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ABSTRACT OF THE DISSERTATION

Efficient Grid-Based Algorithms for Visibility Problem in Level Set Framework

by

Chuqing Shi

Doctor of Philosophy in Mathematics

University of California San Diego, 2024

Professor Li-Tien Cheng, Chair

This research explores the static visibility problem, focusing on identifying visible regions

in environments with fixed obstacles and a stationary viewpoint. The problem is formulated

as the determination of visibility boundaries within the level set framework. To address this, a

novel grid-based algorithm is introduced, designed to improve computational efficiency while

maintaining high accuracy. This method integrates phase flow techniques, enables localized

computations near the visibility interface with the growing method, and further reduces the
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computational burden associated with high-resolution grids with tube structures. Additionally, a

new Heaviside function approximation, inspired by advanced Delta function methodologies, is

proposed. This approach is conjectured to have second-order accuracy in calculating the volume

of visibility regions. All accuracy and computational workload considerations are verified

through numerical experiments.
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Chapter 1

Background and Introduction

The visibility problem has been a subject of extensive research in computational geometry,

computer graphics, and physics. Essentially, the visibility problem seeks to determine which

parts of a given environment are visible from a specific viewpoint, and which are occluded

by obstacles [9]. In this dissertation, we only consider the static visibility problem, when the

observer remains stationary and the environment unchanged.

The visibility problem remains a vibrant area of research due to evolving application

demands. Visibility analysis is essential for tasks such as rendering realistic scenes in virtual

environments [32, 11], placing surveillance cameras [2], simulating etching process in pho-

tolithography [24], and designing efficient communication networks [7]. A wide variety of

approaches and algorithms have been developed to address the visibility problem, and these can

be broadly categorized into two primary types based on how the problem is presented: explicit

and implicit.

With explicit representation, obstacles are clearly defined and directly mapped in the

environment and often heavily make use of geometric features — line segments, polygons,

polyhedrons, trianglated surfaces [5], or more complex forms. These obstacles are explicitly

modeled as barriers to visibility, and the problem becomes one of determining which areas of the

environment are obstructed or not obstructed by these shapes when viewed from specific points.

Classical approaches such as visibility graphs [19], line-of-sight checks [12], geometric data
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structures, and other computational geometry techniques [6] are often employed to solve this

problem in environments with explicitly represented obstacles.

On the other hand with implicit representation, obstacles are not directly represented as

distinct geometric entities but are instead encoded through environmental features, such as height

maps, occupancy grids, or probabilistic representations [34]. In this case, visibility is inferred

based on the presence or absence of obstacles within these implicit representations. Level-set

frameworks [20, 13], occupancy grids [23], and probabilistic mapping models can be used to

determine visibility in such settings. Compared to the well-established and sophisticated research

on the visibility problem using explicit representations, the use of implicit representations is

relatively new and offers the potential for novel and advantageous ideas.

Among the implicit approaches, the level set framework [20, 13] plays a significant role

due to its ability to model complex and irregularly shaped obstacles that are difficult to represent

with discrete or explicit forms, in a continuous and highly flexible manner. In this framework,

obstacles are implicitly represented by a scalar function, often a signed distance function, where

the zero-level set defines the boundaries between free space and obstacles. Thanks to this, level

set methods developed for 2D can be easily extended to 3D, with the visibility boundary encoded

as a level set contour. Moreover, the level set method allows for a multi-resolution [21, 28]

representation of obstacles, meaning that the level set function can be adapted to different scales.

This can be useful for handling both fine-grained details of small obstacles and larger, coarser

representations of the environment, thus improving the efficiency of visibility algorithms.

Despite advancements, existing algorithms for level set-based visibility analysis are

sometimes lacking. One example is in accurate and compact schemes for the approximation

of the Delta and Heaviside functions [36, 8, 27]. Geometric information concerning regions of

visibility often require integrating quantities over obstacle boundaries or visible regions, which

are represented implicitly by the level set function. The Delta Function is used to localize

computations to the interface, and the Heaviside function represents regions inside or outside

obstacles for visibility computation. An especially interesting case can be found in the problem
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of optimizing what can be seen, which relates to maximizing the area or volume of the visible

regions.

An especially pervasive issue of level set methods is high computational complexity

in naive formulations. The accuracy of level-set methods depends on grid resolution. High-

resolution grids improve precision but dramatically increase computational cost as such a grid

exists over the ambient space. Adaptive mesh refinement techniques have been explored to

balance these trade-offs [25, 3]. Hybrid methods combining level set techniques with traditional

geometric [14] or machine learning approaches [15] are also promising avenues [1] to go

along with more traditional tube-based approaches [22]. These methods have the potential to

significantly enhance the computational efficiency of level-set approaches, making them even

more practical, especially in real-world applications.

This dissertation proposes a new grid-based algorithm for determining the visibility status

of points at reduced computational cost and with high accuracy near visibility interfaces that

separate visible and nonvisible points. The algorithm is built upon the level set framework,

integrating concepts from the phase flow method [35] for solving numerical propagation in

ordinary differential equations, and is specifically tailored to primarily operate local to visibility

interfaces. Additionally, a novel approximation of the Heaviside function is proposed, drawing

inspiration from Peter Smereka’s work [26] on Delta function approximations, for second-

order accurate area or volume calculations of regions, such as regions of visibility. Numerical

experiments are employed to justify the efficacy of the algorithms.

