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Systems/Circuits

Columnar Localization and Laminar Origin of Cortical
Surface Electrical Potentials

Vyassa L. Baratham,1,2* Maximilian E. Dougherty,1* John Hermiz,1 Peter Ledochowitsch,3 Michel M. Maharbiz,4,5

and Kristofer E. Bouchard4,6,7,8
1Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, 2Department of Physics,
University of California–Berkeley, Berkeley, California 94720, 3Allen Institute for Brain Science, Seattle, Washington 98109, 4Center for Neural
Engineering and Prosthesis, University of California–Berkeley/San Francisco, Berkeley, California 94720-3370, 5Department of Electrical
Engineering and Computer Science, University of California–Berkeley, Berkeley, California 94720, 6Helen Wills Neuroscience Institute and
Redwood Center for Theoretical Neuroscience, University of California–Berkeley, Berkeley, California 94720, 7Scientific Data Division, Lawerence
Berkeley National Lab, Berkeley, California 94720, and 8Biological Systems and Engineering Division, Lawerence Berkeley National Lab, Berkeley,
California 94720

Electrocorticography (ECoG) methodologically bridges basic neuroscience and understanding of human brains in health and
disease. However, the localization of ECoG signals across the surface of the brain and the spatial distribution of their generat-
ing neuronal sources are poorly understood. To address this gap, we recorded from rat auditory cortex using customized
lECoG, and simulated cortical surface electrical potentials with a full-scale, biophysically detailed cortical column model.
Experimentally, lECoG-derived auditory representations were tonotopically organized and signals were anisotropically local-
ized to less than or equal to 6200 lm, that is, a single cortical column. Biophysical simulations reproduce experimental find-
ings and indicate that neurons in cortical layers V and VI contribute ;85% of evoked high-gamma signal recorded at the
surface. Cell number and synchrony were the primary biophysical properties determining laminar contributions to evoked
lECoG signals, whereas distance was only a minimal factor. Thus, evoked lECoG signals primarily originate from neurons in
the infragranular layers of a single cortical column.

Key words: auditory cortex; biophysical simulation; cortical column; neurophysiology; origins of ECoG

Significance Statement

ECoG methodologically bridges basic neuroscience and understanding of human brains in health and disease. However, the
localization of ECoG signals across the surface of the brain and the spatial distribution of their generating neuronal sources
are poorly understood. We investigated the localization and origins of sensory-evoked ECoG responses. We experimentally
found that ECoG responses were anisotropically localized to a cortical column. Biophysically detailed simulations revealed
that neurons in layers V and VI were the primary sources of evoked ECoG responses. These results indicate that evoked ECoG
high-gamma responses are primarily generated by the population spike rate of pyramidal neurons in layers V and VI of single
cortical columns and highlight the possibility of understanding how microscopic sources produce mesoscale signals.

Introduction
Brains are composed of neuronal microcircuits (e.g., cortical col-
umns) that perform specific computations that are integrated
into larger networks (Koch, 1994; Shepherd, 2004). Microscale
measurements investigating the activity of individual neurons
and small neuronal populations have yielded insight into micro-
circuit mechanisms of local computations. Macroscale measure-
ments (e.g., fMRI) have revealed principles of global processing
across the brain (Buzsáki et al., 2012). Much less is known about
how local neural processing is organized and coordinated across
distributed brain networks. Measuring distributed cortical func-
tion is critical to understanding complex perceptions and behav-
iors (Canolty et al., 2006; Bouchard et al., 2013; Khodagholy,
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et al., 2017). High-density micro-electrocorticography (mECoG)
arrays record neuronal activity directly from the cortical surface,
can have tight spacing of many thousands of channels, and are
minimally invasive (Ledochowitsch et al., 2011; Viventi et al.,
2011; Khodagholy et al., 2015). Furthermore, because ECoG/
mECoG is used in humans, it is a critical methodological bridge
between basic neuroscience findings and understanding human
brains in health and disease (Khodagholy et al., 2015). However,
use of (m)ECoG for basic neuroscience is impeded by a lack of
understanding of the spatial localization of recorded signals
across the surface and the specific neuronal sources generating
those signals.

ECoG records cortical surface electrical potentials (CSEPs),
which reflect a weighted superposition of all electrical sources in
the brain (Buzsáki et al., 2012; Einevoll et al., 2013). Many ECoG
studies focus on lower frequencies (e.g., ,60Hz), although it is
becoming common to use the high-gamma (Hg ; 65–170Hz;
Canolty et al., 2006; Bouchard and Chang, 2014) band. The moti-
vation for using Hg stems from the proposal that higher fre-
quencies reflect more spatially localized signals (Buzsáki et al.,
2012). However, experimental estimates of spatial spread of cor-
relations range from several hundred micrometers to a few milli-
meters. Determining the spatial localization of evoked ECoG
signals is critical for both interpreting data as well as guiding the
design of future devices.

During sensory processing, neuronal populations are acti-
vated with spatial correlations that partly depend on cortical
functional organization and the biophysics of signal propagation
through cortical tissue (Lindén et al., 2011; Lin et al., 2015). In
primary sensory cortices [e.g., primary auditory cortex (A1)], the
functional organization of response properties varies smoothly
across adjacent columns (Schreiner and Winer, 2007). Cortical
columns in rodents have a radius of;350mm and span;1800–
2100mm in depth, including all six cortical layers, which are
composed of different neuron types (Mountcastle et al., 1997;
Tischbirek et al., 2019). Although different excitatory and in-
hibitory cell types within columnar microcircuits play dif-
ferent roles in sensory computation, in general, neurons
within a column share similar sensory tuning properties
(Atencio and Schreiner, 2010a, 2012). At the same time,
electrical fields spread passively through cortex, diffusing
the signal (Lindén et al., 2011). Thus, both passive spread
through the tissue and functional organization of neuronal
populations are potential mechanisms dictating localization
of evoked ECoG signals across the surface. However, which
of the two is the dominant mechanism is unknown.

We lack biophysical understanding of the sources generating
CSEPs. The spatial spread of population local field potential
(LFP) is determined by single-neuron morphology, temporal
correlations between sources (synchrony), the number of sour-
ces, and the distance of the sources to the electrode (Lindén et
al., 2011; Łeôski et al., 2013). Unlike for intracortical LFPs, full-
scale biophysically detailed simulations have not been used to
understand CSEPs (Miller et al., 2009; Hill et al., 2018). The
layers of a cortical column are composed of different numbers of
neurons with distinct morphologies and synchron, and are by
definition at different distances from the surface electrode
(Markram et al., 2015). Thus, a full-scale, biophysically detailed
cortical column model is required to determine the precise lami-
nar and cellular origins of evoked CSEPs.

Given the large number of cells in infragranular layers, we
hypothesized that evoked high gamma is spatially localized to a
cortical column and primarily generated by action potentials

from neurons in layers V and VI. To test this hypothesis, we
combined direct experimentation with biophysical modeling.

Materials and Methods
Experimental model and subject details
Data from four rats (female Sprague Dawley) were used in this study. All
animal procedures were performed in accordance with established ani-
mal care protocols approved by the Lawrence Berkeley National
Laboratory, Institutional Animal Care and Use Committees.

Method details
Electrophysiological recordings. All neural data were recorded with a

multichannel amplifier optically connected to a digital signal processor
(Tucker-Davis Technologies). Signals were acquired at 12 kHz and
low-pass filtered to the Nyquist frequency (6 kHz).

Rodent Preparations. We performed experiments in four anesthe-
tized female Sprague Dawley rats. Animals were given a 1mg/kg subcu-
taneous injection of Dexamethasone the night before a procedure to
reduce cerebral edema. An anesthetic state was induced with an induc-
tive dose of ketamine (95mg/kg, i.p.) and xylazine (10mg/kg, i.p.).
Anesthetic state was assessed using toe pinch reflex and monitoring
respiration rate. Additional doses of ketamine (55mg/kg, i.p.) and xyla-
zine (5mg/kg, i.p.) were administered as needed to maintain a negative
reflex and a regular reduced respiration rate. Respiration was sup-
ported with a preoperative subcutaneous injection of atropine (0.2mg/
kg) and a perioperative nose cone supplying 0.8L/min of O2. A water
heating bed provided thermostatic regulation. To prevent dehydration
over the 10 h surgery and recording session, subcutaneous saline injec-
tions (1 ml/kg) were provided every 3 h. Once anesthetized, the rodent
was affixed to a snout stereotax without earbars.

After stable anesthetic state was achieved, an incision was made
along the sagittal midline. All the soft tissue on top of the skull was
removed to reveal the lambda and bregma fissures. Two 1 mm burr
holes were drilled over nonauditory cortical areas–one between the
lambda and bregma on the left hemisphere and another anterior to
bregma on the right hemisphere. These serve to reduce intracranial
pressure and provide a reference for electrophysiological recordings.
The right masseter muscle was then transected to uncover the portion
of cranium lying over the right auditory cortex. Using a 1 mm diamond
tapered round Stryker dental drill, a craniotomy was performed to ex-
pose the cortex. Given the flexible grids we used, anatomic coordinates
relative to a skull landmark are not possible. Auditory cortex was iden-
tified electrophysiologically by its anteroposterior tonotopic organiza-
tion (Schreiner and Winer, 2007).

