − 𝑉 𝜋

ℎ
‖

‖

‖∞
⋅ 𝟏 +

√

Var(𝑉 𝜋
ℎ )

≤ 𝜖opt ⋅ 𝟏 +
‖

‖

‖

𝑄̂𝜋
ℎ −𝑄

𝜋
ℎ
‖

‖

‖∞
⋅ 𝟏 +

√

Var(𝑉 𝜋
ℎ )

Plug this into (B.17) to obtain

|

|

|

𝑄̂𝜋
𝑡 −𝑄

𝜋
𝑡
|

|

|

≤ 4
√

log(𝐻𝑆𝐴∕𝛿)
𝑁

𝐻
∑

ℎ=𝑡+1

(

Γ𝜋𝑡+1∶ℎ−1
√

Var(𝑉 𝜋
ℎ ) +

‖

‖

‖

𝑄̂𝜋
ℎ −𝑄

𝜋
ℎ
‖

‖

‖∞
⋅ 𝟏

)

+ 4𝐻2

3𝑁
log(𝐻𝑆𝐴

𝛿
) ⋅ 𝟏

+ 𝑐2𝜖opt ⋅

√

𝐻2𝑆2 log(𝐻𝑆𝐴∕𝛿)
𝑁

⋅ 𝟏.
(B.18)

Next lemma helps us to bound ∑𝐻
ℎ=𝑡+1 Γ

𝜋
𝑡+1∶ℎ−1

√

Var(𝑉 𝜋
ℎ ).

Lemma B.5.3. A conditional version of Lemma B.4.4 holds:

Var𝜋

[

𝐻
∑

𝑡=ℎ
𝑟(1)𝑡

|

|

|

|

|

|

𝑠(1)ℎ = 𝑠ℎ, 𝑎
(1)
ℎ = 𝑎ℎ

]

=
𝐻
∑

𝑡=ℎ

(

𝔼𝜋
[

Var
[

𝑟(1)𝑡 + 𝑉 𝜋
𝑡+1(𝑠

(1)
𝑡+1)

|

|

|

𝑠(1)𝑡 , 𝑎
(1)
𝑡

]

|

|

|

|

𝑠(1)ℎ = 𝑠ℎ, 𝑎
(1)
ℎ = 𝑎ℎ

]

+ 𝔼𝜋
[

Var
[

𝔼[𝑟(1)𝑡 + 𝑉 𝜋
𝑡+1(𝑠

(1)
𝑡+1)|𝑠

(1)
𝑡 , 𝑎

(1)
𝑡 ]||

|

𝑠(1)𝑡
]

|

|

|

|

𝑠(1)ℎ = 𝑠ℎ, 𝑎
(1)
ℎ = 𝑎ℎ

] )

.
(B.19)

and by using (B.19) we can show

𝐻
∑

ℎ=𝑡+1
Γ𝜋𝑡+1∶ℎ−1

√

Var(𝑉 𝜋
ℎ ) ≤

√

(𝐻 − 𝑡)3 ⋅ 𝟏.

Proof: The proof of (B.19) uses the identical trick as Lemma B.4.4 except the total law
of variance is replaced by the total law of conditional variance.

Moreover, recall Γ𝜋𝑡+1∶ℎ−1 =
∏ℎ−1

𝑖=𝑡+1 𝑃
𝜋
𝑖 is the multi-step transition, so for any pair (𝑠𝑡, 𝑎𝑡),
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𝐻
∑

ℎ=𝑡+1

(

Γ𝜋𝑡+1∶ℎ−1
√

Var(𝑉 𝜋
ℎ )

)

(𝑠𝑡, 𝑎𝑡)

=
𝐻
∑

ℎ=𝑡+1

∑

𝑠ℎ−1,𝑎ℎ−1

√

Var[𝑉 𝜋
ℎ |𝑠ℎ−1, 𝑎ℎ−1]𝑑

𝜋
𝑡 (𝑠ℎ−1, 𝑎ℎ−1|𝑠𝑡, 𝑎𝑡)

=
𝐻
∑

ℎ=𝑡+1

∑

𝑠ℎ−1,𝑎ℎ−1

√

Var[𝑉 𝜋
ℎ |𝑠ℎ−1, 𝑎ℎ−1]𝑑

𝜋
𝑡 (𝑠ℎ−1, 𝑎ℎ−1|𝑠𝑡, 𝑎𝑡) ⋅

√

𝑑𝜋𝑡 (𝑠ℎ−1, 𝑎ℎ−1|𝑠𝑡, 𝑎𝑡)

≤
𝐻
∑

ℎ=𝑡+1

√

∑

𝑠ℎ−1,𝑎ℎ−1

Var[𝑉 𝜋
ℎ |𝑠ℎ−1, 𝑎ℎ−1]𝑑

𝜋
𝑡 (𝑠ℎ−1, 𝑎ℎ−1|𝑠𝑡, 𝑎𝑡) ⋅

∑

𝑠ℎ−1,𝑎ℎ−1

𝑑𝜋𝑡 (𝑠ℎ−1, 𝑎ℎ−1|𝑠𝑡, 𝑎𝑡)

=
𝐻
∑

ℎ=𝑡+1

√

∑

𝑠ℎ−1,𝑎ℎ−1

Var[𝑉 𝜋
ℎ |𝑠ℎ−1, 𝑎ℎ−1]𝑑

𝜋
𝑡 (𝑠ℎ−1, 𝑎ℎ−1|𝑠𝑡, 𝑎𝑡)

=
𝐻
∑

ℎ=𝑡+1

√

𝔼𝜋
[

Var[𝑉 𝜋
ℎ |𝑠

(1)
ℎ−1, 𝑎

(1)
ℎ−1]

|

|

|

|

𝑠𝑡, 𝑎𝑡

]

=
𝐻
∑

ℎ=𝑡+1

√

1 ⋅

√

𝔼𝜋
[

Var[𝑉 𝜋
ℎ |𝑠

(1)
ℎ−1, 𝑎

(1)
ℎ−1]

|

|

|

|

𝑠𝑡, 𝑎𝑡

]

≤

√

√

√

√(𝐻 − 𝑡)
𝐻
∑

ℎ=𝑡+1
𝔼𝜋

[

Var[𝑉 𝜋
ℎ |𝑠

(1)
ℎ−1, 𝑎

(1)
ℎ−1]

|

|

|

|

𝑠𝑡, 𝑎𝑡

]

≤

√

√

√

√

√(𝐻 − 𝑡) ⋅ Var𝜋

[

𝐻
∑

ℎ=𝑡+1
𝑟(1)ℎ

|

|

|

|

|

|

𝑠(1)𝑡 = 𝑠𝑡, 𝑎
(1)
𝑡 = 𝑎𝑡

]

≤
√

(𝐻 − 𝑡)3

where all the inequalities are Cauchy-Schwarz inequalities.
Apply Lemma B.5.3 to bound (B.18), and use ∞ norm on both sides, we obtain

Theorem B.5.1. Conditional on 𝑁 > 0, then with probability 1 − 𝛿, we have for all 𝑡 =
1, ...,𝐻 − 1

‖

‖

‖

𝑄̂𝜋
𝑡 −𝑄

𝜋
𝑡
‖

‖

‖∞
≤ 4

√

𝐻3 log(𝐻𝑆𝐴∕𝛿)
𝑁

+ 4
√

log(𝐻𝑆𝐴∕𝛿)
𝑁

𝐻
∑

ℎ=𝑡+1

‖

‖

‖

𝑄̂𝜋
ℎ −𝑄

𝜋
ℎ
‖

‖

‖∞
+ 4𝐻2

3𝑁
log(𝐻𝑆𝐴

𝛿
)

+ 𝑐2𝜖opt ⋅

√

𝐻2𝑆2 log(𝐻𝑆𝐴∕𝛿)
𝑁

.

Then by using backward induction and Theorem B.5.1, we have the following:
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Theorem B.5.2. Suppose 𝑁 ≥ 64𝐻2 ⋅ log(𝐻𝑆𝐴∕𝛿) and 𝜖opt ≤
√

𝐻∕𝑆, then we have with
probability 1 − 𝛿,

‖

‖

‖

𝑄̂𝜋
1 −𝑄

𝜋
1
‖

‖

‖∞
≤ 2(9 + 𝑐2)

√

𝐻3 log(𝐻𝑆𝐴∕𝛿)
𝑁

where 𝑐2 is the same constant in Theorem B.5.1.

Proof: Under the condition, by Theorem B.5.1 it is easy to check for all 𝑡 = 1, ...,𝐻 − 1
with probability 1 − 𝛿,

‖

‖

‖

𝑄̂𝜋
𝑡 −𝑄

𝜋
𝑡
‖

‖

‖∞
≤ (5 + 𝑐2)

√

𝐻3 log(𝐻𝑆𝐴∕𝛿)
𝑁

+ 4
√

log(𝐻𝑆𝐴∕𝛿)
𝑁

𝐻
∑

ℎ=𝑡+1

‖

‖

‖

𝑄̂𝜋
ℎ −𝑄

𝜋
ℎ
‖

‖

‖∞
,

which we conditional on.
For 𝑡 = 𝐻 − 1, we have

‖

‖

‖

𝑄̂𝜋
𝐻−1 −𝑄

𝜋
𝐻−1

‖

‖

‖∞
≤(5 + 𝑐2)

√

𝐻3 log(𝐻𝑆𝐴∕𝛿)
𝑁

+ 4
√

log(𝐻𝑆𝐴∕𝛿)
𝑁

‖

‖

‖

𝑄̂𝜋
𝐻 −𝑄𝜋

𝐻
‖

‖

‖∞

≤(5 + 𝑐2)
√

𝐻3 log(𝐻𝑆𝐴∕𝛿)
𝑁

+ 4

√

𝐻2 log(𝐻𝑆𝐴∕𝛿)
𝑁

≤(9 + 𝑐2)
√

𝐻3 log(𝐻𝑆𝐴∕𝛿)
𝑁

Suppose ‖

‖

‖

𝑄̂𝜋
ℎ −𝑄

𝜋
ℎ
‖

‖

‖∞
≤ 2(9 + 𝑐2)

√

𝐻3 log(𝐻𝑆𝐴∕𝛿)
𝑁

holds for all ℎ = 𝑡 + 1, ...,𝐻 , then for ℎ = 𝑡,
we have
‖

‖

‖

𝑄̂𝜋
𝑡 −𝑄

𝜋
𝑡
‖

‖

‖∞
≤ (5 + 𝑐2)

√

𝐻3 log(𝐻𝑆𝐴∕𝛿)
𝑁

+ 4
√

log(𝐻𝑆𝐴∕𝛿)
𝑁

𝐻
∑

ℎ=𝑡+1

‖

‖

‖

𝑄̂𝜋
ℎ −𝑄

𝜋
ℎ
‖

‖

‖∞

≤ (9 + 𝑐2)

√

𝐻3 log(𝐻𝑆𝐴∕𝛿)
𝑁

+ 4

√

(𝐻 − 1)2 log(𝐻𝑆𝐴∕𝛿)
𝑁

⋅ 2(9 + 𝑐2)

√

𝐻3 log(𝐻𝑆𝐴∕𝛿)
𝑁

≤ 2(9 + 𝑐2)

√

𝐻3 log(𝐻𝑆𝐴∕𝛿)
𝑁

where the last line uses the condition 𝑁 ≥ 64𝐻2 ⋅ log(𝐻𝑆𝐴∕𝛿). By induction, we have the
result.

Proof: [Proof of Theorem 3.5.3] By Theorem B.5.2 we have for𝑁 ≥ 𝑐 ⋅𝐻2 ⋅log(𝐻𝑆𝐴∕𝛿),

ℙ

(

‖

‖

‖

𝑄̂𝜋
1 −𝑄

𝜋
1
‖

‖

‖∞
≥ 2(9 + 𝑐2)

√

𝐻3 log(𝐻𝑆𝐴∕𝛿)
𝑁

|

|

|

|

|

|

𝑁

)

≤ 𝛿

The only thing left is to use Lemma B.2.1 to bound the event that {𝑁 < 𝑛𝑑𝑚∕2} has small
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probability.
Last but not least, the condition 𝑛 > 𝑐1𝐻2 log(𝐻𝑆𝐴∕𝛿)∕𝑑𝑚 is sufficient for applying Lemma B.2.1

and it also implies𝑁 ≥ 𝑐⋅𝐻2⋅log(𝐻𝑆𝐴∕𝛿) (the condition of Theorem B.5.2) when𝑁 ≥ 𝑛𝑑𝑚∕2since:
𝑛 > 𝑐1𝐻

2 log(𝐻𝑆𝐴∕𝛿)∕𝑑𝑚 ⇒ 𝑛𝑑𝑚∕2 ≥ 𝑐2𝐻
2 log(𝐻𝑆𝐴∕𝛿)

which implies 𝑁 ≥ 𝑐2 ⋅𝐻2 ⋅ log(𝐻𝑆𝐴∕𝛿) when 𝑁 ≥ 𝑛𝑑𝑚∕2.

B.6 Proof of uniform convergence lower bound.
In this section we prove a uniform convergence OPE lower bound of Ω(𝐻3∕𝑑𝑚𝜖2). Con-

ceptually, uniform convergence lower bound can be derived by a reduction to the lower bound
of identifying the 𝜖-optimal policy. There are quite a few literature that provide information
theoretical lower bounds in different setting, e.g. [114, 65, 115, 96, 42]. However, to the best of
our knowledge, there is no result proven for the non-stationary transition finite horizon episodic
setting with bounded rewards. For example, [42] prove the result sample complexity lower
bound of Ω(𝐻3𝑆𝐴∕𝜖2) with stationary MDP and their proof cannot be directly applied to non-
stationary setting as they reduce the problem to infinite horizon discounted setting which always
has stationary transitions. [114] prove the episode complexity of Ω̃(𝐻2𝑆𝐴∕𝜖2) for the station-
ary transition setting. [96] prove the Ω(√𝐻2𝑆𝐴𝑇 ) regret lower bound for non-stationary finite
horizon online setting but it is not clear how to translate the regret to PAC-learning setting by
keeping the same sample complexity optimality. [65] prove the Ω(𝐻𝑆𝐴∕𝜖2) lower bound for
the non-stationary finite horizon offline episodic setting where they assume ∑𝐻

𝑖=1 𝑟𝑖 ≤ 1 and this
is also different from our setting since we have 0 ≤ 𝑟𝑡 ≤ 1 for each time step.

Our proof consists of three steps. 1. We will first show a minimax lower bound (over
all MDP instances) for learning 𝜖-optimal policy is Ω(𝐻3𝑆𝐴∕𝜖2); 2. Based on 1, we can
further show a minimax lower bound (over problem class 𝑑𝑚) for learning 𝜖-optimal policy
is Ω(𝐻3∕𝑑𝑚𝜖2); 3. prove the uniform convergence OPE lower bound of the same rate.

B.6.1 Information theoretical lower sample complexity bound over all MDP
instances for identifying 𝜖-optimal policy.

In fact, a modified construction of Theorem 5 in [65] is our tool for obtaining Ω(𝐻3𝑆𝐴∕𝜖2)
lower bound. We can get the additional 𝐻2 factor by using ∑𝐻

𝑖=1 𝑟𝑖 can be of order 𝑂(𝐻).
Theorem B.6.1. Given 𝐻 ≥ 2, 𝐴 ≥ 2, 0 < 𝜖 < 1

48
√

8
and 𝑆 ≥ 𝑐1 where 𝑐1 is a universal

constant. Then there exists another universal constant 𝑐 such that for any algorithm and any
𝑛 ≤ 𝑐𝐻3𝑆𝐴∕𝜖2, there exists a non-stationary 𝐻 horizon MDP with probability at least 1∕12,
the algorithm outputs a policy 𝜋 with 𝑣⋆ − 𝑣𝜋 ≥ 𝜖.

Like in [65], the proof relies on embedding Θ(𝐻𝑆) independent multi-arm bandit problems
into a hard-to-learn MDP so that any algorithm that wants to output a near-optimal policy needs
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to identify the best action in Ω(𝐻𝑆) problems. However, in our construction we make a further
modification of [65] so that there is no waiting states, which is crucial for the reduction from
offline family. We also double the length of the hard-to-learn MDP instance so that the latter
half uses a “naive” copy construction which is uninformative. The uninformative extension will
help to produce the additional 𝐻2 factor.

Proof: [Proof of Theorem B.6.2] We construct a non-stationary MDP with 𝑆 states per
level, 𝐴 actions per state and has horizon 2𝐻 . At each time step, states are categorized into
four types with two special states 𝑔ℎ, 𝑏ℎ and the remaining 𝑆 − 2 “bandit” states denoted by
𝑠ℎ,𝑖, 𝑖 ∈ [𝑆 − 2]. Each bandit state has an unknown best action 𝑎⋆ℎ,𝑖 that provides the highest
expected reward comparing to other actions.

!'

!(

+ − 2
bandit 
states

w.p. 1

w.p. 1

w.p. 1− #
)

w.p. (#*+ /)
#
) if 

choose #⋆

w.p. (#*− /)
#
) if 

choose #⋆

w.p. 1− #
)

Figure B.1: An illustration of State-space transition diagram

The transition dynamics are defined as follows:
• for ℎ = 1, ...,𝐻 − 1,

– For bandit states 𝑏ℎ,𝑖, there is probability 1 − 1
𝐻

to transition to 𝑏ℎ+1,𝑖 regardless
of the action chosen. For the rest of 1

𝐻
probability, optimal action 𝑎⋆ℎ,𝑖 will have

probability 1
2
+ 𝜏 or 1

2
− 𝜏 transition to 𝑔ℎ+1 or 𝑏ℎ+1 and all other actions 𝑎 will have

equal probability 1
2

for either 𝑔ℎ+1 or 𝑏ℎ+1, where 𝜏 is a parameter will be decided
later. Or equivalently,

ℙ(⋅|𝑠ℎ,𝑖, 𝑎⋆ℎ,𝑖) =
⎧

⎪

⎨

⎪

⎩

1 − 1
𝐻

if ⋅ = 𝑠ℎ+1,𝑖
(1
2
+ 𝜏) ⋅ 1

𝐻
if ⋅ = 𝑔ℎ+1

(1
2
− 𝜏) ⋅ 1

𝐻
if ⋅ = 𝑏ℎ+1

ℙ(⋅|𝑠ℎ,𝑖, 𝑎) =
⎧

⎪

⎨

⎪

⎩

1 − 1
𝐻

if ⋅ = 𝑠ℎ+1,𝑖
1
2
⋅ 1
𝐻

if ⋅ = 𝑔ℎ+1
1
2
⋅ 1
𝐻

if ⋅ = 𝑏ℎ+1
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– 𝑔ℎ always transitions to 𝑔ℎ+1 and 𝑏ℎ always transitions to 𝑏ℎ+1, i.e. for all 𝑎 ∈ , we
have

ℙ(𝑔ℎ+1|𝑔ℎ, 𝑎) = 1, ℙ(𝑏ℎ+1|𝑏ℎ, 𝑎) = 1.

We will determine parameter 𝜏 at the end of the proof.
• for ℎ = 𝐻, ..., 2𝐻 − 1, all states will always transition to the same type of states for the

next step, i.e. ∀𝑎 ∈ ,
ℙ(𝑔ℎ+1|𝑔ℎ, 𝑎) = ℙ(𝑏ℎ+1|𝑏ℎ, 𝑎) = ℙ(𝑠ℎ+1,𝑖|𝑠ℎ,𝑖, 𝑎) = 1, ∀𝑖 ∈ [𝑆 − 2]. (B.20)

• The initial distribution is decided by:

ℙ(𝑠1,𝑖) =
1
𝑆
, ∀𝑖 ∈ [𝑆 − 2], ℙ(𝑔1) =

1
𝑆
, ℙ(𝑏1) =

1
𝑆

(B.21)

• State 𝑠 will receives reward 1 if and only if 𝑠 = 𝑔ℎ and ℎ ≥ 𝐻 . The reward at all other
states is zero.

By this construction the optimal policy must take 𝑎⋆ℎ,𝑖 for each bandit state 𝑠ℎ,𝑖 for at least
the first half of the MDP, i.e. need to take 𝑎⋆ℎ,𝑖 for ℎ ≤ 𝐻 . In other words, this construction
embeds at least𝐻(𝑆 −2) independent best arm identification problems that are identical to the
stochastic multi-arm bandit problem in Lemma D.0.7 into the MDP. Note the key innovation
here is that we can remove the waiting states used in jiang2017contextual but still keep
the multi-arm bandit problem independent!9

Notice in our construction, for any bandit state 𝑠ℎ,𝑖 with ℎ ≤ 𝐻 , the difference of the ex-
pected reward between optimal action 𝑎⋆ℎ,𝑖 and other actions is:

(1
2
+ 𝜏) ⋅ 1

𝐻
⋅ 𝔼[𝑟(ℎ+1)∶2𝐻 |𝑔ℎ+1] + (1

2
− 𝜏) ⋅ 1

𝐻
⋅ 𝔼[𝑟(ℎ+1)∶2𝐻 |𝑏ℎ+1] + (1 − 1

𝐻
) ⋅ 𝔼[𝑟(ℎ+1)∶2𝐻 |𝑠ℎ+1,𝑖]

− 1
2𝐻

⋅ 𝔼[𝑟(ℎ+1)∶2𝐻 |𝑔ℎ+1] −
1
2𝐻

⋅ 𝔼[𝑟(ℎ+1)∶2𝐻 |𝑏ℎ+1] − (1 − 1
𝐻

) ⋅ 𝔼[𝑟(ℎ+1)∶2𝐻 |𝑠ℎ+1,𝑖]

=(1
2
+ 𝜏) ⋅ 1

𝐻
⋅ 𝔼[𝑟(ℎ+1)∶2𝐻 |𝑔ℎ+1] + (1

2
− 𝜏) ⋅ 1

𝐻
⋅ 𝔼[𝑟(ℎ+1)∶2𝐻 |𝑏ℎ+1]

− 1
2𝐻

⋅ 𝔼[𝑟(ℎ+1)∶2𝐻 |𝑔ℎ+1] −
1
2𝐻

⋅ 𝔼[𝑟(ℎ+1)∶2𝐻 |𝑏ℎ+1]

=(1
2
+ 𝜏) 1

𝐻
⋅𝐻 + (1

2
− 𝜏) 1

𝐻
⋅ 0 − 1

2𝐻
⋅𝐻 + 1

2𝐻
⋅ 0 = 𝜏

(B.22)
so it seems by Lemma D.0.7 one suffices to use the least possible 𝐴

72(𝜏)2
samples to identify

the best action 𝑎⋆ℎ,𝑖. However, note the construction of the latter half of the MDP (B.20) uses
mindless reproduction of previous steps and therefore provides no additional information about
the best action once the state at time 𝐻 is known. In other words, observing ∑2𝐻

𝑡=1 𝑟𝑡 = 𝐻 is
9Here independence means solving one bandit problem provides no information on other bandit problems.
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equivalent as observing ∑𝐻
𝑡=1 𝑟𝑡 = 1. Therefore, for the bandit states in the first half the samples

that provide information for identifying the best arm is up to time𝐻 . As a result, the difference
of the expected reward between optimal action 𝑎⋆ℎ,𝑖 and other action for identifying the best arm
should be corrected as:
(1
2
+ 𝜏) ⋅ 1

𝐻
⋅ 𝔼[𝑟(ℎ+1)∶𝐻 |𝑔ℎ+1] + (1

2
− 𝜏) ⋅ 1

𝐻
⋅ 𝔼[𝑟(ℎ+1)∶𝐻 |𝑏ℎ+1] + (1 − 1

𝐻
) ⋅ 𝔼[𝑟(ℎ+1)∶𝐻 |𝑠ℎ+1,𝑖]

− 1
2𝐻

⋅ 𝔼[𝑟(ℎ+1)∶𝐻 |𝑔ℎ+1] −
1
2𝐻

⋅ 𝔼[𝑟(ℎ+1)∶𝐻 |𝑏ℎ+1] − (1 − 1
𝐻

) ⋅ 𝔼[𝑟(ℎ+1)∶𝐻 |𝑠ℎ+1,𝑖]

=(1
2
+ 𝜏) ⋅ 1

𝐻
⋅ 𝔼[𝑟(ℎ+1)∶𝐻 |𝑔ℎ+1] + (1

2
− 𝜏) ⋅ 1

𝐻
⋅ 𝔼[𝑟(ℎ+1)∶𝐻 |𝑏ℎ+1]

− 1
2𝐻

⋅ 𝔼[𝑟(ℎ+1)∶𝐻 |𝑔ℎ+1] −
1
2𝐻

⋅ 𝔼[𝑟(ℎ+1)∶𝐻 |𝑏ℎ+1]

=(1
2
+ 𝜏) 1

𝐻
⋅ 1 + (1

2
− 𝜏) 1

𝐻
⋅ 0 − 1

2𝐻
⋅ 1 + 1

2𝐻
⋅ 0 = 𝜏

𝐻

Now by Lemma D.0.7, for each bandit state 𝑠ℎ,𝑖 satisfying ℎ ≤ 𝐻 , unless 𝐴
72(𝜏∕𝐻)2

samples are
collected from that state, the learning algorithm fails to identify the optimal action 𝑎⋆ℎ,𝑖 with
probability at least 1∕3.

