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ABSTRACT OF THE DISSERTATION 

 

Deep Characterization of the Contribution of Short Tandem Repeats Across Tissues  

  

By 

  

Stephanie Feupe Fotsing 

  

Doctor of Philosophy in Bioinformatics and Systems Biology with a Specialization in Biomedical 

Informatics 

  

University of California San Diego, 2018 

  

Professor Melissa Gymrek, Chair 

Professor Vineet Bafna, Co-Chair 

   

High-Throughput Sequencing (HTS) and Genome-Wide Association Studies (GWAS) 

studies have given us unprecedented insights into the influence of Single Nucleotide Variants (SNV) 

and Copy Number Variants (CNV) on different phenotypes including gene expression, diseases, and 

complex traits. However, how other complex genetic variations such as Short Tandem Repeats 

(STRs) in the genome may affect gene expression remains largely unknown. Identifying and 

genotyping these types of variants from short DNA sequencing reads or low coverage data present 

difficult bioinformatics challenges. Additionally, traditional association tests must be modified to 

handle highly multi-allelic loci such as STRs. Several studies have examined the effect of STRs on 

gene expression genome-wide. However, these studies were restricted to a single cell type such as 

whole blood or lymphoblastoid cell lines (LCLs) and had limited power to detect associations due to 
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low quality genotypes. Thus, the results of these studies have had limited biological insights and 

interpretation in different contexts. 

  In this dissertation, we address the importance of incorporating STRs in causal screening 

and large-scale medical genetics studies. We perform the first and largest yet characterization of 

STRs that contribute to gene expression variation across multiple tissues. To assure robust and 

reliable outcomes and insights, we leverage data from the GTEx project, which has collected high 

coverage whole genome sequencing data and RNA-sequencing across dozens of tissues, for more 

than 600 individuals. Our work confirms a clear contribution of STRs to gene expression regulation, 

with 25,554 eSTRs identified across 17 tissues. Of these, 14% are identified as high confidence 

causal variants after fine-mapping against nearby SNPs. eSTRs are highly enriched at predicted 

promoter and enhancer regions and for motifs with high GC-content. We identified a subset of eSTRs 

capable of forming G-quadruplexes (G4), a highly stable DNA secondary structure known to be 

involved in gene regulation. We show that long G4-forming STRs tend to increase expression of 

nearby genes, potentially by lowering the free energy of promoter regions and promoting RNA 

polymerase II stalling. Finally, we identify high-confidence eSTRs that likely underlie previously 

identified genetic associations with complex phenotypes including schizophrenia and blood-related 

traits. 
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CHAPTER 1: INTRODUCTION 

1.1 Problem statement 

In human genetics, there is a great interest in understanding how genetic variation affects 

phenotypes and traits. Advances in research and technology have improved tremendously in the past 

decades and thus improved the quality and types of research questions asked. This has helped 

uncover causal variant(s) to disease phenotypes and understand genome function, i.e. the molecular 

implication of given types of variants. Many large-scale studies have helped answer some of these 

questions, including Genome Wide Association Studies (GWAS). 

The Human genome project [1,2] started in 1990 and, as the first large-scale sequencing 

project, was published a decade later, in the dawn of the years 2000.  Its publication generated new 

waves of biological questions for understanding how our DNA works and how genes and their 

functions are regulated. In 2005, the first GWAS study screening for SNPs associated with age-

related macular degeneration [3] was published. Since then, hundreds of GWAS studies have been 

conducted at larger scales, continually adding to the catalog of association of genetic variants and 

genes to specific traits. Interestingly, most GWAS hits are located in non-coding regions [4,5], which 

leads to the hypothesis that they play a role in gene regulation [5] by either transcriptional regulation, 

noncoding RNA function, and/or epigenetic regulation. Many bioinformatics methods have helped 

elucidate the likely mechanisms affected by these GWAS hits in noncoding regions. These in vitro 

or in vivo experiments targeting the suspected mechanism include mice testing in T2D [6], fine 

mapping methods like eQTL analysis [7], prioritization methods and more [8]. 

 expression Quantitative Traits Loci (eQTLs) analysis is one such method used to assess the 

role of non-coding variants in gene expression. eQTL analysis consists of the identification variants 

that explain a fraction of a given gene expression, using various methods including association tests 

and regression analysis. Briefly, variability in gene expression can explain differences in population 

https://paperpile.com/c/dhkU2l/7hct+2jX5
https://paperpile.com/c/dhkU2l/e2w3H
https://paperpile.com/c/dhkU2l/k619+vCWD
https://paperpile.com/c/dhkU2l/vCWD
https://paperpile.com/c/dhkU2l/uoEF
https://paperpile.com/c/dhkU2l/A8nb
https://paperpile.com/c/dhkU2l/HNlz
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[9–11], difference in phenotypes like diseases: (eg. Celiac disease, Crohn's disease, asthma,etc.) [12–

14]; complex traits like skin color [15] and others. While GWAS studies are useful for identifying 

variants or regions associated with traits. eQTL analysis helps identify the underlying gene(s) 

affected by the said variants or regions, hence explaining the underlying relation between the variants 

(or regions) and the trait or susceptibility to the trait. These analyses have led to better interpretation 

of GWAS studies and the identification of new functional loci. However, there are many diseases for 

which the underlying causes are still to be elucidated, and traits to be explained. 

One critical limitation of these large-scale studies has been their exclusive focus on single 

nucleotide variations. The human genome harbors multiple types of variants. Short Tandem Repeats 

(STRs) for example, are repetitive short segments of DNA with unit length of 1 up to 10 bps 

depending on the study that defines it [16–18]. They have been linked to multiple phenotypes and 

diseases. Large scale studies on these variants would be extremely informative.  

 In addition, eQTLs studies particularly have interrogated in large gene expression from one 

single tissue or single cell; mostly blood related. Consequently, they have missed the contribution of 

other types of genetic variation on one hand and the overlooked the specificity of many eQTLs as 

some genes are expressed in some tissue types and not in others. 

In this dissertation I highlight the importance of including Short Tandem Repeats (STRs) in 

causal variant screening and large-scale studies. As a solution, I provide a deep characterization of 

STRs and expression STRs (eSTRs) from their distribution and location in the genome and motif 

enrichment analysis. Diverse regulatory roles of eSTRs are highlighted and hypothesized. 

1.2 An overview of the different types of variants in research 

Back to basics, the common pipeline for any type of functional analysis involving genetic 

variants can be summarized as follow: Variant identification and profiling – variant filtering – 

functional analysis – candidates’ variant selection (see Figure 1.1). It is well known that there are 

https://paperpile.com/c/dhkU2l/6AfY+kl07+LzIz
https://paperpile.com/c/dhkU2l/GQCa+a5Nb+iw6A
https://paperpile.com/c/dhkU2l/GQCa+a5Nb+iw6A
https://paperpile.com/c/dhkU2l/GfZj
https://paperpile.com/c/dhkU2l/fgCR+sNOJ+YntH
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different major types of genetic variation in the genome: (1) Single nucleotide variations or SNVs 

which often include small insertion and deletion (indels) – (2) structural variation or SVs which 

include a wide range of large sequence variation – and (3) short tandem repeats (STRs) and variable 

number tandem repeats (VNTRs). These variants are markers that can be surveyed in order to: (1)- 

find the causal variants to diseases or traits, (2)- understand their roles in the genome and (3)- 

characterize or identify a whole population or an individual. 

 

Figure 1.1: Standard pipeline for candidates’ variant calling 

 1.2.1 Single Nucleotide variations 

Single nucleotide variations or SNVs are DNA changes in which a single base — A, T, C or 

G — differs from the reference [19]. Often studied with small insertion and small deletion (indels), 

SNVs have been extensively profiled from next generation sequencing, characterized, studied and 

their influence on phenotypes is now easily interpreted at the molecular level, both for single and 

https://paperpile.com/c/dhkU2l/ENem
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cohort samples. Based on GWAS, there are tens of thousands of SNVs implicated in various diseases 

and traits, for example Psoriasis [20], Parkinson disease [21,22], Hodgkins_lymphoma and 

susceptibility to Hodgkins_lymphoma [22]. They have also been the most studied and the most 

convenient studied polymorphic markers to map disease-causing and disease susceptibility genes as 

well as those related to drug responsiveness. eQTLs studies have elucidated the influence of SNVs 

on gene expression dosage. In combination, GWAS and eQTL analysis have helped characterize 

single nucleotide variants to the extent of creating a big catalog of SNVs-traits association [21,22] 

used today in various research and clinical settings for functional analysis research, diagnostic 

purposes and treatment design. A somewhat standard panel for diseases testing has been created for 

many diseases and used by multiple companies and clinics for diseases diagnosis and disease 

susceptibility screening. Examples would include the most used panel in cancer research, the breast 

cancer panel that includes to this day almost 20 SNVs for  BRCA1/2 [23]; or, the panels of SNVs 

used in cardiology for arrhythmia (SNVs in up to 36 genes like ANK6, CACNA1C, KCNE2, etc.), 

Cardiomyopathy (SNVs in up to 55 genes including MYPN, MYOZ2, MYH7, ACTC1, etc.) and 

many more. While this has been going on, studies on genetic variants of larger sizes such as structural 

variations (SV), short tandem repeats (STRs) and variable number tandem repeats (VNTRs), have 

been lagging.  

 1.2.2 Structural variations 

Structural variations are variation that involve changes of a larger segment of DNA (>50bps). 

SVs have been proven to cause diseases [24,25], hence the relevance of their inclusion in human 

genomic and causal variant screening. They have more complex structures and include large 

insertions, inversions, translocations and copy number variants (CNV), which in turn include large 

deletions, duplications and multi-allelic copy number variation (mCNVs). Each type of variation has 

https://paperpile.com/c/dhkU2l/IkJG
https://paperpile.com/c/dhkU2l/wMMZ+rqnn
https://paperpile.com/c/dhkU2l/rqnn
https://paperpile.com/c/dhkU2l/rqnn+wMMZ
https://paperpile.com/c/dhkU2l/myTI
https://paperpile.com/c/dhkU2l/UAGt+qSkW
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distinct genomic features at detailed sequence level and thus requires different algorithm and 

sequencing consideration to identify and genotype accurately for downstream analysis. 

CNVs are the most common type of SVs surveyed in studies, leaving the other SV types 

unexplored. CNVs have been well studied, their influence on phenotypes fully characterized globally 

[26,27] and on many disease phenotypes like malaria, epilepsy, type 2 diabetes, etc. [25,26,28–30] 

through GWAS; thus they are easily included in genetic studies for clinical phenotypes. SVs have 

also been linked to diverse phenotypes, but not all types are usually integrated into reference panels 

of genetic variation screening or large studies.  

However, since 2010, there have been efforts from different bioinformatics labs and 

companies to integrate these variants in genetic studies and research, hence the development of 

integrated maps for structural variants. These panels include one for large multiallelic copy number 

variations in humans [31] by the Broad Institute, and an integrated SV map from 26 human 

populations [32]. In 2016, the second phase of the Genome of the Netherlands (GoNL) project [33] 

produced a well characterized, haplotype-resolved, SV-integrated reference panel[34], yielded from 

high coverage sequencing data from hundreds of unrelated family trios and twins [33,35]. From the 

latter study, almost 200 SNPs previously associated with diseases and other phenotypes were found 

to be in strong linkage disequilibrium with SVs. These efforts have made more appealing the 

integration of structural variants in large studies, functional impact studies, such as the most recent 

survey of the influence of structural variation on gene expression [36]. 

 1.2.3 Short tandem repeats 

STRs are distributed throughout the genome and highly variable from one individual to the 

other. Throughout this dissertation, they will be defined as repeating sequences of unit length up to 

6 bps. The mutational characteristics of STRs are the reasons why they have been used for DNA 

fingerprinting and forensic analysis for decades. STRs have been associated with quite a lot of 

https://paperpile.com/c/dhkU2l/J1q2+seOq
https://paperpile.com/c/dhkU2l/qSkW+YNV0+J1q2+yCug+oNHj
https://paperpile.com/c/dhkU2l/rEIH
https://paperpile.com/c/dhkU2l/n8t0
https://paperpile.com/c/dhkU2l/XsDX
https://paperpile.com/c/dhkU2l/1RgO
https://paperpile.com/c/dhkU2l/HGeI+XsDX
https://paperpile.com/c/dhkU2l/XAVl
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complex phenotypes such as the Huntington disease [37], oculopharyngeal muscular dystrophy [38], 

multiple ataxia, Fragile X [39] and many others. While large scale studies have been useful in 

uncovering the role of multiple genetic variation, (mostly SNV and less often structural variation), 

they have certainly missed the contribution of STRs. This exclusion has been the clear result of the 

complexity of these variants and the difficulties associated with their discovery, genotyping or 

profiling. The past few years have been marked by multiple efforts to profile STRs both on the 

technological side and also on the research side. In 2014, the first most comprehensive reference 

panel for STRs was published [40], giving way soon after to the first glimpse at expression STRs 

[16] and their suggested roles in other phenotypes. The latter study, although very informative and 

groundbreaking, had some limitation. The use of low coverage data from the 1000G project reduced 

the power of STR profiling and thus of the analysis itself. Gene expression data from a 

lymphoblastoid cell line (LCL) only was used, hence the necessity for more analysis to confirm or 

generalize the results. 

1.3 Solution layout 

 In this dissertation I acknowledge that a good comprehensive catalog of STR variation that 

is implicated in gene expression fluctuation is fundamental for population studies and adds to the 

knowledge of demographic history and genotype-phenotype association. We highlight the 

importance of including STRs in causal variant screening and provide a solution by providing a deep 

characterization of these variants and their role in regulating gene expression in different contexts. 

We leverage on the rich dataset from the GTEx project which includes high coverage whole genome 

sequence data from 650 samples and gene expression (RNA-Seq) from dozens of tissues. We 

interrogate gene expression from seventeen (17) tissues with big enough samples for statistical 

power.   

https://paperpile.com/c/dhkU2l/sTd7
https://paperpile.com/c/dhkU2l/SceS
https://paperpile.com/c/dhkU2l/aADD
https://paperpile.com/c/dhkU2l/iArl
https://paperpile.com/c/dhkU2l/fgCR


   7 

 In chapter 2, we highlight what is known about STRs and the caveats of common practice of 

expression quantitative traits analysis and causal variant identification that are limited to the most 

common and easy to characterize variants like SNVs and CNVs.  