Recording devices
Rodent electrophysiological recordings were made with custom designed
128-channel mECoG grids (initially fabricated in house, purchased at the
time through Cortera Neurotechnologies). These arrays were placed
over the primary auditory cortex as identified by anatomic and physio-
logical properties. For the rat experiments, the dura was surgically
removed, and the mECoG grid was placed directly on the pial surface.
The mECoG grids were placed over the primary auditory cortex and
grounded via a silver wire inserted into a nonauditory cortical area in
the contralateral hemisphere, which also served as the reference. Each
contact on the grid had an impedance of 306 10 kV after electroplating
with platinum black (measured in 1� PBS at 1 kHz) and had an exposed
diameter of 40mm, with a 200mm interelectrode pitch.

Auditory stimuli
Pure tone pips (50ms in duration) were played through a DVD player
(Sony), attached to an amplifier (Tucker-Davis Technologies) and
played through an electrostatic speaker located near the left ear of the
animal (80 dB SPL, A-scale). The frequency and amplitude of the tone
pips were parametrically varied. The frequencies spanned six octaves
(500Hz to 32 kHz) in 30 increments and eight attenuations from 0 to
�70 dB (0 dB attenuation at 80 dB SPL). Each frequency-attenuation
combination was presented 25 times in pseudorandom order with
250ms of interstimulus silence.
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Data analysis
All analysis was performed using code written in MATLAB (MathWorks)
or Python.

Spectral analysis of CSEPs
We calculated the spectrogram of the entire recorded electrical potential
time series for each electrode from 4 to 1200Hz (54 bins) using a constant-
Q wavelet transform (Schorkhuber and Klapuri, 2010). Constant-Q refers
to a time-frequency decomposition in which frequency bins are geometri-
cally spaced, and Q-factors (ratios of the center frequencies to bandwidths)
are equal for all bins. The noncausal component of displayed responses
(Fig. 1d) is because of the large bandwidth at lower frequencies of our con-
stant-Q time-frequency transform.

The amplitude for each frequency bin in the neural signal was
normalized relative to baseline statistics by z-scoring. The baseline
statistics were computed from the periods of silence between each
stimulus presentation (The 50ms immediately following each
stimulus presentation is excluded from the baseline period.). Z-
scoring largely removes the canonical ;1/fa falloff of power with
frequency (characteristic of many natural signals), highlighting
stimulus-evoked changes. We note that this procedure is preferred
to examining the residuals from a fit and subtract methodology,

given the potential issue of fitting power laws especially at the
extremes of the frequency range.

Responses to stimuli were taken as the average z-scored activity 65
ms around the peak response time after the onset of the auditory stimu-
lus. Peak response time was calculated using the high-gamma (65–
170Hz) component of the signal, which was computed as the average of
z-scores for frequency bands whose center frequency falls in that range.
The shielding and grounding of our rodent experimental recording sys-
tems was sufficient to avoid any significant 60Hz noise in the mECoG
recordings. We determined z-scores for the canonical neural frequency
bands by taking the mean z-scores across frequency bins in the corre-
sponding frequency range; Beta (10–27Hz), Gamma (30–57Hz), High
Gamma (65-170Hz), Ultra-High Gamma (180–450Hz), and the
Multiunit Activity Range (500–1100Hz).

Analysis of responses to pure tones
The frequency response area (FRA) depicts the modulation of a CSEP
components response as a function of frequencies (F) and amplitudes
(A). For each frequency-amplitude pair (f, a) in the stimulus set (see
above, Auditory stimuli), we identified the response peak, yf ;a;i; as the
maximum amplitude between 10 and 20ms after the onset of stimulus i.
We took the mean z-scored response across n trials as follows:

Figure 1. Stimulus-evoked cortical surface electrical potentials exhibit large peaks in the high-gamma range. a, Photomicrograph of an 8 � 16 mECoG grid (pitch,
200mm; contact diameter, 40mm) on the surface of rat A1. b, Top, Tone stimulus played during experimental recordings. Middle, z-Scored spectral decomposition of single-
trial evoked cortical surface electrical potentials from a single electrode. Bottom, High-gamma component of single-trial evoked cortical surface electrical potentials indi-
cated by horizontal dashed lines (middle). c, Trial-averaged evoked cortical surface electrical potential on one mECoG electrode in response to presentations of the best tuned
frequency of that electrode. d, Trial-averaged neural spectrogram for the electrode shown in c in response to presentations of its best tuned frequency. Dashed vertical lines
in c and d represent stimulus onset and offset. Red vertical lines in c and d correspond to the time window of extracted evoked response used for subsequent analysis.
e, Grand-average (mean 6 SE) z-scored amplitude as a function of frequency across all tuned electrodes (N = 333).
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FRAðf ; aÞ ¼ 1
n

Xn

i¼1
yf ;a;i8f 2 F; 8a 2 A: (1)

We estimated an FRA boundary to define a set of frequency-amplitude
pairs that evoked a response. Intuitively, this is the stimulus-driven portion
of the FRA and corresponds with the part of the FRA that resides within
the canonical V shape. These boundaries were extracted using an approach
identical to one used in a previous study characterizing rodent auditory
responses (Guo et al., 2012). A response-frequency function, FRAaðf Þ, was
computed by taking the mean of the FRA across all amplitudes, na, and a
response-amplitude function, FRAf ðaÞ, was computed by taking the mean
of the FRA across frequencies, nf as follows:

FRAaðf Þ ¼ 1
na

Xna

a¼1

FRAðf ; aÞ 8f 2 F

FRAf ðaÞ ¼ 1
nf

Xnf

f¼1

FRAðf ; aÞ 8a 2 A:

(2)

The FRAaðf Þ function defined the shape of the FRA boundary, and
the inflection point of the FRAf ðaÞ function, ab, was used to scale and
shift that FRA boundary as follows:

FRAf ðabÞ ¼ 0: (3)

To fit the FRA boundary, Bðf Þ, we negated the response-fre-
quency function, normalized its height, producing the normalized
FRA, normFRAaðf Þ, which was overlaid on the FRA. We constrain
normFRAaðf �Þ to be 0, where f* is the value of f that minimizes
normFRAaðf Þ. The negated sound-frequency function was shifted via
additive constant until its minimum coincided with ab as follows:

Bðf Þ ¼ normFRAaðf Þ1 ab: (4)

Portions of the FRA boundary that fell outside of the FRA were
removed, resulting in the final FRA boundary. This method yielded FRA
boundaries that closely resemble those curated manually.

We determined whether a recording site was tuned using a permuta-
tion test. For a given FRA, we once again define FRAaðFÞ as mean of the
FRA values across stimulus amplitudes. The SD of the FRAaðFÞ function
evaluated on the data are a measure of tuning of a site to a narrow band
of frequencies. We compared the SD (s ) of the original FRAaðFÞ with a
null distribution FRArand;a consisting of 100 random shuffles of that
FRA along both the frequency and amplitude axes. A channel is consid-
ered tuned if the SD of its average stimulus frequency response,
FRAaðFÞ, exceeds the 95th percentile of a null distribution generated
from 100 permutations of the FRA as follows:

sðFRAaðFÞÞ. 0:95 � sðFRArand;aðFÞÞ: (5)

A tuned response exhibits a larger SD across frequencies than an
untuned (flat) FRAaðFÞ. Randomly shuffling a tuned FRA removes the
tuning structure and consequently reduces the resulting SD. All subse-
quent tone analysis only included tuned sites.

We used the FRA boundary to further characterize the response proper-
ties of each recording site. We defined a best frequency (BF) as the weighted
average of the FRA boundary, and calculated bandwidth (BW) as the full
width of FRA boundary at half-maximum, FWHM; as follows:

BF ¼

Xnf

f¼1
f � Bðf ÞXnf

f¼1
Bðf Þ

(6)

BW ¼ FWHMðBÞ

Spatial analysis of CSEPs
We assessed the spatial spread of CSEPs by fitting a general linear model.
For a given CSEP component, the responses at an individual single

electrode (Ri) was modeled as a linear combination of responses at all
other active electrodes (Rj = i), corrupted by independent and identically
distributed Gaussian noise (« ) as follows:

Ri ¼ bRj6¼i 1 « ; «;Nð0; Is 2Þ; (7)

where I is the identity matrix. For each frequency component separately,
both the dependent (Ri) and independent responses (Rj=i) are standar-
dized to have a mean response of 0 and a variance of 1 (thus, there is no y-
intercept term). This standardization enables comparison of weights
across frequency component. After fitting, we arranged the estimated
weights (b̂ ) for each recording site (independent variables) relative to the
position of the dependent variable (electrode i) on themECoG grid, which
allowed us to compare the relative spatial distribution of weights across all
recording sites.

