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Abstract

A mixture-based combinatorial library of five Ugi adducts (4–8) incorporating known 

antitubercular and antimalarial pharmacophores was successfully synthesized, starting from the 

naturally occurring diisocyanide 3, via parallel Ugi four-center three-component reactions 

(U-4C-3CR). The novel α-acylamino amides obtained were evaluated for their antiinfective 

potential against laboratory strains of Mycobacterium tuberculosis H37Rv and chloroquine-

susceptible 3D7 Plasmodium falciparum. Interestingly, compounds 4–8 displayed potent in vitro 
antiparasitic activity with higher cytotoxicity in comparison to their diisocyanide precursor 3, with 

the best compound exhibiting an IC50 value of 3.6 nM. Additionally, these natural product inspired 

hybrids potently inhibited in vitro thromboxane B2 (TXB2) and superoxide anion (O2
−) generation 

from Escherichia coli lipopolysaccharide (LPS)-activated rat neonatal microglia, with concomitant 

low short-term toxicity.
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During the course of our investigations of new biologically active compounds from 

Caribbean marine invertebrates, we have focused our attention to discover new drugs for the 

treatment of tropical diseases (TDs), which affect billions of people worldwide.1 

Tuberculosis and malaria are two of the major TDs with the highest rates of death.2 Current 

first-line drugs for the treatment of these diseases include isoniazid (1) and chloroquine (2), 

respectively. Owing to the emergence of microbes that are resistant to currently available 

antiinfective drugs, there exist an urgent need for new, effective and affordable backup 

drugs.3 As part of our strategy to the discovery of novel drugs to combat TDs, we have paid 

particular attention to determine the antiinfective action of marine isocyanides, since it was 

previously established that a number of secondary metabolites belonging to this class of 

compounds possess putative antitubercular and antiplasmodial activity.4 Moreover, recent 

investigations appear to support the hypothesis that marine isocyanides and derivatives could 

become lead compounds for the development of novel agents to modulate excessive release 

of TXB2 by activated microglia cells in neuroinflammatory disorders.5

While a number of amphilectane-based diterpene isocyanides with interesting bioactivity 

profiles have been reported, effective methods for their synthesis or for generating analogues 

are limited.6 This is not only due to the lack of compound supply, but equally important, the 

limited availability of general methods based on mild reaction conditions required for further 

functional group manipulations. For instance, the synthesis of complex natural products like 

8,15-diisocyano-11(20)-amphilectene [(–)-DINCA] (3)7 and analogues required for 

structure-activity relationship (SAR) studies, poses a difficult challenge, often involving 

rather lengthy syntheses with introduction of the isocyanide functionality late in the 

synthesis.8 An alternative approach to drug discovery, which we have explored previously, is 

to use an abundant natural product as a scaffold or building block and to convert it into a 

small focused library of analogues.9 Our intended target was 3, which is accessible in 

milligram amounts and contains both the amphilectane framework and two isocyanide 

moieties, one of which could serve as a “handle” with potential for further synthetic 

elaboration. A mounting body of evidence, which suggest that both the isocyanide functional 

groups and the diterpene skeleton are responsible for the antituberculosis and antiplasmodial 

activity of (–)-DINCA (3), provides further support for this approach.10
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An ideal tool for accessing a small library of isocyanide analogues of increased structural 

diversity, both quickly and in a synthetically inexpensive way, is the use of isocyanide-based 

multicomponent reactions (IMCRs).11 Over the past two decades the field of IMCR research 

has experienced a steadfast growth with the discovery and development of new variations of 

the classical Passerini and Ugi IMCRs.12 Multicomponent reactions are defined as reactions 

in which more than two starting compounds react to form a product that incorporates 

essentially all of the carbon atoms. In particular, the multicomponent isocyanide 

condensation discovered by Ivar Ugi is a versatile four-component reaction involving a 

carboxylic acid, an aldehyde, a primary or secondary amine, and an isocyanide.12 Thus, the 

Ugi isocyanide-based multicomponent reactions (Ugi IMCRs) are a powerful tool with 

which libraries of new compounds that are potentially effective against infectious diseases 

can be constructed in a single-stage reaction. Furthermore, Ugi IMCRs are typically easy to 

perform, tolerate a wide range of group functionalities, and provide quick access to 

structurally complex compounds that otherwise would require lengthy syntheses.13 An 

example of this approach to drug discovery using the Ugi IMCR is outlined below (Scheme 

1).