 In chapter 3, we identify expression STRs (eSTRs) and perform a comprehensive analysis 

of their distribution in the genome, and their functional role. We then begin to elucidate potential 

mechanisms by which eSTRs affect gene regulation through eSTRs motifs enrichment for guanine-

rich motifs with the potential of forming G-quadruplexes (G4) complexes. These are secondary 

structures formed by sequences containing consecutive runs of guanines nucleotides, with functional 

roles in DNA replication and gene transcription [41,42].  

 Finally, in Chapter 4, we summarize the dissertation, propose future directions from this 

research and conclude 
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CHAPTER 2: REVIEW AND IMPLICATION OF THE INCLUSION STR IN 

STUDIES 

2.1 Barriers to the inclusion of STRs in studies 

Here we define STRs as sequences of up to 6 bps units that repeat themselves multiple times. 

Their total lengths may vary from 10 bps (for shorter mononucleotides or dinucleotide repeats) to a 

few hundred. They are difficult to genotype in general, but even more difficult are mononucleotide 

repeats. Much recently, most algorithms [1,2] required reads spanning the STRs in order to confirm 

the actual length of STRs. They are distributed throughout the genome and highly polymorphic, 

which confers them the advantage of being used for DNA fingerprinting and forensic analysis. The 

exceptions to this rule are mononucleotides, which are less polymorphic, as variation in these 

sequences can lead to nonsynonymous and frameshift mutations, especially in coding regions, which 

have the reputation of being deleterious. Mononucleotides are selected against longer sizes [3] and 

areas around these repeats can be highly polymorphic [4]. Variations in STR repeat numbers are 

likely to be identified as indels hence the term “false indels.” In addition, unless using amplification-

free (PCR-free) sequencing method, their polymorphic nature will more likely introduce stutter 

noise, [1,2] which are errors in STR length introduced by DNA slippage. However, PCR-free is not 

always possible for single cell analysis and targeted-enrichment protocols.  

According to the public library of medicine (PUBMED), in the past five years, there have 

been more than five hundred publications that address short tandem repeats in all aspects of research, 

including algorithm development for identification or profiling, methods for analyses, implication in 

diseases and cancers, and method and algorithm improvement and reviews. This is an improvement 

compared to the previous years, and we reiterate their importance. In this Chapter, we present a case 

for an updated focus specifically on short tandem repeats and an imperative investigation of their 
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https://paperpile.com/c/xo2Fse/AvPV
https://paperpile.com/c/xo2Fse/y2SC+57xj


   14 

role in gene regulation. We highlight that they carry information that cannot be overlooked, and that 

the list of complex phenotypes driven by STRs continues to grow.  

2.2 Overview on homopolymers: a complex class of STRs 

Mononucleotide repeats or homopolymers are sequences made of repeating unique 

nucleotides noted poly(dA).poly(dT) and poly(dG).poly(dC). In general, poly(dA) and poly(dT) are 

used interchangeably and so are poly(dG) and poly(dC); herein named poly-A and poly-G. 

Homopolymers constitute the largest subset of microsatellites in the human genome followed by 

dinucleotides. Just like STRs of larger unit size, homopolymers are difficult to genotype and 

interpret, but their boundaries are easier to define. Mononucleotide repeats existence across species 

have been well documented, and well characterized in prokaryotes [5] and various Eukaryotes [3]. 

Their role in the human genome, however, is not very well understood, but several implications in 

different functional mechanisms in cells have been documented and hypothesized. We sought to 

assess what is currently known so far of this type of repeats in human. In addition, with the ever-

increasing availability of high coverage sequencing data and better methods for genotyping these 

repeats, we conducted a brief survey and characterization of mononucleotide repeats in the human 

genome using the extensive resource, the GTEx dataset. We evaluated the distribution of the 

homopolymers, and we investigated their overall influence on gene expression in different tissues, 

which led to infer their potential role in gene regulation. 

 2.2.1 Characteristics of mononucleotides in literature  

The accurate identification of homopolymer length can be difficult. However, thanks to 

advances in sequencing technology and gold standards, significant progress has been made in this 

field. They are the most abundant type of repeats [6]. 

From the biological standpoint, mononucleotide repeats are less polymorphic than other STRs of 

larger unit sizes. They are under natural selection against longer sizes, especially in coding 
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regions[3]. They are difficult for cells to replicate accurately and more prone to insertion and deletion 

variations [4]. Different hypotheses have been enunciated as the cause for their abundance in the 

human genome, including slipped-strand mispairing and indel slippage. In slipped-strand mispairing, 

a misalignment of the two DNA strands by repeat step-size (here 1) multiple is more likely to occur. 

And once it does, a DNA replicating enzyme can correct it by either adding or removing the repeats 

(mismatch repair). On the other hand, during DNA polymerase-mediated DNA duplication, the 

repetitive sequence with mismatches is inserted or deleted: this is called indel slippage. 

On the functional front, mononucleotide repeat variations are largely implicated in cancer 

and tumor genesis [7–10]. Mononucleotide repeats have been linked to multiple cancers [8–10]. They 

are of high occurrence in, and characteristic of, cancerous tumors [11,12]. Scientists have leveraged 

this characteristic to evaluate microsatellite instability in tumors and thus detect DNA mismatch 

repair-deficiency [9,10]. In fact, a brief search of the terms “mononucleotide repeats” or 

“homopolymers” on PUBMED quickly yields hundreds of cancer-related results. Broken down by 

cancer types, colorectal cancer is by far the leader. One hypothesizes that mononucleotide repeats 

play a big role in this specific cancer type. It turns out in fact that different panels of mononucleotide 

repeat markers have been created for the identification of colorectal tumors and to predict the 

outcome of such cancers [7–10,13]. Additionally, research showed that mononucleotide repeats can 

disrupt gene expression in many ways [3,14], including forming binding sites upstream (close to 

transcription Start Sites TSS) of many housekeeping genes [14]. Another speculated mechanism is 

by acting as promoters, especially the poly-A tracts [15]. They also play a role in disease occurrence 

and susceptibility  [7,13,16]. Variations in these repeats are likely to create frameshifts and or non-

synonymous variants in coding regions [12,17], thus altering the function of the gene itself. 

Additionally, specific human repetitive sequences, such as Alu elements, contain long poly-A tracts 

[18] called A-tails for which the length determines whether the Alu element is active or not (i.e. its 
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retro-positional capability [19]). Poly-G tracks not only contribute to the overall GC richness, but 

may also form strong hairpins and other complex secondary structures [20,21]. 

 2.2.2 Distribution of homopolymers and their influence on gene expression 

 Up until now, no study has systematically reviewed homopolymers distribution and their 

role in the human genome. Here, we used the dataset from the Genotype-Tissue Expression (GTEx) 

project [22]  to perform a genomic review of the distribution of homopolymers the human genome 

and later, in Chapter 3, they are included as part of all STRs in the evaluation of the role of STRs in 

gene regulation. A succinct summary of their potential influence on gene expression variability is 

presented here. 

 (a) Distribution of homopolymers in the genome  

 We used the HipSTR tool [1] to genotype mononucleotide STRs in 650 high coverage (30x) 

whole genome sequencing from GTEx. After quality control of the calls, HipSTR identified and 

genotyped 828,971 homopolymers runs across samples, which represented about 52.25% of all 

genotyped STRs. Their total lengths varied between 10 and 71 bps. In terms of their distribution 

throughout the genome, the most abundant homopolymer type, as expected, were the poly-A tracts 

accounting for 99.5% of all homopolymers and 0.5% (7,437) for poly-C tracks. By location, 50.74% 

of all homopolymers were found in introns of genes, less than 0.1% in coding regions and only 1.5% 

in UTR regions. Up to 75% of UTR mononucleotides repeats were located in 3-prime UTRs, which 

may be where they contribute to gene regulation. We confirmed that less than 2% of homopolymers 

are found within the gene transcript, which makes sense for protein conservation and selection 

against polymorphisms. 

https://paperpile.com/c/xo2Fse/hoSF
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(b) Summarizing e-homopolymers in the genome  

 Almost 73% were removed for downstream analysis for quality control reasons, such as call 

rate (threshold of 80%), failing Hardy Weinberg Equilibrium (HWE), for being next to (in 

continuation of) another STR, or falling in segmental duplication regions (this is a rare occurrence). 

This filtering proved to be important for the identification of high-quality eSTRs mononucleotide 

repeats. After this careful filtering, a small fraction 12,822 (<1.6%), were screened for potential 

eQTLs (e-homopolymers) across 17 tissues. Using a linear regression model relating the average 

homopolymer length, to nearby (cis) gene expression, and accounting for covariates (race, 

confounding factor in expression). We identified 10,250 mononucleotide repeats as e- 

homopolymers for 7070 genes at 10% FDR. Almost 31.6% (3237) of them were shared by two or 

more tissues.  

To delineate between tagging effect and possibly causal e-homopolymers, we used a two-

layer verification (ANOVA and CAVIAR) as fully described in Chapter 3. Briefly, with ANOVA, 

we compared two linear models: the SNP-only model vs. SNP+STR model, using the anova_lm 

function in the python statsmodels.api.stats module. This told us whether adding eSTRs to the model, 

improve the model. With CAVIAR, we fine-mapped eSTR signals against the top 100 eSNPs and 

other STRs within 100 kb upstream and downstream of each gene. We set criteria for causal e-

homopolymer as follow: if the e-homopolymer adds more information to explain gene expression 

variability by ANOVA (P<0.05) after FDR correction, and the posterior probability for being the 

causal variant >10% by CAVIAR. Following these criteria, we found that 11.6% of e-homopolymers 

(1189) were identified as causal, with 57 at > 90% causality score per CAVIAR. See summary in 

Table 2.1).  
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Table 2.1: Table summary of e-homopolymer identification 

Tissue Sample size 
Number of e-

homopolymers 

Causal e-

homopolymers 

Causal with 

score>50% 

Nerve Tibial 265 1690 175 129 

Thyroid 262 1620 164 140 

Skin Sun-Exposed 297 1494 146 111 

Artery Tibial 276 1375 136 109 

Esophagus Mucosa 255 1363 140 114 

Adipose Subcutaneous 270 1358 113 104 

Muscle Skeletal 343 1319 121 89 

Transformed Fibroblasts 225 1246 117 87 

Lung 259 1199 116 115 

Esophagus Muscularis 214 1149 123 111 

Whole Blood 336 1035 76 75 

Artery Aorta 191 972 112 86 

Skin Not-Sun-Exposed 209 956 98 80 

Adipose Visceral 193 714 77 72 

Heart Ventricle 199 686 102 85 

Brain Cerebellum 107 588 67 72 

Brain Caudate 108 272 30 45 

 

e-homopolymers were enriched for being within 1.5 Kb of TSS regions, more than 2 folds for causal 

homopolymers eSTRs. Poly-C were rare but more likely to be eSTRs, contributing to GC-rich 

enrichment. These results highlight the non-negligible potential for homopolymers in gene regulation 
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role and thus the importance of further screening and their inclusion in downstream analysis like 

causal screening and large-scale studies. Examples of top causal e-homopolymers included a Poly-

A in the 3’ UTR region of SLC15A4 gene on chromosome 12 and a Poly-C in the promoter region 

of the CRMP1 gene on chromosome4. (Figure 2.1). 

 

Figure 2.1: Example putative causal e-homopolymer.  Left and right plots give HipSTR STR dosage 

(red and salmon) vs. normalized gene expression (y-axis). STR dosage is defined as the average 

length difference from hg19. One dot represents one sample. P-values are obtained using linear 

regression of genotype vs. gene expression.  

 

2.3 Causal variant screening: limitation on variant types surveyed 

Findings from large-scale studies have been used and applied in the development of new 

clinical practices. It is in these clinical setting that patients with rare diseases, un-named diseases, or 

unexplained diseases come with the hope of finding, if not a cure, at least an explanation for their 

conditions. For cases where hypotheses have already been generated from the symptoms, reported 

cases and previous associations in the literature like genome wide association studies are available; 

the recourse to targeted sequencing or exome sequencing may be used to verify the suspected 

culprits. However, in many cases, whole genome sequencing is the way to start in order to generate 

these hypotheses.  

The common practice then is to use genome sequencing of the patient and family members, 

preferably parents and or sibling(s) if a pattern of inheritance or family history is suspected. In these 
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scenarios, next-generation sequencing has been the main method for acquiring genetic data. Briefly, 

the common practice of causal or candidate variants screening, no matter whether SNVs, SVs or 

STRs, involves the following steps with quality control and sanity checks at each step: 

-       Variant identification and profiling or genotyping 

-       Variant filtering 

-       Candidate variants selection  

-    Functional analysis of candidates usually supported by functional annotation with databases like 

the Online Mendelian Inheritance in Man (OMIM) database, the Human Gene Mutation Database 

(HGMD), the archive of relationships between sequence variation and human phenotype 

(CLINVAR). Other software and tools for annotation include the program for predicting the impact 

of variants by Sorting Intolerant From Tolerant (SIFT), the Genomic Evolutionary Rate Profiling 

(GERP), the tool for predicting the possible impact of amino acid substitution on the sequence 

structure and protein function (Polyphen), etc.  

-     Validation using model organism, in vitro or iPSC 

Functional analysis is a critical part of the whole process. Overall, the diversity in variant types and 

structure requires a separate pipeline for each type of variation to be surveyed. As mentioned in the 

beginning, the regular practice only focuses on SNPs markers and ignores complex variants and 

variants of larger size. But such practice limitations.  

 As a use case example of such failure, consider a patient presenting symptoms of an 

uncategorized or ambiguous “Spino-cerebellar ataxia” (SCA) symptoms. SCA is a well-known 

neurological disease among neurologists and clinicians, a very heterogeneous condition. While 

patients all share a common trait: (problems with coordination and balance - ataxia), their clinical 

diagnosis is a difficult task for clinical neurologists because of their high heterogeneity in genotypes 

and phenotypes as well as a stacking overlap between phenotypes (here symptoms) in different types 
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and subtypes [23]. Today, there are over 35 types of SCA and even more, if counting the subtypes, 

identified with different causes. But the majority have been linked to multiple STRs, VNTRs in 

different genes and chromosomes [23]. Only a few would be identified with a SNV panel (like the 

rare SCA11 caused by small intragenic indels) [24] or a structural variant panel ( like SCA15 caused 

by large deletions)[25,26]. In our uncategorized ataxia case, a full screen that includes all variant 

types would be necessary. This is only known because of the different studies conducted in this well-

documented condition [23,25–29]. The same cannot be said for other diseases. Because the genome 

harbors different types of variants, which disrupt processes and molecular mechanisms differently, 

this makes the case for not limiting causal variants screening to SNVs and or SVs which may often 

lead to dead ends. 

