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Understanding truck activity is an essential component of strategic freight 
planning and programming. However, recent studies have revealed a sig-
nificant void in the availability of detailed truck activity data. Although 
some existing detectors are capable of providing truck counts by axle 
configuration, higher-resolution data that indicate truck body config-
uration, industry served, and commodity carried cannot be obtained 
from existing sensors. This paper presents the newly developed Truck 
Activity Monitoring System, which leverages existing in-pavement traffic 
sensors to provide truck activity data in California. Existing inductive 
loop detector sites were updated with inductive signature technology 
and advanced truck classification models were implemented to provide 
detailed truck count data with more than 40 truck body configurations. 
The system has been deployed to more than 90 detector locations in 
California to provide coverage at state borders, regional cordons, and 
significant metropolitan truck corridors. An interactive geographic 
information system website provides users with advanced visual analytics 
and access to archived data across all deployed locations. The case studies 
presented in this paper demonstrate the potential of the data obtained 
from this system in analyzing and understanding current and historical 
industry-specific truck activity.

Trucks are largely responsible for transporting freight. In addition 
to long-haul shipments, trucks also provide the critical first- and 
last-mile links in the multimodal freight transportation network. 
Hence, understanding truck activity is an essential component to 
ensure that strategic plans and policies for transportation infra-
structure investment can effectively support the projected growth 
of freight movements over the planning horizon.

Recent studies have revealed a significant void in the availability 
of detailed truck activity data necessary to understand truck move-
ment along major transportation corridors. Although current tech-
nologies such as truck GPS data can provide truck travel pattern data, 
they rarely provide data on vehicle characteristics to link travel pat-
terns to industry served or commodity carried. Moreover, commonly 
used national truck GPS data sets can provide biased samples of the 

truck population because not all truck fleets submit GPS data to the 
national database. Even through GPS data sets can be very large, 
studies show that there is an overrepresentation of larger corporate 
fleets (1). Existing traffic detector infrastructure, including weigh in 
motion (WIM) detectors and automatic vehicle classifiers, how-
ever, are capable of measuring some physical attributes of trucks, 
such as vehicle length, gross vehicle weight, number of axles, and 
axle spacing. These attributes can be used to provide detailed truck 
count data by axle configuration according to the FHWA scheme of 
13 vehicle categories (14 in California) (2). However, axle-based 
classification does not provide the necessary details that are needed 
for freight modeling, emissions estimation, and other freight- or 
truck-related studies. Truck activity patterns, emissions, industries 
served, and commodities carried are highly associated with trucks’ 
body configurations and not their axle count. However, very few 
data sources provide truck body configuration data to practitioners 
and researchers. A number of surveys have been undertaken to col-
lect data on truck distribution by body type, such as the national 
Vehicle Inventory and Use Survey conducted by the U.S. Census 
Bureau, and other regional and statewide surveys (3, 4). However, 
these survey-based approaches provide aggregated levels of truck 
body configuration distributions that are obtained from sample popu-
lations; the approaches result in significant sampling bias and limited 
details on spatial and temporal variations of truck activity.

Although a source for high-resolution truck data with wide geo-
graphic coverage and comprehensive data on truck characteristics 
is needed for data-driven freight transportation planning, infrastruc-
ture investment, and emissions analysis, it is evident that none of 
the existing methods for collecting truck data have the capability to 
effectively capture temporally continuous and detailed, industry-
specific truck characteristics or activity patterns. Of all the truck data 
collection platforms, the detector-based approach is the most ideally 
suited for reporting temporally continuous real-time traffic for the 
full population of trucks traversing a given location. In California, 
more than 100 WIM sites and 8,000 traffic monitoring sites—most 
of which are instrumented with inductive loop detectors (ILDs)—
provide continuous vehicle counts. This paper presents a new high-
resolution truck data collection system that leverages the existing 
ILD infrastructure through the implementation of recently devel-
oped truck body classification models by Hernandez et al. (5). This 
solution, the Truck Activity Monitoring System (TAMS), represents 
excellent stewardship of invested detector systems and produces a 
new paradigm of detailed truck activity data with marginal costs 
through the use of cutting-edge classification models (6). Compared 
with conventional FHWA classifications, the models developed in 
TAMS are able to distinguish 47 and 63 truck configurations from 
ILD and WIM sites, respectively, by using inductive signature data 
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from traffic detector sites enhanced with inductive signature tech-
nology. The robust and detailed truck classification scheme used by 
TAMS distinguishes commodity- and industry-specific body con-
figurations, such as agriculture, logging, and livestock trucks; dis-
tinguishing these configurations can help researchers to understand 
the unique temporal and spatial travel patterns of the industries. The 
near-real-time truck data provided in TAMS are easily accessible 
through a web interface that incorporates geographic information 
system mapping functionality. Some of the diverse applications 
of TAMS include validation and calibration of freight models such 
as the California statewide freight forecasting model (7); develop-
ment of time of day, day of week, and seasonal factors; and spatial 
analysis of truck activity patterns.

