UC Irvine
ICS Technical Reports

Title
Benchmarks for the 1992 high level synthesis workshop

Permalink
https://escholarship.org/uc/item/73b702b6

Authors

Dutt, Nikil
Ramachandran, Champaka

Publication Date
1992-10-30

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/73b702b6
https://escholarship.org
http://www.cdlib.org/

Notice: This Material -
may be protected -
by Copyright Law 79

(Title 17 U.S.C.)

»Benchmarks for
the 1992 High Level Synthesis Workshop

Nikil Dutt
Champaka Ramachandran

Technical Report #92-107
Oct 30, 1992

University of California, Irvine
Irvine, CA 92717
(714) 856-7219

dutt@ics.uci.edu

Abstract

This report describes the current status of benchmarks for the 1992 High-Level Synthesis Workshop and
suggests guidelines for benchmark submission. The benchmark set currently has 9 designs, where each
benchmark includes a VHDL description of the design, documentation of the design’s functionality, as
well as a set of test vectors and ezxpected outputs for simulation. Documentation of the testing strategy
the test vectors are also provided with each benchmark. Although the benchmarks are currently written
in VHDL, we have attempted to organize the benchmarks in a language-independent format so that
users can easily translate the benchmarks into their favorite HDL; the representative set of test vectors
and ezpected outputs allow a user to ensure, with some level of confidence, that their HDL descriptions
preserve the original behavior of the benchmarks. The current benchmark set contains designs that
ezercise different types of functionality (e.g., DSP, FSM-based, arithmetic, etc.), as well as different
types of HDL behavioral constructs (e.g., nested loops and nested conditionals). We conclude with a
suggested set of guidelines for benchmark submission.



Contents

1 Introduction 1
2 Overview of Benchmarks and Testing Strategy 1
3 Traffic Light Controller 3
4 Armstrong Counter 3
5 Differential Equations 4
6 Elliptic Filter 4
7 Kalman Filter 5
8 Greatest Common Divisor 6
9 Am 2901 6
10 Am 2910 7
11 Intel 8251 8
12 Benchmark Guidelines 8

12.1 “Well-Known” HDL Description . . . . . . . . . . . 0 i it ettt e e 8

12.2 Design Documentation, Assumptions, Simplifications . . . . . . . ... . ... ... .. .. .... 8

12.3 Simulation Vectors . . . . . . . . . . e e e 9

12.4 Simulator Details . . . . . . . . . . e 9

12,5 Synthesis ONtPUE oo v v v 8 5 18 5 533 88 6 S BT H WX E S 6 6w 5 8 55 5 5 5 6 5 5 0 E S E @ 6D 9
13 Summary 9
14 Acknowledgments 9
15 References 10
A Appendix 10

List of Figures

1 Status of HLSW92 Benchmarks . . . . . . . . . . . . e 2



1 Introduction

The benchmarking effort for High-Level Synthesis (HLS) began during the summer of 1987 when an
informal benchmarking discussion was held at the 24th DAC. The urgent need for a set of benchmarks
led to the HLSW 1988 Call for Participation stating: The objective of the workshop is to begin the
development of a set of “high-level synthesis benchmarks” that can provide a means of comparing
different synthesis systems and guide future work to include a complete range of digital circuits. This
lead to the development of an informal set of benchmarks comprising different types of designs such as
simple controllers, microprocessors, digital signal processing algorithms and other applications. These
benchmarks were subsequently made available through the SIGDA benchmark repository maintained
at mcnc.mcnc.org under the directories HLSynth89 and HLSynth91.

The old benchmark set was not very robust and had several shortcomings. They lacked documen-
tation of design functionality, and more importantly, generally lacked typical simulation vectors that
could be used to verify the “correctness” of the input HDL descriptions, as well as of the synthesized
designs. ! However, we have reached a point of maturity in HLS where several researchers use the
benchmarks for comparative evaluation of their results. These comparisons are often confusing and
sometimes incorrect, due to the inherent ambiguity in the older set of benchmarks.

In this report, we attempt to rectify this situation by providing a set of sample benchmarks that
include design documentation, typical design behaviors described as sample test vectors and expected
outputs, and documentation of the testing strategy. The benchmarks are written using a common
look-and-feel to maintain consistency across different designs. Although the benchmarks described
here have been written in VHDL, we have attempted to organize them in a fairly HDL-independent
format so as to facilitate greater usability through ease of translation to other HDLs.

This report concludes with some suggested guidelines for benchmark submission.

2 Overview of Benchmarks and Testing Strategy

This section briefly describes the current set of benchmarks, 2 which consists of a set of nine designs
as summarized in Table 1. These benchmarks vary in the level of design description (e.g., FSM,
functional blocks, algorithms), the style of VHDL used as well as in the VHDL control features and
data types exercised. Several benchmarks are derived from “familiar” designs used by HLS researchers
in the past (e.g., Fifth-order wave elliptic filter and Diffeq). For each design, we have tried to provide
documentation of the functionality and assumptions made in coding the VHDL description. The
appendix of this report contains a listing of the VHDL behavioral descriptions.

For each benchmark description, we also provide a brief description of the testing strategy used to
obtain the set of test patterns for the benchmark, documentation of the test vectors, as well as the
actual test patterns and the expected outputs. While these patterns are certainly not exhaustive, we
have attempted to provide tests that exercise typical behaviors of the design, with the hope that it
will facilitate ease of translation to other HDLs (and other VHDL modeling styles) that are used by
individual synthesis tools.

The test patterns for each benchmark can be viewed as “sanity-checks” that attempt to exercise

typical behaviors of the benchmark without performing exhaustive testing. As a general testing
strategy, we exercise each function of the benchmark, and try to stimulate these functions under

1 A notable exception was the set of Hardware-C descriptions that included sample test vectors and expected outputs.
2These benchmarks are available by anonymous ftp from mecnc.mcnc.orgunder pub/benchmark/HLSynth92 and from
ics.uci.edu under pub/HLSynth92.



syrewryouag ZEASTH Jo sniey§ :1 aindig

VHDL

: Design Design e Control
Design name description level desstislgtlon fontire Data types | Test vectors
Traffic light Nested Case, y
controllgr FSM FSM beh. 1 Process nested Ifs Bit Vectors 23
Differential P Embedded
2 : Algorithmic -
Diffe equation 1 Process Loop, straight Integers 12
q Solver Beh. line code ’
Kalman Digital Algorithmic Nested Loops Signed
. 1 Process ! Integers,
filter Fliter Beh. nested Ifs A"a%s 8
Functional &
A;?:;;gpg C%";L?:',ﬁ‘,’ Algorithmic 4 Process Nested Ifs Bit Vectors 24
Beh.
Functional & 4 Progss Nest%dc!fs,
USART Algorithmic ' nested Case, Bit Vectors > 20000
Intel 5251 gBeh. 2 blocks nested Loops
Microprocessor Algorithmic a) 1 Process P
Am2901 sp"ce gB y b;. 5 blocks Case, Ifs Bit Vectors 216
Microprogram Functional &
- (a) 1 Process Nested Ifs, d
Am2910 Sggg;enscser Alg%net:mlc (b) 5 blocks Case Bit Vectors 635
: Digital Algorithmic straight .
EII!pf Filter -y 1 Process fon Code Bit Vectors 6
GCD Gol) Algomiinic 1 Proce Ifs Nested Bit Vect 24
; Algorithm Beh. SS in loop it Vectors




different combinations of inputs. For designs that are partitioned into components, we attempt to test
each component in different modes with test vectors designed to detect "stuck-at-0” and "stuck-at-1"
faults at various points in the hardware. The paths are also tested for "stuck-at-0” and ”stuck-at-
1” faults at any point on the path. In addition, we try to test some specified ports in both their
complimentary forms (1 and 0) which is analogous to testing for "stuck-at” faults in the synthesized
hardware.

3 Traffic Light Controller

Description

This benchmark describes a traffic light controller that regulates traffic at the intersection of a
highway and a sideroad. The model is written such that the highway has priority over the side road.
It uses a short timeout and a long timeout along with the traffic data on the side road to determine
the length of time the traffic lights are in a particular state. The detailed functioning is described in

[MeCo80].
Assumptions

The model assumes that some clocking signal is available to generate the timeout signals.
Testing Strategy

The tests consists of exercising paths to encompass all sequence of events. These tests ensure that
all sequences of events behave in the predicted manner.

4 Armstrong Counter

Description

The Armstrong counter counts up or down till a prespecified external limit is reached. It operates
with the Clock and Strobe signals acting as triggers.

The counting is done on the positive edge of clock. The decoding is performed on the positive edge
of the strobe signal and the limit is loaded on a negative edge of Strobe signal.

If the counter reaches the limit, further counting is disabled till a new limit is loaded or the counter
is cleared.

The benchmark was derived from the controlled counter description in [Arms89)
Caveats

The model does not support the behavior of the counter under these conditions:

e While the counter is counting towards the limit, the counting direction is changed. This means
the counting should stop since the value now has crossed the limit in the direction of count;



however, the model does not support this behavior.

For example, let the counter’s state be at 1 and counting-up, with the limit set at 7. If the
count direction is now changed to downward count, the counter has already crossed the limit 7
during count down, so it should stop counting.

e While the counter is counting towards the limit, the limit is changed so that the counter now
exceeds the limit. This means the counting should stop since the value now has crossed the
limit in the direction of count; however, the model does not support this behavior.

For example, let the counter’s state be at 7 and counting-up with the limit set at 14. If the
limit is now changed to 5, the counter has already crossed the limit 5 during count down, so it
should stop counting.

Testing Strategy

The testing strategy consists of running a clock process and a counter testing process. The types
of tests include performing a complete count-up and count-down sequence and also testing whether
the limit function works while performing the count-up and count-down.

5 Differential Equations
Description

This benchmark provides the hardware description for a small fixed-point calculation loop. The
algorithm tries to numerically solve the equation

y' +3xy'+3y=0

Here, u is assumed to represent dy/dx or y’. dx is approximated as x1 - x. Similarly, dy = y1 - y
and du = ul - u. The value ’a’ provides the number of times the numerical loop is executed. ul, x1
and y1 represent the new values of u, x and y. Thus, x1 = x + dx, y1l = udx + y, ul = u - 3xudx -
3ydx. The behavior executes by loading the initial values of x, y, u, dx, and a.

This benchmark was derived from [BrGa87].

Testing Strategy

For this benchmark, the tests include checking the execution of the loop a desired number of times
and checking for overflow on the outputs. We also check for correct operation under different conditions
such as when the inputs are zeroes or negative numbers.

6 Elliptic Filter

Descriptions

The elliptic filter belongs to the class of Infinite Impulse Response (IIR) filters, where the filter’s
response to an impulse input remains non-zero till infinite time in a theoretical sense. The particular



filter we deal with here is a low pass filter, meaning that it filters off frequencies higher than a certain
limit, called the cut-off frequency.
This filter design description is composed of a basic block of several arithmetic operations, and has

long been a popular benchmark for comparing the results of scheduling. The benchmark derived from
descriptions in [KuWK85] and [Orch90].

Testing Strategy

The functional testing of the elliptic filter is usually done with a ’delta’ function, the rough ap-
proximation of which in the digital domain is a vector that is "1’ in the first instance, and is ’0’ for all
other states. The corresponding output has to be tested by substituting the vector in the z-transform
of the state equation.

The vectors were derived heuristically, according to standard practices used in such cases. We
consider vectors that are all similar (say all 0’s and all 1’s), vectors that have different combinations
of even and odd numbers as current state vectors, and vectors that are powers of 2.

7 Kalman Filter

Description

The purpose of the Kalman filter is to predict the state vector of a system from a set of observed
quantities. The dimensionality of the state vector is larger than that of the measurements. The
imbalance is remedied by using many successive data observations in the prediction process.

The operation of the Kalman filter chip is as follows: First a set of coefficient matrices is downloaded
into the chip. Once this is completed, the chip enters its control loop. Within this loop, four steps are
repeated indefinitely. First, 13 measurements ”y” are read into the chip. Second, the state vector "x”
(of dimension 16) is estimated. This involves multiplication by a 16x16 matrix, multiplication by a
16x13 matrix, and numerical integration using the previous state estimate. Third, the control output
vector "v” (of dimension 4) is computed from the state estimate. This involves multiplication by a

4x16 matrix. Fourth, the control vector ”v” is output from the chip.
The Kalman filter model was derived from [Newt92].

Assumptions

The Kalman filter requires negative numbers to control its feedback. The highest negative number
is two to the fifteen. Also, coefficients below unity are required to ensure that feedback does not cause
the numbers to blow up. Hence, all inputs numbers have been multiplied by 1024, that is pitched 10
binary places above unity.

Testing Strategy

We start off the testing process by loading the constant matrices A, G and K. There exists 2 types
of test sequences. Four different run of test vectors was followed by a run of four identical inputs. This
is done to demonstrate the convergence of the state vector estimation process. We have also included
some sanity check vectors.



Complete details of the testing strategy can be obtained in [Newt92].

8 Greatest Common Divisor
Description

The gcd model described in this example consists of two 8-bit input ports, one 8-bit output port,
and a one-bit input port that enables the gcd model when the value is low.

The gcd model can be enabled by setting rst="0". The output ou will be evaluated as ged(xi, yi)
based on the input values of xi and yi. If rst="1", then the output will be evaluated to be "00000000”.