After running any algorithm, let𝐶 be the set of (ℎ, 𝑠) pairs for which the algorithm identifies
the correct action. Let 𝐷 be the set of (ℎ, 𝑠) pairs for which the algorithm collects fewer than

𝐴
72(𝜏∕𝐻)2

samples. Then by Lemma D.0.7 we have

𝔼[|𝐶|] = 𝔼

[

∑

(ℎ,𝑠)
𝟏[𝑎ℎ,𝑠 = 𝑎⋆ℎ,𝑠]

]

≤ ((𝑆 − 2)𝐻 − |𝐷|) + 𝔼

[

∑

(ℎ,𝑠)∈𝐷
𝟏[𝑎ℎ,𝑠 = 𝑎⋆ℎ,𝑠]

]

≤ ((𝑆 − 2)𝐻 − |𝐷|) + 2
3
|𝐷| = (𝑆 − 2)𝐻 − 1

3
|𝐷|.

If we have 𝑛 ≤ 𝐻(𝑆−2)
2

× 𝐴
72(𝜏∕𝐻)2

, by pigeonhole principle the algorithm can collect 𝐴
72(𝜏∕𝐻)2samples for at most half of the bandit problems, i.e. |𝐷| ≥ 𝐻(𝑆 − 2)∕2. Therefore we have

𝔼[|𝐶|] ≤ (𝑆 − 2)𝐻 − 1
3
|𝐷| ≤ 5

6
(𝑆 − 2)𝐻.

Then by Markov inequality

ℙ
[

|𝐶| ≥ 11
12
𝐻(𝑆 − 2)

]

≤
5∕6
11∕12

= 10
11

so the algorithm failed to identify the optimal action on 1/12 fraction of the bandit problems
with probability at least 1∕11. Note for each failure in identification, the reward is differ by 𝜏
(see (B.22)), therefore under the event {|𝐶 ′

| ≥ 1
12
𝐻(𝑆 − 2)}, following the similar calculation

of [65] the suboptimality of the policy produced by the algorithm is
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𝜖 ∶= 𝑣⋆ − 𝑣𝜋 = ℙ[visit 𝐶 ′] × 𝜏 + ℙ[visit 𝐶] × 0 = ℙ[
⋃

(ℎ,𝑖)∈𝐶 ′

visit(ℎ, 𝑖)] × 𝜏

=
∑

(ℎ,𝑖)∈𝐶 ′

ℙ[visit(ℎ, 𝑖)] × 𝜏 = ∑

(ℎ,𝑖)∈𝐶 ′

1
𝐻𝑆

(1 − 1∕𝐻)ℎ−1𝜏

≥
∑

(ℎ,𝑖)∈𝐶 ′

1
𝐻𝑆

(1 − 1∕𝐻)𝐻𝜏 ≥
∑

(ℎ,𝑖)∈𝐶 ′

1
𝐻𝑆

1
4
𝜏

≥ 𝐻(𝑆 − 2)
12

1
𝐻𝑆

1
4
𝜏 = 𝑐1

𝜏
48
.

where the third equal sign uses all best arm identification problems are independent. Now we
set 𝜏 = min(

√

1∕8, 48𝜖∕𝑐1) and under condition 𝑛 ≤ 𝑐𝐻3𝑆𝐴∕𝜖2, we have

𝑛 ≤ 𝑐𝐻3𝑆𝐴∕𝜖2 ≤ 𝑐482𝐻3𝑆𝐴∕𝜏2 = 𝑐482 ⋅ 72𝐻𝑆⋅ 𝐴
72(𝜏∕𝐻)2

∶= 𝑐′𝐻𝑆⋅ 𝐴
72𝜏2

≤ 𝐻(𝑆 − 2)
2

⋅
𝐴

72𝜏2
,

the last inequality holds as long as 𝑆 ≥ 2∕(1−2𝑐′). Therefore in this situation, with probability
at least 1∕11, 𝑣⋆ − 𝑣𝜋 ≥ 𝜖. Finally, we can use scaling to reduce the horizon from 2𝐻 to 𝐻 .

B.6.2 Information theoretical lower sample complexity bound over prob-
lems in 𝑑𝑚 for identifying 𝜖-optimal policy.

For all 0 < 𝑑𝑚 ≤ 1
𝑆𝐴

, let the class of problems be
𝑑𝑚 ∶=

{

(𝜇,𝑀) ||
|

min
𝑡,𝑠𝑡,𝑎𝑡

𝑑𝜇𝑡 (𝑠𝑡, 𝑎𝑡) ≥ 𝑑𝑚
}

,

now we consider deriving minimax lower bound over this class.
Theorem B.6.2. Under the same condition of Theorem B.6.1. In addition assume 0 < 𝑑𝑚 ≤ 1

𝑆𝐴
.

There exists another universal constant 𝑐 such that when 𝑛 ≤ 𝑐𝐻3∕𝑑𝑚𝜖2, we always have

inf
𝑣𝜋𝑎𝑙𝑔

sup
(𝜇,𝑀)∈𝑑𝑚

ℙ𝜇,𝑀 (𝑣∗ − 𝑣𝜋𝑎𝑙𝑔 ≥ 𝜖) ≥ 𝑝.

Proof:
The hard instance (𝜇,𝑀) we used is based on Theorem B.6.1, which is described as follows.
• for the MDP 𝑀 = ( ,, 𝑟, 𝑃 , 𝑑1, 2𝐻 + 2),

– Initial distribution 𝑑1 will always enter state 𝑠0, and there are two actions with action
𝑎1 always transitions to 𝑠yes and action 𝑎2 always transitions to 𝑠no. The reward at
the first time 𝑟1(𝑠, 𝑎) = 0 for any 𝑠, 𝑎.
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– For state 𝑠no, it will always transition back to itself regardless of the action and
receive reward 0, i.e.

𝑃𝑡(𝑠no|𝑠no, 𝑎) = 1, 𝑟𝑡(𝑠no, 𝑎) = 0, ∀𝑡, ∀𝑎.

– For state 𝑠yes, it will transition to the MDP construction in Theorem B.6.1 with
horizon 2𝐻 and 𝑠yes always receives reward zero.

– For 𝑡 = 1, choose 𝜇(𝑎1|𝑠0) = 1
2
𝑑𝑚𝑆𝐴 and 𝜇(𝑎2|𝑠0) = 1− 1

2
𝑑𝑚𝑆𝐴. For 𝑡 ≥ 2, choose

𝜇 to be uniform policy, i.e. 𝜇(𝑎𝑡|𝑠𝑡) = 1∕𝐴.
Based on this construction, the optimal policy has the form 𝜋⋆ = (𝑎1,…) and therefore the

MDP branch that enters 𝑠no is uninformative. Hence, data collected by that part is uninformed
about the optimal policy and there is only 1

2
𝑑𝑚𝑆𝐴 proportion of data from 𝑠yes are useful. More-

over, by Theorem B.6.1 the rest of Markov chain succeeded from 𝑠yes requires Ω(𝐻3𝑆𝐴∕𝜖2)
episodes (regardless of the exploration strategy/logging policy), so the actual data complexity
needed for the whole construction (𝜇,𝑀) is Ω(𝐻3𝑆𝐴∕𝜖2)

𝑑𝑚𝑆𝐴
= Ω(𝐻3∕𝑑𝑚𝜖2).

It remains to check this construction 𝜇,𝑀 stays within 𝑑𝑚 .
• For 𝑡 = 1, we have 𝑑1(𝑠0, 𝑎1) = 1

2
𝑑𝑚𝑆𝐴 ≥ 𝑑𝑚 (since𝑆 ≥ 2) and 𝑑1(𝑠0, 𝑎2) = 1− 1

2
𝑑𝑚𝑆𝐴 ≥

𝑑𝑚 (this is since 𝑑𝑚 ≤ 1
𝑆𝐴

≤ 2
2+𝑆𝐴

);
• For 𝑡 = 2, 𝑑2(𝑠yes, 𝑎) =

1
2
𝑑𝑚𝑆𝐴 ⋅ 1

𝐴
= 1

2
𝑑𝑚𝑆 ≥ 𝑑𝑚 (since 𝑆 ≥ 2) and similar for 𝑠no;

• For 𝑡 ≥ 3, for 𝑔ℎ and 𝑏ℎ in the sub-chain inherited from 𝑠yes, note 𝑑ℎ(𝑔ℎ) ≤ 𝑑ℎ+1(𝑔ℎ+1)(since 𝑔ℎ and 𝑏ℎ are absorbing states regardless of actions), therefore 𝑑ℎ(𝑔ℎ) ≥ 𝑑1(𝑔1) =
𝑑1(𝑠yes) ⋅ℙ(𝑔1|𝑠yes) =

1
2
𝑑𝑚𝑆𝐴 ⋅ 1

𝑆
= 1

2
𝑑𝑚𝐴, since 𝜇 is uniform so 𝑑ℎ(𝑔ℎ, 𝑎) ≥ Ω(𝑑𝑚𝐴) ⋅

1
𝐴
=

Ω(𝑑𝑚) forall 𝑎. Similar result can be derived for 𝑏ℎ in identical way.
For bandit state, we have for all 𝑖 ∈ [𝑆 − 2],

𝑑𝜇𝑡+1(𝑠𝑡+1,𝑖) ≥ ℙ𝜇(𝑠𝑡+1,𝑖, 𝑠𝑡,𝑖, 𝑠𝑡−1,𝑖,… , 𝑠2,𝑖, 𝑠1,𝑖, 𝑠yes, 𝑠0)

=
𝑡

∏

𝑢=1
ℙ𝜇(𝑠𝑢+1,𝑖|𝑠𝑢)ℙ𝜇(𝑠1,𝑖|𝑠yes)ℙ𝜇(𝑠yes|𝑠0)

= (1 − 1
𝐻

)𝑡
( 1
𝑆

)(1
2
𝑑𝑚𝑆𝐴

)

≥ 𝑐𝑑𝑚𝐴,

now by 𝜇 is uniform we have 𝑑𝜇𝑡+1(𝑠𝑡+1,𝑖, 𝑎) ≥ Ω(𝑑𝑚𝐴)⋅
1
𝐴
= Ω(𝑑𝑚) for all 𝑎. This concludes

the proof.
Remark 14. A directly corollary is that the sample complexity in Theorem 3.6.1 part 3. is opti-
mal. Indeed, for the case 𝜖opt = 0, Theorem 3.6.1 implies 𝜋 is the 𝜖-optimal policy learned with
sample complexity 𝑂(𝐻3 log(𝐻𝑆𝐴∕𝛿)∕𝑑𝑚𝜖2). Theorem B.6.2 implies this sample complexity
cannot be further reduced up to the logarithmic factor.
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B.6.3 Information theoretical lower sample complexity bound for uni-
form convergence in OPE.

By applying Theorem B.6.2, we can now prove Theorem 3.5.4.
Proof: [Proof of Theorem 3.5.4] We prove it by contradiction. Suppose there is one off-

policy evaluation method 𝑣𝜋 such that

sup
𝜋∈Π

|𝑣𝜋 − 𝑣𝜋| ≤ 𝑜

(√

𝐻3

𝑑𝑚𝑛

)

,

where 𝑜(⋅) represents the standard small 𝑜-notation. Then by
0 ≤ 𝑣𝜋⋆ − 𝑣𝜋⋆ = 𝑣𝜋⋆ − 𝑣𝜋⋆ + 𝑣𝜋⋆ − 𝑣𝜋⋆

≤ |𝑣𝜋⋆ − 𝑣𝜋⋆| + |𝑣𝜋⋆ − 𝑣𝜋⋆| ≤ 2 sup
𝜋

|𝑣𝜋 − 𝑣𝜋|.

this OPE method implies a 𝜖-optimal policy learning algorithm with sample complexity 𝑜(𝐻3∕𝑑𝑚𝜖2)which is smaller than the information theoretical lower bound obtained in Theorem B.6.2. Con-
tradiction!

B.7 Proofs of Theorem 3.6.1
Proof: [Proof of Theorem 3.6.1] Part 1. and Part 2. are just direct corollaries. We only

prove Part 3. here. Indeed, by definition of empirical optimal policy we have 𝑄̂𝜋⋆ ≤ 𝑄̂𝜋⋆ , so
we have the following:

𝑄𝜋⋆
1 −𝑄𝜋

1 = 𝑄𝜋⋆
1 − 𝑄̂𝜋⋆

1 + 𝑄̂𝜋⋆
1 − 𝑄̂𝜋

1 + 𝑄̂
𝜋
1 −𝑄

𝜋
1

≤ 𝑄𝜋⋆
1 − 𝑄̂𝜋⋆

1 + 𝑄̂𝜋⋆
1 − 𝑄̂𝜋

1 + 𝑄̂
𝜋
1 −𝑄

𝜋
1

≤ 𝑄𝜋⋆
1 − 𝑄̂𝜋⋆

1 + 𝜖opt ⋅ 𝟏 + 𝑄̂𝜋
1 −𝑄

𝜋
1

and 𝑄̂𝜋
1 − 𝑄

𝜋
1 can be bounded by Theorem 3.5.3 using local uniform convergence. 𝑄𝜋⋆

1 − 𝑄̂𝜋⋆
1

can be bounded by 𝑂(
√

𝐻3 log(𝐻𝑆𝐴∕𝛿)
𝑛𝑑𝑚

) using the similar technique in Section B.5 even without
introducing 𝜖opt since 𝜋⋆ is a fixed policy. All these implies:

𝑄𝜋⋆
1 −𝑄𝜋

1 ≤
⎛

⎜

⎜

⎝

𝑂(

√

𝐻3 log(𝐻𝑆𝐴∕𝛿)
𝑛𝑑𝑚

) + 𝜖opt
⎞

⎟

⎟

⎠

⋅ 𝟏.
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Especially when 𝜖opt = 0 then this is slightly stronger than the stated result since:
𝑣𝜋

⋆

1 − 𝑣𝜋⋆1 = 𝑄𝜋⋆
1 (⋅, 𝜋⋆(⋅)) −𝑄𝜋⋆

1 (⋅, 𝜋⋆(⋅)) ≤ 𝑄𝜋⋆
1 (⋅, 𝜋⋆(⋅)) −𝑄𝜋⋆

1 (⋅, 𝜋⋆(⋅))

≤ ‖

‖

‖

𝑄𝜋⋆
1 −𝑄𝜋⋆

1
‖

‖

‖∞
≤ 𝑂(

√

𝐻3 log(𝐻𝑆𝐴∕𝛿)
𝑛𝑑𝑚

) ⋅ 𝟏

B.8 Simulation details
The non-stationary MDP with used for the experiments have 2 states 𝑠0, 𝑠1 and 2 actions

𝑎1, 𝑎2 where action 𝑎1 has probability 1 always going back the current state and for action 𝑎2,there is one state s.t. after choosing 𝑎2 the dynamic transitions to both states with equal proba-
bility 1

2
and the other one has asymmetric probability assignment (1

4
and 3

4
). The transition after

choosing 𝑎2 is changing over different time steps therefore the MDP is non-stationary and the
change is decided by a sequence of pseudo-random numbers. More formally, 𝑃𝑡 can be either

ℙ(𝑠0|𝑠0, 𝑎1) = 1;ℙ(𝑠1|𝑠1, 𝑎1) = 1;ℙ(⋅|𝑠0, 𝑎2) =

{

1
2
, if ⋅ = 𝑠1

1
2
, if ⋅ = 𝑠0

; ℙ(⋅|𝑠1, 𝑎2) =

{

3
4
, if ⋅ = 𝑠1

1
4
, if ⋅ = 𝑠0

or

ℙ(𝑠0|𝑠0, 𝑎1) = 1;ℙ(𝑠1|𝑠1, 𝑎1) = 1;ℙ(⋅|𝑠0, 𝑎2) =

{

1
4
, if ⋅ = 𝑠1

3
4
, if ⋅ = 𝑠0

; ℙ(⋅|𝑠1, 𝑎2) =

{

1
2
, if ⋅ = 𝑠1

1
2
, if ⋅ = 𝑠0

Moreover, to make the learning problem non-trivial we use non-stationary rewards with 4
categories, i.e. 𝑟𝑡(𝑠, 𝑎) ∈ { 1

4
, 2
4
, 3
4
, 1} and assignment of 𝑟𝑡(𝑠, 𝑎) for each value is changing over

time. That means, one possible assignment can be
𝑟𝑡(𝑠0, 𝑎1) = 1∕4, 𝑟𝑡(𝑠0, 𝑎2) = 2∕4, 𝑟𝑡(𝑠1, 𝑎1) = 3∕4, 𝑟𝑡(𝑠1, 𝑎2) = 1∕4.

Moreover, the logging policy in Figure 2.2 is uniform with 𝜇𝑡(𝑎1|𝑠) = 𝜇𝑡(𝑎2|𝑠) =
1
2

for both
states. We implement the non-stationary MDP in the Python environment and pseudo-random
numbers 𝑝𝑡, 𝑟𝑡’s are generated by keeping numpy.random.seed(100).

We fix episodes 𝑛 = 2048 and run each algorithm under 𝐾 = 100 macro-replications with
data (𝑘) =

{

(𝑠(𝑖)𝑡 , 𝑎
(𝑖)
𝑡 , 𝑟

(𝑖)
𝑡 )

}𝑖∈[𝑛],𝑡∈[𝐻]

(𝑘)
, and use each (𝑘) (𝑘 = 1, ..., 𝐾) to construct a estimator

𝑣𝜋[𝑘], then the (empirical) RMSE for fixed policy is computed as:

RMSE_FIX =

√

∑𝐾
𝑘=1(𝑣

𝜋
[𝑘] − 𝑣

𝜋
true)2

𝐾
,
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and RMSE for suboptimality gap is computed as

RMSE_SUB =

√

∑𝐾
𝑘=1(𝑣

𝜋⋆[𝑘] − 𝑣𝜋⋆true)2

𝐾
,

and RMSE for empirical optimal policy gap is computed as

RMSE_EMPIRICAL =

√

∑𝐾
𝑘=1(𝑣

𝜋⋆
[𝑘] − 𝑣

𝜋⋆
true)2

𝐾
,

where 𝑣𝜋true is obtained by calculating 𝑃 𝜋
𝑡+1,𝑡(𝑠

′
|𝑠) =

∑

𝑎 𝑃𝑡+1,𝑡(𝑠′|𝑠, 𝑎)𝜋𝑡(𝑎|𝑠), the marginal state
distribution 𝑑𝜋𝑡 = 𝑃 𝜋

𝑡,𝑡−1𝑑
𝜋
𝑡−1, 𝑟𝜋𝑡 (𝑠𝑡) =

∑

𝑎𝑡
𝑟𝑡(𝑠𝑡, 𝑎𝑡)𝜋𝑡(𝑎𝑡|𝑠𝑡) and 𝑣𝜋true =

∑𝐻
𝑡=1

∑

𝑠𝑡
𝑑𝜋𝑡 (𝑠𝑡)𝑟

𝜋
𝑡 (𝑠𝑡).

𝑣𝜋⋆true is obtained by running Value Iteration exhaustively until the error converges to 0. The
average relative error for suboptimality (average of |𝑣𝜋⋆[𝑘] − 𝑣𝜋⋆true|∕𝑣𝜋⋆true) at 𝐻 = 1000 is 0.0011.
Lastly, we also show the scaling of |𝑣𝜋⋆ − 𝑣𝜋⋆| in Figure B.2, which shares a similar pattern as
the suboptimality plot as a whole. 10
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| ̂vπ̂ ⋆ − vπ̂ ⋆ |
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Figure B.2: Log-log plot showing the dependence on horizon of uniform OPE and pointwise
OPE via learning (|𝑣̂𝜋⋆ − 𝑣𝜋⋆|) over a non-stationary MDP example.

B.9 On improvement over vanilla simulation lemma for fixed
policy evaluation

Vanilla simulation lemma, Lemma 1 of [41]. Without loss of generality, assuming reward
is determinsitic function over state-action. By definition of Bellman equation, we have the

10Here we do point out the empirical dependence on 𝐻 for |𝑣𝜋⋆ − 𝑣𝜋⋆ | in the Figure B.2 is actually less than
𝐻1.5, this comes from that the MDP example we choose is not the “hardest” example for quantity |𝑣𝜋⋆ − 𝑣𝜋⋆ |.
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following:
𝑉 𝜋
𝑡 = 𝑟 + 𝑃 𝜋

𝑡+1𝑉
𝜋
𝑡+1, 𝑉 𝜋

𝑡 = 𝑟 + 𝑃 𝜋
𝑡+1𝑉

𝜋
𝑡+1,

define 𝜖𝑃 = sup𝑡,𝑠𝑡,𝑎𝑡 ||𝑃𝑡(⋅|𝑠𝑡, 𝑎𝑡)−𝑃𝑡(⋅|𝑠𝑡, 𝑎𝑡)||1, then by Hoeffding’s inequality and union bound,
with probability 1 − 𝛿,

𝜖𝑃 ≤ 𝑆⋅sup
𝑡,𝑠𝑡,𝑎𝑡

||𝑃𝑡(⋅|𝑠𝑡, 𝑎𝑡)−𝑃𝑡(⋅|𝑠𝑡, 𝑎𝑡)||∞ ≤ 𝑆⋅sup
𝑡,𝑠𝑡,𝑎𝑡

𝑂

(√

log(𝐻𝑆𝐴∕𝛿)
𝑛𝑠𝑡,𝑎𝑡

𝟏(𝐸𝑡)
)

= 𝑂
⎛

⎜

⎜

⎝

√

𝑆2 log(𝐻𝑆𝐴∕𝛿)
𝑛 ⋅ 𝑑𝑚

⎞

⎟

⎟

⎠

then
𝑉 𝜋
𝑡 − 𝑉 𝜋

𝑡 =𝑃 𝜋
𝑡+1𝑉

𝜋
𝑡+1 − 𝑃

𝜋
𝑡+1𝑉

𝜋
𝑡+1

≤
(

‖

‖

‖

𝑃 𝜋
𝑡+1 − 𝑃

𝜋
𝑡+1

‖

‖

‖1

‖

‖

‖

𝑉 𝜋
𝑡+1

‖

‖

‖∞
+ ‖

‖

‖

𝑃 𝜋
𝑡+1

‖

‖

‖1

‖

‖

‖

𝑉 𝜋
𝑡+1 − 𝑉

𝜋
𝑡+1

‖

‖

‖∞

)

⋅ 𝟏

≤
(

𝐻𝜖𝑃 + ‖

‖

‖

𝑉 𝜋
𝑡+1 − 𝑉

𝜋
𝑡+1

‖

‖

‖∞

)

⋅ 𝟏,

solving recursively, we have

‖

‖

‖

𝑉 𝜋
1 − 𝑉 𝜋

1
‖

‖

‖∞
≤ 𝐻2𝜖𝑃 ≤ 𝑂

⎛

⎜

⎜

⎝

√

𝐻4𝑆2 log(𝐻𝑆𝐴∕𝛿)
𝑛 ⋅ 𝑑𝑚

⎞

⎟

⎟

⎠

.

This verifies SL has complexity 𝑂(𝐻4𝑆2∕𝑑𝑚𝜖2). We do point out above standard analy-
sis can be improved (e.g. [41] Section 2.2) to 𝑂̃(𝐻4𝑆∕𝑑𝑚𝜖2), then in this case our analysis
(Lemma 3.5.2) has an improvement of 𝐻2𝑆 with respect to the modified result.

B.10 Algorithms

Remark 15. In short, we can see Algorithm 2 requires the splitting data size𝑀 which is unde-
cided by [57] and that makes the hyper-parameter requiring additional concrete specifications
to make the data splitting estimator sample efficient. In contrast, OPEMA in Algorithm 3 is
defined without ambiguity and can be implemented without extra work.

Their results require number of episodes in each splitted data 𝑀 to satisfy 𝑂(
√

𝑛𝑆𝐴) >
𝑀 > 𝑂(𝐻𝑆𝐴). To achieve data efficiency, they need 𝑛 ≈ Θ(𝐻2𝑆𝐴∕𝜖2) and by that condition
𝑀 has to satisfy 𝑀 ≈ 𝐶 ⋅𝐻𝑆𝐴. In this case, data-splitting version needs to create 𝑁 = 𝑛∕𝑀
empirical transition dynamics and each dynamics use𝐻3∕𝑁 ≈ 𝐶 ⋅𝐻2𝑆𝐴∕𝜖2 episodes which is
less than the lower bound (𝑂(𝐻3)) required for learning. Most critically, due to data-splitting
it has 𝑁 empirical transitions hence it is not clear which transition to plan over. Therefore in
this sense their result does not enables efficient offline learning. Our Analysis for unsplitted
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Algorithm 3 OPEMA
Input: Logging data  = {{𝑠(𝑖)𝑡 , 𝑎

(𝑖)
𝑡 , 𝑟

(𝑖)
𝑡 }𝐻𝑡=1}

𝑛
𝑖=1 from the behavior policy 𝜇. A target policy 𝜋

which we want to evaluate its cumulative reward.
1: Calculate the on-policy estimation of initial distribution 𝑑1(⋅) by 𝑑1(𝑠) ∶= 1

𝑛

∑𝑛
𝑖=1 𝟏(𝑠

(𝑖)
1 =

𝑠), and set 𝑑𝜇1 (⋅) ∶= 𝑑1(⋅), 𝑑𝜋1 (𝑠) ∶= 𝑑1(⋅).
2: for 𝑡 = 2, 3,… ,𝐻 do
3: Choose all transition data at time step 𝑡, {𝑠(𝑖)𝑡 , 𝑎(𝑖)𝑡 , 𝑟(𝑖)𝑡 }𝑛𝑖=1.
4: Calculate the on-policy estimation of 𝑑𝜇𝑡 (⋅) by 𝑑𝜇𝑡 (𝑠) ∶= 1

𝑛

∑𝑛
𝑖=1 𝟏(𝑠

(𝑖)
𝑡 = 𝑠).