The remainder of the dissertation is organized as follows. Chapter 2 introduces the

visibility problem within the level-set framework and develops a new algorithm for detecting

visibility boundaries. The algorithm is constructed step by step, integrating ideas, techniques,

and data structures presented throughout the sections. Chapter 3 presents numerical experiments

and results demonstrating the effectiveness and accuracy of the proposed method. Chapter 4

proposes the new approach to Heaviside function approximation and illustrates its effective

integration with visibility computations. Lastly, conclusions and discussions for future research

3



are in Chapter 5.
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Chapter 2

Visibility Algorithm

In this chapter, we step up the visibility problem in the level set framework and introduce

a new algorithm for detecting the visibility boundary. The algorithm is developed step by

step, integrating ideas, techniques, and data structures presented in the sections. Each section

contributes incrementally to the algorithm’s construction, with its final form presented in the

later sections of the chapter.

2.1 Problem Set Up in the Level Set Framework

Given obstacles and an viewpoint (also referred to as the observer or eye-point), we want

to determine the visible region, meaning the region in the given environment that is not occluded

by any obstacle. This is the central objective of the visibility problem. As shown in Figure 2.1

from online source [33], all points within the yellow area can be reached by a direct, unbroken

line of sight from the observer. Therefore, the yellow region represents the visible region, while

the red contour marks the visibility interface, which delineates the precise boundaries separating

visible and occluded regions. Essentially, the key to distinguishing visible and invisible regions

lies in detecting the visibility interface.

The problem for detecting the visibility interface could be viewed in a dynamic way,

where the interface of the blocked region is evolved throughout time and transported gradually

from the boundary of the obstacle. Therefore, the idea of transport equation is brought up, and
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Figure 2.1. The key question in the visibility problem: What regions in a given environment
are visible to an observer, and what regions are blocked (occluded) by obstacles? The black dot
represents the viewpoint, the purple shapes indicate obstacles, the yellow area denotes the visible
region, and the red line outlines the visibility interface.
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the use of level set functions to represent obstacles is natural.

The level-set framework makes a great tool for modeling time-varying objects with

change in topology. It is primarily used in modeling visibility propagation where a wavefront

representing visibility expands from a viewpoint or source [28]. With the help of a level set

function φ(x) : Rd → R, where d is typically 2 or 3 based on the dimension of interest, the

surface of the obstacles can be represented by its zero-level set {x : φ(x) = 0}, while the interior

of the obstacles corresponds to {x : φ(x)< 0}. As a remark, the availability of level set functions

φ representing obstacles is ensured by the existence of signed distance functions, which naturally

provide a representation of obstacle boundaries that is Lipschitz continuous almost everywhere.

The above level set function φ(x) could be viewed as the initial value of a transport-like

problem, where a class of visibility functions {ψ(x, t) : Rd×R+→ R} would flow over time,

and ultimately settle down to some visibility function ψ(x) := ψ(x,∞) to represent the visibility

region, where {x : ψ(x) = 0} is the visibility interface, and {x : ψ(x) < 0} means invisible

region.

Consider a single point observer at location x∗ in the Rd Euclidean space, d could be 2 or

3 based on the dimension. In this context, there is an implicit vector field v based on the nature

of straight-line propagation of light. Imagine there are light rays shooting from the eye-point, so

the vector field has all flow lines radiated away from x∗ isotropically at a steady rate, that is

v(x, t) =
x−x∗

||x−x∗||
. (2.1)

Therefore the following transport equation is formulated with initial value:

∂ψ

∂ t
+v(x, t) ·∇ψ = 0, t > 0, (2.2)

ψ(x,0) = φ(x). (2.3)

As the propagation advances, however, even with a tiny time step t0 > 0, the zero-level set
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of ψ(x, t0) will enter the obstacle’s interior, causing the shape to gradually erode. A point is

considered invisible whenever any point along the ray from the eye-point to itself is occluded.

Therefore, the erosion shall be pushed out to preserve the original obstacle boundary that blocks

the points farther away from the eye-point. A union of the insides can fulfill the need, that is, to

update the new invisible area as a union of the current interface interior with the interface interior

from previous time. Based on our set up that negative values of φ or ψ means invisibility, the

”union of insides” could be enforced by minimization of the current state ψ with its previous.

For clarity, an iterative algorithm to calculate ψ(x) is outlined accordingly below.

1. Discretize (2.2) in time t with any numerical method, and initialize with (2.3).

2. Iterate until convergence. At step k:

• Advance for ψ(x, tk) using any numerical method of choice;

• Update ψ(x, tk) with min(ψ(x, tk),ψ(x, tk−1));

3. Set ψ(x) to be the last ψ(x, tK) out of the loop.

To our advantage, the homogeneous transport equation (2.2) can be solved with the

method of characteristics [10]. ψ(x, t) is constant along characteristics, i.e. trajectories satisfying

the ODE
dx
dt

= v(x, t). (2.4)

Hence solving for ψ at some (x, t) actually involves going ”backward” along characteristics until

initial time (zero in our case) is hit, i.e. to solve an initial value problem with regard to (2.4).