This paper introduces the technology and classification models, 
user interface, and products of TAMS. Four case studies are pre-
sented to demonstrate some unique applications of TAMS: truck 
corridor analysis, spatial truck travel pattern, industry-specific truck 
monitoring, and time of day truck travel pattern analysis.

TAMS System Design

Inductive Signature Technology and Truck Body 
Class Models Used in TAMS

Conventional ILDs produce binary outputs, zero or one, typically 
at 30 samples per second, as shown in Figure 1. In California, the  
Performance Measurement System collects data from more than 
8,000 traffic monitoring sites—most of which use ILDs—to provide  

data on traffic volumes, speeds, and congestion measures (8). Advanced 
inductive signature technology produces a waveform signature 
for each vehicle at up to 1,200 samples per second. The resulting 
detailed inductive signatures can be subsequently used to determine 
vehicle body configuration through the use of advanced classifica-
tion models. Updating an existing ILD site with signature capability 
is straightforward, requiring only installation of in-cabinet hardware, 
with no alterations to existing in-pavement sensors required. The 
conversion is relatively straightforward and cost-effective because 
lane closures are not required and existing traffic operations—such 
as traffic monitoring, ramp metering, and census counts—are not 
compromised.

The advanced inductive signature technology allows for highly 
detailed data on truck characteristics to be obtained from ILDs. 
Examples of inductive signatures from trucks with different trailer 
configurations are shown in Figure 2. Although all these trucks 
are classified as FHWA Class 9, five-axle tractor pulling a single 
trailer, the inductive signatures associated with these trailer exam-
ples are clearly distinct, affirming the use of inductive signatures as 
an effective platform for distinguishing trucks and trailers by body 
configuration. The use of axle configuration data from a WIM sen-
sor or binary outputs from a conventional ILD would not reveal the 
industry-specific body types that can be distinguished with inductive 
signatures.

Two classification models were developed and tested using 
inductive signatures to provide detailed truck body classification: a 
stand-alone signature model and a combined WIM–signature model 
for implementation at existing ILD and WIM sites, respectively (4, 9). 

FIGURE 1    Inductive signature technology: (a) vehicle type, (b) conventional measurement, and (c) advanced measurement for sedan (top) 
and semi (bottom).
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The stand-alone signature model is stratified into three tiers of sub-
models: the first tier distinguishes single units from multiunits, the 
second tier predicts five general body configurations, and the third 
tier predicts detailed body configurations across 45 truck classes, as 
shown in Table 1. The WIM–signature model integrates axle data 
with inductive signatures and produces body classifications stratified 
by axle configuration. Sixty-three distinct truck body configurations 
can be classified at WIM sites.

A total of 20,957 vehicle signature records, including passen-
ger vehicles with corresponding still images, were collected from 
four locations in California for model development and validation 
(9). The models with three tiers were developed with 6,362 truck 
records and tested with 8,940 trucks records that were not used for 
the model development. Because of the limited number of WIM 
sites deployed, the focus of this study is on results obtained from 
the stand-alone signature model.

Two performance measures were used to evaluate the performance 
of the model:

1.	 Classification accuracy, which represents the percentage of 
correctly classified vehicles within a truck class, and

2.	 Volume error, which is defined as the absolute difference 
between the numbers of observed and predicted vehicles divided 
by the observed number, expressed as a percentage.

Classification accuracy is an important indicator of model perfor-
mance for individual body classification results, and volume error 
measures the accuracy of counts over an aggregated interval, such 
as hourly and daily volume estimates.