2.4 The importance of tissue and cell type in eQTLs 

 Gene regulation is a complex machinery influenced by feedback loops and many other 

factors. In fact, transcription regulation is context specific, as a result of different factors coming 

together such as the DNA sequence itself, the nucleosome positioning, DNA binding proteins like 

transcription factors, histone modification, and other non-coding RNAs [30]. These elements 

together modulate gene transcription differently depending on the cell type, hence the term “Cell 

specific” transcription [31].  For these reasons, the regulatory mechanisms that lead to a disease can 

be tissue- or cell-specific as opposed to being observed across different tissues. In the latter case, the 

relevant regulatory activity may not always be detected in the tissue most relevant to the pathobiology 

of a causal gene. An example is the work that was recently done by Hao Mei et al.[32]. They looked 

at T2D associated gene expression across 44 tissues and found that expression of genes can be tissue 

specific. While association signals of some genes can be strong in some tissues, other tissues may 

just negate the existence of any association to the trait altogether, hence the importance of multiple 

tissue analysis. The hypothesis is that it is not always possible to identify tissues that are most 
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relevant for a given disease or phenotype, but we can identify the variant(s) or loci associated to the 

diseases-causing gene(s) in different tissue types, hence identifying the relevant regulatory 

mechanism that leads to the disease/phenotype. It then becomes possible to investigate new relevant 

regulatory activity. In the next chapter, we explore patterns of gene expression across different tissues 

and characterize expression STRs. 

2.5 Inclusion in large scale studies  

The purpose of large scale studies like eQTL and GWAS is to leverage data from a 

population to identify association and best-case scenario causal relations between genetic markers 

and a given trait that, in the eQTL case, would be gene expression. Large scale studies have led to 

the creation of reference panels [33–35], a key to linkage disequilibrium-based imputation. 

Imputation is a statistical method for inferring unknown genotypes from known genotypes, which in 

turn improves the power of combining test across studies and the power of other GWAS studies [36]. 

From GWAS studies, catalogs for variants linked to multiple traits are also created [37,38] for use 

by clinical and translational bioinformaticians for the identification of causal variants to diseases, to 

understand various biological mechanisms that lead to diseases, and thus infer targeted therapies and 

treatments. eQTLs analysis, on the other hand, has led to an even better understanding of these 

association between genes and traits or variants and traits [39–41]. Succinctly, many variants 

associated with traits or diseases fall within non-coding and regulatory regions and will influence 

gene expression that way. The role of eQTL analysis is to shed the light on those regulatory 

mechanisms. It promises characterization of functional sequence variation and/or the understanding 

of basic processes of gene regulation.  

Today, we have a large amount of literature on eQTLs SNVs, but very few on larger size 

variants like STRs and SVs. In addition, most eQTLs are conducted in the context of a particular 

condition only survey gene expression from the tissue or cell type directly impacted or suspected to 
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be relevant to the trait or condition. We pointed earlier in section 2.4 the importance of surveying 

gene expression in different tissues, as available for a clearer mapping.  

To even the plain field of causal variant screening and functional research, it is imperative 

to integrate all types of variants. Such integration is only possible if proper characteristics of the 

variants are available for reliable interpretation. Tools used for variants characterization include: 

databases that contain the reference human genome sequence, a map of variants and a set of 

algorithms and technologies that can quickly and accurately analyze, in context (a quantifiable 

phenotype), whole-genome samples. The result is a set of genetic variations that contribute to the 

phenotype variation, like the onset of a disease.  

2.6 Improving large-scale study through imputation 

Generally, GWAS studies survey hundreds and sometimes thousands of samples. To limit 

the cost of WGS for all individuals in the study, as would be ideal, a large panel of SNVs (which are 

highly polymorphic single nucleotide variations) are genotyped across all individuals. However, 

GWAS power is a function of both the number of samples in the study and the number of loci or 

variants genotyped in the study, i.e., the larger the better. Imputation is a statistical method that uses 

information from a reference panel which either (1) contains a larger number of genotyped loci or 

(2) covers a larger portion of the genome sequence - to infer unknown genotypes of skipped loci. 

This operation adds to the number of loci in the study and thus improves the power of GWAS studies 

[36]. It also improves the power of combining tests across studies. With a reference panel for STRs, 

association studies can now be conducted and improved with imputation. Following the recent wave 

of interest in these variants, we recently conducted a preliminary and successful eQTL analysis on 

simulated phenotypes and found that STR imputation improved the power to the detect association 

in association studies [42]. We conducted a short eQTLs analysis using real data that appears in Saini 

et al.,2018 [42] and found that STR imputation could identify STR associations using real 
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phenotypes, as described in [42] and below. This study also showed that STRs could be imputed 

from SNPs and vice-versa. 

 We conducted a short eQTLs analysis using real data from the GTEx [22] project and 

imputed STRs genotypes for chromosome 21.  STR genotypes for real data were obtained using the 

HipSTR tool. Imputed STRs genotyped were obtained using SNP data from the same samples. We 

focused on a linear additive model relating STR dosage, defined as the average allele length, since 

the majority of known functional STRs follow similar models (e.g.,[43–46]) and nearby gene 

expression, given the large number of reported associations between STR length and expression of 

nearby genes in cis[44,47] (termed eSTRs). To this end, we analyzed eSTRs from samples in the 

GTEx dataset for which RNA-sequencing, WGS, and SNP array data were available. As a test case, 

we imputed STR genotypes using SNP data for chromosome 21 and tested for association with genes 

expressed in whole blood. For comparison, we additionally performed each association using 

genotypes obtained from WGS using the HipSTR tool[1]. A total of 2,452 (STR x gene) tests were 

performed in each case. Association p-values were similarly distributed across both analyses and 

showed a strong departure from the uniform distribution expected under a null hypothesis of no STR 

association (Figure 2.2A). For all nominally significant associations (P<0.05), effect sizes were 

strongly correlated when using imputed vs. HipSTR genotypes (r=0.99; p=1.01x10 -79, n=97). 

Furthermore, effect sizes obtained from imputed data were concordant with previously reported 

effect sizes in a separate cohort using a different cell type (lymphoblastoid cell lines) (r=0.79; 

p=0.0042, n=11) (Figure 2.2B). We identified genes for which the STR is most likely the causal 

variant and tested whether STR imputation had greater power to identify causal eSTRs compared to 

SNP-based analyses. We used ANOVA model comparison to determine genes for which the STR 

explained additional variation over the top SNP. We compared two linear models: Y~eSNP (SNP-

only model) vs. Y~eSNP+eSTR (SNP+STR model) using the anova_lm function in the python 
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statsmodels.api.stats module. Additionally, we used CAVIAR v1.0 [48] to further fine-map eSTR 

signals against the top 100 eSNPs within 100kb of the TSS and TES of each gene. Pairwise-LD 

between the eSTR and eSNPs was estimated using Pearson correlation between SNP dosages (0, 1, 

or 2) and STR dosages (sum of the two repeat allele lengths). We identified 3 genes with ANOVA 

p-value P<0.05 for which the STR was the top variant returned by CAVIAR. One example, a CG-

rich STR in the promoter of CSTB, was previously demonstrated to act as an eSTR [49] and 

expansions of this repeat are implicated in myoclonus epilepsy [50]. In each case, imputed STR 

genotypes were more strongly associated with gene expression compared to the best tag SNP (Figure 

2.2C-D). 
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Figure 2.2: STR imputation improves power to detect STR associations. A. Quantile-quantile plot 

for eSTR association tests. Each dot represents a single STR ✕ gene test. The x-axis gives the 

expected log10 p-value distribution under a null model of no eSTR associations. Red and blue dots 

give log10 p-value for association tests using HipSTR genotypes and imputed STR genotypes, 

respectively. The black dashed line gives the diagonal. B. Comparison of eSTR effect sizes using 

observed vs. imputed genotypes. Each dot represents a single STR ✕ gene test. The x-axis gives 

effect sizes obtained using imputed genotypes. Gray dots give the effect size in GTEx whole blood 
using HipSTR genotypes. Purple dots give effect sizes reported previously in lymphoblastoid cell 

lines. C. and D. Example putative causal eSTRs identified using imputed STR genotypes. Left, 

middle, and right plots give HipSTR STR dosage (red), imputed STR dosage (blue), and the best tag 

SNP genotype (gray) vs. normalized gene expression, respectively. STR dosage is defined as the 

average length difference from hg19. One dot represents one sample. P-values are obtained using 

linear regression of genotype vs. gene expression. STR and SNP sequence information is shown for 

the coding strand. Gene diagrams are not drawn to scale. 
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Conclusion 

 STRs have been linked to multiple disease phenotypes and gene expression variability. 

However, it is crucial to properly characterize and understand their implication and gene regulation 

in different contexts in humans. Herein, we presented the case for an imperative full view on STRs 

and the implication of such characterization in research and the clinical setting. We also show the 

importance of including mononucleotides STRs in such analysis. 

 Chapter 2 section 2.6 contains parts of material from Shubham Saini, Ileena Mitra, Nima 

Mousavi, Stephanie Feupe Fotsing, Melissa Gymrek - A Reference Haplotype Panel for Genome-

wide Imputation of Short-Tandem Repeats. The dissertation author was responsible for this part of 

the analysis, but not the primary author of the paper. 
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CHAPTER 3: DEEP CHARACTERIZATION OF THE CONTRIBUTION OF 

SHORT TANDEN REPEATS ACROSS 

3.1 Abstract 

The human genome harbors multiple types of variants. Large-scale studies and traits focused 

studies have identified thousands of genetic variants, mostly Single Nucleotide Polymorphisms 

(SNPs) that contribute to gene expression variation in dozens of tissues and cell types. This has given 

ways to great interpretations of genetic variation and their role in number of diseases and traits. 

However, more complex variants such as repetitive sequences and longer size variants have been 

ignored due to bioinformatics limitations; keeping a hole in the understanding of the role of these 

other variants in many complex traits. Short Tandem Repeats (STRs) in particular, represent one of 

the most complex genetic variant classes. They are difficult to genotype from short reads and/or low 

coverage sequencing data. They are highly multi-allelic and often cast aside in past studies. STRs 

have been linked to dozens of diseases and shown to contribute gene expression variation. Amid 

multiple hypotheses on the role of STRs in regulating gene expression, characterizing these variants 

is becoming imperative. 

The interpretation of the role of STRs in gene expression has so far faced several limitations 

including short read lengths and low coverage sequencing, which significantly decrease the quality 

of genotypes and thus the power to detect true associations. Moreover, regulatory elements have been 

proven to be tissue-specific or cell-specific at times; as a result, conclusions from such studies are 

limited and less likely to be used in different contexts. Understanding of STRs effects on gene 

regulation thus requires analysis in biologically relevant contexts. 

Here, we looked at the impact of STRs on gene expression across 17 tissue types using high 

coverage, whole genome sequencing, and gene expression data for 650 samples from the Genotype-

Tissue Expression (GTEx) project. We identified more than 25K expression STRs (eSTRs) that 
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affect 11,810 genes across 17 tissues. More than 32.5% of these eSTRs are shared by two or more 

tissues. We used statistical fine-mapping techniques to identify more than 3 thousand high-

confidence fine-mapped expression STRs and showed that these fine-mapped eSTRs are highly 

enriched for features characteristic of regulatory regions. Characterization of fine-mapped signals 

reveals potential regulatory mechanism for eSTRs, namely G-quadruplex secondary structures 

formation. Finally, we identified almost a dozen GWAS signals for Schizophrenia, Autism Spectrum 

Disorder, and Height for which eSTRs were the most likely driving force of the association signal. 

3.2 Introduction 

Genome-Wide Association Studies (GWAS) and expression Quantitative Traits Loci 

(eQTL) studies have largely focused on bi-allelic variants, such as Single Nucleotide Polymorphisms 

(SNPs) or Structural Variants (SVs). However, these variants fail to explain the majority of 

heritability for most complex traits. STRs consist of short repeated motifs of 1-6bp in tandem and 

comprise more than 1.4 million loci genome-wide. They have been implicated in dozens of 

Mendelian disorders, including Huntington’s Disease and Fragile X Syndrome [1–3]. Additionally, 

dozens of single-gene studies have shown that STRs may regulate gene expression through a variety 

of mechanisms [4]. However, due to their rapid mutation rates, STRs are often only in weak linkage 

disequilibrium with SNPs and thus are not captured by array-based studies. Additionally, due to the 

difficulty in accurately genotyping STRs from short reads, they have largely been filtered from 

studies based on next-generation sequencing.  

We and others recently demonstrated that STRs contribute to a significant fraction of the 

heritability of gene expression [5]. However, these studies faced important limitations. Short read 

lengths and low coverage sequencing resulted in low-quality genotypes, reducing power to perform 

association studies. Additionally, the analysis was restricted to a single cell type, limiting the ability 

to derive meaningful biological insights and relevance to most complex traits. 

https://paperpile.com/c/HGqF1v/g1Yg+pkq6+i5m2
https://paperpile.com/c/HGqF1v/sKKl
https://paperpile.com/c/HGqF1v/RkYF
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The mechanism by which STRs control gene expression in human is not well understood. 

There is an abundance of STRs in promoter regions of gene in the human genome [6] and it has been 

hypothesized that STRs may influence gene expression through different mechanism [4] including 

(a) by forming  transcription binding sites, as is the case with Gilbert’s syndrome [7,8]; (b) by 

inducing unusual DNA secondary structures such as Z-DNA, a nucleosome formation blocker[9,10] 

or H-DNA triplex structure, a transcriptional activation element [10]; (c) by affecting spacing 

between regulatory elements [11,12]; (d) by modulating epigenetic properties such as DNA 

methylation or Heterochromatin-zation [4,13]; (e) by forming toxic RNA and protein aggregates . 

A clear understanding of the role of STRs in gene regulation finds application in causal 

variant identification studies and the interpretation of (GWAS) results. In this study, we aimed to 

thoroughly characterize STRs with a significant contribution to gene expression variation (a.k.a. 

eSTR) in the human genome. We first identify eSTRs across 17 tissues using high coverage whole 

genome sequencing from 650 human samples and RNA-Seq from the Genotype-Tissue Expression 

(GTEx) project. We used fine mapping techniques to delineate between association signal as a result 

of tagging effect and eSTRs likely to be causal to gene expression variation. To understand the 

mechanism of transcriptional regulation, we performed enrichment analysis and interrogated eSTRs 

based on their localization and sequence composition. We reproduced examples in the literature and 

identified eSTRs likely to be drivers of association to traits from previous GWAS studies.   

