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Abstract

This paper describes a computational model of spatial learning
and localization in rodents. The model is based on the sugges-
tion (based on a large body of experimental data) that rodents
learn metric spatial representations of their environments
by associating sensory inputs with dead-reckoning based
position estimates in the hippocampal place cells. Both these
sources of information have some uncertainty associated
with them because of errors in sensing, range estimation,
and path integration. The proposed model incorporates
explicit mechanisms for information fusion from uncertain
sources. We demonstrate that the proposed model adequately
reproduces several key results of behavioral experiments with
animals.

Introduction

Animals demonstrate a wide range of complex spatial learn-
ing and navigation abilities (Gallistel, 1990). Considerable
research effort has been expended in understanding different
aspects of these spatial behaviors. These efforts have resulted
in a large corpus of experimental data, a number of theories
and models of animal spatial learning. and several implemen-
tations.

Among the known aspects of animal spatial learning is the
suggestion that rodents learn cognitive maps of their spatial
environments (Tolman, 1948). There is also a vast body
of experimental data that directly implicate the hippocam-
pal formation in rodent spatial learning (O’ Keefe and Nadel,
1978). Based on this data, O’Keefe and Nadel proposed the
locale system hypothesis, suggesting that the hippocampal
place cells learn metric cognitive maps by integrating sensory
inputs and dead-reckoning ' position estimates generated by
the animal.

In the two decades since the locale hypothesis was first
proposed, a number of computational models of hippocam-
pal spatial learning have been developed (Balakrishnan et al_,
1997). Surprisingly, only a few of these models support met-
ric spatial representations. Furthermore, the few models that
are based on the locale hypothesis make an unrealistic as-
sumption that the two information streams, namely, sensory
inputs and dead-reckoning, are error-free. However, sensory
and dead-reckoning systems of animals are prone to several
sources of errors (e.g., errors in place recognition, distance
estimation, dead-reckoning drifts, etc.), and therefore, any

'Dead-reckoning or path-integration refers to the process of up-
dating an estimate of one’s current position based on self-knowledge
of time, speed, and direction of self-motion.

computational model of hippocampal spatial learning and lo-
calization must be capable of satisfactorily dealing with these
€ITOorsS.

In this paper we describe a computational model of hip-
pocampal spatial learning that allows the animal to learn a
metric place map and explicitly addresses information fusion
from uncertain sources. Following a brief discussion of ex-
perimental data supporting the model, we present some key
features of the model and some simulation results that demon-
strate that the model satisfactorily reproduces certain behav-
1oral experiments.

Hippocampal Spatial Learning

The hippocampal formation is one of the highest levels of
association in the brain and receives highly processed sensory
information from the major associational areas of the cerebral
cortex. For anatomical and physiological details the reader is
referred to Churchland and Sejnowski (1992).

Cellular recordings in the hippocampus have led to the dis-
covery of place cells and head-direction cells which show
highly correlated firings during the execution of spatial tasks.
Pyramidal cells in regions CA3 and CA1 of the rat hippocam-
pus have been found to fire selectively when the rat visits par-
ticular regions of its environment. These cells thus appear
to code for specific places and have been labeled place cells
(O'Keefe and Nadel, 1978). Cells with such location-specific
firing have been found in almost every major region of the
hippocampal system, including the EC, the Dg, regions CA3
and CAl, the Sb, and the post-subiculum.

In addition to place cells, head-direction cells in the hip-
pocampal region respond to particular orientations of the ani-
mal'’s head irrespective of its location. These cells thus appear
to function as some sort of an in-built compass (Taube et al.,
1990).

A number properties of place cells and head-direction cells
have been identified (see McNaughton et al. (1996) for de-
tails), primarily the fact that the firing of these cells is depen-
dent on sensory as well as dead-reckoning inputs,

Hippocampal Cognitive Map

We have developed a computational implementation of the
locale system hypothesis. Our model allows the animat (a
robot simulating an animal) to learn its environment in terms
of distinct places, with the center of each place also being
labeled with a metric position estimate derived from dead-
reckoning. A detailed treatment of this computational model

102


mailto:balakris@cs.iastate.edu
mailto:rushi@cs.iastate.edu
mailto:honavar@cs.iastate.edu

can be found in Balakrishnan et al. (1997). Here we will only
present a brief summary.