Within each general body configuration (i.e., second tier), the 
average classification accuracy of detailed truck body configurations 

ranges from 72% to 94%, with aggregated volume errors ranging 
from 7% to 15%, as shown in Table 2. The third tier’s results show 
that 34 truck body classes have accuracies above 70% and 19 classes 
were predicted with a volume error of within 10%. Table 3 sum-
marizes the performance of the five most common vehicle classes 
from each model, together with container and logging trailers, 
which are used in the case studies presented in this paper. Among 
tractors pulling a single semitrailer, the model predicted enclosed 
van trailers, typically the most frequently observed on highways, 
with an accuracy of 74.6% and volume error of 10.8%. For 20- and 
40-ft container trailers, which are highly associated with intermodal 
facilities, the model achieved an accuracy of 77.8% and volume 
error of 8.0%. A more in-depth description of the WIM–signature 
model used in TAMS and further validation results of both models 
is described in work by Hernandez et al. (5) and the California Air 
Resources Board (9).

Data Collection Sites Used in TAMS

As shown in Figure 3, TAMS has more than 90 data collection 
sites, most of which are deployed at ILD sites. Eight of these ILD 
sites were selected for case studies to demonstrate potential uses of 
TAMS data.

Hardware Components and Communication 
Architecture of TAMS

Figure 4 summarizes the hardware components and communica-
tion architecture of TAMS. The hardware components are installed 

FIGURE 2    TAMS classifications for FHWA Class 9 vehicle category: (a) enclosed van, (b) livestock, (c) lowboy platform, (d) drop-frame van, 
(e) basic platform, and (f) tank.

(a) (b) (c)

(d) (e) (f)
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within existing ILD and WIM traffic cabinets. The collected data 
(e.g., ILD signatures, WIM data records, or both) are transmitted in 
real time to a central PostgreSQL database through a Secure Shell 
tunnel. The data are then processed nightly to yield detailed clas-
sification results and aggregated summaries. Queries to the database 
produce classification results that are displayed on the TAMS web 
interface.

User Interface of TAMS

The TAMS web interface (http://freight.its.uci.edu/tams) was devel-
oped to provide access to on-demand summary truck classification 
reports using a combination of Java, JavaScript, and JavaServer 
Pages. Figure 5 shows an example of truck classification data pro-
vided by TAMS. The TAMS interface allows the user to query data 
within various spatial regions, including 12 Caltrans districts, nine 
major metropolitan planning organizations, and eight air basins in 
California. An interactive interface based on OpenStreetMap allows 
users to intuitively search truck classification results by vehicle cate
gory and location. All historical data are accessible to facilitate access 
to archived truck count data. Each site initially provides the break-
down of daily volumes by lane and aggregated by vehicle class 
categories (see Box A in Figure 5). A detailed breakdown of hourly 
volume counts by detailed truck classes can be obtained by clicking 
on the individual daily volume entries (see Box B in Figure 5). With 
the hourly volume table, a cell color scheme is implemented to rep-
resent variations of the daily hourly volume patterns. This feature 
facilitates a quick assessment of the predominant truck volumes at 
each location and the peak hourly volumes corresponding to each 
truck configuration.

Case Studies

The four case studies in this section illustrate how the data obtained 
from TAMS can be used to analyze truck activity along major cor-
ridors by industry, time of day, and day of week. Each focuses on 
a unique application of TAMS data that can be used by research-
ers and practitioners to better understand truck activity patterns. As 
mentioned, TAMS provides two-levels of truck counts, aggregated 
daily volume categories and hourly volume by detailed truck class, 
to facilitate various levels of analysis. In this paper, the volume 
difference between single-unit truck and tractor pulling trailer(s) 
was compared through an aggregated truck corridor analysis. For 
the detailed level of analysis, spatial truck travel pattern, industry- 
specific truck monitoring, and time of day truck travel pattern 
analysis were performed using selected truck classes, such as inter-
modal container trailers, logging trailers, and enclosed van trailers, 
each of which serve dissimilar industries with distinct operational 
characteristics.

