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Reliability and Storage in Sensor Networks 
 

ABSTRACT 

A large class of delay tolerant sensor-net applications require 

reliable deliver of every data point.  The nature of sensor network 

deployments makes providing reliability a challenge.  Harsh 

environments and unreliable wireless communication can cause 

long periods of poor to no connectivity.  Meanwhile, energy and 

resource constraints on sensor platforms limit retransmissions and 

buffer sizes.  This paper presents an architecture designed for 

these challenged networks.  The architecture provides packet-

level, hop-by-hop reliability for delay-tolerant data using 

sequential storage for buffering during long queue delays.  The 

concepts discussed in this paper are implemented as services in 

the Extensible Sensing System, a deployment at the James 

Reserve as part of the Cold Air Flow Project.   

General Terms 

Sensor Networks, Reliability, Storage, Deployment 

Keywords 

Wireless, sensor networks, reliability, storage, Deployment 

1. Introduction 
Wireless sensor networks (WSN) provide a distributed, sensing 

and computing platform for monitoring environments in which 

conventional networks are impractical.  The benefit of a WSN 

comes from embedding resource-constrained, wireless sensor 

nodes in the environment at a scale which provides fine grained 

readings over a large area.  There exists a class of sensor-net 

applications which require reliable delivery of every data point 

collected across the network. 

The nature of sensor networks makes reliability a challenging 

problem.  Traditional network protocols such as TCP [1] provide 

reliability using unrestricted end-to-end retransmissions and 

acknowledgements while assuming large data buffers to store 

undelivered packets.  Current research [2,3,4] has shown that end-

to-end reliability in sensor networks is impractical given energy 

constraints and unreliable wireless links.  At the same time, 

resource constrained sensor nodes only provide limited storage 

space to buffer data while waiting for end-to-end 

acknowledgements. 

Existing solutions employ a hop-by-hop reliability mechanism at 

either the link or transport layer to increase the probability of 

packet delivery to the destination.  These solutions assume high 

node connectivity and unvarying, low-error wireless links.  Recent 

deployments such as the Cold Air Flow Project at James Reserve 

have shown that real environments rarely exhibit such well 

defined characteristics.  Instead time varying link quality and 

sparse node density cause long periods of poor to no connectivity.  

In light of this, a new architecture is needed to provide reliable 

data delivery for these challenged networks.      

The main contribution of this paper is the design, implementation 

and measurement of a sensor network system which provides 

reliability in the face of poor link quality and frequent 

disconnects.  Our deployment measurements show wireless 

networks exhibit time varying link quality which can cause 

periodic deviations from average path quality.  Our design utilizes 

the delay tolerant attribute of sensor-net applications to store data 

locally during these periods of deviation.  The result is increased 

energy efficiency due to the elimination of wasted 

retransmissions.  We provide this service by implementing a 

packet-level, hop-by-hop routing protocol which buffers data 

using sequential storage over flash memory.  We show that this 

protocol utilizes sensor resources more efficiently by increasing 

storage capacity and reducing ineffective retransmissions.  

2. Cold Air Flow Project 
Our motivation for implementing an improved reliability 

architecture for sensor networks stems from the deployment of the 

Cold Air Flow Project at the James Reserve [9].  In this study, 

researchers are attempting to determine cold air flow and humidity 

patterns along mountainous ravines.  The information is essential 

in modeling vegetation and wildlife patterns in these regions.  

Previous attempts to model cold air flow used sparsely placed 

weather stations and extrapolated data points over large areas.  

This method of data collection was ineffective for explaining 

ecological patterns in ravines and valleys.    

The aim of the Cold Air Flow Project is to develop a more 

accurate model based on fine grained temperature and humidity 

readings along the James Reserve Valley in the San Jacinto 

Mountains.   The project has deployed 40 nodes in 2 transects 

perpendicular to the valley to measure both cold air gradients 

across a single transect and cold air flow between multiple 

transects.   

To build a correct cold air model, researchers require a valley 

wide collection of fine grained readings as a function of time.  

Lost data points from any part of network will require 

extrapolation between points and will revert the analysis back to 

previous inaccurate results.  In this deployment reliable delivery 

of each data point is essential for correct analysis.   

This application is an example of a larger class of sensor-net 

applications.  In this class of application all data is essential but 

delivery is tolerant to relatively long delays.      

3. Related Work 
Previous research is partitioned into two different areas: persistent 

storage and reliable network protocols.     

3.1 Persistent Storage 
Most sensor network platforms use flash memory as a means of 

persistent storage.  Flash memory is the appropriate choice for 

resource constrained sensor nodes due to its high reliability, high 

density, and relative low cost.  Though advantageous, the 
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characteristics of flash memory are very different from 

conventional hard disks.  

Flash memory is divided into sectors or blocks which are then 

subdivided into pages.  Page sizes are device specific and can vary 

from hundreds of bytes up to a few kilobytes.  All read/write 

operations are executed on a per-page basis with writes 

consuming more energy than reads.  Flash memory writes also 

exhibit another unique property in that each page can endure a 

maximum number of writes.  Repeated writes to the same page 

will exhaust the lifetime of the flash page.  To ensure that no 

single page reaches its lifetime limit before the rest of the flash 

memory pages it is important to ensure writes are evenly 

distributed.  This process is called ware-leveling [5].     

The benefits of using flash memory for compact devices have lead 

to an abundance of literature on flash based file system design.  

The design presented in [5] as well as other current approaches 

emulate block devices over flash pages. Traditional files systems 

are then ported over the emulated block device providing 

compatibility with traditional implementations.  This approach of 

emulating a block device does not utilize the unique properties of 

flash memory and causes fragmented data and inefficient ware-

leveling. 

Current sensor network research in flash based file systems has 

lead to the implementation of full fledged journaling file systems 

[6,7].  As with traditional journaling file systems these 

implementations create a new log entry for each write operation 

that occurs.  To optimize this technique for flash memory each 

entry is placed on a separate page.  Though this produces natural 

wear-leveling, it can cause fragmentation if the sensor data is not 

a multiple of the page size.  Given the limited storage available on 

sensor nodes this fragmentation can lead to large portions of 

unusable space.   