This algorithm is derived from [BrBr].
Testing Strategy

All possible paths in this benchmark are tested. The test types include checking when the input
numbers are multiples, and when the numbers are not multiples of each other. The other sets of tests
include the case when the input numbers are large.

9 Am 2901

Description

Am?2901 is a four-bit microprocessor slice (from Advanced Micro Devices Inc.) It can be described
either using functional blocks or by its behavior.

Its main functional blocks are as follows :

e 16-word by four bit two port RAM, with an up/down shifter at the input.
e A register ( called Q ) with an up/down shifter at the input

e An ALU source selector which select two inputs out of, Port A of RAM, Port B of RAM, Q
register output, External data input and Logical 0

e A 4-bit ALU, capable of performing arithmetic and logical functions on the selected source
words.

e A destination selector which decides whether to load the ALU output ( with or without shifting)
into the RAM, whether to load the ALU output ( with or without shifting) or the Q register
contents ( with shifting ) into the Q register OR whether the ALU output or the Port A contents
should be forwarded to the External data output.

The behavior description of 2901 consists of a VHDL process that has three case statements cor-
responding to ALU operand selection, ALU function selection and ALU destination and data-output
selection.

In the model, data is first read into "A” and ”B” from the RAM words addressed by Aadd and
Badd. Then the ALU operands are selected. The ALU does computation on these operands. After



that, the destination selector decides whether and how to write the ALU results to the RAM and Q
register.

The complete details of the function of this design can be found in [AMDe82]. Further details of
the model can be found in [Ghos92].

Testing Strategy

There are two types of paths in this design. One path starts at some register (or external data
input), goes through the ALU and ends at a register. The other path starts at a register, goes via the
ALU and ends at a RAM. Each of these paths tests a different ALU source line.

Further details of the test patterns can be found in [Ghos92].

10 Am 2910
Description

The Am2910 is a microprogram address sequencer intended for use in high-speed microprocessor
applications [AMDe89].

The Am2910 has a four-input multiplexor that is used to select either the register/counter (R),
direct data input (D), microprogram counter (uPC) or the top of stack (TOS) as the source of the
next microinstruction address.

The register/counter performs the operations of load or decrement. The microprogram counter is
used when incrementing needs to be performed, to execute sequential microinstructions. The third
source for the multiplexor is the direct (D) input. This source is used for branching. The fourth source
available at the multiplexor input is the top of the stack which is used to provide return address linkage
when executing microsubroutines or loops.

The device provides three-state Y outputs. These can be particularly useful in designs requiring
automatic checkout of the processor. The microprogram sequencer outputs can be forced into high-
impedance state, and pre-programmed sequences of microinstructions can be executed via external
access to the address lines.

The detailed model is described in [Ghos92].
Testing Strategy

In testing the Am2910 models, the overall strategy adopted is to test each "hardware” component
(e.g. stack, register/counter etc.) using sequences of test vectors.

Because the components are not being tested in isolation, we need to set up input values at input
ports of the chip and propagate them to the input of that component. Also, the output of a component
has to be propagated to the output ports of the chip.

Further details of the test patterns can be obtained in [Ghos92].



11 Intel 8251

Description

The Intel 8251 Universal Synchronous/Asynchronous Receiver/Transmitter (USART), designed for
data communication with Intel’s microprocessor families described in [Inte81]. It is used as a peripheral
device and is programmed by the CPU to operate using many serial data transmission techniques.

The USART accepts data characters from the CPU in parallel format and then converts them into
a continuous serial data stream. It accepts serial data streams and converts them into parallel data
characters for the CPU. The USART will signal the CPU whenever it can accept a new character for
transmission or whenever it has received a character for the CPU. The CPU can read the status of
the USART at any time.

The complete functional definition of the 8251 is programmed by the system’s software. A set of
control words must be sent out by the CPU to initialize the 8251 to support the desired communication
format. These words must immediately follow a reset (internal/external).

The VHDL model consists of three major processes "main”, "receiver” and ”transmitter”. The
model describes how each of the above process handle the various mode words namely, Synchronous
mode word, Asynchronous mode word Command word, and Status Word.

It also describes the operation in the following modes, Asynchronous Mode (Transmission), Syn-
chronous Mode (Transmission), Asynchronous Mode (Receive) and the Synchronous Mode (Receive).

Further details regarding the model can be obtained from [Ghos92].
Testing Strategy

In testing the functionality of the 8251, we mainly concentrate on testing its main operational
modes, Synchronous transmission, Asynchronous transmission Synchronous receive (External Syn-
chronization), Synchronous receive (Internal Synchronization) and Asynchronous receive.

Further details regarding the test patterns can be obtained from [Ghos92].

12 Benchmark Guidelines

In this section, we suggest some guidelines for the submission of new benchmarks. This is a first step
towards introducing more rigor in the benchmarking process, and towards the creation of a robust set
of benchmark examples for testing High-Level Synthesis tools and systems.

12.1 “Well-Known” HDL Description

The design must be described using a ”well-known” HDL which has a publicly available LRM, and
which has a publicly available simulator. Sample HDLs that fit this criterion include VHDL, Verilog
and Hardware-C.

The HDL description must be liberally commented to allow readability.

12.2 Design Documentation, Assumptions, Simplifications

The source of the design information should be specified (e.g., data sheet, initial design spec., etc.).



A description of the design’s functionality (using English, flowcharts, block diagrams, etc.) must
accompany the HDL description.

All assumptions and simplifications made in writing the HDL model must be clearly stated.

12.3 Simulation Vectors

A set of input and expected output functional test vectors must accompany the HDL description
for simulating typical operational behaviors of the design. These test vectors are not designed to
exhaustively test the design. Instead, they give some level of confidence in the behavioral HDL model,
and allow translation and validation of the model into another HDL or description style.

The test vectors must also be accompanied by a (English) description of what functionality is being
tested.

The input and expected output vectors should be described in a generic format that allows ease of
use in different simulation environments. A brief description of the test vector format must accompany
the test vector set.

12.4 Simulator Detalils

Each benchmark design must indicate the name, version, and availability (where appropriate) of the
simulator used to test the design.

12.5 Synthesis Outputs

The outputs of synthesis tools must be simulated using the same simulator and test vectors used to
check the behavior of the input description.

13 Summary

This report presented the status of, and briefly described the benchmark set developed for the Sixth
International Workshop on High-Level Synthesis. Several researchers are in the process of contributing
more benchmarks; these will be placed in the HLSW92 benchmark repositories both at MCNC and
at U.C. Irvine, as soon as they are complete. We will periodically provide updates on the status of
benchmarks through the High-Level Synthesis Workshop electronic mailing list.

We are actively soliciting (new or old) benchmarks that follow the suggested guidelines, and ask
that you help us create a more comprehensive set of benchmarks by providing design examples.

In conclusion, it should be noted that this is still a preliminary effort in standardizing the bench-
marks for High-Level Synthesis. We have yet to resolve several difficult issues, including a standard
mechanism for specifying timing and other constraints in the test data sets. We look forward to
receiving feedback, comments, suggestions and criticisms.

14 Acknowledgments

We would to thank the following people for their help in benchmark preparation: Indraneel Ghosh
(Am2901, Am2910, I8251), Ted Lee (Greatest Common Divisor), D. Sreenivasa Rao (Elliptic Filter)
and Joe Lis (Differential Equations, Armstrong Counter). We are grateful to Prof. Daniel Gajski for



his constant encouragement, support and suggestions in this effort. We would also like to thank Prof.
Fadi Kurdahi for his support of this activity. This work was supported in part by NSF grants MIP
9009239 and MIP 8922851.

15 References

[AMDe82] Advanced Micro Devices, Inc, “Am2901 Four-Bit Bipolar Microprocessor Slice,” 1982.
[AMDe89] Advanced Micro Devices, Inc, “Am2910 Microprogram Controller,” 1989.
[Arms89] James Armstrong, “Chip-level Modeling with VHDL,” Prentice Hall 1989.
[BrBr] Gilles Brassard and Paul Bratley, “Algorithmics Theory and Practice” Prentice Hall 1988.

[BrGta)87 F.D.Brewer and D.D Gajski, “Knowledge Based Control in Micro-Architecture Design,” Proceedings of 24th
AC, 1987.

[Ghos92] Indraneel Ghosh, “High-level Modeling of Standard Parts in VHDL,” M.S Thesis, Dept. of Electrical and
Computer Engg., University of California at Irvine, June 1992.

[Inte81] Intel Corporation, “Peripheral Design Handbook,” 1981.

[KuWK85] S.Y. Kung, H.J. Whitehouse and T. Kailath, “VLSI and Modern Digital Signal Processing,” Prentice Hall
1985, pp. 258-264.

[MeCo80] Carver Mead and Lynn Conway, “Introduction to VLSI Systems,” Addison-Wesley 1980.

[Newt92] Cleland Newton, “A Synthesis Process Applied to the Kalman Filter Benchmark,” Manuscript provided by
Cleland Newton, DRA Malvern, UK.

[Orch90] H. J. Orchard, “Adjusting the Parameters in Elliptic-Function Filters,” IEEE Trans CAS, vol 37, no 5, May
1990.

A Appendix

The VHDL models for all the benchmarks are shown below.

10



-- Traffic Light Controller (TLC)

-- Source: llardware C version writlen by huvid Ku on June A, 1988 uL Stanford
-- VHDL Benchmark author Champaka Ramachandran

e UniversiLy Of Californiu, Irvine, CA 92717

= champaka®balboa.eng.uci.edu

-- Developed on Aug 11, 1992

-- Verificaltion InformaLion:

o Verified By whom? Datc Simulator
-- SynLax Champaka Ramachuandran  Aug 11, 92 ZYCAD
-- lMunclLionalilLy Champaka Ramachandran  Aug 11, 92 7ZYCAD

entity TN.C is

port (
Cars : in BIT;
TimecoutL : in BIT;
I'imeoulS : in  BI'l;
Start'l'imer : out Wi
HiWay : out BIT_VECTOR(2 downto 0);
FarmL : out BIT_VECTOR(2 downto 0);
statec : out BIT_VECTOR(2 downto 0) *11:3~

)i
end TIC;

architeccture TLC of TLC is

Lraffic:proce;

variable necwstate, current_state : BIT_VECTOR(2 downto 0) := "111%;
variable newhll,, newl'l, : BI1T_VICIOR(2 downto 0 );
variable newST : il
begin
currenlL_slLale := newslLale;

-- combinational logic to determinc nextstate

case currenL_slale is

when *000° newHL := *"100°; ncwFL *110°%;

1 f ‘1) and (T'imeoull,

‘1") Lhen

newslLate := "100°; newS'l' := '1';

else
newstatce
end if;

*000*; ncwsST := '0°;

when *100* newlll, := *010"; newll, := *110%;
if (Timcouts = ‘1’) then
newstate := "010%; newsST := ‘1‘;
else
newsLate := *"110"; newS'' := ;
cnd if;

when *010" => newtll, := *"110
if

newll, := *100*;
‘0’) or (TimcoutL
newstate :="110"; newST :=
else
newsLate := “010°; newS'T := ‘0’;
end if; .

‘1’) then

when *110* newlll, := *110"; newll, “010°;
if (I'imeoulS = *1') Lhen
newsLale := *000"; newS'nl := ‘1';
clse
newstate := *110°; newST LR,
end if;

when "111° =>
newstatc "000°*;
newlll, := *000*;
newl'l, := "000*;
newsST := ‘0';

when others =>
end case;

statec <= ncwstate;
HiWay <= ncwHL;
iFarml, <= newl'l:;
Starl'l'imer <= newS'';
wait for 10 ns;




--------------------------------------------------------------------------- end process L IMIT_CHK;

-- Controlled Counter Benchmark COUT <= CNT;

Source: *Chip lL.evel Modeling wilh Viilil,® by Jim Armstrong (P'rentice-llall 1989
cnd ARMS_COUNTER;

-- Benchmark author: Joe Lis

Copyright (c) by Joe Lis 1988

Modified by : Champaka Ramachandran on Aug 24th 1992

-- VeriflicatLion Information:

Verified By whom? Datc Simulator
Syntax yes Champaka Ramachandran 24/8/92 ZYCAD |
Functionality yes Champaka Kamachandran 24/8/92 ZYCAD I
| use work.BI''_IFUNC'I'lONS.al11;

cntity ARMS_COUNTER is
port
CLK: in BIT;
S'I'RI3 : in bit;
CON: in BIT_VECTOR(1l downto () ;
DATA: in BIT_VECTOR(3 downto 0);
COUT: out BIT_VECTOR(3 downto 0));

end ARMS_COUNTER;

--VSS: design_style bchavioural

architecture ARMS_COUNTER of ARMS_COUNTKR is
signal ENIT, RENIT: BIT;
signal EN: BI'T;
signal CONSIG, I.IM: BIT_VECIOR(3 downLo 0);
signal CNT : BIT_VECTOR(3 downto 0);

begin

| e e S TR The' decoder “ s seiiaivmss et Rlldetut e bumasasmsss

DECODE: process (STRB, RENIT)

variable CONREG: BI'_VECIT'OR{1 downLo 0) := *00%;
| begin
if (STRB = *1') and (nolL STRB’STABLE) Lhen i
CONREC