As the animat explores its environment, the model creates
new EC units that respond to landmarks located at particu-
lar positions relative to the animat. Concurrent activity of
EC units defines a place, and place cells in CA3 layer are
created to represent them. These sensory input-driven CA3
place cells are then associated with position estimates derived
from the dead-reckoning system to produce place firings in
the CAl layer. Thus, the firing of CAl cells is dependent
on sensory inputs from CA3 and the animat’s dead-reckoning
position estimates.

When the animat revisits familiar places, incoming sensory
inputs activate a place code in the CA3 layer. Since multi-
ple places in the environment can produce the same sensory
input (called perceptual aliasing in robotics), the CA1 layer
uses dead-reckoning estimates to disambiguate between such
places and produces a unique place code that corresponds to
the current place. The system then performs spatial local-
ization by matching the predicted position of the animat (its
current dead-reckoning estimate) with the observed position
of the place field center (dead-reckoning estimate previously
associated with the activated CA1 place code). Based on this
match, the dead-reckoning estimate as well as the place field
center are updated as shown in Figure 1.

Prediction

estimate
dead-reckoning

Position estimate

Sansory nputs Field center
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Figure 1: A schematic of hippocampal localization.
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Thus, not only does our model learn a metric cognitive map
of the environment, but it also permits the metric estimates to
be updated when the animal revisits familiar places.

Hippocampal Kalman Filtering

It should be noted that the information provided by the sen-
sory and dead-reckoning systems is uncertain because of pos-
sible errors in object recognition, distance estimation, and
path-integration. Thus, if the hippocampus performs robust
spatial localization, it must have adequate mechanisms for
handling uncertainty in these information sources.

As with animals, mobile robots too have to deal with un-
certainties in sensing and action. One of the probabilistic lo-
calization approaches for mobile robots is the Kalman filter
(KF) (Gelb, 1974) (or some extension or generalization of
it). KF allows the robot to build and maintain a stochastic
spatial map, propagate sensory and motion uncertainties, and
localize in optimal ways (Ayache and Faugeras, 1987). A
schematic for a KF is shown in Figure 2.

As can be observed from Figures | and 2, the computa-
tional model of hippocampal function and KF both embody

103

Prediction

State Predicted
eslimate measurement
Sensor model State estimate
Actual \ Observed Update
state measurement

Observation

Figure 2: A schematic of Kalman filtering.

the same predict-observe-match-update principle. Further,
KF provides a framework for performing stochastically op-
timal updates even in the presence of prediction and obser-
vation errors. Based on the similarities between the two, we
have developed a KF framework for uncertain information fu-
sion in the hippocampal localization model described above
(Balakrishnan et al., 1997). In this framework, KF helps the
animal in maintaining and updating an estimate of its own po-
sition as well as the estimates of the place field centers. These
estimates are modeled by a state vector:

1En]”
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where zg ; denotes the position of the animal at time instant
k, x; denotes the center of place field ¢, and n is the number
of places that have been visited by the animal. These posi-
tion estimates are assumed to be specified in 2D Cartesian
coordinates, i.e., ; = (z;,,2;,). The animal also computes
and updates the covariance matrix associated with this state
vector, denoted by P, which is given by:
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denotes the covariance between the 2D Cartesian representa-
tions of the state elements z; and ;.

When a new place is visited, the state vector is augmented
by the center of this new place and the state estimate and
its covariance matrix are modified accordingly. If the ani-
mal motions are assumed to be linear and the measurement
function in Figure 2 is also a linear function of the state, the
place field centers and the animal’s position estimate can be
updated in stochastically optimal ways. For details, refer to
(Balakrishnan et al., 1997).

Frame Merging

We have also developed an extension of the computational
model described above that permits the animat to learn sep-
arate place maps in different frames and to merge frames to-
gether in a well-defined manner.



Suppose the animat has learned a place map frame forq-
When the animat is reintroduced at another place, it stores
away foiq in its memory, and begins a new frame frew at
the point of re-introduction. It also resets its dead-reckoning
estimates to zero, thereby making the point of re-introduction
the origin of its new dead-reckoning frame. Now it proceeds
as before, learning places and creating EC, CA3, and CAl
cells using the algorithms described in Balakrishnan et al.,
(1997). At each step it also checks to see if sensory inputs
excite CA1 cells residing in fyq. If this happens, the animat
is at a place it has seen earlier in the older frame (foq). It
then merges the two frames, as follows.

