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Draft Genome Sequence of the Yeast Rhodotorula sp. Strain
CCFEE 5036, Isolated from McMurdo Dry Valleys, Antarctica

Claudia Coleine,a Sawyer Masonjones,b Silvano Onofri,a Laura Selbmann,a,c Jason E. Stajichb

aDepartment of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
bDepartment of Microbiology and Plant Pathology, University of California—Riverside, Riverside, California, USA
cItalian National Antarctic Museum (MNA), Mycological Section, Genoa, Italy

ABSTRACT A draft genome sequence was assembled and annotated of the basidio-
mycetous yeast Rhodotorula sp. strain CCFEE 5036, isolated from Antarctic soil com-
munities. The genome assembly is 19.07 megabases and encodes 6,434 protein-
coding genes. The sequence will contribute to understanding the diversity of fungi
inhabiting polar regions.

Rhodotorula fungi are ubiquitous saprophytic yeasts taxonomically classified in the
Pucciniomycotina and Ustilaginomycotina subphyla (phylum Basidiomycota) (1, 2).

These fungi can be isolated from many environments and are often found associated
with humans, animals, and food (3). Species have been described from the gut
microbiota of carnivorous fish (4) and contaminated soil (5). Some members of this
group are cryophilic extremophiles and can persist under extreme conditions (low
temperature, high salinity, high pressure, and low pH) (6–11). The genome sequence of
an Antarctic Rhodotorula isolate will be useful for comparative studies of evolution of
extremophilic yeasts, in efforts to study their role in biogeochemical nutrient cycling in
cold environments, and in bioprospecting for new enzymes (12, 13).

A Rhodotorula sp. culture was isolated from soil collected near a glacier during the
XI Italian Antarctic Expedition (1995 to 1996) at Edmonson Point at 74°20=00�S,
165°08=00�E (Northern Victoria Land, Continental Antarctica), an Antarctic Specially
Protected Area (ASPA), following the protocol described by Selbmann et al. (14). Briefly,
soil was sprinkled on petri dishes containing 2% malt extract agar (MEA; AppliChem
GmbH, Darmstadt, Germany) supplemented with 100 ppm chloramphenicol and incu-
bated at 10°C for several months. Yeast colonies were streaked onto fresh medium to
isolate pure cultures. Rhodotorula sp. CCFEE 5036 strain culture is deposited in the
Culture Collection of Fungi from Extreme Environments (CCFEE; University of Tuscia,
Italy) and at the Dipartimento di Biologia Vegetale e Agroambientale of the University
of Perugia Industrial Yeasts Collection (DBVPG) as strain 5527. Genomic DNA was
extracted from a pure culture grown for 3 weeks at 10°C on MEA following the
cetyltrimethylammonium bromide (CTAB) protocol (15). The DNA was sheared with a
Covaris S220 ultrasonicator, and a sequencing library was constructed using the
Neoprep TruSeq nano DNA sample prep protocol (Illumina, Inc., San Diego, CA) in a
genomics core (Institute for Integrative Genome Biology, University of California,
Riverside). The library was multiplexed and sequenced on an Illumina MiSeq flow cell
to obtain 6.1 million 2 � 300-bp paired-end sequence reads. FastQC (v0.11.3) was used
to check read quality (16).

Genome assembly was performed with MaSuRCA (v2.3.2) (17) using default param-
eters (cgwErrorRate, 0.15), which included quality-based read trimming and corrections.
Trimmed reads averaged 199 bp. Assembled scaffolds were filtered for vector contam-
ination with Sequin (v15.10) (https://www.ncbi.nlm.nih.gov/Sequin/), and redundant
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scaffolds were eliminated if they aligned with at least 95% identity to a longer contig
with MUMMer (v3.23) (18), using the “clean” step in Funannotate (v0.5.5) (19). The
assembly was 155 contigs and totaled 19.08 Mb in length (N50, 338 kb; L50, 19; longest
scaffold, 930,366 bp; G�C content, 60.58%; average depth of coverage, 192�).

Genome annotation performed by Funannotate (v0.5.5) (19) produced consensus
gene models by EVidenceModeler (EVM) (20), combining ab initio predictions from
AUGUSTUS (v3.2.2) (21) and GeneMark.hmm-ES (v4.32) (22) with protein-to-genome
alignments from Exonerate (v.2.2.0) (23). GeneMark.hmm-ES self-training used default
parameters, and AUGUSTUS was trained with alignments of BUSCO basidiomycota-
_odb9 proteins (v9) (24) and gene prediction parameters archived in a GitHub repos-
itory (25). Gene functions were assigned by similarity to Pfam (26), MEROPS (27), CAZy
(28, 29), eggNOG (v4.5) (30), InterProScan (31), and Swissprot (32) databases by BLASTP
(v2.5.0�) or HMMER3 (33) searches using Funannotate default parameters. A total of
6,553 protein-coding genes were predicted and prepared for GenBank submission by
Genome Annotation Generator (34).

Data availability. This whole-genome shotgun project was deposited at DDBJ/ENA/
GenBank under the accession number MXAQ00000000. The version described in this
paper is the first version, MXAQ01000000. Illumina sequence reads are released under
SRA accession number SRR5223778 and associated with BioProject PRJNA342238.
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