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Abstract

A general parametric estimation method which makes use of the coverage probabilities or
spacings is proposed. Under some regularity conditions, it is shown that such estimators are
asymptotically normal. This method generalizes the maximum spacing method of estimation
that has been discussed in the literature. Furthermore, it is shown that the maximum spacing
estimator is asymptotically most e�cient within the subclass of spacings-based estimators under
consideration. c© 2001 Elsevier Science B.V. All rights reserved.

MSC: 62F10; 62F12; 62E20
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1. Introduction

Let X1; X2; : : : ; Xn−1 be a random sample from some continuous distribution func-
tion F�; � ∈ � with support on R. Here, the unknown parameter � maybe a vector.
In this paper, we propose a general method of estimating � based on spacings – the
gaps between successive order statistics. This spacings-based estimation procedure pro-
vides an alternative to the traditional parametric estimation methods like the method
of moments, minimum �2, maximum likelihood (ML), etc. The estimation method that
we propose here generalizes the idea contained in the maximum spacings estimator
(MSPE) introduced by Cheng and Amin (1979, 1983) and independently discussed by
Ranneby (1984) and enjoys similar advantages. Cheng and Amin (1983) show that in
such situations as a three-parameter Gamma, Lognormal or Weibull distribution where
the ML method breaks down due to unboundedness of the likelihood, the maximum
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spacings estimation (MSPE) method produces consistent and asymptotically e�cient
estimators. In situations like mixtures of normals where the MLE is known to produce
inconsistent estimators, the MSP estimators are consistent (see Ranneby, 1984). Our
study focuses on the properties of this general class of estimators. We discuss asymp-
totic normality of such spacings-based estimators in general and show that the MSPE,
which corresponds to a special case, has the smallest asymptotic variance in this class.
Section 2 describes the estimation procedure with motivation and examples. Section 3

deals with the asymptotic normality of this class of estimators. In Section 4, the results
of a simulation study are presented. The long proofs of Theorems 2.1 and 3.1 are given
in the appendix.

Throughout this article, we use the symbols def= ; d=, d→ and P→ to denote de�nition,
equality in distribution, convergence in distribution and convergence in probability,
respectively.

2. Generalized spacings estimator

2.1. The estimator

Suppose we have a random sample i.e., independent identically distributed (i.i.d.)
observations X1; X2; : : : ; Xn−1 from a continuous distribution with distribution function
F�; � ∈ �⊂Rd. Just like in rank-theory, the continuity assumption eliminates the
possibility of two observations being equal. Let the order statistics be denoted by
X(1)¡X(2)¡ · · ·¡X(n−1). First, we construct the following “1-step” spacings:

Di(�) = F�(X(i))− F�(X(i−1)); i = 1; : : : ; n; (1)

where F�(X(0))
def= 0 and F�(X(n))

def= 1. The generalized spacings estimator (GSE) of �
is de�ned to be the argument �̂ which minimizes

T (�) def=
n∑
i=1
h(nDi(�)); (2)

where h : (0;∞)→ R is a strictly convex function.
Some standard choices of h(·) that have been used in the context of goodness-of-�t

testing, are: h(x)=−log x; x log x; x2; −√
x; 1=x and |x−1| (see Pyke, 1965; Rao and

Sethuraman, 1975; Wells et al., 1993).
The maximum spacings estimator (MSPE) discussed by Cheng and Amin (1979,

1983) and Ranneby (1984) corresponds to estimating � by maximizing the product
n∏
i=1

{F�(X(i))− F�(X(i−1))}

which corresponds to the special case of using h(x) = −log(x) in (2). See Shao and
Hahn (1994) for a detailed discussion of the Maximum Spacing Method. The gener-
alized spacings estimator (GSE) that we propose thus generalizes the idea behind the
MSPE and hence the name.
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The estimators are not always explicitly obtainable analytically but can always be
computed through numerical methods (like the EM algorithm or Newton–Raphson
method) under broad conditions.