The nature of sensor readings requires sequentially written records 

without the need to modify previous data.  Current 

implementations such as Matchbox and ELF provide a rich set of 

file system operations, many of which are unnecessary for 

applications wishing to only store sensor data.  The resource 

overhead of a full fledged file system may not be appropriate for 

these applications.   

Previous work on flash storage provides generalized solutions 

which may not fit the needs of sensor-net applications.  For this 

reason we have created a new sequential access file system 

optimized for sensor data.  The primary objectives of this storage 

layout is to maximize the write lifetime of the device using ware-

leveling and overcome limited local storage capacity by 

distributing storage over the network.     

3.2 Reliable Network Protocols 
Previous work on reliability in sensor networks has focused on the 

network stack.  The result has been a set of transport layer 

protocols which attempt to provide message level reliability on a 

hop-by-hop basis. 

In [3], the authors determined the biggest problem with end-to-

end recovery was the unreliable characteristics of the wireless 

communication link.  The error accumulates exponentially over 

multiple hops, causing a high probability of packet loss.  This 

work produced Pump Slowly, Fetch Quickly (PFSQ), a hop-by-

hop NACK transport protocol.  Message fragments are 

sequentially sent one hop, where the receiver will selectively 

request missing fragments based on sequence number.  Single 

packet messages default to an end-to-end recovery mechanism. 

In [2], the authors present RMST.  RMST, much like PSFQ, is a 

hop by hop selective NACK transport protocol.  RMST improves 

on PSFQ by including link layer recovery via Automatic Repeat 

Requests (ARQ).  The link layer implements a stop-and-wait 

protocol using explicit acknowledgements for each sent packet.  

The number of ARQ retransmissions attempted before giving up 

is configurable but statically set.  The advantage delivered by 

RMST is in providing added reliability at the link level instead of 

just relying on explicit NACKs from the transport layer to recover 

lost packets.       

The authors in [4] present a sensor network implementation of 

Delay Tolerant Networking (DTN) [8].  The work in this paper is 

similar to RMST and PSFQ by providing a hop-by-hop transport 

layer protocol. In addition the implementation presents a 

persistent storage mechanism to handle situations in which the 

message is not delivered to the next hop.   

Both RMST and PSFQ provide reliability by attempting to 

increase the probability of packet delivery using intelligent 

retransmissions on a hop-by-hop basis.  This mechanism works 

well in systems with high connectivity and low error link quality, 

but in real systems where disconnects are possible both RMST 

and PSFQ will begin to lose packets.   

DTN provides added reliability over RMST and PSFQ by storing 

messages locally during disconnects.  In storing at the message 

level, DTN introduces fragmentation in the storage device since 

variable length messages are not multiples of the storage capacity.  

Fragment sizes are proportional to message sizes thus larger 

messages lead to larger areas of unusable storage.  In addition 

DTN does not distinguish between full message losses due to 

disconnect and single packet losses due to link error.  In either 

case the message is stored for future retransmission.  In the latter 

case successful packet transmissions are wasted since the full 

message was not transferred to the next hop.  

These limitations in currently available solutions require a new 

network protocol for reliability.  In our new protocol we provide 

reliability at the packet level, using hop-by-hop 

acknowledgements.  Reliability at the packet level offers minimal 

fragmentation and allows distributed storage of messages over 

multiple nodes. 

4. Reliable Staged Transport 
The main components of any reliable architecture are 

retransmissions and storage (both volatile and non-volatile).  The 

goal of our architecture is to use both components intelligently to 

provide an energy and resource efficient solution. 

4.1 Design Space 
When designing a reliability solution, the design space can be 

divided into 3 dimensions: 

• End-to-end vs hop-by-hop acknowledgments 

• Forwarding vs store-and-forward routing 

• Real-time vs delay tolerant data 

4.1.1 End-to-end vs Hop-by-Hop Acknowledgments 
Established network protocols, like TCP, provide reliability 

through end-to-end acknowledgements and retransmissions.  In 



these networks, the end hosts are responsible for handling error 

recovery with no responsibility delegated to intermediary nodes.  

The implicit assumption in these protocols is that packet loss is 

the result of a single congested queue along the route.  Since 

queue overflow is directly correlated with transmission rate, 

congestion can be alleviated by regulating packet flows.  In other 

words packet loss is a quantifiable event, which can be controlled 

by direct action from the end host.  In sensor networks this 

assumption is not true.  The physical characteristics of the 

wireless medium provide probabilistically unreliable links.  

Packet loss is not the result of a single quantifiable failure point 

but instead is a probabilistic accumulation of error over multiple 

hops. 

To demonstrate this, assume a packet loss rate of p over a wireless 

channel.   Over n hops the chances of a successful transmission 

decreases to (1-p)^n.  Figure 1 shows the probability of successful 

packet deliver over a given number of hops for different average 

link error rates.  This shows that for large networks with multiple 

hops it is almost impossible to deliver a packet using end-to-end 

delivery with no intermediary error recovery. 

 

Figure 1 Probability of successful packet delivery over 

multiple hops given different average link error rates. 

 

Unlike wired networks, packet loss in wireless networks is not 

correlated to transmission rates but instead is related to individual 

link qualities.  Actions by the end host are ineffective at correcting 

packet loss multiple hops away.  Instead intermediary nodes, 

which are directly connected to the error producing link, can 

immediately detect a loss and retransmit.  Moving the 

responsibility for error recovery to each individual hop along the 

path reduces the total number of transmissions required to 

successful deliver a packet.  A retransmission due to failure at 

node k in an n hop path has a (1-p)^n-k probability of success vs. 

an end-to-end recovery which has a (1-p)^n probability of 

success.   

4.1.2 Forwarding vs. Store-and-forward Routing 
The difference between forwarding and store-and-forward routing 

is the granularity at which the network stack views data.   

