
UCLA
Technical Reports

Title
Reliability and Storage in Sensor Networks

Permalink
https://escholarship.org/uc/item/7391w3v2

Author
Deborah Estrin

Publication Date
2005

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7391w3v2
https://escholarship.org
http://www.cdlib.org/

Reliability and Storage in Sensor Networks

ABSTRACT

A large class of delay tolerant sensor-net applications require

reliable deliver of every data point. The nature of sensor network

deployments makes providing reliability a challenge. Harsh

environments and unreliable wireless communication can cause

long periods of poor to no connectivity. Meanwhile, energy and

resource constraints on sensor platforms limit retransmissions and

buffer sizes. This paper presents an architecture designed for

these challenged networks. The architecture provides packet-

level, hop-by-hop reliability for delay-tolerant data using

sequential storage for buffering during long queue delays. The

concepts discussed in this paper are implemented as services in

the Extensible Sensing System, a deployment at the James

Reserve as part of the Cold Air Flow Project.

General Terms

Sensor Networks, Reliability, Storage, Deployment

Keywords

Wireless, sensor networks, reliability, storage, Deployment

1. Introduction
Wireless sensor networks (WSN) provide a distributed, sensing

and computing platform for monitoring environments in which

conventional networks are impractical. The benefit of a WSN

comes from embedding resource-constrained, wireless sensor

nodes in the environment at a scale which provides fine grained

readings over a large area. There exists a class of sensor-net

applications which require reliable delivery of every data point

collected across the network.

The nature of sensor networks makes reliability a challenging

problem. Traditional network protocols such as TCP [1] provide

reliability using unrestricted end-to-end retransmissions and

acknowledgements while assuming large data buffers to store

undelivered packets. Current research [2,3,4] has shown that end-

to-end reliability in sensor networks is impractical given energy

constraints and unreliable wireless links. At the same time,

resource constrained sensor nodes only provide limited storage

space to buffer data while waiting for end-to-end

acknowledgements.

Existing solutions employ a hop-by-hop reliability mechanism at

either the link or transport layer to increase the probability of

packet delivery to the destination. These solutions assume high

node connectivity and unvarying, low-error wireless links. Recent

deployments such as the Cold Air Flow Project at James Reserve

have shown that real environments rarely exhibit such well

defined characteristics. Instead time varying link quality and

sparse node density cause long periods of poor to no connectivity.

In light of this, a new architecture is needed to provide reliable

data delivery for these challenged networks.

The main contribution of this paper is the design, implementation

and measurement of a sensor network system which provides

reliability in the face of poor link quality and frequent

disconnects. Our deployment measurements show wireless

networks exhibit time varying link quality which can cause

periodic deviations from average path quality. Our design utilizes

the delay tolerant attribute of sensor-net applications to store data

locally during these periods of deviation. The result is increased

energy efficiency due to the elimination of wasted

retransmissions. We provide this service by implementing a

packet-level, hop-by-hop routing protocol which buffers data

using sequential storage over flash memory. We show that this

protocol utilizes sensor resources more efficiently by increasing

storage capacity and reducing ineffective retransmissions.

2. Cold Air Flow Project
Our motivation for implementing an improved reliability

architecture for sensor networks stems from the deployment of the

Cold Air Flow Project at the James Reserve [9]. In this study,

researchers are attempting to determine cold air flow and humidity

patterns along mountainous ravines. The information is essential

in modeling vegetation and wildlife patterns in these regions.

Previous attempts to model cold air flow used sparsely placed

weather stations and extrapolated data points over large areas.

This method of data collection was ineffective for explaining

ecological patterns in ravines and valleys.

The aim of the Cold Air Flow Project is to develop a more

accurate model based on fine grained temperature and humidity

readings along the James Reserve Valley in the San Jacinto

Mountains. The project has deployed 40 nodes in 2 transects

perpendicular to the valley to measure both cold air gradients

across a single transect and cold air flow between multiple

transects.

To build a correct cold air model, researchers require a valley

wide collection of fine grained readings as a function of time.

Lost data points from any part of network will require

extrapolation between points and will revert the analysis back to

previous inaccurate results. In this deployment reliable delivery

of each data point is essential for correct analysis.

This application is an example of a larger class of sensor-net

applications. In this class of application all data is essential but

delivery is tolerant to relatively long delays.

3. Related Work
Previous research is partitioned into two different areas: persistent

storage and reliable network protocols.

3.1 Persistent Storage
Most sensor network platforms use flash memory as a means of

persistent storage. Flash memory is the appropriate choice for

resource constrained sensor nodes due to its high reliability, high

density, and relative low cost. Though advantageous, the

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

characteristics of flash memory are very different from

conventional hard disks.

Flash memory is divided into sectors or blocks which are then

subdivided into pages. Page sizes are device specific and can vary

from hundreds of bytes up to a few kilobytes. All read/write

operations are executed on a per-page basis with writes

consuming more energy than reads. Flash memory writes also

exhibit another unique property in that each page can endure a

maximum number of writes. Repeated writes to the same page

will exhaust the lifetime of the flash page. To ensure that no

single page reaches its lifetime limit before the rest of the flash

memory pages it is important to ensure writes are evenly

distributed. This process is called ware-leveling [5].

The benefits of using flash memory for compact devices have lead

to an abundance of literature on flash based file system design.

The design presented in [5] as well as other current approaches

emulate block devices over flash pages. Traditional files systems

are then ported over the emulated block device providing

compatibility with traditional implementations. This approach of

emulating a block device does not utilize the unique properties of

flash memory and causes fragmented data and inefficient ware-

leveling.

Current sensor network research in flash based file systems has

lead to the implementation of full fledged journaling file systems

[6,7]. As with traditional journaling file systems these

implementations create a new log entry for each write operation

that occurs. To optimize this technique for flash memory each

entry is placed on a separate page. Though this produces natural

wear-leveling, it can cause fragmentation if the sensor data is not

a multiple of the page size. Given the limited storage available on

sensor nodes this fragmentation can lead to large portions of

unusable space.