3.3 Results 

3.3.1 Profiling expression STRs across 17 human tissues 

 We performed a genome-wide analysis to identify associations between STR repeat length 

and expression of nearby genes (expression STRs, or “eSTRs”, which we use to refer to a unique 

STR by gene association). We focused on 652 samples included in the Genotype-Tissue Expression 

(GTEx) [14] dataset for which both high coverage Whole Genome Sequencing (WGS) and RNA-

https://paperpile.com/c/HGqF1v/2w9w
https://paperpile.com/c/HGqF1v/sKKl
https://paperpile.com/c/HGqF1v/WNSG+FtvT
https://paperpile.com/c/HGqF1v/F5v7+kYuK
https://paperpile.com/c/HGqF1v/kYuK
https://paperpile.com/c/HGqF1v/T9gX+p21S
https://paperpile.com/c/HGqF1v/HpTb+sKKl
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sequencing of multiple tissues were available. The WGS cohort consisted of 561 individuals with 

reported European ancestry, 75 of African ancestry, and 8, 3, and 5 of Asian, Amerindian, and 

Unknown ancestry, respectively. HipSTR[15] was used to obtain STR genotypes for each sample. 

Resulting genotype calls were subjected to stringent filtering (Methods). After filtering, 175,226 

STRs remained for downstream analysis. To identify eSTRs, we performed a linear regression 

between average STR length and normalized gene expression for each STR within 100kb of a gene, 

controlling for sex, population structure, and technical covariates (Methods, Supplementary Figures 

S3.1.1, S3.1.2). The analysis was restricted to 17 tissues where we had data for at least 100 samples 

(Figure 3.1A, Table 3.1) and to genes with median RPKM greater than 0. As a control, for each STR-

gene pair, we performed a permutation analysis in which sample IDs were shuffled. On average we 

tested 16,065 genes per tissue and altogether, an average of 278,521 STR by gene tests were 

performed for each tissue.  

 eSTR analysis identified 25,561 unique eSTRs across 11,810 genes in at least one tissue at 

a gene-level FDR of 10%. Of these, 32.5% (8,417) were shared by two or more tissues and 469 were 

shared by 10 or more tissues (Supplementary Figure S3.1.3), consistent with previous findings for 

SNP eQTLs [16]. P-values from the permuted controls followed a uniform distribution as expected 

under the null hypothesis of no association (Figure 3.1B). Tibial nerve had the most identified eSTRs 

(4,352) compared to the least in the two brain tissues (1,551 and 675 for Cerebellum and Caudate, 

respectively), as expected due to differences in sample sizes across tissues. Effect sizes were strongly 

correlated across tissues (Figure 3.1C), with related tissues, such as subcutaneous adipose vs. visceral 

adipose showing the strongest concordance. 

 We evaluated our results by comparing to eSTRs we previously reported using an orthogonal 

cohort (gEUVADIS[17]) with lymphoblastoid cell line (LCL) expression data[18].  Effect sizes from 

LCLs were significantly correlated with effect sizes in all tissues (p<0.01 for all tissues, mean 



   36 

Pearson r=0.55) (Figure 3.1C, inset), albeit to a lesser extent than for pairwise tissue comparisons 

within the GTEx cohort, with 74.4% of eSTRs showing the same direction of effect on average. We 

additionally tested previously reported eSTRs from single-gene studies in the GTEx cohort. Most of 

these were originally tested using in vitro constructs in cell lines rather than primary tissues, and thus 

may not recapitulate in vivo conditions. Still, six of eight examples had nominally significant eSTRs 

(p<0.01) in at least one tissue analyzed (Supplementary Table S3.1.1). 

Table 3.1: Summary of cross-tissue eSTR identification. 

Tissue Sample size # eSTRs (FDR>10%) # Candidate causal eSTRs 

Tibial Nerve 265 4,352 312 

Thyroid 262 4,105 330 

Sun-exposed Skin 297 3,827 298 

Subcutaneous Adipose 270 3,587 292 

Tibial Artery 276 3,454 269 

Esophagus Mucosa 255 3,461 286 

Skeletal Muscle 343 3,370 272 

Transformed Fibroblasts 225 3,088 248 

Lung 259 2,989 277 

Esophagus Muscularis 214 2,824 256 

Whole Blood 336 2,585 206 

Aorta Artery 191 2,396 234 

Non-exposed Skin 209 2,386 200 

Visceral Adipose 193 1,840 175 

Heart-Left Ventricle 199 1,731 212 

Brain-Cerebellum 107 1,551 191 

Brain-Caudate 108 675 103 
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Figure 3.1: Cross-tissue identification of eSTRs. A. eSTR discovery in 17 tissues. For each STR 

within 100kb of a gene, we tested for association between length of the STR and expression of the 

gene in 17 tissues profiled by GTEx. For each gene, CAVIAR was used to fine-map the effects of 

eSTRs vs. the top 100 cis SNPs on gene expression. CAVIAR takes as input pairwise variant LD 

and effect sizes (Z-scores) and outputs a posterior probability of causality for each variant.  B. eSTR 

association results. The quantile-quantile plot compares observed p-values for each STR-gene test 

vs. the expected uniform distribution. Gray dots denote permutation controls. The black line gives 

the diagonal. C. eSTR effect sizes are correlated across tissues and studies. Each cell gives the 

Pearson correlation between each pair of tissues. The bottom row represents effect sizes obtained 

previously using the gEUVADIS LCLs in Gymrek et al.[18]. The inset compares effect sizes in LCLs 

to effect sizes for transformed fibroblasts obtained in that study. Red dots denote eSTRs with the 

same direction of effect in each case. D. Example putative causal eSTRs. For each plot, x-axis gives 

STR dosage as the average allele length relative to hg19 and the y-axis gives normalized expression. 

Each point represents a single individual. Black lines give the mean expression for each mean allele 

length. Gene diagrams are not drawn to scale. 

 

 

https://paperpile.com/c/HGqF1v/m0o54
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eSTRs identified above could potentially be explained by tagging nearby causal variants 

such as Single Nucleotide Polymorphisms (SNPs). We employed two fine-mapping approaches to 

identify candidate causal eSTRs unlikely to be simply tagging additional variants. First, we used the 

ANOVA model comparison to determine whether eSTRs explained additional variability in 

expression of the target gene beyond the best eSNP (Methods). On average across tissues, 27.9% of 

eSTRs improved the model (10% FDR), consistent with previous results obtained in LCLs (Gymrek 

et al. 2016) (23%). Next, to determine whether the eSTR could be simply tagging alternative SNPs 

besides the best eSNP, we employed CAVIAR [19], a statistical fine-mapping framework for 

identifying causal variants. CAVIAR models the relationship between local LD-structure and 

association scores to quantify the posterior probability of causality for each variant. We used 

CAVIAR to fine-map eSTRs against the top 100 associated SNPs and all STRs tested for each gene 

(Methods, Figure 3.1A Step2). On average across tissues, 14.3% of eSTRs had the highest causality 

scores of all variants tested. 

We identified a group of 3,474 unique high-confidence eSTRs across 3,046 genes (Table 

3.1, Supplementary Table S3.1.2) corresponding to the top 14% of eSTRs (Supplementary Figure 

S3.1.4) with CAVIAR posterior scores of at least 10%. We hereby refer to these STRs as “causal 

eSTRs”, with the caveat that further validation would need to be performed to definitely determine 

these to be causally related to gene expression. Multiple STRs with known disease implications were 

captured by this list. For example, a CG-rich repeat upstream of Cystatin B gene (CSTB) which has 

been previously implicated in myoclonus epilepsy[12] and as a causal eQTL for CSTB gene [20] 

was identified as an eSTR in 13 tissues (Figure 3.1D left, CAVIAR score >0.99 in seven tissues). In 

many cases, top causal eSTRs were highly multi-allelic loci showing clear linear trends between 

repeat length and expression. For example, an intronic GGCCTG repeat in the Nucleolar Protein 56 

gene (NOP56) implicated in spinocerebellar ataxia 36[21,22] was identified as a causal eSTR in 

https://paperpile.com/c/HGqF1v/aUJ9
https://paperpile.com/c/HGqF1v/p21S
https://paperpile.com/c/HGqF1v/4hNG
https://paperpile.com/c/HGqF1v/wewu+l6yB
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skeletal muscle and 5 other tissues and harbored 11 common alleles (Figure 3.1D middle). In another 

example, a CGGGGG repeat in the promoter of ALOX5 gene was identified as a causal eSTR 

(CAVIAR p=0.38) (Figure 3.1D right). This repeat was previously shown to regulate ALOX5 

expression in leukocytes [23] and is associated with reduced lung function [23,24]. 

3.3.2 eSTRs are strongly enriched in predicted promoters and enhancers 

We next sought to characterize properties of eSTRs that might give insights into their 

biological function. As expected, the majority of eSTRs are located in non-coding regions 

(Supplementary Table S3.2.1) (54.6% and 32% in introns and intergenic regions, respectively), with 

only 75 eSTRs (16 causal) falling in coding regions (Supplementary Table S3.2.2). eSTRs were 

strongly enriched at 5’ UTRs (OR=3.3; Fisher’s two-sided p=1.9e-37), 3’ UTRs (OR=3.1; Fisher’s 

two-sided p=3.1e-77), and within 3kb upstream of transcription start sites (OR=3.2; Fisher’s two-

sided p<1e-300). These enrichments increased as a function of CAVIAR causality score 

(Supplementary Figure S3.2.2), suggesting that eSTRs act primarily through regulatory mechanisms 

and that CAVIAR posterior probabilities accurately identify the eSTRs most likely to be causal. 

We examined the distribution of STRs in regulatory regions in more details by visualizing 

the localization of STRs around Transcription Start Sites (TSSs) and regulatory regions predicted 

based on DNAseI hypersensitive (DNAseI HS) sites identified by ENCODE[25]. Overall, STRs are 

depleted directly at TSSs (Figure 3.2A), although certain classes of motifs are highly enriched, 

including tri-, penta-, and hexa-nucleotide repeats as well as STRs with GC-rich motifs 

(Supplementary Figure S3.2.1). Strand-specific localization patterns in promoters, but not enhancer, 

regions showed striking differences for different STR motifs, with G-rich motifs enriched on the 

coding strand and A and T rich most prevalent on the coding strand upstream and downstream of the 

TSS, respectively (Supplementary Figure S3.2.1) consistent with previous observations [26]. STRs, 

particularly dinucleotides, are prevalent in enhancer regions, consistent with a similar finding in 

https://paperpile.com/c/HGqF1v/A1wH
https://paperpile.com/c/HGqF1v/J1G9+A1wH
https://paperpile.com/c/HGqF1v/2ERIB
https://paperpile.com/c/HGqF1v/ARgG


   41 

Drosophila melanogaster [27] (Figure 3.2B). STRs closest to TSSs, and to a lesser extent near 

DNAseI HS peaks, were most likely to act as eSTRs (Figure 2C-D). Furthermore, eSTRs were 

strongly enriched in regions predicted by ChromHMM[28] to be regulatory or transcribed across 

multiple cell types (Figure 2E, Supplemental Figure S3.2.2, Supplementary Table 3.2.3) and in 

transcription factor binding sites profiled by ENCODE (Supplementary Table 3.2.4) (Methods). For 

example, eSTRs were enriched in active promoters (Fisher exact test odds ratio=3.75, two-sided 

p=4.4e-106), weak promoters (Fisher exact test odds ratio=3.48, two-sided p=4.7e-139), and strong 

enhancers (Fisher exact test odds ratio=2.07, two-sided p=4.7e-84). Enrichments in promoter, and to 

a lesser extent enhancer, regions strengthened when considering only causal eSTRs (Figure 3.2C-E, 

Annex Figure S3.2.2). For example, causal eSTRs were 5-fold enriched in active promoters (Fisher 

exact test two-sided p=4.7e-46) compared to 3.75-fold for all eSTRs (Supplementary Table 3.2.3). 

Taken together, these results suggest that CAVIAR posterior probabilities accurately identify the 

eSTRs most likely to be causal variants. 

 eSTRs were strongly enriched for repeats with CG-rich motifs across all tissues (Figure 3.2F, 

Supplementary Table 3.2.5, Methods), and these enrichments were again strengthened when 

restricting to causal eSTRs. For example, the motifs CCCGG, CCCCG, and CCCCCG were 15.5, 

14.6, and 10.3-fold enriched, respectively, in causal eSTRs (Fisher’s exact test two-sided p<10-3). 

Notably, while other motifs, including AAAT (Fisher exact test odds ratio=1.33, two-sided p=8.5e-

5) and AAAAAG (Fisher exact test odds ratio=2.8, two-sided p=2.75e-3), few individual motifs 

showed tissue-specific enrichment in causal eSTRs (Figure 3.2F). Overall, eSTRs were equally likely 

to show increasing vs. decreasing trends between repeat copy number and expression (binomial 

p=0.27, 50.3% positive and p=0.31, 50.9% positive for all eSTRs and causal eSTRs, respectively). 

When restricting to motifs enriched in causal eSTRs (Bonferonni corrected p<0.05), eSTRs were 

enriched for positive (increasing) effect sizes (p=0.010, 61% positive). 
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Figure 3.2: Characterization of eSTRs in predicted regulatory regionsA. Density of STRs around 

transcription start sites. The y-axis give the relative number of STRs in each 100bp bin around the 

TSS. Negative numbers denote upstream regions and positive numbers denote downstream regions. 

B. Density of STRs around DNAseI HS sites. Plots are centered at ENCODE DNAseI HS clusters 

and give the relative number of STRs in each 50bp bin. For A. and B. black line denotes all STRs 

and colored lines denote repeats with different motif lengths (gray=homopolymers, 

red=dinucleotides, gold=trinucleotides, blue=tetranucleotides, green=pentanucleotides, 

purple=hexanucleotides). C. Relative probability to be an eSTR around TSSs. The y-axis gives the 

probability of an STR in each bin to be an eSTR, normalized by the genome-wide average probability 

to be an eSTR. The gray line gives the probability of an STR in each bin to be a causal eSTR. D. 