The value of ψ(x, t) is then determined by its initial condition accordingly. With (2.1), the above

autonomous ODE reveals that each point x has its characteristics as the flow line tracing from x∗

to itself. Therefore, the initial value problem (2.2) with (2.3) has solution

ψ(x, t) = φ(x− tv), 0≤ t ≤ ||x−x∗||. (2.5)
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Together with minimization of results along the way, the modified procedure is equivalent

to a minimization of φ(x) along the ray tracing back from x to x∗, that is

ψ(x, t) = min
L(x−tv,x)

φ(x), 0≤ t ≤ ||x−x∗||, (2.6)

where L(x− tv,x) is the flow line segment from x− tv to x. Since the visibility problem has its

concentration merely on the visibility interface, φ(x)’s positive value on any point beyond the

tracing ray is of no use. After all, as time t goes on until convergence, the actual visibility level

set function ψ(x) can be represented by a minimization problem as below:

ψ(x) = min
L(x∗,x)

φ(x), (2.7)

where L(x∗,x) is the flow line segment connecting x∗ and x.

With property (2.5) of the transport equation and the above analysis, the previous algo-

rithm to calculate ψ(x) is refined to a more precise one outlined below.

1. Discretize time t with step size τ , and initialize with (2.3).

2. Iterate until x− tkv passes beyond eye-point. At step k:

• Update ψ(x, tk) with min(ψ(x− τv, tk−1),ψ(x, tk−1));

3. Set ψ(x) to be the last ψ(x, tK) out of the loop.

In fact, it is exactly a discretization of the equivalent minimization problem (2.7). In its key

iterating step.

min(ψ(x− τv, tk−1),ψ(x, tk−1)) = min(φ(x− tkv),ψ(x, tk−1)), (2.8)

where the right-hand side is a typical and straight forward iterating step to look for minimum

along the ray tracing back from x to the eye-point x∗.
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In summary, we have set up the visibility problem through help of level set functions, and

constructed it in the framework of a transport equation. Modifications are added to the equation

to fully represent the nature of the problem, and it is ultimately reformulated as a minimization

problem on each individual point of interest.

2.2 Ray Tracing and Phase Flow Method

Based on the problem setup, visibility function ψ could be evaluated point by point

individually on the domain, as a minimization of values of φ along the ray tracing back from x

to the eye-point x∗. To get full visibility information on the entire domain, Algorithm 1 is put

forward in response.

Algorithm 1: algorithm for finding visibility boundary: trivial
1 function visibility (φ ,x∗);

Input :a level set function φ representing obstacles, and an eye-point location x∗.
Output :a visibility function ψ representing the visibility boundary.

2 Initialize with (2.3) and discretize time t with step size τ;
3 for each x on domain do
4 while x− tkv does not pass beyond x∗ do
5 ψ(x, tk) = min(φ(x− tkv),ψ(x, tk−1));
6 end
7 end

As a remark, the condition ”x− tkv does not pass beyond x∗” can be verified by checking

if tk < ||x−x∗||. In most cases, the initial φ is only provided on a gridded domain, as in the case

of a numerical signed distance function efficiently computed on the grid using the fast marching

method [30] or fast sweeping method [29]. Consequently, all evaluations of φ along the eye

rays must be approximated using interpolation schemes, such as bilinear interpolation in the

two-dimensional scenario.

Algorithm 1 is showcased as transparently as it can be, with an outer loop throughout each

point of interest, and utilizing the idea from (2.8). Line 5 of the algorithm shows independence

of points in the evaluations of ψ’s, since new evaluations on x are not influenced by any previous
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ψ calculations on other points. Henceforth, parallel computing could be introduced in the system

to take advantage of the independence of points to execute the inner loop concurrently.

It is worth trying to rearrange the nested loop for further improvement of the algorithm,

considering that the inner loop in time is basically making use of locations closer to the observer

on the ray tracing back to the eye-point. There is more flexibility to utilize existing information

on the rays tracing back when location is the inner loop. Thus, the algorithm is rewritten as

Algorithm 2, and referred to as the ray tracing method from now on.

Algorithm 2: algorithm for finding visibility boundary: ray tracing
1 function visibility (φ ,x∗);

Input :a level set function φ representing obstacles, and an eye-point location x∗.
Output :a visibility function ψ representing the visibility boundary.

2 Initialize with (2.3) and discretize time t with step size τ;
3 while tk < T do
4 for each x on domain do
5 if x− tkv does not pass beyond x∗ then
6 ψ(x, tk) = min(ψ(x− τv, tk−1)),ψ(x, tk−1));
7 else
8 ψ(x, tk) = ψ(x, tk−1);
9 end

10 end
11 end

In practice, the threshold T could be set as any number greater than maxx∈D ||x−x∗||

where D is the domain, so that all ψ’s are finalized upon termination. When the input φ

is provided only on a gridded domain, all evaluations of ψ(x, t) on non-gridpoint shall be

approximated by interpolation schemes.