:= CON; |

case CONRKG is
when *00* => CONSIG <= "0001*;
when *01* => CONSIG <= *"0010";

when ®"10* => CONSIC <= *0100*; ENIT <= "1°';
1

when ®"11* => CONSIC <= "1000°; ENIT <=
when oLhers => |
end case; |
end if; -- Rising ecdge of STRB |
if (RENIT ) and (nolL RENI'T'STARLE) Lhen H
ENIT <= ; |
t
end irl; |
end process DECODE;
| mmmmmmmmm e ——— Ihe 1imiL loader ========= === == : [
| LOAD_LIMIT: process (STRB) | :
|
begin
if (CONSIG(1) = ‘1’) and (not STRB’'STABLE) and (STRB = ’‘0’) thecn
LIM <= DATA;
end irl;
cnd process LOAD_LIMIT;
| S e R I'he counter =--secemcmccccsc et en s eene e mneaa
. CTR: process (CONSIG(0), EN, CLK)
| variable CNTI : BIT := '0°;
| begin i
| if (CONSIG(0) = *1’) and (notL CONSIG(0)‘STABLI) Lhen
CNT1' <= *0000°*; I
cnd if;
if (not EN’S'T'ABLE) Lhen
if (KN = *1’) Lhen i
CNTE := ‘1’; |
clse 1
CNT ‘0’ ;
end if
cnd if:
if (not CLK'STABLE) and (CLK = '1‘) and (CNTE = ‘1’) then |

if (CONSIG(2) = ‘1’) Lhen
CNT'" <= CN1' + *0001*;

clsif (CONSIG(3) = '1') then
CNT <= CNT - "0001°;
end if;
end if;

end process CTR;
i
[ e The ComMParalor =====- - - oo |

LIMIT_CHK: process (CNT, ENIT)

i |
! i
ibegin |
|
| if (not ENIT'STABLE) then |
| if (ENIT = '1’) then |
EN <= “17; RENIT <= *1°; !
else i
RENIT <= ‘0'; |
cend if;

end ifl;
if (EN = ’1’) and (CNT = LIM) then }
EN <= ‘0‘; |

| end if;



-- Diffecrential Equation Benchmark

Source: AdapLed from example in puaper

*HAL: A Multi-Paradigm Approach to Automatic Data Path Synthesis
&= by P. Paulin, J. Knight and E. Girczyc
3 23rd DAC, June 1986, pp. 263-270

Benchmark author: Joe Lis
Copyright (c) 1989 by Joe lLis

Modified by Champaka Ramachandran on Aug 17/th 1992

Verification Information:

=5 Verified By whom? Simulutor
Syntax yes Champaka Ramachandran 1/th Aug 92 ZYCAD
-- HMunclLionaliLy yes Champaka Ramachandran  17th Aug 92 ZYCAD

cntity diffeq is
port (Xinport: in inLeger;

XoulportL: oul intLeger;
DXport: in integer;
Aport: in intcger;
Yinport: in intecger;
YoutportL: oulL integer;
UinporL: in inLeger;
Uoutport: out integer)

cnd diffeq;

--VSS: design_stLyle HBIHAVIORAIL

architecturec diffeq of diffeq is

begin
Pl : process (Aport, DXport, Xinport, Yinport, Uinport

variable x_var,y_var,u_var, a_var, dx_var: inLeger
variable x1, y1, t1,L2,L3,L4,L5,L6: inLeger ;

begin

x_var := Xinport; a_var AporbL; dx_var := DXporL; y_var := YinporL; u_var

while (x_var < a_var) loop

! L1 u_var * dx_var;
t2 3 * x_var;
t3 3 * .y _var:
L1 * L2;
dx_var * L3;
u_var - t4;
t6 - tb5;
yl := u_var * dx_var;
y_var y_var + yl;
x_var x_var + dx_var;

end loop;

XoulLporlL <= x_var;
YoulLportL = y_var;
Uoutport <= u_var;

| end process I’;
| end diffeq:

|



K1liptical wWave IilLer Henchmark

-- VHDL Benchmark author: D. Srecnivasa Rao
- UniversiLy Of California, Irvine,

-- Developed on 12 September, 1992

-- Verification Information:

- Verified By whom? Datec Simulator
-- Syntax yes NSk 09/12/92 ZYCAD
-- FunclionaliLy yes DSR 09/12/92 2ZYCAD
--use sLd.sLd_logic.all;
use work.bil_funclions.all;
entity ecllipf is
porL ( inp : in BI'_VECTOR(15 downto 0);
oulp : oul BI'T_VECTOK(15 downto 0);
sv2, sv13, sv18, sv26, sv33, sv3i8, sv39
in BIT_VECTOR (15 downto 0);
sv2_o, sv13_o, sv1iB_o, sv2b_o, sv33_o, sv38_o, sv3%_o
out bilL_vector (15 downto 0));
end ellipf;
architecturc cllipf of ellipf is
begin
process (inp, sv2, sv13, sv18, sv26, sv33, sv38, sv39)
-- constanL ml1, m2, m3, m4, mS, mé, m?7, mB : inLeger := (1,1,1,1,1,1,1,1);

€A 92717
- dsr@balboa.eng.uci.edu, (714)R56-5106

variable nl, n2, n3, n4, nb, n6é, n/ : BIT_VECTOR(15 downto 0);
variable n8, n9, nl0, nll, nl2, nl3 : BIT_VECTOR(1l5 downto 0);
variable n14, n15, n16, nl17, n18, n19 : BIT_VECTOR(15 downLo 0);
variable n20, n21, n22, n23, n24, n25 : BIT_VECTOR(15 downtLo 0);

variable n26, n27, n28, n29 : BI''_VHCTOR(15 downto 0);
-- constant i : integer := (1);

begin

-- while (i = 1) LooOP
nl inp + sv2;
n2 sv33 + sv39;
n3 nl + sv13;
nd n3 + sv26;

nd + n2;
n5 ;

nS ;

n3 + né6;
n7 + n2;
n3 + n8;
n8 + nb;
n2 + n9;
nl0 ;
nl2 ;
nl + nl3;

\
ni5 + n#; |
:
n19 n% + nlé6; ‘r
n20 n16 + sv39; |
n21 nl’/ ; |
n22 nlyg + sv1y;
n23 sv38 + nl19;
n24 n20 ;
n2b inp + n21; i
n2é n22 ;
n27 n23 ;
n28 n26 + sv18;

n29 := n27 + sv38;
sv2_o <= n2b5 + nlb;
sv13_o <= nl/ + n28;
sv18_o <= n28;
5v26_0 <= n9 + nl11;
sv3B_o <= n29;
sv33_o <= nl9 + n29;
5v39_o0 <= nlé + n24;
outp <= n24;

-- cnd LOOP;

cnd process;

end ellipf;

--configuration cllipcon of cllipf is
-- for cllip_bch

| -- end for;
--end ellipcon;



- if (Cexecc = ‘1)

-- Kalman Filter Benchmark Output_Vector0
- Oulpul_Vectorl
-- Source: Adupted from Lhe puper Oulput_Veclor2
- *"A Synthesis Process applied to the Kalman Filter BEnchmark® Output_Vector3l
e by Clcland.O.Newton, DRA Malvcrn, UK end 1f;

-- HILSW-92

o end process P1;

= VHDL Benchmark author: Champaka Ramachandran on Aug 1l8th 1992
°X end KALMAN;

-- VerificalLion Informalion:

=9 Verified By whom? Date Simulator
-- Syntax yes Champaka Ramachandran 18th Aug 92 ZYCAD
-- [Funclionality yes Champaka Ramachandran 18Lh Aug 92 ZYCAD

use work.BIT_FUNCTIONS.all:

entity KAIMAN is

port (Input_Vector: in BIT_VECTOR (15 downto 0);

Addr in integer;

Cexec in BT

Vector_Lype : in BIT_VECTOR (2 downLo 0);
Output_Vector( : out BIT_VECTOR (1% downto 0);

Output_Vectorl : out BIT_VECTOR (15 downto 0);
Output_Vector2 : out BIT_VECTOR (15 downto 0);
Oulput_VeclLor3 : oul HI'I'_VECTOR (15 downto 0));

end KAIMAN;

--VSS: design_style BEHAVIORAL

architecture KAIMAN of KAIMAN is

begin

P1 : process (Addr, Cexec)

type Memory is array (integer rangec <>) of BIT_VECTOR (15 downto 0);

variable A, K : Memory (255 downLo 0); -~ ConslLant
variable G : Memory (63 downlLo 0); -- ConsLant
variable Y : Memory (15 downto 0); -- Input vector
variable X : Memory (15 downto 0); -- Statec vector
variable V : Memory (3 downtLo 0); -- oulpul vecLor
variable i, j, index : intLeger ;

variable temp : BIT_VECTOR (15 downto 0);
begin
-- Loading cocfficient array A, C and K and input vcctor Y
cuse Veclor_Lype is |

-- load A maLrix which is 16x16 and is upper diagonal
when *001* => A(Addr) := Input_Vecctor;

-- lwoad K matrix which is 16x13 , bulL is paudded wilth 0s Lo muke iL 16x16
-- Load G matrix which is 4axle
when *011* => G(Addr) := Input_VecLor;

-- Load Y matrix which is 1x13 and is the input vector and is padded with 0s

then

<= V(0);
<= V(1);
<= V(2);
<= V(3);

-- Lo make iL 1x16

|
|
|
{
[
| when *010°* => K(Addr) := InpulL_VeclLor;
i
T
|
when *100* => Y(Addr) := Inpul_Vector; j

when others =>

Lnd case;

I == IniLializing state Vector X

if (Cexec = *1') Lhen
i +=0;
while (i < 16) loop
X(i) := "0000000000000000";
=i+ 1; |
cnd loop;
cnd if;
if (Cexec = '1') Lhen |
i g= 33y |
while (i < 16) loop
Y(i) := *0000000000000000*; l
i =1+ 23 |
end loop;
ond if; 1
|
|

-=- CompuLing staLe Vector X

if (Cexec = ’'1') then
i 2= 0;
while (

G

temp := "0000000000000000*;

< 16) loop

while (j < 16) loop

index := i * 16 + j;

temp := A(index) * X(3j) + K(index) * Y(j) + tecmp:

Joi= 3 o+ 1; i
cnd loop;

X(i) := Lemp;
| i =1 4 1
end loop:;
end if;

-- Computing output Vector V

if (Cexec = ’1’) Lhen 1

i = 0;
while (i < 4) loop
] = 0}
temp := *"0000000000000000*;

while (j < 16) loop
index £ * 16 % 3¢
temp G(index) * X(3j) + temp;
Ja= g g

end loop;

| V(i) := temp * Y(i+l); |
D G
end loop;
end if;

-- OulpuL Vector V



-- CCD factorization Benchmark

-- Source: *Algorithmics by HBrassard and HBradley

VHDL Benchmark author: Champaka Ramachandran on Sept 11 1992

-- Verification Information:

&= Verified By whom? Date
SynLax yes Champaka Ramachandran 11Lh Sept 92
Functionality yes Champaka Ramachandran 11th Scpt 92

use work.HIT_IFUNCTIONS.al11;

entity GCD is

port (X, Y : in bit_vector (/ downto 0);
Keset : in bit;
gcd_outlpul : oul bil_vecLor (7 downto 0));
end GCD;

architecture GCD of GCL is
begin

process (X, Y, Resct)
variable xvar,yvar : Dbit_vector (7 downtLo 0);

variable resetvar : bil;
variable compare_var : bit_vector (1 downto 0);

. begin

if (xvar = "00000000*) then
gecd_output <= *00000000*;

end {if;

if (yvar = "00000000*) then
gcd_output <= *00000000°*;

cnd if;

-- ''ne GCI faclorizalion Lakes place only il ReseL = 0

if (resctvar = ‘0’) and (xvar /= *00000000*) and (yvar /= ®"00000000*)

compare_var := COMPARF (xvar, yvar);
-- If comparc recturns 11 then inputs arc cqual
-- If compare returns 10 Lhen xvar > yvar
-- If compare retLurns 01 then xvar < yvar

while (compare_var /= ®*11*) loop

-- Loop Lill Lhe numbers are equal

if (comparc_var = *01") then
yvar := yvar - xvar;

else
Xxvar := Xvar - yvar;

end if;

Simulator
ZYCAD
ZYCAD

then

compare_var := COMPARF (xvar, yvar);
cnd loop:

gcd_oulpul <= Xxvar;
else

gcd_output <= "00000000*;
end ifl;

end process;

cnd GCD;

16



-------------------------------------------------------------------------------- when *111°* =>

-- R_ext ‘0’ & RE;

-- AM2901 Benchmark S_ext ‘0’ & S;

N resull := not(K_exL xor S_ext);
-- Source: AMD data book when others =>

-- end case;

-- VHDL Benchmark author Indrancel Chosh

- UniversiLy Of California, Irvine, CA 92717

= -- EVALUATE OTHER ALU OUTPUTS.
-- Developed on Jan 1, 1992

FROM EXTENDED OUTPUT *resulc*® ( 5 BITS), WE OBTAIN THE NORMAL ALU OUTPUT,
*F* {4 BITS) BY LFAVING OUT THE MSHB ( WHICH COKRESPONDS TO CARRY-OUT

-- Verification Information:

-- = egy
= Verified By whom? Date Simulator
s seessawe SEZsessEseees 0000 Ssasemwew 02020 sssssesseees -- TO FACILITATE COMPUTATION OF CARRY LOOKAHEAD TERMS *Pbar*® AND *GCbar*, WE
-- . Syntax yecs Champaka Ramachandran Scptl9, 92 ZYCAD -- COMPUTE INTERMEDIATE TERMS “temp_p*" AND “"temp_g°.
-- Munctionalily Champaka Ramachundrun SepL19, 92 ZYCAD
-- B e e et e C4 <= resulL(4) ;
OVR <= not (R_ext(3) xor S_ext(3)) and
usc work.TYPES.all; (R_ext (3) xor result(3)) ;
use work.MVI,7_functlions.all; -- some MVI7 funcLions I¥ := resulL (3 downto 0) ;
use work.synlhesis_Lypes.all; -- some dula Lypes ( hinLs for synLhesis) Lemp_p := K_exL(3 downto 0) or S_ext(3 downto 0);
temp_g := R_ext (3 downto 0) and S_ext (3 downto 0):
entity a2901 is Pbar <= not( temp_p(0) and temp_p(1l) and temp_p(2) and temp_p(3) ) ;
port ( Gbar <= not( temp_g(3) or
I : in MVI.7_vector (R downLo 0); ( temp_p(3) and temp_g(2) ) or
Aadd, Badd : in integer rangec 0 to 15; (temp_p(3) and temp_p(2) and temp_g(l) ) or
D in MVL7_vector (3 downto 0); (temp_p(3) and temp_p(2) and temp_p(l) and temp_g(0) )
Y : out MVL7_vector (3 downto 0); i
RAMO, RAM3, Q0, Q3 : inouL MVI7; \ F3 <= result(3) ;
ClLK : in clock; F30 <= not( result(3) or result(2) or result(l) or result(0) ) ;
CO : in MVL7;
OEbar : in MVLY7;
C4, Gbar, Pbar, OVR, I3, IN30 : oul MVI,7 | —-= GENERATE TNTERMEDTATE OUTPUT *®"doulL® AND BIDIRECTTONAL SHIFTER SIGNALS.
)i
end a2%901; -- WRITE TO DESTINATION(S) WITH/WITHOUT SHIFTING. RAM DESTINATIONS ARE

-- ADDRESSED BY *®Badd®.

architecture a2901 of a2901 is
case T(8 downto 6) is

begin when *000* =>
process dout -- INTERMEDIATE OUTPUT
Q = == WRITE 'TO DESTINATION
variable A, BB : MVI,7_vector (3 downto 0); Q0 <=
variable RAM : Memory (15 downto 0); Q3 <=
variable Q : MVL7/_vcctor (3 downto 0); RAMO <= '2°;
variablec RE, S : MVL/_vector (3 downto 0); RAM3 <= ‘2';
variable I : MVI7_veclLor (3 downlLo 0);
variable doul : MVI,7_vecLor (3 downLo 0); I when *001°* =>
variable R_ext,S_ext,result : MVL/_vector (4 downto 0); dout := F;
variable temp_p, temp_g : MVL/_vector (3 downto 0) ; Q0 <= ‘Z';
Q3 <= '7°
begin | RAMO <= * :
| RAM3 <= '2';
wait until ( (elk = ‘0’) and (not clk’stable) );:
| when ®010" =>
A RAM(Aadd) ; -- RAM OU''PUTIS ( ADDRESSIED Y Aadd AND Badd ) ARK doutl := A;
11} RAM (Badd) ; == MADE AVAILABLE 1O ALU SOURCI SELFCTOR RAM (Badd) := I¥;
| Q0 <= “Z";
-- SELECT THE SOURCE OPERANDS FOR ALU. SELECTED OFERANDS ARE "RE®" AND *"S°*. | Q3 <= ‘2’
| RAMO <=

case (2 downto 0) is | RAM3 <=
when *000* => =

A; | when *011* =>
1= 05 | doul := I';
when *001*" => | RAM (Badd) := ¥
RE A; Q0 <= ‘Z’;
S 1= B; 03 <= ;
when *010* RAMO < 1
"0000*; RAM3 <= ‘Z°';
when "011°* when *100" =>
It 0000 ; | doubl := I;
' | RAM(Badd) := RAM3 & F(3 downto 1);
when *100* | Q := Q3 & Q(3 downto 1);
} Q3 <=

*0000";
v RAM3 <= '7%’';
RAMO <= F(0) ; -- SHIFTKR SIGNALS

Q0 <= Q(0) ;

when *101°*

when *101* =>
dout := F;

when *110* ‘
i RAM(Badd) := RAM3 & F(3 downto 1);
|
I

when *111* Q0 <= ‘Z2’';

RE : ;
S : "0000*; H
when others => ' RAMO <= F(0) ;
cnd casc;
{ when *110* =>
== SELECT 'THE FUNCITION IFOR AlLU. | dout := I;
! RAM(Badd) := F(2 downto 0) & RAMO;
- TO FACILITATE COMPUTATION OF CARRY-OQUT *"C4*, WE EXTEND THE CHOSEN Q := Q(2 downto 0) & QO:
= ALU OPERANDS *RE*" AND *S*" (4 BIT OPERANDS) BY 1 BIT IN THE MSB POSITION. Q0 <= 12’ ;
| RAMO <= *%°;
== THUS "T'HEC EXTENDED OPERANDS  *R_EXT'™® AND *"S_EX'T'* (S BI'" OPERANDS) ARl i RAM3 <= I"(3) ;
= FORMED AND ARE USED IN THE ALU OPERATION. THE EXTRA BIT IS SET TO ‘0’ ‘ Q3 <= Q(3)

== INITIALLY. THE ALU'S EXTENDED OUTPUT ( 5 BITS LONC) IS ‘“recsult®.
when "111° =>

IN THE ADD/SURTRACT OPERATIONS, THE CARRY=-INPUT "CO* (1 BI'TY) IS EXTENDED dout := ¥;
BY 4 BITS ( ALL ‘0') IN THE MORE SICNIFICANT BITS TO MATCH ITS LENGTH TO | RAM(Badd) := F(2 downto 0) & RAMO;
e THAT OF "R_cxt® AND *"S_cxt®. THEN, THESE THREE OPERANDS ARE ADDED. | Q0 <= ‘2’
| Q3 <= '%

EN'T' OPFRANDS . i RAMO <= "%’ ;
RAM3 <= F(3) ;

}, o ADD/SUBRTRACT OPERAT'IONS ARE DONI ON 2'S COMPILLI

casc I(5 downto 3) is |
when *000* => when others =>
R_exL := ’0' & RW;
S_ext ‘0" & S; end case;

result := R_cxt + S_cxt + (*0000" & CO);
when *001° => -- GENERATE DATA OUTPUT *"Y* FROM INTERMEDIATE OUTPUT *dout*.
R_exL := ‘0’ & noL(RkK); ‘
S_exL := ‘0' & S; | if (Okbar = ‘0‘) Lhen
result := R_ext + S_cxt + ("0000* & CO); | Y <= dout;
when *"010* => clsc
R_ext := ‘0’ & RI; ! Y <= 74707 ;
S_exL := 0’ & noL(S); | end if;
result R_ext + S_ext + ("0000* & CO); i
when *011° => cnd process;
R_oxt := ‘0’ & RE;

S_exL := '0' & S; end a2901;

resull := R_exL or S_exL;
when "100° =>

R_ext ‘0’ & RE;

S_ext ‘0’ & S; |

resull := R_exL and S_exL; |
when "101° =>

R_ext := ‘0’ & RE;

S_exL := '0’ & S;

resultl := nolL(R_exL) and S_exL;
when "110* => i

R_cxt := ‘0’ & RE; |
S_exL := '0' & S; |
result := K_exL xor S_exL; |



- AMD 2910

Benchmark

-- Source: AMD data book

-- VHDL Benchmark author Indranccl Chosh

University Of California,

-- Devcloped on Feb 19, 1992

-- Verificalion Information:

-- Syntax
Functiona

Verified By whom?

Tity

usc work.types.all;
use work.MVI,7_functLions.all;

use work.synthesis_Lypes

cntity AM2910

port

.all;

is

Champaka Ramachandran
Champaka Ramachandran

I : in MVL/_VECTOR(3 downto 0);
CCEN_BAR : in MVLY:
CC_BAR : in MVLY7;
RLD_BAR : in MVI7;

Cl : in MVL7;

OEbar : in MVL7;

)i
end AM2910;

clk : in clock;

-- condition codc cnablec input bit

Irvine, CA 92717

Simulator

ZYCAD
ZYCAD

-- 2910 instruction

-- condition code input bit

D : in MVL7_VECTOR(11 downlLo 0);
Y : oul MVL7_VECTOR(11 downto 0);
PL_BAR : out MVL7;
VECT_BAR : out MVL7;
MAP_BAR : outl MVL7;

FULIL_BAR : oulL MVI7

architecture AM2910 of AM2910 is

- R register load
- carry in

- tri-state driver
-- clock

-- direct inpuLs
-- oulpulL instruclLion word

stack full flag

begin
process
variable FAIL : MVLY/; -- CC fail flag
variablec SP : INTEGER rangc 0 to 5; -- stack peointer
variable STACK : MIKMORY_12_bilL (5 downLo 0); -- slLack register file
variable RI : MVI,7_vecLor (11 downto 0);
variable uPC : MVL/_vector(ll downto 0);
variable Y_tcmp : MVL/_vector (1l downto 0);
begin
wail unlil ( (c1k = *0’') and (noL clk’stable) );
fail := CC_bar and ( not CCEN_bar);
if (SP = 5) then == NECCESSARY IFOR CORRECT SIMULATION
FULL_BAR <= '0'; SINCE THIS PROCESS IS NOT TRIGERRED BY
clsc -- A RISINC CLOCK EDGE
FULL_BAR <= *'1°';
end if;

R := D
cnd if;

upbC i= Y_Lemp + (*00000000000* & C1);

MAP_BAR <= "1°;
VECT_BAR <= ‘1°;
PL_BAR <= *0°;

-- PUSH instruction

when *0100*

Y_temp := uPC;

if ( FAIL = '0’) or (RLD_BAR = '0‘) then
RE := D;

end if;

if (s /= 5) then -- busn
SP 1w 8P % 1;

end if;

STACK(SP) := uPC;

uPC := Y_temp + (°00000000000* & CI);

MAP_BAR <= *1°;
VECT_BAR <= ‘1';
PL_BAR <= 'O’

-- JSRP instruction

when ®0101°*

if (FAIlL. = ’'1’) then
Y_temp := RE;
else
Y_temp := D;
end if;

if (RLD_BAR = ‘0‘) then
RE := D;

end

if (SP /= %) then -- PUSH
SP := SP + 1; |

end ifl;

STACK(SP) := uPC;

upc := Y_Lemp + ("00000000000* & CI);

MAP_BAR <= ‘1';

VECT_BAR <= ‘1';
PL_BAR <=

when *0110° -- CJV instruction

if (FALlLL, = '1') Lhen

Y_temp := uPC;

else |
Y_temp := D;

cnd if;

if (RIWD_BAR = '0’) then

uPC = Y_Lemp + ("00000000000" & Cl);

case I is

when *0000" =>

when "0001°*

when ®*0010*

Y_temp := *000000000000%;

if (RLD_BAR = '0’) Lhen

& Dy

end ifl;

upPC := *000000000000*;
MAP_BAR <= ‘1°';
VECT_BAR <= ‘1‘;
PL_BAR <= '0

if (FAILL, = *0') Lhen
Y_Lemp := D;

if (8P /= 5) then
SP := SP + 1;

end if;
STACK (SP) := uPC;
upc;
if (RLD_BAR = '0’) Lhen

= 1);

MAP_BAR <= '1';
VECT_BAR <= '1‘;
PL_BAR <= ‘0';

Y_temp D;

il (RLD_BAR = '0') Lhen
RE = 1);

cnd if;

-- J% insLruction

-- CJS instruction

-- PUSH

Y_temp + (*00000000000* & CI);

-= JMAP

uPC := Y_temp + (*00000000000* & CI);

MAP_BAR <= '0';
VECT_BAR <= ‘1°;
PL_BAR <= '1°;

when "0011* =>

if (FAIL = ‘1’) then
Y_Lemp := ubC;
else
Y_temp := D;
end if;

if (RLD_BAR = ‘0') then

== G

insLrucLion

instruction |

MAP_BAR <= *
VECT_BAR <=
4y

when ®0111°*

if (FAIL = '1’) then |

Y_temp := RE;
else

Y_temp := D; |
end if;
if (RLD_BAR = '0') then

uPC := Y_temp + ("00000000000* & CI);

MAP_BAR <= "1’
VECT_BAR <= '1‘;
PL_BAR <= ‘0

when *1000* --

if (RE = "000000000000") then
Y_temp := uPC;

if (spP /= 0) Lhen s PO
SP := SP - 1; |
end if;
else

Y_temp := STACK(SP); |

if (RLD_BAR = '1') then ‘

R := RE - *000000000001*; |
end if;
cnd if;
if ( RLD_BAR = ‘0O’) then
RE := 1;
end if;

uPC := Y_temp + (*"00000000000* & CI);

MAP_BAR <= “1°; [
VECT_BAR <= ‘1°; f
PL_BAR <= '0 |

when "1001* => -- RPCT instruction |

if (RE /= "000000000000°") then
Y_temp := D;

RE := RE - "000000000001°*;
cnd if;
else
Y_temp := uPC;
cnd if;

if (RLOD_BAR = "1’) Lhen ‘
|

if ( RLD_BAR = '0’) then |
RiC := D;

end if;

uPC  := Y_Lemp + (°00000000000* & CIT);