5: Set the off-policy estimation of 𝑃𝑡(𝑠𝑡|𝑠𝑡−1, 𝑎𝑡−1):

𝑃𝑡(𝑠𝑡|𝑠𝑡−1, 𝑎𝑡−1) ∶=
∑𝑛

𝑖=1 𝟏[(𝑠
(𝑖)
𝑡 , 𝑎

(𝑖)
𝑡−1, 𝑠

(𝑖)
𝑡−1) = (𝑠𝑡, 𝑠𝑡−1, 𝑎𝑡−1)]

𝑛𝑠𝑡−1,𝑎𝑡−1

when 𝑛𝑠𝑡−1,𝑎𝑡−1 > 0. Otherwise set it to be zero.
6: Estimate the reward function

𝑟̂𝑡(𝑠𝑡, 𝑎𝑡) ∶=
∑𝑛

𝑖=1 𝑟
(𝑖)
𝑡 𝟏(𝑠

(𝑖)
𝑡 = 𝑠𝑡, 𝑎

(𝑖)
𝑡 = 𝑎𝑡)

∑𝑛
𝑖=1 𝟏(𝑠

(𝑖)
𝑡 = 𝑠𝑡, 𝑎

(𝑖)
𝑡 = 𝑎𝑡)

.

when 𝑛𝑠𝑡,𝑎𝑡 > 0. Otherwise set it to be zero.
7: Set 𝑑𝜋𝑡 (⋅, ⋅) according to 𝑑𝜋𝑡 = 𝑃 𝜋

𝑡 𝑑
𝜋
𝑡−1, where 𝑑𝜋𝑡 (⋅, ⋅) is the estimated state-action distri-

bution.
8: end for
9: Substitute the all estimated values above into 𝑣𝜋 = ∑𝐻

𝑡=1⟨𝑑
𝜋
𝑡 , 𝑟̂𝑡⟩ to obtain 𝑣𝜋 , the estimated

value of 𝜋.

version (OPEMA) addresses all these issues.
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C.1 Proof of optimal local uniform convergence

C.1.1 Model-based Offline Plug-in Estimator
Recall the model-based estimator uses empirical estimator 𝑃 for estimating 𝑃 and the esti-

mator is calculated accordingly:
𝑄̂𝜋
ℎ = 𝑟 + 𝑃 𝜋ℎ+1𝑄𝜋

ℎ+1 = 𝑟 + 𝑃𝑉 𝜋
𝐻+1,

where 𝑃 (𝑠′|𝑠, 𝑎) can be expressed as:

𝑃 (𝑠′|𝑠, 𝑎) =
∑𝑛

𝑖=1
∑𝐻

ℎ=1 𝟏[(𝑠
(𝑖)
ℎ+1, 𝑎

(𝑖)
ℎ , 𝑠

(𝑖)
ℎ ) = (𝑠′, 𝑠, 𝑎)]

𝑛𝑠,𝑎
, 𝑛𝑠,𝑎 =

𝐻
∑

ℎ=1

𝑛
∑

𝑖=1
𝟏[(𝑠(𝑖)ℎ , 𝑎

(𝑖)
ℎ ) = (𝑠, 𝑎)].

and 𝑃 (𝑠′|𝑠, 𝑎) = 1
𝑆

, if 𝑛𝑠,𝑎 = 0. The initial distribution is also constructed as 𝑑𝜋1 (𝑠) = 𝑛𝑠∕𝑛.
First of all, we have by definition the Bellman optimality equation

𝑉 ⋆
𝑡 (𝑠) = max

𝑎

{

𝑟(𝑠, 𝑎) +
∑

𝑠′
𝑃 (𝑠′|𝑠, 𝑎)𝑉 ⋆

𝑡+1(𝑠
′)

}

, ∀𝑠 ∈  . (C.1)

and similarly the empirical version

𝑉 ⋆
𝑡 (𝑠) = max

𝑎

{

𝑟(𝑠, 𝑎) +
∑

𝑠′
𝑃 (𝑠′|𝑠, 𝑎)𝑉 ⋆

𝑡+1(𝑠
′)

}

, ∀𝑠 ∈  .

The key difficulty in obtaining the optimal dependence in stationary setting is decoupling the
dependence of 𝑃 − 𝑃 and 𝑉 ⋆. This issue is not encountered in the non-stationary setting due
to the possibility to estimate different transition at each time yin2021near, but it cannot further
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reduce the sample complexity on𝐻 . Moreover, the direct use of 𝑠-absorbing MDP in [61] is not
sharp for finite horizon stationary setting, as it requires 𝑠-absorbing MDPs with𝐻-dimensional
cover (which has size ≈ 𝑒𝐻 and it is not optimal). We design the singleton-absorbing MDP to
get rid of the issue.

C.1.2 General absorbing MDP
The general absorbing MDP is defined as follows: for a fixed state 𝑠 and a sequence {𝑢𝑡}𝐻𝑡=1,MDP 𝑀𝑠,{𝑢𝑡}𝐻𝑡=1

is identical to 𝑀 for all states except 𝑠, and state 𝑠 is absorbing in the sense
𝑃𝑀𝑠,{𝑢𝑡}𝐻𝑡=1

(𝑠|𝑠, 𝑎) = 1 for all 𝑎, and the instantaneous reward at time 𝑡 is 𝑟𝑡(𝑠, 𝑎) = 𝑢𝑡 for all
𝑎 ∈ . Also, we use the shorthand notation 𝑉 𝜋

{𝑠,𝑢𝑡}
for 𝑉 𝜋

𝑠,𝑀𝑠,{𝑢𝑡}𝐻𝑡=1

and similarly for 𝑄{𝑠,𝑢𝑡} and
transition 𝑃{𝑠,𝑢𝑡}. Then the following properties hold:

Lemma C.1.1.

𝑉 ⋆
ℎ,{𝑠,𝑢𝑡}

(𝑠) =
𝐻
∑

𝑡=ℎ
𝑢𝑡.

Proof: We prove this by backward induction. For ℎ = 𝐻 , under 𝑀𝑠,{𝑢𝑡}𝐻𝑡=1
state 𝑠 is

absorbing (and by convention 𝑉 ⋆
𝐻+1,{𝑠,𝑢𝑡}

= 0) therefore

𝑉 ⋆
𝐻,{𝑠,𝑢𝑡}

(𝑠) = max
𝑎

{

𝑟𝐻,{𝑠,𝑢𝑡}(𝑠, 𝑎) +
∑

𝑠′
𝑃{𝑠,𝑢𝑡}(𝑠

′
|𝑠, 𝑎)𝑉 ⋆

𝐻+1,{𝑠,𝑢𝑡}
(𝑠′)

}

= max
𝑎

{

𝑟𝐻,{𝑠,𝑢𝑡}(𝑠, 𝑎)
}

= 𝑢𝐻

for general ℎ, note ∑

𝑠′ 𝑃{𝑠,𝑢𝑡}(𝑠
′
|𝑠, 𝑎)𝑉 ⋆

ℎ+1,{𝑠,𝑢𝑡}
(𝑠′) = 1 ⋅ 𝑉 ⋆

ℎ+1,{𝑠,𝑢𝑡}
(𝑠), therefore using induction

property 𝑉 ⋆
ℎ+1,{𝑠,𝑢𝑡}

(𝑠) =
∑𝐻

𝑡=ℎ+1 𝑢𝑡 we can similarly obtain 𝑉 ⋆
ℎ,{𝑠,𝑢𝑡}

(𝑠) =
∑𝐻

𝑡=ℎ 𝑢𝑡.
Lemma C.1.2. Fix state 𝑠. For two different sequences {𝑢𝑡}𝐻𝑡=1 and {𝑢′𝑡}

𝐻
𝑡=1, we have

max
ℎ

‖

‖

‖

𝑄⋆
ℎ,{𝑠,𝑢𝑡}

−𝑄⋆
ℎ,{𝑠,𝑢′𝑡}

‖

‖

‖∞
≤ 𝐻 ⋅ max

𝑡∈[𝐻]
|

|

𝑢𝑡 − 𝑢′𝑡|| .
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Proof: Let 𝜋⋆{𝑠,𝑢𝑡} be the optimal policy in 𝑀{𝑠,𝑢𝑡}. Then (by convention ∏ℎ
𝑎=ℎ+1 𝑃

𝜋𝑎 = 𝐼)

𝑄⋆
ℎ,{𝑠,𝑢𝑡}

−𝑄⋆
ℎ,{𝑠,𝑢′𝑡}

= 𝑄⋆
ℎ,{𝑠,𝑢𝑡}

− max
𝜋

𝐻
∑

𝑖=ℎ

(

𝑖
∏

𝑎=ℎ+1
𝑃 𝜋𝑎
{𝑠,𝑢′𝑡}

)

𝑟𝑖,{𝑠,𝑢′𝑡}

≤𝑄⋆
ℎ,{𝑠,𝑢𝑡}

−
𝐻
∑

𝑖=ℎ

(

𝑖
∏

𝑎=ℎ+1
𝑃
𝜋⋆𝑎,{𝑠,𝑢𝑡}
{𝑠,𝑢′𝑡}

)

𝑟𝑖,{𝑠,𝑢′𝑡} =
𝐻
∑

𝑖=ℎ

(

𝑖
∏

𝑎=ℎ+1
𝑃
𝜋⋆𝑎,{𝑠,𝑢𝑡}
{𝑠,𝑢′𝑡}

)

(

𝑟𝑖,{𝑠,𝑢𝑡} − 𝑟𝑖,{𝑠,𝑢′𝑡}
)

≤
𝐻
∑

𝑖=ℎ
max
𝑠,𝑎

‖

‖

‖

‖

‖

‖

(

𝑖
∏

𝑎=ℎ+1
𝑃
𝜋⋆𝑎,{𝑠,𝑢𝑡}
{𝑠,𝑢′𝑡}

)𝑖−ℎ

(⋅|𝑠, 𝑎)
‖

‖

‖

‖

‖

‖1

⋅ ‖‖
‖

𝑟𝑖,{𝑠,𝑢𝑡} − 𝑟𝑖,{𝑠,𝑢′𝑡}
‖

‖

‖∞
⋅ 𝟏 = (𝐻 − ℎ + 1) ⋅max

𝑡
|

|

𝑢𝑡 − 𝑢′𝑡|| ⋅ 𝟏

where the first equal sign uses the definition of 𝑄⋆, the second equal sign uses 𝑃{𝑠,𝑢𝑡} only
depends 𝑠 but not the specification of 𝑢𝑡’s and the last equal sign comes from 𝑟𝑖,{𝑠,𝑢𝑡}(𝑠, 𝑎) = 𝑢𝑖for any 𝑎 ∈  and 𝑟𝑖,{𝑠,𝑢𝑡}(𝑠̃, 𝑎) = 𝑟𝑖,{𝑠,𝑢′𝑡}(𝑠̃, 𝑎) for any 𝑠̃ ≠ 𝑠. Lastly by symmetry we finish the
proof.

C.1.3 Singleton-absorbing MDP
The direct transfer of absorbing technique created in [61] will require each 𝑢𝑡 to fill in the

range of [0,𝐻] using evenly spaced elements. For finite horizon MDP there are 𝐻 layers,
therefore the total number of 𝐻-tuples (𝑢1,… , 𝑢𝐻 ) has order |𝑈𝑠| = 𝑃𝑜𝑙𝑦(𝐻)𝐻 , therefore
when apply the union bound, it will incur the additional 𝐻 factor. We get rid of this issue by
choosing one single point in 𝐻-dimensional space [0,𝐻]𝐻 . We first give the following two
lemmas.

Lemma C.1.3. 𝑉 ⋆
𝑡 (𝑠) − 𝑉

⋆
𝑡+1(𝑠) ≥ 0, for all state 𝑠 ∈  and all 𝑡 ∈ [𝐻].

Proof: Let the optimal policy for 𝑉 ⋆
𝑡+1 be 𝜋⋆𝑡+1∶𝐻 , i.e. 𝑉 ⋆

𝑡+1 = 𝑉
𝜋⋆𝑡+1∶𝐻
𝑡+1 , then artificially

construct a policy 𝜋𝑡∶𝐻 such that 𝜋𝑡∶𝐻−1 = 𝜋⋆𝑡+1∶𝐻 and 𝜋𝐻 is arbitrary, then by the definition of
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optimal value

𝑉 ⋆
𝑡 (𝑠) ≥ 𝑉 𝜋𝑡∶𝐻

𝑡 (𝑠) = 𝔼𝜋𝑡∶𝐻
[

𝐻
∑

𝑖=𝑡
𝑟(𝑠𝑖, 𝑎𝑖)

|

|

|

|

|

|

𝑠𝑡 = 𝑠

]

= 𝔼𝜋𝑡∶𝐻−1

[

𝐻−1
∑

𝑖=𝑡
𝑟(𝑠𝑖, 𝑎𝑖)

|

|

|

|

|

|

𝑠𝑡 = 𝑠

]

+ 𝔼𝜋𝑡∶𝐻
[

𝑟(𝑠𝐻 , 𝑎𝐻 )||𝑠𝑡 = 𝑠
]

= 𝔼𝜋⋆𝑡+1∶𝐻
[

𝐻
∑

𝑖=𝑡+1
𝑟(𝑠𝑖, 𝑎𝑖)

|

|

|

|

|

|

𝑠𝑡+1 = 𝑠

]

+ 𝔼𝜋𝑡∶𝐻
[

𝑟(𝑠𝐻 , 𝑎𝐻 )||𝑠𝑡 = 𝑠
]

≥ 𝔼𝜋⋆𝑡+1∶𝐻
[

𝐻
∑

𝑖=𝑡+1
𝑟(𝑠𝑖, 𝑎𝑖)

|

|

|

|

|

|

𝑠𝑡+1 = 𝑠

]

+ 0 = 𝑉 ⋆
𝑡+1(𝑠),

where the third equal sign uses exactly that 𝑃 is a STATIONARY transition and definition
𝜋𝑡∶𝐻−1 = 𝜋⋆𝑡+1∶𝐻 . The last inequality uses the assumption that reward is always non-negative.
Remark 16. Lemma C.1.3 leverages 𝑃 is stationary and above may not be true in the non-
stationary setting. This enables us to establish the following lemma, which is the key for
singleton-absorbing MDP.

Lemma C.1.4. Fix a state 𝑠. If we choose 𝑢⋆𝑡 ∶= 𝑉 ⋆
𝑡 (𝑠) − 𝑉

⋆
𝑡+1(𝑠) ∀𝑡 ∈ [𝐻], then we have the

following vector form equation

𝑉 ⋆
ℎ,{𝑠,𝑢⋆𝑡 }

= 𝑉 ⋆
ℎ,𝑀 ∀ℎ ∈ [𝐻].

Similarly, if we choose 𝑢̂⋆𝑡 ∶= 𝑉 ⋆
𝑡 (𝑠) − 𝑉

⋆
𝑡+1(𝑠), then 𝑉 ⋆

ℎ,{𝑠,𝑢̂⋆𝑡 }
= 𝑉 ⋆

ℎ,𝑀 , ∀ℎ ∈ [𝐻].

Proof: We focus on the first claim. Note by Lemma C.1.3 the assignment of 𝑢⋆𝑡 (∶= 𝑟𝑡,{𝑠,𝑢⋆𝑡 })is well-defined. Next recall 𝑉 ⋆
ℎ,𝑀 is the optimal value under true MDP 𝑀 and 𝑉 ⋆

ℎ,{𝑠,𝑢⋆𝑡 }
is the

optimal value under the assimilating MDP 𝑀𝑠,{𝑢⋆𝑡 }
𝐻
𝑡=1

. We prove by backward induction.
For ℎ = 𝐻 , note by convention 𝑉 ⋆

𝐻+1 = 0, therefore 𝑢⋆𝐻 = 𝑉 ⋆
𝐻 (𝑠) − 𝑉

⋆
𝐻+1(𝑠) = 𝑉 ⋆

𝐻 (𝑠) − 0 =
𝑉 ⋆
𝐻 (𝑠) and Bellman optimality equation becomes

𝑉 ⋆
𝐻 (𝑠̃) = max

𝑎
{𝑟(𝑠̃, 𝑎)} , ∀𝑠̃ ∈  .

Under𝑀𝑠,{𝑢⋆𝑡 }
𝐻
𝑡=1

, for state 𝑠 by Lemma C.1.1 we have 𝑉 ⋆
𝐻,{𝑠,𝑢⋆𝑡 }

(𝑠) = 𝑢⋆𝐻 = 𝑉 ⋆
𝐻 (𝑠), for other states

𝑠̃ ≠ 𝑠, reward in 𝑀𝑠,{𝑢⋆𝑡 }
𝐻
𝑡=1

=𝑀 so we also have 𝑉 ⋆
𝐻,{𝑠,𝑢⋆𝑡 }

(𝑠̃) = 𝑉 ⋆
𝐻 (𝑠̃) for all 𝑠̃ ≠ 𝑠.

Now for general ℎ, for state 𝑠 by Lemma C.1.1

𝑉 ⋆
ℎ,{𝑠,𝑢⋆𝑡 }

(𝑠) =
𝐻
∑

𝑡=ℎ
𝑢⋆𝑡 =

𝐻
∑

𝑡=ℎ

(

𝑉 ⋆
𝑡 (𝑠) − 𝑉

⋆
𝑡+1(𝑠)

)

= 𝑉 ⋆
ℎ (𝑠),
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for state 𝑠̃ ≠ 𝑠, by Bellman optimality equation

𝑉 ⋆
ℎ,{𝑠,𝑢⋆𝑡 }

(𝑠̃) = max
𝑎

{

𝑟{𝑠,𝑢⋆𝑡 }(𝑠̃, 𝑎) +
∑

𝑠′
𝑃{𝑠,𝑢⋆𝑡 }

(𝑠′|𝑠̃, 𝑎)𝑉 ⋆
ℎ+1,{𝑠,𝑢⋆𝑡 }

(𝑠′)

}

= max
𝑎

{

𝑟(𝑠̃, 𝑎) +
∑

𝑠′
𝑃 (𝑠′|𝑠̃, 𝑎)𝑉 ⋆

ℎ+1,{𝑠,𝑢⋆𝑡 }
(𝑠′)

}

= max
𝑎

{

𝑟(𝑠̃, 𝑎) +
∑

𝑠′
𝑃 (𝑠′|𝑠̃, 𝑎)𝑉 ⋆

ℎ+1(𝑠
′)

}

= 𝑉 ⋆
ℎ (𝑠̃),

where the second equal sign uses when 𝑠̃ ≠ 𝑠, 𝑀𝑠,{𝑢⋆𝑡 }
𝐻
𝑡=1

is identical to 𝑀 and the third equal
sign uses induction assumption that element-wisely 𝑉 ⋆

ℎ+1,{𝑠,𝑢⋆𝑡 }
= 𝑉 ⋆

ℎ+1. Similar result can be
derived for 𝑢̂⋆ version and this completes the proof.

The singleton MDP we used is exactly 𝑀𝑠,{𝑢⋆𝑡 }
𝐻
𝑡=1

(or 𝑀𝑠,{𝑢⋆𝑡 }
𝐻
𝑡=1

).

C.1.4 Proof for local uniform convergence
Recall the local policy class

Π𝑙 ∶=
{

𝜋 ∶ s.t. ‖

‖

‖

𝑉 𝜋
ℎ − 𝑉 𝜋⋆

ℎ
‖

‖

‖∞
≤ 𝜖opt ,∀ℎ ∈ [𝐻]

}

.

For ease of exposition, we denote𝑁 ∶= min𝑠,𝑎 𝑛𝑠,𝑎. Note𝑁 itself is a random variable, therefore
for the rest of proof we first conditional on𝑁 . Later we shall remove the conditional on𝑁 (see
Section C.1.7).

For any 𝜋 ∈ Π𝑙, by (empirical) Bellman equation we have element-wisely:
𝑄̂𝜋
ℎ −𝑄

𝜋
ℎ = 𝑟ℎ + 𝑃 𝜋ℎ+1𝑄̂𝜋

ℎ+1 − 𝑟ℎ − 𝑃
𝜋ℎ+1𝑄𝜋

ℎ+1

=
(

𝑃 𝜋ℎ+1 − 𝑃 𝜋ℎ+1
)

𝑄̂𝜋
ℎ+1 + 𝑃

𝜋ℎ+1
(

𝑄̂𝜋
ℎ+1 −𝑄

𝜋
ℎ+1

)

=
(

𝑃 − 𝑃
)

𝑉 𝜋
ℎ+1 + 𝑃

𝜋ℎ+1
(

𝑄̂𝜋
ℎ+1 −𝑄

𝜋
ℎ+1

)

= … =
𝐻
∑

𝑡=ℎ
Γ𝜋ℎ+1∶𝑡

(

𝑃 − 𝑃
)

𝑉 𝜋
𝑡+1

≤
𝐻
∑

𝑡=ℎ
Γ𝜋ℎ+1∶𝑡

|

|

|

|

(

𝑃 − 𝑃
)

𝑉 𝜋⋆
𝑡+1

|

|

|

|

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
(⋆)

+
𝐻
∑

𝑡=ℎ
Γ𝜋ℎ+1∶𝑡

|

|

|

|

(

𝑃 − 𝑃
)(

𝑉 𝜋
𝑡+1 − 𝑉

𝜋⋆
𝑡+1

)

|

|

|

|

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
(⋆⋆)
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where Γ𝜋ℎ+1∶𝑡 =
∏𝑡

𝑖=ℎ+1 𝑃
𝜋𝑖 is multi-step state-action transition and Γℎ+1∶ℎ ∶= 𝐼 .

C.1.5 Analyzing (⋆⋆)
Term (⋆⋆) can be readily bounded using the following lemma.

Lemma C.1.5. Fix 𝑁 > 0, we have with probability 1 − 𝛿, for all 𝑡 = 1, ...,𝐻 − 1

𝐻
∑

𝑡=ℎ
Γ𝜋ℎ+1∶𝑡

|

|

|

(𝑃 − 𝑃 )(𝑉 𝜋⋆
ℎ+1 − 𝑉

𝜋
ℎ+1)

|

|

|

≤ 𝐶𝜖opt ⋅

√

𝐻2𝑆 log(𝑆𝐴∕𝛿)
𝑁

⋅ 𝟏

where 𝐶 absorb the higher order term and absolute constants.

Proof:
First, by vector induced matrix norm1 we have
‖

‖

‖

‖

‖

‖

𝐻
∑

𝑡=ℎ
Γ𝜋ℎ+1∶𝑡 ⋅

|

|

|

(𝑃 − 𝑃 )(𝑉 𝜋⋆
𝑡+1 − 𝑉

𝜋
𝑡+1)

|

|

|

‖

‖

‖

‖

‖

‖∞

≤ 𝐻 ⋅ sup
𝑡

‖

‖

‖

Γ𝜋ℎ+1∶𝑡
‖

‖

‖∞

‖

‖

‖

|(𝑃 − 𝑃 )(𝑉 𝜋⋆
𝑡+1 − 𝑉

𝜋
𝑡+1)|

‖

‖

‖∞

≤ 𝐻 ⋅ sup
𝑡

‖

‖

‖

|(𝑃 − 𝑃 )(𝑉 𝜋⋆
𝑡+1 − 𝑉

𝜋
𝑡+1)|

‖

‖

‖∞

= 𝐻 ⋅ sup
𝑡,𝑠,𝑎

|

|

|

(𝑃 − 𝑃 )(⋅|𝑠, 𝑎)(𝑉 𝜋⋆
𝑡+1 − 𝑉

𝜋
𝑡+1)

|

|

|

≤ 𝐻 ⋅ sup
𝑡,𝑠,𝑎

‖

‖

‖

(𝑃 − 𝑃 )(⋅|𝑠, 𝑎)‖‖
‖1

⋅ ‖‖
‖

𝑉 𝜋⋆
𝑡+1 − 𝑉

𝜋
𝑡+1

‖

‖

‖∞
⋅ 𝟏

where the second inequality uses multi-step transition Γ𝜋𝑡+1∶ℎ−1 is row-stochastic. Note given
𝑁 , therefore by Lemma D.0.10 and a union bound we have with probability 1 − 𝛿,

sup
𝑠,𝑎

‖

‖

‖

(𝑃 − 𝑃 )(⋅|𝑠, 𝑎)‖‖
‖1

≤ 𝐶(
√

𝑆 log(𝑆𝐴∕𝛿)
𝑁

),

(where 𝐶 absorb the higher order term and absolute constants) and using definition of Π𝑙 we
have sup𝑡

‖

‖

‖

𝑉 𝜋⋆
𝑡 − 𝑉 𝜋

𝑡
‖

‖

‖∞
≤ 𝜖opt . This indicates

sup
𝑡,𝑠,𝑎

‖

‖

‖

(𝑃 − 𝑃 )(⋅|𝑠, 𝑎)‖‖
‖1

⋅ ‖‖
‖

𝑉 𝜋⋆
𝑡+1 − 𝑉

𝜋
𝑡+1

‖

‖

‖∞
⋅ 𝟏 ≤ 𝐶(𝜖opt

√

𝑆 log(𝑆𝐴∕𝛿)
𝑁

⋅ 𝟏),

where 𝟏 ∈ ℝ𝑆 is all-one vector. Then multiple by 𝐻 to get the stated result.
1For 𝐴 a matrix and 𝑥 a vector we have ‖𝐴𝑥‖∞ ≤ ‖𝐴‖∞ ‖𝑥‖∞.
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C.1.6 Analyzing (⋆)

Concentration on
(

𝑃 − 𝑃
)

𝑉 ⋆
ℎ .2 Since 𝑃 aggregates all data from different step so that 𝑃

and 𝑉 ⋆
ℎ are on longer independent, Bernstein inequality cannot be directly applied. We use the

singleton-absorbing MDP𝑀𝑠,{𝑢⋆𝑡 }
𝐻
𝑡=1

to handle the case (recall 𝑢⋆𝑡 ∶= 𝑉 ⋆
𝑡 (𝑠)−𝑉

⋆
𝑡+1(𝑠) ∀𝑡 ∈ [𝐻]).