In store-and-forward networks, routing is performed on complete 

messages.  Messages are broken into a series of fragments, each 

tagged with a sequence number to be used in reassembly.  The 

network stack attempts to transmit an entire message one hop by 

sending each individual fragment as a packet.  The receiver 

reassembles the packets into a message, using sequence number 

gaps to selectively request missing packets.  In this manner 

messages are sent and reassembled hop by hop until they reach 

their destination.  

Forwarding networks view data on a packet level.  The network 

stack is given a packet (messages are fragmented at a higher 

level), and is responsible for attempting to send the packet one 

hop.  In these networks packet delivery is explicitly acknowledged 

by the one hop receiver.  The relationship between packets and 

messages is ignored and it is the end hosts responsibility to 

reassembly the fragments.   

Current implementations for reliability in sensor networks [2,3,4] 

perform store-and-forward routing using transport layer NACKs 

for missing packets.  The largest cost for using this type of routing 

is storage space.  At each hop the packet must be reassembled 

before it can be forwarded again toward the destination.  On 

sensor nodes storage (both volatile and non-volatile) is a 

constrained resource.  Mica 2 motes [10], a sensor node platform, 

provide only 4KB of RAM and 512KB of flash storage.  When 

programmed using the TinyOS [11] operating system, the 4KB of 

RAM is statically allocated at compile time.  This means buffer 

space must be pre-allocated in RAM.  Unused buffer space during 

run time is not reallocated and is essentially wasted. 

In a store-and-forward network buffer space is allocated as a 

multiple of message size, where in the forwarding network buffer 

space is allocated as a multiple of packet size.  If message sizes 

are much larger than packet sizes then the magnitude of unused 

buffer space is large.  In sensor networks, where resources are 

limited this inefficient use of storage can limit the number and 

complexity of services provided by the sensor net application.  

4.1.3 Real-time vs Delay Tolerant Data 
The time sensitive nature of the data is application specific, but is 

an important dimension in designing a reliable architecture.   

Real time data has a hard deadline on the order of seconds or 

minutes and must arrive at the sink before that period.  Data that 

is still present in the network beyond its deadline is useless and 

can be safely discarded.  Most real time applications fall into the 

“sense and react” class of sensor-net applications.  In these 

applications the network must react to events detected, within a 

specified time. The timely arrival of data is crucial. 

Delay Tolerant networks have either a loose deadline on the order 

of hours or days or have no deadline at all.  Delay tolerant 

applications usually fall into the “sense and analyze” class of 

sensor-net application.  In these applications data is collected at a 

centralized point for detailed analysis of time varying 

phenomenon.  In most delay tolerant applications each data point 

is essential for analysis, but no guarantees need to be met as to the 

time of arrival.  

Reliability is defined differently in real time applications versus 

delay tolerant applications.  In real time applications reliability is 

associated with arrival times and meeting the specified deadline.  

On the other hand, in delay tolerant applications, reliability is 

related to data loss and the guaranteed delivery of all data points. 



When designing reliability for sensor networks the time sensitive 

characteristics of the data is important to consider.  In real time 

applications the hard deadline limits the architectural choices 

available.  In most cases the brute force design using continuous 

hop-by-hop retransmissions give the best results.  In these 

networks each packets is pushed toward the sink hop by hop until 

the packet arrives at the sink or the packets deadline has past.  

Retransmissions are used to push data past unreliable links with 

throughput taking priority over energy efficiency.  Buffer space 

can be relatively small since data does not have a long lifetime 

and buffers are not used for long term storage.  

Delay tolerant applications have much more flexibility in design 

decisions.  Since data has no hard deadline for arrival, the 

network stack can prioritize energy efficiency over throughput.  

Also storage allocation becomes a main concern since each data 

point must be stored in the network until its arrival at the sink.  

This paper focuses on the appropriate design decisions for 

reliability in delay tolerant sensor net applications. 

4.2 Challenged Networks 
Conventional network protocols make implicit assumptions about 

high quality links, end-to-end connectivity, and low latency 

responsiveness.  Sensor networks do not have these qualities and 

therefore a new network classification must be introduced to 

characterize the properties sensor-net protocols must account for.  

In [12], the author introduces a definition for challenged 

networks. The following are characteristics of challenged 

networks: 

High Latency, Low Bandwidth Communication: Sensor network 

platforms provide low cost, low power wireless communication.  

To achieve this goal, radio quality and bit rate is sacrificed.  The 

Mica2 motes operate at 56 Kbs bit rate under optimal conditions.  

In addition, the combination of harsh environments and low radio 

quality make highly error prone links.  This poor link quality can 

cause numerous retransmissions, which can further delay 

communication.  Finally low cost production can yield 

asymmetric links due to a lower quality of manufacturing.  Link 

asymmetry can skew round trip estimations since each leg of the 

path has a widely different delay. 

Disconnections: In sensor networks, complete end to end path 

connectivity at any given point in time can be unlikely.  

Disconnects can arise from two sources:  time-varying unreliable 

links and low-duty cycle node operation.  Wireless link 

connectivity is unreliable and the quality of the link may vary over 

time.  This can cause unpredictable periods of disconnect as links 

appear and disappear in the network.    In addition, even as radio 

qualities increase, energy conservation techniques such as duty 

cycling and topology control will cause nodes to periodically 

leave the network.  In these cases nodes which are critical 

connection points for communication may periodically shutdown 

to conserve energy.  These shutdowns may be scheduled and 

predictable but will still cause periodic disconnections in the 

network. 

Long Queue Delays: Disconnections and low latency, low 

bandwidth communication can lead to long queue delays at 

intermediary nodes.  Data traffic is usually dependent on external 

events and cannot be regulated or throttled during periods of poor 

connectivity.  In these situations nodes must be able to reliable 

store data locally until connectivity improves. 

4.3 Delay Tolerant Design for Challenged 

Networks 
Having outlined the design space and network characteristics we 

can analyze each design decision given the network properties. 