The nature of sensor readings requires sequentially written records

without the need to modify previous data. Current

implementations such as Matchbox and ELF provide a rich set of

file system operations, many of which are unnecessary for

applications wishing to only store sensor data. The resource

overhead of a full fledged file system may not be appropriate for

these applications.

Previous work on flash storage provides generalized solutions

which may not fit the needs of sensor-net applications. For this

reason we have created a new sequential access file system

optimized for sensor data. The primary objectives of this storage

layout is to maximize the write lifetime of the device using ware-

leveling and overcome limited local storage capacity by

distributing storage over the network.

3.2 Reliable Network Protocols
Previous work on reliability in sensor networks has focused on the

network stack. The result has been a set of transport layer

protocols which attempt to provide message level reliability on a

hop-by-hop basis.

In [3], the authors determined the biggest problem with end-to-

end recovery was the unreliable characteristics of the wireless

communication link. The error accumulates exponentially over

multiple hops, causing a high probability of packet loss. This

work produced Pump Slowly, Fetch Quickly (PFSQ), a hop-by-

hop NACK transport protocol. Message fragments are

sequentially sent one hop, where the receiver will selectively

request missing fragments based on sequence number. Single

packet messages default to an end-to-end recovery mechanism.

In [2], the authors present RMST. RMST, much like PSFQ, is a

hop by hop selective NACK transport protocol. RMST improves

on PSFQ by including link layer recovery via Automatic Repeat

Requests (ARQ). The link layer implements a stop-and-wait

protocol using explicit acknowledgements for each sent packet.

The number of ARQ retransmissions attempted before giving up

is configurable but statically set. The advantage delivered by

RMST is in providing added reliability at the link level instead of

just relying on explicit NACKs from the transport layer to recover

lost packets.

The authors in [4] present a sensor network implementation of

Delay Tolerant Networking (DTN) [8]. The work in this paper is

similar to RMST and PSFQ by providing a hop-by-hop transport

layer protocol. In addition the implementation presents a

persistent storage mechanism to handle situations in which the

message is not delivered to the next hop.

Both RMST and PSFQ provide reliability by attempting to

increase the probability of packet delivery using intelligent

retransmissions on a hop-by-hop basis. This mechanism works

well in systems with high connectivity and low error link quality,

but in real systems where disconnects are possible both RMST

and PSFQ will begin to lose packets.

DTN provides added reliability over RMST and PSFQ by storing

messages locally during disconnects. In storing at the message

level, DTN introduces fragmentation in the storage device since

variable length messages are not multiples of the storage capacity.

Fragment sizes are proportional to message sizes thus larger

messages lead to larger areas of unusable storage. In addition

DTN does not distinguish between full message losses due to

disconnect and single packet losses due to link error. In either

case the message is stored for future retransmission. In the latter

case successful packet transmissions are wasted since the full

message was not transferred to the next hop.

These limitations in currently available solutions require a new

network protocol for reliability. In our new protocol we provide

reliability at the packet level, using hop-by-hop

acknowledgements. Reliability at the packet level offers minimal

fragmentation and allows distributed storage of messages over

multiple nodes.

4. Reliable Staged Transport
The main components of any reliable architecture are

retransmissions and storage (both volatile and non-volatile). The

goal of our architecture is to use both components intelligently to

provide an energy and resource efficient solution.

4.1 Design Space
When designing a reliability solution, the design space can be

divided into 3 dimensions:

• End-to-end vs hop-by-hop acknowledgments

• Forwarding vs store-and-forward routing

• Real-time vs delay tolerant data

4.1.1 End-to-end vs Hop-by-Hop Acknowledgments
Established network protocols, like TCP, provide reliability

through end-to-end acknowledgements and retransmissions. In

these networks, the end hosts are responsible for handling error

recovery with no responsibility delegated to intermediary nodes.

The implicit assumption in these protocols is that packet loss is

the result of a single congested queue along the route. Since

queue overflow is directly correlated with transmission rate,

congestion can be alleviated by regulating packet flows. In other

words packet loss is a quantifiable event, which can be controlled

by direct action from the end host. In sensor networks this

assumption is not true. The physical characteristics of the

wireless medium provide probabilistically unreliable links.

Packet loss is not the result of a single quantifiable failure point

but instead is a probabilistic accumulation of error over multiple

hops.

To demonstrate this, assume a packet loss rate of p over a wireless

channel. Over n hops the chances of a successful transmission

decreases to (1-p)^n. Figure 1 shows the probability of successful

packet deliver over a given number of hops for different average

link error rates. This shows that for large networks with multiple

hops it is almost impossible to deliver a packet using end-to-end

delivery with no intermediary error recovery.

Figure 1 Probability of successful packet delivery over

multiple hops given different average link error rates.

Unlike wired networks, packet loss in wireless networks is not

correlated to transmission rates but instead is related to individual

link qualities. Actions by the end host are ineffective at correcting

packet loss multiple hops away. Instead intermediary nodes,

which are directly connected to the error producing link, can

immediately detect a loss and retransmit. Moving the

responsibility for error recovery to each individual hop along the

path reduces the total number of transmissions required to

successful deliver a packet. A retransmission due to failure at

node k in an n hop path has a (1-p)^n-k probability of success vs.

an end-to-end recovery which has a (1-p)^n probability of

success.

4.1.2 Forwarding vs. Store-and-forward Routing
The difference between forwarding and store-and-forward routing

is the granularity at which the network stack views data.

In store-and-forward networks, routing is performed on complete

messages. Messages are broken into a series of fragments, each

tagged with a sequence number to be used in reassembly. The

network stack attempts to transmit an entire message one hop by

sending each individual fragment as a packet. The receiver

reassembles the packets into a message, using sequence number

gaps to selectively request missing packets. In this manner

messages are sent and reassembled hop by hop until they reach

their destination.

Forwarding networks view data on a packet level. The network

stack is given a packet (messages are fragmented at a higher

level), and is responsible for attempting to send the packet one

hop. In these networks packet delivery is explicitly acknowledged

by the one hop receiver. The relationship between packets and

messages is ignored and it is the end hosts responsibility to

reassembly the fragments.