MAP_BAR <= °* i
VECT_BAR < ;
PL_BAR <=

when *1010* => s

VECT_BAR <=
PL_BAR <= ‘0

when others =>

MAP_BAR <= ‘1

if (FAIL = ‘0’) then
Y_Lemp := STACK(SI); end case;
if (sP /= 0) then -- TRI-STATE DRIVER CONTROL
1: -- pop
if Okbar = ‘0' Lhen
Y <= Y_temp;
clse
Y <= *222Z2222Z22272°;
cnd if;
te = '0') then
RE := D3 end process;
end if;
cnd AM2910;
uPC 1= Y_temp + (*00000000000* & CI);
MAP_BAR <=
VECT_BAR <=
PI_BAR <= *
when *1011° => -- CJPP instruction
if (FAIL = °0') then
Y_Lemp := D);
if (SP /= 0) then -- pop
SP := SP - 1;
end if;
else
Y_temp := uPC;
end if;
if ( RILD_BAR = *0‘) then
end if; i
upC := Y_temp + (*00000000000* & CI);
MAP_BAR <=
VECT_BAR < i

PL_BAR <=

when "1100° => -- LDCT instruction
Y_temp := uPC;

RE 1= D |
upC i= Y_temp + ("00000000000" & CI);

MAP_BAR <= '1°;
VECT_BAR <= *1°;
PL_BAR <=

when *1101* => -- LOOF instruction

if (FAIL = *0’') then
Y_temp := uPC;

ir (s /= 0) Lthen -- pop
SP 3= SP - 13

Y_temp := STACK(SP):

! if ( RLD_BAR = '0') Lhen

end if;
upc i= Y_Lemp + (*00000000000* & C1); 1
MAP_BAR <= *

VECT_BAR
PL_BAR <=

when *1110° => -- CONT instruction
Y_temp := uPC;

if ( RLOD_BAR = '0‘) Lhen
D;

RE :
end if;
uPC  := Y_temp + ("00000000000" & ClI);

MAP_BAR <= '1°; :

VECT_BAR <= '1‘;
PL_BAR <=

when ®"1111° => -- TWB instruction

if RM = "000000000000* Lhen

if fail = ‘1’ then

Y_temp := D;
else
Y_temp := uPC;
end if;
if (sp /= 0) Lhen -- pop
8P 8P - 13
cnd if; |
else
if (FAIL = ‘0‘) then
Y_tcemp := uPC;
if (s> /= 0) Lhen -- pop
SP := SP - 1;
cnd if; ‘
clse i
Y_Lemp := stack(sp);
end if;

if(RLD_BAR = ‘1‘) then

end if;

RE := RE = "000000000001°*; |

end if; !
end if; |
if ( RLD_BAR = ‘0’) Lhen 1
RE := D; |

!

uPC  := Y_Lemp + ("00000000000* & Cl).; |

19



— Intcl

-- Source: Intel Data

#8251 Benchmark --

Complecte design model

Ilook

-- VHDL Benchmark author Indranccl Chosh

=& University Of Californiu, Irvine, CA 92717

:: Developed on April /7, 92

:: Verificalion Information:

s Verified By whom? Date Simulator

RTS_BAR <=

command_var
command <=

status_var
status_main

Lrigger_stalus_main <=

Tx_wr_while_cts <=

B

1= *00000000*;

command_var ;

:= *00000101°*;

status_var;
not(Lrigger_status_main):

00

-- Note the Lype of control word tLhal comes nextL

-- (Mode word)

- -——— -- ————m——— - - - next_cpu_control_word := *00°*;
-- Syntax yes Champaka Ramachandran Scpt 14, 92 ZYCAD
-- luncLionaliLy yes Champuka Ramachandrun SepL 18, 92 ZYCAD -- if notl resetlL
if (RD_BAR = '0') then -- if recad
use work.types.all; if (C_D_BAR = ‘1') then -- if rcad status
use work.MVI,7_funclions.all; | -- read Lhe value aL Lhe DSR_BAR input
use work.synthesis_Lypes.all;
status_var := not (DSR_BAR) & status (6 downto 0);
entity Intel_8251 is
porL ( -- Place status word on data bus pins
CLK in clock; D_0 <= status_var(0);
RxC_BAR in clock; D_1 <= status_var(1l);
TxC_BAR in clock; D_2 <= status_var(2);
RESET in MVL7: D_3 <= status_var(3);
CS_BAR in MVL7; D_4 <= status_var(4);
C_D_BAR in MVIL7; D_5 <= status_var(5);
RD_BAR in MVL7; D_6 <= status_var(6);
WR_BAR in MVL7; D_7 <= status_var(’);
RxD) in MVL7;
') oul MVI.7; if ( mode_var (1 downto 0) = *00*) then -- Sync mode
D_0O inout MVLY/;
D_1 inout MVLY7; SYNDET_BD_main <= ’‘0O’; -- reset SYNDET_BD on status rcad
B_2 inout MVI.7; Lrigger_SYNDEIT_BD_main <= nolL{trigger_SYNDI Hh_main) ;
n_3 inout MVI7; slatus_var := status(7) & '0’ & status(S downto 0);
D_4 inout MVLY/; status_main <= status_var;
D_5 inout MVL7; trigger_status_main <= not(trigger_status_main):
n_6 inout MVI.7; end if;
D_7 inout MVI7;
IxEMPTY ouL MVI,7; else -- if read Rx data
TXRDY out MVL7;
SYNDET_BD inout MVLY; if (command_var(2) = ‘1’) then -- if RXENABLE
RxRDY outl MVI.7
DI'R_BAR oul MVI -- Place received dala characlLer on data bus pins
RTS_BAR out MVL D_O0 <= Rx_buffer(0):;
DSR_BAR in MVL7; D_1 Rx_buffer(l);
C'I'S_BAR 1 in MVLL7 n_2 Rx_buffer(2);
)i i Dn_3 Kx_buffer(3);
end; ! D_4 Rx_buffer(4);
| D_5 <= Rx_buffer(s);
archilecture USART of IntLel_8251 is i D_6 <= Rx_buffer(6);
| D_7 <= Rx_buffer(7);
signal mode MV 7_VECTOR (7 downLo 0); |
command MVL'/_VECTOR (/ downto 0); RXRDY_main <= ‘0°; -- Reset RxRDY on data read
SYNC1 MVL'/_VECTOR (/7 downto 0); | trigger_RXRDY_main <= not (trigger_RxRDY_main);
SYNC2 MVI.7_VI downlLo 0); stalus_var := status(7 downtoc 2) & ‘0’ & status(0);
SYNC_mask MVI,7_VI downto 0); | status_main <= slatus_var;
Tx_buffer MVL/_VECTOR('/ downto 0); | trigger_status_main <= not(trigger_status_main);
Rx_buffer MVL/_VECTOR (7 downto 0); |
I'x_wr_while_cts MVIL7; | end if;
baud_clocks MVIL,7_VIECTOR (7 downLo 0);
stop_clocks MVL/_VECTOR (/ downto 0); ! end {if; -- end if command/data |
Il Lo
brk_clocks MVI1.7_VF OR (10 downLo 0); |
chars MV1.7_Vi OR(3 downto 0); | elsif (WR_BAR = '0’') Lhen -- il wriLe
SYNDET_BD_tcmp MVL7; -- intermediate signal (for writing to ino
status_main MVL/_VECTOR(/ downto 0); -- sub-signal (main) | -- Tristate the data bus pins (bi-dircctional
MVI,7_VECTOR (7 downlLo 0); -- sub gnal (Rx) | -- so Lhat CPU can wrilLe daLa/control word
MVIL7_VECTOR (7 downlLo 0); -- sub gnal ('I'x) | e
status : MVL/_VECTOR(7/ downto 0);
trigger_status_main MVLY7 := ‘0’; -=- trigger-gignal (main) i
Lrigger_statu 220y -- Lrigger-signal ('I'x) |
Lrigger_statlus r= 107 ; -- Lrigger-signal (Rx) |
SYNDET_BD_Rx -- sub-signal (Rx) |
SYNDET_BD_main -- sub-signal (main) |
trigger_ SYNDET_BD_main -- trigger-signal (main) [ |
Lrigger_SYNDEFIT_HBI_Rx -- Lrigger-signal (Rx)
RXRDY_Rx MVI.7; == sub-signal (Rx) wait for 0 ns; -- only for simulation (resolution function) |
RxRDY_main MVLY/; -- sub-signal (main) |
trigger_RxRDY_main MVLY/ := '0’ -- trigger-signal (main) if (C_D_BAR = ’'1’) then -- if write command/modec/sync-char
signal Lrigger_RxRDY_Rx MVIL7 = '0'; -- Lrigger-signal (Rx) ‘
| case (nextL_cpu_conLrol_word) is
begin !
| when *00* => -- next_cpu_control_word = mode

e R EEEARANEERNRRNNTE TN

main process

e RERANEEREAERRRRE AR AR

variable
variable
variable
variable

mode_var
status_var
command_var

D R R R

T

downLo
downto
downto
downto

MVIL7_VECTOR (7
MVL'/_VECTOR("/
MVL/_VECTOR (7/
MVI7_VECTOR (7

variable
variable

baud_clocks_var
stop_clocks_var
chars_var

-- Because
-- use variubles
-- status_var,

MVIL7_VECTOR (7
MVL/_VECTOR (3

downLo
downto

we need Lo

signals donL geL new values
(mode_var,
chars_var)

immediately on assignment,

command_var, baud_clocks_var, stop_clocks_var,

-~ which arc the samc as signals

-- (mode, command,

-- This

variable nexL_cpu_control_word

-- Variable
-- word

variable
variable

SYNC_var
Lemp

begin

wail until ( clk = "1

if (CS_BAR = '0O’) then

if ( RESKI' = *1*') or

IYIR_BAR <= '1';

stop_clocks,

“next_cpu_control_word*
should comc next from the CPU

stop_clocks, status, chars).

is needed because Lhe new values of Lhese signals are used lor
-- further computation inside the

*main®* process.

MVI7_VECTOR (1 downLo 0);

keepss track of which control
(mode/SYNC-char/command)

= mode

= SYNC CIHAR 1

= SYNC CHAR 2

= command

-- 00
-- 01
-=- 10
- A1

MVL7_VIECTOR (7 downlLo 0);
MVL7_VECTOR (10 downLo 0);

) and ( noL clk'sLable );
-- if chip seclect

( command_var(é) = ‘1' ) Lhen == il reset

-- Initialize ports and global

-- signals on reselL

(external/

|
|

Reud mode word from data bus lines
mode_var(0) :=
mode_var (1)
modc_var(2)
mode_var(3)
mode_var(4)
modc_var(5)
modc_var(6)
mode_var(7)

D_0;
:= D_1;

D_6;
1= D_7;

mode <= mode_var;

-- Iind Lhe number of

chars_var
chars <= chars_var; )

if ( mode_var(l downto 0) =

biLs per characLer

i= "0101" + (*00" & mode_var(3 downLo 2) );
no. of char bits
*00*) then -- Sync mode

-- Note Lhe Lype of control word LhalL comes nexL

if ( mode_var(6) = '1’) then -- Ext Sync Modec
next_cpu_conLrol_word := *"11*; -- command word
else -- 1nL Sync Mode
next_cpu_control_word := "01*; -- SYNC1
cnd if;
-- In Synchronous mode, each data/parily bilL
-- 1is one clock cycle long. There are no stop bi

stop_clocks <=

*00000000*;

stop_clocks_var := *00000000*";
baud_clocks <= *"00000001°*;
baud_clocks_var := *00000001";

else

next_cpu_control_word :=

case ( mode_var(l downto 0)) is -

-- if Async mode
-- Notc the typec of control word that comes next
L B L -- command
-- Find the number of clock cycles per data/parity b

seL baud rate clks



when *00°* =>

when "01*

=>

when *10° =>

when *"11°% =>

when others =>

cnd casc;

case ( mode_var(7
when "00" =>
when "01°* =>
stop_c
stop_c
when *10° =>
sLtop_c
stop_c
when *11° =>
stop_c
stop_c

when others =>
end case;

-- Calculale no.
(Two full character sequences)

Count number of

Find the number of

of clocks Lhat KxD has

baud_clocks
baud_clock:s

var := *00000001°*;
<= baud_clocks_var;

baud_clocks_var := *00010000°;
buud_clocks <= baud_clocks_var;

baud_clocks_var *01000000";
baud_clocks <= baud_clocks_var;

stop bit clock cycles

downto 6)) is -- seL stop biL clks

locks_var := baud_clocks_var;
locks <= stop_clocks_var;

:= baud_clocks_var (7 downto 0) +
( '0’ & baud_clocks_var (7 dow

stop_clocks_var;

locks_var

locks <=

locks_var := baud_clocks_var (6 downto 0)
locks <= stop_clocks_var;

&

Lo be low for a lreak Lo be delected.

sLarL bit clocks

temp := "000* & baud_clocks_var;
-- Count number of data bit clocks (full character
while ( chars_var /= *0000*) loop
Ltemp := Lemp + ( *000" & baud_clocks_var);
chars_var := chars_var - *0001°;
cnd loop;

Count number of par

if (mode_var(4) =
temp := temp +
cnd if;

temp := temp + (
Double Lhis number
character sequences

brk_clocks <=
ond if;
01"

when =>

Read the SYNC1l character

Lemp(9 downto 0) &

-- next_cpu_contLrol_word =

iLy biL clocks
‘1’) Lhen il PariLy enable
( *"000" & baud_clocks_var);

CounL number of sLop biL clocks

"000*" & stop_clocks_var);