In our ongoing investigations to discover novel compounds for screening against 

Mycobacterium tuberculosis and the most common and deadly human malaria parasite, 

Plasmodium falciparum (malaria tropica), we initially sought to design Ugi four-component 

condensation (U-4CC) reaction adducts (α-acylamino amides) that incorporate known 

pharmacophores found in two existing antitubercular and antimalarial drugs, namely, 

isoniazid (1) and chloroquine (2).14 Combining these pharmacophores through the U-4CC 

method has many attractive features, including the opportunity to rationally design novel 

drugs aimed at multiple targets within the tuberculosis bacterium and malaria parasite. These 

substructures would be incorporated as part of our amine or carboxylic acid component of 

the U-4CC reactions (Table 1).15 Our selection of formaldehyde as the aldehyde component 

was driven by our desire to synthesize low-molecular-weight adducts while avoiding the 

formation of epimeric mixtures at C-23, thus simplifying the purification process. Our 

choice for the isocyanide component was limited to (–)-DINCA (3) because of its 

remarkable potency against M. tuberculosis and chloroquine-resistant P. falciparum strains 

and preponderance to react preferentially through its C-15 isocyanide group.5,10 We 

expected that our natural product inspired molecular hybridization approach would lead us 

to the expeditious development of new hybrid molecules with noteworthy antiinfective 

properties. Table 1 summarizes our selection of carboxylic acid, amine, and aldehyde 

building blocks for the Ugi multicomponent-based library.

To synthesize the quinoline-containing amine required for the U-4CC, we reacted 

commercially available 4,7-dichloroquinoline (9) with excess ethylenediamine in the 

absence of solvents at 80 °C for 1 h and at 135–140 °C for 3 h to afford 10 in 90% yield 

(Scheme 2).13a The condensation of stoichiometric amounts of the amine, aldehyde, 

carboxylic acid and diisocyanide 3 in anhydrous EtOH at 20 °C furnished the desired Ugi 

adducts. A summary of the synthesized target compounds 4–8 is provided in Figure 1. 

Following solvent removal under reduced pressure, purification of the crude reaction 
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mixtures was easy achieved by flash silica-gel chromatography to afford the products in 

modest to good isolated yields (Table 1).

Compounds 4–8 were structurally analyzed on the basis of conventional spectroscopic data 

(IR, UV, HRESI-MS, and 1D and 2D NMR). For adducts 4 and 8, molecular 

characterization was swift and straightforward because each compound was obtained as a 

homogeneous stable entity. In the case of compounds 6 and 7, the initial characterization 

by 1H and 13C NMR was complicated because of the duplication of many of the proton and 

carbon signals. Rotation around the tertiary amide bond in these Ugi adducts gave rise to 

two quickly interchanging rotational isomers with notably different chemical shift values in 

a ratio of approximately 1:1. We confirmed this phenomenon by running the experiments in 

DMSO-d6 and briefly observed the coalescence of the duplicating peaks. The two sets of 

signals reappeared shortly thereafter (~2 h), indicating that the two rotamers had reached 

equilibrium. Rotational isomerization was observed only in the two latter adducts, which is 

reasonable given the inherent conformational flexibility introduced by the ethylenediamine 

bridge of 6 and 7 relative to that of 4, 5, and 8. As we predicted, the Ugi adduct 5 was 

obtained as a diastereomeric mixture (dr 67:33) that could not be easily separated by flash 

silica-gel chromatography and was therefore characterized as such without further 

optimization (the isomer ratio was determined via the integration of selected signals in 

the 1H NMR spectra of the reaction products).

Compounds 3–8 were tested against M. tuberculosis H37Rv with the results as shown in 

Table 2. From the modest library, compound 3 with an MIC of 3.2 μg/mL exhibited the best 

activity, being nearly as potent in this strain as the powerful mycobactericide isoniazid (1) 

(MIC = 0.44 μg/mL). On the other hand, the MIC values for the Ugi adducts obtained from 

3, compounds 4–8, were between 14.9 and 101.8 μg/mL. Based on a comparison of the MIC 

results obtained for these compounds, it appears that manipulation of the isocyanide group at 

the C-15 position in 3 to an α-acylamino amide function, as in 4–8, results in a marked 

decrease in activity. In general, it can be seen from the Table 3 that the antitubercular activity 

decreases for all of the Ugi adducts whether based on isonicotinic acid (e.g. 4, 5, 7, and 8) or 

aminoquinoline (e.g. 6) pharmacophores.