Suppose CALl unit ¢ fires in fr. and m fires in forq. Let
%[new and xfe1¢ denote the estimated center of the animat's
current place in the two frames f.., and f,;q. We can update
the place field centers of foia 10 frew Via the transformation:
Vi € fod (N

The covariances between units in f,4 and f,.. can be up-
dated using the following expressions (details of the deriva-
tions can be found in (Balakrishnan et al., 1998b)):

Case I: If i and j were both units in foq

C]_fjneu = C;'f_jom _ C:::}d _ C:‘:::d 4 C,‘;;’:,‘: + C‘,{?’“‘"
Case II: If i was a unitin f,. and j was in ford
C{;\tu — Ci{:uew

where C;; refers to the covariance between units 7 and j in
a particular frame.

The animat localizes to the first place that sensorily
matches a place it has seen before. Therefore, if multi-
ple places in the environment produce similar sensory inputs
(perceptual aliasing), this procedure will lead to localization
problems.

Goal Representation

Goals encountered by the animat can also be remembered in
terms of their metric positions, which is derived from dead-
reckoning. Goal position estimate is error prone because the
dead reckoning system of the animat is corrupted by noise.
We use equation 2 to update the goal location estimate when-
ever the goal is visited. These updates are stochastically opti-
mal.

2 2
o o
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Here, Xg is the estimated goal position and oé its vari-
ance, Xg is the current dead-reckoning estimate with associ-
ated variance o?2.

We have also developed a mechanism to remember multi-
ple goal locations in a single frame. When two frames are
merged, a Mahalanobis distance test is performed between

all pairs of goals in both frames. If two goals are found to be
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within a squared Mahalanobis distance of less than 4.61, the
last visited goal is kept, while the other goal is discarded.

When the animat reaches a goal, a nearest remembered
goal location 1s found from the locations the animat has al-
ready visited. If no goal location is nearby, a new goal posi-
tion with it's goal variance 0, = oo is created. This ensures
that the current dead-reckoning estimate is assigned to the
new goal position when equation 2 is applied.

Since the animats can remember multiple goals, a goal se-
lection mechanism is also required. We have implemented
a heuristic strategy that involves choosing the most recently
visited goal location first and navigating to it. If the goal
is not found at this location, we use a mechanism in which
the animat chooses to approach the nearest goal or a confi-
dent/reliable goal with equal probability.

The animats in our experiments navigate to goal locations
in two ways. If the goal is visible, the animats directly move
towards the goal (geal approaching). However, if the goal
is not visible but the animat has a record of goal locations
already seen, it selects a goal as discussed above and moves
directly towards it (goal seeking). For the purposes of the
experiments described in this paper the environments are as-
sumed to be largely open and obstacle-free.

Simulation Details and Results

Experiments of Collett et al. (1986)

We simulated the behavioral experiments of Collett et al.
(1986) using our computational model of hippocampal spatial
learning described earlier. The experimental setup of Collett
et al. consisted of a circular arena of diameter 3.5 meters
placed inside a light-tight black painted room. Gerbils were
trained to locate a sunflower seed placed in different geomet-
ric relationships to a set of visible landmarks. The floor of the
arena was such that it prevented the gerbil from spotting the
seed until it was very close to the gerbil (Collett et al., 1986).

In our simulations, we used a circular arena of radius 10
units. The walls of the arena were assumed to be devoid of
any distinguishing sensory stimuli. The landmarks, on the
other hand, were assumed to be visible to the animat from all
points in the arena. Estimate of the relative position of the
landmark was assumed to be corrupted by a zero-mean Gaus-
sian sensing error with standard deviation og = 0.01. Each
landmark at a specific relative position caused an EC unit to
fire. A simultaneous activation of EC units caused firing of
CA3 and CAl layers. The animat motion was corrupted by
zero-mean Gaussians with oy = 0.5 units. The animats also
possessed means for dead-reckoning with errors modeled as
zero-mean Gaussians with op = 0.05 units.

For each trial, the animat was introduced into the arena at
a random position and was allowed to perform 500 steps of
sensing, processing and moving. If the animat happened to
see the goal, it was made to approach and consume it. Each
animat was subjected to five such training trials. In each trial
the animat learned places in a new frame by inducting EC,
CA3 and CA| units in appropriate ways, merged frames when
required, and created goal representations.

Once training was complete, the animat was subjected to
ten testing trials, in which the landmarks in the arena were
manipulated in specific ways and the goal was absent. Here,
the animat was released at random positions in the arena with



its dead-reckoning variance set to 0. Animats were only ca-
pable of localizing and did not induct any new units, A lo-
calized animat was allowed a maximum of 300 time steps to
navigate to the estimated goal position. Since the goal was
not found even after searching for 25 time steps at the goal
location, animat chose another goal location.