The UoILasso algorithm
We used a novel statistical inference procedure (UoILasso; Bouchard et al.,
2017) to fit the general linear model in Equation 7. Although a detailed
description of this algorithm is outside the scope of this manuscript, here
we provide the motivation, outline the innovations, and summarize the
main statistical result of these innovations. The interested reader is encour-
aged to see Bouchard et al. (2017) for further details.

Generally speaking, in regression and classification, it is common to
employ sparsity-inducing regularization to attempt to achieve simultane-
ously the following two related but quite different goals: to identify the
features important for prediction (i.e., model selection) and to estimate
the associated model parameters (i.e., model estimation). For example,
the Lasso algorithm in linear regression uses L1-regularization to penal-
ize the total magnitude of model parameters (kb k1Þ, and this often
results in feature compression by setting some parameters exactly to
zero. Using the notation in Equation 7 for a given target electrode (Ri),
this corresponds to solving the constrained convex optimization prob-
lem as follows:

b̂ 2 argminb kRi � bRj6¼ik2 1 l kb k1: (8)

It is well known that this type of regularization implies a prior
assumption about the distribution of the parameter (e.g., L1-regulariza-
tion implicitly assumes a Laplacian prior distribution). However, strong
sparsity-inducing regularization (i.e., large values of l ), which is com-
mon when there are many more potential features (p) than data samples
(n; i.e., the so-called small n/p regime) can severely hinder the interpre-
tation of model parameters. For example, although sparsity may be
achieved, incorrect features may be chosen, and parameters esti-
mates may be biased. In addition, it can impede model selection and
estimation when the true model distribution deviates from the
assumed distribution.

To overcome these and other issues, we have recently introduced a
novel statistical-machine-learning framework called Union of
Intersections (UoI; Bouchard et al., 2017). Methods based on UoI per-
form model selection and model estimation through intersection and
union operations, respectively, leading to enhanced model selection
and estimation. Focusing on linear regression, the UoILasso algorithm
has three central innovations: (1) calculates model supports (Sl) using
an intersection operation over bootstrap resamples for a range of regu-
larization parameters l (increases in l shrink all values of b toward
0), efficiently constructing a family of potential model supports
fS : Sl 2 Sl1k for k sufficiently large}; (2) uses a novel form of model
averaging in the union step to directly optimize prediction accuracy
(This can be thought of as a hybrid of bagging and boosting.); and (3)
combines pure model selection using an intersection operation with
model selection/estimation using a union operation in that order
(which controls both false negatives and false positives in model selec-
tion). Together, these innovations lead to state-of-the-art selection
(The selected parameters are a Union of Intersections, hence the
name), estimation, and prediction accuracy. This is done without ex-
plicitly imposing a prior on the distribution of parameter values, and
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without formulating a nonconvex optimization problem. R2 is calcu-
lated on held-out data (80–10-10; train, validate, test split).

Biophysically detailed simulation of cortical column
Using the NEURON simulation environment running on 64 nodes of
Cori (Cray XC70) at the National Energy Research Scientific Computing
Center, we implemented and successfully executed a biophysically
detailed model of a cortical column and the CSEP produced by the activ-
ity of this neuronal network. Our simulation is a compartmental model,
in which the electrical activity of one or more neurons is simulated by
modeling the neuron(s) as a series of small cylindrical segments over
which the membrane potential and currents can be taken as approxi-
mately constant. The evolution of the membrane potential is given by
the following cable equation:

cm
@V
@t

1 imðx; tÞ ¼ 1
r
@2V
@x2

; (9)

where cm is the membrane capacitance per unit length, r is the axial re-
sistance of the compartment per unit length, V is the membrane poten-
tial, and im is the current per unit length entering or leaving the
compartment through the membrane. Each neuronal compartment is
subject to Kirchhoff’s current law as follows:

imðx; tÞ � 1
r
@V
@x

¼ 0; (10)

which states that the net current entering or leaving the compartment
must vanish (The second term on the left-hand side represents the net
current loss to adjacent segments.). NEURON also has the capability to
model ion channels and synapses (which contribute to im) defined by or-
dinary differential equations of arbitrary complexity.

We constructed a compartmental model of the neurons in one col-
umn of rat sensory cortex based on publicly available data from the Blue
Brain Project (BBP; Markram et al., 2015). These data included the spa-
tial location and connectivity matrix of all cells in the column, as well
as tuned and experimentally validated models of individual neu-
rons from all cortical laminae including their electrical characteris-
tics (ion channel models and associated parameters such as
spatially varying ionic conductances, membrane resistance/capaci-
tance, etc.) and their detailed morphologies based on full recon-
structions of neurons observed experimentally (or algorithmically
generated clones thereof), reflecting the full diversity of neurons
known to be found in rodent somatosensory cortex. To save com-
putation time, we instantiate 80% of the cells in the model, selected
at random. We confirmed that there was no difference in the spec-
trum between 80% and 100%. The BBP dataset provides five recon-
structed (or cloned) morphologies for each of 207 distinct cell
types (Markram et al., 2015). Each neuron in our model is repre-
sented by one of the five morphologies for the cell type of that neu-
ron, chosen at random and rotated by a random angle about a line
passing through the soma of the cell parallel to the longitudinal
axis of the column.

Neurons in our simulated column are innervated by synapses
from the following three populations: 1) Nthal ¼ 5000 excitatory tha-
lamic neurons conveying feedforward sensory input (thalamocorti-
cal connections) modeled as rate-modulated Poisson spike trains, 2)
Nbke;e ¼ 25000 excitatory and Nbke;i ¼ 25000 inhibitory background
cortical neurons from other columns (external corticocortical con-
nections) also modeled as Poisson spike trains, and 3) other neurons
in the simulated column (internal corticocortical connections). The
rate constant of the Poisson processes generating thalamocortical
spike trains increases from a baseline rate of �basethal ¼ 1 Hz to a stimu-
lus-induced rate of �stimthal ¼ 35 Hz for 50ms of every 1000ms (onset
and offset are cosine ramps 5ms in duration), reflecting the tempo-
ral structure of tone pips in our experimental preparation, whereas
the rate constant of the external corticocortical spike trains remains

constant at �bkg ¼ 7 Hz for the duration of the simulation. Thalamic
synapses are distributed within the column in a depth-dependent
manner, with peaks at 670mm and 1300mm below the cortical surface.
Synapses from background neurons are formed on neuronal seg-
ments in the simulated column with probability proportional to
the surface area of each segment.

Synapses from all populations produce membrane currents isynðtÞ
according to the following:

isynðtÞ ¼ GðVm � ErevÞðet=t2 � et=t1 Þ; (11)

where t is the time since the synapse was activated, Vm is the membrane
potential, Erev is the reversal potential of the synapse, G is the weight
(max conductance) of the synapse, which is randomly drawn from a log-
normal distribution with different center and spread for each input
source, and t 1 and t 2 are the time constants of the exponential activa-
tion/deactivation of the synapse. The values of these parameters for dif-
ferent types of synapses are given in Table 1.

We applied a modest amount of hand-tuning of these parameters to
achieve a reasonable baseline firing rate (3–10Hz) during time periods
when the thalamocortical spike trains fire at �basethal and reproduce the
experimentally observed sharp transient stimulus-evoked response (after
the transition to �stimthal ) within the simulated column.

CSEP of the simulated column
The line source approximation (LSA) is used to simulate the extracellu-
lar potential at the cortical surface because of the transmembrane cur-
rents in each segment of each neuron in the simulation, assuming an
isotropic and purely Ohmic extracellular medium (Logothetis et al.,
2007). These contributions from individual neuronal segments are
summed to compute the total CSEP because of the entire simulated col-
umn as follows:

xðr; tÞ ¼
X

i

iiðtÞ
4ps

ð
dr9

jr � r9j ; (12)

where xðr; tÞ is the extracellular potential, iiðtÞ is the current going
through neuronal segment i at time t, s ¼ 0:3 S/m is the conductivity of
the extracellular medium, and the variable of integration r9 runs from
one end of segment i to the other. The sum in Equation 12 runs over all
segments i in the simulated column. To account for the nonzero spatial
extent of the mECoG electrode, we compute xðr; tÞ at 100 randomly and
uniformly sampled points within the 20mm radius of the mECoG elec-
trode and average them.