Notice that, line 6 from Algorithm 2 comprehensively reflects the essential idea of the

algorithm, solving the transport equation and minimizing in one time step. Compared to line 5

from Algorithm 1, it is more fundamental, making it easier to adjust for further improvements.

The algorithm will produce a class of intermediate maps ψ(x, tk)’s with an increment of τ in

time, evaluated on the whole domain. In each tk loop, evaluating the map involves solving the

equation (2.4) with multiple initial conditions. Henceforth, the phase flow method is brought
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forward to help.

Phase flow method [35] was first introduced as a fast and accurate approach to compute

numerical solutions to non-linear autonomous ordinary differential equations of the following

form
dy
dt

= F(y), t > 0, (2.9)

where y : R→ Rn and F : Rn→ Rn is a smooth multivariate function not dependent on time t.

Given an initial condition y(0) = y0 and a target time T , the basic initial value problem is to

integrate the system and compute y(y0,T ), which indicates the position of a particle at time T

starting from position y0.

In many situations, one needs to solve (2.9) with multiple initial conditions. The standard

approach is to solve each initial value problem independently for y(y0,T ), selecting a time

step τ , and recursively applying a local integration rule (such as the explicit Euler method or

widely-used fourth order Runge-Kutta method) at discrete times τ,2τ,3τ, ...,T for each initial

condition y0. It may be extremely costly considering the amount of integrations needed on the

time steps in every initial value case. Phase flow method is designed to bypass the complexity

caused by the independent but repetitive procedures.

For a fixed time t, a phase map gt : Rn→ Rn is defined as a map on initial value y0, that

is gt(y0) = y(y0, t). The family of all phase maps {gt , t ∈ R+} is called the phase flow. The

phase flow has a one parameter group structure, gt ′ ◦gt = gt ′+t which is important in the study of

autonomous ODEs. Compare to the standard approach, the phase flow method aims to construct

the complete phase map gT at time T . It operates by initially constructing a phase map for a

small time using a standard ODE integrator and builds up the phase map for larger times with

the help of a local interpolation scheme together with the group property of the phase flow. The

key idea is basically listed in the three steps below.

1. Discretization: Select a small time step τ > 0 such that T = 2sτ,s ∈ Z+, and a grid size

h > 0 to make uniform or quasi-uniform grid on the domain.
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2. Initialization: Compute an approximate phase map g̃τ at time τ . At grid point y0, g̃τ(y0) is

computed by applying a standard ODE integration rule with a single time step of length τ .

At any other point, g̃τ is evaluated via local interpolation.

3. Loop: For k = 1, ...,s, construct g̃2kτ using the group relation g̃2kτ = g̃2k−1τ ◦ g̃2k−1τ . At

grid point y0, g̃2kτ(y0) = g̃2k−1τ(g̃2k−1τ(y0)). At any other point, g̃2kτ is evaluated via local

interpolation. At the end of the loop, g̃T is the approximate phase map at time T .

In fact, the phase flow algorithm in theory keeps the number of stages s as a constant,

and thus may adopt powers with base number B ∈ Z+ other than 2. The group relation in the

loop then looks like gBkτ = gBk−1τ ◦gBk−1τ ◦ ...◦gBk−1τ︸ ︷︷ ︸
B times

. The ”time doubling” idea shown above

with fixed base 2, in contrary, is actually not as accurate. Yet it reduces the complexity even

more, by a log factor in time, compared to the standard approach. So it is very typical and useful

for practical purposes, and we still refer to it as the phase flow method.

Below is a comparison of steps in the standard approach versus phase flow approach

in solving the (2.9) ODE. Note that, the critical observation that drives the idea of phase flow

method is the breakdown of time T into smaller steps, based on the one parameter group structure

of the operator family {gt , t ∈ R+}. The ”divide and conquer” paradigm behind makes it easy to

generate to other scenarios.

gτ(y0) : τ integration

g2τ(y0) = gτ(gτ(y0)) : τ integration

g3τ(y0) = gτ(g2τ(y0)) : τ integration

g4τ(y0) = gτ(g3τ(y0)) : τ integration

... Standard

gτ(y0) : τ integration

g2τ(y0) = gτ(gτ(y0)) : gτ interpolation

g4τ(y0) = g2τ(g2τ(y0)) : g2τ interpolation

g8τ(y0) = g4τ(g4τ(y0)) : g4τ interpolation

... Phase Flow with B=2

To solve visibility problem, as discussed in the previous section, when we go ”backward”

13



along characteristics curve until initial time 0, we are actually solving an autonomous ODE
dx(t)

dt = −v(x), with v(x) = x−x∗
||x−x∗|| considering the straight-line propagation of light. Hence,

notations from the previous discussion of phase flow method can be adapted for use here. At any

fixed time t, denote the phase map gt : Rd→Rd as gt(x0) = x(x0, t), representing the ”backward”

characteristics curve location at time t starting from x0. In our case, gt(x) = x− tv, with v

from (2.1). Additionally, for convenience in notation, use ψt(x) to denote ψ(x, t), meaning the

minimum of φ along the characteristics curve segment from x to gt(x), that is L(x− tv,x) in our

case according to (2.6). So ψt(x) = min[0,t]φ(x(t)).