End-to-end vs. hop-by-hop acknowledgements: Any protocol 

dependent on end-to-end communication requires predictable 

roundtrip times and stable connectivity between end points.  High 

latency communication and frequent disconnects found in 

challenged networks can adversely effect end-to-end 

communication.  As shown previously, the additive affects of 

unreliable link quality make the probability of successful 

communication low.  On the other hand, hop-by-hop 

communication makes no assumptions about path connectivity 

and is only concerned about single hop link quality.  Work in [2] 

has shown that link quality can be controlled using link layer 

ARQs.  Given the characteristics of challenged networks hop-by-

hop acknowledgements are the appropriate choice. 

Forwarding vs store-and-forward routing: The choice between 

forwarding and store-and-forward routing is matter of available 

storage capacity.  Long queue delays mean intermediary nodes 

must reliable store data locally until packets can be transferred.  

Message sizes being larger than individual packets means that 

buffer allocations in RAM must also be larger to cope with 

multiple messages.  Additionally, stored data may not be a 

multiple of storage capacity leading to fragmentation.  Fragment 

sizes are proportional to the size of the data.  Storing data at a 

packet level leads to smaller fragment sizes.  It also has the added 

benefit of allowing distributing storage of a single message over 

multiple nodes. Given the constrained storage capacity on sensor 

nodes it is better to handle data at a packet level making 

forwarding the appropriate design choice. 

It is apparent that the correct reliability design for delay tolerant 

applications in challenged networks is a hop-by-hop, forwarding 

architecture.  Previous work corresponds with our choice to use 

hop-by-hop acknowledgement, but our choice of forwarding 

differs from others.  Current implementations provide store-and-

forward routing placing the appropriate intelligence in the 

transport layer.  Since forwarding deals with individual packets, it 

is appropriate to push reliability intelligence lower in the network 

stack to the routing layer.  Providing reliability at the routing layer 

presents further benefits including intelligent forwarding based on 

path connectivity and instantaneous path quality, as explained in 

Section 6.  Additionally, work in Delay Tolerant Networking has 

shown that storage plays an important role in providing reliability.  

Previous work has either used volatile RAM or a bulky journaling 

file system over external flash memory.  In section 5 we present a 

flash based storage layout which is optimized for the sequential 

nature of sensor data and can overcome limited storage capacity 

by distributing storage over local neighborhoods.   

5. Sequential Storage 
Flash memory provides persistent storage for small devices but at 

the cost of limited write lifetime.  The primary goal is to provide 

energy-efficient storage which maximizes the lifetime of the 

device.  A secondary consideration is to extend the limited storage 

capacity available on sensor network platforms by utilizing 

network wide storage capacity.  Section 5.1 defines a layout for 

flash memory which provides ware-leveling optimized for the 

sequential nature of sensor data.  Section 5.2 presents an 



extension to the sequential storage layout which expands storage 

capacity by distributing storage evenly over a network 

neighborhood. 

The Sequential Storage Layout presented in this section is 

implemented on the Mica2 mote.  The mote provides 512 KB of 

external flash memory.  The flash on the mote is segmented in 

264B pages and contains two internal page buffers to act as 

temporary storage during reads and writes. 

5.1 Sequential Storage Layout 
Sensor readings are usually variable length and time ordered.  

Subsequently, storage of sensor readings should sequentially write 

records providing a First In, First Out paradigm for reads and 

writes.  The most appropriate data structure to handle these 

requirements is a variable-length queue.  Queues provide FIFO 

reads and writes handling the time ordered aspects of data.  

Variable-length queues are pointer-based storing a chain of 

variable length data.  Finally queues are naturally optimized for 

flash memory, since all modifications are done at either the head 

or the tail.  This provides even ware leveling as the head and tail 

move sequentially through flash, continuously wrapping around 

the specified storage area. 

A queue data structure contains two components.  The Queue and 

a Record Locator Table (RLT).  The RLT is a data structure 

containing a pointer to both the head and tail of the Queue.   

The Queue is implemented using a chain of pointers.  Each record 

is written to the tail of Queue.  Before each record is written, a 2 

byte length field is added to the head of the record detailing the 

length of the data.  This acts as a pointer to the next record 

location in the Queue.  The Queue is implemented to use the 

pages of flash memory as a circular buffer, wrapping around as it 

meets the end of memory.      

The Queue is naturally optimized to ware-leveling but the RLT is 

not.  The RLT must be stored in flash to maintain a persistent 

record of the location of the Queue and must be updated for every 

read and write.  If RLT is located on a single page in flash, the 

write lifetime of the page will quickly become exhausted.  This 

solution is to provide a distributed RLT data structure.  

Distributing the RLT, distributes the cost of updating over 

multiple pages.  A further optimization is to distribute the RLT in 

such a way that modifying the Queue and updating the RLT can 

occur in a single page write instead of two separate page writes.   

 

 

Figure 2 A logical and physical layout of flash memory 

showing the projection of the queue to individual pages. 

 

 

As shown in Figure 2, flash memory is split into Queue Space 

(Red and Blue) and RLT Space (Yellow).  The RLT contains 

pointers to the current head and tail of the Queue.  The Queue 

currently occupies the space colored in Red. At the page level 

each page is split into Record Space and Page Meta space.  

Record space is the page level projection of the Queue Space and 

the Page Meta space is the page level projection of the RLT. If a 

page contains either the head or tail of the Queue, the Page Meta 

contains the byte offset of either the head or tail in the given page.  

If the page does not contain the head or tail the page meta byte 

offsets are set to a special UNSET value.   

As the head or tail of the Queue is read or written, the affected 

page is loaded into the temporary flash buffer.   Once the queue 

data is read/written the RLT is updated by setting the appropriate 

byte offset in the page meta to point to either the new head or tail 

of the Queue.  The page is then written back to memory.  Both the 

Queue data and the RLT are modified in a single write.   

The exception to this is when the head or tail moves across a page 

boundary.  In this case the current head or tail offset is recorded in 

the new page and then previous offsets are unset in the old page.  

Ordering the operations in this manner allows us to reconstruct 

the Queue even if node fails between the set and unset operation.  

When the node starts, it scans the page metas looking for the head 

and tail pointers for the Queue.  If multiple head or tail pointers 

are found (due to previous failure), the first head pointer found is 

used and/or the last tail pointer found is used.  This guarantees 

that a failure during a read will set the head to reread the data 

being read during failure.  Consequently for the write, this will set 

the tail to point to the location in memory behind the record 



written during the failure.     