Current implementations for reliability in sensor networks [2,3,4]

perform store-and-forward routing using transport layer NACKs

for missing packets. The largest cost for using this type of routing

is storage space. At each hop the packet must be reassembled

before it can be forwarded again toward the destination. On

sensor nodes storage (both volatile and non-volatile) is a

constrained resource. Mica 2 motes [10], a sensor node platform,

provide only 4KB of RAM and 512KB of flash storage. When

programmed using the TinyOS [11] operating system, the 4KB of

RAM is statically allocated at compile time. This means buffer

space must be pre-allocated in RAM. Unused buffer space during

run time is not reallocated and is essentially wasted.

In a store-and-forward network buffer space is allocated as a

multiple of message size, where in the forwarding network buffer

space is allocated as a multiple of packet size. If message sizes

are much larger than packet sizes then the magnitude of unused

buffer space is large. In sensor networks, where resources are

limited this inefficient use of storage can limit the number and

complexity of services provided by the sensor net application.

4.1.3 Real-time vs Delay Tolerant Data
The time sensitive nature of the data is application specific, but is

an important dimension in designing a reliable architecture.

Real time data has a hard deadline on the order of seconds or

minutes and must arrive at the sink before that period. Data that

is still present in the network beyond its deadline is useless and

can be safely discarded. Most real time applications fall into the

“sense and react” class of sensor-net applications. In these

applications the network must react to events detected, within a

specified time. The timely arrival of data is crucial.

Delay Tolerant networks have either a loose deadline on the order

of hours or days or have no deadline at all. Delay tolerant

applications usually fall into the “sense and analyze” class of

sensor-net application. In these applications data is collected at a

centralized point for detailed analysis of time varying

phenomenon. In most delay tolerant applications each data point

is essential for analysis, but no guarantees need to be met as to the

time of arrival.

Reliability is defined differently in real time applications versus

delay tolerant applications. In real time applications reliability is

associated with arrival times and meeting the specified deadline.

On the other hand, in delay tolerant applications, reliability is

related to data loss and the guaranteed delivery of all data points.

When designing reliability for sensor networks the time sensitive

characteristics of the data is important to consider. In real time

applications the hard deadline limits the architectural choices

available. In most cases the brute force design using continuous

hop-by-hop retransmissions give the best results. In these

networks each packets is pushed toward the sink hop by hop until

the packet arrives at the sink or the packets deadline has past.

Retransmissions are used to push data past unreliable links with

throughput taking priority over energy efficiency. Buffer space

can be relatively small since data does not have a long lifetime

and buffers are not used for long term storage.

Delay tolerant applications have much more flexibility in design

decisions. Since data has no hard deadline for arrival, the

network stack can prioritize energy efficiency over throughput.

Also storage allocation becomes a main concern since each data

point must be stored in the network until its arrival at the sink.

This paper focuses on the appropriate design decisions for

reliability in delay tolerant sensor net applications.

4.2 Challenged Networks
Conventional network protocols make implicit assumptions about

high quality links, end-to-end connectivity, and low latency

responsiveness. Sensor networks do not have these qualities and

therefore a new network classification must be introduced to

characterize the properties sensor-net protocols must account for.

In [12], the author introduces a definition for challenged

networks. The following are characteristics of challenged

networks:

High Latency, Low Bandwidth Communication: Sensor network

platforms provide low cost, low power wireless communication.

To achieve this goal, radio quality and bit rate is sacrificed. The

Mica2 motes operate at 56 Kbs bit rate under optimal conditions.

In addition, the combination of harsh environments and low radio

quality make highly error prone links. This poor link quality can

cause numerous retransmissions, which can further delay

communication. Finally low cost production can yield

asymmetric links due to a lower quality of manufacturing. Link

asymmetry can skew round trip estimations since each leg of the

path has a widely different delay.

Disconnections: In sensor networks, complete end to end path

connectivity at any given point in time can be unlikely.

Disconnects can arise from two sources: time-varying unreliable

links and low-duty cycle node operation. Wireless link

connectivity is unreliable and the quality of the link may vary over

time. This can cause unpredictable periods of disconnect as links

appear and disappear in the network. In addition, even as radio

qualities increase, energy conservation techniques such as duty

cycling and topology control will cause nodes to periodically

leave the network. In these cases nodes which are critical

connection points for communication may periodically shutdown

to conserve energy. These shutdowns may be scheduled and

predictable but will still cause periodic disconnections in the

network.

Long Queue Delays: Disconnections and low latency, low

bandwidth communication can lead to long queue delays at

intermediary nodes. Data traffic is usually dependent on external

events and cannot be regulated or throttled during periods of poor

connectivity. In these situations nodes must be able to reliable

store data locally until connectivity improves.

4.3 Delay Tolerant Design for Challenged

Networks
Having outlined the design space and network characteristics we

can analyze each design decision given the network properties.

End-to-end vs. hop-by-hop acknowledgements: Any protocol

dependent on end-to-end communication requires predictable

roundtrip times and stable connectivity between end points. High

latency communication and frequent disconnects found in

challenged networks can adversely effect end-to-end

communication. As shown previously, the additive affects of

unreliable link quality make the probability of successful

communication low. On the other hand, hop-by-hop

communication makes no assumptions about path connectivity

and is only concerned about single hop link quality. Work in [2]

has shown that link quality can be controlled using link layer

ARQs. Given the characteristics of challenged networks hop-by-

hop acknowledgements are the appropriate choice.

Forwarding vs store-and-forward routing: The choice between

forwarding and store-and-forward routing is matter of available

storage capacity. Long queue delays mean intermediary nodes

must reliable store data locally until packets can be transferred.

Message sizes being larger than individual packets means that

buffer allocations in RAM must also be larger to cope with

multiple messages. Additionally, stored data may not be a

multiple of storage capacity leading to fragmentation. Fragment

sizes are proportional to the size of the data. Storing data at a

packet level leads to smaller fragment sizes. It also has the added

benefit of allowing distributing storage of a single message over

multiple nodes. Given the constrained storage capacity on sensor

nodes it is better to handle data at a packet level making

forwarding the appropriate design choice.