Dependence of response magnitude and frequency on input amplitude
We determined the relationship between z-scored response magnitude
(between 10 and 200Hz) and the frequency of CSEPs (between 10 and
200Hz) by varying the magnitude of inputs in both the experimental
data and in the simulations. For simulation data, we varied the frequency
�stimthal of the feedforward thalamocortical input and measured the fre-
quency at the maximum of the mean (across stimuli) z-scored response.
Each of the six simulations (see Fig. 5) is an average over 20 stimuli, per-
formed at �stimthal ¼ 5, 10, 15, 26, 35, and 44Hz. For experimental data, at
each tuned electrode, we varied the input amplitude (stimulus attenua-
tion) of the best frequency in the tone stimuli and measured the fre-
quency at the maximum of the mean (across stimuli) z-scored response.
To compare/combine data, the frequency and responses were

Table 1. Parameters of model synapses

Synapse type t 1 (ms) t 2 (ms) Erev (mV)

AMPA (e ! e) 1.0 3.0 0
AMPA (e ! i) 0.1 0.5 0
GABA (i ! e) 2.7 15.0 �70
GABA (i ! i) 0.2 8.0 �70
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normalized to [0 1] for each electrode, and across the simulations. For
the experimental data, we only included auditory stimulus attenuations
that fell within the FRA to prevent floor effects and only include tuned
channels that had a maximum response above 3 (z-scored) and an FRA
boundary that included .2 attenuations (as this is the variable that is
being manipulated, i.e., the independent variable). Because of this set of
selection criteria, for the experimental data, each of the six attenuations
had a different number of samples (electrodes) included. Thus, the gray-
to-black points (see Figure 5c; experimental data) contain, from left to
right [(attenuation) sample size] as follows: (�50 db) N = 206, (�40 db)
N = ...”, (�30 db) N = 289, (�20 db) N = 299, (�10 db) N = 299, (0 db)
N = 299.

Laminar lesions and isolations
By summing only neuronal segments belonging to neurons in an indi-
vidual cortical layer, we obtain the in silico contributions xjðr; tÞ to the
CSEP from distinct layers as follows:

xjðr; tÞ ¼
X
i2Lj

iiðtÞ
4ps

ð
dr9

jr � r9j ; (13)

where j 2 ½1; 6� denotes the layer whose contribution to xðr; tÞ is repre-
sented by xjðr; tÞ, and Lj is the set consisting of all neuronal segments
comprising neurons in layer j. The full signal xðr; tÞ is the sum of these
contributions as follows:

xðr; tÞ ¼
X

j

xjðr; tÞ: (14)

Similarly, we perform the superposition of LSA-computed potentials
excluding those segments belonging to neurons in a particular layer in
the following:

x:jðr; tÞ ¼
X
i 62Lj

iiðtÞ
4ps

ð
dr9

jr � r9j ¼ xðr; tÞ � xjðr; tÞ: (15)

Finally, by summing only the neuronal segments located within
a particular range of depths below the surface, we obtain the in sil-
ico contributions to the CSEP from 200mm slices of the column as
follows:

xkðr; tÞ ¼
X

Sk

iiðtÞ
4ps

ð
dr9

jr � r9j ; (16)

where Sk :¼ fi : zi 2 ½k; k11� � 200mmg is the set of neuronal seg-
ments whose midpoints are between 200k and 200ðk11Þ mm below
the surface. Note that the dendritic arbors of most neurons extend
beyond the slice boundaries; therefore, each slice contains seg-
ments from neurons in a multitude of layers, and a given neuron,
may contribute to multiple slices. As the line source approxima-
tion is a linear model, the results of laminar lesions and isolations
were self-consistent. As such, we only present the results for the
laminar/disk isolation.

Normalization of simulated CSEP components to baseline
To assess the contributions of sources at different depths to CSEPs
(see Figs. 6, 7), we would like to normalize the CSEP contributions
to baseline in a way that preserves their relative magnitudes. Using
the z-score of each contribution to its own baseline does not pre-
serve relative magnitudes between contributions. For example, two
contributions that differ only by a constant multiplicative factor
will have the same z-score. That is, if xjðtÞ ¼ c � xiðtÞ for two layers i
and j, and for some constant c, then the z-scores of these two con-
tributions are the following:

ziðtÞ ¼ xiðtÞ � avgblðxiÞ
stdblðxiÞ and zjðtÞ ¼ xjðtÞ � avgblðxjÞ

stdblðxjÞ

¼ c � xiðtÞ � avgblðc � xiÞ
stdblðc � xiÞ ¼ ziðtÞ;

where avgblðxÞ and stdblðxÞ denote the average and SD, respectively,
of x during the baseline periods — the silence between tone pips),
whereas we would like a normalization procedure that gives
zjðtÞ ¼ c � ziðtÞ in such a case. To achieve this, we use the ratio of each
contribution during the stimulus to the total simulated baseline signal
(see Figs. 6, 7). The ratio ri for a contribution xiðtÞ (representing an ana-
tomic layer or 200mm slice) is then given by the following:

riðtÞ ¼ xiðtÞ
avgblðxÞ : (17)

As with the z-score analysis used for the full CSEP, this normalization is
done independently for each neural frequency bin. In separate analyses, we
confirmed that our conclusions are robust to the choice of normalization.
This normalization was also done for the analysis (see Fig. 4).

Dependence of simulated CSEP contributions on number of segments/
neurons, depth, and synchrony
The CSEP contribution from a given subset of the column (anatomically
defined layer, or 200mm slice) will depend on the number of neuronal
segments in the subset, the distance of the neurons from the recording
electrodes, and the synchrony of the activity of those neurons. To deter-
mine the relative importance of these three factors, we performed an L2-
regularized regression to fit the magnitude of the high-gamma peak (the
maximum of each normalized CSEP contribution across frequency bins)
of each contribution as a linear function of the number of simulated
neurons in each layer, or the number of neuronal segments in each
200mm slice, the average depth of the contributing segments below the
surface, and the synchrony between somatic membrane potentials,
defined as the average of Pearson’s correlation coefficient of the mem-
brane potentials over all pairs of somas in the subset. Each of the three
independent variables, and the dependent variable (high-gamma contri-
bution magnitude) was normalized by dividing by the maximum across
layers or slices. The L2 regularization parameter was chosen to be
a ¼ 0:01. The magnitude of the fit coefficients gave the relative impor-
tance of each factor in determining the magnitude of the CSEP contribu-
tions in our model.

Data availability
The datasets are publicly available from https://crcns.org/data-sets/ac/
ac-7/about-ac-5, and the software is publicly available from https://
github.com/BouchardLab/OriginsOfECoG. Further information and
requests for resources should be directed to and will be fulfilled by
Kristofer E. Bouchard (kebouchard@lbl.gov).

Results
We designed and fabricated lithographically defined, high-reso-
lution mECoG arrays with customizable electrode geometry and
spacing (Rubehn et al., 2009; Ledochowitsch et al., 2011; Viventi
et al., 2011). Each contact on the mECoG arrays had a diameter
of 40mm (approximately the size of a cortical mini column), and
an impedance of 30 6 10 kV (measured in 1� PBS at 1 kHz;
Ledochowitsch et al., 2011). To ensure that we fully captured the
range of functional time scales associated with the diversity of
neurobiological signals, we recorded wide band (2–12,000Hz)
electrophysiological data.

Stimulus-evoked cortical surface electrical potentials exhibit
large peaks in the high-gamma range
An example of a 128-channel mECoG grid is shown on the corti-
cal surface (subdural placement) of an anesthetized rat in the
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photomicrograph in Figure 1a. In this preparation, we recorded
large amplitude, fast CSEPs in response to the presentation of au-
ditory tone pips (see above, Materials and Methods). We played
back stimuli consisting of short (50ms) pure tone pips with vary-
ing frequency and intensity (amplitude) at five recording loca-
tions in four rats. An example recording from a single electrode
during four consecutive stimulus presentations is shown in
Figure 1b. Here, the top depicts stimulus amplitude and fre-
quency, the middle displays the (normalized) neural spectrogram
of the full response, and the bottom shows the amplitude of the
high-gamma component of the neural response. For each re-
cording electrode and CSEP frequency component, we normal-
ized (z-scored, relative to baseline statistics taken during the
interstimulus interval) the time-varying amplitude for each
CSEP frequency separately, removed untuned electrodes (those
that exhibit no stimulus frequency selectivity), and computed the
best frequency for each tuned electrode (see above, Materials and
Methods). The best frequency is the stimulus frequency, which
maximally drives activity on that electrode. Figure 1, c and d,
shows the average evoked potential (c) and neural spectrogram
(d) derived from the recorded electrical potential in response to
the best frequency of the electrode at a single amplitude (N = 25
trials). In both single trials (Fig. 1b), as well as the average (Fig.
1d), the best frequency of the electrode evoked large-amplitude,
rapid CSEP deflections. The Hg (65–170Hz) component of the
evoked response was observed to be the most robust, often
exceeding 5 SDs of the baseline in response to the best frequency
(e.g., Fig. 1b, second stimulation, BF). Frequencies below 10Hz
exhibited little to no response modulation (Fig. 1b,d); thus, we
analyze frequencies between 10 and 1100 Hz, with a focus on
high gamma.

To summarize the frequency content of evoked CSEPs, we
averaged across presentations of the best stimulus at one ampli-
tude. For each electrode, we extracted mean z-scored responses
across all neural frequency components in a 65ms window
around the time of the peak high-gamma response (Fig. 1c,d, red
vertical lines). We included all electrodes with a tuned response
in the high-gamma band (N = 333 electrodes from 5 mECoG
placements on auditory cortex in four rats). Figure 1e plots the
averaged (N = 333 electrodes, mean 6 SE) z-scored response
as a function of frequency. On average, we found that evoked
responses were unimodally peaked around the Hg band,
with notable responses in the multiunit activity range (MuA;
.500 Hz).