Thanks to the following property of minimization, for any trajectory x(t) : R→ Rn and

any function f : Rn→ R,

min
[0,t+t ′]

f (x(t)) = min
(

min
[0,t]

f (x(t)), min
[t ′,t+t ′]

f (x(t))
)
, when t ′ ≤ t, (2.10)

hence the {ψt} operator family exhibits a recursive structure as below

ψt+t ′(x) = min(ψt(x),ψt(gt ′(x))) ,when t ′ ≤ t.

Such structure supports the break down of time T into smaller time pieces, with just an evolution

in location, which is analytically available and easily accessible. In light of this, insights from

the phase flow method could be transferable to improve the ray tracing method. To illustrate this,

the following presents a comparison of steps in the standard ray tracing versus ray tracing with
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the phase flow idea in solving the visibility problem.

ψτ(x) : τ minimization

ψ2τ(x) = min(ψτ(x),ψτ(gτ(x)))

ψ3τ(x) = min(ψ2τ(x),ψ2τ(gτ(x)))

ψ4τ(x) = min(ψ3τ(x),ψ3τ(gτ(x)))

... ray tracing

ψτ(x) : τ minimization

ψ2τ(x) = min(ψτ(x),ψτ(gτ(x)))

ψ4τ(x) = min(ψ2τ(x),ψ2τ(g2τ(x)))

ψ8τ(x) = min(ψ4τ(x),ψ4τ(g4τ(x)))

... ray tracing with phase flow

Note that, all the reasoning above to deduce an integrated algorithm only requires v in the

transport equation (2.2) independent of time t. If v(x) differs from the straight-line propagation

form as in (2.1), meaning the sunlight travels in a non-direct path, possibly influenced by

refraction, reflection, or diffraction, etc., the phase flow method for ODE could be directly

applied to calculate numerical gt(x), and it would fit perfectly in the structure of the new

algorithm. Fortunately, when only straight-line propagation of light is considered, as the main

focus our research, gt(x) is analytically available. Accordingly, the integrated algorithm is

presented below in Algorithm 3, referred to as the ray tracing method with phase flow.

It is important to note that the key step utilizing the phase flow idea is in line 13.

Each loop of evaluations on x requires local interpolation based on the previous phase map.

Compared to the previous ray tracing algorithm, the number of phase maps evaluated on the

computational domain is drastically decreased by a log factor, from {ψτ ,ψ2τ ,ψ3τ , ...,ψkτ , ...,ψT}

to {ψτ ,ψ2τ ,ψ22τ , ...,ψ2sτ , ...,ψT}.

The algorithm 3 provided above adopts the ”time doubling” scheme with fixed base

number B=2. It is easy to generate it to other B ∈ Z+ based on the fact that

ψBt(x) = min

ψt(x),ψt(gt(x)), ...,ψt(g(B−1)t(x))︸ ︷︷ ︸
B terms

 ,
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Algorithm 3: algorithm for finding visibility boundary: ray tracing with phase
flow

1 function visibility (φ ,x∗);
Input :a level set function φ on a uniform grid representing obstacles, and an

eye-point location x∗.
Output :a visibility function ψ on the grid representing the visibility boundary.

2 Discretize time t with step size τ , and introduce s ∈ Z+ representing levels in time;
3 for each x on domain do
4 if x− τv does not pass beyond x∗ then
5 ψ(x,τ) = min(φ(x− τv),φ(x));
6 else
7 ψ(x,τ) = min(φ(x∗),φ(x));
8 end
9 end

10 while 2sτ < T do
11 for each x on domain do
12 if x−2s−1τv does not pass beyond x∗ then
13 ψ(x,2sτ) = min(ψ(x−2s−1τv,2s−1τ),ψ(x,2s−1τ));
14 else
15 ψ(x,2sτ) = ψ(x,2s−1τ);
16 end
17 end
18 end

16



resulting from utilizing (2.10) in an iterative manner. Below, a more general ray tracing algorithm

with phase flow is outlined in the three steps, in a format consistent with the phase flow method.

1. Discretization: Select a small time step τ > 0 and an base constant B ∈ Z+, such that

T = BSτ,S ∈ Z+. Select a grid size h > 0 to make uniform or quasi-uniform grid on the

domain.

2. Initialization: Compute an approximate phase map ψ̃τ at time τ . At grid point x0, ψ̃τ(x0)

is computed by minimum of φ(x0−τv) and φ(x0). At any other point, ψ̃τ is evaluated via

local interpolation.

3. Loop: For k = 1, ...,S, construct ψ̃Bkτ using ψ̃Bk−1τ . At grid point x0,

ψ̃Bkτ(x0) = min
(

ψ̃Bk−1τ(x0), ψ̃Bk−1τ(x0−Bk−1
τv), ψ̃Bk−1τ(x0−2Bk−1

τv), ...,

ψ̃Bk−1τ(x0− (B−1)Bk−1
τv)

)
.

At any other point, ψ̃Bkτ is evaluated via local interpolation. At the end of the loop, ψ̃T is

the approximate phase map at time T .