2.2. Motivation

Let U1; U2; : : : ; Un−1 be i.i.d. U(0; 1) and let

Ti = U(i) − U(i−1); i = 1; : : : ; n

with 0 ≡ U(0)¡U(1)¡ · · ·¡U(n) ≡ 1. These (T1; : : : ; Tn) are referred to as “uniform
spacings” and form an exchangeable sequence of random variables. From well known
properties of uniform spacings (see, e.g. Pyke, 1965, p. 398), we have

E(Ti) =
1
n
; i = 1; : : : ; n: (3)

Note that by the probability integral transformation, {Di(�0)}ni=1 de�ned in (1) have
the same joint distribution as the uniform spacings {Ti}ni=1 where �0 is the true (but
unknown) value of the parameter. Eq. (3) motivates us to �nd the value of � such
that the vector {Di(�)}ni=1 is as close as possible to the vector of its expectations, viz.,
{1=n}ni=1.
Csisz�ar (1963) introduced the following class of divergence measures, called

“h-divergence”, between two probability distributions F1(·) and F2(·):

Ih(F1; F2) =
∫
R
h
(
dF1(x)
dF2(x)

)
dF2(x);

where h : (0;∞)→ R is a convex function with h(1)=0. Corresponding to the two dis-
crete probability distributions on n points, F1 ={Di(�)}ni=1 and F2 ={1=n}ni=1; Csisz�ar’s
divergence measure reduces to our Eq. (2) as the function to be minimized to estimate
�. Hence, our proposed method may also be viewed as a minimum divergence method
of estimation. In particular,

h(x) =−log(x) (4)

minimizes the Kullback–Leibler divergence, while

h(x) = x log(x) (5)

maximizes the entropy. One may also choose

h(x) =



x� if �¿ 1;
−x� if 0¡�¡ 1;
x� if − 1

2¡�¡ 0
(6)

and when �= 1
2 ; this corresponds to minimizing the Hellinger distance.

Note that in (6), although h(x) = x� for any �¡ 0 gives rise to a valid estimation
procedure, the regularity conditions of Theorems 2.1 and 3.1 are valid only when
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�¿− 1
2 . This ensures that E{Wh′(W )}2 in (9) exists, where W is an exponential r.v.

with mean 1.
The following theorem, whose proof is given in the appendix, analytically justi�es

why minimizing (2) should bring us close to �0.

Theorem 2.1. Let T (�) be de�ned as in (2) where h(·) is a continuously di�erentiable
(non-linear) convex function with h(1) = 0.
Assume that F�(·) has a continuous density f�(·) and for u ∈ (0; 1); de�ne
F−1
�0
(u) = inf{x: F�0 (x)¿u}:

For any � ∈ �; assume that l�(·) de�ned by

l�(u) =
f�F

−1
�0
(u)

f�0F
−1
�0
(u)

satis�es∫ 1

0
E[h(Wl�(u))]

2 du¡∞ and
∫ 1

0
E[Wl�(u)h′(Wl�(u))]2 du¡∞

where W is an Exponential r.v. with mean 1. Then;

P�0 (T (�0)6T (�))→ 1 as n→ ∞:

Heuristically, this theorem says that in large samples, when �0 is the true value,
T (�0) tends to take the smallest value with a very high probability. Hence, it makes
sense to minimize T (�) to estimate such a �0.

2.3. Some examples

Example 2.1. Suppose X1; X2; : : : ; Xn−1 are i.i.d. observations from U(� − 1
2 ; � +

1
2),

�∈R. In this case, we know that any �̂ in the interval (X(n−1) − 1
2 ; X(1) +

1
2) is an

MLE, and hence is not unique. However, it can be shown after some simpli�cation,
that the GSE corresponding to any of the choices (4) to (6) is given by the midrange,
�̂= (X(1) + X(n−1))=2, which is also the UMVUE for �.

Example 2.2. Let X1; X2; : : : ; Xn−1 be a random sample from U (0; �); � ∈ (0;∞). It is
well known that the MLE is X(n−1). It can be checked that the estimator corresponding
to h(x) = x log x as in (5) is

X(n−1) + exp

{
X(1) logX(1) +

∑n−1
i=2 (X(i) − X(i−1))log(X(i) − X(i−1))

X(n−1)

}

while that corresponding to (6) is

X(n−1) +

{
X �(1) +

∑n−1
i=2 (X(i) − X(i−1))�
X(n−1)

}1=(�−1)
:
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Finally if we take h(·)=−log x as in (4), the resulting estimator (which is the MSPE)
is given by

n
n− 1X(n−1):

This is again the UMVUE for �.