Again, let us fix a state 𝑠 and 𝑎 ∈  be any action. Also, we use 𝑃𝑠,𝑎 to denote row vector to
avoid long expression. Then we have:
(

𝑃𝑠,𝑎 − 𝑃𝑠,𝑎
)

𝑉 ⋆
ℎ =

(

𝑃𝑠,𝑎 − 𝑃𝑠,𝑎
)(

𝑉 ⋆
ℎ − 𝑉 ⋆

ℎ,{𝑠,𝑢⋆𝑡 }
+ 𝑉 ⋆

ℎ,{𝑠,𝑢⋆𝑡 }

)

=
(

𝑃𝑠,𝑎 − 𝑃𝑠,𝑎
)(

𝑉 ⋆
ℎ − 𝑉 ⋆

ℎ,{𝑠,𝑢⋆𝑡 }

)

+
(

𝑃𝑠,𝑎 − 𝑃𝑠,𝑎
)

𝑉 ⋆
ℎ,{𝑠,𝑢⋆𝑡 }

≤ ‖

‖

‖

𝑃𝑠,𝑎 − 𝑃𝑠,𝑎
‖

‖

‖1

‖

‖

‖

‖

𝑉 ⋆
ℎ − 𝑉 ⋆

ℎ,{𝑠,𝑢⋆𝑡 }

‖

‖

‖

‖∞
+
√

2 log(4∕𝛿)
𝑁

√

Var𝑠,𝑎(𝑉 ⋆
ℎ,{𝑠,𝑢⋆𝑡 }

) +
2𝐻 log(1∕𝛿)

3𝑁

≤ ‖

‖

‖

𝑃𝑠,𝑎 − 𝑃𝑠,𝑎
‖

‖

‖1

‖

‖

‖

‖

𝑉 ⋆
ℎ − 𝑉 ⋆

ℎ,{𝑠,𝑢⋆𝑡 }

‖

‖

‖

‖∞
+
√

2 log(4∕𝛿)
𝑁

(
√

Var𝑠,𝑎(𝑉 ⋆
ℎ ) +

√

Var𝑠,𝑎(𝑉 ⋆
ℎ,{𝑠,𝑢⋆𝑡 }

− 𝑉 ⋆
ℎ )

)

+
2𝐻 log(1∕𝛿)

3𝑁

≤ ‖

‖

‖

𝑃𝑠,𝑎 − 𝑃𝑠,𝑎
‖

‖

‖1

‖

‖

‖

‖

𝑉 ⋆
ℎ − 𝑉 ⋆

ℎ,{𝑠,𝑢⋆𝑡 }

‖

‖

‖

‖∞
+
√

2 log(4∕𝛿)
𝑁

⎛

⎜

⎜

⎝

√

Var𝑠,𝑎(𝑉 ⋆
ℎ ) +

√

‖

‖

‖

‖

𝑉 ⋆
ℎ,{𝑠,𝑢⋆𝑡 }

− 𝑉 ⋆
ℎ

‖

‖

‖

‖

2

∞

⎞

⎟

⎟

⎠

+
2𝐻 log(1∕𝛿)

3𝑁

=

(

‖

‖

‖

𝑃𝑠,𝑎 − 𝑃𝑠,𝑎
‖

‖

‖1
+
√

2 log(4∕𝛿)
𝑁

)

‖

‖

‖

‖

𝑉 ⋆
ℎ − 𝑉 ⋆

ℎ,{𝑠,𝑢⋆𝑡 }

‖

‖

‖

‖∞
+
√

2 log(4∕𝛿)
𝑁

√

Var𝑠,𝑎(𝑉 ⋆
ℎ ) +

2𝐻 log(1∕𝛿)
3𝑁

(C.2)
where the first inequality uses Bernstein inequality (Lemma D.0.3), while the second inequality
uses√Var(⋅) in norm (norm triangle inequality). Now we treat ‖‖

‖

𝑃𝑠,𝑎 − 𝑃𝑠,𝑎
‖

‖

‖1
and ‖‖

‖

‖

𝑉 ⋆
ℎ − 𝑉 ⋆

ℎ,{𝑠,𝑢⋆𝑡 }

‖

‖

‖

‖∞separately.
For ‖‖

‖

𝑃𝑠,𝑎 − 𝑃𝑠,𝑎
‖

‖

‖1
. Indeed, by Lemma D.0.10 again ‖

‖

‖

𝑃𝑠,𝑎 − 𝑃𝑠,𝑎
‖

‖

‖1
≤ 𝑂̃(

√

𝑆 log(𝑆∕𝛿)
𝑁

) and by
a union bound we obtain w.p., 1 − 𝛿

sup
𝑠,𝑎

‖

‖

‖

𝑃𝑠,𝑎 − 𝑃𝑠,𝑎
‖

‖

‖1
≤ 𝐶

√

𝑆 log(𝑆𝐴∕𝛿)
𝑁

. (C.3)

where 𝐶 absorbs the higher order term and constants.
For

‖

‖

‖

‖

𝑉 ⋆
ℎ − 𝑉 ⋆

ℎ,{𝑠,𝑢⋆𝑡 }

‖

‖

‖

‖∞
. Note if we set 𝑢̂⋆𝑡 = 𝑉 ⋆

𝑡 (𝑠) − 𝑉
⋆
𝑡+1(𝑠), then by Lemma C.1.4

𝑉 ⋆
ℎ = 𝑉 ⋆

ℎ,{𝑠,𝑢̂⋆𝑡 }

Next since 𝑉 ⋆
ℎ,{𝑠,𝑢̂⋆𝑡 }

(𝑠̃) = max𝑎 𝑄̂⋆
ℎ,{𝑠,𝑢̂⋆𝑡 }

(𝑠̃, 𝑎) ∀𝑠̃ ∈  , by generic inequality |max 𝑓 − max 𝑔| ≤

2Here we use 𝑉 ⋆
ℎ instead of 𝑉 ⋆

𝑡 since we later have 𝑉 ⋆
ℎ,{𝑠,𝑢⋆𝑡 }

. We avoid the same 𝑡 twice in the expression to
prevent confusion.
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max |𝑓 − 𝑔|, we have |𝑉 ⋆
ℎ,{𝑠,𝑢̂⋆𝑡 }

(𝑠̃) − 𝑉 ⋆
ℎ,{𝑠,𝑢⋆𝑡 }

(𝑠̃)| ≤ max𝑎 |𝑄̂⋆
ℎ,{𝑠,𝑢̂⋆𝑡 }

(𝑠̃, 𝑎) − 𝑄̂⋆
ℎ,{𝑠,𝑢⋆𝑡 }

(𝑠̃, 𝑎)|, taking
max𝑠̃ on both sides, we obtain exactly

‖

‖

‖

𝑉 ⋆
ℎ,{𝑠,𝑢̂⋆𝑡 }

− 𝑉 ⋆
ℎ,{𝑠,𝑢⋆𝑡 }

‖

‖

‖∞
≤ ‖

‖

‖

𝑄̂⋆
ℎ,{𝑠,𝑢̂⋆𝑡 }

− 𝑄̂⋆
ℎ,{𝑠,𝑢⋆𝑡 }

‖

‖

‖∞

then by Lemma C.1.2,
‖

‖

‖

𝑉 ⋆
ℎ − 𝑉 ⋆

ℎ,{𝑠,𝑢⋆𝑡 }
‖

‖

‖∞
≤ ‖

‖

‖

𝑄̂⋆
ℎ,{𝑠,𝑢̂⋆𝑡 }

− 𝑄̂⋆
ℎ,{𝑠,𝑢⋆𝑡 }

‖

‖

‖∞
≤ 𝐻 max

𝑡
|

|

𝑢̂⋆𝑡 − 𝑢
⋆
𝑡
|

|

, (C.4)
Recall

𝑢̂⋆𝑡 − 𝑢
⋆
𝑡 = 𝑉 ⋆

𝑡 (𝑠) − 𝑉
⋆
𝑡+1(𝑠) −

(

𝑉 ⋆
𝑡 (𝑠) − 𝑉

⋆
𝑡+1(𝑠)

)

.

Now we denote
Δ𝑠 ∶= max

𝑡
|𝑢̂⋆𝑡 − 𝑢

⋆
𝑡 | = max

𝑡

|

|

|

𝑉 ⋆
𝑡 (𝑠) − 𝑉

⋆
𝑡+1(𝑠) −

(

𝑉 ⋆
𝑡 (𝑠) − 𝑉

⋆
𝑡+1(𝑠)

)

|

|

|

,

then Δ𝑠 itself is a scalar and a random variable.
To sum up, by (C.2), (C.3) and (C.4) and a union bound we have

Lemma C.1.6. Fix 𝑁 > 0. With probability 1 − 𝛿, element-wisely, for all ℎ ∈ [𝐻],

|

|

|

|

(

𝑃 − 𝑃
)

𝑉 ⋆
ℎ
|

|

|

|

≤ 𝐶

√

𝑆 log(𝐻𝑆𝐴∕𝛿)
𝑁

⋅𝐻 max
𝑠

Δ𝑠 ⋅ 𝟏 +
√

2 log(4𝐻𝑆𝐴∕𝛿)
𝑁

√

Var𝑃 (𝑉 ⋆
ℎ ) +

2𝐻 log(𝐻𝑆𝐴∕𝛿)
3𝑁

⋅ 𝟏

Now plug Lemma C.1.6 back into (⋆) and combine Lemma C.1.5, we receive:

|

|

|

𝑄̂𝜋
ℎ −𝑄

𝜋
ℎ
|

|

|

≤
𝐻
∑

𝑡=ℎ
Γ𝜋ℎ+1∶𝑡

(

𝐶

√

𝑆 log(𝐻𝑆𝐴∕𝛿)
𝑁

⋅𝐻 max
𝑠

Δ𝑠 ⋅ 𝟏 +
√

2 log(4𝐻𝑆𝐴∕𝛿)
𝑁

√

Var𝑃 (𝑉 ⋆
𝑡+1) +

2𝐻 log(𝐻𝑆𝐴∕𝛿)
3𝑁

⋅ 𝟏
)

+𝐶𝜖opt ⋅

√

𝐻2𝑆 log(𝑆𝐴∕𝛿)
𝑁

⋅ 𝟏

≤
𝐻
∑

𝑡=ℎ
Γ𝜋ℎ+1∶𝑡

√

2 log(4𝐻𝑆𝐴∕𝛿)
𝑁

√

Var𝑃 (𝑉 ⋆
𝑡+1) + 𝐶𝐻

2

√

𝑆 log(𝐻𝑆𝐴∕𝛿)
𝑁

⋅max
𝑠

Δ𝑠 ⋅ 𝟏 +
2𝐻2 log(𝐻𝑆𝐴∕𝛿)

3𝑁
⋅ 𝟏

+𝐶𝜖opt ⋅

√

𝐻2𝑆 log(𝑆𝐴∕𝛿)
𝑁

⋅ 𝟏
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Next note
√

Var𝑃 (𝑉 ⋆
ℎ ) ∶=

√

Var𝑃
(

𝑉 𝜋⋆
ℎ

)

=
√

Var𝑃
(

𝑉 𝜋⋆
ℎ − 𝑉 𝜋

ℎ + 𝑉 𝜋
ℎ

)

≤
√

Var𝑃
(

𝑉 𝜋
ℎ

)

+
√

Var𝑃
(

𝑉 𝜋⋆
ℎ − 𝑉 𝜋

ℎ

)

≤
√

Var𝑃
(

𝑉 𝜋
ℎ

)

+ ‖

‖

‖

𝑉 𝜋⋆
ℎ − 𝑉 𝜋

ℎ
‖

‖

‖∞

≤
√

Var𝑃
(

𝑉 𝜋
ℎ

)

+ 𝜖opt ⋅ 𝟏 ≤
√

Var𝑃
(

𝑉 𝜋
ℎ

)

+
√

Var𝑃
(

𝑉 𝜋
ℎ − 𝑉 𝜋

ℎ

)

+ 𝜖opt ⋅ 𝟏

≤
√

Var𝑃
(

𝑉 𝜋
ℎ

)

+ ‖

‖

‖

𝑉 𝜋
ℎ − 𝑉 𝜋

ℎ
‖

‖

‖∞
+ 𝜖opt ⋅ 𝟏 ≤

√

Var𝑃
(

𝑉 𝜋
ℎ

)

+ ‖

‖

‖

𝑄̂𝜋
ℎ −𝑄

𝜋
ℎ
‖

‖

‖∞
+ 𝜖opt ⋅ 𝟏

(C.5)

Plug (C.5) back to above we obtain ∀ℎ ∈ [𝐻],

|

|

|

𝑄̂𝜋
ℎ −𝑄

𝜋
ℎ
|

|

|

≤
√

2 log(4𝐻𝑆𝐴∕𝛿)
𝑁

𝐻
∑

𝑡=ℎ
Γ𝜋ℎ+1∶𝑡

(

√

Var𝑃
(

𝑉 𝜋
𝑡+1

)

+ ‖

‖

‖

𝑄̂𝜋
𝑡+1 −𝑄

𝜋
𝑡+1

‖

‖

‖∞
+ 𝜖opt ⋅ 𝟏

)

+ 𝐶𝐻2

√

𝑆 log(𝐻𝑆𝐴∕𝛿)
𝑁

⋅max
𝑠

Δ𝑠 ⋅ 𝟏 +
2𝐻2 log(𝐻𝑆𝐴∕𝛿)

3𝑁
⋅ 𝟏 + 𝐶𝜖opt ⋅

√

𝐻2𝑆 log(𝑆𝐴∕𝛿)
𝑁

⋅ 𝟏

≤
√

2 log(4𝐻𝑆𝐴∕𝛿)
𝑁

𝐻
∑

𝑡=ℎ
Γ𝜋ℎ+1∶𝑡

√

Var𝑃
(

𝑉 𝜋
𝑡+1

)

+
√

2 log(4𝐻𝑆𝐴∕𝛿)
𝑁

𝐻
∑

𝑡=ℎ

‖

‖

‖

𝑄̂𝜋
𝑡+1 −𝑄

𝜋
𝑡+1

‖

‖

‖∞

+ 𝐶𝐻2

√

𝑆 log(𝐻𝑆𝐴∕𝛿)
𝑁

⋅max
𝑠

Δ𝑠 ⋅ 𝟏 +
2𝐻2 log(𝐻𝑆𝐴∕𝛿)

3𝑁
⋅ 𝟏 + 𝐶1𝜖opt ⋅

√

𝐻2𝑆 log(𝑆𝐴∕𝛿)
𝑁

⋅ 𝟏
(C.6)

Applying Lemma D.0.8 and the coarse uniform bound (Lemma D.0.11), we obtain the following
result:
Lemma C.1.7. Given 𝑁 > 0 and 𝜖opt ≤

√

𝐻∕𝑆. With probability 1 − 𝛿, for all ℎ ∈ [𝐻],

‖

‖

‖

𝑄̂𝜋
ℎ −𝑄

𝜋
ℎ
‖

‖

‖∞
≤

√

𝐶0𝐻3 log(4𝐻𝑆𝐴∕𝛿)
𝑁

+
√

2 log(4𝐻𝑆𝐴∕𝛿)
𝑁

𝐻
∑

𝑡=ℎ

‖

‖

‖

𝑄̂𝜋
𝑡+1 −𝑄

𝜋
𝑡+1

‖

‖

‖∞
+ 𝐶 ′𝐻4𝑆 log(𝐻𝑆𝐴∕𝛿)

𝑁

Proof: Since
Δ𝑠 ∶= max

𝑡
|𝑢̂⋆𝑡 − 𝑢

⋆
𝑡 | = max

𝑡

|

|

|

𝑉 ⋆
𝑡 (𝑠) − 𝑉

⋆
𝑡+1(𝑠) −

(

𝑉 ⋆
𝑡 (𝑠) − 𝑉

⋆
𝑡+1(𝑠)

)

|

|

|

≤ 2 ⋅max
𝑡

|

|

|

𝑉 ⋆
𝑡 (𝑠) − 𝑉

⋆
𝑡 (𝑠)

|

|

|

= 2 ⋅max
𝑡

|

|

|

|

max
𝜋
𝑉 𝜋
𝑡 (𝑠) − max

𝜋
𝑉 𝜋
𝑡 (𝑠)

|

|

|

|

≤ 2 ⋅ max
𝜋∈Π𝑔 ,𝑡∈[𝐻]

‖

‖

‖

𝑉 𝜋
𝑡 − 𝑉 𝜋

𝑡
‖

‖

‖∞
≤ 𝐶 ⋅𝐻2

√

𝑆 log(𝐻𝑆𝐴∕𝛿)
𝑁

(C.7)

where the last inequality uses Lemma D.0.11. Then apply union bound w.p. 1−𝛿∕2, we obtain
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max𝑠Δ𝑠 ≤ 𝐶 ⋅ 𝐻2
√

𝑆 log(𝐻𝑆𝐴∕𝛿)
𝑁

. Note (C.6) holds with probability 1 − 𝛿∕2, therefore plug
above into (C.6) we obtain w.p. 1 − 𝛿,
|

|

|

𝑄̂𝜋
ℎ −𝑄

𝜋
ℎ
|

|

|

≤
√

2 log(4𝐻𝑆𝐴∕𝛿)
𝑁

𝐻
∑

𝑡=ℎ
Γ𝜋ℎ+1∶𝑡

√

Var𝑃
(

𝑉 𝜋
𝑡+1

)

+
√

2 log(4𝐻𝑆𝐴∕𝛿)
𝑁

𝐻
∑

𝑡=ℎ

‖

‖

‖

𝑄̂𝜋
𝑡+1 −𝑄

𝜋
𝑡+1

‖

‖

‖∞

+ 𝐶 ′𝐻4𝑆 log(𝐻𝑆𝐴∕𝛿)
𝑁

⋅ 𝟏 + 𝐶1𝜖opt ⋅

√

𝐻2𝑆 log(𝑆𝐴∕𝛿)
𝑁

⋅ 𝟏

≤
⎡

⎢

⎢

⎣

√

𝐶0𝐻3 log(4𝐻𝑆𝐴∕𝛿)
𝑁

+
√

2 log(4𝐻𝑆𝐴∕𝛿)
𝑁

𝐻
∑

𝑡=ℎ

‖

‖

‖

𝑄̂𝜋
𝑡+1 −𝑄

𝜋
𝑡+1

‖

‖

‖∞
+ 𝐶 ′𝐻4𝑆 log(𝐻𝑆𝐴∕𝛿)

𝑁

⎤

⎥

⎥

⎦

⋅ 𝟏,

where the last inequality uses Lemma D.0.8 and 𝜖opt ≤
√

𝐻∕𝑆 and renames 𝐶 ′ = 𝐶 ′ + 𝐶1.Take ‖⋅‖∞ then obtain the result.
Lemma C.1.8. Given 𝑁 > 0. Define 𝐶 ′′ ∶= 2 ⋅ max(

√

𝐶0, 𝐶 ′) where 𝐶 ′ is the universal
constant in Lemma C.1.7. When 𝑁 ≥ 8𝐻2 log(4𝐻𝑆𝐴∕𝛿), then with probability 1 − 𝛿, ∀ℎ ∈
[𝐻],

‖

‖

‖

𝑄̂𝜋
ℎ −𝑄

𝜋
ℎ
‖

‖

‖∞
≤ 𝐶 ′′

√

𝐻3 log(4𝐻𝑆𝐴∕𝛿)
𝑁

+ 𝐶 ′′𝐻
4𝑆 log(𝐻𝑆𝐴∕𝛿)

𝑁
.

‖

‖

‖

𝑄̂𝜋⋆
ℎ −𝑄𝜋⋆

ℎ
‖

‖

‖∞
≤ 𝐶 ′′

√

𝐻3 log(4𝐻𝑆𝐴∕𝛿)
𝑁

+ 𝐶 ′′𝐻
4𝑆 log(𝐻𝑆𝐴∕𝛿)

𝑁
.

(C.8)

Proof: We prove by backward induction. For ℎ = 𝐻 , by Lemma C.1.7

‖

‖

‖

𝑄̂𝜋
𝐻 −𝑄𝜋

𝐻
‖

‖

‖∞
≤

√

𝐶0𝐻3 log(4𝐻𝑆𝐴∕𝛿)
𝑁

+
√

2 log(4𝐻𝑆𝐴∕𝛿)
𝑁

‖

‖

‖

𝑄̂𝜋
𝐻+1 −𝑄

𝜋
𝐻+1

‖

‖

‖∞
+ 𝐶 ′𝐻4𝑆 log(𝐻𝑆𝐴∕𝛿)

𝑁

=

√

𝐶0𝐻3 log(4𝐻𝑆𝐴∕𝛿)
𝑁

+ 0 + 𝐶 ′𝐻4𝑆 log(𝐻𝑆𝐴∕𝛿)
𝑁

≤ 𝐶 ′′

√

𝐻3 log(4𝐻𝑆𝐴∕𝛿)
𝑁

+ 𝐶 ′′𝐻4𝑆 log(𝐻𝑆𝐴∕𝛿)
𝑁

,

129



Supplementary Material to Chapter 4 Chapter C

for general ℎ, by condition we have 𝐻
√

2 log(4𝐻𝑆𝐴∕𝛿)
𝑁

≤ 1∕2, therefore by Lemma C.1.7

‖

‖

‖

𝑄̂𝜋
ℎ −𝑄

𝜋
ℎ
‖

‖

‖∞
≤

√

𝐶0𝐻3 log(4𝐻𝑆𝐴∕𝛿)
𝑁

+
√

2 log(4𝐻𝑆𝐴∕𝛿)
𝑁

𝐻
∑

𝑡=ℎ

‖

‖

‖

𝑄̂𝜋
𝑡+1 −𝑄

𝜋
𝑡+1

‖

‖

‖∞
+ 𝐶 ′𝐻4𝑆 log(𝐻𝑆𝐴∕𝛿)

𝑁

≤

√

𝐶0𝐻3 log(4𝐻𝑆𝐴∕𝛿)
𝑁

+𝐻
√

2 log(4𝐻𝑆𝐴∕𝛿)
𝑁

max
𝑡+1

‖

‖

‖

𝑄̂𝜋
𝑡+1 −𝑄

𝜋
𝑡+1

‖

‖

‖∞
+ 𝐶 ′𝐻4𝑆 log(𝐻𝑆𝐴∕𝛿)

𝑁

≤

√

𝐶0𝐻3 log(4𝐻𝑆𝐴∕𝛿)
𝑁

+ 𝐶 ′𝐻4𝑆 log(𝐻𝑆𝐴∕𝛿)
𝑁

+ 1
2

(

𝐶 ′′

√

𝐻3 log(4𝐻𝑆𝐴∕𝛿)
𝑁

+ 𝐶 ′′𝐻
4𝑆 log(𝐻𝑆𝐴∕𝛿)

𝑁

)

≤ 𝐶 ′′

√

𝐻3 log(4𝐻𝑆𝐴∕𝛿)
𝑁

+ 𝐶 ′′𝐻
4𝑆 log(𝐻𝑆𝐴∕𝛿)

𝑁

The proof of the second claim is even easier since 𝜋⋆ is no longer a random policy and it is
really just a non-uniform point-wise OPE. There are multiple ways to prove it and we leave it
as an exercise to avoid redundancy: 1. Follow the same proving pipeline as ‖‖

‖

𝑄̂𝜋
ℎ −𝑄

𝜋
ℎ
‖

‖

‖∞
used;

2. Mimic the procedure of point-wise OPE result in Lemma 3.4. in [7].
Remark 17. Note the higher order term has dependence 𝐻4𝑆, which is somewhat unsatisfac-
tory. We use the recursion-back trick to further reduce it to 𝐻3.5𝑆0.5.