Relative probability to be an eSTR around DNAseI HS sites. For A-D, values were smoothed by 

taking a sliding average of each four consecutive bins. E. Enrichment of eSTRs in ChromHMM 

states. Bars give the log2 odds ratio from performing Fisher’s exact test comparing eSTRs to all STRs 

(gray bars) or all causal eSTRs to all STRs (black bars). Enrichment p-values are given in 

Supplementary Table CHROMHMMENRICH. F. Motif enrichment at eSTRs. The x-axis gives all 

motifs for which there were at least 3 causal eSTRs across all tissues. The y-axis of the bottom plot 

gives log2 odds ratios from performing Fisher’s exact test comparing eSTRs to all STRs (gray bars) 

or all causal eSTRs to all STRs (black bars). Bolded motifs indicate motifs that were enriched (red) 

or depleted (blue) across all causal eSTRs (Bonferonni corrected p<0.05). The top panel denotes 

motifs that were enriched (closed circles) or depleted (open circles) in causal eSTRs in each tissue 

(Bonferonni corrected p<0.05).  
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3.3.3 CG-rich eSTRs in promoters enhance transcription through secondary 

structures formation 

 The most robust eSTR signals identified above consisted of GC-rich repeats located in 

promoter regions. Nearly all of the motifs (e.g. CCCCGn, CCCCCGn, AGCCCCn) most strongly 

enriched in causal or well fine-mapped and herein (FM) eSTRs form sequences with the ability to 

form G4 quadruplexes[29]. These are DNA secondary structural features characterized by G-rich 

sequences may regulate gene expression through a variety of mechanisms. G4 motifs may act as 

nucleosome exclusion signals [29–31]. Enhanced G4 formation in promoter and 5’UTR regions was 

recently shown to increase transcriptional activity of nearby genes [30]. Furthermore, G4 motifs have 

been shown to correlate with promoter-proximal transcriptional pausing downstream of TSSs [32] 

and form highly stable structures with low free energy[33] to promote gene expression. We thus 

hypothesized that the effects of CG-rich eSTRs may be in part due to formation of non-canonical 

nucleic acid secondary structures that modulate DNA or RNA stability as a function of repeat 

number. Based on previous findings, we expected that longer STR alleles at these repeats would 

increase DNA stability and in turn result in lower nucleosome occupancy and higher transcription. 

We considered two classes of eSTRs: those following the standard G4 motif (G3N1-7G3N1-7G3N1-7G3) 

(Supplementary Table S3.3.1) and CCG/CGG repeats, which are abundant in 5’UTR regions and 

may form hairpins or other secondary structures in single-stranded RNAor DNA, but do not meet the 

standard G4 definition. Both classes of GC-rich repeats were associated with higher RNAPII (Figure 

3.3A) and lower nucleosome occupancy (Figure 3.3B) compared to all STRs, with more extreme 

differences when considering only causal eSTRs.  

 Next, we used Mfold [35] to calculate the free energy of each STR and 50bp of its 

surrounding context on either the template or non-template strand of DNA or RNA (Methods). When 

considering template-strand DNA sequences, both G4 STRs, and to a greater extent CCG repeats, 

https://paperpile.com/c/HGqF1v/rAYG
https://paperpile.com/c/HGqF1v/rAYG+vTXEw+Tn30
https://paperpile.com/c/HGqF1v/vTXEw
https://paperpile.com/c/HGqF1v/LQeC
https://paperpile.com/c/HGqF1v/QIlY
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were associated with overall lower free energy (greater stability) compared to all STRs in promoter 

regions (Kolomogorov-Smirnov [KS] two-sided p=8.3e-140 and p=3.5e-54 for CCG and G4 repeats, 

respectively; Figure 3.3C). Overall, FM eSTRs were fell in regions with significantly lower free 

energy compared to all STRs (KS two-sided p=4.6e-17, 1.1 fold decrease compared to all STRs), but 

this effect was strongest for G4 STRs (KS two-sided p=6.3e-8, 1.6 fold decrease compared to all 

G4). We next tested whether modulating the number of repeats at each STR affected the predicted 

DNA stability. Overall, FM eSTRs were about equally likely to increase or decrease free energy 

(47% with negative effects, defined as Pearson r<0), whereas 100% of CCG and 70% of G4 FM 

eSTRs showed negative correlations between free energy and repeat length (Figure 3.3D), 

significantly more than the 50% expected by chance (binomial two-sided p=4.8e-7 and p=5.3e-4 for 

CCG and G4, respectively). The magnitude of the change in energy across common allele lengths 

was strongest for GC-rich FM eSTRs (Figure 3.3E). Similar trends were observed when considering 

structures formed on the non-template DNA strand or in transcribed RNA. Overall, these results 

suggest that longer GC-rich STRs result in more stable secondary structures formed in both DNA 

and RNA during transcription. 

 Longer GC-rich repeats were associated with increased expression. Overall, FM eSTRs were 

equally likely to show increasing vs. decreasing trends between repeat copy number and expression 

(binomial two-sided p=0.33, n=3,474, 50.9% positive effect sizes). Similarly, CCG repeats did not 

show a strong bias (binomial two-sided p=0.40, n=23, 60.1% positive) although they had a higher 

prevalence of positive effects sizes. On the other hand, 67% of G4-forming FM eSTRs had positive 

effects, significantly more than the 50% expected by chance (binomial two-sided p=0.0017, n=93) 

(Figure 3F). The effect direction bias was more pronounced for G4 FM eSTRs within 3kb of TSSs 

(82% positive, binomial two-sided p=0.0015, n=28). When restricting to regions downstream of 

TSSs, 17/18 (94%) showed positive effect sizes. In many cases changes in expression levels across 
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allele lengths followed an inverse relationship with free energy levels (Figure 3G-I). These results 

support a model in which longer repeat tracts at promoter G4 STRs form more stable DNA secondary 

structures which promote transcription, consistent with genome-wide findings of Hansel-Hertsch 

[30], which found that enhanced G4 formation resulted in increased transcription of nearby genes. 
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Figure 3.3: CG-rich promoter eSTRs form transcription-inducing DNA secondary structures. 

Here, candidate causal or well fine-mapped eSTRs are named “FM eSTRs”. G4 can either inhibit 

transcription or enhance transcription depending on the strand in which it forms, and the stability of 

the secondary structure formed. A. Density of POLR2 around STRs - B. Nucleosome occupancy 

around the transcription start site TSS. In each category, hard lines are all STRs and in dashed lines 

are FM eSTRs. The plots are centered at the center of STRs.  The black lines denote STRs/ and FM 

eSTRs without distinction of motifs categories. In red are STRs and FM eSTRs with G4 canonical 

form and blue lines represent STRs and FM eSTRs. Solid lines are STRs without distinction of motifs 

and dashed lines represent STRs with potential of forming G-quadruplex.) C. FM eSTRs with G-

quadruplex potential have lower free energy, especially G-quadruplex of CCG/CGG form. The 

Y=axis gives the mean free energy. D,E. Correlation between STRs length and free energy. G4 

eSTRs free energy and G4 FM eSTRs free energy are negatively correlated with eSTRs length. Free 

energy was calculated with Mfold and the mean distribution is represented. In each category, Black 

and grey= all STRs, eSTRs and FM eSTRs.  Blue and red are all STRs, and FM eSTRs with G4 

potential with red for canonical forms of G4. F. G4 eSTRs and G4 FM eSTRs upstream of TSS drive 

expression. Fraction of eSTRs for which the calculated effect size is positive in each category of 

STRs (y-asxis). G-I. Example of causal eSTRs with G4 potential previously linked to diseases. For 

each example, the top plot represents the expression as a function of STRs length. The bottom plot 

is the free energy as a function of STR length. In hard line are the Template strand and in dashed line 

are the energy of reverse strand (non-template strand) 
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3.3.4 eSTRs contribute to GWAs hits 

Finally, we investigated the contribution of STRs to trait-associated loci. The vast majority of GWAS 

studies have been performed using only SNPs or small indels, and do not assay STRs directly. Many 

highly polymorphic STRs are not well tagged by SNPs and thus are unlikely to be detected by 

standard SNP-based GWAS. On the other hand, STRs are reputable for being in low linkage with 

SNPs because their high variability [38], but we reasoned that GWAS may detect a subset of signals 

driven by causal eSTRs if they are in high LD with common SNPs, although with attenuated effects 

compared to if the STR was tested directly for association.  

 We downloaded the GWAS catalog V1.0.1 with hg19 reference coordinates [36] and the 

catalog of SNPs associated with two psychiatric disorders: Schizophrenia and the Autism Spectrum 

Disorder (ASD) from the Psychiatric Genomic Consortium [37]. We identified 2,564 FM eSTRs 

within 50kb of GWAS loci. Of these, 1352 were in moderate LD (r2>0.1) and181 were in strong LD 

(r2>0.8) with the lead SNP. For 11 loci in at least moderate LD, the lead GWAS variant was actually 

within the STR but was annotated as a bi-allelic indel in dbSNP. For example, the lead variant 

(rs369552432; -/CGGCGGCGG) at a locus associated with hemoglobin identified by Astle, et al 

[64] falls within a multi-allelic 5’UTR trinucleotide CCG repeat negatively associated with 

expression of VLDLR in whole blood (Figure 3.4A). In another example, the lead variant 

(rs10709981 -/A) at a locus associated with red blood cell count by the same study falls within a 

homopolymer A repeat positively associated with expression of SLC36A1 in 15 tissues (nominal 

p<0.01). Notably, these examples were predominantly from several studies of blood-related traits 

[59,60], which is likely explained by the fact that these studies did not explicitly filter STR regions, 

rather than by a bias for STRs to affect blood phenotypes. We used coloc [39] to determine whether 

expression and these traits likely share a common causal variant in each region based on comparison 

https://paperpile.com/c/HGqF1v/deDR
https://paperpile.com/c/HGqF1v/QGA6
https://paperpile.com/c/HGqF1v/qihb
https://paperpile.com/c/HGqF1v/AdZi
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of SNP summary statistics from eQTL vs. GWAS associations. A model in which both signals are 

driven by the same variant had posterior probability of 99.9% for VLDLR and 97.7% for SLC36A1. 

eSTR for hemoglobin scoring more that 99% chance for being the causal variant based on coloc. 

 We next determined whether FM (causal) eSTRs colocalize with genome-wide significant 

associations identified for schizophrenia [61] and height[62], two example traits with large available 

sample sizes and publicly available summary statistics (Methods). For each trait, we identified 

GWAS associations for which (1) the lead SNP was in significant LD (p<0.05) with an FM eSTR, 

(2) the FM eSTR was the most probable causal variant for expression identified by CAVIAR analysis 

(3) coloc analysis indicated that a model where both expression and the trait are explained by the 

same causal variant is most probable (posterior probability ≥ 0.50). A total of 7 and 10 such loci 

were identified for height and schizophrenia, respectively (Table 3.2). For example, a GWAS signal 

for height (lead SNP rs2336725) and expression of RFT1 had a 99% posterior probability of 

colocalization. The lead SNP was in high LD (r2=0.85) with an AC repeat identified as an FM eSTR 

in heart (CAVIAR p=0.39) and aortic artery (CAVIAR p=0.70) and as a nominally significant eSTR 

in 17 tissues for RFT1, a gene involved in N-glycosylation of proteins (Figure 4B). The STR falls in 

a cluster of transcription factor binding sites identified by ENCODE near the 3’ end of the gene and 

exhibits a positive correlation with expression across a range of allele lengths. In a similar example, 

a GWAS signal for schizophrenia (lead SNP rs9420) and expression of MED19 had a 90.1% 

posterior probability of colocalization. The lead SNP was in high LD (r2=0.68) with an AC STR 

identified as an FM eSTR in subcutaneous adipose (CAVIAR p=0.47) and nominally significant 

eSTR in 14 tissues for MED19 which is a component of the mediator complex, and plays a role in 

silencing of neuronal gene expression [63]. The repeat is located in an intron of CTNND1 

approximately 43kb upstream of MED19. Furthermore, a recently developed burden test considering 

promoter-enhancer identified a significant association between MED19 expression and 

https://paperpile.com/c/XepeVj/f2y3
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schizophrenia risk70. Again, the STR showed a linear positive association with expression across a 

range of allele lengths, strongly suggestive of a causal relationship between STR length and 

expression. While overall our analysis identified high confidence FM eSTRs potentially underlying 

dozens of GWAS signals, each association will ultimately have to be verified by testing for 

association directly with each target phenotype and performing additional experiments to determine 

the underlying causal variants. 

 

 

https://paperpile.com/c/XepeVj/G4vn
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Figure 3.4: Examples of eSTRs more like to contribute to GWAS hits for traits. For each example, 

the left plot represents: Top rectangle segment location of expressed gene. Middle rectangle is the 

log10(association pvalue) in GTEx data. Bottom rectangle is log10(pvalue of association) of variant 

at each location for variant from the GWAS study. For all 3 plots, the shared x-axis represents the 

chromosome position. The right plot represents the expression as a function of STRs mean allele 

length in best tissue from GTEx data. A is eSNP and eSTRs for VLDLR and GWAS hit for Height, 

B is eSNP and best eSTR for RFT1 gene, GWAS hits for Height, and C is eSNP and eSTRs for 

MED19 gene and GWAS hit for schizophrenia. 
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3.4 Discussion 

In this study, we leveraged high coverage, whole genome sequencing data from 650 samples, 

and RNA-seq to create a new comprehensive resource of cis-eQTLs containing more than 25 

thousand eSTRs affecting nearly 12 thousand genes in 17 tissues, including more than 11 thousand 

mononucleotide repeats. 3,474 of these eSTRs were potentially causal and thus, less likely to be due 

to a tagging effect. Although further experiments will be needed to validate the causal relationship, 

this constitutes the largest to date eSTRs resource that can be useful for sensible candidates screening 

for disease-causing variants. This map will improve the interpretation and understanding of the 

biological implication of these variants on risk loci discovered in association studies. For example, 

eSTRs in literature and previously associated with diseases were largely replicated here. LD analysis 

showed more than a dozen eSTRs in high LD with GWAS hits, even though STRs are reputable for 

being in low LD with SNPs. More than half of causal eSTRs in LD with GWAS hits were more 

likely to be the main driver of the association signals, by the probability of causality estimation. 