An illustration of operations needed in one dimension in cases of B = 2 and B = 3

is provided in the Figure 2.2. To cover all the 11 grid points, the stages needed are 4 and 3

respectively. Each black dot represents a stored data of the approximate phase map at a certain

stage. Dots from higher stages are determined by dots from lower stages through connecting

lines.

For ease of reference, ψ̃Bkτ , k = 0,1, ...,S can be written as ψ̃k+1 to indicate our approx-

imation at level k+1 when the context of base number B is clear. The following proposition

guarantees the accuracy and complexity of our ray tracing method with phase flow.
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Figure 2.2. Illustration of operations of Algorithm 3 in one dimension.

Proposition 2.2.1. Suppose that the local interpolation scheme is multi-linear interpolation.

Define the approximation error at level l by

εl = max
x∈Dh
|ψ̃l(x)−ψl(x)|. (2.11)

Then Algorithm 3 enjoys the following properties:

1. The approximation error obeys

εS+1 ≤C · ((S+1)h2 + τ
2) (2.12)

for some positive C > 0. When B is set to constant, the accuracy is O(h2 · log(τ−1)+ τ2);

when S is set to constant, the accuracy is O(h2 + τ2).
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Lemma 2.2.1. Given two sets of unsorted numbers of same size {x1,x2, ...,xn} and {y1,y2, ...,yn}.

|min
i

xi−min
j

y j| ≤max
k
|xk− yk|, i, j,k ∈ {1,2, ...,n}.

Proof. Suppose xim = mini xi and y jm = min j y j.

When xim ≤ y jm,

|min
i

xi−min
j

y j|= min
j

y j− xim ≤ yim− xim ≤max
k
|xk− yk|.

When xim > y jm,

|min
i

xi−min
j

y j|= min
i

xi− y jm ≤ x jm− y jm ≤max
k
|xk− yk|.

Proof of Proposition 2.2.1. We begin by proving claim 1. Below are some notation setups and

observations:

• Let d be the dimension of the ambient space;

• Let xi denote grid points of the discretized computational domain Dh.

• For function f (x) : Rd→R, let fi denote its value on grid point xi. Let I f denote the multi-

linear interpolant of f based on fi. There are some useful properties of the multi-linear

interpolation operator I.

– For any f ,

min
i

fi ≤ I f (x)≤max
i

fi, |I f (x)| ≤max
i
| fi|, x ∈ D. (2.13)
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– For any f and g,

I f+g(x) = I f (x)+ Ig(x). (2.14)

– Suppose ∇ f is Lipschitz continuous, then the interpolation error at any point x ∈ D

|I f (x)− f (x)| ≤C f h2, (2.15)

for some positive constant C f .

The following notations only applies to the case when B = 2. All other cases will follow

similar reasoning.

• Let yi,l denote points utilized in evaluating ψ̃l(xi) at level l = 1,2, ...,S+1:

yi,l =


xi− τvi, if l = 1,

xi−2l−2τvi, if l ≥ 2, 2l−2τ ≤ ||xi−x∗||,

x∗, otherwise,

where vi =
xi−x∗
||xi−x∗|| . The notation can be generalized to any points x ∈ D as yl(x), when xi

is replaced by x, and likewise, vi by v(x) as in (2.1).

• ψ̃l(xi) denotes our approximate visibility level-set function from Algorithm 3 at level l

evaluated on grid point xi:

ψ̃l(xi) =


φ(xi), if l = 0,

min
(
ψ̃l−1(xi), Iψ̃l−1(yi,l)

)
, if l = 1,2, ...,S+1.

(2.16)

The notation can be generalized to any points x ∈ D as ψ̃l(x), when xi is replaced by x,

and likewise, yi,l by y(x).
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• Let ψ̂l(xi) denote the ”ideal” visibility level-set function at level l evaluated on grid point

xi, if no interpolation is needed:

ψ̂l(xi) =


φ(xi), if l = 0,

ψ̂l(xi) = min
(
ψ̂l−1(xi), ψ̂l−1(yi,l)

)
, if l = 1,2, ...,S+1.

(2.17)

The notation can be generalized to any points x ∈ D as ψ̂l(x), when xi is replaced by x,

and likewise, yi,l by y(x).

• Let ψl(x) denote the exact visibility level-set solution at level l according to previous

simplified notations and (2.6), that is

ψl(x) =


φ(x), if l = 0,

minL(x−2l−1τv,x)φ(x), if l = 1,2, ...,S+1.

where v is short for v(x) as in (2.1).

Since

L(x−2l−1
τv,x) = L(x−2l−2

τv,x)∪L(x−2l−1
τv,x−2l−2

τv), l ≥ 2,

ψl(x) =


φ(x), if l = 0,

minL(x−τv,x)φ(x), if l = 1,

min(ψl−1(x), ψl−1(yl(x))) , if l = 2, ...,S+1.

(2.18)

• Let EI
i,l denote the error introduced by local interpolations in the algorithm, evaluated at xi,

EI
i,l = ψ̃l(xi)− ψ̂l(xi).

The notation can be generalized to any points x ∈ D as EI
l (x), when xi is replaced by x.
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• Let EM
i,l denote the error introduced by discretized minimization in the initialization step of

the algorithm, evaluated at xi,

EM
i,l = ψ̂l(xi)−ψl(xi).