Lemma C.1.9. Given 𝑁 > 0. There exists universal constants 𝐶1, 𝐶2 such that when 𝑁 ≥
𝐶1𝐻2 log(𝐻𝑆𝐴∕𝛿), then with probability 1 − 𝛿, ∀ℎ ∈ [𝐻],

‖

‖

‖

𝑄̂𝜋
ℎ −𝑄

𝜋
ℎ
‖

‖

‖∞
≤ 𝐶2

√

𝐻3 log(𝐻𝑆𝐴∕𝛿)
𝑁

+ 𝐶2
𝐻3

√

𝐻𝑆 log(𝐻𝑆𝐴∕𝛿)
𝑁

. (C.9)

and

‖

‖

‖

𝑄̂𝜋⋆
ℎ −𝑄𝜋⋆

ℎ
‖

‖

‖∞
≤ 𝐶2

√

𝐻3 log(𝐻𝑆𝐴∕𝛿)
𝑁

+ 𝐶2
𝐻3

√

𝐻𝑆 log(𝐻𝑆𝐴∕𝛿)
𝑁

.

Proof:
Note

𝑉 ⋆
𝑡 (𝑠) − 𝑉

⋆
𝑡 (𝑠) ∶= 𝑉 𝜋⋆

𝑡 (𝑠) − 𝑉 𝜋⋆
𝑡 (𝑠)

= 𝑉 𝜋⋆
𝑡 (𝑠) − 𝑉 𝜋⋆

𝑡 (𝑠) + 𝑉 𝜋⋆
𝑡 (𝑠) − 𝑉 𝜋⋆

𝑡 (𝑠)

≤ 𝑉 𝜋⋆
𝑡 (𝑠) − 𝑉 𝜋⋆

𝑡 (𝑠) ≤ |

|

|

𝑉 𝜋⋆
𝑡 (𝑠) − 𝑉 𝜋⋆

𝑡 (𝑠)||
|

(C.10)

and similarly 𝑉 ⋆
𝑡 (𝑠) − 𝑉

⋆
𝑡 (𝑠) ≤

|

|

|

𝑉 𝜋⋆
𝑡 (𝑠) − 𝑉 𝜋⋆

𝑡 (𝑠)||
|

, therefore by Lemma C.1.8 (and use ||𝑉 𝜋
𝑡 −
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𝑉 𝜋
𝑡 ||∞ ≤ ||𝑄̂𝜋

𝑡 −𝑄
𝜋
𝑡 ||∞), with probability 1 − 𝛿,

Δ𝑠 ≤ 2 ⋅ sup
𝑡

‖

‖

‖

𝑉 ⋆
𝑡 − 𝑉 ⋆

𝑡
‖

‖

‖

≤ 2 max
𝜋⋆,𝜋⋆

sup
𝑡

‖

‖

‖

𝑉 𝜋
𝑡 − 𝑉 𝜋

𝑡
‖

‖

‖∞
≤ 𝐶2

√

𝐻3 log(𝐻𝑆𝐴∕𝛿)
𝑁

+ 𝐶2
𝐻4𝑆 log(𝐻𝑆𝐴∕𝛿)

𝑁
,

where the second inequality uses (C.10). This replaces the crude bound of𝑂(√𝐻4𝑆 log(𝐻𝑆𝐴∕𝛿)∕𝑁)
for max𝑠Δ𝑠 (recall (C.7)) by 𝑂(√𝐻3 log(𝐻𝑆𝐴∕𝛿)∕𝑁).

Plug this back to (C.6) and repeat the similar analysis we end up with (C.9). The second
result is similarly proved.

C.1.7 Proof of Theorem 4.6.1
Proof: [Proof of Theorem 4.6.1] Note 𝑛𝑠,𝑎 = ∑𝑛

𝑖=1
∑𝐻

𝑡=1 𝟏[𝑠
(𝑖)
𝑡 = 𝑠, 𝑎(𝑖)𝑡 = 𝑎], which implies

𝔼[𝑛𝑠,𝑎] = 𝔼

[

𝑛
∑

𝑖=1

𝐻
∑

𝑡=1
𝟏[𝑠(𝑖)𝑡 = 𝑠, 𝑎(𝑖)𝑡 = 𝑎]

]

= 𝑛 ⋅
𝐻
∑

𝑡=1
𝑑𝜇𝑡 (𝑠, 𝑎).

Or equivalently, 𝑛𝑠,𝑎 follows Binomial(𝑛,∑𝐻
𝑡=1 𝑑

𝜇
𝑡 (𝑠, 𝑎)). Then apply the first result of Lemma D.0.1

by taking 𝜃 = 1∕2, we have when 𝑛 > 1∕𝑑𝑚 ⋅ log(𝐻𝑆𝐴∕𝛿)3, then with probability 1 − 𝛿,

𝑛𝑠,𝑎 ≥
1
2
𝑛 ⋅

𝐻
∑

𝑡=1
𝑑𝜇𝑡 (𝑠, 𝑎), ∀𝑠 ∈  , 𝑎 ∈ .

This further implies w.p. 1 − 𝛿, 𝑛𝑠,𝑎 ≥ 1
2
𝑛 ⋅

∑𝐻
𝑡=1 𝑑

𝜇
𝑡 (𝑠, 𝑎) =

1
2
𝑛 ⋅𝐻 ⋅ 𝑑𝜇(𝑠, 𝑎) ≥ 1

2
𝑛𝐻 ⋅ 𝑑𝑚 and

further ensures
𝑁 ∶= min

𝑠,𝑎
𝑛𝑠,𝑎 ≥

1
2
𝑛𝐻 ⋅ 𝑑𝑚.

Finally, by applying the above to Lemma C.1.9, we can overcome the condition on𝑁 and obtain
the stated result.

C.2 Proof of minimax lower bound for model-based global
uniform OPE

Proof: [Proof of Theorem 4.5.1] In particular, we first focus on the case where𝐻 = 2 and
extend the result of 𝐻 = 2 to the general 𝐻 ≥ 3 at the end.

First of all, by Definition 4.3.1 let 𝑃 be the learned transition by certain model-based
method. Since we assume 𝑟ℎ is known and by convention𝑄𝜋

𝐻+1 = 0 for any 𝜋, then by Bellman
3The exact sufficient condition for applying Lemma D.0.1 is 𝑛 > 1∕

∑𝐻
𝑡=1 𝑑𝑡(𝑠, 𝑎) ⋅ log(𝐻𝑆𝐴∕𝛿) for all 𝑠, 𝑎.

However, since ∑𝐻
𝑡=1 𝑑𝑡(𝑠, 𝑎) ≥ 𝐻𝑑𝑚 ≥ 𝑑𝑚, our condition 𝑛 > 1∕𝑑𝑚 ⋅ log(𝐻𝑆𝐴∕𝛿) used here is a much stronger

version thus Lemma D.0.1 apply.
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equation
𝑄̂𝜋
ℎ = 𝑟ℎ + 𝑃 𝜋ℎ+1𝑄̂𝜋

ℎ+1, ∀ℎ ∈ [𝐻].

In particular, 𝑄̂𝜋
𝐻+1 = 𝑄𝜋

𝐻+1 = 0, and this implies
𝑄̂𝜋
𝐻 = 𝑟𝐻 + 𝑃 𝜋𝐻+1𝑄̂𝜋

𝐻+1 = 𝑟𝐻 ; 𝑄𝜋
𝐻 = 𝑟𝐻 + 𝑃 𝜋𝐻+1𝑄𝜋

𝐻+1 = 𝑟𝐻 + 0 = 𝑟𝐻

Now, again by definition of Bellman equation
𝑄̂𝜋
𝐻−1 = 𝑟𝐻−1 + 𝑃 𝜋𝐻 𝑄̂𝜋

𝐻 = 𝑟𝐻−1 + 𝑃 𝜋𝐻 𝑟𝐻
𝑄𝜋
𝐻−1 = 𝑟𝐻−1 + 𝑃 𝜋𝐻𝑄𝜋

𝐻 = 𝑟𝐻−1 + 𝑃 𝜋𝐻 𝑟𝐻

Therefore
sup
𝜋∈Π𝑔

‖

‖

‖

𝑄̂𝜋
𝐻−1 −𝑄

𝜋
𝐻−1

‖

‖

‖∞
= sup

𝜋∈Π𝑔

‖

‖

‖

‖

(

𝑃 𝜋𝐻 − 𝑃 𝜋𝐻
)

𝑟𝐻
‖

‖

‖

‖∞

= sup
𝜋∈Π𝑔

‖

‖

‖

‖

(

𝑃 − 𝑃
)

𝑟𝜋𝐻𝐻
‖

‖

‖

‖∞
= sup

𝜋∈Π𝑔
sup
𝑠,𝑎

|

|

|

|

(

𝑃 (⋅|𝑠, 𝑎) − 𝑃 (⋅|𝑠, 𝑎)
)

𝑟𝜋𝐻𝐻
|

|

|

|

= sup
𝑠,𝑎

sup
𝜋∈Π𝑔

|

|

|

|

(

𝑃 (⋅|𝑠, 𝑎) − 𝑃 (⋅|𝑠, 𝑎)
)

𝑟𝜋𝐻𝐻
|

|

|

|

,

where 𝑃 𝜋𝐻 ∈ ℝ𝑆⋅𝐴×𝑆⋅𝐴, 𝑟𝐻 ∈ ℝ𝑆⋅𝐴, 𝑃 ∈ ℝ𝑆⋅𝐴×𝑆 and 𝑟𝜋𝐻𝐻 ∈ ℝ𝑆 . Note 𝐴 ≥ 2, so we can choose
an instance of 𝑟𝐻 as (there are at least two actions since 𝐴 ≥ 2)

(𝑟𝐻 (𝑠, 𝑎1), 𝑟𝐻 (𝑠, 𝑎2), ...) ∶= (1, 0, ...) ∀𝑠 ∈  .

Above implies: if 𝜋𝐻 (𝑠) = 𝑎1, then 𝑟𝜋𝐻𝐻 (𝑠) = 1; if 𝜋𝐻 (𝑠) = 𝑎2, then 𝑟𝜋𝐻𝐻 (𝑠) = 0; ...
Hence, ifΠ𝑔 is the global deterministic policy class, then 𝑟𝜋𝐻𝐻 can traverse all the𝑆-dimensional

vectors with either 0 or 1 in each coordinate, which is exactly
{

𝑟𝜋𝐻𝐻 ∈ ℝ𝑆 ∶ 𝜋𝐻 ∈ Π𝑔
}

⊃ {0, 1}𝑆 .

Now let us first consider fixed 𝑠, 𝑎. Then with this choice of 𝑟, above implies

sup
𝜋∈Π𝑔

|

|

|

|

(

𝑃 (⋅|𝑠, 𝑎) − 𝑃 (⋅|𝑠, 𝑎)
)

𝑟𝜋𝐻𝐻
|

|

|

|

≥ sup
𝑟∈{0,1}𝑆

|

|

|

|

(

𝑃 (⋅|𝑠, 𝑎) − 𝑃 (⋅|𝑠, 𝑎)
)

⋅ 𝑟
|

|

|

|

= sup
𝑟∈{0,1}𝑆

|

|

|

|

|

|

∑

𝑖∶𝑟𝑖=1

(

𝑃 (𝑠𝑖|𝑠, 𝑎) − 𝑃 (𝑠𝑖|𝑠, 𝑎)
)

|

|

|

|

|

|

Let 𝐼+ ∶= {𝑖 ∈ [𝑆] ∶ 𝑠.𝑡. 𝑃 (𝑠𝑖|𝑠, 𝑎) − 𝑃 (𝑠𝑖|𝑠, 𝑎) > 0} be the set of indices where 𝑃 (𝑠𝑖|𝑠, 𝑎) −
𝑃 (𝑠𝑖|𝑠, 𝑎) are positive and 𝐼− ∶= {𝑖 ∈ [𝑆] ∶ 𝑠.𝑡. 𝑃 (𝑠𝑖|𝑠, 𝑎) − 𝑃 (𝑠𝑖|𝑠, 𝑎) < 0} be the set of
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indices where 𝑃 (𝑠𝑖|𝑠, 𝑎) − 𝑃 (𝑠𝑖|𝑠, 𝑎) are negative, then we further have

sup
𝑟∈{0,1}𝑆

|

|

|

|

|

|

∑

𝑖∶𝑟𝑖=1

(

𝑃 (𝑠𝑖|𝑠, 𝑎) − 𝑃 (𝑠𝑖|𝑠, 𝑎)
)

|

|

|

|

|

|

≥max
{

|

|

|

|

|

∑

𝑖∈𝐼+
[𝑃 (𝑠𝑖|𝑠, 𝑎) − 𝑃 (𝑠𝑖|𝑠, 𝑎)]

|

|

|

|

|

,
|

|

|

|

|

∑

𝑖∈𝐼−
[𝑃 (𝑠𝑖|𝑠, 𝑎) − 𝑃 (𝑠𝑖|𝑠, 𝑎)]

|

|

|

|

|

}

=max
{

∑

𝑖∈𝐼+

|

|

|

𝑃 (𝑠𝑖|𝑠, 𝑎) − 𝑃 (𝑠𝑖|𝑠, 𝑎)
|

|

|

,
∑

𝑖∈𝐼−

|

|

|

𝑃 (𝑠𝑖|𝑠, 𝑎) − 𝑃 (𝑠𝑖|𝑠, 𝑎)
|

|

|

}

On the other hand, we have
∑

𝑖∈𝐼+

|

|

|

𝑃 (𝑠𝑖|𝑠, 𝑎) − 𝑃 (𝑠𝑖|𝑠, 𝑎)
|

|

|

+
∑

𝑖∈𝐼−

|

|

|

𝑃 (𝑠𝑖|𝑠, 𝑎) − 𝑃 (𝑠𝑖|𝑠, 𝑎)
|

|

|

= ‖

‖

‖

𝑃 (⋅|𝑠, 𝑎) − 𝑃 (⋅|𝑠, 𝑎)‖‖
‖1

since 𝑃 (𝑠𝑖|𝑠, 𝑎) − 𝑃 (𝑠𝑖|𝑠, 𝑎) = 0 contributes nothing to the 𝑙1 norm. Combine all the steps
together, we obtain

sup
𝜋∈Π𝑔

‖

‖

‖

𝑄̂𝜋
𝐻−1 −𝑄

𝜋
𝐻−1

‖

‖

‖∞
≥ sup

𝑠,𝑎

1
2
‖

‖

‖

𝑃 (⋅|𝑠, 𝑎) − 𝑃 (⋅|𝑠, 𝑎)‖‖
‖1

≥1𝑐 ⋅ sup
𝑠,𝑎

√

𝑆
𝑛𝑠,𝑎

≥2𝑐′
√

𝑆
𝑛𝑑𝑚

(C.11)

holds with constant probability 𝑝. Here 𝑛𝑠,𝑎 = ∑𝐻
ℎ=1

∑𝑛
𝑖=1 𝟏[𝑠

(𝑖)
ℎ = 𝑠, 𝑎(𝑖)ℎ = 𝑎] is the number of

data pieces visited (𝑠, 𝑎) in 𝑛 episodes. Now we explain how to obtain 1 and 2. In particular,
we first explain 2.

Explain 2. Recall we consider the case 𝐻 = 2. Then

𝔼
[

𝑛𝑠,𝑎
]

= 𝔼

[

𝐻
∑

ℎ=1

𝑛
∑

𝑖=1
𝟏[𝑠(𝑖)ℎ = 𝑠, 𝑎(𝑖)ℎ = 𝑎]

]

= 𝑛
2
∑

𝑖=1
𝔼
[

𝟏[𝑠(1)ℎ = 𝑠, 𝑎(1)ℎ = 𝑎]
]

= 𝑛
2
∑

ℎ=1
𝑑𝜇ℎ (𝑠, 𝑎)

i.e. 𝑛𝑠,𝑎 is a Binomial random variable with parameter 𝑛 and∑2
ℎ=1 𝑑

𝜇
ℎ (𝑠, 𝑎). Then by Lemma D.0.1,

choose 𝜃 = 1
2
, apply the second result, we obtain when 𝑛 > (1∕2𝑑𝑚) ⋅ log(𝑆𝐴∕𝛿)4, with proba-

bility 1 − 𝛿

𝑛𝑠,𝑎 ≤
3
2
𝑛 ⋅

2
∑

ℎ=1
𝑑𝜇ℎ (𝑠, 𝑎), ∀𝑠, 𝑎

Next, similar to the lower bound proof (Theorem G.2.) of [7], we can choose 𝜇 and 𝑀 (near
uniform but not exact uniform) such that 𝑑𝜇ℎ (𝑠, 𝑎) ≤ 𝐶 ⋅ 𝑑𝑚, which further implies 𝑛𝑠,𝑎 ≤
𝐶 ⋅ 𝑛 ⋅ 𝑑𝑚, ∀𝑠, 𝑎. Summarize above we end up with the following Lemma:

4By Lemma D.0.1,the inequality holds as long as 𝑛 ≥ 1∕
∑2
ℎ=1 𝑑

𝜇
ℎ (𝑠, 𝑎) log(𝑆𝐴∕𝛿), here 𝑛 > (1∕2𝑑𝑚) ⋅

log(𝑆𝐴∕𝛿) is a stronger sufficient condition.
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Lemma C.2.1. Suppose 𝑛 ≥ (1∕2𝑑𝑚) ⋅ log(𝑆𝐴∕𝛿), then

sup
𝜇,𝑀

ℙ

[√

1
𝑛𝑠,𝑎

≥ 𝐶 ⋅

√

1
𝑛 ⋅ 𝑑𝑚

, ∀𝑠, 𝑎

]

≥ 1 − 𝛿

Explain 1. To make the explanation rigorous, we first fix a pair (𝑠, 𝑎) and conditional on
𝑛𝑠,𝑎. Then by a direct translation of Lemma D.0.9, we have

inf
𝑃

sup
𝑃 (⋅|𝑠,𝑎)∈𝑆

ℙ

[

‖𝑃 (⋅|𝑠, 𝑎) − 𝑃 (⋅|𝑠, 𝑎)‖1 ≥
1
8

√

𝑒𝑆
2𝑛𝑠,𝑎

− 𝑜 (⋅)
|

|

|

|

|

|

𝑛𝑠,𝑎 ≥
𝑒
32
𝑆

]

≥ 𝑝,

where 𝑜(⋅) is some exponentially small term in 𝑆, 𝑛. Now we consider everything under the
condition 𝑛 ≥ 𝑒

32
⋅ 𝑆∕𝑑𝑚 log(𝑆𝐴∕𝛿). Next again take 𝜃 = 1∕2, then by the first result of

Lemma D.0.1, with probability 1 − 𝛿,

𝑛𝑠,𝑎 ≥
1
2
𝑛 ⋅

2
∑

ℎ=1
𝑑𝜇ℎ (𝑠, 𝑎) ≥ 𝑛 ⋅ 𝑑𝑚 ≥ 𝑒

32
𝑆 log(𝑆𝐴∕𝛿).

where the last inequality uses the condition 𝑛 ≥ 𝑒
32
⋅ 𝑆∕𝑑𝑚 log(𝑆𝐴∕𝛿). Therefore this implies

inf
𝑃

sup
𝑃 (⋅|𝑠,𝑎)∈𝑆

ℙ

[

‖𝑃 (⋅|𝑠, 𝑎) − 𝑃 (⋅|𝑠, 𝑎)‖1 ≥
1
8

√

𝑒𝑆
2𝑛𝑠,𝑎

− 𝑜 (⋅)

]

= inf
𝑃

sup
𝑃 (⋅|𝑠,𝑎)∈𝑆

(

ℙ

[

‖𝑃 (⋅|𝑠, 𝑎) − 𝑃 (⋅|𝑠, 𝑎)‖1 ≥
1
8

√

𝑒𝑆
2𝑛𝑠,𝑎

− 𝑜 (⋅)
|

|

|

|

|

|

𝑛𝑠,𝑎 ≥
𝑒
32
𝑆

]

⋅ ℙ
[

𝑛𝑠,𝑎 ≥
𝑒
32
𝑆
]

+ℙ

[

‖𝑃 (⋅|𝑠, 𝑎) − 𝑃 (⋅|𝑠, 𝑎)‖1 ≥
1
8

√

𝑒𝑆
2𝑛𝑠,𝑎

− 𝑜 (⋅)
|

|

|

|

|

|

𝑛𝑠,𝑎 ≤
𝑒
32
𝑆

]

⋅ ℙ
[

𝑛𝑠,𝑎 ≤
𝑒
32
𝑆
]

)

≥ inf
𝑃

sup
𝑃 (⋅|𝑠,𝑎)∈𝑆

ℙ

[

‖𝑃 (⋅|𝑠, 𝑎) − 𝑃 (⋅|𝑠, 𝑎)‖1 ≥
1
8

√

𝑒𝑆
2𝑛𝑠,𝑎

− 𝑜 (⋅)
|

|

|

|

|

|

𝑛𝑠,𝑎 ≥
𝑒
32
𝑆

]

⋅ ℙ
[

𝑛𝑠,𝑎 ≥
𝑒
32
𝑆
]

≥𝑝 ⋅ (1 − 𝛿),

To sum up, we have the following lemma:
Lemma C.2.2. Let 𝑛 ≥ 𝑒

32
𝑆∕𝑑𝑚 ⋅ log(𝑆𝐴∕𝛿), then there exists a 0 < 𝑝 < 1,

inf
𝑃

sup
𝑃 (⋅|𝑠,𝑎)∈𝑆

ℙ

[

‖𝑃 (⋅|𝑠, 𝑎) − 𝑃 (⋅|𝑠, 𝑎)‖1 ≥
1
8

√

𝑒𝑆
2𝑛𝑠,𝑎

− 𝑜 (⋅)

]

≥ 𝑝 ⋅ (1 − 𝛿).
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Now we finish the proof for the case where 𝐻 = 2. First note by (C.11),

sup
𝜋∈Π𝑔

‖

‖

‖

𝑄̂𝜋
𝐻−1 −𝑄

𝜋
𝐻−1

‖

‖

‖∞
≥ sup

𝑠,𝑎

1
2
‖

‖

‖

𝑃 (⋅|𝑠, 𝑎) − 𝑃 (⋅|𝑠, 𝑎)‖‖
‖1

with probability 1, therefore by (C.11), Lemma C.2.1, Lemma C.2.2 we have

inf
𝑃

sup
𝑃∈𝑆

ℙ

[

sup
𝜋∈Π𝑔

‖

‖

‖

𝑄̂𝜋
𝐻−1 −𝑄

𝜋
𝐻−1

‖

‖

‖∞
≥ 𝐶 ⋅

√

𝑆
𝑛𝑑𝑚

]

≥ 𝑝(1 − 𝛿) − 𝛿

when 𝑛 ≥ 𝑐 ⋅ 𝑆∕𝑑𝑚 log(𝑆𝐴∕𝛿) for some 𝑐 ≥ 𝑒
32

. Above holds for any 𝛿.
It is easy to check 3

2
𝑝

1+𝑝
≤ 1, therefore, in particular we set 𝛿 = 3

2
𝑝

1+𝑝
, direct calculation

shows
𝑝(1 − 𝛿) − 𝛿 =

𝑝
2
,

which completes the proof for 𝐻 = 2.
Extend to the general 𝐻 ≥ 3.
Step 1. Similar to the decomposition in section C.1.4, we also have:

𝑄̂𝜋
𝑡 −𝑄

𝜋
𝑡 =

𝐻
∑

ℎ=𝑡
Γ̂𝜋𝑡+1∶ℎ(𝑃 − 𝑃 )𝑉 𝜋

ℎ+1

Step 2. Now choosing rewards recursively from back (with ||𝑟𝐻 ||∞ = 𝑐 sufficiently small)
such that 1 ≥ 𝑟ℎ ≥ (||𝑟ℎ+1||∞ + … + ||𝑟𝐻 ||∞) element-wisely ∀ℎ, and max𝑠,𝑎 𝑟ℎ(𝑠, 𝑎) =
3min𝑠,𝑎 𝑟ℎ(𝑠, 𝑎). We denote 𝑟ℎ,𝑚𝑎𝑥 ∶= max𝑠,𝑎 𝑟ℎ(𝑠, 𝑎) and 𝑟ℎ,𝑚𝑖𝑛 ∶= min𝑠,𝑎 𝑟ℎ(𝑠, 𝑎). This choice
guarantees:

𝑟ℎ,𝑚𝑖𝑛 ∶= min
𝑠,𝑎

𝑟ℎ(𝑠, 𝑎) > ||𝑃 𝜋ℎ+1𝑟ℎ+1 + .. + 𝑃 𝜋ℎ+1∶𝐻 𝑟𝐻 ||∞

since 𝑃 𝜋ℎ is row-stochastic.
Step 3. Next note 𝑉 𝜋

ℎ = 𝑟ℎ+𝑃 𝜋ℎ+1𝑟ℎ+1+ ..+𝑃 𝜋ℎ+1∶𝐻 𝑟𝐻 , so set (𝑟ℎ
(

𝑠, 𝑎1
)