Our results also suggested that one mechanism by which eSTRs may be regulating gene 

expression is by forming G-quadruplexes that interact with RNA polymerase pausing and thus 

enhancing transcription and translation. These conclusions come after testing 3 expected factors 

required for such assertion, as described in vivo experiments from earlier documentation of the role 

of G4 secondary structures [31]. We expected G4-eSTRs to not only drive the gene expression up, 

but also have low free energy, and moreover, be in close proximity to RNA polymerase.  All these 

hypotheses were proven true in this study. While the number of these STRs were low for inferring 

tissue specificity of this role, we envision this last evidence to be investigated in future studies.  

Several findings in this study suggested that there may be other regulatory mechanisms by 

which eSTRs may affect gene transcription. For example, mononucleotide STRs were the most 

abundant STRs genotyped and thus had the greatest number of eSTRs identified. Their abundance 

https://paperpile.com/c/HGqF1v/Tn30
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around the TSS strengthened the notion that these repeats have a regulatory function as previously 

predicted. The density of poly-A upstream of TSS of affected genes suggested that these 

mononucleotides may be forming transcription binding sites. This was consistent with previous 

studies reporting on their abundance around TSS regions of the gene and their role in other 

organisms. In addition, we observed a significant depletion of eSTR “AC” motif across all tissues, 

which may be telling of the sensitive role they may be having in promoter regions when present.   

This study had some limitations. First, we only studied the linear relationship between STR 

length and gene expression, ignoring in-sequence variation and alleles. This is because the majority 

of STR-related diseases have been linked to STR length variation, especially fluctuation by step size 

increment [40,41]. However, the nucleotide-level variation of STRs has been linked to major 

phenotypes in the past [41]. Future study may develop appropriate algorithms and methods to account 

for these types of variation. Second, we only explored cis-association in this study and did not 

consider the possible effect of STRs in the distant (trans) location from the affected genes. Third, for 

each tissue, we only considered one strong eSTRs per gene, but it is possible for a gene to be affected 

by more than one eSTR. Here, we provided statistical estimates for all STRs tested for a gene in 

supplement files. This will enable reproducibility and more analysis to uncover additional eSTRs. 

Overall, because of all these limitations, the number of eSTRs and causal eSTRs found in this study 

may be underestimated.   

However, this study has paved the way for future inclusion of STRs in large-scale studies. 

As research advances in human genetics, it is now possible to integrate short tandem repeats as part 

of variants screening into clinical practice and cohort studies. 
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3.5 Material and Methods 

3.5.1 Dataset and preprocessing 

Next-generation sequencing data was obtained from the Genotype-Tissue Expression 

(GTEx) through dbGaP under phs000424.v7.p2. This included high coverage (30x) Illumina whole 

genome sequencing (WGS) data and expression data from 650 unrelated samples with diverse ethnic 

background (Supplementary Figure 3.5.1). For each sample, we downloaded BAM files containing 

read alignments to the hg19 reference genome and VCFs containing SNP genotype calls.  

STRs were genotyped using HipSTR [42]. Samples were genotyped separately due to computational 

constraints required for joint calling. VCFs were filtered using the filter_vcf.py script available from 

HipSTR using recommended settings for high coverage data (min-call-qual 0.9, max-call-flank-indel 

0.15, and max-cal-stutter 0.15). VCFs were merged across all samples and further filtered to exclude 

STRs meeting the following criteria: call rate < 80%; STRs overlapping segmental duplications 

(UCSC Genome Browser[43] hg19.genomicSuperDups table); penta- and hexamer loci containing 

long homopolymer runs; and loci whose frequencies did not meet expectation from Hardy-Weinberg 

Equilibrium (p<0.05) as described previously [44]. Additionally, to restrict to polymorphic STRs we 

filtered loci with heterozygosity < 0.1. Altogether, 175,226 STRs remained for downstream analysis. 

We additionally obtained gene-level RPKM values for each tissue. We focused on 15 tissues with at 

least 100 samples which included two brain tissues (Table 3.1). Genes with median expression level 

of 0 were excluded and expression values for remaining genes were quantile normalized to a standard 

normal distribution. 

 

https://paperpile.com/c/HGqF1v/y1Hgh
https://paperpile.com/c/HGqF1v/zWCUz
https://paperpile.com/c/HGqF1v/B5c2N
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3.5.2 eSTR and eSNP identification 

For each STR within 100kb upstream and downstream of a gene, we performed a linear 

regression between STR lengths and expression values: Y =β X + C + ε where X denotes STR 

genotype lengths, Y denotes expression values, β denotes the effect size, C denotes various 

covariates, and ε is the error term. Following our previous study [45], we used “STR dosage,” defined 

as the sum of repeat lengths of the two alleles for each sample, to define STR genotypes. All repeat 

lengths were reported as length difference from the hg19 reference, with 0 representing the reference 

allele. STR dosages were scaled to have mean 0 and variance 1. 

We included sex, population structure, and technical variation in expression as covariates. For 

population structure, we used the top 15 principal components resulting from perform principal 

components analysis on the matrix of SNP genotypes from each sample. To control for technical 

variation in expression, we applied the PEER factor correction [14,46]. As suggested for the PEER 

method, we used N/4 PEER factors as covariates for each tissue, where N was the sample size. PEER 

factors altogether accounted for more than 75% of variation in gene expression and were correlated 

with covariates reported previously for GTEx samples (Annex Figure 3.2).  We used a gene-level 

FDR threshold (described previously [45]) of 10% to identify significant STR by gene pairs. eSNPs 

were identified using the same model and covariates, but using SNP dosages (0, 1, or 2) rather than 

STR dosage.  

3.5.3 Fine-mapping eSTRs 

We used model comparison to determine whether the best eSTR for each gene explained 

variation in gene expression beyond a model consisting of the best eSNP. As described 

previously[45], for each gene with an eSTR we determined the lead eSNP with the strongest p-value. 

We then compared two linear models: Y~eSNP (SNP-only model) vs. Y~eSNP+eSTR (SNP+STR 

https://paperpile.com/c/HGqF1v/zCWe5
https://paperpile.com/c/HGqF1v/itZsp+UChr
https://paperpile.com/c/HGqF1v/zCWe5
https://paperpile.com/c/HGqF1v/zCWe5
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model) using the anova_lm function in the python statsmodels.api.stats module. Q-values were 

obtained using the qvalue package in R [47]. We used CAVIAR v1.0 to further fine-map eSTR 

signals against the top 100 eSNPs within 100kb of each gene. Pairwise-LD between the eSTR and 

eSNPs was estimated using the Pearson correlation between SNP dosages (0, 1, or 2) and STR 

dosages (sum of the two repeat allele lengths). 

3.5.4 Enrichment analyses 

 Enrichments were performed using a two-sided Fisher’s exact test as implemented in the 

python scipy.stats package. Annotated genomic regions were downloaded from the following: Hg19 

gene annotation was downloaded from ENCODE V17 and included all genic locations: TSS, TES, 

introns, exon, and CDS. Chromatin state annotations computed by the ENCODE Project [25] using 

ChromHMM [48] for GM12878 were downloaded from the UCSC Genome Browser [43] (table 

hg19. wgEncodeBroadHmmGm12878HMM).  Histone modifications from ENCODE were 

downloaded from the hg19.wgEncodeBroadHistone track. Transcription factor binding sites profiled 

by the ENCODE Project were downloaded both in the GM12878 lymphoblastoid cell line and Lung 

tissues. The latter targeted the POLR2A transcription factor. 

3.5.5 Biological function of eSTRs 

 From the GEO repository, accession number GSE7668829 [30], we downloaded G4-Chip-

seq from normal skin cells and skin cells treated with Entinostat to induce a stable active chromatin 

state. We performed enrichment analysis across 17 tissues using Fisher’s exact test. To evaluate the 

potential of G4-eSTRs for regulating gene expression, we used three steps: First, we calculated the 

density of RNA polymerase around all STRs in the study and restricted to those with potential for 

G4 secondary structure, and then we compared the overall density around eSTRs, causal eSTRs. 

Second, we evaluated the percentage of eSTRs with positive direction of effect as well as causal then 
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compared by subgroups (all eSTRs, all causal, and all G4). Finally, we evaluated the stability of these 

potential secondary structures by calculating the free energies of each for all STRs allele and 

surrounding context of 50 bps using mfold [34,35], then compared by subgroups (all STRs and all 

G4 STRs). 

3.5.6 The contribution of eSTRs in traits  

 We compiled a set of SNPs associated with phenotypes from the following sources: we 

downloaded the GWAS catalog V1.0.1 with hg19 reference coordinates [36]. We obtained the 

catalog for GWAS hits for Schizophrenia and the Autism Spectrum Disorder (ASD) from the 

Psychiatric Genomic Consortium [37]. From the compiled set, we selected SNP markers for which 

genotypes were available in the GTEx data, which led to a set of 2463 GWAS SNPs markers. For 

each SNP marker, we identified all eSTRs within 50kb of its position and, for each pair (eSNP - 

eSTR), and we calculated linkage disequilibrium between the two using a the pearsonr function from 

the scipy.stats python package, recording r-square and significance value (p-value). Causal eSTRs 

(causal score>10%) in high LD with the GWAS hit (r2>0.5) were considered the likely drivers of 

GWAS hits.  
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Appendix of Chapter3 

 

 
 

Supplementary Figure S3.1.1: Analysis of GTEx population structure. Principal component 

analysis was performed using SNP genotypes from the GTEx and 1000G cohorts. Samples from the 

1000 Genomes project are shown in gray and GTEx samples are shown as colored dots based on 

ethnicity provided for each sample (yellow=African American; red=Amerindian; blue=Asian; 

green=European, black=Unknown). 

 

 

 
 

Supplementary Figure S3.1.2: Correlation of sample metadata with PEER factors. Each cell 

gives the squared spearman correlation of PEER factor with data processing covariates. The x-axis 

gives each variable as defined for dbGaP study phs000424.v7.p2. For example, covariates most 

strongly associated with PEER factors included DTHHRDY (Hardy scale for death classification) 

and TRISCHD (ischemic time). The y-axis gives PEER factors obtained from PEER analysis of gene 

expression from Adipose-subcutaneous tissue. Similar correlations were observed for other tissues.  
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Supplementary Figure S3.1.3: Sharing of eSTRs across tissues. The x-axis gives the number of 

tissues that share a given STR. The y-axis and annotated values for each bar give the number of 

eSTRs shared across that many tissues. 
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Supplementary Figure S3.1.4: Causal eSTRs are enriched in coding and regulatory regions. A. 

Percent of eSTRs that are annotated as causal as a function of CAVIAR threshold. The x-axis 

gives CAVIAR posterior probability and the y-axis gives the percentage of eSTRs with CAVIAR 

scores above each threshold. The dashed horizontal line gives the percent of eSTRs with CAVIAR 

scores of at least 10%. B. Enrichment of gene annotation categories as a function of CAVIAR 

threshold. The y-axis gives the log2 odds ratio for enrichment of each category in eSTRs passing 

each threshold (solid line). The dashed line gives the odds ratio when considering all eSTRs 

regardless of CAVIAR score. Red=coding, purple=5’ UTR, blue=3’ UTR, green=intron, 

gray=intergenic, orange= promoter (within 3kb upstream of each gene). 
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Supplementary Figure S3.2.1: Localization of STRs around putative regulatory regions. Left 

and right plots give localization around transcription start sites and DNAseI HS clusters, respectively. 

The y-axis gives the relative number of STRs of each type in each bin. For promoters, the x-axis is 

divided into 100bp bins. For DNAseI HS sites, the x-axis is divided into 50bp bins. In each plot, 

values were smoothed by taking a sliding average of each four consecutive bins. Only STR-gene 

pairs passing all filters are considered.  

Each plot compares localization of the two possible sequences of a given repeat motif on the coding 

strand. I.e. top plots compare motifs of the form CnGm vs. their reverse complement on the opposite 

strand, middle plots compare AC vs. GT repeats. And bottom plots compare A vs. T repeats. The 

strand of each STR was determined based on the coding strand of each target gene. 
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Supplementary Figure S3.2.2: Enrichment of eSTRs in peaks of histone modifications. Bars 

give the log2 odds ratio from performing Fisher’s exact test comparing eSTRs to all STRs (gray bars) 

or all causal eSTRs to all STRs (black bars). Histone modification peaks were obtained from 

ENCODE (Methods). 
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Supplementary Table S3.1.1 STRs previously associated with expression that were analyzed in 

the GTEx cohort. The right-hand column reports STR by gene associations in the GTEx cohort with 

nominal p<0.01. Nominal p-values and effect sizes (β) are given for each nominal eSTR. Bolded 

results in the right column indicate eSTRs that agree with the direction of effect reported previously. 

Note several previously reported eSTRs (e.g. a TG repeat in the promoter of HMOX1[49] and a TC 

repeat in the promoter of HMGA2[50]) did not pass our quality filters and thus were not included. 

Gene  STR (hg19) Reference effect eSTR evidence (p<0.01) 

CSTB[51]  21:45196326 

(CGGGGCGGGGCGn) 
Expansion implicated in myoclonus 

epilepsy. 
Normal alleles show increasing 

effect in LCLs (β>0);  

Adipose-Visceral; p=2.5e-6; β=0.34 

Transformedfibroblasts; p=1.5e-

18; β=0.55 

Skin-SunExposed; p=1.89e-14; 

β=0.43 Heart-LeftVentricle; 

p=1.6e-11; β=0.46 

Esophagus-Muscularis; p=2.8e-9; 

β=0.40 Artery-Tibial; p= 2.3e-15; 

β=0.46  
Artery-Aorta; p=2.0e-5; β=0.31 

Adipose-Subcutaneous; p=1.9e-4; 

β=0.23 Skin-NotSunExposed; 

p=6.3e-7; β=0.34  
Thyroid; p=4.1e-16; β=0.48  
WholeBlood; p=2.1e-14; β=0.41  
Nerve-Tibial; p=7.3e-14; p=0.45  
Muscle-Skeletal; p=1.3e-21; β=0.49  

NOP56[52] 20:2633379 

(GGCCTGn) 
Expansion implicated in 

spinocerebellar ataxia 36. 

Large expansions show decreasing 

effect in SCA36 patient iPSC cell 

lines (β<0). No data on normal 

alleles. 