 

Figure 3 Ware-leveling results using a random read/write 

sequence with the read to write ration of 1:1 

  

 

 

Figure 4 Ware-leveling results using a random read/write 

sequence with a read to write ratio varying between 3:1 to 1:3 

 

The primary purpose of our Sequential Storage Layout was to 

extend flash memory lifetime by efficiently ware-leveling writes 

to storage.  Figure 3 shows the result of randomly reading and 

writing data to storage.  The results were produced with a 1:1 read 

to write ratio.  The graph shows the number of flash writes for 

each page.  As you can see the writes are fairly even with a 

maximum difference between page writes as 19. 

In most applications reads and writes usually come in batches, ie 

due to loss or regaining of connectivity.  Figure 4 shows the result 

of randomly reading and writing data to storage produced with 

varying 3:1 and 1:3 read to write ratio.  The system started with a 

1:3 write ratio until the queue was full.  At which point it moved 

to a 3:1 read to write ratio until the queue was empty.  It cycled 

between these two extremes until the end of the simulation.  As 

you can see the writes are again fairly even.  The major drop off of 

writes at page 40 is due to the simulation ending with the queue 

tail at page 39. 

5.2 Distributed Storage 
The Mica2 mote only provides 512 KB of persistent memory.  

Large data sizes, high data rates and long periods of poor or no 

path connectivity can consume the local storage capacity on a 

mote.  In the situation where a single node or a neighborhood of 

nodes is overburdened, it is useful to distribute data over 

neighboring nodes to alleviate storage constraints.  This section 

presents a design to evenly and efficiently distribute data over 

local neighborhoods.   

The distribution of data works on a gradient descent policy where 

data attempts to find the lowest “cost” location for storage.   The 

storage cost is a function of both available space and the cost of 

transmission.       

The first step is to communicate neighborhood storage capacity. 

This is accomplished by a beaconing mechanism which 

periodically broadcasts a nodes available storage space in bytes.   

The node can also use the beacons to maintain an estimate of link 

quality between itself and its neighbors.  This link quality 

provides a measure of the transmission cost over that link.   

Each node keeps a neighbor list which contains each neighbor’s 

available storage and link quality.  When replacing an entry in the 

neighbor list storage capacity has the highest priority.  The 

replacement policy removes the lowest capacity node from the list 

if a higher capacity neighbor is discovered.  When a neighbor is 

chosen for distribution, the neighbor with the highest quality link 

is chosen.  In essence, the algorithm chooses the best possible link 

quality from the list of highest capacity nodes.  This mechanism 

weights capacity as a higher priority than link quality since this 

will evenly distribute the data and will not over run the capacity 

of a neighbor who has exception link quality.  

The next important design point is to decide when to distribute 

data and when to store locally.  The objective is to have a smooth 

distribution instead of waiting to exhaust a node’s storage 

capacity before attempting to distribute the data.  If the device has 

a relatively large amount of remaining data capacity (in actual 

bytes not in percentage) it should decide to store locally all the 

time.  On the other hand if the device has little or no storage it 

should decide to always distribute the data. Between the two 

extremes the decision to store locally or distribute should be 

proportional to the remaining storage on the device relative to its 

neighbors. 

To accomplish this, the distribution decision function is based on 

picking a random number between 1 and the total size of storage 

space available.  If the number is greater than the storage 

remaining, then the node should distribute the data, otherwise it 

should store it locally.  When full storage capacity is remaining 

the node will always store locally.  As the remaining bytes 

available goes to zero, the decision to distribute will become more 

and more probable.  This algorithm guarantees the decision to 

store is based on the percentage of storage on the device.   



The next step is to consider the "relative" storage space available 

in the local neighborhood as compared to the storage available 

locally.  Given the previous algorithm, a node may decide to 

distribute due to a low percentage of remaining storage, but its 

neighbors may have even a lower number of remaining bytes.   In 

other words a large capacity device should not distribute 

proportionally to its own storage capacity if all its neighbors have 

relatively small storage capacity.  This functionality is provided 

by preventing the node from distributing data, if its neighbors 

have less available capacity. 
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Figure 5 Distribution patter for a single node 
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Figure 6 Distribution pattern from a cluster of nodes 

 

The goal of our distribution mechanism is to evenly distribute 

data over the network by focusing on local neighborhood storage 

capacity.  Figure 5 and 6 show the distribution of data over a 

network for both single source and multiple source 

configurations.  In both cases the graphs show an even 

distribution around the sources as the network attempts to 

alleviate storage constraints at the source nodes.  The graphs are a 

result of a 64 node simulation using the EmStar Simulation tool 

described in Section 7.  The nodes were arranged evenly in a grid.  

The simulated radio channel is a circular radio model with error 

rates based on a normal distribution as a function of distance from 

the source.    

In Figure 5 a single source at (20,20) produced 5000 packets of 

data.  Each node has the capacity to store 300 packets.  The 

distribution pattern shows data was first moved to the one hop 

neighbors.  As the one hop neighbors became full, they also began 

distributing data to their one hop neighbors pushing data away 

from the source.   

Figure 6 shows the same result with a cluster of 4 sources located 

at (16,16), (16,24), (24,24), and (24,16).  Once again the data is 

sent from each source to their one hop neighbor.  The data sent 

from each source is actually pushed at a gradient away from the 

other sources.  This is visible by the dip in packets stored at the 

node in between all 4 sources.  This shows that even in a clustered 

source environment the algorithm attempts to alleviate storage 

constraints by distributing data to a higher capacity location in the 

network.   

6. Reliable Network Protocol 
Currently available reliability solutions focus on implementing a 

network protocol which increases the probability of a successful 

transmission over a single hop.  Without an appropriate storage 

mechanism, these solutions fail to provide reliability when 

transmissions are not successful.  With the addition of a 

sequential storage architecture to buffer larger amounts of data 

over longer periods of time, we can provide a more intelligent 

network protocol.  Our network protocol can exploit the delay 

tolerant attribute of sensor-net applications to store data during 

extreme deviations in path quality including possible network 

disconnection. 