, 𝑟ℎ
(

𝑠, 𝑎2
)

,…
)

∶=
(max𝑠,𝑎 𝑟ℎ(𝑠, 𝑎),min𝑠,𝑎 𝑟ℎ(𝑠, 𝑎),…), then choose 𝜋ℎ similar to the𝐻 = 2 case and use Step 1 and
Step 2 we have

|(𝑃𝑠,𝑎 − 𝑃𝑠,𝑎)𝑉 𝜋
ℎ | ≥

1
2
||𝑃𝑠,𝑎 − 𝑃𝑠,𝑎||1 ⋅ (𝑟ℎ,𝑚𝑎𝑥 − 𝑟ℎ,𝑚𝑖𝑛 − (𝑃 𝜋ℎ+1𝑟ℎ+1 + .. + 𝑃 𝜋ℎ+1∶𝐻 𝑟𝐻 ))

≥1
2
||𝑃𝑠,𝑎 − 𝑃𝑠,𝑎||1 ⋅ 𝑟ℎ,𝑚𝑖𝑛 ≥

1
2
||𝑃𝑠,𝑎 − 𝑃𝑠,𝑎||1 ⋅ 𝑐

where the reasoning of the first inequality is similar to the case of 𝐻 = 2. Next use Γ̂𝜋𝑡+1∶ℎis row-stochastic then from Step 1 and take the sum we have

||𝑄̂𝜋
1 −𝑄

𝜋
1 ||∞ ≥ 1

2
𝑐 ⋅𝐻 min

𝑠,𝑎
||𝑃𝑠,𝑎 − 𝑃𝑠,𝑎||1.
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for such choice of rewards and 𝜋.
Step 4. However, in the above construction 𝑐 actually depends on 𝐻 due to the design

1 ≥ 𝑟ℎ ≥ (||𝑟ℎ+1||∞ + … + ||𝑟𝐻 ||∞). To get a universal constant 𝑐 we could use the bound
||𝑄̂𝜋

1 − 𝑄𝜋
1 ||∞ ≳ 𝑟𝐻

2 ,𝑚𝑖𝑛
⋅ 𝐻

2
min𝑠,𝑎 ||𝑃𝑠,𝑎 − 𝑃𝑠,𝑎||1 instead, where 𝑟𝐻

2 ,𝑚𝑖𝑛
in Step 2 is univer-

sally lower bounded. Then we apply ||𝑃𝑠,𝑎 − 𝑃𝑠,𝑎||1 ≳ Ω(
√

𝑆∕𝑛𝑑𝑚) to obtain the lower bound
Ω(

√

𝐻2𝑆∕𝑛𝑑𝑚).
Remark 18. We point out while our lower bound of Ω(𝐻2𝑆∕𝑑𝑚𝜖2) for uniform OPE appears to
be qualitatively similar to the lower bound of Ω(𝐻2𝑆2𝐴∕𝜖2) derived for the online reward-free
RL setting jin2020reward, our result is not implied by theirs and cannot be proven by directly
adapting their construction. Those two results are in principle, different since: the result in
jin2020reward is learning-oriented where they define the problem class on 𝑂(𝑆) states and
forcing Ω(𝑆𝐴∕𝜖2) episodes in each state and end up with 𝑂(𝑆2𝐴∕𝜖2) complexity; our result is
evaluation-oriented where we need reduce the uniform evaluation problem to estimating prob-
ability distribution in 𝓁1-error. The global uniform OPE and the reward-free setting are also
different tasks (one cannot imply the other): the former deals with uniform convergence over
all policies but with a fixed reward while the latter aims at learning simultaneously over all
rewards.

C.3 Proof for optimal offline learning (Corollary 4.6.1)
Proof: This is a corollary of Theorem 4.6.1. Indeed, by taking 𝜋 = 𝜋⋆, we first have

‖

‖

‖

𝑉 𝜋⋆
1 − 𝑉 𝜋⋆

1
‖

‖

‖∞
≤ ‖

‖

‖

𝑄̂𝜋⋆
1 −𝑄𝜋⋆

1
‖

‖

‖∞
≤ 𝐶

[√

𝐻2𝜄
𝑛𝑑𝑚

+ 𝐻2.5𝑆0.5𝜄
𝑛𝑑𝑚

]

.

Similar to the second result in Lemma C.1.9, we also have

‖

‖

‖

𝑉 𝜋⋆
1 − 𝑉 𝜋⋆

1
‖

‖

‖∞
≤ ‖

‖

‖

𝑄̂𝜋⋆
1 −𝑄𝜋⋆

1
‖

‖

‖∞
≤ 𝐶

[√

𝐻2𝜄
𝑛𝑑𝑚

+ 𝐻2.5𝑆0.5𝜄
𝑛𝑑𝑚

]

.

Next, recall the definition of 𝜋 ∈ Π𝑙 that
‖

‖

‖

𝑉 𝜋⋆
1 − 𝑉 𝜋

1
‖

‖

‖∞
≤ 𝜖opt ,

and Theorem 4.6.1 again that

‖

‖

‖

𝑉 𝜋
1 − 𝑉 𝜋

1
‖

‖

‖∞
≤ ‖

‖

‖

𝑄̂𝜋
1 −𝑄

𝜋
1
‖

‖

‖∞
≤ 𝐶

[√

𝐻2𝜄
𝑛𝑑𝑚

+ 𝐻2.5𝑆0.5𝜄
𝑛𝑑𝑚

]

.
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Therefore
𝑉 𝜋⋆
1 − 𝑉 𝜋

1 = 𝑉 𝜋⋆
1 − 𝑉 𝜋⋆

1 + 𝑉 𝜋⋆
1 − 𝑉 𝜋

1

≤ max
𝜋⋆,𝜋⋆

‖

‖

‖

𝑉 𝜋
1 − 𝑉 𝜋

1
‖

‖

‖∞
+ 𝑉 𝜋⋆

1 − 𝑉 𝜋
1

= max
𝜋⋆,𝜋⋆

‖

‖

‖

𝑉 𝜋
1 − 𝑉 𝜋

1
‖

‖

‖∞
+
(

𝑉 𝜋⋆
1 − 𝑉 𝜋⋆

1

)

+
(

𝑉 𝜋⋆
1 − 𝑉 𝜋

1

)

+
(

𝑉 𝜋
1 − 𝑉 𝜋

1

)

≤ 3𝐶

[√

𝐻2𝜄
𝑛𝑑𝑚

+ 𝐻2.5𝑆0.5𝜄
𝑛𝑑𝑚

]

+ ‖

‖

‖

𝑉 𝜋⋆
1 − 𝑉 𝜋

1
‖

‖

‖∞
⋅ 𝟏

≤ 3𝐶

[√

𝐻2𝜄
𝑛𝑑𝑚

+ 𝐻2.5𝑆0.5𝜄
𝑛𝑑𝑚

]

+ 𝜖opt ⋅ 𝟏.

This completes the proof.

C.4 Proof for optimal offline Task-agnostic learning (Theo-
rem 4.7.1)

Proof: Recall the definition of offline task-agnostic setting, where 𝐾 tasks corresponds
to 𝐾 MDPs 𝑀𝑘 = ( ,, 𝑃 , 𝑟𝑘,𝐻, 𝑑1) with different mean reward functions 𝑟𝑘’s. Since the
incremental number of rewards do not incur randomness, therefore by Corollary 4.6.1, choose
𝜋𝑘 = 𝜋⋆𝑘 and apply a union bound we obtain with probability 1 − 𝛿,

sup
𝑘∈[𝐾]

||𝑉 ⋆
1,𝑀𝑘

− 𝑉 𝜋⋆𝑘
1,𝑀𝑘

||∞ ≤ 𝑂
⎡

⎢

⎢

⎣

√

𝐻2 log(𝐻𝑆𝐴𝐾∕𝛿)
𝑛𝑑𝑚

+
𝐻2.5𝑆0.5 log(𝐻𝑆𝐴𝐾∕𝛿)

𝑛𝑑𝑚

⎤

⎥

⎥

⎦

= 𝑂
⎡

⎢

⎢

⎣

√

𝐻2(𝜄 + log(𝐾))
𝑛𝑑𝑚

+
𝐻2.5𝑆0.5(𝜄 + log(𝐾))

𝑛𝑑𝑚

⎤

⎥

⎥

⎦

,

which completes the proof.
Remark 19. We stress that Section 3 of [84] claims the definition of task-agnostic RL setting em-
braces one challenge that 𝑟(𝑖)𝑘 ’s are the observed random realizations and the need to accurately
estimate mean rewards 𝑟𝑘’s causes the additional log(𝐾) dependence. However, for offline
case, this is not essential since, by straightforward calculation, estimating 𝑟(𝑖)𝑘 ’s accurately only
requires 𝑂̃(log(𝐾)∕𝑑𝑚𝜖2) samples, which is of lower order comparing to 𝑂̃(𝐻2 log(𝐾)∕𝑑𝑚𝜖2)
learning bound. Therefore, in Definition 4.7.1 we do not incorporate the random version state-
ment for reward 𝑟𝑘.
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C.4.1 Offline Learning in the Constrained MDPs (CMDP)
Recently, there is a line of studies in the Constrained Markov Decision Processes (CMDP)

(e.g. [?]), where the MDP 𝑀 = ( ,, 𝑃 ,𝐻, 𝑑1). When the reward is set to be 𝑟, it defines the
objective function 𝑉 𝜋

𝑟 and there is another utility function 𝑔 that defines the constraint. To be
concrete, the objective formualted as:

maximize
𝜋∈Δ(∣ ,𝐻)

𝑉 𝜋
𝑟,1

(

𝑥1
) subject to 𝑉 𝜋

𝑔,1

(

𝑥1
)

≥ 𝑏 (C.12)

where 𝑏 ∈ (0,𝐻] is some constraint threshold. In addition, the formulation needs a Slater
condition that: there exists 𝛾 > 0 and 𝜋̄ ∈ Δ(| ,𝐻) such that 𝑉 𝜋̄

𝑔,1(𝑥1) ≥ 𝑏 + 𝛾 .
Let 𝜋⋆ be the optimal solution that is compatible with the programming (C.12) (note this

is different from the optimal policy that maximizes 𝑉 𝜋
𝑟,1 only), then by feasibility it satisfies

𝑉 𝜋⋆
𝑔,1 ≥ 𝑏.

Now let 𝜋̂⋆ be the solution of the empirical program:
maximize
𝜋∈Δ(∣ ,𝐻)

𝑉 𝜋
𝑟,1

(

𝑥1
) subject to 𝑉 𝜋

𝑔,1

(

𝑥1
)

≥ 𝑏 (C.13)

then we can show 𝜋̂⋆ is a near-optimal solution for (C.12) via the local uniform convergence
guarantee (Theorem 4.6.1).

Indeed, define a surrogate program:
maximize
𝜋∈Δ(∣ ,𝐻)

𝑉 𝜋
𝑟,1

(

𝑥1
) subject to 𝑉 𝜋

𝑔,1

(

𝑥1
)

≥ 𝑏 (C.14)

and let 𝜋̄⋆ be the solution for (C.14). Then apparently 𝜋̄⋆ satisfies 𝑉 𝜋̄⋆
𝑔,1

(

𝑥1
)

≥ 𝑏. Moreover, we
have

𝑉 𝜋⋆
𝑟,1 − 𝑉 𝜋̄⋆

𝑟,1 =𝑉 𝜋⋆
𝑟,1 − 𝑉 𝜋⋆

𝑟,1 + 𝑉 𝜋⋆
𝑟,1 − 𝑉 𝜋̄⋆

𝑟,1 + 𝑉 𝜋̄⋆
𝑟,1 − 𝑉 𝜋̄⋆

𝑟,1

≤𝑉 𝜋⋆
𝑟,1 − 𝑉 𝜋⋆

𝑟,1 + 0 + 𝑉 𝜋̄⋆
𝑟,1 − 𝑉 𝜋̄⋆

𝑟,1

≤2 sup
𝜋

|𝑉 𝜋
𝑟,1 − 𝑉

𝜋
𝑟,1|

On the other hand, by local uniform convergence guarantee, |𝑉 𝜋
𝑔,1 − 𝑉

𝜋
𝑔,1| ≤ 𝑂̃(

√

𝐻2∕𝑛𝑑𝑚)
for all 𝜋 in the √

𝐻∕𝑆-neighborhood of 𝜋̂⋆ (w.r.t 𝑔). This implies

𝑉 𝜋⋆
𝑟,1 − 𝑉 𝜋̂⋆

𝑟,1 ≤ 2 sup
𝜋

|𝑉 𝜋
𝑟,1 − 𝑉

𝜋
𝑟,1| + 𝑂̃(

√

𝐻2∕𝑛𝑑𝑚)

and the violation of the constraint is bounded by 𝑂̃(√𝐻2∕𝑛𝑑𝑚). This means any approach
that solves (C.13) is near-optimal for the original constrained MDP task given the uniform
convergence guarantee.
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C.5 Proof for optimal offline Reward-free learning (Theorem 4.7.2)
Similar to before, recall 𝑛𝑠,𝑎 = ∑𝐻

ℎ=1
∑𝑛

𝑖=1 𝟏[𝑠
(𝑖)
ℎ = 𝑠, 𝑎(𝑖)ℎ = 𝑎]. We first prove two lemmas

which essentially provide a version of “Maximal Bernstein inequality”. We first fix a pair (𝑠, 𝑎)
and then conditional on 𝑛𝑠,𝑎.

Lemma C.5.1. We define 𝜖1 =
√

1
𝐻𝑆2 . Let  = {[𝑖1𝜖1, 𝑖2𝜖1,… , 𝑖𝑆𝜖1]⊤|𝑖1, 𝑖2,… , 𝑖𝑆 ∈ ℤ} ∩

[0,𝐻]𝑆 be the 𝑆-dimensional grid. Next define 𝜄1 = log[(
√

𝐻3𝑆2)𝑆∕𝛿]. Then with probability
1 − 𝛿,

|

|

|

(𝑃𝑠,𝑎 − 𝑃𝑠,𝑎)𝑤
|

|

|

≤

√

2Var𝑠,𝑎(𝑤)𝜄1
𝑛𝑠,𝑎

+
2𝐻𝜄1
3𝑛𝑠,𝑎

, ∀𝑤 ∈ .

This is by the direct application of Bernstein inequality with a union bound, where the
cardinality of  is

(

𝐻
𝜖1

)𝑆

=
(
√

𝐻3𝑆2
)𝑆
.

Lemma C.5.2. Let the 𝑆-dimensional grid be  = {[𝑖1𝜖1, 𝑖2𝜖1,… , 𝑖𝑆𝜖1]⊤|𝑖1, 𝑖2,… , 𝑖𝑆 ∈ ℤ} ∩
[0,𝐻]𝑆 and define 𝜄1 = log[(

√

𝐻3𝑆2)𝑆∕𝛿]. It holds with probability 1 − 𝛿,

|

|

|

(𝑃𝑠,𝑎 − 𝑃𝑠,𝑎)𝑣
|

|

|

≤

√

2Var𝑠,𝑎(𝑣)𝜄1
𝑛𝑠,𝑎

+ 𝐶

√

𝜄1
𝑛𝑠,𝑎𝐻𝑆

+
2𝐻𝜄1
3𝑛𝑠,𝑎

, ∀ 𝑣 ∈ [0,𝐻]𝑆 .

Proof: Let 𝑧 ∶= Proj(𝑣). Then by design of  we have

‖𝑧 − 𝑣‖∞ ≤ 𝜖1 =
√

1
𝐻𝑆2

.
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Therefore we obtain ∀𝑣 ∈ [0,𝐻]𝑆 ,
|

|

|

(𝑃𝑠,𝑎 − 𝑃𝑠,𝑎)𝑣
|

|

|

≤ |

|

|

(𝑃𝑠,𝑎 − 𝑃𝑠,𝑎)(𝑣 − 𝑧)
|

|

|

+ |

|

|

(𝑃𝑠,𝑎 − 𝑃𝑠,𝑎)𝑧
|

|

|

≤ ‖

‖

‖

𝑃𝑠,𝑎 − 𝑃𝑠,𝑎
‖

‖

‖1
‖𝑧 − 𝑣‖∞ + |

|

|

(𝑃𝑠,𝑎 − 𝑃𝑠,𝑎)𝑧
|

|

|

≤ 𝑐

√

𝑆
𝑛𝑠,𝑎

‖𝑧 − 𝑣‖∞ +

√

2Var𝑠,𝑎(𝑧)𝜄1
𝑛𝑠,𝑎

+
2𝐻𝜄1
3𝑛𝑠,𝑎

≤ 𝑐

√

𝑆
𝑛𝑠,𝑎

‖𝑧 − 𝑣‖∞ +

√

2 ‖𝑧 − 𝑣‖2∞ 𝜄1
𝑛𝑠,𝑎

+

√

2Var𝑠,𝑎(𝑣)𝜄1
𝑛𝑠,𝑎

+
2𝐻𝜄1
3𝑛𝑠,𝑎

≤ 𝐶

√

𝑆𝜄1
𝑛𝑠,𝑎

‖𝑧 − 𝑣‖∞ +

√

2Var𝑠,𝑎(𝑣)𝜄1
𝑛𝑠,𝑎

+
2𝐻𝜄1
3𝑛𝑠,𝑎

≤ 𝐶

√

𝜄1
𝑛𝑠,𝑎𝐻𝑆

+

√

2Var𝑠,𝑎(𝑣)𝜄1
𝑛𝑠,𝑎

+
2𝐻𝜄1
3𝑛𝑠,𝑎

.

where the third inequality uses Lemma C.5.1 and Lemma D.0.10.
Then recall𝑁 ∶= min𝑠,𝑎 𝑛𝑠,𝑎, by Lemma C.5.2 and a union bound we obtain with probability

1 − 𝛿, element-wisely,

|

|

|

(𝑃 − 𝑃 )𝑣||
|

≤ 𝐶 ⋅
⎛

⎜

⎜

⎝

√

2Var𝑠,𝑎(𝑣)𝜄2
𝑁

+ 2
√

𝜄2
𝑁 ⋅𝐻𝑆

+
2𝐻𝜄2
3𝑁

⎞

⎟

⎟

⎠

⋅ 𝟏, ∀ 𝑣 ∈ [0,𝐻]𝑆 , (C.15)

where 𝜄2 = 𝑆 log(𝐻𝑆𝐴∕𝛿).
Remark 20. Equation C.15 is a form of maximal Bernstein inequality as it keeps validity for
all 𝑣 ∈ [0,𝐻]𝑆 . The price for this stronger result is the extra 𝑆 factor (coming from 𝜄2) in the
dominate term.

Now, for any reward 𝑟, by (empirical) Bellman equation we have element-wisely:
𝑄̂𝜋⋆
ℎ −𝑄𝜋⋆

ℎ = 𝑟ℎ + 𝑃
𝜋⋆ℎ+1𝑄̂𝜋⋆

ℎ+1 − 𝑟ℎ − 𝑃
𝜋⋆ℎ+1𝑄𝜋⋆

ℎ+1

=
(

𝑃 𝜋⋆ℎ+1 − 𝑃 𝜋⋆ℎ+1
)

𝑄̂𝜋⋆
ℎ+1 + 𝑃

𝜋⋆ℎ+1
(

𝑄̂𝜋⋆
ℎ+1 −𝑄

𝜋⋆
ℎ+1

)

=
(

𝑃 − 𝑃
)

𝑉 𝜋⋆
ℎ+1 + 𝑃

𝜋⋆ℎ+1
(

𝑄̂𝜋⋆
ℎ+1 −𝑄

𝜋⋆
ℎ+1

)

= … =
𝐻
∑

𝑡=ℎ
Γ𝜋⋆ℎ+1∶𝑡

(

𝑃 − 𝑃
)

𝑉 𝜋⋆
𝑡+1
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where Γ𝜋ℎ+1∶𝑡 =
∏𝑡

𝑖=ℎ+1 𝑃
𝜋𝑖 is multi-step state-action transition and Γℎ+1∶ℎ ∶= 𝐼 .

Concentration on
(

𝑃 − 𝑃
)

𝑉 ⋆
ℎ . Now by (C.15), we have the following:

(

𝑃𝑠,𝑎 − 𝑃𝑠,𝑎
)

𝑉 ⋆
ℎ

≤ 𝐶 ⋅
⎛

⎜

⎜

⎝

√

2Var𝑠,𝑎(𝑉 ⋆
ℎ )𝜄2

𝑁
+ 2

√

𝜄2
𝑁 ⋅𝐻𝑆

+
2𝐻𝜄2
3𝑁

⎞

⎟

⎟

⎠

≤ 𝐶 ⋅
⎛

⎜

⎜

⎝

√

2Var𝑠,𝑎(𝑉 𝜋⋆
ℎ )𝜄2

𝑁
+ 2

√

𝜄2
𝑁 ⋅𝐻𝑆

+

√

2𝜄2
𝑁

⋅ ‖‖
‖

𝑉 𝜋⋆
ℎ − 𝑉 𝜋⋆

ℎ
‖

‖

‖∞
+

2𝐻𝜄2
3𝑁

⎞

⎟

⎟

⎠

≤ 𝐶 ⋅
⎛

⎜

⎜

⎝

√

2Var𝑠,𝑎(𝑉 𝜋⋆
ℎ )𝜄2

𝑁
+ 2

√

𝜄2
𝑁 ⋅𝐻𝑆

+

√

2𝜄2
𝑁

⋅𝐻2

√

𝑆
𝑁

+
2𝐻𝜄2
3𝑁

⎞

⎟

⎟

⎠

≤ 𝐶 ′ ⋅
⎛

⎜

⎜

⎝

√

2Var𝑠,𝑎(𝑉 𝜋⋆
ℎ )𝜄2

𝑁
+ 2

√

𝜄2
𝑁 ⋅𝐻𝑆

+
2𝐻2𝑆 log(𝐻𝑆𝐴∕𝛿)

𝑁

⎞

⎟

⎟

⎠

,

(C.16)

where the third inequality uses Lemma D.0.115. Then above implies
5Note the use of Lemma D.0.11 also works for any rewards since the only high probability result they used is

for ||𝑃 − 𝑃 ||1. Therefore conditional on the concentration for ||𝑃 − 𝑃 ||1, the argument follows for any arbitrary
reward as well.
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𝑄̂𝜋⋆
ℎ −𝑄𝜋⋆

ℎ

≤𝐶 ′
𝐻
∑

𝑡=ℎ
Γ𝜋⋆ℎ+1∶𝑡 ⋅

⎛

⎜

⎜

⎝

√

2Var𝑠,𝑎(𝑉 𝜋⋆
ℎ )𝜄2

𝑁
+ 2

√

𝜄2
𝑁 ⋅𝐻𝑆

+
2𝐻2𝑆 log(𝐻𝑆𝐴∕𝛿)

𝑁

⎞

⎟

⎟

⎠

≤𝐶 ′
⎡

⎢

⎢

⎣

𝐻
∑

𝑡=ℎ
Γ𝜋⋆ℎ+1∶𝑡 ⋅

√

2Var𝑠,𝑎(𝑉 𝜋⋆
ℎ )𝜄2

𝑁
+ 2

√

𝐻 log(𝐻𝑆𝐴∕𝛿)
𝑁

+
2𝐻3𝑆 log(𝐻𝑆𝐴∕𝛿)

𝑁

⎤

⎥

⎥

⎦

≤𝐶 ′

[
√

2𝐻3𝑆 log(𝐻𝑆𝐴∕𝛿)
𝑁

+ 2
√

𝐻 log(𝐻𝑆𝐴∕𝛿)
𝑁

+
2𝐻3𝑆 log(𝐻𝑆𝐴∕𝛿)

𝑁

]

≤𝐶 ′′

[
√

𝐻3𝑆 log(𝐻𝑆𝐴∕𝛿)
𝑁

+
𝐻3𝑆 log(𝐻𝑆𝐴∕𝛿)

𝑁

]

≤𝑂
⎡

⎢

⎢

⎣

√

𝐻2𝑆 log(𝐻𝑆𝐴∕𝛿)
𝑛𝑑𝑚

+
𝐻2𝑆 log(𝐻𝑆𝐴∕𝛿)

𝑛𝑑𝑚

⎤

⎥

⎥

⎦

,

where the third inequality uses Lemma D.0.8 and the last one uses 𝑁 ≥ 1
2
𝑛𝑑𝑚 with high prob-

ability. Similar result holds for 𝑄̂𝜋⋆
ℎ −𝑄𝜋⋆

ℎ . Combing those results we have reward-free bound
(for any reward simultaneously)

𝑂
⎡

⎢

⎢

⎣

√

𝐻2𝑆 log(𝐻𝑆𝐴∕𝛿)
𝑛𝑑𝑚

+
𝐻2𝑆 log(𝐻𝑆𝐴∕𝛿)

𝑛𝑑𝑚

⎤

⎥

⎥

⎦

,

which finishes the proof of Theorem 4.7.2.
Remark 21. Note above result is tight in both the dominant term AND the higher order term.
Therefore this result cannot be further improved even in the higher order term.