It is apparent that the correct reliability design for delay tolerant

applications in challenged networks is a hop-by-hop, forwarding

architecture. Previous work corresponds with our choice to use

hop-by-hop acknowledgement, but our choice of forwarding

differs from others. Current implementations provide store-and-

forward routing placing the appropriate intelligence in the

transport layer. Since forwarding deals with individual packets, it

is appropriate to push reliability intelligence lower in the network

stack to the routing layer. Providing reliability at the routing layer

presents further benefits including intelligent forwarding based on

path connectivity and instantaneous path quality, as explained in

Section 6. Additionally, work in Delay Tolerant Networking has

shown that storage plays an important role in providing reliability.

Previous work has either used volatile RAM or a bulky journaling

file system over external flash memory. In section 5 we present a

flash based storage layout which is optimized for the sequential

nature of sensor data and can overcome limited storage capacity

by distributing storage over local neighborhoods.

5. Sequential Storage
Flash memory provides persistent storage for small devices but at

the cost of limited write lifetime. The primary goal is to provide

energy-efficient storage which maximizes the lifetime of the

device. A secondary consideration is to extend the limited storage

capacity available on sensor network platforms by utilizing

network wide storage capacity. Section 5.1 defines a layout for

flash memory which provides ware-leveling optimized for the

sequential nature of sensor data. Section 5.2 presents an

extension to the sequential storage layout which expands storage

capacity by distributing storage evenly over a network

neighborhood.

The Sequential Storage Layout presented in this section is

implemented on the Mica2 mote. The mote provides 512 KB of

external flash memory. The flash on the mote is segmented in

264B pages and contains two internal page buffers to act as

temporary storage during reads and writes.

5.1 Sequential Storage Layout
Sensor readings are usually variable length and time ordered.

Subsequently, storage of sensor readings should sequentially write

records providing a First In, First Out paradigm for reads and

writes. The most appropriate data structure to handle these

requirements is a variable-length queue. Queues provide FIFO

reads and writes handling the time ordered aspects of data.

Variable-length queues are pointer-based storing a chain of

variable length data. Finally queues are naturally optimized for

flash memory, since all modifications are done at either the head

or the tail. This provides even ware leveling as the head and tail

move sequentially through flash, continuously wrapping around

the specified storage area.

A queue data structure contains two components. The Queue and

a Record Locator Table (RLT). The RLT is a data structure

containing a pointer to both the head and tail of the Queue.

The Queue is implemented using a chain of pointers. Each record

is written to the tail of Queue. Before each record is written, a 2

byte length field is added to the head of the record detailing the

length of the data. This acts as a pointer to the next record

location in the Queue. The Queue is implemented to use the

pages of flash memory as a circular buffer, wrapping around as it

meets the end of memory.

The Queue is naturally optimized to ware-leveling but the RLT is

not. The RLT must be stored in flash to maintain a persistent

record of the location of the Queue and must be updated for every

read and write. If RLT is located on a single page in flash, the

write lifetime of the page will quickly become exhausted. This

solution is to provide a distributed RLT data structure.

Distributing the RLT, distributes the cost of updating over

multiple pages. A further optimization is to distribute the RLT in

such a way that modifying the Queue and updating the RLT can

occur in a single page write instead of two separate page writes.

Figure 2 A logical and physical layout of flash memory

showing the projection of the queue to individual pages.

As shown in Figure 2, flash memory is split into Queue Space

(Red and Blue) and RLT Space (Yellow). The RLT contains

pointers to the current head and tail of the Queue. The Queue

currently occupies the space colored in Red. At the page level

each page is split into Record Space and Page Meta space.

Record space is the page level projection of the Queue Space and

the Page Meta space is the page level projection of the RLT. If a

page contains either the head or tail of the Queue, the Page Meta

contains the byte offset of either the head or tail in the given page.

If the page does not contain the head or tail the page meta byte

offsets are set to a special UNSET value.

As the head or tail of the Queue is read or written, the affected

page is loaded into the temporary flash buffer. Once the queue

data is read/written the RLT is updated by setting the appropriate

byte offset in the page meta to point to either the new head or tail

of the Queue. The page is then written back to memory. Both the

Queue data and the RLT are modified in a single write.

The exception to this is when the head or tail moves across a page

boundary. In this case the current head or tail offset is recorded in

the new page and then previous offsets are unset in the old page.

Ordering the operations in this manner allows us to reconstruct

the Queue even if node fails between the set and unset operation.

When the node starts, it scans the page metas looking for the head

and tail pointers for the Queue. If multiple head or tail pointers

are found (due to previous failure), the first head pointer found is

used and/or the last tail pointer found is used. This guarantees

that a failure during a read will set the head to reread the data

being read during failure. Consequently for the write, this will set

the tail to point to the location in memory behind the record

written during the failure.

Figure 3 Ware-leveling results using a random read/write

sequence with the read to write ration of 1:1

Figure 4 Ware-leveling results using a random read/write

sequence with a read to write ratio varying between 3:1 to 1:3

The primary purpose of our Sequential Storage Layout was to

extend flash memory lifetime by efficiently ware-leveling writes

to storage. Figure 3 shows the result of randomly reading and

writing data to storage. The results were produced with a 1:1 read

to write ratio. The graph shows the number of flash writes for

each page. As you can see the writes are fairly even with a

maximum difference between page writes as 19.

In most applications reads and writes usually come in batches, ie

due to loss or regaining of connectivity. Figure 4 shows the result

of randomly reading and writing data to storage produced with

varying 3:1 and 1:3 read to write ratio. The system started with a

1:3 write ratio until the queue was full. At which point it moved

to a 3:1 read to write ratio until the queue was empty. It cycled

between these two extremes until the end of the simulation. As

you can see the writes are again fairly even. The major drop off of

writes at page 40 is due to the simulation ending with the queue

tail at page 39.