The correct reliability design for delay tolerant applications in 

challenged networks is a hop-by-hop, forwarding architecture.  

Our network stack provides this service using the link layer and 

routing layer. The link layer is responsible for improving 

unreliability over the physical medium, where as the routing layer 

is accountable for path level connectivity. 

6.1 Link Layer 
Wireless communication is prone to errors from reflections, 

interference, and path loss.  The authors in [2] attempted to 

compensate for an unreliable physical medium by adding a stop-

and-wait ARQ mechanism to the link layer.  The addition of link 

level retransmissions improved the probability of success for a 

single hop transmission.  Figure 7 shows the probability of 

success for a single packet over 25 hops given a static number of 

retries. 



 

Figure 7 Probability of successful packet delivery over 25 hops 

given a maximum number of retries per hop.   

 

As the average error rate increases the number of retries required 

to successful send the packet increases to compensate.  The work 

in [2] statically configured the number of retries, implicitly 

assuming a uniform and unvarying link quality across the 

network.  Deployments, such as the Cold Air Flow Project, have 

shown that actual deployments do not follow these characteristics 

(as seen in Section 8).  Setting the retry value too low may 

artificially create disconnects over links with lower than expected 

link quality.  On the other hand, if the retry value is set too high 

then energy is wasted transmitting over links which are 

experiencing an unexpected deviation from their average link 

quality or have become disconnected for a period.  Using both the 

information in Figure 7 and estimated link quality, it is possible to 

dynamically set the retry value based on the average link quality 

of the specified link.   

Estimation of link quality is implemented using a beaconing 

mechanism.  Each node periodically broadcasts a beacon 

containing its node id and an increasing sequence number.  Nodes 

receiving the beacon can record the number of beacons 

received/missed and estimate an inbound link quality.  After a 

configured number of beacons have been sent, a node will 

compile a digest of all the inbound values it has recorded and 

broadcasts the information to its neighborhood.  Nodes receiving 

the digest will search for their own node id in the digest and 

record the outbound value of their link to that node.  In this 

manner each node has an estimate of both inbound and outbound 

link quality to its neighbors. 

A dynamic ARQ mechanism at the link layer improves the 

probability of success of transmission but does not guarantee it.  

In the situation where an acknowledgement is not received after 

the allotted number of retries, the link layer flags the packet as 

failed and it is stored in the Sequential Storage device for future 

retransmission. 

6.2 Routing Layer 
Information in a sensor network usually flows from a distributed 

set of sensors to a few selectively placed sinks.  Not every node 

will be in radio distance of a sink, so it is the responsibility of 

intermediary nodes to forward data multiple hops to a sink.   

Our routing implementation is a multi-sink, tree based routing 

algorithm.  Each sink periodically sends a path advertisement 

declaring itself as the sink.  As each node receives the 

advertisement, they integrate they’re link quality to the path 

quality received in the advertisement and broadcast their new path 

quality.  In this manner a tree is formed where the path quality is 

based on the link qualities along the path.   

Each node in the network is aware of the sink advertisement 

period and for every missed advertisement the path quality is 

exponentially decreased until after three missed advertisements 

the path is considered disconnected. 

Varying link quality can effect overall path quality. by causing 

disconnects or creating periods of unexpected deviation from the 

average path quality.  In both of these cases the routing layer can 

use path information to provide reliability in an energy efficient 

manner.      

6.2.1 Path Connectivity 
Harsh environments and unreliable links can cause networks to 

become disconnected.  As packets are being routed through the 

network, the routing layer has the opportunity to check network 

connectivity before attempting to send data.   

Packets enter the routing layer from one of two manners.  Packets 

which are local arrive at the routing layer from a higher layer in 

the network stack.  Packets which are external and are being 

routed along the path arrive from a lower layer in the network 

stack. As packets are sent into the routing layer to be forwarded, 

the path connectivity for specified source is first examined.  If the 

routing layer determines the path to the source has become 

disconnected it will not attempt to send the packet and will 

instead store the packet in Sequential Storage for future 

retransmission.   Since path connectivity information is not 

instantaneously propagated it is possible for data start along a path 

and then be stored at an external node as it enters an area in which 

connectivity information is fresher. 

Additionally queue overflows at the routing layer must be 

connected to the Sequential Storage.  During periods of high 

traffic or poor link quality it is possible for nodes to experience 

queue overflow.  To provide complete reliability, overflows must 

be stored locally in Sequential Storage.  If the time required to 

write a packet to flash takes longer than the time required to 

receive a packet over the radio, packets can still be lost since a 

queue overflow can happen while the flash is writing a previous 

packet.  On the mica2 motes the flash writes take X cycles while 

the radio takes X cycles (redo calc).  Based on this calculation all 

queue overflows can be stored locally without fear of overflows 

occurring faster than storage.      

6.2.2 Time Varying Path Quality 
Variations in individual link quality can cause large swings in 

total path quality.  When calculating path quality these large 

fluctuations can cause the routing algorithm to continually choose 

new paths.  This phenomenon is known as route flapping.  Route 

flapping can cause network instability such as routing loops.  



Averaging individual link quality estimates stabilizes path quality 

calculations.  Figure 8 shows the path quality cost using both 

averaged link costs and instantaneous link costs.  This was taken 

from a real deployment discussed in Section 7.  As you can see 

there are periods when the instantaneous path quality greatly 

exceeds the average quality.  In this case the period lasts for 45 

minutes (from 5000 seconds to 7000 seconds).   During these 

periods it may be beneficial to store the packet rather than 

attempting to send.  In order to make that decision it is necessary 

to quantify differences in path cost in terms of energy.       

 

Figure 8 Path quality calculations using the instantaneous link 

quality metrics versus using averaged link quality metrics. 

 

The Expected Transmission Cost (ETX) [13] estimates path 

quality such that the calculated value is the expected number of 

transmissions required to successfully transmit the packet over the 

path.  Using ETX we are able to quantify the difference between 

the average path cost and the instantaneous path cost in terms of 

retransmissions, i.e. energy.   