(Rx) has Lo be low Lhrough Lwo
) agih

end if sync meode

SYNC-CHAR 1

from the data bus lines

when *11* => == B

-- Read thc command word
command_var (0)
command_var (1)
command_var (2)
command_var (3)
command_var (4)
command_var (5)
command_var (6)
command_var (7)

command <= command,

-- Not

-- (an
nexL_cpu_control_w
status_var := stat

-- If receiver is disa

if (command_var(2)

RxRDY_main <= *

ext_cpu_contrel_word = command

from the data bus lines
D_0;
H_1;
D_2;
D_3;
D_4;
D_5;
D_6;
D_7;

_var;

¢ the typc of control word that comes next
other command if there is no reset)

ord = *11%

us;

bled, reset RxRDY

o

‘0') then -- RXENABLE

Lrigger_RxRDY_main <= not(trigger_RxRDY_main);

status_var
end if;

s

-- Reset crror flags (de
if (command_var(4)
status_var := s
end if;
-- Update stalus
status_main <= sta
trigger_status_mai

Assert output pins (depen

tatus (7 downto 2) & 'O’ & status(0):

pending on comand word)
‘1') then
tatus_var (7 downto &)

error reset
*000"

&

tus_var;
n <= not(trigger_status_main);

ding on command word)

RTS_BAR <= not (command_var(5)):
DTR_BAR <= not (command_var(l)) ;

when others =>
end case;
clsc

if (command_var(0) = 1

Load data for tran

case (mode_var (3 dow
when *00* =>
Tx_buffer <= "00
when *01* =>
Tx_buffer <= *"00
when *10* =>
I'x_buffer <= *0*
when *11° =>
Tx_buffer <= D_7/

when oLhers =>

end casc;

if writc data for Transmission

‘) then == il 'I'XENABLE

smission from data bus lines
nto 2)) is char. length

into parallel

O0° & D_4 & D_3 & D_2 & D_1 & D_0O;

*& _5& D_4&D_3&D_26& D_1& D_O;

& D_6 & D_5 & D_4 & D_3 & D_2 & D_1 & D_O;
& D_6 & D_5 & D_4 & D_3 & D_2 & D_1 & D_O;

& sLatus_var(?2

b

SYNC_var (0) = D_0; | -- Resel 'I'xRDY status bilL after loading data for transmission
SYNC_var (1) = D_1; |
SYNC_var(2) := D_2; | status_var := status(/ downto 1) & ‘0‘; =-- TXRDY
T
i
SYNC_var(3) 10_3: sLaltus_main <= sLalus_var;
SYNC_var(4) h_4; Lrigger_status_main <= nolL(Lrigger_sLalus_main);
SYNC_var (5) D_b5;
SYNC_var(6) D_6; -- Note whether data was written by CPU while CTS_BAR was low
SYNC_var(7) = 1D_7; |

-- Note the typc

if (mode_var(7/) ‘o0

nexL_cpu_control_word

else

nexlL_cpu_conlLrol_word

end if;

Place SYNC1 character

of control word that comes next

Double SYNC char
SYNC2

-- if
b e

‘) then

—ryey -- Command

into proper formatL

(according Lo number of bilLs per charauacter).

-- Also crecatec a template (SYNC_mask) to be used in SYNC-character
case (mode_var(3 downLo 2)) is -- char. lengLh

when *00* =>
SYNC1 <= "000" & SYNC_var (4 downto 0);
SYNC_mask <= *00011111";

when *01° =>
SYNC1 <= *"00" & SYNC_var (5 downLo 0);
SYNC_mask <= *"00111111*;

when *10° =>
SYNC1 <= "0" & SYNC_var (6 downto 0);
SYNC_mask <= *01111111*;

when *11° =>
SYNC1 <= SYNC_var;
SYNC_mask <= "11111111°*";

when otLhers =>

cnd casc;

when *10* => pem

-- Read thc SYNC2 character
SYNC_var(0) : i
SYNC_var (1)
SYNC_var (2)
SYNC_var(3)
SYNC_var (1)
SYNC_var(5)
SYNC_var(6)
SYNC_var(7)

next_cpu_control_word

nexL_cpu_conLrol_word

Notec the type of control word that comes next

SYNC-CIIAR 2

from the data bus lincs

(command)

1

Place SYNC2 character into proper format
(according to number of bits per character).

case (mode_var(3 downLo 2)) is -- char. lengtLh

when "00* =>

SYNC2 <= *"000" & SYNC_var (4 downto 0);
when *"01°* =>

SYNC2 <= *"00*" & SYNC_var (S downto 0);
when *10° =>

SYNC2 <= "0" & SYNC_var (6 downto 0);
when *11° =>

SYNC2 <= SYNC_var;
when others =>

end case;

|
|
|
|

if (C'IS_BAR = ‘0’) L
Tx_wr_while_cts <=
clse
I'x_wr_while_cls <=
end irl;
end if;
end if;
clse
end if;
end if;
end if;

end process main;

D

LransmitlLer process

B L LR L L L Ty

variable parilLy MVL7;

variable serial_Tx_buffer

variable store_Tx_buffer :

variable clk_count

variable char_bil_count

begin

if ( RESET = '1') or ( command(6)

TXD <= *1%; -- Scnd ma
TXEMPTY <= *1°‘;

status_Tx <= status(7 downto 3
trigger_status_1I'x <= not(trigg

wait until ( TxC_BAR = ‘0’ ) a
else
if (status(0) = ‘0’) then

if Tx is enabled and CTS_BAR

hen -- 'I'x daLa was written while
1Ly -- CTS_BAR was asserted
00

-- end if command/data
if necither rcad nor writc
end if read/wriLe
end if resct

end if chip selectL

A

T T

B R Y

MVL7/_VECTOR (7 downto 0);
MVL7_VECTOR(/ downto 0);
MV1,7_VECTOR (7 downto O0);

-- parity computation

MVI,7_VECTOR (3 downto 0);

‘1" ) then == If resetL

rking signal

) & ‘1’ & status(1 downto 0);
er_status_Tx) ;

nd ( not TxC_BAR’stable );

if Tx_buffer is full
(TXRDY status bit reset)

if ( ( (CTS_BAR = ‘0’) and (command(0) = ‘1’) ) or ( Tx_wr_while_cts =
-- lLoad daLa into serial buffer
scerial Tx_buffer := Tx_buffer;
store_'I'x_buffer := 'I'x_buffer; -- used [or paritLy computation

is low or data was written while CTS_BAR was 1

|

-- Resect TXEMPTY and sct TxXRDY status bit (wec are going to start transm |

TXEMPIYY <= ‘0’ ;



il (command(?) = '1‘) Lhen

status_Tx <= status(/ downto 3) & ‘0U' & status(l) & "1°;
clse

sLalus_'I'x <= stalus(7 downto 3) & “001°*;
end if;

trigger_status_TX <= not(triggcr_status_Tx)
TXRDY and 'I'xEMPIY slalus bils

if (mode(l downto 0) /= *"00*) then -- if async mode (start)

SEND START HBI'T

clk_count := baud_clocks;

-- Loop for counting number of clock cycles per bit (according to baud

while ( clk_count /= *00000000*") loop
TxD <= '0';
wait until

clk_count :=

‘0') and (not TxXC_BAR'’stable);
*00000001 " ;

(TXC_BAR =
clk_count -

end loop:
end if; -- ond if async modec (start
== SEND CHARACTER HI'T'S
char_bit_count := chars;
-~ Loop for counting number of charactcr bits
while ( char_bil_counL /= *0000") locop
char_bit_count char_bit_count - *0001*;

clk_count := badd_clocka;

-- lLoop for counting number of clock cycles per biL (uaccording Lo baud
while ( clk_count /= "00000000")
I'x) <= serial_Tx_bufler(0);

loop

wail unLil (TxC_BAR = *0’) and (nolL 'I'XC_BAR‘stable);
clk_count := clk_count - *00000001°*;

cend loop;

serial_'I'x_buffer := '0' & serial_I'x_buffer(7 downLo 1);

end loop;

== SEND PARI'ITY I (11

APPLIICARLE)

if (mode(4) = '1’) then -- if parity cnabled
== CALCULA'TYE PARL'TY BI'T

parity := store_'I'x_buffer(0) xor sLore_'I'x_buffer(1l) xor
store_Tx_buffer(2) xor store_Tx_buffer(3) xor
store_Tx_buffer(4) xor store_Tx_buffer(b) xor
store_'I'x_buflfler(6) xor stLore_'I'x_buffler(7) xor

(noL mode(5));
clk_count := baud_clocks; -- SEND PARITY BIT

lioop for counting

while (

T <= serial_

wait unti
clk_count
end loop;

serial_Tx_buffer :=

end loop;
if (mode(4) =

-- CALCULATE
parity :=

clk_count

-- SEND PARITY BIT
-- lioop for counting number of clock cycles per bit (according
while ( clk_count /= *00000000") loop

TxD <= parity;

wait unti
clk_count
end loop;

end if;

il (mode(7) =

serial_Tx_bu
store_T'x_buf

char_bit_count

== SKEND CHARACTER
Loop for counting number of character bits

while (

char_bilL_count :=

clk_count

Loop for counting

while ( c
TXD <=

wait until

clk_cou
end loop;

scrial_Tx_buffer :=

char_bit_count /=

number of clock cycles per bilL (according Lo baud
clk_count / *0000000V0*) lcop
x_buffer(0);
1 (I'xC_BAR = '0') and (not ''xC_BAK‘stable);

:= clk_count - *00000001°;

‘0" & serial_I'x_buffer (7 downto 1);

‘1’) then -- if parity enabled

PARITY BIT

store_Tx_buffer(0) xor store_Tx_buffer(l) xor
sLore_I'x_buffer(2) xor stLore_T'x_buffer(3) xor
store_"'x_buffer(4) xor store_Tx_buffer(5) xor
store_Tx_buffer(6) xor storc_Tx_buffer(/) xor

(not modc(5)); -- even/odd parity

1= baud_clocks;

1 (TxC_BAR = '0’) and (not TXC_BAR'stable)
:= clk_count - *00000001";

‘0’) Lhen -- if houble Sync
-- SEND SYNC2 char
ffer := SYNC2;
fer := SYNC2; -- for parity
:= chars;

BIrs

*0000*) loop

char_bit_count - *0001°*;
:= baud_clocks;

number of clock cycles per bit

1k_count /= *"00000000")
scrial_Tx_buffer(0);
(TxC_BAR = '0') and (not TxC_BAR'stable);
nt := clk_count - *00000001*;

loop

‘0’ & serial_Tx_buffer (7 downto 1);

-- loop for counting number of clock cycles per bilL (according Lo baud [ end loop;
i
while ( clk_count /= *00000000*) loop ! if (mode(d4) = ‘1') then -- if parity cnabled
TxD <= parity; J
wail until (TxC_HAR = *0') and (noL 'I'xC_BAR’'sLable); == CALCULATE PARTTY BI'T
clk_counL := clk_counL - *00000001*; H pariLy := store_"'x_buffer(0) xor store_Tx_buflfer(1l) xor
cnd loop; storc_Tx_buffer(2) xor store_Tx_buffer(3) xor
| slore_'I'x_buffer(4) xor store_I'x_buffer(5) xor
end if; ~- end il parilLy enubled | sLore_'I'x_buffer(6) xor store_'I'x_buffer(7) xor
| (not mode (b)) -- cven/odd parity
-- Data was scnt. Sct TXEMPTY unless a new data char has been written and is
clk_counL := baud_clocks;
if ( noL((((CIS_BAR = ’'0') and (command(0) = '1')) or (I'x_wr_while_cLs
and (status(0) = '0‘))) then | -- SEND PARITY BIT
TREMPTY <= *1°; -- loop for countLing number of clock cycles per bilL (according
sLtalus_T'x <= slatus(7 downLo 3) & ‘1’ & stuatus(l downto 0);
Lrigger_sLalus_'I'x <= nolL(Lrigger_sLalus_'I'x); while ( clk_count /= *00000000°*) loop
TXD <= parity;
cnd if; wait until (TxC_BAR = '0’) and (not TxC_BAR’stable);
| clk_counL := clk_counL - *00000001°*;
if (mode(1 downLo 0) /= *"00*") Lhen -- if async mode (slLop) | end loop;
-- SEND STOP BIT | end if; -- ond if parity enabled
clk_count := stop_clocks; |
| end if; -- end il Double Sync
-- Loop for counting number of clock cycles in stop stop bit |
! else -- if Tx disabled
while ( clk_count /= *00000000*) loop
XD <= '1°; | T>XD <= *1°'; -- Send marking signal
wait until (TXC_BAR = ‘0’) and (noL ''xC_BAR‘sLable); ! wait until ( TXC_BAR = ‘0’ ) and ( not TxC_BAR'‘stable );
clk_count := clk_count - *00000001°";
end loop:; | end if;
end if; -- end il async mode (sLop) 1 else -- il Async mode
clse -- if Transmitter not cnabled or data was written while CTS_BAR w | TRD <m 41"y -- Send marking signal
wait unLil ( TxC_BAR = 0’ ) and ( not 'I'xC_BAR'stable );
P €= P17, == mark
TXEMPTY <= '1‘; end if; -- end if Sync mode
wail until ( TXC_BAR = ‘0’ ) and ( nol ''xC_BAR’sLuable ); ! end if; -- end if send break
cend if; -- ond if Tx disablc and data was written whilc it was disabled | cnd if; -- ond if Tx_buffer full
|
clse -- if Tx_buffcr cmpty i end if; -- end if resct
ITXEMPIY <= *1°; ‘ end process transmitter;
|
if (command(3) = ‘1’) then == if gond break e R e R R et
D <= '0’; | receiver process
wait until ( TXC_BAR = ‘0O’ ) and ( not TxC_BAR’stablc ); |
| L L R L T L T
else -=- if donL send break ‘
i variable serial_Rx_buffer : MVIL,7_VECTOR(7 downto 0);
if (mode(1l downto 0) = *00") then -- if Sync modc | wvariable sync_shift : MVL7_VECTOR (7 downto 0);
variable brk_count i MVL7_VECTOR (10 downto 0);
if (CTS_BAR = ‘0') and (command(0) = *1’) then -- if Tx cnabled variable clk_count : MVLY/_VECTOR(/ downto 0)
variable hal[l_baud MVI1.7_VEC downto 0);
-=- SEND SYNC1 1 variable char_bitl_count MV17_Vi downto 0);
scrial_Tx_buffer := SYNC1; i variable status_var MVL'/_VECTOR(/ downto 0);
store_Tx_buffer SYNC1; -- for parity variablec got_sync MVL/; This variable is used in enter hunt
char_bil_counL := chars; mode Lo check whelher