As derivatives based on an antiparasitic natural product scaffold, compounds 4–8 were also 

screened against a chloroquine (CQ) non-resistant Plasmodium falciparum 3D7 strain to 

ascertain their potentials as effective antimalarial agents. The antiplasmodial activities were 

determined as the inhibitory concentrations at 50% parasite survival (IC50) in the strain; the 

results are tabulated in Table 2. The antiplasmodial activity and selectivity index (SI) of CQ 

(2) are also shown for comparative purposes. Interestingly, all of the α-acylamino amides 

obtained from the U-4CC reactions displayed potent antiplasmodial activity (IC50 values ≤ 

13.0 nM) against this strain. Compound 7, which was based on isonicotinic acid and 

aminoquinoline pharmacophores, was observed to be the most active (IC50 = 3.6 nM) of the 

investigated compounds, although 8, which was based only on isonicotinic acid, was nearly 

as active (IC50 = 6.3 nM) as 7. Compound 5, the only adduct with a bulky group at C-23 that 

was analyzed to be a mixture of diastereomers, was the least active against the 3D7 strain 

(IC50 = 13.0 nM). However, we speculate that the separation and testing of each 

diastereomer may result in a marked increase in activity of one of the compounds. Inasmuch 
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as hybrids 4–8 showed excellent in vitro inhibitory activity (IC50 values in the range of 3.6–

13.0 nM) when compared to the standard drug CQ (IC50 = 6.6 nM), they showed more 

toxicity (SI values in the range 19788–49173) than the CQ (SI = 35526). Interestingly, our 

starting scaffold 3 proved to be the most promising compound of the series (IC50 = 1.2 nM, 

SI = 83112), which was 5.5 times more active and significantly less toxic than the standard 

drug. When compared to 3, the observation that the antiplasmodial activity of the new 

compounds is comparable to that of the parent compound raises the question as to whether 

the isocyanide group at C-15 in the natural product is responsible for the observed activity.

Derivatives 4–8 along with scaffold 3 were screened further in order to determine the effect 

of these compounds on E. coli LPS-activated microglia TXB2 and O2
− generation in vitro. 

O2
− and TXB2 release, as well as short term cell viability, were assessed as described in the 

Supplementary data. As shown in Table 3, α-acylamino amides 4, 5 and 8 (based on the 

isonicotinic acid pharmacophore only) inhibited TXB2 generation with IC50’s = 3.0, 0.1 and 

1.1 μM, respectively, demonstrating minimal effect on O2
− release (IC50 > 10 μM) and 

minimal short-term toxicity (LDH50 > 10 μM). In contrast, 6 and 7, the only derivatives 

prepared based on the aminoquinoline pharmacophore, potently inhibited TXB2 generation 

(IC50 = 0.8 and 0.9 μM, respectively) and O2
− release (IC50 = 1.7 and 5.0 μM, respectively), 

but with evidence of short-term toxicity (LDH50 = 5.0 μM). Thus, in our in vitro 
experimental conditions, it appeared that inhibition of microglia TXB2 generation by Ugi 

adducts 4, 5 and 8 resulted from a pharmacologic effect, in contrast with that of analogs 6 
and 7 that were toxic to the microglia cells. To summarize, comparison of the IC50's of 

starting diisocyanide 3 (IC50 ~ 0.23 μM) and α-acylamino amides 4–8 supports the 

observation that the observed bioactivity is mainly associated with the presence of an 

amphilectane diterpenoid core bearing a C-8 isocyanide functionality. Within the series of 

semi-synthetic products 4–8, analog 5 displayed the highest antineuroinflammatory activity 

(IC50 = 0.1 μM), and when compared to 4, the least active congener bearing the isonicotinic 

acid pharmacophore (IC50 = 3.0 μM), the presence in 5 of a phenyl residue at C-23 seems to 

further potentiate its biological activity. On the other hand, substitution of R2 (Scheme 1) 

with bulkier functional groups, as observed in compound 7, appears to lower the activity. 

Moreover, comparison of the IC50's of 4 and 8 suggests that the presence of an isopentyl 

group (R2) also seems to play a role in lowering the observed pharmacological activity. Lack 

of O2
− inhibition in compounds 3–5 and 8 would appear to suggest that they inhibit TXB2 

synthesis through a cyclooxygenase-dependent mechanism.