Truck Corridor Analysis

Compared with passenger vehicles, which have diverse route choice 
options, trucks have distinct travel patterns that are constrained by 
the locations and operations of industries and facilities they serve. 
The first case study focuses on distinguishing truck corridors. Truck 
corridor analysis allows agencies to understand the spatial distribu-
tion of truck travel patterns to facilitate freight facility investment 
planning and pavement maintenance.

TABLE 1    Stand-Alone Signature Model Truck 
Classification Scheme (9)

Tier 2 Class Detailed Body Class

Passenger vehicle

Single-unit (straight) trucks with no trailer Conventional van/platform
Cab over van/platform
30-ft bus
20-ft bus
Multistop van/RV
Utility/service
Concrete
Dumpster transport
Garbage
Bobtail
Dump triple rear
Street sweeper
Dump/tank

Single-unit (straight) trucks with trailer Small trailer
Dump–dump
RV with towed vehicle
Concrete with lift axle
Tank–tank
Platform–platform
Tow truck with vehicle
Dump with lift axle

Tractors pulling single semitrailer Enclosed van (FHWA 9)
Enclosed van reefer 

(FHWA 9)
Enclosed van (FHWA 8)
Enclosed van reefer
53-ft container
40-ft container
40-ft container reefer
20-ft container
Platform
Tank
Open-top van
Auto
Lowboy platform
Drop-frame van
Dump
Logging
Livestock
Agriculture
Beverage
Platform/tank

Tractors pulling multiple trailers Pneumatic tank
Hopper
Agricultural van
Low-chassis van

Note: RV = recreational vehicle; reefer = refrigerated.

TABLE 2    Validation Results for Inductive Signature Only Model (9)

Model
Number  
of Classes

Number 
of Testing 
Samples

Accuracy 
(%)

Volume
Error (%)

Single-unit (straight) 
trucks with no 
trailer

13 
 

1,476 
 

72.3 
 

15.4 
 

Single-unit (straight) 
trucks with trailer

  8 746 94.2   8.2 

Tractors pulling 
single semitrailer

19 6,113 74.2 11.3 

Tractors pulling 
multiple trailers

  7 605 90.4 7.0 
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Six TAMS sites (Sites C through H in Figure 3) located on SR-210, 
I-10, and SR-60 in Southern California were chosen because these 
corridors serve as parallel routes connecting San Bernardino County 
and Los Angeles County. To compare truck volume along the select 
corridors, daily truck count data on Tuesdays and Wednesdays in June 
2016 were extracted from TAMS. About 1.5 million single-unit and 
tractor pulling trailer(s) trucks were observed and were used for this 
analysis. In Figure 6, corridor geometries were created to represent 
each data collection site, and average daily volumes for single-unit 
and tractor pulling trailer(s) trucks were compared for the six cor-
ridors. Results show that single-unit trucks showed similar volume 
at all six sites, whereas volumes for tractor pulling trailer(s) trucks 
were quite distinct. Because single-unit trucks are mostly associated 
with local service, their volumes were expected to be more evenly 
distributed in a metropolitan area. However, much higher volumes 
of tractor pulling trailer(s) trucks were observed at Sites C, E, G, 
and F, which is likely explained by the sites’ close proximity to 
facilities such as warehouses and intermodal rail facilities.

Spatial Truck Travel Pattern Analysis

The Los Angeles and Long Beach port complex in California is the 
busiest in the United States, moving $180 billion per year in cargo 
between the United States and Asia (10). Consequently, there is 
a substantial volume of trucks transporting goods in intermodal 
containers from the ports to adjacent cities where freight transfer 
facilities and distributions centers are located. In particular, 20- and 
40-ft intermodal containers—referred to as port container trailers— 
are seen in heavy numbers along the corridors that serve the ports 
and inland cities. Commodities carried from the port in 20- and 
40-ft intermodal containers are commonly repackaged in 53-ft 
containers at inland distribution centers or at near-dock rail yards 
before being shipped to their final destination (11). Thus, 53-ft 
container trailers—referred to as domestic container trailers—are 

rarely observed near seaports because 53-ft containers cannot be 
loaded on cargo ships.