Example 2.3. Suppose we have a random sample X1; X2; : : : ; Xn−1 from the double
exponential distribution given by the following density:

f�(x) = 1
2exp

−|x−�|; x ∈ R; � ∈ R:
For odd sample size (say, n− 1 = 2k + 1), (4) gives the same estimator as the MLE:
X(k). For n− 1= 2k (even sample size), the MLE is not unique; it is any value in the
interval (X(k); X(k+1)). The estimator corresponding to (4) in this case is the midpoint
of the previous interval, i.e. (X(k) +X(k+1))=2 which again corresponds to the UMVUE.

3. Properties of GSE

For simplicity, we will assume from now on that � is a scalar. The results given
below, however, apply to the vector parameter case with obvious modi�cations.

3.1. Consistency

One can prove consistency of the GSEs under assumptions of existence of contin-
uous derivative of the density function with respect to �, along the lines of Lehmann
(1983, pp. 413–414). See Ghosh (1997) for a detailed proof. The above, however,
gives local consistency, since taking derivatives does not guarantee the presence of a
global minimum. The same method of estimation has been independently proposed by
Ranneby and Ekstr�om (1997) in which a proof of consistency under global conditions
is given. See also Ekstr�om (1997) for further discussions.

3.2. Asymptotic normality

Here we show that under regularity conditions, the estimators obtained by using the
GS method are asymptotically normal with the correct center. As should be expected,
the asymptotic variance depends not only on the parent distribution of the sample, but
also on the function h(·).
For the purpose of this theorem, we will use the notation f(x; �) for the density

f�(x). We will also use the notation fij(x; �) to denote

@i+j

@xi@� j
f(x; �); i; j = 0; 1; 2; : : : :
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Theorem 3.1. Let h(·) be a convex function (except; possibly; a straight line) which
is thrice continuously di�erentiable. Let W denote an exponential random variable
with mean 1. Suppose further that the following assumptions hold:

• For almost all x; f03 is continuous in � in an open neighborhood of �0.
• f;f01; f10; f11; f02 are continuous in x for �= �0.
•

∫ 1

0

{
f02(F−1

�0
(u); �0)

f(F−1
�0
(u); �0)

}2
du¡∞:

• E[Wh′(W )]2¡∞, E[W 2h′′(W )]2¡∞; E[W 3h′′′(W )]2¡∞.
• The distributions have common support with �nite Fisher information

I(�) =
∫
R

[
f01(x; �)
f(x; �)

]2
f(x; �) dx: (7)

Then; for any consistent root �̂n of T ′(�) = 0; we have

√
n(�̂n − �0) d→N

(
0;

�2h
I(�0)

)
(8)

where

�2h =
E{Wh′(W )}2 − 2E{Wh′(W )}Cov{Wh′(W ); W}

[E{W 2h′′(W )}]2 : (9)

Since we have a class of estimators to choose from, corresponding to di�erent h(·)
functions, one obvious question is: “Is there any h(·) that gives rise to an estimator
with the smallest asymptotic variance �2h and if so, what is it?” The following theorem
provides an answer:

Theorem 3.2. Assuming that

lim
w→0

w2h′(w)e−w = 0 and lim
w→∞w

2h′(w)e−w = 0;

�2h given by (9) is minimized i� h(x)=a log(x)+bx+c where a; b and c are constants.