C.6 Discussion of Section 4.7
In this section we explain why Theorem 4.7.1 and Theorem 4.7.2 are optimal in the offline

RL.
We begin with the offline task-agnostic setting. For the exquisite readers who check the

proof of Theorem 5 of [84], the proving procedure of their lower bound follows the standard
reduction to best-arm identification in multi-armed bandit problems. More specifically, to in-
corporate the dependence of log(𝐾), they rely on the Theorem 10 of [84] (which is originated
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from [116]) to show in order to be (𝜖, 𝛿)-correct for a problem with 𝐴 arms and with 𝐾 tasks,
it need at least Ω( 𝐴

𝜖2
log(𝐾

𝛿
)) samples. Such a result updates the Lemma G.1. in [8] by the extra

factor log(𝐾) for the bandit problem with𝐾 tasks. With no modification, the rest of the proof in
Section E of [8] follows though and one can end up with the lower bound Ω(𝐻2 log(𝐾)∕𝑑𝑚𝜖2)over the problem class 𝑑𝑚 ∶=

{

(𝜇,𝑀) ∣ min𝑡,𝑠𝑡,𝑎𝑡 𝑑
𝜇
𝑡

(

𝑠𝑡, 𝑎𝑡
)

≥ 𝑑𝑚
}. The case for the offline

reward-free setting is also similar. Indeed, theΩ(𝑆𝐴∕𝜖2) trajectories in Lemma 4.2 in [80] could
be replaced by Ω(1∕𝑑𝑚𝜖2) by choosing some hard near-uniform behavior policy instances (see
Section E.2 in [8]) and the rest follows since by forcing 𝑆 such instances (Section 4.2 of [80])
to obtain Ω(𝑆∕𝑑𝑚𝜖2) and create a chain of Ω(𝐻) rewards for Ω(𝐻2𝑆∕𝑑𝑚𝜖2).

C.7 Proof of the linear MDP with anchor representations
Recall that we assume a generative oracle here. Sometimes we abuse the notation  for

either anchor point set or the anchor point indices set. The meaning should be clear in each
context.

C.7.1 Model-based Plug-in Estimator for Anchor Representations
Step 1: For each (𝑠𝑘, 𝑎𝑘) where index 𝑘 ∈ , collect 𝑁 samples from 𝑃 (⋅|𝑠𝑘, 𝑎𝑘); compute

𝑃(𝑠′|𝑠𝑘, 𝑎𝑘) =
𝑐𝑜𝑢𝑛𝑡(𝑠, 𝑎, 𝑠′)

𝑁
;

Step 2: Compute the linear combination coefficients 𝜆𝑠,𝑎𝑘 satisfies 𝜙(𝑠, 𝑎) = ∑

𝑘∈ 𝜆
𝑠,𝑎
𝑘 𝜙(𝑠𝑘, 𝑎𝑘);

Step 3: Estimate transition distribution
𝑃 (𝑠′|𝑠, 𝑎) =

∑

𝑘∈
𝜆𝑠,𝑎𝑘 ⋅ 𝑃(𝑠′|𝑠𝑘, 𝑎𝑘).

We need to check such 𝑃 (𝑠′|𝑠, 𝑎) is a valid distribution. This is due to:

∑

𝑘∈
𝜆𝑠,𝑎𝑘 =

∑

𝑘∈

∑

𝑠′
𝜆𝑠,𝑎𝑘 𝑃 (𝑠

′
|𝑠𝑘, 𝑎𝑘) =

∑

𝑠′

∑

𝑘∈
𝜆𝑠,𝑎𝑘 𝑃 (𝑠

′
|𝑠𝑘, 𝑎𝑘)

=
∑

𝑠′

∑

𝑘∈
𝜆𝑠,𝑎𝑘 ⟨𝜙(𝑠𝑘, 𝑎𝑘), 𝜓(𝑠′)⟩ =

∑

𝑠′
⟨𝜙(𝑠, 𝑎), 𝜓(𝑠′)⟩ =

∑

𝑠′
𝑃 (𝑠′|𝑠, 𝑎) = 1
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and
∑

𝑠′
𝑃 (𝑠′|𝑠, 𝑎) =

∑

𝑠′

∑

𝑘∈
𝜆𝑠,𝑎𝑘 𝑃

(

𝑠′ ∣ 𝑠𝑘, 𝑎𝑘
)

=
∑

𝑘∈

∑

𝑠′
𝜆𝑠,𝑎𝑘 𝑃

(

𝑠′ ∣ 𝑠𝑘, 𝑎𝑘
)

=
∑

𝑘∈
𝜆𝑠,𝑎𝑘

𝑁
𝑁

= 1.

Step 4: construct empirical model 𝑀 = ( ,, 𝑃 , 𝑟,𝐻) and output 𝜋⋆ = argmax𝜋 𝑉 𝜋
1 .

Similarly, Bellman (optimality) equations hold6

𝑉 ⋆
𝑡 (𝑠) = max

𝑎

{

𝑟(𝑠, 𝑎) + ∫𝑠′
𝑉 ⋆
𝑡+1(𝑠

′)𝑑𝑃 (𝑠′|𝑠, 𝑎)
}

, ∀𝑠 ∈  .

𝑉 ⋆
𝑡 (𝑠) = max

𝑎

{

𝑟(𝑠, 𝑎) + ∫𝑠′
𝑉 ⋆
𝑡+1(𝑠

′)𝑑𝑃 (𝑠′|𝑠, 𝑎)
}

, ∀𝑠 ∈  .

C.7.2 General absorbing MDP
The definition of the general absorbing MDP remains the same: i.e. for a fixed state 𝑠

and a sequence {𝑢𝑡}𝐻𝑡=1, MDP 𝑀𝑠,{𝑢𝑡}𝐻𝑡=1
is identical to 𝑀 for all states except 𝑠, and state 𝑠 is

absorbing in the sense 𝑃𝑀𝑠,{𝑢𝑡}𝐻𝑡=1

(𝑠|𝑠, 𝑎) = 1 for all 𝑎, and the instantaneous reward at time 𝑡 is
𝑟𝑡(𝑠, 𝑎) = 𝑢𝑡 for all 𝑎 ∈ . Also, we use the shorthand notation 𝑉 𝜋

{𝑠,𝑢𝑡}
for 𝑉 𝜋

𝑠,𝑀𝑠,{𝑢𝑡}𝐻𝑡=1

and similarly
for 𝑄{𝑠,𝑢𝑡} and transition 𝑃{𝑠,𝑢𝑡}. Then the following properties mirroring the Lemma C.1.1 and
Lemma C.1.2 with nearly identical proof but for the integral version (which we skip):

Lemma C.7.1.

𝑉 ⋆
ℎ,{𝑠,𝑢𝑡}

(𝑠) =
𝐻
∑

𝑡=ℎ
𝑢𝑡.

Lemma C.7.2. Fix state 𝑠. For two different sequences {𝑢𝑡}𝐻𝑡=1 and {𝑢′𝑡}
𝐻
𝑡=1, we have

max
ℎ

‖

‖

‖

𝑄⋆
ℎ,{𝑠,𝑢𝑡}

−𝑄⋆
ℎ,{𝑠,𝑢′𝑡}

‖

‖

‖∞
≤ 𝐻 ⋅ max

𝑡∈[𝐻]
|

|

𝑢𝑡 − 𝑢′𝑡|| .

C.7.3 Singleton-absorbing MDP
The well-definedness of singleton-absorbing MDP for linear MDP with anchor points de-

pends on the following two lemmas whose proofs are still nearly identical to Lemma C.1.3 and
Lemma C.1.4 which we skip.

6We use the integral only to denote  could be exponentially large.
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Lemma C.7.3. 𝑉 ⋆
𝑡 (𝑠) − 𝑉

⋆
𝑡+1(𝑠) ≥ 0, for all state 𝑠 ∈  and all 𝑡 ∈ [𝐻].

Lemma C.7.4. Fix a state 𝑠. If we choose 𝑢⋆𝑡 ∶= 𝑉 ⋆
𝑡 (𝑠) − 𝑉

⋆
𝑡+1(𝑠) ∀𝑡 ∈ [𝐻], then we have the

following vector form equation

𝑉 ⋆
ℎ,{𝑠,𝑢⋆𝑡 }

= 𝑉 ⋆
ℎ,𝑀 ∀ℎ ∈ [𝐻].

Similarly, if we choose 𝑢̂⋆𝑡 ∶= 𝑉 ⋆
𝑡 (𝑠) − 𝑉

⋆
𝑡+1(𝑠), then 𝑉 ⋆

ℎ,{𝑠,𝑢̂⋆𝑡 }
= 𝑉 ⋆

ℎ,𝑀 , ∀ℎ ∈ [𝐻].

The singleton MDP we used is exactly 𝑀𝑠,{𝑢⋆𝑡 }
𝐻
𝑡=1

(or 𝑀𝑠,{𝑢⋆𝑡 }
𝐻
𝑡=1

).

C.7.4 Proof for the optimal sample complexity
For 𝜋⋆, by (empirical) Bellman equation we have element-wisely:

𝑄̂𝜋⋆
ℎ −𝑄𝜋⋆

ℎ = 𝑟ℎ + 𝑃
𝜋⋆ℎ+1𝑄̂𝜋⋆

ℎ+1 − 𝑟ℎ − 𝑃
𝜋⋆ℎ+1𝑄𝜋⋆

ℎ+1

=
(

𝑃 𝜋⋆ℎ+1 − 𝑃 𝜋⋆ℎ+1
)

𝑄̂𝜋⋆
ℎ+1 + 𝑃

𝜋⋆ℎ+1
(

𝑄̂𝜋⋆
ℎ+1 −𝑄

𝜋⋆
ℎ+1

)

=
(

𝑃 − 𝑃
)

𝑉 𝜋⋆
ℎ+1 + 𝑃

𝜋⋆ℎ+1
(

𝑄̂𝜋⋆
ℎ+1 −𝑄

𝜋⋆
ℎ+1

)

= … =
𝐻
∑

𝑡=ℎ
Γ𝜋⋆ℎ+1∶𝑡

(

𝑃 − 𝑃
)

𝑉 𝜋⋆
𝑡+1 ≤

𝐻
∑

𝑡=ℎ
Γ𝜋⋆ℎ+1∶𝑡

|

|

|

|

(

𝑃 − 𝑃
)

𝑉 𝜋⋆
𝑡+1

|

|

|

|

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
(⋆)

where Γ𝜋⋆ℎ+1∶𝑡 =
∏𝑡

𝑖=ℎ+1 𝑃
𝜋⋆𝑖 is multi-step state-action transition and Γℎ+1∶ℎ ∶= 𝐼 .

C.7.5 Analyzing (⋆)

Concentration on
(

𝑃 − 𝑃
)

𝑉 ⋆
ℎ . Since 𝑃 aggregates all data from different step so that 𝑃

and 𝑉 ⋆
ℎ are on longer independent. We use the singleton-absorbing MDP 𝑀𝑠,{𝑢⋆𝑡 }

𝐻
𝑡=1

to handle
the case (recall 𝑢⋆𝑡 ∶= 𝑉 ⋆

𝑡 (𝑠) − 𝑉
⋆
𝑡+1(𝑠) ∀𝑡 ∈ [𝐻]). Here, we fix the state action (𝑠, 𝑎) ∈ .
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Then we have:
(

𝑃𝑠,𝑎 − 𝑃𝑠,𝑎
)

𝑉 ⋆
ℎ =

(

𝑃𝑠,𝑎 − 𝑃𝑠,𝑎
)(

𝑉 ⋆
ℎ − 𝑉 ⋆

ℎ,{𝑠,𝑢⋆𝑡 }
+ 𝑉 ⋆

ℎ,{𝑠,𝑢⋆𝑡 }

)

=
(

𝑃𝑠,𝑎 − 𝑃𝑠,𝑎
)(

𝑉 ⋆
ℎ − 𝑉 ⋆

ℎ,{𝑠,𝑢⋆𝑡 }

)

+
(

𝑃𝑠,𝑎 − 𝑃𝑠,𝑎
)

𝑉 ⋆
ℎ,{𝑠,𝑢⋆𝑡 }

≤ ‖

‖

‖

𝑃𝑠,𝑎 − 𝑃𝑠,𝑎
‖

‖

‖1

‖

‖

‖

‖

𝑉 ⋆
ℎ − 𝑉 ⋆

ℎ,{𝑠,𝑢⋆𝑡 }

‖

‖

‖

‖∞
+
√

2 log(4∕𝛿)
𝑁

√

Var𝑠,𝑎(𝑉 ⋆
ℎ,{𝑠,𝑢⋆𝑡 }

) +
2𝐻 log(1∕𝛿)

3𝑁

≤ ‖

‖

‖

𝑃𝑠,𝑎 − 𝑃𝑠,𝑎
‖

‖

‖1

‖

‖

‖

‖

𝑉 ⋆
ℎ − 𝑉 ⋆

ℎ,{𝑠,𝑢⋆𝑡 }

‖

‖

‖

‖∞
+
√

2 log(4∕𝛿)
𝑁

(
√

Var𝑠,𝑎(𝑉 ⋆
ℎ ) +

√

Var𝑠,𝑎(𝑉 ⋆
ℎ,{𝑠,𝑢⋆𝑡 }

− 𝑉 ⋆
ℎ )

)

+
2𝐻 log(1∕𝛿)

3𝑁

≤ ‖

‖

‖

𝑃𝑠,𝑎 − 𝑃𝑠,𝑎
‖

‖

‖1

‖

‖

‖

‖

𝑉 ⋆
ℎ − 𝑉 ⋆

ℎ,{𝑠,𝑢⋆𝑡 }

‖

‖

‖

‖∞
+
√

2 log(4∕𝛿)
𝑁

⎛

⎜

⎜

⎝

√

Var𝑠,𝑎(𝑉 ⋆
ℎ ) +

√

‖

‖

‖

‖

𝑉 ⋆
ℎ,{𝑠,𝑢⋆𝑡 }

− 𝑉 ⋆
ℎ

‖

‖

‖

‖

2

∞

⎞

⎟

⎟

⎠

+
2𝐻 log(1∕𝛿)

3𝑁

=

(

‖

‖

‖

𝑃𝑠,𝑎 − 𝑃𝑠,𝑎
‖

‖

‖1
+
√

2 log(4∕𝛿)
𝑁

)

‖

‖

‖

‖

𝑉 ⋆
ℎ − 𝑉 ⋆

ℎ,{𝑠,𝑢⋆𝑡 }

‖

‖

‖

‖∞
+
√

2 log(4∕𝛿)
𝑁

√

Var𝑠,𝑎(𝑉 ⋆
ℎ ) +

2𝐻 log(1∕𝛿)
3𝑁

(C.17)
where the first inequality uses Bernstein inequality (Lemma D.0.3) (note here 𝑃𝑠,𝑎𝑉 =

∫𝑠′ 𝑉 (𝑠′)𝑑𝑃 (𝑠′|𝑠, 𝑎) since  could be continuous space, but this does not affect the avail-
ability of Bernstein inequality!), the second inequality uses √Var(⋅) is norm (norm triangle
inequality). Now we treat ‖‖

‖

𝑃𝑠,𝑎 − 𝑃𝑠,𝑎
‖

‖

‖1
and ‖

‖

‖

‖

𝑉 ⋆
ℎ − 𝑉 ⋆

ℎ,{𝑠,𝑢⋆𝑡 }

‖

‖

‖

‖∞
separately.

For ‖

‖

‖

𝑃𝑠,𝑎 − 𝑃𝑠,𝑎
‖

‖

‖1
. Recall here (𝑠, 𝑎) ∈ . By Lemma D.0.10 we obtain w.p. 1 − 𝛿

‖

‖

‖

𝑃𝑠,𝑎 − 𝑃𝑠,𝑎
‖

‖

‖1
≤ 𝐶

√

|| log(1∕𝛿)
𝑁

. (C.18)

where 𝐶 absorbs the higher order term and constants.
For

‖

‖

‖

‖

𝑉 ⋆
ℎ − 𝑉 ⋆

ℎ,{𝑠,𝑢⋆𝑡 }

‖

‖

‖

‖∞
. Note if we set 𝑢̂⋆𝑡 = 𝑉 ⋆

𝑡 (𝑠) − 𝑉
⋆
𝑡+1(𝑠), then by Lemma C.7.4

𝑉 ⋆
ℎ = 𝑉 ⋆

ℎ,{𝑠,𝑢̂⋆𝑡 }

Next since 𝑉 ⋆
ℎ,{𝑠,𝑢̂⋆𝑡 }

(𝑠̃) = max𝑎 𝑄̂⋆
ℎ,{𝑠,𝑢̂⋆𝑡 }

(𝑠̃, 𝑎) ∀𝑠̃ ∈  , by generic inequality |max 𝑓 − max 𝑔| ≤

max |𝑓 − 𝑔|, we have |𝑉 ⋆
ℎ,{𝑠,𝑢̂⋆𝑡 }

(𝑠̃) − 𝑉 ⋆
ℎ,{𝑠,𝑢⋆𝑡 }

(𝑠̃)| ≤ max𝑎 |𝑄̂⋆
ℎ,{𝑠,𝑢̂⋆𝑡 }

(𝑠̃, 𝑎) − 𝑄̂⋆
ℎ,{𝑠,𝑢⋆𝑡 }

(𝑠̃, 𝑎)|, taking
max𝑠̃ on both sides, we obtain exactly

‖

‖

‖

𝑉 ⋆
ℎ,{𝑠,𝑢̂⋆𝑡 }

− 𝑉 ⋆
ℎ,{𝑠,𝑢⋆𝑡 }

‖

‖

‖∞
≤ ‖

‖

‖

𝑄̂⋆
ℎ,{𝑠,𝑢̂⋆𝑡 }

− 𝑄̂⋆
ℎ,{𝑠,𝑢⋆𝑡 }

‖

‖

‖∞

then by Lemma C.7.2,
‖

‖

‖

𝑉 ⋆
ℎ − 𝑉 ⋆

ℎ,{𝑠,𝑢⋆𝑡 }
‖

‖

‖∞
≤ ‖

‖

‖

𝑄̂⋆
ℎ,{𝑠,𝑢̂⋆𝑡 }

− 𝑄̂⋆
ℎ,{𝑠,𝑢⋆𝑡 }

‖

‖

‖∞
≤ 𝐻 max

𝑡
|

|

𝑢̂⋆𝑡 − 𝑢
⋆
𝑡
|

|

, (C.19)
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Recall
𝑢̂⋆𝑡 − 𝑢

⋆
𝑡 = 𝑉 ⋆

𝑡 (𝑠) − 𝑉
⋆
𝑡+1(𝑠) −

(

𝑉 ⋆
𝑡 (𝑠) − 𝑉

⋆
𝑡+1(𝑠)

)

.

Now we denote
Δ𝑠 ∶= max

𝑡
|𝑢̂⋆𝑡 − 𝑢

⋆
𝑡 | = max

𝑡

|

|

|

𝑉 ⋆
𝑡 (𝑠) − 𝑉

⋆
𝑡+1(𝑠) −

(

𝑉 ⋆
𝑡 (𝑠) − 𝑉

⋆
𝑡+1(𝑠)

)

|

|

|

,

then Δ𝑠 itself is a scalar and a random variable.
To sum up, by (C.17), (C.3) and (C.19) and a union bound over all (𝑠, 𝑎) ∈  we have

Lemma C.7.5. Fix 𝑁 > 0. With probability 1 − 𝛿, element-wisely, for all ℎ ∈ [𝐻] and all
(𝑠𝑘, 𝑎𝑘) ∈ ,

|

|

|

|

(

𝑃𝑠𝑘,𝑎𝑘 − 𝑃𝑠𝑘,𝑎𝑘
)

𝑉 ⋆
ℎ

|

|

|

|

≤𝐶
√

|| log(𝐻𝐾∕𝛿)
𝑁

⋅𝐻 max
𝑠𝑘

Δ𝑠𝑘

+
√

2 log(4𝐻𝐾∕𝛿)
𝑁

√

Var𝑃𝑠𝑘,𝑎𝑘 (𝑉
⋆
ℎ ) +

2𝐻 log(𝐻𝐾∕𝛿)
3𝑁

Now we extend Lemma C.7.5 to any arbitrary (𝑠, 𝑎) by proving the following lemma:
Lemma C.7.6 (recover lemma). For any function 𝑉 and any state action (𝑠, 𝑎), we have

∑

𝑘∈
𝜆𝑠,𝑎𝑘

√

Var𝑃𝑠𝑘,𝑎𝑘 (𝑉 ) ≤
√

Var𝑃𝑠,𝑎(𝑉 )

Proof: [Proof of Lemma C.7.6] Since 𝜆𝑠,𝑎𝑘 are probability distributions, by Jensen’s in-
equality twice

∑

𝑘∈
𝜆𝑠,𝑎𝑘

√

Var𝑃𝑠𝑘,𝑎𝑘 (𝑉 ) ≤
√

∑

𝑘∈
𝜆𝑠,𝑎𝑘 Var𝑃𝑠𝑘,𝑎𝑘 (𝑉 )

=
√

∑

𝑘∈
𝜆𝑠,𝑎𝑘 Var𝑃𝑠𝑘,𝑎𝑘 (𝑉 ) =

√

∑

𝑘∈
𝜆𝑠,𝑎𝑘 (𝑃𝑠𝑘,𝑎𝑘𝑉

2 − (𝑃𝑠𝑘,𝑎𝑘𝑉 )2)

≤
√

∑

𝑘∈
𝜆𝑠,𝑎𝑘 ⋅ 𝑃𝑠𝑘,𝑎𝑘𝑉

2 − (
∑

𝑘∈
𝜆𝑠,𝑎𝑘 𝑃𝑠𝑘,𝑎𝑘𝑉 )2

=
√

𝑃𝑠,𝑎𝑉 2 − (𝑃𝑠,𝑎𝑉 )2 =
√

Var𝑃𝑠,𝑎(𝑉 ),

where we use 𝑃𝑠,𝑎 = ∑

𝑘∈ 𝜆
𝑠,𝑎
𝑘 𝑃𝑠𝑘,𝑎𝑘 .