In this case study, travel patterns of two types of container trailers 
(i.e., port trucks and domestic container trailers) were compared 
across cities adjacent to ports. Five sites in Southern California 
(Sites A through E in Figure 3) were selected to show the spatial 
distribution of container trailers. The I-710 corridor connects to port 
entry and exit gates, and the other four sites represent major routes 
within the influence of the ports. Data were obtained from Tuesdays 
through Thursdays in June 2016 to represent typical weekday truck 
traffic patterns. The data were aggregated to daily volumes, and the 
average daily volumes for port and domestic container trailers are 
compared in Figure 7.

As expected, data from TAMS revealed that a substantial volume 
of port containers were observed at Site A, located on I-710. The 
overall route distribution at the five study sites showed a distinct 
trend in 20- and 40-ft container trailer counts close to the Port of 
Long Beach, whereas trucks hauling 53-ft containers were more 
likely traveling along inland corridors for domestic freight move-
ment. A large number of port trucks was observed traveling through 
the site located along SR-60 instead of the site on SR-210 and the 
site on I-10. Thus, SR-60 can be identified as a major corridor for 
port container trailers. The volumes of domestic container trailers 
were more significant on SR-210 and I-10 compared with port con-
tainer trailer movements; SR-60 was a key corridor for domestic 
container trailers as well. The reason is that there is an intermodal 
rail facility along the routes. This observation confirms that the 
travel patterns of the two types of container movements are highly 
related to their affiliated industrial facilities.

Industry-Specific Truck Monitoring

In most industries, directional truck volumes by configuration are 
fairly equal. However, logging trucks are an exception because they 

TABLE 3    Truck Body Class Model Results for Selected Truck Body Classes (9)

Model Body Classes
Number of Testing 
Samples Accuracy (%) Volume Error (%)

Single-unit (straight) trucks with no trailer Conventional van/platform 333 74.5 12.9
Utility/service 312 68.9 0.3
Cab over van/platform 209 68.4 9.6
30-ft bus 114 89.5 4.4
Bobtail 107 89.7 2.8

Single-unit (straight) trucks with trailer Small trailer 515 96.3 2.5
Dump–dump 87 100 4.6
RV with towed vehicle 49 85.7 8.2
Concrete with lift axle 34 100 2.9
Tank–tank 30 76.7 13.3

Tractors pulling single semitrailer Enclosed van (FHWA 9) 2,343 74.6 10.8
Enclosed van reefer (FHWA 9) 1,624 74.3 3.7
Platform 796 77.5 11.2
Tank 283 70.7 6.0
Open-top van 185 60.5 18.9
53-ft container 124 57.3 12.9
20-ft and 40-ft container 150 77.8 8.0
Logging 15 80.0 13.3

Tractors pulling multiple trailers Enclosed van 253 92.9 2
Dump 126 90.5 6.3
Platform/tank 121 90.1 2.5
Hopper 46 91.3 23.9
Pneumatic tank 36 75.0 22.2
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FIGURE 3    Data collection sites in TAMS.

FIGURE 4    Data flow architecture of TAMS (SSH = Secure Shell; UCI ITS = University of California, 
Irvine, Institute of Transportation Studies).
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FIGURE 5    TAMS user interface.

(a)

Site E : SR-210

Site D : I-10

Site C : SR-60

Site F : SR-60

Site G : I-10

Site H : SR-210

FIGURE 6    Average daily volume by vehicle type: (a) single-unit trucks.
(continued on next page)
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FIGURE 7    Average daily volume of container trailers: (a) port container trailers (20 and 40 ft) and (b) domestic container trailers (53 ft).
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FIGURE 6 (continued)    Average daily volume by vehicle type: (b) tractor-pulling trailer(s).
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FIGURE 8    Logging trucks: (a) loaded and (b) empty (12).

(a) (b)

are specially designed with increased load capacity to handle the 
unique dimensional commodity of logs. The platform bed on which 
logs are loaded has an adjustable length to allow for the most effi-
cient use of loading space. Once a load is delivered, logging trucks 
typically carry their trailers in a piggyback configuration in which 
the collapsible empty trailer is carried on the bed of the tractor, 
as shown in Figure 8. Hence, analysis of logging truck volumes 
can reveal their directional operational patterns, which are highly 
related to the location of logging and processing facilities.