Proof. By integration by parts, we have

E{W 2h′′(W )}=
∫ ∞

0
w2h′′(w)e−w dw

= w2e−wh′(w)
∣∣∞
0 −

∫ ∞

0
(2w − w2)h′(w)e−w dw

= E{W 2h′(W )} − 2E{Wh′(W )}:
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Let us write

Nh =Var{Wh′(W )}+ 3[E{Wh′(W )}]2 − 2E{Wh′(W )}E{W 2h′(W )}
and

Dh = [E{W 2h′(W )} − 2E{Wh′(W )}]2

= [Cov{Wh′(W ); W}]2 + 3[E{Wh′(W )}]2

−2E{Wh′(W )}E{W 2h′(W )}:
Then, �2h = Nh=Dh.
By Cauchy–Schwarz inequality,

[Cov{Wh′(W ); W}]26Var{Wh′(W )}:
Hence, �2h¿1; equality holding if and only if

wh′(w) = a+ bw (for some constants a and b)

⇒ h(w) = a log(w) + bw + c (where c is a constant):

Since we know that
∑n

i=1 Di(�)=1 and that h(·) has to be convex, we can, without
loss of generality, choose a=−1; b= 0; c= 0. Hence, asymptotically, the MSPE has
the smallest variance among this class. This, incidentally, coincides with the Cramer–
Rao lower bound, which is the asymptotic variance of the MLE when the latter exists.
Hence, MSPE is asymptotically equivalent to MLE when the latter exists.

Remark. The smoothness assumptions on h(·) that we require, eliminate some impor-
tant special cases including the estimator corresponding to h(x)= |x− 1|. An extension
of the present results would be needed and is under investigation.

4. Simulation studies

We performed a simulation study of the proposed estimators for the three-parameter
Weibull distribution:

f(x) = 
�−
(x − �)
−1exp[− {(x − �)=�}
]; x¿�; � ∈ R; �; 
¿ 0:

The true parameter value was chosen to be (�0 = 0; �0 = 1; 
0 = 0:5). We considered
samples of size 10(10)50 with 1000 simulations in each case. Since the functions
were not di�erentiable, the minimizations were performed using the downhill simplex
method in multidimensions due to Nelder and Mead (1965). All the simulations were
done using C routines in Press et al. (1997). The results are presented in Table 1.
It is apparent that the GSE with h(x)=−log(x) outperforms in terms of mean squared

error, followed by h(x)= x log(x) and then closely by h(x)= |x− 1|. A striking feature
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Table 1
Mean-squared error (bias) of the estimators based on 1000 simulations

h(x) � � 


n = 10
−log(x) 0.0075 (−0:0021) 0.7086 (0.1976) 0.0442 (−0:0195)
x2 275.5675 (−1:5787) 287.1084 (1.9721) 77.8794 (0.8739)
|x − 1| 1.5547 (−0:1439) 3.1738 (0.5259) 3.0737 (0.2359)
x log(x) 1.8297 (−0:1416) 3.5465 (0.4265) 0.8127 (0.0731)

n = 20
−log(x) 0.0001 (0.0013) 0.2968 (0.1121) 0.0118 (−0:0301)
x2 3.4908 (−0:1089) 4.9633 (0.3326) 0.5612 (0.0362)
|x − 1| 0.0099 (−0:0127) 0.5839 (0.2395) 0.0633 (0.0513)
x log(x) 0.0045 (−0:0069) 0.4374 (0.1652) 0.0331 (−0:0171)
n = 30
−log(x) 0.0000 (0.0006) 0.1982 (0.0978) 0.0091 (−0:0170)
x2 0.1127 (−0:0336) 0.7384 (0.1903) 0.0712 (0.0039)
|x − 1| 0.0004 (−0:0030) 0.3684 (0.1709) 0.0211 (0.0298)
x log(x) 0.0001 (−0:0016) 0.2581 (0.1224) 0.0132 (−0:0032)
n = 40
−log(x) 0.0000 (0.0002) 0.1628 (0.0879) 0.0107 (−0:0063)
x2 0.1771 (−0:0205) 0.5853 (0.1242) 0.0747 (−0:0024)
|x − 1| 0.0000 (−0:0011) 0.2684 (0.1427) 0.0138 (0.0248)
x log(x) 0.0031 (−0:0024) 0.2276 (0.1226) 0.0129 (0.0074)

n = 50
−log(x) 0.0000 (0.0001) 0.1253 (0.0787) 0.0093 (−0:0058)
x2 0.0334 (−0:0120) 0.3570 (0.1097) 0.0261 (−0:0033)
|x − 1| 0.0000 (−0:0006) 0.2132 (0.1167) 0.0128 (0.0252)
x log(x) 0.0000 (−0:0005) 0.1650 (0.1094) 0.0104 (0.0188)

from the simulations is the poor performance of h(x) = x2 for small n. We should
mention here that the ML method does not work here since 
0¡ 1.