For the training as well as testing trials, the trajectories fol-
lowed by the animats were recorded. Also, the arena was
decomposed into cells of size 0.33 x 0.33 and a count of the
amount of time spent by the animats in each cell was kept. A
normalized histogram for five animats was then plotted.

We simulated the one, two, and three landmark experi-
ments of Collett et al. (1986), and the search distributions
of our animats (Figures 3, 4, and 5) match rather closely with
those of the gerbils. The large dark squares in the plots denote
the landmarks.

i

Figure 3: Left: One landmark experiment. Middle: Two land-
marks experiment. Right: Two landmarks experiment with
one landmark removed.

Figure 4: Left: Two landmarks experiment with landmark
distance doubled. Middle: Three landmarks experiment.
Right: Three landmarks with one removed.

.....

Figure 5: Left: Three landmarks with two removed. Middle:
Three landmarks with one distance doubled. Right: Three
landmarks with an extra landmark added.

Water-Maze Experiments of Morris (1981)

Morris (1981) experimented with male hooded rats of the Lis-
ter strain to demonstrate that rats are capable of rapidly learn-
ing to locate an object using distal cues.

A circular pool filled with opaque, milky water was used
for the purpose. Objects present along the walls of the room
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served as distal cues. The pool was devoid of any objects ex-
cept the escape platform. The escape platform was one of the
following two kinds. First type was black colored, circular
and protruding above the water, and therefore visible from a
distance. Second type was white colored, circular and sub-
merged in the water, thus virtually invisible.

The population of rats was divided into four groups of 8
individuals each. For Cue + Place group, the visible, black
platform was used, which was always at the same location
(NW, NE, SE, or SW) across all trials for a given rat. The
second group was exactly like the first except that the white
platform was used instead. This was designated the Place
group. In Cue-only group, rats were trained using the black
platform. However, in this case the platform was placed in
one of the four positions, in an unpredictable sequence over
trials. Finally, the Place-Random group was similar to the
Cue-only experiment except in the use of the white platform
instead of the black one.

For each trial, the rats were released in the pool, and their
trajectories were recorded along with the time taken to find
the platform. Following 20 such trials over 3 days, the groups
were further divided into subgroups of 4 individuals each.
Each of these subgroups was subjected to 4 testing trials, of
type A or B.

In Test A the platform was removed and search behavior
was observed for 60 seconds. For Test B, rats of groups Cue
+ Place and Place were tested with the platform now placed
in the quadrant diagonally opposite the one used in training.
Rats of groups Cue-only and Place-Random were tested with
the platform position held fixed. The escape behavior of the
animals was then observed.

In our simulations, we used a circular arena of radius 3.75
units inside a square room measuring 20 by 20 units. Con-
sistent with the ratio of pool and platform sizes in Morris’
experiments, we chose the radius of our simulated platform
to be 0.65 units. It was assumed that the animat could see
the platform from a distance of 0.325 units. Four indistin-
guishable landmarks were used, one along each wall of the
simulated room.

The sensing, motion, and dead-reckoning errors were same
as in the foregoing experiments. We also assumed that rats
swam slower than their normal walking speeds, and hence
the size of motion step was set to 0.4 units.

As in the case of the original experiment, we allowed our
animats four pre-training trials in which they randomly ex-
plored the environment for 100 steps without the platform
presentin the pool. During this stage, our spatial learning sys-
tem allowed the animat to acquire a spatial map correspond-
ing to the environment. In the training trials, the animats en-
gaged in the goal seeking behavior. If the platform was not
found at the particular goal location, the animat searched for
15 time steps before selecting another goal location and nav-
igated towards it.

Groups of eight animats each were used in experiments
corresponding to groups Cue-only, Cue + Place, Place, and
Place-Random as in Morris (1981). The escape latencies for
the first 20 training trials and the last four trials of Test B are
shown in figure 6.

As seen in Figure 6, the Place group quickly learned the
goal position. Furthermore, the Cue group achieved very
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Figure 6: Escape Latencies while training and test B.

small escape latencies. One reason for this is the fact that
our simulation had a built-in mechanism to directly approach
visible platforms from the start. Actual animals may not have
such direct approach behaviors preprogrammed but may learn
them with experience. Further, as with rats, our animats too
perform poorly in the Place-Random experiment.