5.2 Distributed Storage
The Mica2 mote only provides 512 KB of persistent memory.

Large data sizes, high data rates and long periods of poor or no

path connectivity can consume the local storage capacity on a

mote. In the situation where a single node or a neighborhood of

nodes is overburdened, it is useful to distribute data over

neighboring nodes to alleviate storage constraints. This section

presents a design to evenly and efficiently distribute data over

local neighborhoods.

The distribution of data works on a gradient descent policy where

data attempts to find the lowest “cost” location for storage. The

storage cost is a function of both available space and the cost of

transmission.

The first step is to communicate neighborhood storage capacity.

This is accomplished by a beaconing mechanism which

periodically broadcasts a nodes available storage space in bytes.

The node can also use the beacons to maintain an estimate of link

quality between itself and its neighbors. This link quality

provides a measure of the transmission cost over that link.

Each node keeps a neighbor list which contains each neighbor’s

available storage and link quality. When replacing an entry in the

neighbor list storage capacity has the highest priority. The

replacement policy removes the lowest capacity node from the list

if a higher capacity neighbor is discovered. When a neighbor is

chosen for distribution, the neighbor with the highest quality link

is chosen. In essence, the algorithm chooses the best possible link

quality from the list of highest capacity nodes. This mechanism

weights capacity as a higher priority than link quality since this

will evenly distribute the data and will not over run the capacity

of a neighbor who has exception link quality.

The next important design point is to decide when to distribute

data and when to store locally. The objective is to have a smooth

distribution instead of waiting to exhaust a node’s storage

capacity before attempting to distribute the data. If the device has

a relatively large amount of remaining data capacity (in actual

bytes not in percentage) it should decide to store locally all the

time. On the other hand if the device has little or no storage it

should decide to always distribute the data. Between the two

extremes the decision to store locally or distribute should be

proportional to the remaining storage on the device relative to its

neighbors.

To accomplish this, the distribution decision function is based on

picking a random number between 1 and the total size of storage

space available. If the number is greater than the storage

remaining, then the node should distribute the data, otherwise it

should store it locally. When full storage capacity is remaining

the node will always store locally. As the remaining bytes

available goes to zero, the decision to distribute will become more

and more probable. This algorithm guarantees the decision to

store is based on the percentage of storage on the device.

The next step is to consider the "relative" storage space available

in the local neighborhood as compared to the storage available

locally. Given the previous algorithm, a node may decide to

distribute due to a low percentage of remaining storage, but its

neighbors may have even a lower number of remaining bytes. In

other words a large capacity device should not distribute

proportionally to its own storage capacity if all its neighbors have

relatively small storage capacity. This functionality is provided

by preventing the node from distributing data, if its neighbors

have less available capacity.

2
7

12
17

20
22

27
32

37

37

27

20

12

2

0

50

100

150

200

250

300

Number of Packets

X Positions

Y Positions

Single Source Distribution

250-300

200-250

150-200

100-150

50-100

0-50

Figure 5 Distribution patter for a single node

2
7

12
16

17
22

24
27

32

37

27

20

12

2

0

50

100

150

200

250

300

Number of Packets

X Positions

Y Positions

Multiple Source Distribution

250-300

200-250

150-200

100-150

50-100

0-50

Figure 6 Distribution pattern from a cluster of nodes

The goal of our distribution mechanism is to evenly distribute

data over the network by focusing on local neighborhood storage

capacity. Figure 5 and 6 show the distribution of data over a

network for both single source and multiple source

configurations. In both cases the graphs show an even

distribution around the sources as the network attempts to

alleviate storage constraints at the source nodes. The graphs are a

result of a 64 node simulation using the EmStar Simulation tool

described in Section 7. The nodes were arranged evenly in a grid.

The simulated radio channel is a circular radio model with error

rates based on a normal distribution as a function of distance from

the source.

In Figure 5 a single source at (20,20) produced 5000 packets of

data. Each node has the capacity to store 300 packets. The

distribution pattern shows data was first moved to the one hop

neighbors. As the one hop neighbors became full, they also began

distributing data to their one hop neighbors pushing data away

from the source.

Figure 6 shows the same result with a cluster of 4 sources located

at (16,16), (16,24), (24,24), and (24,16). Once again the data is

sent from each source to their one hop neighbor. The data sent

from each source is actually pushed at a gradient away from the

other sources. This is visible by the dip in packets stored at the

node in between all 4 sources. This shows that even in a clustered

source environment the algorithm attempts to alleviate storage

constraints by distributing data to a higher capacity location in the

network.

6. Reliable Network Protocol
Currently available reliability solutions focus on implementing a

network protocol which increases the probability of a successful

transmission over a single hop. Without an appropriate storage

mechanism, these solutions fail to provide reliability when

transmissions are not successful. With the addition of a

sequential storage architecture to buffer larger amounts of data

over longer periods of time, we can provide a more intelligent

network protocol. Our network protocol can exploit the delay

tolerant attribute of sensor-net applications to store data during

extreme deviations in path quality including possible network

disconnection.

The correct reliability design for delay tolerant applications in

challenged networks is a hop-by-hop, forwarding architecture.

Our network stack provides this service using the link layer and

routing layer. The link layer is responsible for improving

unreliability over the physical medium, where as the routing layer

is accountable for path level connectivity.

6.1 Link Layer
Wireless communication is prone to errors from reflections,

interference, and path loss. The authors in [2] attempted to

compensate for an unreliable physical medium by adding a stop-

and-wait ARQ mechanism to the link layer. The addition of link

level retransmissions improved the probability of success for a

single hop transmission. Figure 7 shows the probability of

success for a single packet over 25 hops given a static number of

retries.

Figure 7 Probability of successful packet delivery over 25 hops

given a maximum number of retries per hop.

As the average error rate increases the number of retries required

to successful send the packet increases to compensate. The work

in [2] statically configured the number of retries, implicitly

assuming a uniform and unvarying link quality across the

network. Deployments, such as the Cold Air Flow Project, have

shown that actual deployments do not follow these characteristics

(as seen in Section 8). Setting the retry value too low may

artificially create disconnects over links with lower than expected

link quality. On the other hand, if the retry value is set too high

then energy is wasted transmitting over links which are

experiencing an unexpected deviation from their average link

quality or have become disconnected for a period. Using both the

information in Figure 7 and estimated link quality, it is possible to

dynamically set the retry value based on the average link quality

of the specified link.