Next we must compare this cost with the cost of storing the packet 

and resending at a later time.  On Mica2 motes, writing a byte to 

flash is considered twice as more expensive than transmitting the 

byte over the radio.  If the difference between the average path 

cost and the instantaneous path cost is greater than two extra 

transmissions, then it is more efficient to store the packet and 

retransmit when the instantaneous cost has decreased. 

6.2.3 Packet Re-injection. 
Once packets are stored, they must be reinjected back into the 

network.  A disconnection in the network can affect as little as 

one node or as many as all the nodes and can last for long periods 

of time relative to the sensing period.  When connectivity is 

regained it is possible for a large number of packets to be injected 

into the system all at once.   A reinjection policy is needed to 

avoid congesting the network.  

Dynamic congestion control is well studied in conventional 

networks.  For the solution to this problem we turn to TCP 

congestion control.  TCP initially attempts to transmit packets 

slowly, additively increasing the number of packets sent into the 

network after each successful transmission.  If congestion is 

detected TCP will multiplicatively decrease the number of packets 

transmitted to alleviate any congestion.  The same argument can 

be made for packet injection rates.  Initially a large period 

between injections is specified.  The data rate increases for each 

successfully sent packet.  As the data rate increases the bandwidth 

along the path decreases.  If the path becomes saturated, injected 

packets will begin being lost.  This unsuccessful send will cause a 

multiplicative back off in data rate.  Since not all loss is related to 

congestion, a back off may occur due to probabilistic errors over 

the wireless link.  In this case we are conservative in our injection 

policy, choosing reduced throughput over possible congestion.  

Authors in [14] provide alternate solutions to balance throughput 

and congestion control in wireless networks. 

When reinjecting a packet, packet selection is important.  Our 

Sequential Storage architecture is based on a queue which 

provides FIFO reads.  At any point in time only the head of the 

queue is accessible.  In a single sink environment FIFO works 

appropriately.  Path connectivity information for the head packet 

applies to all subsequently stored packets since all packets need to 

be delivered to the same sink.  This is not the case in a multiple 

sink scenario.  It is possible for the head packet to be destined for 

a sink with is currently disconnected; yet, subsequent packets may 

be destined to a sink which is connected.  To handle these 

situations, a round robin mechanism is implemented when 

handling packet reinjection.  If the head packet fails to send, it is 

popped off the head of the queue and reinserted to the back of the 

queue.  This functionality comes at a cost.  By reinserting the data 

at the back of the Sequential Storage, it is being rewritten which 

requires additional energy and hastens the write exhaustion of the 

flash.    

7. Experimental Results 
The concepts presented in this paper have been implemented and 

deployed as part of the Extensible Sensing System (ESS).  ESS 

provides the “sensor network in a box” paradigm.  It is 

appropriate for applications requiring a distributed set of mote 

class nodes embedded in the environment, sending sensor data to 

one of many linux class sinks.  

On the mote side, the components of ESS can be divided into 

Multihop Networking and the Data Service Engine.  The Data 

Service Engine provides both querying and dynamic configuration 

of sensors in the mote field.  Multihop Networking forms a multi-

sink tree network as described in Section 6.  Reliability and 

Storage are services provided by the Multihop Networking 

component. 

On the sink side, ESS is implemented using EmStar [15].  EmStar 

is a set of services for building and deploying sensor-net 

applications.  EmStar provides both simulation and emulation 

tools to easily analyze system performance.  The experimental 

results of our reliability and storage architecture are part of a 

complete ESS deployment at the James Reserve using EmStar. 

7.1 Emulation 
A unique feature in EmStar is the ability to run in emulation 

mode.  In emulation mode, a simulation on a centralized server 



uses real deployed motes as radios, in place of a simulated radio 

model.  In our emulation, we used the ceiling array at the Center 

for Embedded Network Sensing (CENS) for our mote 

deployment.  Figure 9 shows the layout of the motes in the ceiling 

array. 

 

Figure 9 Ceiling Array layout at CENS. 

 

In this experiment we ran a 24 node emulation over the ceiling 

topology.  A Data Service Engine query was sent to the entire 

network requesting periodic sensor data at a 1 minute internal.  In 

this experiment Node 2 acted as the sink. 

 

Figure 10 An overlay of both path quality and used storage 

capacity as a function of time for a one hop neighbor (Node 5). 

 

 

Figure 11 An overlay of both path quality and used storage 

capacity as a function of time for a 5 hop neighbor (Node 38). 

 

 

 

 

 

 

7.1.1 Evaluation 
Both graphs 10 and 11 show the path and storage metrics for a 

single hop node and a multiple hop node.  The y-axis represents 

both the path quality and the number of packets stored.  The path 

quality is measured as the number of expected transmissions to 

successfully send a packet to the sink, including retransmissions.  

A measurement of 255 means a complete disconnection.  

Instantaneous path quality is represented by the light blue line, 

average path quality is represented by the dark blue line, and the 

number of packets stored is represented by the black line. 

 Using these graphs we are able to analyze instantaneous path 

quality vs average path quality, storage as a function of path 

quality, and congestion control for the both the single hop case 

and multihop case.   

Single Hop Analysis 

In the one hop case (Figure 10), a majority of the instantaneous 

fluctuations are short lived relative to the data generation period 

resulting in minimal packet storage.  Packets which are stored 

during these periods are randomly distributed. 

At approximately t=10000 a disconnection occurs for this one hop 

node.  As expected environmental conditions and low cost radios 

have temporal variations in quality.  In this case the combination 

has caused a disconnect between this node and the sink.  During 

the network disconnect packets are stored locally as represented 

by the steadily increasing packet count.  Once network 



connectivity is regained, packets are again drained from the 

network.  The decreasing packet count is a result of packet 

reinjection. 

After regaining connectivity, the initial rate of packet reinjection 

is slow as indicated by the shallow slope of the decreasing packet 

count.  This is a result of our congestion control mechanism.  As 

packets are successfully reinjected the data rate increases as 

indicated by the increased slope.   