To summarize, Ugi IMCRs were used to accomplish four-component couplings of amines, 

aldehydes, acids, and diisocyanide 3, allowing for the design and construction of a small 

library of α-acetylamino amides (4–8) that, while less active than isoniazid (1), are as potent 

as the antimalarial drug chloroquine (2) against the 3D7 strain of P. falciparum. All of the 

compounds in our modest library exhibited IC50 values in the low nanomolar range, with 

adduct 7 exhibiting the highest antiplasmodial activity (IC50 = 3.6 nM, SI = 7154). To our 

delight, this hybrid was twice as potent as chloroquine against the 3D7 strain (Table 2), 

however, it showed the most toxicity. Although some general trends related to the activities 

of the compounds are evident, further exploration, including the synthesis and testing of 

additional compounds against multiple parasite strains with various degrees of sensitivity 
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and resistance, will be needed before definite conclusions can be drawn. Notwithstanding, 

the results presented herein clearly underscore the importance of isocyanide-based 

multicomponent reactions in antimalarial drug discovery, particularly when combined with a 

rational choice of inputs based on known antimalarial pharmacophores. Thus, hybrid 

approaches inspired by natural products can lead to the rapid generation of novel 

chemotypes for the development of diverse, biologically rich SAR libraries.16 The 

development of new treatment strategies is of great importance because parasitic resistance 

to existing antimalarial agents is spreading rapidly. In time, this seemingly inevitable 

predicament will diminish the effectiveness of the artemisinins, the current mainstay of 

treatment against drug-resistant parasites.3 Finally, in addition to their pharmacologic effects 

on enhanced TXB2 generation and their reduced cytotoxic effects, it is perhaps of interest to 

note that derivatives 4–8 are more potent inhibitors of rat microglia TXB2 generation than 

acetylsalicylic acid (aspirin) (IC50 = 3.12–10.0 μM)17,18 and flurbiprofen (apparent IC50 = 

100 nM),19 which are two clinically used NSAIDS.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Scheme 1. 
Coupling of the four components utilized in the U-4CC reactions.
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Scheme 2. 
Synthesis of quinoline-containing amine 10.
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Fig. 1. 
Structural formulas of congeners 4–8 synthesized by U-4CC reactions with (–)-DINCA (3).
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Table 1

Building blocks for the Ugi multicomponent based library and isolated yields

Product Carboxylic acid (r1) Amine (r2) Aldehyde (r3) Yield (%)

4 61

5 53

6 71

7 67

8 NH3 42
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Table 2

In vitro antimycobacterial and antiplasmodial activities of compounds 3–8

Compound MABA MIC (μg/mL)
a

3D7 IC50 ± SE (nM)
b Cytotoxicity IC50 (nM) Selectivity Index

c
 (SI)

3 3.2 1.2 ± 0.00004 99735 83112

4 14.9 11.5 ± 0.0027 19788 1721

5 
d 56.4 13.0 ± 0.0034 49173 3782

6 17.9 11.1 ± 0.0006 28560 2573

7 52.0 3.6 ± 0.0003 25753 7154

8 101.8 6.3 ± 0.0005 NT –

CQ – 6.6 ± 0.0008
234470

e 35526

INH 0.44 – – –

a
Values are means of three experiments. Minimum inhibitory concentrations (MIC) in μg/mL.

b
The IC50 values are reported as means ± standard errors.

c
Selectivity index (SI) defined by the ratio: IC50 (in mammalian Vero cell lines)/IC50 values of antiparasitic activity against 3D7 cell line.

d
Tested as a mixture of diastereomers.

e
Value obtained from reference 16. NT indicates that the compound was not tested due to insufficient material. CQ = chloroquine and INH = 

isoniazid (+Ctrls).
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Table 3

Antineuroinflammatory activity of compounds 3–8
a

Compound O2
– IC50 [μM] TXB2 IC50 [μM] LDH50

b
 [μM]

3 > 10 0.23 > 10

4 > 10 3.0 > 10

5 
c > 10 0.1 > 10

6 1.7 0.8 5.0

7 5.0 0.9 5.0

8 > 10 1.1 > 10

a
Effect of compounds 3–8 on LPS-primed rat microglia PMA [1 μM]-stimulated release of TBX2 [control release: 2,555 ± 718 pg/mL/70 min] and 

O2– [control release: 12.6 ± 2.4 nanomoles/70 min] and LDH. The antineuroinflammatory assay is described in the Supplementary data. Data 

correspond to 1–4 independent experiments.

b
LDH50 represents the concentration of the compound that caused 50% release of the total LDH content of microglia cells. LDH was measured as 

described in the Supplementary data.

c
Tested as a mixture of diastereomers.
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