Estimation of link quality is implemented using a beaconing

mechanism. Each node periodically broadcasts a beacon

containing its node id and an increasing sequence number. Nodes

receiving the beacon can record the number of beacons

received/missed and estimate an inbound link quality. After a

configured number of beacons have been sent, a node will

compile a digest of all the inbound values it has recorded and

broadcasts the information to its neighborhood. Nodes receiving

the digest will search for their own node id in the digest and

record the outbound value of their link to that node. In this

manner each node has an estimate of both inbound and outbound

link quality to its neighbors.

A dynamic ARQ mechanism at the link layer improves the

probability of success of transmission but does not guarantee it.

In the situation where an acknowledgement is not received after

the allotted number of retries, the link layer flags the packet as

failed and it is stored in the Sequential Storage device for future

retransmission.

6.2 Routing Layer
Information in a sensor network usually flows from a distributed

set of sensors to a few selectively placed sinks. Not every node

will be in radio distance of a sink, so it is the responsibility of

intermediary nodes to forward data multiple hops to a sink.

Our routing implementation is a multi-sink, tree based routing

algorithm. Each sink periodically sends a path advertisement

declaring itself as the sink. As each node receives the

advertisement, they integrate they’re link quality to the path

quality received in the advertisement and broadcast their new path

quality. In this manner a tree is formed where the path quality is

based on the link qualities along the path.

Each node in the network is aware of the sink advertisement

period and for every missed advertisement the path quality is

exponentially decreased until after three missed advertisements

the path is considered disconnected.

Varying link quality can effect overall path quality. by causing

disconnects or creating periods of unexpected deviation from the

average path quality. In both of these cases the routing layer can

use path information to provide reliability in an energy efficient

manner.

6.2.1 Path Connectivity
Harsh environments and unreliable links can cause networks to

become disconnected. As packets are being routed through the

network, the routing layer has the opportunity to check network

connectivity before attempting to send data.

Packets enter the routing layer from one of two manners. Packets

which are local arrive at the routing layer from a higher layer in

the network stack. Packets which are external and are being

routed along the path arrive from a lower layer in the network

stack. As packets are sent into the routing layer to be forwarded,

the path connectivity for specified source is first examined. If the

routing layer determines the path to the source has become

disconnected it will not attempt to send the packet and will

instead store the packet in Sequential Storage for future

retransmission. Since path connectivity information is not

instantaneously propagated it is possible for data start along a path

and then be stored at an external node as it enters an area in which

connectivity information is fresher.

Additionally queue overflows at the routing layer must be

connected to the Sequential Storage. During periods of high

traffic or poor link quality it is possible for nodes to experience

queue overflow. To provide complete reliability, overflows must

be stored locally in Sequential Storage. If the time required to

write a packet to flash takes longer than the time required to

receive a packet over the radio, packets can still be lost since a

queue overflow can happen while the flash is writing a previous

packet. On the mica2 motes the flash writes take X cycles while

the radio takes X cycles (redo calc). Based on this calculation all

queue overflows can be stored locally without fear of overflows

occurring faster than storage.

6.2.2 Time Varying Path Quality
Variations in individual link quality can cause large swings in

total path quality. When calculating path quality these large

fluctuations can cause the routing algorithm to continually choose

new paths. This phenomenon is known as route flapping. Route

flapping can cause network instability such as routing loops.

Averaging individual link quality estimates stabilizes path quality

calculations. Figure 8 shows the path quality cost using both

averaged link costs and instantaneous link costs. This was taken

from a real deployment discussed in Section 7. As you can see

there are periods when the instantaneous path quality greatly

exceeds the average quality. In this case the period lasts for 45

minutes (from 5000 seconds to 7000 seconds). During these

periods it may be beneficial to store the packet rather than

attempting to send. In order to make that decision it is necessary

to quantify differences in path cost in terms of energy.

Figure 8 Path quality calculations using the instantaneous link

quality metrics versus using averaged link quality metrics.

The Expected Transmission Cost (ETX) [13] estimates path

quality such that the calculated value is the expected number of

transmissions required to successfully transmit the packet over the

path. Using ETX we are able to quantify the difference between

the average path cost and the instantaneous path cost in terms of

retransmissions, i.e. energy.

Next we must compare this cost with the cost of storing the packet

and resending at a later time. On Mica2 motes, writing a byte to

flash is considered twice as more expensive than transmitting the

byte over the radio. If the difference between the average path

cost and the instantaneous path cost is greater than two extra

transmissions, then it is more efficient to store the packet and

retransmit when the instantaneous cost has decreased.

6.2.3 Packet Re-injection.
Once packets are stored, they must be reinjected back into the

network. A disconnection in the network can affect as little as

one node or as many as all the nodes and can last for long periods

of time relative to the sensing period. When connectivity is

regained it is possible for a large number of packets to be injected

into the system all at once. A reinjection policy is needed to

avoid congesting the network.

Dynamic congestion control is well studied in conventional

networks. For the solution to this problem we turn to TCP

congestion control. TCP initially attempts to transmit packets

slowly, additively increasing the number of packets sent into the

network after each successful transmission. If congestion is

detected TCP will multiplicatively decrease the number of packets

transmitted to alleviate any congestion. The same argument can

be made for packet injection rates. Initially a large period

between injections is specified. The data rate increases for each

successfully sent packet. As the data rate increases the bandwidth

along the path decreases. If the path becomes saturated, injected

packets will begin being lost. This unsuccessful send will cause a

multiplicative back off in data rate. Since not all loss is related to

congestion, a back off may occur due to probabilistic errors over

the wireless link. In this case we are conservative in our injection

policy, choosing reduced throughput over possible congestion.

Authors in [14] provide alternate solutions to balance throughput

and congestion control in wireless networks.