Multihop Analysis 

In the multihop case (Figure 11), again we see instantaneous 

fluctuations in path quality.  In this case the difference between 

instantaneous and average path quality is more pronounced and 

longer lived.  Differences in quality last in the order of tens of 

minutes.  This is due to the accumulated affect of small variations 

in link quality over the multiple hops.  The result of there is a 

greater number of packets stored during the periods of large 

deviation.  It is interesting to note that the packets stored during 

these fluctuations are actually sequential packets where as in the 

one hop case packets were randomly distributed.  Applications 

able to handle random packet loss would not need reliability in 

the single hop case, but would fail without reliability in the 

multihop case.   

At approximately t=10000, this node also experiences a decrease 

in path quality as indicated by the pronounced spike in both 

instantaneous and average path quality.  Once again the node 

stores packets locally during this period as indicated by the 

increased packet count.  

Congestion control attempts to reinject packets into the network 

once the path quality has returned to its previous value, but 

relatively poor path quality causes the reinjection policy to stay in 

slow start.  Eventually worsening connectivity causes the number 

of stored packets to increase.  This case is a good example of a 

situation in which poor link quality will always require longer 

term storage as a mechanism to handle consistently long queue 

delays.    

This experiment shows the relationship between path quality and 

storage.  The reliability architecture was able to react to poor link 

quality and long periods of disconnect by storing and reinjecting 

packets at appropriate times.  Without reliability and storage large 

consecutive portions of data would be lost for analysis.  

7.2 Deployment: Cold Air Flow Project 
As stated earlier, the motivation for this research was the Cold Air 

Flow Project at James Reserve.  At the time of writing, the current 

implementation of ESS has been collecting data at the James 

Reserve for over 3 weeks.  Data is queried at an interval of 5 

minutes, resulting in approximately 6000 data points per node 

over the 3 week period.  The metrics collected are from a single 

18 node transect along the valley.  Results were returned using the 

Sympathy debugging service provided by ESS.  Sympathy is an 

in-band debugging mechanism which returns system metrics over 

the multihop routing tree.  Since Sympathy is in-band, 

disconnects will cause gaps in Sympathy data.  The storage 

metrics collected by Sympathy represent a total aggregate number 

of packets collected so storage activity can be extrapolated over 

gaps. 

 

Node 

Id 

Total Pkts Stored  External Pkts Stored Num 

Hops 

39 860  0 3 

106 1205  172 3 

120 986  61 4 

74 863  0 1 

98 1020  0 5 

76 836  0 2 

11 811  0 2 

111 4783  1913 2 

118 2245 1408 3 

100 886  17 4 

13 856  5 3 

79 1187 292 4 

19 903 10 4 

7 939 7 3 

155 886  23 1 

25 1338 488 1 

97 1527 674 2 

114 860  0 3 

Table 1 Storage information collected from sympathy over a 3 

week period 

 

Figure 12  A 3 day storage profile for a single node. 

 

Table 1 shows the total number of packets stored on each node 

over its lifetime.  These represent packets which would have been 

lost if not for the reliability service.  Each node has stored a 

minimum of approximately 800 packets (14% of the total packets 

generated at each node).  In some cases nodes have stored external 



packets from upstream children, in cases where routing 

information was slow to propagate.     

Figure 12 shows a 3 day profile of storage for node 79.  When 

examining this profile we see storage proceeds in a step like 

manner.  This indicates that storage occurs in periodic batches.  

Previous implementation [2,3] assumed that loss occurred 

randomly and that retransmissions would be enough to mask these 

random losses.  This profile shows that data is lost in consecutive 

batches where local storage is needed to buffer data during these 

periods. 

Figure 12 also shows a period of complete disconnect.  The 

disconnection can be seen from approximately t=125 to t=175.  

During this time Sympathy was not able to collect data for this 

node, which results in the sudden jump in total packets stored.   

Results from our deployment at James Reserve have shown that 

poor link quality and frequent disconnects can cause batches of 

data loss.  Our architecture was able to successfully store data 

during these periods guaranteeing data was not lost. 

8. Conclusion 
Harsh environments and wireless communication make reliability 

in sensor networks an interesting problem.  In these challenged 

networks poor path quality and frequent disconnects make 

conventional network protocols unfeasible.  In this paper we 

propose a hop-by-hop, forwarding protocol.  We show that by 

moving reliability out of the end hosts and into the intermediary 

nodes we can increase the probability of successful packet transfer 

over multiple hops.  In addition, we show that long queuing 

delays at forwarding nodes require persistent storage to buffer 

data during long periods of disconnection. 

We have integrated our architecture as a service in ESS and have 

deployed an implementation for the Cold Air Project at James 

Reserve.  Deployment results have validated our assumptions 

about challenged networks and have quantified the benefit of our 

reliability architecture in the number of saved packets.  

9. Future Work 
The network stack described in this architecture provides packet 

by packet reliable routing.  In the future we would like to 

implement an intelligent transport layer which provides 

redundancy. 

The architecture presented provides reliability in the face multiple 

failures such as of disconnected networks or node resets.  A 

source of failure not covered by this architecture is unrecoverable 

node failure.  In this all the data present on the failed node is lost.  

Reconstruction of the complete message at the end host becomes 

impossible.   

The solution to this issue requires data redundancy provided in 

the network.  There are two possible redundancy mechanisms to 

follow up in the future.   

The first mechanism provides redundancy at the packet level.  

This mechanism can use a variety of existing hashing techniques 

such as Forward Error Correcting (FEC) or existing techniques in 

multimedia delivery.   In these cases lost packets are reconstructed 

from other packets.  

The second mechanism uses the transport layer to initially store 

the entire message to persistent storage at the source before 

sending.   As messages from various sources are assembled at the 

sink, the sink keeps a journal of packets assembled.  Periodically 

the sink floods a digest of the most current packet assembled from 

each node.  As nodes receive the digest they can begin to release 

locally stored data. 

Both mechanisms have their merits.  Future work will examine 

these techniques to determine which is most appropriate for 

sensor networks. 
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