Robust frequency tuning and high-resolution tonotopic
maps derived from lECoG
We next determined auditory receptive field properties and the
spatial organization of evoked CSEPs. The plots of Figure 2, a
and b, present FRA heat maps derived from Hg activity (Fig. 2a)
and multiunit activity (tMuA, after application of a threshold to
the MuA band for event detection; see above, Materials and
Methods; Fig. 2b) in response to these stimuli. In each FRA, pix-
els correspond to stimulus frequency-intensity pairings, and are
colored according to the mean evoked z-scored signal (N = 25
stimuli for each), with blank spaces indicating untuned responses
(see above, Materials and Methods). Data are displayed for sev-
eral electrodes spanning 1.8 mm anteroposterior (AP) and 0.4
mm dorsoventral (DV) over rat A1. We found that the response
profiles exhibited clear frequency tuning and the canonical V-
shaped profiles expected of auditory cortical neurons (Polley et
al., 2007; Guo et al., 2012; Escabí et al., 2014). Response profiles
were largely similar between Hg and tMuA. Additionally, there

was a smooth gradation of best frequencies across the AP axis,
with low frequencies posterior, high frequencies anterior, and
similar best frequencies along the DV axis, suggestive of tono-
topic organization.

As Hg activity had the largest number of tuned channels, we
first visualized tonotopic organization by coloring each electrode
(pixel) according to its best frequency extracted from the Hg
band (Fig. 2c). The 8 � 16 mECoG array displayed here covered
multiple auditory cortical fields [A1, posterior auditory field
(PAF), and ventral auditory field (VAF)], and the functionally
defined boundaries are demarcated (Fig. 2c, black lines; Polley et
al., 2007; Schreiner and Winer, 2007). Within a given auditory
cortical field, there was a smooth gradation of best frequencies,
with low frequencies posterior and high frequencies anterior.
Tuning across the dorsoventral direction was largely similar
within an auditory field. Interestingly, although frequency tuning
generally varied smoothly as a function of distance between elec-
trodes within an auditory area, we observed examples of different
tuning at neighboring electrodes located in different auditory
fields. For example, the FRAs for the electrodes demarcated 1
and 2 and 3 and 4 in Figure 2c are plotted in Figure 2d and show
that neighboring electrodes (1 vs 2, 3 vs 4) can have different
response properties, with 3 versus 4 being a particularly stark
contrast. This suggests a high degree of spatial localization of the
recorded signals. These results demonstrate the ability to resolve
the tonotopic organization of multiple auditory cortical fields
with very high resolution using high-frequency signals of CSEPs.

Figure 2a,b suggest that auditory responses of CSEP compo-
nents from the same electrode are similar. The plots in Figure 2e
and f, display average normalized FRAs across all channels with
tuned responses in the Hg and tMuA components, which were
indeed similar. To quantify this, we first determined a boundary
that separated the responsive portions of the FRA from the unre-
sponsive portions (e.g., Fig. 2, e and f, white lines; see above,
Materials and Methods). The average FRA boundaries for differ-
ent frequency components across all tuned channels (b = 260,
g = 292, Hg = 333, uHg = 302, tMuA = 113) are displayed in
Figure 2g (mean 6 SE) and were highly overlapping. We found
that median BFs (auditory, extracted from FRA) were ;8.5 kHz
(Fig. 2h), and there was a mild effect of CSEP component on BF
(Kruskal–Wallis, df = 4, x 2 = 28, p, 0.001). The range of values
in our dataset (interquartile ranges; Fig. 2h) makes the functional
relevance of the marginal statistical significance for best fre-
quency questionable. Indeed, the best frequencies extracted from
different components at an electrode were highly correlated (R,
median = 0.89; range = [0.8, 0.93], p , 10�5 for all). This indi-
cates that different high-frequency CSEP components are gener-
ated by neurons with very similar tuning properties, perhaps
from the same cortical column. Additionally, the median (audi-
tory) BWs (extracted from FRA as full-width at half-maximum)
were ;1.5 octaves (Fig. 2i), and there was a robust effect of
CSEP component on BW (Kruskal–Wallis, df = 4, x 2 = 116, p,
10�22). Thus, there was a systematic decrease in bandwidth with
increasing CSEP component in the electrical potential (Fig. 2i),
perhaps reflecting greater spatial spread of the lower frequency
signals.

CSEPs are anisotropically localized to a cortical column
The spatial spread of electrical signals in the brain is of great in-
terest, both for its importance in interpreting recorded electrical
potentials and for its practical implications for sensor design.
In principle, two primary factors that contribute to the spatial
spread of correlations in electrophysiology recordings are
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diffusion because of the electrical properties of the tissue and the
spatial organization of neuronal function (e.g., tonotopy). If dif-
fusion is the main determinant, then the spatial spread is
expected to be isotropic. However, given the tonotopic organiza-
tion of rat auditory cortex (Fig. 2c), we hypothesized stronger
correlations in the isotonic dimension (DV) versus the hetero-
tonic dimension (AP). Furthermore, because tonotopy arises
from the organization of cortical columns that contain neurons
with similar tuning properties (Schreiner and Winer, 2007;
Tischbirek et al., 2019), we hypothesized that the CSEP signals
would be tightly localized to the approximate diameter of a col-
umn (200–500mm; Mountcastle et al., 1997; Schreiner and
Winer, 2007; Tischbirek et al., 2019).

To assess spatial spread, for each CSEP frequency component,
we fit a general linear model to single-trial tone responses for
each target electrode as a function of the responses at all other
electrodes. Our analysis method, based on sparse general linear
models, largely mitigates potential confounds because of pairwise
chaining of local correlations by factoring out the covariance ma-
trix of the regressors. We fit the linear model using the UoILasso
algorithm (Bouchard et al., 2017; see above, Materials and
Methods), which provides accurate estimates of parameter values
(R2 . 0.9 for all fits). For each target electrode, the parameter

values from the fit model (weightings on responses at other elec-
trodes) were normalized to their maximum value across fre-
quency to ease comparisons across frequencies and electrodes.
Figure 3, a and b, displays the spatial distributions of median fit
parameters as a function of location relative to the target elec-
trode (demarcated as X) for all frequency tuned electrodes in the
Hg and tMuA components. For both of these signals, we found
that model parameters were extremely localized in both AP and
DV directions (values quickly go to zero), and exhibited a
marked anisotropy, with larger values for DV than AP. Also, pa-
rameters were larger for Hg than for tMuA (grayscale), indicat-
ing that less tMuA variance could be explained by surrounding
electrodes and thus suggesting a more localized signal.

We summarized the results of this analysis for the b through
tMuA components (Fig. 3c, colors; N: b = 260, g = 292, Hg =
333, uHg = 302, tMuA = 113) by plotting the median model
parameters as a function of distance in the AP (solid lines, left
y-axis, black distances on x-axis) and DV (dashed lines, right
y-axis, gray distances on x-axis). Across frequency components,
we found that ;70% of the parameter magnitudes were concen-
trated at 6200mm (4/143 grid locations with nonzero values,
;3%), indicating that the vast majority of explanatory variation
was localized immediately surrounding the electrode. Furthermore,

Figure 2. Robust frequency tuning and high-resolution tonotopic maps frommECoG. a, b, FRA surfaces recorded from amECoG array. Subplots correspond to responses of a single electrode
and are organized according to electrode position on the grid/brain. In each subplot, pixels correspond to a stimulus frequency-intensity pairing and are colored according to the mean evoked
z-score; Hg (a), tMuA (b). c, High-resolution tonotopic organization of multiple auditory cortical fields derived from Hg activity. Each pixel is color coded according to the best frequency of
that electrode. The 8 � 16 mECoG array displayed here covered multiple auditory cortical fields (A1, PAF, and VAF) and the approximate boundaries are demarcated (black lines).
d, Differential tuning at neighboring electrodes. FRAs are plotted for four electrodes (numbered as in c) and show that neighboring electrodes (1 vs 2; 3 vs 4) can have different response prop-
erties. e, f, Average normalized response surface for all electrodes with significantly tuned Hg (N = 333) and tMuA (N = 113) auditory responses. White line in each plot demarcates the FRA
response boundaries. g, Across all tuned electrodes, the average (mean 6 SE) FRA response boundaries for CSEP components (demarcated by colors) where similar. h, i, Distributions (25th–
50th–75th percentiles) of best-frequencies (h) and bandwidths (i) for all tuned responses for CSEP components.
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the parameter values were significantly greater in the dorsoventral
than the anteroposterior direction for all CSEP components
(Wilcoxon signed-rank test, p , 10�4-10�28). Within both the AP
and DV directions, a significant effect of CSEP frequency compo-
nent on parameter magnitude at 200mm was observed, with lower
frequencies having larger values (Kruskal–Wallis; df = 4; DV, x 2 =
35, p, 10�6; AP, x 2 = 51, p, 10�12). This indicates that lower fre-
quencies have a greater spatial spread and is in line with lower fre-
quencies having broader tuning (Fig. 2). A cortical column is
;350mm in diameter (Mountcastle et al., 1997). Thus, these results
indicate that cortical surface electrical potentials are localized to sin-
gle cortical columns and that the degree of localization increases
with increasing CSEP frequency. Furthermore, the localization is
anisotropically distributed and aligned with tonotopic organization,
indicating that differentiation of function across the cortical surface
is the primary determinant of spatial correlations of evokedmECoG
signals.