5. Concluding remarks

A general method of estimation based on spacings which works via the cumulative
distribution functions (unlike the MLEs which work through the densities) is proposed
and discussed. The asymptotic properties of such estimators such as consistency and
asymptotic normality are established. Some members of this class, i.e. the MSPEs have
asymptotically the same e�ciency as the MLEs when the latter exist.
Since the spacings depend on the observations through their CDF and not the PDF,

modi�cations of the PDF at a countable number of points does not a�ect the resulting
GSE, unlike the MLE.
The results that we obtained here can be generalized to the case of higher order

(or m-step) spacings. It will then be of interest to decide the optimum “step-size” that
provide the best estimators in such a case. This will be considered in a separate article.
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Appendix A.

Lemma A.1. Let L : (0;∞)× (0; 1)→ R satisfy the following:

1. For each y; L(x; y) is di�erentiable w.r.t. x on (0;∞) and the derivative L1;0(x; y)
is continuous in x where L1;0(x; y) = (@=@x)L(x; y).

2. For each x; L(x; y) and L1;0(x; y) are continuous in y.

3.
∫ 1
0 E{L(W; u)} du¡∞ and

∫ 1
0 E{WL1;0(W; u)} du¡∞.

Then;

1
n

n∑
k=1
L(nTk ; �k)

P→
∫ 1

0
E{L(W; u)} du

where �k
def=(k − 1

2 )=n; k = 1; : : : ; n.

Proof. Since {nTk}nk=1 have the same distribution as independent exponential random
variables divided by their mean (see Pyke, 1965), on a common probability space we

can construct i.i.d. {Wk}nk=1 such that Wk ∼ Exp(1) and {Wk= �W}nk=1 d={nTk}nk=1. Then,
by a Taylor expansion of �W around its mean 1, we obtain

1
n

n∑
k=1
L(nTk ; �k)

d=
1
n

n∑
k=1
L
(
Wk
�W
; �k

)

=
1
n

n∑
k=1
[L(Wk; �k)

− ( �W − 1)Wk
{1 + �kn( �W − 1)}2 L1;0

(
Wk

1 + �kn( �W − 1) ; �k
)]
; (A.1)

where 06�kn61. We show that the �rst term converges to the desired limit while the
second term goes to zero in probability. Now,∣∣∣∣∣1n

n∑
k=1
L(Wk; �k)−

∫ 1

0
E{L(W; u)} du

∣∣∣∣∣
6
∣∣∣∣1n

n∑
k=1
[L(Wk; �k)− E{L(W; �k)}]

∣∣∣∣
+

∣∣∣∣∣1n
n∑
k=1
E{L(W; �k)} −

∫ 1

0
E{L(W; u)} du

∣∣∣∣∣ :
Since Wk are i.i.d., the �rst of the terms on the RHS of the inequality converge to zero
in probability by Kolomogorov’s SLLN (see Shiryayev, 1984, p. 366) and the second
term converges to zero by the continuity of L(x; y) in y. As for the second term in
(A.1), note that L1;0(x; y) is continuous in x and that ( �W −1)=Op(n−1=2), so that it is
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equal to

=
1
n

n∑
k=1
[( �W − 1)WkL1;0(Wk; �k)] + op(1):

By the same argument as before, it can be shown that

1
n

n∑
k=1
WkL1;0(Wk; �k)

P→
∫ 1

0
E{WL1;0(W; u)} du:

But since this term is multiplied by ( �W − 1)=op(1), it gives us the desired result.