147



Supplementary Material to Chapter 4 Chapter C

Therefore for all (𝑠, 𝑎), using Lemma C.7.5 and Lemma C.7.6 we obtain w.p. 1 − 𝛿,
|

|

|

|

(

𝑃𝑠,𝑎 − 𝑃𝑠,𝑎
)

𝑉 ⋆
ℎ
|

|

|

|

≤
∑

𝑘∈
𝜆𝑠,𝑎𝑘

|

|

|

|

(

𝑃𝑠𝑘,𝑎𝑘 − 𝑃𝑠𝑘,𝑎𝑘
)

𝑉 ⋆
ℎ
|

|

|

|

≤ 𝐶
∑

𝑘∈
𝜆𝑠,𝑎𝑘

√

𝑆 log(𝐻𝐾∕𝛿)
𝑁

⋅𝐻 max
𝑠𝑘

Δ𝑠𝑘 +
∑

𝑘∈
𝜆𝑠,𝑎𝑘

√

2 log(4𝐻𝐾∕𝛿)
𝑁

√

Var𝑃𝑠𝑘,𝑎𝑘 (𝑉
⋆
ℎ )

+
∑

𝑘∈
𝜆𝑠,𝑎𝑘

2𝐻 log(𝐻𝐾∕𝛿)
3𝑁

= 𝐶

√

𝑆 log(𝐻𝐾∕𝛿)
𝑁

⋅𝐻 max
𝑠𝑘

Δ𝑠𝑘 +
∑

𝑘∈
𝜆𝑠,𝑎𝑘

√

2 log(4𝐻𝐾∕𝛿)
𝑁

√

Var𝑃𝑠𝑘,𝑎𝑘 (𝑉
⋆
ℎ )

+
2𝐻 log(𝐻𝐾∕𝛿)

3𝑁

≤ 𝐶

√

𝑆 log(𝐻𝐾∕𝛿)
𝑁

⋅𝐻 max
𝑠𝑘

Δ𝑠𝑘 +
√

2 log(4𝐻𝐾∕𝛿)
𝑁

√

Var𝑃𝑠,𝑎(𝑉
⋆
ℎ ) +

2𝐻 log(𝐻𝐾∕𝛿)
3𝑁

Now plug above back into (⋆), we receive:

|

|

|

𝑄̂𝜋⋆
ℎ −𝑄𝜋⋆

ℎ
|

|

|

≤
𝐻
∑

𝑡=ℎ
Γ𝜋⋆ℎ+1∶𝑡

(

𝐶

√

𝑆 log(𝐻𝐾∕𝛿)
𝑁

⋅𝐻 max
𝑠𝑘

Δ𝑠𝑘 ⋅ 𝟏 +
√

2 log(4𝐻𝐾∕𝛿)
𝑁

√

Var𝑃 (𝑉 ⋆
𝑡+1) +

2𝐻 log(𝐻𝐾∕𝛿)
3𝑁

⋅ 𝟏
)

≤
𝐻
∑

𝑡=ℎ
Γ𝜋ℎ+1∶𝑡

√

2 log(4𝐻𝐾∕𝛿)
𝑁

√

Var𝑃 (𝑉 ⋆
𝑡+1) + 𝐶𝐻

2

√

𝑆 log(𝐻𝐾∕𝛿)
𝑁

⋅max
𝑠

Δ𝑠 ⋅ 𝟏 +
2𝐻2 log(𝐻𝐾∕𝛿)

3𝑁
⋅ 𝟏

Similar to before, we get
√

Var𝑃 (𝑉 ⋆
ℎ ) ∶=

√

Var𝑃
(

𝑉 𝜋⋆
ℎ

)

≤
√

Var𝑃
(

𝑉 𝜋⋆
ℎ

)

+ ‖

‖

‖

𝑄̂𝜋⋆
ℎ −𝑄𝜋⋆

ℎ
‖

‖

‖∞
(C.20)
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Plug (C.20) back to above we obtain ∀ℎ ∈ [𝐻],

|

|

|

𝑄̂𝜋⋆
ℎ −𝑄𝜋⋆

ℎ
|

|

|

≤
√

2 log(4𝐻𝐾∕𝛿)
𝑁

𝐻
∑

𝑡=ℎ
Γ𝜋⋆ℎ+1∶𝑡

(

√

Var𝑃
(

𝑉 𝜋⋆
𝑡+1

)

+ ‖

‖

‖

𝑄̂𝜋⋆
𝑡+1 −𝑄

𝜋⋆
𝑡+1

‖

‖

‖∞

)

+ 𝐶𝐻2

√

𝑆 log(𝐻𝐾∕𝛿)
𝑁

⋅max
𝑠𝑘

Δ𝑠𝑘 ⋅ 𝟏 +
2𝐻2 log(𝐻𝐾∕𝛿)

3𝑁
⋅ 𝟏

≤
√

2 log(4𝐻𝐾∕𝛿)
𝑁

𝐻
∑

𝑡=ℎ
Γ𝜋⋆ℎ+1∶𝑡

√

Var𝑃
(

𝑉 𝜋⋆
𝑡+1

)

+
√

2 log(4𝐻𝐾∕𝛿)
𝑁

𝐻
∑

𝑡=ℎ

‖

‖

‖

𝑄̂𝜋⋆
𝑡+1 −𝑄

𝜋⋆
𝑡+1

‖

‖

‖∞

+ 𝐶𝐻2

√

𝑆 log(𝐻𝐾∕𝛿)
𝑁

⋅max
𝑠𝑘

Δ𝑠𝑘 ⋅ 𝟏 +
2𝐻2 log(𝐻𝐾∕𝛿)

3𝑁
⋅ 𝟏

(C.21)
Apply Lemma D.0.8 and the (anchor version using recover lemma C.7.6) coarse uniform bound
(Lemma D.0.11) we obtain the following lemma:
Lemma C.7.7. With probability 1 − 𝛿, for all ℎ ∈ [𝐻],

‖

‖

‖

𝑄̂𝜋⋆
ℎ −𝑄𝜋⋆

ℎ
‖

‖

‖∞
≤

√

𝐶0𝐻3 log(4𝐻𝐾∕𝛿)
𝑁

+
√

2 log(4𝐻𝐾∕𝛿)
𝑁

𝐻
∑

𝑡=ℎ

‖

‖

‖

𝑄̂𝜋⋆
𝑡+1 −𝑄

𝜋⋆
𝑡+1

‖

‖

‖∞
+ 𝐶 ′𝐻4𝑆 log(𝐻𝐾∕𝛿)

𝑁

Proof: Since
Δ𝑠𝑘 ∶= max

𝑡
|𝑢̂⋆𝑡 − 𝑢

⋆
𝑡 | = max

𝑡

|

|

|

𝑉 ⋆
𝑡 (𝑠𝑘) − 𝑉

⋆
𝑡+1(𝑠𝑘) −

(

𝑉 ⋆
𝑡 (𝑠𝑘) − 𝑉

⋆
𝑡+1(𝑠𝑘)

)

|

|

|

≤ 2 ⋅max
𝑡

|

|

|

𝑉 ⋆
𝑡 (𝑠𝑘) − 𝑉

⋆
𝑡 (𝑠𝑘)

|

|

|

= 2 ⋅max
𝑡

|

|

|

|

max
𝜋
𝑉 𝜋
𝑡 (𝑠𝑘) − max

𝜋
𝑉 𝜋
𝑡 (𝑠𝑘)

|

|

|

|

≤ 2 ⋅ max
𝜋∈Π𝑔 ,𝑡∈[𝐻]

‖

‖

‖

𝑉 𝜋
𝑡 − 𝑉 𝜋

𝑡
‖

‖

‖∞
≤ 𝐶 ⋅𝐻2

√

|| log(𝐻𝐾∕𝛿)
𝑁

(C.22)

where the last inequality uses (the anchor version) of Lemma D.0.11.7 Then apply union bound
w.p. 1 − 𝛿∕2, we obtain max𝑠𝑘 Δ𝑠𝑘 ≤ 𝐶 ⋅𝐻2

√

|| log(𝐻𝐾2∕𝛿)
𝑁

. Note (C.21) holds with probability
1−𝛿∕2, therefore plug above into (C.21) and uses Lemma D.0.8 and take || ⋅ ||∞ we obtain w.p.
1 − 𝛿, the result holds.
Lemma C.7.8. Given 𝑁 > 0. Define 𝐶 ′′ ∶= 2 ⋅ max(

√

𝐶0, 𝐶 ′) where 𝐶 ′ is the universal
constant in Lemma C.7.7. When 𝑁 ≥ 8𝐻2

|| log(4𝐻𝐾∕𝛿), then with probability 1 − 𝛿, ∀ℎ ∈

7Here the anchor version means for any (𝑠, 𝑎) we can apply ||𝑃𝑠,𝑎 − 𝑃𝑠,𝑎||1 = ||

∑

𝑘 𝜆
𝑠,𝑎
𝑘 (𝑃𝑠,𝑎 − 𝑃𝑠,𝑎)||1 ≤

∑

𝑘 𝜆
𝑠,𝑎
𝑘 ||𝑃𝑠,𝑎 − 𝑃𝑠,𝑎||1.
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[𝐻],
‖

‖

‖

𝑄̂𝜋⋆
ℎ −𝑄𝜋⋆

ℎ
‖

‖

‖∞
≤ 𝐶 ′′

√

𝐻3 log(4𝐻𝐾∕𝛿)
𝑁

+ 𝐶 ′′𝐻
4𝑆 log(𝐻𝐾∕𝛿)

𝑁
.

‖

‖

‖

𝑄̂𝜋⋆
ℎ −𝑄𝜋⋆

ℎ
‖

‖

‖∞
≤ 𝐶 ′′

√

𝐻3 log(4𝐻𝐾∕𝛿)
𝑁

+ 𝐶 ′′𝐻
4𝑆 log(𝐻𝐾∕𝛿)

𝑁
.

(C.23)

Proof: The proof is very similar to that of Lemma C.1.8.
Remark 22. Note the higher order term has dependence of the order of 𝐻4𝑆. However, using
the same self-bounding trick, we can reduce it to 𝐻3.5𝑆0.5.

Lemma C.7.9. Given 𝑁 > 0. There exists universal constants 𝐶1, 𝐶2 such that when 𝑁 ≥
𝐶1𝐻2

|| log(𝐻𝐾∕𝛿), then with probability 1 − 𝛿, ∀ℎ ∈ [𝐻],

‖

‖

‖

𝑄̂𝜋⋆
ℎ −𝑄𝜋⋆

ℎ
‖

‖

‖∞
≤ 𝐶2

√

𝐻3 log(𝐻𝐾∕𝛿)
𝑁

+ 𝐶2
𝐻3

√

𝐻𝑆 log(𝐻𝐾∕𝛿)
𝑁

. (C.24)

and

‖

‖

‖

𝑄̂𝜋⋆
ℎ −𝑄𝜋⋆

ℎ
‖

‖

‖∞
≤ 𝐶2

√

𝐻3 log(𝐻𝐾∕𝛿)
𝑁

+ 𝐶2
𝐻3

√

𝐻𝑆 log(𝐻𝐾∕𝛿)
𝑁

.

Proof: The proof is similar to Lemma C.1.9.

C.7.6 Proof of Theorem 4.8.1
Proof: By the direct computing of the suboptimality,
𝑄⋆

1 −𝑄𝜋⋆
1 = 𝑄⋆

1 − 𝑄̂𝜋⋆
1 + 𝑄̂𝜋⋆

1 − 𝑄̂𝜋⋆
1 + 𝑄̂𝜋⋆

1 −𝑄𝜋⋆
1 ≤ |𝑄⋆

1 − 𝑄̂𝜋⋆
1 | + |𝑄̂𝜋⋆

1 −𝑄𝜋⋆
1 |,

then by Lemma C.7.9 we can finish the proof.

C.7.7 Take-away in the linear MDP with anchor setting.
Under the setting 𝑆 could be exponential large,  could be infinite (or even continuous

space), with anchor representations (𝐾 ≪ ||), our Theorem 4.8.1 has order 𝑂(√𝐻3∕𝑁)
when 𝑁 is sufficiently large. This translate to 𝑁 = 𝑂(𝐻3∕𝜖2) and the total sample used is
𝐾𝑁 = 𝑂(𝐾𝐻3∕𝜖2). This improves the total complexity 𝑂(𝐾𝐻4∕𝜖2) in [68] and is optimal.

C.8 The computational efficiency for the model-based offline
plug-in estimators

For completeness, we discuss the computational and storage aspect of our model-based
method. Its computational cost is 𝑂(𝐻4∕𝑑𝑚𝜖2) for computing 𝑃 , the same as its sample com-
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plexity in steps (𝐻 steps is an episode), and running value iteration causes𝑂(𝐻𝑆2𝐴) time (here
we assume the bit complexity 𝐿(𝑃 , 𝑟,𝐻) = 1, see [117] Section 1.3). The total computational
complexity is 𝑂(𝐻4∕𝑑𝑚𝜖2) + 𝑂(𝐻𝑆2𝐴), with a memory cost of 𝑂(𝐻𝑆2𝐴).
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Appendix D

Some Technical Lemmas

Lemma D.0.1 (Multiplicative Chernoff bound [118]). Let 𝑋 be a Binomial random variable
with parameter 𝑝, 𝑛. For any 𝛿 > 0, we have that

ℙ[𝑋 < (1 − 𝛿)𝑝𝑛] <
(

𝑒−𝛿

(1 − 𝛿)1−𝛿

)𝑛𝑝

.

A slightly looser bound that suffices for our propose is the following:

ℙ[𝑋 < (1 − 𝛿)𝑝𝑛] < 𝑒−
𝛿2𝑝𝑛
2 .

Lemma D.0.2 (Hoeffding’s Inequality [119]). Let 𝑥1, ..., 𝑥𝑛 be independent bounded random
variables such that 𝔼[𝑥𝑖] = 0 and |𝑥𝑖| ≤ 𝜉𝑖 with probability 1. Then for any 𝜖 > 0 we have

ℙ

(

1
𝑛

𝑛
∑

𝑖=1
𝑥𝑖 ≥ 𝜖

)

≤ 𝑒
− 2𝑛2𝜖2

∑𝑛
𝑖=1 𝜉

2
𝑖 .

Lemma D.0.3 (Bernstein’s Inequality). Let 𝑥1, ..., 𝑥𝑛 be independent bounded random variables
such that 𝔼[𝑥𝑖] = 0 and |𝑥𝑖| ≤ 𝜉 with probability 1. Let 𝜎2 = 1

𝑛

∑𝑛
𝑖=1Var[𝑥𝑖], then with

probability 1 − 𝛿 we have

1
𝑛

𝑛
∑

𝑖=1
𝑥𝑖 ≤

√

2𝜎2 ⋅ log(1∕𝛿)
𝑛

+
2𝜉
3𝑛

log(1∕𝛿)

Lemma D.0.4 (Mcdiarmid’s Inequality: [119]). Let 𝑥1, ..., 𝑥𝑛 be independent random variables
and 𝑆 ∶ 𝑋𝑛 → ℝ be a measurable function which is invariant under permutation and let the
random variable 𝑍 be given by 𝑍 = 𝑆(𝑥1, 𝑥2, ..., 𝑥𝑛). Assume 𝑆 has bounded difference: i.e.

sup
𝑥1,...,𝑥𝑛,𝑥′𝑖

|𝑆(𝑥1, ..., 𝑥𝑖, ..., 𝑥𝑛) − 𝑆(𝑥1, ..., 𝑥′𝑖, ..., 𝑥𝑛)| ≤ 𝜉𝑖,

152



Some Technical Lemmas Chapter D

then for any 𝜖 > 0 we have

ℙ(|𝑍 − 𝔼[𝑍]| ≥ 𝜖) ≤ 2𝑒
− 2𝜖2

∑𝑛
𝑖=1 𝜉

2
𝑖 .

Lemma D.0.5 (Azuma-Hoeffding inequality). Suppose 𝑋𝑘, 𝑘 = 1, 2, 3, ... is a martingale and
|𝑋𝑘 −𝑋𝑘−1| ≤ 𝑐𝑘 almost surely. Then for all positive integers 𝑁 and any 𝜖 > 0,

ℙ(|𝑋𝑁 −𝑋0| ≥ 𝜖) ≤ 2𝑒
− 𝜖2

2
∑𝑁
𝑖=1 𝑐

2
𝑖 .

Lemma D.0.6 (Freedman’s inequality [120]). Let 𝑋 be the martingale associated with a fil-
ter  (i.e. 𝑋𝑖 = 𝔼[𝑋|𝑖]) satisfying |𝑋𝑖 − 𝑋𝑖−1| ≤ 𝑀 for 𝑖 = 1, ..., 𝑛. Denote 𝑊 ∶=
∑𝑛

𝑖=1Var(𝑋𝑖|𝑖−1) then we have

ℙ(|𝑋 − 𝔼[𝑋]| ≥ 𝜖,𝑊 ≤ 𝜎2) ≤ 2𝑒−
𝜖2

2(𝜎2+𝑀𝜖∕3) .

Or in other words, with probability 1 − 𝛿,

|𝑋 − 𝔼[𝑋]| ≤
√

8𝜎2 ⋅ log(1∕𝛿) + 2𝑀
3

⋅ log(1∕𝛿), Or 𝑊 ≥ 𝜎2.

Lemma D.0.7 (Best arm identification lower bound [115]). For any 𝐴 ≥ 2 and 𝜏 ≤
√

1∕8
and any best arm identification algorithm that produces an estimate 𝑎̂, there exists a multi-arm
bandit problem for which the best arm 𝑎⋆ is 𝜏 better than all others, but ℙ[𝑎̂ ≠ 𝑎⋆] ≥ 1∕3
unless the number of samples 𝑇 is at least 𝐴

72𝜏2
.

Lemma D.0.8 (Sum of expectation of conditional variance of value; Lemma F.3 of [7]).

Var𝜋

[

𝐻
∑

𝑡=ℎ
𝑟(1)𝑡 ∣ 𝑠(1)ℎ = 𝑠ℎ, 𝑎

(1)
ℎ = 𝑎ℎ

]

=
𝐻
∑

𝑡=ℎ

(

𝔼𝜋
[

Var
[

𝑟(1)𝑡 + 𝑉 𝜋
𝑡+1

(

𝑠(1)𝑡+1
)

∣ 𝑠(1)𝑡 , 𝑎
(1)
𝑡

]

∣ 𝑠(1)ℎ = 𝑠ℎ, 𝑎
(1)
ℎ = 𝑎ℎ

]

+𝔼𝜋
[

Var
[

𝔼
[

𝑟(1)𝑡 + 𝑉 𝜋
𝑡+1

(

𝑠(1)𝑡+1
)

∣ 𝑠(1)𝑡 , 𝑎
(1)
𝑡

]

∣ 𝑠(1)𝑡
]

∣ 𝑠(1)ℎ = 𝑠ℎ, 𝑎
(1)
ℎ = 𝑎ℎ

]

)

By apply above, one can show

𝐻
∑

𝑡=ℎ
Γ𝜋ℎ+1∶𝑡

√

Var𝑃
(

𝑉 𝜋
𝑡+1

)

≤
√

(𝐻 − ℎ)3 ⋅ 𝟏.

Remark 23. The infinite horizon discounted setting counterpart result is (𝐼 − 𝛾𝑃 𝜋)−1𝜎𝑉 𝜋 ≤
(1 − 𝛾)−3∕2.
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D.0.1 Minimax rate of discrete distributions under 𝑙1 loss.

This Section provides the minimax rate for ‖‖
‖

𝑃 − 𝑃‖‖
‖1

for any model-based algorithms and
is based on [89]. Let 𝑃 be 𝑆 dimensional distribution.
Lemma D.0.9 (Minimax lower bound for ‖‖

‖

𝑃 − 𝑃‖‖
‖1

). Let 𝑛 be the number of data-points sam-
pled from 𝑃 . If 𝑛 > 𝑒

32
𝑆, then there exists a constant 𝑝 > 0, such that

inf
𝑃

sup
𝑃∈𝑆

ℙ

[

‖

‖

‖

𝑃 − 𝑃‖‖
‖1

≥ 1
8

√

𝑒𝑆
2𝑛

− 𝑜(𝑒−𝑛) − 𝑜(𝑒−𝑆)

]

≥ 𝑝,

where 𝑆 denotes the set of distributions with support size 𝑆 and the infimum is taken over
ALL estimators.

Remark 24. Note the 𝑃 in above carries over all estimators but not just empirical estimator.
This provides the minimax result.

Proof: The proof comes from Theorem 2 of [89], where we pick 𝜁 = 1. Note they
establish the minimax result for 𝔼𝑃‖𝑃 − 𝑃‖1. However, by a simple contradiction we can get
the above. Indeed, suppose

inf
𝑃

sup
𝑃∈𝑆

ℙ

[

‖

‖

‖

𝑃 − 𝑃‖‖
‖1
< 1

8

√

𝑒𝑆
2𝑛

− 𝑜(𝑒−𝑛) − 𝑜(𝑒−𝑆)

]

= 1,

then this implies inf𝑃 sup𝑃∈𝑆
𝔼𝑃‖𝑃 − 𝑃‖1 <

1
8

√

𝑒𝑆
2𝑛

− 𝑜(𝑒−𝑛) − 𝑜(𝑒−𝑆) which contradicts
Theorem 2 of [89].
Lemma D.0.10 (Upper bound for ‖‖

‖

𝑃 − 𝑃‖‖
‖1

). Let 𝑛 be the number of data-points sampled from
𝑃 . Then with probability 1 − 𝛿

‖

‖

‖

𝑃 − 𝑃‖‖
‖1

≤ 𝐶

(
√

𝑆 log(𝑆∕𝛿)
𝑛

+
𝑆 log(𝑆∕𝛿)

𝑛

)

for any 𝑃 ∈ 𝑆 . Here 𝑃 is the empirical (MLE) estimator.

Proof: First fix a state 𝑠. Let 𝑋𝑖 = 𝟏[𝑠𝑖 = 𝑠], then 𝑋𝑖 ∼ 𝐵𝑒𝑟𝑛(𝑝𝑠(1 − 𝑝𝑠)) and 𝑋𝑠 =
∑𝑛

𝑖=1𝑋𝑖 ∼ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛, 𝑝𝑖). By Bernstein inequality,
|

|

|

|

𝑋𝑠

𝑛
− 𝑃𝑠

|

|

|

|

≤
√

2𝑝𝑠(1 − 𝑝𝑠) log(1∕𝛿)
𝑛

+ 3
𝑛
log(1∕𝛿)

154



Some Technical Lemmas Chapter D

Apply a union bound we obtain w.p. 1 − 𝛿
|

|

|

|

𝑋𝑠

𝑛
− 𝑃𝑠

|

|

|

|

≤
√

2𝑝𝑠(1 − 𝑝𝑠) log(𝑆∕𝛿)
𝑛

+ 3
𝑛
log(𝑆∕𝛿) ∀𝑠 ∈ 

which implies
‖

‖

‖

𝑃 − 𝑃‖‖
‖1

=
∑

𝑠∈

|

|

|

|

𝑋𝑠

𝑛
− 𝑃𝑠

|

|

|

|

≤
∑

𝑠∈

√

2𝑝𝑠(1 − 𝑝𝑠) log(𝑆∕𝛿)
𝑛

+ 3𝑆
𝑛

log(𝑆∕𝛿)

=
√

1
𝑛
∑

𝑠∈

1
𝑆

⋅
√

2𝑆2𝑝𝑠(1 − 𝑝𝑠) log(𝑆∕𝛿) +
3𝑆
𝑛

log(𝑆∕𝛿)

≤
√

1
𝑛

√

2𝑆2 ⋅

∑

𝑠∈ 𝑝𝑠
𝑆

(

1 −
∑

𝑠∈ 𝑝𝑠
𝑆

)

log(𝑆∕𝛿) + 3𝑆
𝑛

log(𝑆∕𝛿)

=
√

2(𝑆 − 1) log(𝑆∕𝛿)
𝑛

+ 3𝑆
𝑛

log(𝑆∕𝛿).

where the last inequality uses the concavity of √𝑥(1 − 𝑥).
Finally, we can absorb the higher order term using the mild condition 𝑛 > 𝑐 ⋅ 𝑆 log(𝑆∕𝛿).

D.0.2 A crude uniform convergence bound
Here we provide a crude bound for sup𝜋∈Π𝑔 ‖‖

‖

𝑉 𝜋
1 − 𝑉 𝜋

1
‖

‖

‖∞
, which is the finite horizon coun-

terpart of Section 2.2 of [41] and is a form of simulation lemma.
Lemma D.0.11 (Crude bound by Simulation Lemma). Fix 𝑁 > 0 to be number of samples for
each coordinates. Recall Π𝑔 is the global policy class. Then w.p. 1 − 𝛿,

sup
𝜋∈Π𝑔 ,ℎ∈[𝐻]

‖

‖

‖

𝑄̂𝜋
ℎ −𝑄

𝜋
ℎ
‖

‖

‖∞
≤ 𝐶 ⋅𝐻2

√

𝑆 log(𝑆𝐴∕𝛿)
𝑁

,

which further implies

sup
𝜋∈Π𝑔 ,ℎ∈[𝐻]

‖

‖

‖

𝑉 𝜋
ℎ − 𝑉 𝜋

ℎ
‖

‖

‖∞
≤ 𝐶 ⋅𝐻2

√

𝑆 log(𝑆𝐴∕𝛿)
𝑁

,
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Proof:

𝑄̂𝜋
ℎ −𝑄

𝜋
ℎ = 𝑟ℎ + 𝑃 𝜋ℎ+1𝑄̂𝜋

ℎ+1 − 𝑟ℎ − 𝑃
𝜋ℎ+1𝑄𝜋

ℎ+1

=
(

𝑃 𝜋ℎ+1 − 𝑃 𝜋ℎ+1
)

𝑄̂𝜋
ℎ+1 + 𝑃

𝜋ℎ+1
(

𝑄𝜋
ℎ+1 −𝑄

𝜋
ℎ+1

)

=
(

𝑃 − 𝑃
)

𝑉 𝜋
ℎ+1 + 𝑃

𝜋ℎ+1
(

𝑄̂𝜋
ℎ+1 −𝑄

𝜋
ℎ+1

)

= … =
𝐻
∑

𝑡=ℎ
Γ𝜋ℎ+1∶𝑡

(

𝑃 − 𝑃
)

𝑉 𝜋
𝑡+1

≤
𝐻
∑

𝑡=ℎ
Γ𝜋ℎ+1∶𝑡

|

|

|

|

(

𝑃 − 𝑃
)

𝑉 𝜋
𝑡+1

|

|

|

|

≤
𝐻
∑

𝑡=ℎ
1 ⋅max

𝑠,𝑎

‖

‖

‖

(𝑃 − 𝑃 )(⋅|𝑠, 𝑎)‖‖
‖1

⋅ ‖‖
‖

𝑉 𝜋
𝑡+1

‖

‖

‖∞
⋅ 𝟏

≤ 𝐻2 ⋅max
𝑠,𝑎

‖

‖

‖

(𝑃 − 𝑃 )(⋅|𝑠, 𝑎)‖‖
‖1

⋅ 𝟏 ≤ 𝐶 ⋅𝐻2

√

𝑆 log(𝑆𝐴∕𝛿)
𝑁

𝟏

with probability 1− 𝛿, where the last inequality is by Lemma D.0.10. By symmetry and taking
the ‖⋅‖∞, we obtain w.p. 1 − 𝛿

sup
𝜋∈Π𝑔 ,ℎ∈[𝐻]

‖

‖

‖

𝑄̂𝜋
ℎ −𝑄

𝜋
ℎ
‖

‖

‖∞
≤ 𝐶 ⋅𝐻2

√

𝑆 log(𝑆𝐴∕𝛿)
𝑁

.

The above holds for ∀𝜋 ∈ Π𝑔 since Lemma D.0.10 acts on ‖

‖

‖

𝑃 − 𝑃‖‖
‖1

and is irrelevant to 𝜋.
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