Biophysical in silico cortical column reproduces in vivo
observed lECoG response
The experimental results presented above demonstrate that
evoked CSEPs were tightly localized along the cortical surface,
approximately to a single cortical column in the rat. This sug-
gests that the sources of the mECoG signal are mostly located
within the column directly underneath the electrode. To investi-
gate the laminar and cellular origin of sources within a column
that generate CSEPs, we simulated a full-scale, biophysically
detailed model of a cortical column where the full morphology
of each neuron is represented by hundreds to thousands of con-
nected cylindrical neuronal segments (Markram et al., 2015).
The column model and mECoG electrode is depicted in Figure
4a, where circles indicate the locations of (a subset of) neuronal
somas (black, excitatory neurons; red, inhibitory neurons).
Stimulus-evoked input to the column is provided by activating
(with Poisson spike trains) thalamocortical synapses located
throughout the column according to the distribution shown in
Figure 4b, which also displays the cortical layers.

An example of the activity of the column is displayed in
Figure 4c. The biophysical neurons in the column received tha-
lamic input in the form of Poisson spike trains that were modu-
lated in time to emulate our tone stimulus (Fig. 4ci, black) and
background Poisson spike trains (Fig. 4ci, gray) that were not
modulated by the stimulus. In Figure 4cii we show the spike
times (black, excitatory neurons; red, inhibitory neurons) in

response to one presentation of the input stimulus (Fig. 4ci).
Neurons are arranged by depth below the surface, which allows
us to visualize the laminar boundaries as sharp changes in the
density of firing reflecting different cell densities across layers.
The fraction of neurons in the column firing action potentials is
displayed in Figure 4ciii as a function of time. For most cortical
layers, the time to peak of 15–20ms (Fig. 4civ), as well as the fol-
lowing period of slightly elevated activity until stimulus offset,
are both consistent with the in vivo recordings (Atencio and
Schreiner, 2010b, 2012). Note that each curve in Figure 4civ is
individually scaled, and the early timing of Layer I reflects the
spiking of a small number of inhibitory neurons receiving con-
vergent input from pyramidal cells in other layers. Layer I had
essentially no contribution to the CSEP (see Fig. 6).

The biophysical model produces CSEPs (Fig. 4d–g) consistent
with the high-frequency transient onset response observed in vivo.
We computed the electrical potential at the cortical surface of the
simulated column using the line source approximation (Holt and
Koch, 1999) and processed the simulated data identically to the ex-
perimental data. Average (mean 6 SE, N = 60 stimulus presenta-
tions) raw evoked cortical surface electrical potential from the
model is plotted in Figure 4d. The average evoked spectrogram for
simulated CSEPs is shown in Figure 4e (dashed black lines, stimu-
lus; dashed red line, 10ms window around the peak high-gamma
response), and the extracted response as a function of frequency for
the simulated CSEP is shown in Figure 4f (red), as well as the exper-
imental data (black). We first examined the degree to which the
simulation recreated the first moments (i.e., means) of the fre-
quency content of the experimental data by plotting the mean nor-
malized neural spectrogram (Fig. 4e,f, top). There is striking
agreement in the mean frequency content of CSEPs collected exper-
imentally and CSEPs generated by the simulations (Fig. 4f, top).
Both experimental and simulated CSEPs exhibit a peak frequency
of ;100Hz, and the spread of the signal around the peaks are
highly overlapping. We next examined the degree to which the sim-
ulation recreated the second-order moment (i.e., variances) of the
experimental data by examining the z-scored frequency content
(Fig. 4e,f, bottom). This revealed that although the high-frequency
structure was well preserved, the simulation had reduced z-scored
responses in the lower frequency ranges compared with the experi-
mental data. We quantified the similarity between experimental and
simulated frequency content as the correlation coefficient between
the average simulated response (Fig. 4f, dark red lines) and the aver-
age response at individual electrodes (Fig. 4f, light gray traces). The

Figure 3. CSEPs are anisotropically localized to a cortical column. a, Spatial distribution of weights from a regularized linear model of Hg responses during the tone stimuli as a function of
the other electrodes on the grid. Locations are all relative to the electrode used as the dependent variable in linear regression. Values are median across all N = 333 tuned (in Hg ) electrodes.
b, Spatial distribution of normalized weights for tMuA. Values are median across all N = 113 tuned (in tMuA) electrodes. c, Median6 SD of normalized linear weights across all electrodes as
a function of distance in the AP (solid lines, left axis) and DV (dashed lines, right axis) dimensions along the grid. Different frequency bands are demarcated with colors. Note inverted orienta-
tion of distances along x-axis for AP (black) versus DV (gray).

Baratham, Dougherty et al. · Columnar Localization and Laminar Origin of ECoG J. Neurosci., May 4, 2022 • 42(18):3733–3748 • 3741



Figure 4. Biophysical in silico cortical column reproduces in vivo observed mECoG response. a, Rendering of a random subselection of 626 neurons in the simulated column (;2% of the
total). Black, excitatory neurons; red, inhibitory. Circles represent somas, lines represent dendritic structures. The position of the simulated mECoG electrode relative to the column is shown
above. b, Distribution of synapses from the thalamus along the depth axis of the simulated cortical column. c, Data from one simulated stimulation and prestimulus/poststimulus silence.
i, Population spike rate of thalamic and background cortical spike trains activating synapses in the column. ii, Spike raster of all neurons in the column versus soma depth (y-axis). Note that dif-
ferences in raster density in part reflect differences in neuron density across cortical layers. iii, Population spiking (fraction of neurons spiking in 1 ms) of biophysically detailed cortical neurons.
iv, Cell-averaged spike rate of biophysically detailed neurons in each layer. Darker shades indicate deeper layers. d, CSEP computed by the Line Source Approximation from all neurons in the
column during a 150 ms window centered around the 50 ms tone pip stimulation. e, Spectrogram of the CSEP in d. Top, Mean normalization. Bottom, z-Score normalization. f, Frequency con-
tent of CSEP during 10ms centered at the response peak (indicated with dotted red lines in d and e). Top, Mean normalization. Bottom, z-Score normalization. Individual electrode averages
from experimental results are in gray, black is grand average. Individual stimulus presentations from simulations are in pink, red is grand average. All traces are normalized to their respective
maxima. g, Whisker plots (median, IQR, 95% CI) of correlation coefficients comparing the frequency content of experimental results and average simulation results for z-score and mean
normalizations.
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distributions of correlation coefficients for both mean and z-
scored normalized responses are plotted in Figure 4g (mean
normalization, median R = 0.91, (IQR) = [0.85, 0.93]; z-score
normalization, median R = 0.70, IQR = [0.60, 0.83]). Thus,
biophysical simulations accurately recreate key aspects of
experimentally acquired data, indicating that they are a good
forward model of CSEP generation.

In silico cortical column predicts experimentally observed
relationship between response magnitude and frequency
The model makes testable predictions regarding the rela-
tionship between the magnitude and frequency content of
CSEP responses. In the simulations, we varied the magni-
tude of the excitatory input to the network by increasing
the mean firing rate of the thalamic spike trains during the
stimulus. Analogously, in the experiments, we monitored
the evoked CSEP in response to varying sound amplitudes
at the best frequency of each electrode.

For the simulations, Figure 5a displays the average z-scored
evoked response to stimulation of different amplitudes as func-
tions of frequency (input magnitude given by color saturation,

indicated by color bar, inset). We observed that the magnitude
of CSEP response depended monotonically on input magni-
tude. More interestingly, we found that as the magnitude of
the response increased, so did the frequency content of that
response. This can be seen as a sweep toward the upper
right of the individual traces as input magnitude increases.
We quantified the relationship between response magni-
tude (z-scored response between 10 and 200 Hz) and the
frequency content (frequency at peak response between 10
and 200 Hz). The pink-to-red squares in Figure 5c display
the normalized maximum response magnitude versus nor-
malized frequency at maximum response for varying input
amplitudes (color saturation demarcates magnitude of
input, circled square demarcates input used in Figs. 4, 6, 7).
Intuitively, these effects were mediated by an increase in the
population mean firing rate and spike synchrony resulting
from increased input spike rate.