For this case study, the TAMS station at SR-70 near Beale Road 
in Yuba County, California, (Site I in Figure 3) was selected because 
the site is located in a timber-producing area. About 3,000 logging 
trucks were observed on weekdays in June 2016. Figure 9 com-
pares the average daily volume from Monday through Friday by 
directional flow.

The directional flow shows distinct differences in volume. Whereas 
the eastbound direction experienced an average of 100 logging trucks 
a day, only 30 trucks on average were observed in the westbound 
direction. Logging trucks in the empty piggyback configuration 
were observed primarily in the westbound direction. This result 

indicates that the timber-producing facility is located west of the 
data collection site.

Truck Travel Pattern Analysis by Time of Day

Site A, located on northbound I-710 was selected for analysis of 
truck travel patterns by time of day. The volumes of port container 
trailers and enclosed van trailers were compared. About 59,000 port 
container trailers and 8,300 enclosed van trailers were observed 
from Tuesday through Thursday in June 2016. To capture the time 
of day pattern, a normalization process was implemented to average 
hourly volumes; total average daily volume of each body type was 
used as a denominator in the normalization process. The average 
daily volumes of 4,922 for port trucks and 698 for enclosed van 
trailers were used in this analysis. Figure 10 presents the time of day 
pattern with the normalized hourly average volume.

The time of day distributions of port trucks and enclosed van 
trailers have unique and distinct patterns. Whereas enclosed van 
trailers have high peak volumes between 7 a.m. and 5 p.m., port 
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trucks have several peak hours throughout the day. Three dip points 
were observed in the distribution for port trucks. These points are 
assumed to be explained by a break time for lunch and dinner or 
drivers’ work shifts. Volume for the port trucks could be influenced 
by the PierPass program from the Port of Long Beach and the Port 
of Los Angeles. As an incentive program, PierPass encourages trucks 
to use port facilities during the non–peak hours of 6 p.m. through  
3 a.m. on weekdays (13).

This temporal truck movement analysis showed that even though 
trucks may have an identical axle-based class (enclosed van trail-
ers and port trucks are associated with FHWA Class 9), the time of 
day travel pattern of trucks differed significantly by body type. This 
result confirms that the availability of detailed truck configuration 
data provides valuable insight into the temporal travel behavior and 
industrial activity of trucks.

Conclusions and Future Work

TAMS was developed as a data source for truck activity, with the 
capability of providing detailed truck classification data along major 
truck corridors in California; the data have the potential to be linked 
with commodity groups and industries served by trucks. TAMS 
was designed to be publicly accessible via an interactive web-based 
interface and to archive data continuously. The data from TAMS can 
assist planning agencies and other users in gaining further insight of 
truck activity patterns and behaviors to guide freight planning and 
infrastructure investment while mitigating negative impacts such as 
emissions, safety concerns, and traffic congestion.

The primary objective in the development of TAMS was to mea-
sure truck activity along major truck corridors for emissions and 
freight analysis. However, many collateral benefits are expected 
from this system. First, the TAMS data can be used to monitor truck 
activities for policy analysis. For example, the system can be used to 
identify and monitor corridors with a high incidence of lane violations, 
on which heavy-duty trucks may occasionally travel on prohibited 
faster inner lanes instead of the outer truck lanes. It can also be used 
to monitor the effects of truck policies, such as the influence of the 

PierPass program on the extent of intermodal truck traffic by time of 
day. In addition, data from TAMS also has the capability to facilitate 
analysis of temporal and seasonal variations of truck activities by 
industry; this capability can help in gaining a better understanding 
of industry impacts on traffic, infrastructure, and emissions and may 
be a key data source for developing improved estimates of truck 
vehicle miles traveled. Because trucks have a far more significant 
impact on pavement service life than passenger vehicles, TAMS can 
also be used to identify the relationship between truck volumes and 
pavement deterioration rates. Despite the need to better understand 
the impacts of trucks in crashes (14), this area of research has been 
lacking because of the unavailability of reliable truck exposure data. 
This lack can be mitigated by the detailed truck class data provided 
by TAMS. Furthermore, TAMS is expected to provide valuable data 
to improve the effectiveness of tax policies associated with truck 
activities. Finally, TAMS may also be extended to arterial roadways 
to enhance urban area truck data and provide further insight into 
last-mile freight movements.
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