The notation can be generalized to any points x ∈ D as EM
l (x), when xi is replaced by x.

• Let Ei,l denote the error of the algorithm, evaluated at xi,

Ei,l = ψ̃l(xi)−ψl(xi) = EI
i,l +EM

i,l .

Then

εl = max
i
|Ei,l| ≤max

i
|EI

i,l|+max
i
|EM

i,l |.

We claim that there exist constants C1 > 0,C2 > 0 large enough, such that for any l =

0,1,2, ...,S+1,

|EI
i,l| ≤C1lh2. (2.19)

|EM
i,l | ≤C2τ

2. (2.20)

Proof of (2.19) is done by induction on l:

i) When l = 0, |EI
i,0|= 0.

ii) When l ≥ 1, assume |EI
i,l−1| ≤C1(l−1)h2. Based on (2.16) and (2.17),

|EI
i,l|= |min

(
ψ̃l−1(xi), Iψ̃l−1(yi,l)

)
−min

(
ψ̂l−1(xi), ψ̂l−1(yi,l)

)
|

By Lemma (2.2.1), ≤max
(
|ψ̃l−1(xi)− ψ̂l−1(xi)|, |Iψ̃l−1(yi,l)− ψ̂l−1(yi,l)|

)
.

The first term is |EI
i,l−1|, upper bounded by C1(l−1)h2. For the second term, when z ∈ D,
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|Iψ̃l−1(z)− ψ̂l−1(z)|= |Iψ̂l−1+EI
l−1

(z)− ψ̂l−1(z)|

By(2.14), = |IEI
l−1

(z)+ Iψ̂l−1(z)− ψ̂l−1(z)|

≤ |IEI
l−1

(z)|+ |Iψ̂l−1(z)− ψ̂l−1(z)|

By(2.13), ≤max
i
|EI

i,l−1|+ |Iψ̂l−1(z)− ψ̂l−1(z)|

By(2.15), ≤C1(l−1)h2 +Cψ̂l−1h2

≤C1lh2

if Cψ̂l−1 ≤C1. Therefore, the second term |Iψ̃l−1(yi,l)− ψ̂l−1(yi,l)| ≤C1lh2.

Altogether, |EI
i,l| ≤C1lh2. Therefore, (2.19) is proved for all l = 0,1,2, ...,S+1.

Proof of (2.20) is done by induction on l as well:

i) When l = 0, |EM
i,0|= 0.

ii) When l ≥ 1, compare ψ̂l(x) and ψl(x) from (2.17) and (2.18). The major difference results

from its initial level l = 1, where we have

EM
1 (x) = min(φ(x),φ(x− τv))− min

L(x−tv,x)
φ(x).

Suppose ∇φ is Lipschitz continuous, so is its directional derivative on L(x− tv,x). With

the one dimensional Taylor’s Theorem, there exists constant C2 > 0 such that

|EM
1 (x)| ≤C2τ

2, ∀x ∈ D.

In the case x ∈ Dh, it proves the base step |EM
i,1| ≤C2τ2 for the following induction.
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iii) When l ≥ 2, assume |EM
i,l−1| ≤C2τ2. Based on (2.17) and (2.18),

|EM
i,l |= |min

(
ψ̂l−1(xi), ψ̂l−1(yi,l)

)
−min

(
ψl−1(xi), ψl−1(yi,l)

)
|

By Lemma (2.2.1), ≤max
(
|ψ̂l−1(xi)−ψl−1(xi)|, |ψ̂l−1(yi,l)−ψl−1(yi,l)|

)
≤max

(
|EM

i,l−1|, |EM
1 (yi,l)|

)
≤C2τ

2.

Therefore, (2.20) is proved for all l = 0,1,2, ...,S+1.

Combining with all previous reasoning, we see that

εl ≤C1lh2 +C2τ
2.

As a remark for base number B other than 2, the only difference is that all the minimization

in the loop would be on B numbers instead of 2, where the B evaluations are from B number of

yl(x)’s for each point.

We now prove claim 2. The gridded domain has O(h−d) number of grid points. The

one-step initialization of the algorithm takes a constant number of operations per grid point and

is thus of the order of O(h−d). As we have seen, the construction of ψ̃T is divided into S stages,

and each stage requires applying the repetitive operations (minimization and interpolation) B

times. Therefore, the total complexity is O(B ·S ·h−d).

2.3 Seeding and Growing Method

Algorithms from the previous sections evaluate the visibility function ψ on the whole

computational domain to find the visible/ invisible region, causing an excess of redundant data at

grid points far from the visibility interface. To further alleviate the problem’s complexity, we

are concentrating specifically on grid points next to the visibility interface. A key observation is
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that, the visibility interface of any connected obstacle is always continuous. Therefore, given

a connected obstacle region, assuming the availability of a ”seed” cell crossing its visibility

boundary, we can ”grow” a queue of candidate cross-boundary cells, and thus only evaluate ψ

on a limited grid points.