Next, we sought to determine whether this relationship
between magnitude and frequency existed in the experimental
data. Figure 5b displays the z-scored CSEP at an example elec-
trode as a function of frequency in response to the BF stimulus

Figure 5. In silico cortical column predicts experimentally observed relationship between response magnitude and frequency. a, Average z-score as a function of frequency in eight simula-
tions with variable input amplitude. b, Average z-score as a function of frequency in the experimental data for six different stimulus amplitudes. c, Normalized response magnitude versus nor-
malized response frequency for experimental data (black, mean 6 SD) and for simulations (red). Each data point corresponds to the response frequency and magnitude associated with a
distinct input magnitude (response magnitude increases monotonically with input magnitude). Circled point indicates the input magnitude used in Figures 4, 6, 7. Orange dashed line is unity.

Figure 6. Evoked mECoG responses originate in infragranular layers. a, Contributions to the simulated CSEP from anatomic layers. Top to bottom, Cortical layers I through VI. The sum of
these contributions is the total CSEP. b, Frequency content of the laminar contributions during stimulus peak. Layer V and VI contributions dominate the high-gamma peak. c, Magnitude at
peak frequency of the CSEP contribution of each cortical layer versus number of neurons in the layer. d, Magnitude at peak frequency of the CSEP contribution of each cortical layer versus aver-
age distance of cell bodies in the layer from the recording electrode. e, Magnitude at peak frequency of the CSEP contribution of each cortical layer versus synchrony of somatic membrane
potentials averaged over all pairs of neurons in the layer. f, Pie chart showing the relative importance of these three factors in a linear model of the high-gamma peak contribution magnitudes
of anatomic layers.
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presented at different amplitudes (inset, color bar). Similar to
Figure 5a, we observed a sweep toward the upper right of the
individual traces with increasing input amplitude (Fig. 5b). For
frequency tuned electrodes, we calculated the same quantities
(maximum response magnitude and frequency at maximum
response) as a function of the amplitude of auditory input at the
best frequency of the electrode in the tone stimuli (Fig. 5c, gray-
to-black circles, mean 6 SD, N [ [206, 299]). As in the simula-
tions, we observed that increasing the input magnitude resulted
in an increase in both the magnitude of the peak response and
frequency at the peak response. Further, there is a striking corre-
spondence in the curvature of response frequency versus
response magnitude plots derived from experimental and simu-
lation data (Fig. 5c). These results demonstrate a prediction
made by the model that was confirmed by a novel experimental
finding.

Evoked lECoG responses originate in infragranular layers
We next used the model to understand the spatial distribution of
the generating sources of the CSEP. A key feature of the biophys-
ical model is that the CSEP calculation is separate from the nu-
merical simulation of the neurons in the column, enabling us to
calculate CSEPs from arbitrary samples of neuronal segments in

the column without perturbing the activity at all. We first exam-
ined the contributions to the CSEP from cortical layers by com-
puting contribution of each layer to the CSEP individually (see
above, Materials and Methods).

Figure 6a plots the raw evoked CSEP (inset, scale bar) as a
function of time for each layer and indicates the average depth of
neuronal somas for the layers. Surprisingly, we found that layers
V and VI produce the largest evoked potentials, despite being the
farthest away, whereas neurons in superficial layers contribute
very little to the total CSEP. Figure 6b shows the frequency con-
tent of each contribution during a 10ms window surrounding
the response peak. The inset shows the relative magnitudes of
the layer contributions in the band centered at 94Hz, the apex
of the high-gamma peak, shown as a dotted vertical line. As with
the raw evoked potential, we found that infragranular layers also
contribute most to the high-gamma component of ECoG
responses, 51% from layer V, 35% from layer VI, and the remain-
ing 14% coming from layers I and IV. To further probe the de-
pendence of the high-gamma component on individual layers,
we also performed lesion studies examining the CSEP produced
when activity in one cortical layer is excluded, which confirmed
that layer V lesions caused the largest reduction in high-gamma
(data not shown).

Figure 7. EvokedmECoG responses originate in sources 800–1400mm below the surface. a, Proportional breakdown of segments by anatomic layer. Most slices contain segments from neu-
rons in multiple cortical layers. Bars represent proportion of total segments in the slice, different slices not to scale. b, Total number of simulated neuronal segments in each 200mm axial slice
of the column. c, Contributions to the CSEP from 200mm slices, organized by depth. Top, Cortical surface. The sum of these contributions is the total CSEP shown in Figure 4b. d, Frequency
content of the slice contributions during stimulus peak, colored by slice depth. Slices containing somas of layer V neurons dominate the high-gamma peak. e, Magnitude at peak frequency of
the CSEP contribution of each slice versus number of neuronal segments in the slice. f, Magnitude at peak frequency of the CSEP contribution of each slice versus average distance of segments
in the slice from the recording electrode. g, Magnitude at peak frequency of the CSEP contribution of each slice versus average synchrony in the slice. h, Pie chart showing the relative impor-
tance of the three factors in our linear model of the high-gamma peak contribution magnitudes of the slices.
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The results above appear counterintuitive when the con-
tribution of sources is viewed only as a function of distance.
However, in addition to distance, the number of sources
and their correlations are additional biophysical factors that
dictate the contribution of neuronal populations to a distally
recorded signal (Lindén et al., 2011). A priori, the relative
importance of these factors to determining laminar contribu-
tions to evoked CSEPs in a full-scale cortical column model
is not clear. Thus, we plotted the peak high-gamma responses
of each layer as a function of the number of simulated neu-
rons in (Fig. 6c), the average distance of somas in each layer
from the recording electrode (Fig. 6d), and the synchrony
between somatic membrane potentials in each layer during
the stimulus (Fig. 6e). We note that in Figure 6d the peak
high-gamma response versus depth shows a positive slope,
contrary to the physical principle that individual neurons
farther from the electrode will contribute less to the signal.
However, as is evident from these plots, there are correla-
tions between depth and the other variables. For example,
deeper layers tend to contain more neurons. Thus, we fit a
regularized linear model to predict peak high-gamma magni-
tude across layers as a function of depth, number of segments,
and synchrony of neuronal somas simultaneously, which
fit the data well (R2 = 0.98). The relative magnitudes of the
fit coefficients are plotted in Figure 6f, which shows that the
number of segments and between-cell synchrony are the dom-
inant factors that determine source contributions to CSEPs,
whereas depth was a minor factor. To determine how robust
these results were to baseline normalization, we performed
the same analysis with a different normalization procedure
and found very similar results (data not shown). Thus, infra-
granular layers contribute ;86% of evoked CSEP responses
because of their increased number of neurons and increased
synchrony.

Evoked lECoG responses originate in sources 800–1400 lm
below the surface
The previous results indicate that layers V and VI are the
dominant sources to evoked CSEPs. However, because of
the large, extended morphology of some neurons relative to
the column depth, knowledge of the largest contributing ana-
tomic layers does not necessarily imply precise knowledge of
the spatial distribution of segments generating CSEPs. For
example, the apical tufts of many layer V pyramidal neurons
reach into layer I. Thus, we next isolate contributions to the
CSEP from 200mm axial slices of the column.

Most slices contain segments from neurons in more than
one layer, and a given neuron can contribute to more than
one slice. The breakdown of segments in each slice by ana-
tomic layer is shown in Figure 7a, where each color represents
one slice. For each slice, five bars are shown displaying the
number of segments in that slice belonging to neurons in the
five cortical layers. For example, the top slice is dominated by
segments from layer V neurons (Fig. 7a, fourth column). The
total number of neuronal segments in each slice is shown in
Figure 7b, which makes clear that the slices between 800 and
1200mm have the most segments. Figure 7c shows CSEPs cal-
culated only from segments in the slices as a function of depth
(inset, CSEP scale bar). The largest contributors to the evoked
responses are the slices located from 800 to 1400mm below
the surface, that is, somas in layer V. We extracted a 10ms
window around the peak of the CSEP response and analyzed
the frequency content of the contribution of each slice within

that window. The results are shown in Figure 7d. The inset
shows the relative magnitudes of the contributions of the sli-
ces at 94Hz, the apex of the high-gamma peak, shown as a
dotted vertical line. Here, we see that the slices spanning 800–
1400mm are also the ones contributing most to the high-
gamma peak (56% total), which is where layer V somas are
located. Thus, this analysis demonstrates that layer V somas
are the major generating source of evoked ECoG signals.

As with the layer contributions, we sought to ascertain the
relative importance of the number of segments in the slice
(Fig. 7e), the depth of the slice below the surface (Fig. 7f), and
the synchrony of membrane potentials of segments within the
slice (Fig. 7g) in determining the high-gamma peak contribu-
tion magnitude. The results of a regularized linear regression
predicting high-gamma peak from those parameters (R2 =
0.91) are shown in Figure 7h. As with the layer contributions,
very similar results were observed using a different normaliza-
tion procedure (data not shown). Similar to the layer contri-
butions, we find that the number of segments and the
synchrony are the most important factors determining the
magnitude of the contribution of a slice to the CSEP.