SEND CHARACTER BITS
-- Loop for counting numbcr of character bits
while ( char_bil_count /= *"0000*") loop
char_bit_count := char_bit_count -
clk_counL := baud_clocks

"0001*;

variable

variable

got_half_sync

pariLy

synchronization has been achieved i
(Used in Internal Sync detect Mode)

MVL7; This variable is used in Double
Sync mode (outside huntL mode). Its
-- assertion means LhalL SYNC1 has been
-- received and SYNDET_BD should be
-- asserted if SYNC2 is rcceived next
MV ;

end if parity cnabled

(according to baud



begin == parity is notL checked for SYNC chars in hunt mode

if ( RESET = ‘1') or ( command(6) = ‘1’ ) then -- 1f reset if (mode(4) = ‘1*) then -- i{f parity cnabled

wait until (RxC_MAR = ‘1) and (nol KxC_BAK'sLable);

-- IlniLtialize ports, signals and variubles on resel end irf; -- end if pariLy enabled
SYNDET_BD_Rx <= i -- If SYNC2 is received, synchronization has becen
trigger SYNDEI_BD_Rx <= nol(Lrigger SYNDII_BD_KRx) ; -- achieved and iL should geL oul of "HUNT LOOP*
RXRDY_Rx <= ] -- Else iL re-enters °HUNI' LOOI"* and looks for SYNC1 uga
trigger_RXRDY_RX <= not(trigger_ RxRDY_Rx);
got_half_sync := ‘0‘; if (secrial_Rx_buffer = SYNC2) then -- if got sync

got_sync := ‘1°’;
wail unLil (RXC_BAR = ‘1’) and (noL RxC_BAR’'stable); end if; -- end if got sync
clse -- if not resct end if; -- end if double sync mode
if (command(2) = *1') then == i RXENAHLI end loop; -- end while got_sync
if (mode(l downto 0) = *"00*) then -- if sync mode -- Internal Synchronization must have becn achieved since it
i -- got out of above loop (*HUNT LOOP®).
== SYNCHRONOUS MODH
-- AsserL SYNDHT_BD Lo show Lhat Synchronizalion has been achiev
if (command(/) = ‘1‘) then -=- 1f ENTER HUNT MODE
SYNDET_BD_Rx <= ‘1°;
if (mode(6) = *1’) Lhen -- if external sync mode Lrigger_SYNDET_HI_Rx <= not (Lrigger_SYNDET_BD_Rx) ;
-- In Extcrnal Synchronization mode, the USART tristatcs its own SYND if (command(0) = '1') then
status_RX <= status(7/) & ‘l’ & status(5 downto 0);
SYNDET_BD_Rx <= 'Z’; clse
wail on SYNDET_BD_Rx; -- Only for simulalion sLatus_Kx <= status(7) & '1' & status(5 downLo 3) & '1' & stalus
-- (resoluLion funclLion) end if;
trigger_SYNDET_BD_Rx <= not (trigger_ SYNDET_BD_RX) ;
trigger_status_Rx <= not(trigger_status_Rx);
-- USAR'T' wails for a rising edge on Lhe SYNDII'_BD pin (coming extLernal
end if; -- end il ext sync mode
wait until (SYNDET_BD = ‘1') and (not SYNDET_BD'’stable);
end if; -- end if enter hunt mode
SYNDET_HD_Rx <= *1°;
trigger_SYNI '_HBD_Rx <= nolL(Lrigger_SYNDKT_BD_Rx); -- ASSEMBILE CHARACTER
status_Rx <= status(/) & 'l' & status(S downto 0); |
trigger_status_Rx <= not(trigger_status_Rx); | serial_Rx_buffer := *"00000000*";
char_bit_count := chars;
-- After SynchronizaLion is achieved, character assembly starts al nex
-- loop for counting number of character bilLs
wait until (RxC_BAR = '1’) and (not RxC_BAR'stable); while (char_bit_count /= ®*0000*) loop -- ASSEMBLE CHAR
scrial_Rx_buffer := RxD & scrial_Rx_buffer(/ downto 1);
else -- il inLernal sync mode char_bil_count := char_bil_count - *0001*";

wail until
end loop:

(RXC_BAR = “1‘) and (noL RxC_BAR’'s_Lable);

In internal synchronization mode, resct the "got_sync®
variable before cntering the loop, to show that
-- synchronization has'nL yelL been uchieved

-- Align assembled characler correclly

i case (mode(3 downLo 2)) is -- char. length
got_sync := ‘0’; | when *00* =>
| serial_Rx_buffer := *"000* & scrial_Rx_buffer(/ downto 13);
-- kKnLer *HUNT 1.0OP* Lo uchieve synchronizalion when *01* =>
serial_Rx_buffer := "00" & serial_Rx_buffer (7 downto 2);
while (got_sync = '0') loop when *10° =>
serial_Rx_buffer := *0" & scrial_Rx_buffer (/7 downto 1);
-- Load all zcros into the Rx buffer to aveid falsc SYNC chara | when *11° =>

serial_Rx_buffer
when others =>

serial_Rx_buffer (7 downto 0);

serial_Rx_buffer := *00000000°*;

sync_shift := "00000000"; end casc;
-- lknLer loop Lo shifL in a biL from *RxD* pin aL every == CHECK PARITY (IF KENAHBLED)
-- clock edge (i.e. check lor SYNC1 ulL every bilL boundary) | if (mode(4) = *1') then -- if pariLy enabled
while ( (SYNC_mask and sync_shifL) /= SYNC!) loop parity := RxD;
serial_Rx_buffer := RxD & scrial_Rx_buffer(/ downto 1); parity := scrial Rx_buffer(0) xor scrial Rx_buffer(l) xor
scerial_Rx_buffer(2) xor secrial _Rx_buffer(3) xor
-- lormal Lhe biLs in Lhe receive buffer Lo flacililLule compariso H serial_Rx_buffer(4) xor serial_Rx_buffer(5) xor
I ! serial_Rx_buffer(6) xor serial_Rx_buffer(7) xor

case (mode(3 downto 2)) is -- char. length (not modec (b)) xor parity; - PARITY E |
when *00* => !
sync_shifL := *000* & serial_Rx_buffer(7 downlLo 3); -- SebL pariLy error flag (il error is detected)
when *01* => if (command(0) = '1') then
sync_shifL := "00* & serial_Rx_buflfer (7 downto 2); status_Rx <= sLalus(7 downto 4) & parily & slLatus(2 downto 0);
when "10*" => | clse
sync_shift := ®"0® & scrial Rx_buffer(/ downto 1); 1 status_Rx <= status(7 downto 4) & parity & ‘1’ & status(l downto 0
when *11* => end if;

sync_shifL :=
when others =>

serial_Rx_buffer(7 downto 0);
trigger_status_Rx <= not(trigger_status_Rx);

cnd case; wait until (RXC_BAR = “1’) and (not RxC_BAR'stable);
|
wail unLil (RxC_BAR = *1') and (not RxXC_BAR’sLable); end if; -- end if parity enabled
'
cnd loop; status_var := status;

-- SYNC1 musL have been received since iL goL oulL of above loop | -- CHECK IF SYNC CHARACTER(S) HAVE BEEN DETECTED (THIS CHECKING

-- pariLy is nolL checked lor SYNC chars in hunL mode | -=- 1S ONLY DONII AT "KNOWN®" WORID) BOUNDARIES)
if (mode(4) = '1') then -- if parity cnabled -- if alrcady got SYNC1 in Double Sync Mode
wail until (RxC_BAR = “1') and (nolL RxC_HIAR’sLable); i
end if; -- end if parily enabled H if (goL_half_sync = '1') Lhen
if (mode(7) = '1') then -- if single sync mode | -- if this character is SYNC2
-- In Single Sync mode, gelLLing SYNC1 means Lhal synchronivzation | if (serial_Rx_buffer = SYNC2) Lhen
got_sync := '1l’; , -- Sct SYNDET_BD to signify dectection of SYNC1 and SYNC2
SYNDU BD_Rx <= "1';
else == il double sync mode Lrigger_SYNDET_BD_Rx <= nol(Lrigger_SYNDIT_BD_Rx) ;
-- In Double sync mode, asscmble next character and ‘ if (command(0) ‘1’) then
-- comparc it to SYNC2 to check for synchronization | status_var := status_var(7) & ‘1’ & status_var(5 downto 0); |
| else |
serial_Rx_buflflfer := *00000000"; i stalus_var := slLatus_var(7) & '1' & status_var(5 downLo 3) &

char_bit_count := chars; | ‘l’ & status_var(l downto 0);
end if;
== ASSEMBLE POSS LI SYNC2 CHARACTER |
-=- loop for counLing number of charucLer bilLs end if; I
|
while (char_bit_count /= *0000%) loop | got_half_sync := ‘0‘;
serial_Rx_buflffer := RxD) & serial_Rx_buflfler (7 downtLo 1); {
char_bit_count := char_bit_count - *"0001*; else == if (not received SYNC1) or (Single sync mode)

wait until (RxC_BAR = '1’) and (not RxC_BAR’stable);

cnd loop; ! -- if this character is SYNC1
|
== ALIGN ASSEMBLED CHARACTIR CORRECTLY IFOR COMPARISON WI | if (serlal_Rx_buffer = SYNC1) Lhen
casc (mode(3 downto 2)) is -- char. length if (mode(7) = ‘0’) then -- if double sync mode
when "00* =>
serial_Rx_buffer := *"000" & serial_Rx_buffer (7 downLo 3); -- In Double Sync mode, deLection of SYNC1 is not sufficient Lo
when *01°* => -- selL SYNDET_BD. We need Lo check whether Lhe next characlLer is |
serial Rx_buffer := "00° & scrial Rx_buffer(7/ downto 2);
when *10*" => got_half_sync := '1'; |
serial_Rx_buffer := *"0" & serial_Rx_buffer(7 downtLo 1); ! |
|

when *11" =>

serial_Rx_buffer

when others =>
end case;

serial_Rx_buffer(/ downto 0);

else =
-- In Single Sync mode,

SYNDET_BD_Rx <= "1°;

Lrigger_SYNDET_BD_Rx <= not (trigger_SYNDIT_BD_RX) ;

if single sync mode

SYNDET_BD is sct if SYNC1l is received



‘1) then
status_varl/) & ‘1 &

if (command(0) =
status_var :=

else
sLatus_var := slalus_var{7) &€ ‘1’ & status_v
‘l' & status_var (1l downto 0);
end if;
end ifl; -- end
end if; -

end if; -- end if already gotL SYNC1 (

-- transfer rccecived character to parallel butf

Rx_buffer <= scrial Rx_buffer

-- Check il RxRDY was already selL (i.e.
if (status(l) = ’1’) then
-- SeL Overrun krror llug il previous charucLe
if (command(0) sg ey then

status_var ;= downto 5) & ‘1‘ & s
else

status_var :=

status_var(/

status_var (7 downto 5) & ‘1° & =

‘1’ & status_var (1l downto 0O
cend if;
else
-=- Sel RxKRDY Lo tell CIPU Lo reud new charactLer
RXRDY_Rx <= ‘1°;
Lrigger_RxRDY_Rx <= nolL(Lrigger_RxRDY_Rx) ;
if (command(0) = "1’) Lhen
status_var status_var(/ downto 2) & ‘1’ &
clsec
slalus_var := slalus_var(7 downto 3) & "11°*
end if;
cnd if; -- cnd

sLalus_Rx <=
Lrigger_sLalus_Rx <=

sLalus_var;
nobL (Lrigger_sLalus_Rx);

clse e O
== ASYNCIHRONOUS MODI

-- Check whether RxD is high. If so, then it i

-- receive the Start Bit (low) of the next cha
if (RxD = *1') Lhen
-- Sct Break Dctect (SYNDET_BD) low if RxD is

brk_count := *00000000000°*;
SYNDET_BD_Rx <= ‘0’
trigger SYNDET_BD_RX <= not (triggcer_SYNDET_BD_RX) ;

if (command(0) = *1‘) Lhen

sLalus_Rx <= slalus(7) & '0' & sLalus (5 downto 0)
else
status_Rx <= status(/) & ‘0’ & status(b5 downto 3)

slatus (1 downto 0);

end if;

previous churacLer

status_var (5 downto 0);

ar (S downto 3) &

if double sync mode
end if we get SYNC1

in houble Sync)

fer

unre

r was unread

tatus_var (3 downto

Latus_var(3) &

status_var(0);