Proof of Theorem 2.1. Fix any � ∈ �. Then, by Mean Value Theorem,
1
n
[T (�)− T (�0)] d= 1n

n∑
i=1

[
h

{
nTi

f�F
−1
�0
(Ũ i)

f�0F
−1
�0
(Ũ i)

}
− h(nTi)

]
; (A.2)

where Ũ i ∈ (U(i−1); U(i)).
From the existence of the limiting distribution of the Kolmogorov–Smirnov statistic,

we have

|Ũ i − �i| P→ 0 as n→ ∞ uniformly in i: (A.3)

Since h(·) is continous, we have

h

{
nTi

f�F
−1
�0
(Ũ i)

f�0F
−1
�0
(Ũ i)

}
= h

{
nTi

f�F
−1
�0
(�i)

f�0F
−1
�0
(�i)

}
+ op(1); (A.4)

where op(1) is uniform in i. We should remark here that the behavior near 0 and 1
is not crucial to such uniformity arguments for the following reason: It is known that
the empirical process of the “normalized spacings”, {nDj}nj=1 converges to a certain
Gaussian Process (see Rao and Sethuraman, 1975). By invoking the law of iterated
logarithm for this process, it can be concluded that it su�ces if the boundedness and
continuity requirements hold in an interval of values of u away from 0 and 1, so that
(A.4) and later on (A.7) are valid. See Sethuraman and Rao (1970) for more details.
Hence, applying Lemma A.1, we have from (A.2)

1
n
[T (�)− T (�0)] P→

∫ 1

0

[
Eh

(
W
f�F

−1
�0
(u)

f�0F
−1
�0
(u)

)
− Eh(W )

]
du

¿ 0 (by Jensen’s inequality)

with the equality holding if �= �0.

Proof of Theorem 3.1. By the assumptions, T (�) is thrice di�erentiable in a neigh-
borhood of �0. Applying a Taylor expansion, we have

√
n(�̂n − �0) = (1=

√
n)T ′(�0)

−(1=n)T ′′(�0)− [(�̂n − �0)=2n]T ′′′(�∗n)
(A.5)
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where �∗n lies between �̂n and �0. Writing g�(u) = f01(F
−1
�0
(u); �)=f(F−1

�0
(u); �) and

Ũ j ∈ (F�0 (X(j−1)); F�0 (X(j))), we have
1√
n
T ′(�0) =

1√
n

n∑
j=1
[nDj(�0)h′{nDj(�0)} − �]g�0 (�j) +

�√
n

n∑
j=1
g�0 (Ũ j)

+
1√
n

n∑
j=1
[nDj(�0)h′{nDj(�0)} − �]× {g�0 (Ũ j)− g�0 (�j)}

= An + Bn + Cn (say) (A.6)

where � = E[Wh′(W )]. It can be checked that An and Bn can both be represented as
functionals of the same empirical process, either of the uniform random variables (see
Shorack and Wellner, 1986) or of the normalized spacings (see Rao and Sethuraman,
1975). While this is useful to establish the asymptotic joint normality of An and Bn,
computation of the asymptotic variances and covariances is easier done directly as we
do below. Indeed, by using arguments similar to those in Corollary 2:1 of Holst and

Rao (1981), we can show that An
d→N(0; �2A) where

�2A =Var{Wh′(W )}I(�0)
and I(�0) de�ned in (7) is the “Fisher Information” in a single observation.
From (A.3) and the Central Limit Theorem,

Bn
d→N(0; �2I(�0)):

By continuity of g�0 and from (A.3),

Cn
P→ 0: (A.7)

Following the steps as in p. 39 of Ghosh (1997), we can also show

lim
n→∞ Cov(An; Bn) =−�Cov(Wh′(W ); W )I(�0):

Hence,

An + Bn + Cn
d→N(0; �21)

where

�21 = [Var{Wh′(W )}+ [E{Wh′(W )}]2 − 2E{Wh′(W )}Cov{Wh′(W ); W}]I(�0):
We consider next the denominator of (A.5). Using arguments similar to those in the

proofs of Theorem 2.1 and Lemma A.1, it can be shown that

1
n
T ′′(�0)

P→ �1I(�0);

where �1 = E{W 2h′′(W )}. Finally, the second term in the denominator

1
n
(�̂n − �0)T ′′′(�?n )

P→ 0
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by the continuity of f03 with respect to � in a neighborhood of �0 and the consistency
of �̂n and the use of Lemma A.1. Combining all these results, we get

√
n(�̂n − �0) d→N

(
0;

�2h
I(�0)

)
:
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