Discussion
We found that evoked CSEPs had strongly nonmonotonic fre-
quency structure, with a large peak at the 65–170Hz range
(Hg ). In experimental data, we quantitively demonstrated
that evoked CSEPs were localized to a cortical column. Full-
scale biophysical simulations of a cortical column reproduce
experimentally observed evoked spectrum and indicate that
evoked mECoG high-gamma is generated by infragranular
neurons.

The spatial spread of electrical potentials is of long-standing
debate and great interest for basic neuroscience with applications
to sensor design and brain-machine interfaces. We demonstrate
tight, anisotropic surface localization of CSEPs to less than or
equal to 6200mm, with higher frequencies exhibiting greater
spatial localization. We observed examples of neighboring elec-
trodes (in different auditory areas) with very different tuning. A
column is;300mm in diameter (Mountcastle et al., 1997). Thus,
our results demonstrate that CSEPs are localizable to individual
cortical columns.

Our results indicate a much more localized signal than has
been directly quantified in previous studies (Escabí et al.,
2014; Muller et al., 2016; Hermiz et al., 2018; Dubey and Ray,
2019), although there have been qualitative descriptions of
tight localization (Tchoe et al., 2022). Most studies that
directly quantify evoked signal spread calculate the pairwise
correlation between electrodes and examine the decay with
distance (Escabí et al., 2014; Muller et al., 2016). However,
such analyses potentially confound long-range correlations
because of direct interactions with correlations because of
chaining of pairwise interactions. The sparse general linear
models used here largely mitigate such confounds. Our results
corroborate and extend a study of the spatial spread of low-
frequency electrical potentials inside the cortex (Katzner et al.,
2009). However, we demonstrate that higher frequencies are
more spatially localized and have narrower stimulus tuning.
Our estimate of spatial spread should be considered an upper
bound as it is at the limit of the interelectrode spacing (which
is still half that of Utah arrays).

We observed large anisotropy in the spatial spread of evoked
CSEPs, with greater values dorsoventral than anteroposterior.
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This anisotropy thus reflects the functional organization
(tonotopy) of the cortical tissue (Polley et al., 2007; Schreiner
and Winer, 2007; Guo et al., 2012). Therefore, the major de-
terminant of the spatial scale of correlations in stimulus-
evoked CSEPS across the surface is not the passive diffusion of
signals (which is expected to be isotropic (Łeôski et al., 2013),
but instead is correlations in function. Together, our results
imply that maximization of ECoG grids should be matched to
the spatial resolution of functional differentiation of the
underlying cortex and subsampled relative to this to ensure
robustness to electrode loss over time.

ECoG records electrical potentials reflecting weighted linear
superpositions of all electrical sources in the brain (Lindén et al.,
2011; Buzsáki et al., 2012; Łeôski et al., 2013). Several studies
have examined the relationship between intracortical spiking ac-
tivity and the frequency content of recorded intracortical LFPs
but report divergent results. Steinschneider et al. (2008), charac-
terized the spectral content of A1-evoked LFPs and the relation-
ship to MuA in nonhuman primates. Several studies have
suggested that high-frequency content of intracortical LFPs
(broadband activity) is directly modulated by neuronal spiking
activity (Manning et al., 2009; Scheffer-Teixeira et al., 2013). Ray
and Maunsell (2011) showed that evoked intracortical gamma
band activity can be dissociated from high-gamma band activity,
whereas a report from Leszczynski et al. (2020) suggests that
broadband activity can be dissociated from MuA in different
layers. However, these studies have primarily focused on intra-
cortical recordings. Thus, little is known about the relative con-
tributions of the superposed neuronal sources at the cortical
surface.

Our study addresses this gap with a full-scale, biophysically
detailed model (Markram et al., 2015) of cortical sources and a
forward model of their superposition at the surface. The model
produces stimulus-evoked mean responses with frequency con-
tent strikingly similar to that observed experimentally. The simu-
lation predicted that as the magnitude of the input increases,
there should be concomitant increases in both the frequency
and amplitude of the evoked response with a concave shape.
This prediction was validated with a novel observation in the ex-
perimental data. Previous efforts to understand CSEPs and intra-
cortical LFPs produced by large populations of neurons use
simplified neuronal models (Miller et al., 2009; Mazzoni et al.,
2015) or simplified network models that omit several cell types
or even entire cortical layers (Hagen et al., 2018). The Blue Brain
Project model (Markram et al., 2015) used here, represents the
state of the art in biophysically detailed simulation of neurons
and cortical columns. However, the simulation did not perfectly
reproduce the sharp onset in the raw CSEP or the variance at low
frequencies. Nonetheless, together, our results indicate that for
the first time a computational model accurately captures the bio-
physical processes giving rise to the evoked ECoG response
observed in the data.

The biophysical model demonstrates that the intuition that
CSEP signals must be generated primarily in superficial layers is
incorrect. Instead, our results implicate neurons in cortical layer
V as the primary source of the signal recorded at the surface,
with layer VI also contributing substantially. Similarly, analysis
of contributions to the CSEP by depth showed that slices of the
column containing layer V somas produce most of the signal
observable at the surface, not dendritic compartments. Thus, de-
spite the fact that our model has detailed dendritic morphologies
and voltage-gated Ca21 channels, we did not find evidence of
layer V dendritic compartments as major contributors to evoked

high-frequency CSEPs, in contrast to previous results (Suzuki
and Larkum, 2017; Leszczynski et al., 2020). Note that in line
with the slow time course of dendritic Ca21, the signal reported
in Suzuki and Larkum (2017) is much slower than the high-
gamma signal we focus on. The number and synchrony of
neurons were found to be more important than depth in deter-
mining the contribution of a population to the surface signal.
Although layers II–IV are closer to the recording electrode than
layers V and VI, they have fewer neurons (Shepherd, 2004;
Markram et al., 2015) and reduced synchrony (Atencio and
Schreiner, 2013; Adesnik and Naka, 2018). Layers V and VI are
composed of predominately pyramidal cells (Markram et al.,
2015; Adesnik and Naka, 2018) whose spikes contribute most to
high frequencies (Buzsáki et al., 2012). Thus, we conclude that
evoked CSEP high gamma is a biomarker of layers V and VI py-
ramidal neuron firing rates. Our results also indicate that differ-
ences in laminar architecture across cortical areas and species
may impact the precise origins of ECoG signals.

The simulation results suggest a word of caution for the inter-
pretation of multiunit activity (and LFPs more broadly) recorded
both at the surface and intracortically (Khodagholy et al., 2015;
Trautmann et al., 2019; Leszczynski et al., 2020; Paulk et al.,
2021). Previous reports of single-unit recording from the cortical
surface as well as intracortically recorded multiunit activity may
contain contributions from distal, but numerous and synchro-
nous, neurons. Further, experimental analysis of contributions of
spiking activity to CSEPs must use well-isolated single units, not
multiunit activity, as has been done previously (Dougherty
et al., 2019; Leszczynski et al., 2020). To provide mechanistic
precision, we conducted experiments in anesthetized animals
and likewise simulated a single cortical column. Although
the stimulus-evoked responses of cortical neurons are well
preserved from the anesthetized to awake states (Niell and
Stryker, 2010), this simplification likely reduces the impact
of, for example, top-down inputs that are present in the
awake animal.

The finding that evoked ECoG high-gamma is primarily gen-
erated by synchronous neurons in layer V provides a potential
explanation of the robust tuning to exogenous variables found
here and previously (e.g., auditory stimuli, Bockhorst et al., 2018;
vocal tract articulators, Bouchard et al., 2013, etc.). In particular,
neurons in layer V have previously been found to have sharper
tuning curves than neurons in layers II and III (Atencio and
Schreiner, 2010b, 2012; Harrison et al., 2012). Thus, although
cortical surface electrical stimulation may activate broadly con-
nected neurons in layers II and III (Graziano et al., 2002;
Harrison et al., 2012), recordings from the surface can reflect the
finely tuned responses and precise projections of neurons in
layer V (Atencio and Schreiner, 2010b; Harrison et al., 2012).
The homogeneity of columns within an area (Mountcastle et al.,
1997) and the linear properties of cortical tissue suggest that
results here derived from mECoG will extrapolate to larger elec-
trodes used clinically.

In summary, our results indicate that evoked ECoG high-
gamma responses are primarily generated by the population
spike rate of pyramidal neurons in layers V and VI of single cort-
ical columns. Together, these results highlight the possibility of
understanding how microscopic sources (specific neuronal pop-
ulations) produce mesoscale signals (i.e., ECoG). For example, in
some cases we observed a pronounced secondary peak at ;375
Hz in the experimental data (Fig. 5b); this novel spectral compo-
nent has not been previously characterized and was not repro-
duced by the simulation. We conjecture that this novel spectral
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component may reflect the activity of neurons in layers II and
III in response to input from adjacent cortical columns (which
were not explicitly modeled here). More broadly, we propose
that different high-frequency components of ECoG signals
reflect spiking activity of neurons in different cortical layers.
As neurons in different layers perform distinct computations
(Adesnik and Naka, 2018), this proposition implies that differ-
ent components of ECoG signals could be biomarkers for
these computations.
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