C+P P c P/R
55 g ik :
“\_; 45 ot % /
Test A B B A

Figure 7: Trajectories followed by the animats (see text for
detail).

Figure 7 shows the paths taken during the first test trial
by representative animats in different groups. Labels C+P, P,
C and P/R denote group Cue + Place, Place, Cue-only and
Place-Random respectively.

Discussion

The primary goal of the simulations was to test whether our
computational model of hippocampal spatial learning and lo-
calization was capable of reproducing the behavior of gerbils.
We simulated a number of experiments conducted by Collett
et al. (1986) and by Morris (1981).

It should be pointed out that our animats did not remem-
ber goals in terms of independent vectors to individual land-
marks, as suggested by (Collett et al., 1986). Instead, places
were remembered as independent vectors to landmarks, while
the goal was simply remembered as a place.

In the process of simulating behavior, we identified an im-
portant issue, namely, how do animals choose one goal to
approach from multiple ones that they might remember? In
order to simulate the Place-Random experiments of Morris,
we had to incorporate a heuristic goal selection strategy. Our
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Figure 8: Performance on Test A. Histogram shows the dura-
tion of time spent by the animats in ecach quadrant. Here TR
is the training quadrant, A/L and A/R are the adjacent quad-
rants to the left and right respectively, and OP is the opposite
quadrant for groups Cue + Place and Place. The data from
the other groups simply indicate the quadrant.

results using this mechanism closely parallel the behaviors
observed by Morris. Indeed, our computational framework
allows one to implement and test different hypotheses of goal
selection. Such an approach can lead to a better understand-
ing of goal selection processes in navigating rodents.

From Figure 8 it can be observed that Place and Cue +
Place experiments indicate a strong spatial bias towards the
training quadrant. While the former observation is consistent
with the results of Morris, the latter is a surprise. However,
this is a direct result of our spatial learning and navigation
strategy, where we have assumed that the animat faithfully
learns a place map. There is a possibility that in the presence
of reliable visual cues (e.g., platform), place learning may not
be as reliable, since it is not even necessary. This hypothesis
regarding differences in place learning in the presence or ab-
sence of reliable cues, remains to be studied.

Related Work To the best of our knowledge the only other
computational simulation of the experiments by Collett et
al. (1986) is that of Redish and Touretzky (1996) (referred
to hereafter as the RT model). Our computational model
of hippocampal spatial learning is closely related to the RT
model, since both models are based on the cognitive map con-
cept of Tolman (1948) and the locale system hypothesis of
O’Keefe and Nadel (1978). Finally, both simulations repre-
sent goals in terms of metric position estimates derived from
dead-reckoning.

Despite these similarities, there are some significant dif-
ferences between the two models and the behavioral results
generated by them. Our computational framework explic-
itly addresses the issue of information fusion from erroneous
(or uncertain) sources. Secondly, by using the framework of
Kalman filtering, we have derived update expressions which
are stochastically optimal for the given model. Thirdly, the
RT model incorporates a mechanism for initializing the head
direction. However, doing so makes the place cells direc-
tional, which appears to be at odds with experimental results
that suggest the non-directionality of the CA3 and CA1 pyra-



midal cells. Our model assumes that the place cells are non-
directional. This requires that the animats have reliable head-
direction information. Fourthly, our model learns and remem-
bers multiple goal locations. It is not clear how one could rep-
resent multiple goals in the RT model, considering that goals
in their model correspond to the origin of the dead-reckoning
system. Finally, the animats in our simulations were capable
of actually moving in their environment, whereas the animats
used in the RT simulations simply predict the goal location.
A more detailed comparison between the two models can be
found in Balakrishan et al. (1998a)

A number of researchers have developed computational
models to simulate the behavioral experiments of Morris
(1981). Blum and Abbott (1996) developed a model of hip-
pocampal spatial learning, where the place cell activity en-
coded the place further ahead on the path. The animat navi-
gated towards the position coded by the place cell activity at
any given place. However, they only simulated the behavior
of the Place group of rats.

Sharp et al. (1996) used a slightly different model to sim-
ulate the water-maze experiments of Morris. In their model
the place and head direction cell firings allowed firing of unit
in the nucleus accumbens which caused the animat to turn
left or right by a certain angle. The experiments with this
model matched closely with the Morris’ experiments, but it
was not clear how multiple goals can be represented in this
framework.