Skin-SunExposed; p= 6.0e-

05;  β=0.23 

Artery-Tibial; p=9.5e-5; β=0/24 

Adipose-Subcutaneous; p=0.0011; 

β=0.20 Skin-NotSunExposed; 

p=0.0039; β=0.21  
Thyroid; p=2.4e-8; β=0.34  
Muscle-Skeletal; p=7.8e-12; β=0.36 

MMP9[53] 20:44637413 (ACn) Increasing effect in esophageal 

carcinoma cell lines (β>0) 
Skin-SunExposed; 

p=0.0039;  β=0.18 

EGFR[54] 7:55088254 (ACn) In vitro decreasing effect; 

decreasing but non-linear effect 

across various cell lines (β<0) 

Heart-LeftVentricle; p=0.0073; β=-

0.21 Esophagus-Mucosa; p=0.0018; 

β=0.21 Muscle-Skeletal; p=0.0070; 

β=0.16 

TP53I3[55] 2:24307211 (TGYCCn) Increasing effect in presence of p53 

in H1299 cells (β>0)  
Esophagus-Mucosa; p=0.0081; 

β=0.18  

Thyroid; p=0.00060;  β=0.22  
Muscle-Skeletal; p=0.0068;  β=0.15  

ALOX5[56] 10:45869549 

(CGGGGGn) 
Increasing effect in monocytes 

(β>0), decreasing effect in 

lymphocytes (β<0) 

Esophagus-Mucosa; p=4.35e-

7;  β=0.32 
Brain-Cerebellum; p=0.0027; 

β=0.29 Skin-SunExposed; p=9.0e-

4; β=-0.19  

https://paperpile.com/c/HGqF1v/cHiKG
https://paperpile.com/c/HGqF1v/0Gi0d
https://paperpile.com/c/HGqF1v/TP2IC
https://paperpile.com/c/HGqF1v/Zuki5
https://paperpile.com/c/HGqF1v/jNDEf
https://paperpile.com/c/HGqF1v/kCG0j
https://paperpile.com/c/HGqF1v/d1PKc
https://paperpile.com/c/HGqF1v/4PxlI
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IFNG[57] 12:68552495 (ACn) In vitro reporter assay showed 

increasing effect for CA12 vs. 

CA15 (β>0) 

No GTEx eSTRs found 

UGT1A1[58] 2:234668880 (ATn) Decreasing effect in human 

hepatoma  (β<0) 
No GTEx eSTRs found 

 

 

 

Supplementary Table S3.2.1 Enrichment of eSTRs for genomic annotations. For each 

annotation, a Fisher’s exact test was performed to test whether eSTRs showed significantly more or 

less overlap compared to all STRs analyzed. Causal STRs represent all STRs with CAVIAR score 

of at least 10% as defined in the main text. OR=odds ratio and p-values are two-sided.  

Annotation # eSTRs eSTR enrichment Causal eSTR 

enrichment 

Total eSTRs Causal P-val OR P-val OR 

Coding 217 75 16 4.0e-19 4.1 5.0e-6 4.1 

5’ UTR 657 197 56 1.9e-37 3.3 2.8e-20 4.9 

3’ UTR 1,660 468 100 3.1e-77 3.1 2.6e-23 3.4 

Intron 74,501 10,998 1,759 1.4e-294 1.7 1.1e-33 1.5 

Intergenic 91,325 6,458 1,016 p<1e-300 0.39 2.5e-142 0.40 

Promoter (within 3kb 

upstream of TSS)  
6,866 1,941 380 p<1e-300 3.2 7.9e-77 3.2 

 
  

https://paperpile.com/c/HGqF1v/hevea
https://paperpile.com/c/HGqF1v/462rR
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Supplementary Table S3.2.2 Causal eSTRs overlapping protein-coding regions.  

Chrom STR position 

(hg19) 
Gene Motif Top 

CAVIAR 

score 

Top tissue 

chr14 24769851 DHRS1 CCT 1.00 Thyroid (β=-0.42) 

chr9 88356816 AGTPBP1 CCG 1.00 Cells-

Transformedfibroblasts 
(β=0.36) 

chr3 40503522 RPL14 CTG 0.99 Nerve-Tibial (β=-0.32) 

chr11 6411932 SMPD1 CGCTGG 0.79 Thyroid (β=0.27) 

chr2 25384461 POMC AGC 0.59 Muscle-Skeletal (β=0.35) 

chr19 55790888 HSPBP1 CGG 0.58 Cells-

Transformedfibroblasts 
(β=-0.37) 

chr11 124750441 ROBO3 AGCCGG 0.39 Thyroid (β=0.33) 

chr3 184429135 MAGEF1 AGG 0.38 Thyroid (β=-0.33) 

chr19 50093219 PRR12A ACCCCC 0.36 Skin-SunExposed (β=0.51)  

chr19 11558342 EPOR CCT 0.29 Heart-LeftVentricle 

(β=0.28) 

chr17 17697095 TOM1L2 CTG 0.22 Lung (β=0.28) 

chr16 71956508 IST1 ATGCCC 0.20 Artery-Aorta (β=0.27) 

chr20 3026347 MRPS26 CCCCG 0.17 Nerve-Tibial 
(β=0.32) 

chr14 21560753 ZNF219 AGCCTC 0.14 Adipose-Subcutaneous 

(β=0.22) 

chr7 96635365 DLX5 CTG 0.12 Muscle-Skeletal (β=-0.21) 

chr21 47721987 MCM3AP ACC 0.11 Artery-Aorta (β=0.46) 
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Supplementary Table S3.2.3: Enrichment of eSTRs in ChromHMM states. For each state, a 

Fisher’s exact test was performed to test whether eSTRs showed significantly more or less overlap 

compared to all STRs analyzed. Causal STRs represent all STRs with CAVIAR score of at least 10% 

as defined in the main text. OR=odds ratio and p-values are two-sided. State annotations are 

combined across various ENCODE cell lines (Methods). 

 

ChromHMM 

state 
# eSTRs eSTR enrichment Causal eSTR 

enrichment 

Total eSTRs Causal P-val OR P-val OR 

Active Promoter 1,542 499 132 4.4e-106 3.8 4.8e-46 5.0 

Weak Promoter 2,374 725 168 4.7e-139 3.5 3.7e-47 4.1 

Txn Elongation 12,191 3,632 654 p<1e-300 3.8 1.7e-130 3.4 

Txn Transition 3,420 875 179 1.2e-117 2.7 4.3e-33 3.0 

Weak Txn 53,913 10,386 1,721 p<1e-300 2.7 7.7e-142 2.5 

Strong Enhancer  5,261 1,088 210 4.7e-84 2.1 3.4e-23 2.2 

Poised Promoter 239 239 48 4.0e-12 1.7 4.4e-5 1.9 

Weak Enhancer 15,863 2,774 513 1.6e-121 1.7 1.5e-32 1.9 

Repetitive 548 93 17 1.2e-4 1.6 5.6e-2 1.7 

Repressed 20,807 3,001 514 7.9e-43 1.4 5.4e-10 1.4 

Insulator 1,724 262 43 3.5e-6 1.4 7.5e-2 1.3 

Heterochromatin 150,499 13,021 1,970 p<1e-300 0.2 4.6e-318 0.2 
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Supplementary Table 3.2.4: Enrichment of eSTRs in transcription factor binding sites 

annotated by ENCODE. For each factor, a Fisher’s exact test was performed to test whether eSTRs 

showed significantly more or less overlap compared to all STRs analyzed. Causal STRs represent all 

STRs with CAVIAR score of at least 10% as defined in the main text. OR=odds ratio and p-values 

are two-sided. Transcription factor annotations are described in Methods. 

ChromHMM state # eSTRs eSTR enrichment Causal eSTR 

enrichment 

Total eSTRs Causal P-val OR P-val OR 

KDM5A 13 8 6 2.3E-05 12.3 7.1E-08 44.4 

RDBP 9 5 3 1.7E-03 9.6 5.3E-04 25.9 

THAP1 32 19 6 1.1E-10 11.3 2.8E-05 11.9 

SAP30 170 72 27 2.0E-24 5.7 3.8E-17 9.8 

SIX5 99 42 15 6.3E-15 5.7 7.0E-10 9.3 

PHF8 462 198 68 2.4E-65 5.8 1.0E-38 9.1 

ELK4 111 46 15 9.9E-16 5.5 3.6E-09 8.1 

NRF1 127 47 17 8.0E-14 4.5 3.9E-10 8.0 

KDM5B 321 137 42 1.8E-45 5.8 1.8E-22 7.9 

SREBP1 38 17 5 2.8E-07 6.2 7.3E-04 7.8 

CTCFL 62 16 8 1.9E-03 2.7 2.3E-05 7.7 

NFYA 81 29 10 1.0E-08 4.3 3.3E-06 7.3 

HMGN3 310 126 38 2.9E-39 5.3 1.7E-19 7.3 

E2F6 416 159 50 5.0E-45 4.8 9.2E-25 7.2 

CREB1 241 93 29 2.2E-27 4.9 5.1E-15 7.1 

SP4 117 54 14 8.1E-21 6.6 5.7E-08 7.0 

ZBTB7A 315 113 36 1.3E-29 4.3 1.5E-17 6.7 

CEBPD 175 66 20 2.8E-19 4.7 2.1E-10 6.7 

GTF2B 44 17 5 3.3E-06 4.9 1.4E-03 6.6 

CCNT2 401 143 45 1.1E-36 4.3 3.1E-21 6.6 

HDAC1 244 92 27 3.1E-26 4.7 3.3E-13 6.5 
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ELK1 141 50 15 9.1E-14 4.2 9.5E-08 6.2 

TAF7 196 79 20 6.0E-25 5.2 1.5E-09 5.9 

IRF1 430 147 43 2.7E-35 4.0 1.9E-18 5.8 

SIN3A 585 185 58 1.1E-38 3.6 3.6E-24 5.8 

E2F4 295 96 29 7.2E-22 3.7 9.3E-13 5.7 

ZKSCAN1 72 16 7 8.5E-03 2.2 4.4E-04 5.6 

SRF 159 41 15 5.6E-07 2.7 4.6E-07 5.4 

TAF1 937 298 85 5.7E-62 3.6 6.4E-32 5.3 

GABPA 586 180 53 7.4E-36 3.4 2.0E-20 5.2 

E2F1 604 190 54 2.4E-39 3.6 1.5E-20 5.1 

MAZ 992 314 85 1.1E-64 3.6 3.7E-30 4.9 

RBBP5 710 216 61 5.6E-42 3.4 4.0E-22 4.9 

NFYB 200 57 17 7.7E-11 3.1 3.6E-07 4.8 

UBTF 273 88 23 7.0E-20 3.7 4.0E-09 4.8 

ETS1 250 88 21 8.9E-23 4.2 2.0E-08 4.8 

ZEB1 60 17 5 3.1E-04 3.0 5.7E-03 4.7 

EGR1 658 186 54 1.3E-31 3.1 7.0E-19 4.7 

SMARCB1 257 89 21 1.9E-22 4.1 3.2E-08 4.6 

SP2 37 12 3 6.1E-04 3.7 3.3E-02 4.6 

CHD1 512 144 41 9.9E-25 3.0 2.4E-14 4.5 

CHD2 624 177 49 1.6E-30 3.1 1.6E-16 4.5 

BRCA1 116 38 9 1.1E-09 3.8 3.9E-04 4.4 

FOXP2 572 141 44 2.0E-18 2.5 1.1E-14 4.3 

PML 642 175 49 7.3E-28 2.9 5.0E-16 4.3 

HDAC2 472 132 36 1.4E-22 3.0 3.6E-12 4.3 

TCF3 342 93 26 2.2E-15 2.9 3.6E-09 4.3 

MXI1 786 218 59 2.0E-35 3.0 1.2E-18 4.3 
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ELF1 665 200 50 3.4E-38 3.3 4.6E-16 4.2 

POU2F2 492 125 37 9.8E-18 2.6 2.8E-12 4.2 

SIN3AK20 900 263 67 3.8E-47 3.2 8.9E-21 4.2 

MBD4 165 46 12 9.3E-09 3.0 8.4E-05 4.1 

TBP 834 218 59 1.6E-31 2.7 1.9E-17 4.0 

PAX5 594 161 41 1.8E-25 2.9 2.9E-12 3.9 

MEF2C 159 32 11 1.6E-03 1.9 2.5E-04 3.8 

STAT1 392 107 27 1.1E-17 2.9 1.5E-08 3.8 

STAT2 58 17 4 2.0E-04 3.2 2.4E-02 3.8 

SMARCC2 60 15 4 3.4E-03 2.6 2.7E-02 3.7 

GTF2F1 301 79 19 1.4E-12 2.7 6.7E-06 3.5 

RFX5 430 97 27 9.4E-11 2.2 9.6E-08 3.5 

BCLAF1 225 53 14 3.2E-07 2.4 1.2E-04 3.4 

RELA 897 216 55 4.0E-26 2.5 8.4E-14 3.4 

TFAP2A 390 83 24 2.8E-08 2.1 6.9E-07 3.4 

SP1 758 191 46 9.3E-26 2.6 1.2E-11 3.4 

YY1 1,187 278 71 6.5E-31 2.4 8.0E-17 3.3 

REST 952 209 57 5.0E-20 2.2 8.0E-14 3.3 

TBL1XR1 449 110 27 1.7E-14 2.5 2.3E-07 3.3 

ZBTB33 234 64 14 3.7E-11 2.9 1.8E-04 3.3 

MYBL2 438 109 26 7.2E-15 2.6 4.8E-07 3.3 

POLR2A 4,645 1,118 262 1.1E-130 2.5 4.1E-54 3.3 

FOSL1 170 35 10 6.4E-04 2.0 1.6E-03 3.2 

BHLHE40 757 170 44 1.3E-17 2.2 1.3E-10 3.2 

MTA3 353 83 20 2.7E-10 2.4 1.9E-05 3.1 

MYC 1,984 460 110 4.0E-49 2.4 1.1E-22 3.1 

RXRA 249 63 14 1.5E-09 2.6 3.4E-04 3.1 
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WRNIP1 254 63 14 4.5E-09 2.5 4.2E-04 3.0 