When reinjecting a packet, packet selection is important. Our

Sequential Storage architecture is based on a queue which

provides FIFO reads. At any point in time only the head of the

queue is accessible. In a single sink environment FIFO works

appropriately. Path connectivity information for the head packet

applies to all subsequently stored packets since all packets need to

be delivered to the same sink. This is not the case in a multiple

sink scenario. It is possible for the head packet to be destined for

a sink with is currently disconnected; yet, subsequent packets may

be destined to a sink which is connected. To handle these

situations, a round robin mechanism is implemented when

handling packet reinjection. If the head packet fails to send, it is

popped off the head of the queue and reinserted to the back of the

queue. This functionality comes at a cost. By reinserting the data

at the back of the Sequential Storage, it is being rewritten which

requires additional energy and hastens the write exhaustion of the

flash.

7. Experimental Results
The concepts presented in this paper have been implemented and

deployed as part of the Extensible Sensing System (ESS). ESS

provides the “sensor network in a box” paradigm. It is

appropriate for applications requiring a distributed set of mote

class nodes embedded in the environment, sending sensor data to

one of many linux class sinks.

On the mote side, the components of ESS can be divided into

Multihop Networking and the Data Service Engine. The Data

Service Engine provides both querying and dynamic configuration

of sensors in the mote field. Multihop Networking forms a multi-

sink tree network as described in Section 6. Reliability and

Storage are services provided by the Multihop Networking

component.

On the sink side, ESS is implemented using EmStar [15]. EmStar

is a set of services for building and deploying sensor-net

applications. EmStar provides both simulation and emulation

tools to easily analyze system performance. The experimental

results of our reliability and storage architecture are part of a

complete ESS deployment at the James Reserve using EmStar.

7.1 Emulation
A unique feature in EmStar is the ability to run in emulation

mode. In emulation mode, a simulation on a centralized server

uses real deployed motes as radios, in place of a simulated radio

model. In our emulation, we used the ceiling array at the Center

for Embedded Network Sensing (CENS) for our mote

deployment. Figure 9 shows the layout of the motes in the ceiling

array.

Figure 9 Ceiling Array layout at CENS.

In this experiment we ran a 24 node emulation over the ceiling

topology. A Data Service Engine query was sent to the entire

network requesting periodic sensor data at a 1 minute internal. In

this experiment Node 2 acted as the sink.

Figure 10 An overlay of both path quality and used storage

capacity as a function of time for a one hop neighbor (Node 5).

Figure 11 An overlay of both path quality and used storage

capacity as a function of time for a 5 hop neighbor (Node 38).

7.1.1 Evaluation
Both graphs 10 and 11 show the path and storage metrics for a

single hop node and a multiple hop node. The y-axis represents

both the path quality and the number of packets stored. The path

quality is measured as the number of expected transmissions to

successfully send a packet to the sink, including retransmissions.

A measurement of 255 means a complete disconnection.

Instantaneous path quality is represented by the light blue line,

average path quality is represented by the dark blue line, and the

number of packets stored is represented by the black line.

 Using these graphs we are able to analyze instantaneous path

quality vs average path quality, storage as a function of path

quality, and congestion control for the both the single hop case

and multihop case.

Single Hop Analysis

In the one hop case (Figure 10), a majority of the instantaneous

fluctuations are short lived relative to the data generation period

resulting in minimal packet storage. Packets which are stored

during these periods are randomly distributed.

At approximately t=10000 a disconnection occurs for this one hop

node. As expected environmental conditions and low cost radios

have temporal variations in quality. In this case the combination

has caused a disconnect between this node and the sink. During

the network disconnect packets are stored locally as represented

by the steadily increasing packet count. Once network

connectivity is regained, packets are again drained from the

network. The decreasing packet count is a result of packet

reinjection.

After regaining connectivity, the initial rate of packet reinjection

is slow as indicated by the shallow slope of the decreasing packet

count. This is a result of our congestion control mechanism. As

packets are successfully reinjected the data rate increases as

indicated by the increased slope.

Multihop Analysis

In the multihop case (Figure 11), again we see instantaneous

fluctuations in path quality. In this case the difference between

instantaneous and average path quality is more pronounced and

longer lived. Differences in quality last in the order of tens of

minutes. This is due to the accumulated affect of small variations

in link quality over the multiple hops. The result of there is a

greater number of packets stored during the periods of large

deviation. It is interesting to note that the packets stored during

these fluctuations are actually sequential packets where as in the

one hop case packets were randomly distributed. Applications

able to handle random packet loss would not need reliability in

the single hop case, but would fail without reliability in the

multihop case.

At approximately t=10000, this node also experiences a decrease

in path quality as indicated by the pronounced spike in both

instantaneous and average path quality. Once again the node

stores packets locally during this period as indicated by the

increased packet count.

Congestion control attempts to reinject packets into the network

once the path quality has returned to its previous value, but

relatively poor path quality causes the reinjection policy to stay in

slow start. Eventually worsening connectivity causes the number

of stored packets to increase. This case is a good example of a

situation in which poor link quality will always require longer

term storage as a mechanism to handle consistently long queue

delays.

This experiment shows the relationship between path quality and

storage. The reliability architecture was able to react to poor link

quality and long periods of disconnect by storing and reinjecting

packets at appropriate times. Without reliability and storage large

consecutive portions of data would be lost for analysis.

7.2 Deployment: Cold Air Flow Project
As stated earlier, the motivation for this research was the Cold Air

Flow Project at James Reserve. At the time of writing, the current

implementation of ESS has been collecting data at the James

Reserve for over 3 weeks. Data is queried at an interval of 5

minutes, resulting in approximately 6000 data points per node

over the 3 week period. The metrics collected are from a single

18 node transect along the valley. Results were returned using the

Sympathy debugging service provided by ESS. Sympathy is an

in-band debugging mechanism which returns system metrics over

the multihop routing tree. Since Sympathy is in-band,

disconnects will cause gaps in Sympathy data. The storage

metrics collected by Sympathy represent a total aggregate number

of packets collected so storage activity can be extrapolated over

gaps.