Kalman filter-based localization approaches require a sen-
sor model of the environment and often run into problems due
to perceptual aliasing (Ayache and Faugeras, 1987). The hip-
pocampal model, on the other hand, provides a place-based
extension of KF and addresses these problems (Balakrish-
nan et al., 1997). A number of robot localization approaches
based on cognitive mapping theories have also been devel-
oped (Kortenkamp, 1993). Although closely related to the
hippocampal spatial learning model, they are not formulated
to computationally characterize a specific brain region and
differ in this regard. A number of neurobiological models of
robot navigation have also been developed (Recce and Harris,
1996). A more detailed discussion about the different models
is available in Balakrishnan et al. (1997).

Future Work As we mentioned earlier, our computational
model assumes that the animat has an accurate head-direction
estimate. We are currently exploring the possibility of such a
head-direction reset mechanism being implemented by place
cells in the subiculum with the correction being performed by
the head-direction cells in the post-subicular region (Balakr-
ishnan et al., 1998b).

Given the fact that Kalman filter based models of place
learning and localization satisfactorily reproduce a non-trivial
body of results from behavioral experiments in animals, it is
natural to ask whether the hippocampus can perform KF com-
putations. A discussion about this can be found in (Balakrish-
nan et al., 1997)

Acknowledgements

Olivier Bousquet's contributions to the theory of Hippocam-
pal Kalman filtering is gratefully acknowledged. Karthik Bal-
akrishnan and Rushi Bhatt are supported by an IBM Coopera-
tive Fellowship and a Neuroscience Graduate fellowship from

107

Iowa State University respectively. This research was par-
tially supported by grants from the National Science Founda-
tion (IRI-9409580) and the John Deere Foundation to Vasant
Honavar.

References

Ayache, N. and Faugeras, O. (1987). Maintaining represen-
tation of the environment of a mobile robot. In Pro-
ceedings of the International Symposium on Robotics
Research, Santa Cruz, California, USA.

Balakrishnan, K., Bhatt, R., and Honavar, V. (1998a). Spa-
tial learning and localization in animals: A computa-
tional model and behavioral experiments. In Proceed-
ings of the Second European Conference on Cognitive
Modelling, pages 112-119, Nottingham, UK. Notting-
ham University Press.

Balakrishnan, K., Bhatt, R., and Honavar, V. (1998b). Spatial
learning in the rodent hippocampus: A computational
model and some behavioral results. (in preparation).

Balakrishnan, K., Bousquet, O., and Honavar, V. (1997).
Spatial learning and localization in animals: A compu-
tational model and its implications for mobile robots.
Technical Report CS TR 97-20, Department of Com-
puter Science, lowa State University, Ames, 1A 50011.
(To appear in Adaptive Behavior).

Blum, K. and Abbott, L. (1996). A model of spatial map
formation in the hippocampus of the rat. Neural Com-
putation, 8:85-93.

Collett, T., Cartwright, B., and Smith, B. (1986). Landmark
learning and visuo-spatial memories in gerbils. Journal
of Neurophysiology A, 158:835-851.

Gallistel, C. (1990). The Organization of Learning. Bradford-
MIT Press, Cambridge, MA.

Gelb, A. (1974). Applied Optimal Estimation. MIT Press.

Kortenkamp, D. (1993). Cognitive Maps for Mobile Robots:
A Representation for Mapping and Navigation. PhD the-
sis, University of Michigan, Electrical Engineering and
Computer Science Department.

Morris, R. (1981). Spatial localization does not require
the presence of local cues. Learning and Motivation,
12:239-261.

O’Keefe, J. and Nadel, L. (1978). The Hippocampus as a
Cognitive Map. Oxford:Clarendon Press.

Recce, M. and Harris, K. (1996). Memory for places: A navi-
gational model in support of marr’s theory of hippocam-
pal function. Hippocampus, 6:735-748.

Sharp, P, Blair, H., and Brown, M. (1996). Neurai network
modeling of the hippocampal formation spatial signals
and their possible role in navigation: A modular ap-
proach. Hippocampus, 6:720-734.

Taube, J., Muller, R., and Ranck, J. (1990). Head direction
cells recorded from the postsubiculum in freely moving
rats: I. description and quantitative analysis. Journal of
Neuroscience, 10:420-435,

Tolman, E. (1948). Cognitive maps in rats and men. Psycho-
logical Review, 55:189-208.



	cogsci_1998_102-107