& status_var (0);

if Rx buffer full

async modc

5 ready to
racter

high

& ‘1" &

whi

wait until

-- loop Lo wait for hulfl the number of clock cycles per b

le (clk_count /= *00000VVO*)
(KXC_BAK = "1°) and

loop
(nNoL KxXC_MAK'stable);

clk_count := clk_countl - *00000001°";
end loop;
-- For 1X baud rale, we intLroduce a separate wail (as
if (mode(l downto 0) = *01°) then
wait until (RXC_BAR = ‘1‘) and (not RxC_BAR‘stable);
end if;
-- Sample character bit at its nominal center
scrial _Rx_buffer := RxD & scrial _Rx_buffer(7 downto 1);
if (KxD = '1') Lhen
-- Sct Break Detcect (SYNDET_BD) low if RxD is high
brk_count := *00000000000°*;
SYNDET_BD_Rx <= ‘0°;
trigger _SYNDET_BD_Rx <= not(trigger_SYNDET_BD_RX);
if (command(0) = "1') then
status_var := status(/) & ‘0’ & status(> downto 0);
elsc
status_var := status(/) & ‘0’ & status(5 downto 3) & ‘1
status (1 downto 0);
end if;

status_Rx <= status_var;

i

me

&

Lrigger_stalus_Rx <= nobL(Lrigger_sLalus_Rx);
else
-- If RxD is low, incrcasc *brk_count® by the number of clock cy
brk_count := brk_count + (®000* & baud_clocks);
cnd if;
clk_count := half_baud; == NOTF half_baud = 0 for 1X baud
-- loop to wait for half the number of clock cycles per bit
while (clk_count /= *00000000*) loop
wait until (RxC_BAR = ’'1’) and (not RxC_BAR'stablce);

=
end

char_bit_count :=

end

1k_count := *00000001*;

loop:

clk_count -

char_bit_count - *0001°*;

loop;

-- ALICN ASSEMBLED CHARACTER CORRECTLY

case (mode(3 downLo 2)) is -- char. lenglLh

when *00°* =>

serial_Rx_buffer := *"000" & serial_Rx_buffer(7 downto 3)
when "01° =>

serial Rx_buffer := "00" & scrial Rx_buffer(7 downto 2);
when *10* =>

serial_Rx_buffer := *"0" & serial_Rx_buffer(7 downto 1);
when "11° =>

serial_Rx_buffer scerial_Rx_buffer(/ downto 0);

when others =>
end case;

Lrigger_sLulus_Rx <= not(Lrigger_sLalus_Rx);

WAIT FOR FALLINC EDGE ON RxD (START BIT) IN CASE A RESET (INT/EXT) OCCURS
wail until ((RxD = ‘0’) and (noL RxI)'sLable)) or (RESII" = ‘1') or (coi
== 1f ‘not riesct

if ((RESKI' = '0’) and (commuand(6) = ‘0’)) Lhen
-- START BI'T
-- To samplc Start Bit at its mid-point (16X or 64X baud ratc |
-- only), wait for half thc numbcr of clock cycles per bit
-- (equal Lo variable *hall_baud*)
-- Note: Variable *half_baud® is 0 for 1X baud rale, 50 we |
-- introduce a scparatc wait for the 1X mode. (*+*) |
hall_baud '0' & baud_clocks (7 downLo 1)

clk_countlL halfl_baud;

-- Loop to wait for half thc number of clock cycles per bit

while (clk_count /= *00000000*) loop
wait until (RXC_BAR = "1')
clk_count := clk_count - *"00000001°";

cnd loop;

-- Sample Start BiL at ILs mid-poinL
-- If its a rcal Start Bit
Lhen

if (Rxh = '0')

-- For 1X baud ratc,
il (mode(1 downto 0) =

wail until (RxC_BAR =
cnd if;

“01") Lhen
*1*) and

(False SLartL

wc introduce a scparate wait

and (nol RxC_HBAR'sLable); H

it DetLection

(as mentioned

(noL RxC_BAR’sLable);

-- Loop to wait for half the number of clock cycles per bit

clk_count := half_baud; -- hall_baud is 0 for
while (clk_count /= *"00000000*) loop
wail until (RxC_BAR = ’1') and

clk_count := clk_count - *00000001";
cnd loop; 2L

brk_count := brk_counL + ("000" & baud_clocks);

-- ASSEMBLE CHARACTER BITS

serial _Rx_buffer := *00000000";
char_bitl_counL := chars;

|
|
1X mode }

(noL RxC_BAR’sLable); %
[

END OF START BIT

-- Loop for counting number of character bits

while (char_bil_counL /= "0000") loop

-- To samplc a Character Bit at its mid-point
-- ratc only), wait for half thc number of clock
-=- (equal Lo variable *half_baud*)

-- Note: Variable *half_baud* is 0 for

clk_countL := halfl_baud;

(16X or 64X baud

1X buud rate
-- introduce a secparatce wait for the 1X mode. (

cycles per bit

50 we

== PARI'TY BI'T"
if (mode(4) = ‘1') then -- if parity cnabled
‘I'o sumple a PariLy HiL aL iLs mid-poinL (16X or 64X baud

rate

(equal to variable

0 fo

clk

whi

wail until

<

_count

wait lfor halfl Lhe number of clock cycles per bitl
"half_baud") Notc: Variable
50 we introducc a

only),
r 1X baud ratc,

:= halfl_baud;

*half_baud* is
scparate wait for the 1X m

- Loop to wait for half thc number of clock cycles per bit

"00000000*) loop
“1') and (noL RxC_BAR’stable);
*00000001";

le (clk_count /=
(RXC_BAR =

1k_count := clk_count -

end loop;

-- IFor 1X baud ratLe, we introduce a separate wait

if (modc(l downto 0) = *01*) then
wait until (RxC_BAR = ’'1‘) and (not RxC_BAR’stable);

end if;
== CHECK PARITY A'l'" CENTRE OF PARITY BIT

parity := RxD;

if (Rxb = ‘1) Lhen

-- Sct Break Dectect (SYNDET_BD) low if RxD is high

brk_count := *00000000000*;

SYNDET_BD_RX <=

T

0
rigger _SYNDET_BD_Rx <= not (trigger_SYNDET_BD_RX) ;
1y

f (command(0) = Lhen

(as menLlion

status_var := status(/) & ‘0’ & status(b downto 0):
clsec
status_var := status(7) & 'O’ & status(b downto 3) & ‘1’ &
end if;
clse
|
-- If RxD is low, increase °*brk_countL® by Lhe number of clock cy
brk_count := brk_count + ("000*" & baud_clocks);
end if;
-- Verify Parity
parity := scrial Rx_buffer(0) xor serial Rx_buffer(l) xor
serial Rx_buffer(2) xor serial Rx_buffer(3) xor
serial_Rx_buffer(4) xor serial_Rx_buffer(5) xor
serial_Rx_buffer(6) xor serial_Rx_buffer(7) xor
(not mode (b)) xor parity; -- PARITY ERROR
-- SelL larily Fkrror flag il error is detectLed
if (command(0) = ‘1‘) then

status_var := status_var(/ downto 4) & parity & status_var(2 do}

else

sLatus_var := stalus_var(7 downLo 4) & parily & "1’ & slatu
end if;

if (mode(1) = ‘1’) Lhen -- il 16X or 64X baud

sLalus_Rx <=

stalus_var;

s_v



Lrigger_stalus_Kx <= nolL(Lrigger_sLalus_Kx):

cnd if; end if; -- end if RxENABLE
clk_counl := half_baud; -- half_buud = 0 for 1X baud end if; -- end if reset
-- Loop to wait for half the number of clock cycles per bit end process receiver

-

crvavrenw

cammermen

while (clk_count /= *00000000%) loop

wait until (KxC_BAK = "17) and (nolL RxC_BAR'stLable); triggering : block
clk_count := clk_count - *00000001°*;
end loop; B L R R T T
begin
end ifl; -- end if pariLy enabled

-- The signal °®*status® and the ports °*SYNDET_BD, RxRDY® arc written
-- Transfer rcccived data to parallel buffer -- to by more than onec process. So, we split them up into many
-- *sub-signals*® (one for cach writing-process).
Rx_buffer <= serial_Rx_buflfer;
-~ Whenever any process wriles Lo its own *sub-signal*, we assign Lhe
-- Check if RxRDY was alrcady sct (i.e. previous character -- new value to the actual signal. This *"writing® is monitored by the tr
-- unrcad by CPU)
-- Whenever the signal has Lo be read, we read the actual signal and not

if (status(1) = *1’) then == if Rx buffer full
status <= status_main when (not trigger_status_main‘stable) else
-- Sct Overrun Error flag if previous character was unrcad status_Rx when (not trigger_status_Rx’stable) clse
status_Tx when (not trigger_status_Tx'stable) else
if (command(0) = '1') Lhen | status;
status_var := status_var(/ downto 5) & ‘l’ & status_var (3 downt
clse ' SYNDET_BD_temp <= SYNDET_BD_main when (not trigger_SYNDET_BD_main’stablc) clse
status_var := status_var(/ downto %) & 'l’' & status_var(3l) SYNDET_BD_Rx when (not trigger_SYNDET_BD_Rx'stable) elsc
& "1’ & sLatus_var (1l downto 0); SYNDET_BD_temp;
i end if;
SYNDET_BD <= SYNDET_BD_temp;
clsc
RXRDY <= RxRDY_main when (noL trigger_RxRDY_main’stable) else
-- SelL RxRDY Lo tell CPU Lo reud new characlLer | RxRDY_Rx when (not Lrigger_RxRDY_Rx’'stable) else

status(1); -- RxRDY
RXRDY_Rx <= "1°;
Lrigger_RxRDY_Rx <= noL(Lrigger_RxRDY_Rx);

Trerrerrvrnaww

rwamww

D

if (command(0) = '1’) then

status_var := status_var(/ downto 2) & ‘1’ & status_var(0); TXRDY_pin : block
else

sLalus_var sLalus_var(? downle 3) & *11°* & sLalus_var(0);: B T L L L LR L L R R
end if; begin

end if; -- cnd if alrcady RxRDY -- TXRDY pin is dependent on CTS_BAR and TXENABLE, in addition to the Tx
-- Since CTI'S_HAR can change aL any Lime, we use a separate block for Lhi

sLatus_Rx <= slalus_var;

trigger_status_Rx <= not(trigger_status_Rx); TXRDY <= (not CTS_BAR) and command(0) and status(0);

-- S'"1or BI'(s) i end block TxRDY_pin;

e

wait until (RXC_BAR = ‘1’) and (not RXC_BAR'stable); |
| ond USART;
-- check for fruming error and break |

if (RxDh = "1’) Lhen
-- Sct Brecak Dectect (SYNDET_BD) low if RxD is high
brk_count := *00000000000"; |
SYNDET_BD_Rx <= '0’;
trigger_SYNDET_BD_Rx <= not (trigger_ SYNDET_BD_RX) ;

if (command(0) = ‘1’) Lhen
status_Rx <= status(/) & '0' & status(S downto 0);

else
sLalus_Rx <= slatus(7) & ‘0’ & sLatus(S downto 3) & ‘1’ & sL
cend if; |

Lrigger_stalus_Rx <= nolL(Lrigger_stalus_Rx);

clsec - \
-- If RxD is low, sct framing crror flag. |
if (command(0) = '1') Lhen
sLalus_Rx <= slualus(7 downlo 6) & 1’ & stalus(4 downlo 0);
clsc
status_RX <= status(/ downto &) & '1' &
sLalus (4 downto 3) &1’ & sLatus(l downto 0);
end if;

trigger_status_Rx <= not(trigger_status_RXx);

-- Increase "brk_counL"®" by Lhe number of clock cycles per bilL. _

brk_count := brk_count + ("000® & stop_clocks); |
end if; i

end if; -- end if iLs an actual start bit

| end if; -- cnd if not recsct
else -- il noL yelL reuady Lo receive sLarlL bil |

= (L.c. RxD is low)

wail unLil (RxC_BAR = '1') and (nolL RxC_IAR'sLable);
if (RXD = '0’) then -- if still not rcady to reccecive start bit i

-=- Rxl) has been low lor one more clock cycle. So incremenL *brk_

brk_count := brk_count + *00000000001°*;

-- If RxD has stayed low for two conscecutive character scquence lengths,
selL Hreak DeLecL (SYNDII'_IID

|
if (brk_count >= brk_clocks) then

SYNDET_BD_Rx (o)
Lrigger_SYNDIMI'_II_Rx <= nol (Lrigger_SYNDII'_BD_RX) ;
|
if (command(0) = ‘1’) then |
status_Rx <= status(/) & ‘1’ & status(b downto 0); |
else |
sLalus_Rx <= stalus(7) & 1’ & sLalus(5 downto 3) & ‘1’ & slLal
cnd if; I
\ trigger_status_RX <= not(trigger_status_Rx); {
: end if; -- end il breuk deLeclLed ;
|
cnd if; -- cond if still not recady to rccecive start bit |
end if; -- end if ready Lo receive sLart bitL
end if; -- end if sync mode

else -- if Rx disubled ’
-- ReselL RxRNDY il receiver is disubled
RXRDY_Rx <= ‘0‘;
trigger_RxRDY_Rx <= not(trigger_ RXRDY_RX);

wail unLil (RXC_BAR = *1') and (noL RxC_MBAR'sLable);