Node

Id

Total Pkts Stored External Pkts Stored Num

Hops

39 860 0 3

106 1205 172 3

120 986 61 4

74 863 0 1

98 1020 0 5

76 836 0 2

11 811 0 2

111 4783 1913 2

118 2245 1408 3

100 886 17 4

13 856 5 3

79 1187 292 4

19 903 10 4

7 939 7 3

155 886 23 1

25 1338 488 1

97 1527 674 2

114 860 0 3

Table 1 Storage information collected from sympathy over a 3

week period

Figure 12 A 3 day storage profile for a single node.

Table 1 shows the total number of packets stored on each node

over its lifetime. These represent packets which would have been

lost if not for the reliability service. Each node has stored a

minimum of approximately 800 packets (14% of the total packets

generated at each node). In some cases nodes have stored external

packets from upstream children, in cases where routing

information was slow to propagate.

Figure 12 shows a 3 day profile of storage for node 79. When

examining this profile we see storage proceeds in a step like

manner. This indicates that storage occurs in periodic batches.

Previous implementation [2,3] assumed that loss occurred

randomly and that retransmissions would be enough to mask these

random losses. This profile shows that data is lost in consecutive

batches where local storage is needed to buffer data during these

periods.

Figure 12 also shows a period of complete disconnect. The

disconnection can be seen from approximately t=125 to t=175.

During this time Sympathy was not able to collect data for this

node, which results in the sudden jump in total packets stored.

Results from our deployment at James Reserve have shown that

poor link quality and frequent disconnects can cause batches of

data loss. Our architecture was able to successfully store data

during these periods guaranteeing data was not lost.

8. Conclusion
Harsh environments and wireless communication make reliability

in sensor networks an interesting problem. In these challenged

networks poor path quality and frequent disconnects make

conventional network protocols unfeasible. In this paper we

propose a hop-by-hop, forwarding protocol. We show that by

moving reliability out of the end hosts and into the intermediary

nodes we can increase the probability of successful packet transfer

over multiple hops. In addition, we show that long queuing

delays at forwarding nodes require persistent storage to buffer

data during long periods of disconnection.

We have integrated our architecture as a service in ESS and have

deployed an implementation for the Cold Air Project at James

Reserve. Deployment results have validated our assumptions

about challenged networks and have quantified the benefit of our

reliability architecture in the number of saved packets.

9. Future Work
The network stack described in this architecture provides packet

by packet reliable routing. In the future we would like to

implement an intelligent transport layer which provides

redundancy.

The architecture presented provides reliability in the face multiple

failures such as of disconnected networks or node resets. A

source of failure not covered by this architecture is unrecoverable

node failure. In this all the data present on the failed node is lost.

Reconstruction of the complete message at the end host becomes

impossible.

The solution to this issue requires data redundancy provided in

the network. There are two possible redundancy mechanisms to

follow up in the future.

The first mechanism provides redundancy at the packet level.

This mechanism can use a variety of existing hashing techniques

such as Forward Error Correcting (FEC) or existing techniques in

multimedia delivery. In these cases lost packets are reconstructed

from other packets.

The second mechanism uses the transport layer to initially store

the entire message to persistent storage at the source before

sending. As messages from various sources are assembled at the

sink, the sink keeps a journal of packets assembled. Periodically

the sink floods a digest of the most current packet assembled from

each node. As nodes receive the digest they can begin to release

locally stored data.

Both mechanisms have their merits. Future work will examine

these techniques to determine which is most appropriate for

sensor networks.

10. References
[1] V. Jacobson. Congestion avoidance and control. ACM

ComputerCommunication Review; Proceedings of the Sigcomm ’88

Symposium in Stanford, CA, August, 1988, 18, 4:314–329, 1988.

 [2] Fred Stann and John Heidemann. RMST: Reliable Data Transport in

Sensor Networks. 1st IEEE International Workshop on Sensor Net

Protocols and Applications, 2003

[3] C. Wan, A. Campbell, L. Krishnahmurthy. PSFQ: A Reliable

Transport Mechanism for Wireless Sensor Networks. ACM International

Workshop on Wireless Sensor Networks and Applications, Atlanta,

Georgia, Sept 2002.

 [4] Serqiu Nedenshi, Rabin Patra. DTNLite: A Reliable Data Transfer

Architecture for Sensor Networks. 8th International Conference on

Intelligent Engineering Systems, 2004

[5] A. Kawaguchi, S. Nishioka, and H. Motoda. A flash-memory

based file system. In USENIX Winter, pages 155–164, 1995.

[6] Hui Dai, Richard Han, Michael Neufeld, ELF: An Efficient Log-

structured Flash File System for Micro Sensor Nodes. In the Proceedings

of the 2nd international conference on Embedded networked sensor

systems, 2004.

[7] D. Gay. The Matchbox File System.

http://webs.cs.berkeley.edu/tos/tinyos-1.x/doc/matchbox-design.pdf,

2003.

 [8] Kevin Fall et al. DTN Implementation. http://www.dtnrg.org, 2003.

[9] James Reserve. http://www.jamesreserve.edu

[10] Crossbow Technology Inc. Mica2 wireless measurement system

datasheet, http://www.xbow.com

 [11] Philip Levis et al. David Culler. TinyOS: A Component based OS

for wireless sensor networks. http://webs.cs.berkeley.edu/tos/, 2003.

[12] K. Fall. A Delay-Tolerant Network Architecture for Challenged

Internets.ACM SIGCOMM, 2003.

 [13] Taming the Underlying Challenges of Reliable Multihop Routing in

Sensor Networks, A. Woo, T. Tong, D. Culler. ACM Sensys 2003, Los

Angeles, November 2003

[14] Rahul Kapur, Thanos Stathopoulos, Deborah Estrin, John

Heidemann, Lixia Zhang. Application-Based Collision Avoidance in

Wireless Sensor Networks. In IEEE Workshop of Embedded Networked

Sensors (EmNet) 2004

[15] Em*: A Software Environment for Developing and Deploying

Wireless Sensor Netwroks, L. Girod, J. Elson, A. Cerpa, T. Stathopoulos,

N. Ramanathan, D. Estrin, CENS Technical report #34