NR2C2 145 30 8 1.5E-03 2.0 6.8E-03 3.0 

ZNF143 620 139 34 1.3E-14 2.2 6.2E-08 3.0 

MAX 1,718 429 92 6.9E-55 2.6 3.0E-18 3.0 

USF2 279 64 15 8.0E-08 2.3 3.4E-04 2.9 

NR3C1 467 94 25 8.1E-08 1.9 4.9E-06 2.9 

STAT5A 474 96 25 4.4E-08 2.0 6.4E-06 2.9 

USF1 665 153 35 5.2E-17 2.3 1.1E-07 2.9 

TFAP2C 504 112 26 8.5E-12 2.2 6.2E-06 2.8 

MEF2A 340 64 17 7.9E-05 1.8 3.3E-04 2.7 

ARID3A 542 116 27 5.0E-11 2.1 7.8E-06 2.7 

SMARCA4 120 24 6 6.1E-03 1.9 2.7E-02 2.7 

RCOR1 805 177 40 3.1E-17 2.2 6.5E-08 2.7 

NFIC 1,161 222 57 3.3E-14 1.8 1.9E-10 2.7 

HNF4A 266 60 13 3.4E-07 2.2 1.9E-03 2.7 

BACH1 226 54 11 1.7E-07 2.4 4.3E-03 2.6 

CBX3 392 100 19 1.6E-14 2.6 2.3E-04 2.6 

CTBP2 207 44 10 6.7E-05 2.1 6.6E-03 2.6 

JUNB 228 51 11 3.2E-06 2.2 4.6E-03 2.6 

EZH2 858 153 41 4.9E-08 1.7 2.0E-07 2.6 

TCF12 813 167 38 1.2E-13 2.0 7.8E-07 2.6 

RUNX3 1,193 238 55 2.6E-17 1.9 3.6E-09 2.5 

SMARCC1 240 51 11 1.6E-05 2.1 6.7E-03 2.5 

GTF3C2 111 29 5 1.7E-05 2.7 6.1E-02 2.4 

ATF3 313 82 14 8.7E-13 2.7 3.0E-03 2.4 

EBF1 682 129 30 1.7E-08 1.8 2.9E-05 2.4 

FOXM1 548 123 24 4.6E-13 2.2 2.0E-04 2.4 
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TRIM28 228 56 10 3.2E-08 2.5 1.3E-02 2.4 

BATF 390 64 17 4.0E-03 1.5 2.1E-03 2.4 

GATA1 668 165 29 1.6E-21 2.5 4.9E-05 2.4 

ATF1 161 43 7 9.1E-08 2.8 3.5E-02 2.4 

FOSL2 719 145 31 2.1E-11 2.0 4.5E-05 2.3 

ZNF263 814 167 35 1.2E-13 2.0 1.3E-05 2.3 

FOXA2 584 108 25 6.7E-07 1.8 2.0E-04 2.3 

PBX3 213 52 9 1.3E-07 2.5 2.1E-02 2.3 

JUND 1,707 312 71 1.6E-16 1.7 1.9E-09 2.3 

TCF7L2 1,256 224 52 3.8E-11 1.7 3.6E-07 2.3 

HNF4G 225 47 9 5.5E-05 2.0 4.3E-02 2.2 

TEAD4 987 187 39 9.5E-12 1.8 3.0E-05 2.1 

ZZZ3 76 10 3 5.9E-01 1.2 1.8E-01 2.1 

BCL3 948 182 37 5.1E-12 1.8 6.0E-05 2.1 

SPI1 795 167 30 1.6E-14 2.1 5.6E-04 2.0 

FOXA1 1,309 216 49 6.2E-08 1.5 1.5E-05 2.0 

NR2F2 244 52 9 1.2E-05 2.1 5.4E-02 2.0 

ATF2 697 147 25 4.5E-13 2.1 3.0E-03 1.9 

SMC3 737 144 26 2.8E-10 1.9 2.7E-03 1.9 

SETDB1 709 118 25 4.4E-05 1.5 3.4E-03 1.9 

ESR1 284 43 10 6.2E-02 1.4 7.5E-02 1.9 

EP300 2,558 413 88 1.4E-12 1.5 1.7E-07 1.9 

NFATC1 551 109 18 2.0E-08 1.9 2.7E-02 1.7 

IKZF1 252 46 8 1.5E-03 1.7 1.6E-01 1.7 

CTCF 2,746 522 86 7.3E-31 1.8 1.1E-05 1.7 

IRF4 317 49 10 3.4E-02 1.4 9.9E-02 1.7 

GATA2 1,628 240 49 6.6E-05 1.3 1.9E-03 1.6 
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ZNF217 299 37 9 6.5E-01 1.1 1.9E-01 1.6 

BCL11A 271 38 8 1.8E-01 1.3 1.8E-01 1.6 

TAL1 309 64 9 2.8E-06 2.0 2.0E-01 1.6 

SUZ12 421 73 12 4.0E-04 1.6 1.5E-01 1.5 

JUN 923 157 26 6.1E-07 1.6 5.1E-02 1.5 

CEBPB 2,329 405 64 2.9E-17 1.6 4.5E-03 1.5 

KAP1 1,024 172 28 4.8E-07 1.6 6.4E-02 1.5 

RPC155 117 23 3 8.7E-03 1.9 4.9E-01 1.4 

GATA3 1,134 139 29 4.3E-01 1.1 1.0E-01 1.4 

STAT3 1,069 159 27 7.5E-04 1.3 1.4E-01 1.3 

RAD21 1,247 205 30 1.7E-07 1.5 1.8E-01 1.3 

MAFF 646 94 13 1.9E-02 1.3 7.7E-01 1.1 

FOS 2,045 278 39 3.4E-03 1.2 9.4E-01 1.0 

MAFK 1,176 156 21 6.0E-02 1.2 9.1E-01 0.9 
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Supplementary Table S3.2.4: Enrichment of STR motifs in eSTRs. For each motif, a Fisher’s 

exact test was performed to test whether eSTRs were significantly more or less likely to have each 

motif sequence compared to all STRs analyzed. Causal STRs represent all STRs with CAVIAR score 

of at least 10% as defined in the main text. OR=odds ratio and p-values are two-sided. Motifs give 

the canonicalized repeat sequence (Methods). 

Motifs # eSTRs eSTR enrichment Causal eSTR 

enrichment 

Total eSTRs Causal P-val OR P-val OR 

CCCGG 13 7 3 2.4E-04 9.0 1.7E-03 15.5 

CCCCG 41 18 9 1.8E-07 6.0 6.4E-08 14.6 

CCCCCG 24 11 4 2.7E-05 6.5 1.0E-03 10.3 

AGGCGG 18 8 3 4.6E-04 6.2 4.5E-03 10.3 

AGCCCC 35 11 5 1.4E-03 3.5 5.0E-04 8.6 

CCCCGG 23 11 3 1.6E-05 7.1 9.1E-03 7.8 

CCG 210 66 22 1.0E-14 3.5 1.4E-10 6.1 

AAAAG 213 39 11 3.4E-03 1.7 2.8E-03 2.8 

AGC 293 55 10 3.1E-04 1.8 7.9E-02 1.8 

AATC 271 48 9 2.2E-03 1.7 1.1E-01 1.8 

C 1,163 165 38 4.8E-03 1.3 1.6E-03 1.8 

AATT 268 50 8 5.3E-04 1.8 1.8E-01 1.6 

ACC 250 32 7 4.9E-01 1.1 2.5E-01 1.5 

AAAG 1,854 261 49 6.5E-04 1.3 2.6E-02 1.4 

AAAT 8,806 1,306 218 2.5E-22 1.4 8.5E-05 1.3 

AAAAC 3,289 485 77 1.2E-08 1.3 7.0E-02 1.2 

AGAGGG 220 46 5 7.2E-05 2.0 6.2E-01 1.2 

AAAC 7,779 1,158 173 2.1E-20 1.4 3.4E-02 1.2 

AAAAG 491 67 11 1.4E-01 1.2 5.1E-01 1.2 

ACAG 187 23 4 7.3E-01 1.1 7.8E-01 1.1 

AGG 481 83 10 1.8E-04 1.6 7.4E-01 1.1 
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A 64,118 7,922 1,276 1.0E-17 1.1 3.4E-02 1.1 

AAAAT 1,738 267 33 1.0E-06 1.4 1.0E+00 1.0 

AAC 3,347 501 61 8.3E-10 1.4 8.0E-01 1.0 

AC 48,732 4,389 841 4.2E-95 0.7 9.6E-04 0.9 

AAGG 1,227 103 20 4.5E-04 0.7 6.0E-01 0.9 

AATG 1,274 170 20 4.2E-02 1.2 4.7E-01 0.8 

ATCC 930 79 14 3.3E-03 0.7 4.7E-01 0.8 

AAAAAC 1,018 156 15 2.1E-04 1.4 4.2E-01 0.8 

AAT 2,915 362 43 1.1E-01 1.1 1.0E-01 0.8 

AGGG 348 39 5 9.3E-01 1.0 6.9E-01 0.8 

AAAAAT 498 71 7 5.7E-02 1.3 5.1E-01 0.7 

ACAT 656 91 9 5.7E-02 1.2 3.9E-01 0.7 

AT 7,950 703 103 5.2E-15 0.7 2.5E-05 0.7 

ATC 725 69 9 1.0E-01 0.8 2.2E-01 0.6 

AGAT 3,461 187 42 1.4E-35 0.4 2.0E-03 0.6 

AG 6,552 565 80 1.5E-14 0.7 1.7E-05 0.6 

AAG 395 47 4 8.1E-01 1.0 2.6E-01 0.5 
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Supplementary Table S3.3.1: STR motifs with the ability to form G4 quadruplexes. STR 

motifs with the ability to form G4 quadruplexes. Motifs with average overlap fraction with G4 

structures at least 0.7 were selected from Table 4 of Sawaya et al.[26]. For each motif, the first 

sequence gives the canonical form of the motif and the second gives the reverse complement of the 

canonical form.  

Motif 

AGGG/CCCT 

ACCC/GGGT 

AGGGG/CCCCT 

C/G 

ACCCC/GGGGT 

CCCG/CGGG 

CCCCG/CGGGG 

AAGGG/CCCTT 

AGCCC/GGGCT 

AGGGC/GCCCT 

ACCCCC/GGGGGT 

AGCCCC/GGGGCT 

CCCCCG/CGGGGGG 

CCCGG/CCGGG 

AGAGGG/CCCTCT 

 

  

 

 

 

https://paperpile.com/c/HGqF1v/ARgG
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CHAPTER 4: SUMMARY AND CONCLUSION 

In this study, we characterized short tandem repeats (STRs) that contribute to gene 

expression variation in different contexts, thus enabling their future integration in various studies and 

facilitating their clinical application. We created a catalog of more than 25 thousand eSTRs (10% 

FDR) in more than 11 thousand genes (eGenes) across 17 tissues. We identified more than 3400 high 

confidence causal eSTRs based on their CAVIAR causality score above 10%. These causal eSTRs 

included several STRs that were previously linked to diseases and more than a dozen eSTRs that 

may be leading previous GWAS hits. 

In Chapter 2, we presented the importance of including STRs in large-scale studies and 

causal variant studies. We highlighted that mononucleotide STRs also contribute to various processes 

and mechanisms in the cell, including gene regulation. Out of all eSTRs identified in this study, more 

than 10 thousand were mononucleotide eSTRs (e-homopolymers). While poly-A were the most 

abundant eSTRs and STRs overall, their enrichment was not necessarily significant in most predicted 

regulatory regions when taken together with other eSTRs. e-homopolymers tended to accumulate in 

the promoter regions of the affected genes, suggesting their implication in gene regulation. 

In Chapter 3, we confirmed the contribution of STRs to gene expression variation and 

characterized these contributions.  More than 32% of eSTRs were shared by two or more tissues. 

To assure the correctness of our association tests, control tests were performed using permuted 

samples expression and the results followed a uniform distribution of p-values, as expected. The 

majority of previously identified eSTRs were replicable. We performed both ANOVA tests, 

comparing a model where expression variation is explained by eSNPs only on one hand and by both 

the top eSTR and top eSNP together.  In addition, we used the CAVIAR tool to estimate the causality 

scores of top eSTRs and a set of top 100 e-SNPs. We defined causal eSTRs as all eSTRs for which 

the addition to the model improved the model and had causality exceeding 10%. More than 14% of 
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identified eSTRs were causal according to these criteria. The candidate causal eSTRs will need to be 

validated by other experiments and analysis in the future, but they already included in the set, were 

some STRs that have already been confirmed as causal to disease phenotypes by previous studies 

(See Table S3.1.1).  

 We found that eSTRs were enriched in regulatory regions including promoters, enhancers and 

chromatin states. Enrichment was even stronger for causal eSTRs.  eSTRs were strongly enriched 

for repeats with CG-rich motifs across all tissues. More specifically, G-rich eSTRs had the potential 

of forming G-quadruplex secondary structures, which suggested one mechanism by which STRs may 

be controlling gene expression.  

We tested for G-quadruplexes regulatory characteristics in our set of eSTRs with the 

potential of forming G-quadruplexes, herein G4 eSTRs.  We found that: (1)- Both G4 eSTRs and G4 

causal/FM eSTRs mainly increased gene expression. (2)- Both G4 eSTRs had lower free energy 

compared to other eSTRs or causal eSTRs; and, (3)- their free energy decreased, the longer the 

sequence indicating stability of the structure. These finding suggested that eSTRs may be regulating 

gene by forming G-quadruplex secondary structures. Our results also suggested that there may be 

other mechanisms of gene transcription regulation by eSTRs, including transcription factor binding 

sites formation. 

The future vision of STRs study involves improving methods for identification of longer 

STRs, the use of our catalog in different contexts of research, especially in a clinical application and 

understanding the mechanisms underlying some association results. For example, we found more 

than half a dozen high confidence FM eSTRs likely to be the main driver of GWAS hits for 

Schizophrenia, Height and blood traits. 

A few limitations to this study represent in majority unexplored territories and thus are great 

topics for discussion and further research in themselves. Even though the majority of STRs variation 
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reported to be linked to diseases and other phenotypes in previous studies and cited throughout this 

study, have been caused by STRs length changes, there's also been evidence of nucleotide-level 

variation of STRs causing diseases. For that reason, it would be important to consider this aspect on 

future studies in order to characterize the effect of in-sequence variation of STRs. The future of 

research includes: exploring the non-linear relationship between STRs length and gene expression, 

exploring the effects of STR alleles and in-sequence mutation of STRs on gene expression and other 

phenotypes, and the development of algorithms well suited for such exploration.  We also envision 

the identification of STRs contributing to gene expression in a trans manner. 

Overall, a clear understanding of the underlying processes and mechanisms by which eSTRs 

operate in regulatory regions has the potential of uncovering the molecular machinery affected by 

causal variants in diseases and thus suggest therapeutics. Research in this direction (like the current 

study analysis) helps hypothesize and test, explore the roles of variants in today’s less understood 

complex traits. 
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