We call the procedure to prepare for the ”seed” cell the seeding process. It looks for a

grid cell crossing the visibility interface, based on the obstacle level set function φ . The seeding

process then provides a feed to launch the succeeding growing method. Notice that, among all

the grid cells crossing the obstacle boundary, the one closest to the eye-point has to be on the

visibility boundary as well. Henceforth, the seeding process basically contains two steps: finding

all grid cells that cross the obstacle boundary, and identifying the cell with minimum distance to

the eye-point. The former step traverses all grid cells, and check if all vertices of the grid cell

share the same φ sign. In the d dimensional discretized computational domain Dh, its complexity

is (2d−1)h−d . The later step can be realized by building a min-heap in O(h−(d−1)) complexity.

The following procedure that ”grows” a set of candidate cross-boundary cells from the

”seed” is called the growing process. It is implemented in a queue structure, initiated with a seed

provided by the seeding process. ψ is evaluated at all vertices of the top cell from the queue.

Taking advantage of continuity of the visibility function, if there is a change in sign of ψ values

among vertices on a face, it means the visibility boundary cuts through that face, and the queue

”grows” by appending a neighboring cell sharing the interface-cutting face. After checking all

faces of the top cell, it is popped out, and the procedure loop through the queue until it is empty.

When there are several disconnected obstacles, as illustrated in the Figure 2.3, the seeding

process should be able to resume after the growing method scan through a connected visible

region. To fulfill this, we maintain the ordering provided by the min-heap from the seeding

process, and nest the growing process in a seeding loop. Pop out the root cell from the min

heap, if it is not yet marked as read from the queue, and it is not completely blocked, then it

could serve as a seed to initiate the next round of growing process. The Seeding-Growing loop is

then iterated until the heap is empty. Algorithm 4 is presented below to emphasize the structure
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used in locating the grid points needed for evaluations. The algorithm is mentioned later in the

dissertation as the seeding and growing method.

Algorithm 4: algorithm for finding visibility boundary: seeding and growing
method

1 function visibility (φ ,x∗);
Input :a level set function φ on a uniform grid representing obstacles, and an

eye-point location x∗.
Output :visibility function ψ values on certain grid points next to the visibility

boundary.
2 min-heapify all grid cells crossing the boundary of obstacles according to distance to

eye-point;
3 while heap is not empty do
4 get the root cell;
5 evaluate ψ at its vertices;
6 if it is not once in queue and it is not fully invisible then
7 make it a seed;
8 add the seed cell to the queue and mark it once in queue;
9 while queue is not empty do

10 get the top cell;
11 evaluate ψ at its vertices;
12 for each neighboring cell do
13 if it is not once in queue and the shared face cuts through the

interface then
14 add it to the queue, and mark it once in queue;
15 end
16 end
17 pop out the top cell;
18 end
19 end
20 remove the root cell and re-balance the heap;
21 end

In Algorithm 4, the method used to evaluate ψ is not specified. The seeding and growing

method can actually work together with each of the three algorithms introduced before with

some modifications. For example, in the case of ray tracing method, Algorithm 2 can be adapted

for recursion at specified grid points and utilized in Algorithm 4 to evaluate ψ . In comparison,

the composite algorithm does sacrifice some complexity to maintain a min-heap for the cross-

obstacle-boundary cells and a queue for the cross-visibility-boundary cells, but it dramatically
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(a) A show case with disconnected obstacles. Red fill
color means the interior of obstacles. Black solid lines
represent the actual visibility interface.

(b) All grid cells crossing the boundary of obstacles are
highlighted and put in the min-heap. The one cell in
green is a seed.

(c) The one seed grows to a connected visibility bound-
ary in green cells. The outlying cell in green is the next
seed.

(d) All cells in green are the ones cross the visibility
boundary (once in queue). The cells in yellow are aux-
iliary ones from the seeding process, but never used.

Figure 2.3. Illustration of the seeding and growing process in 2 dimension.

reduces the number of ψ evaluations: from the scale of the whole computational domain, to

the size of the visibility interface, that is a O(h−1) factor. Taking the advantage of ray tracing

method with phase flow as in Algorithm 3, Algorithm 4 would further cut down the operations

needed per ψ evaluation at a grid point.
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2.4 Tube and Cube Structure

The function φ , which represents the obstacle, usually accentuates its zero-level set by

avoiding excessive oscillations far from it. It is commonly observed that at grid points adjacent

to the visibility interface, the value of ψ , according to (2.7), is minimized near the interface,

particularly when φ corresponds to the signed distance function to the obstacle boundary. With

this in mind, we propose a ’tube’ structure to delineate the region near the actual visibility

interface. Within this region, new evaluations of ψ depend solely on the φ values inside the tube,

thereby reducing computational complexity to a further extent.

The tube is formed by a set of grid cells on the computational domain. It is basically

designed to contain the grid cells next to the visibility interface up to a certain width. New

evaluations of ψ would then only depend on φ values in the tube. The tube evolves step by

step along with the seeding and growing method, and keeps taking advantage of the existing

information at the same time.

To ensure the tube evolves properly for reliance in upcoming steps, we want to avoid

skipping any grid cells closer to the observer when populating the current tube. Henceforth, the

seeding and growing processes introduced in Algorithm 4 needs to be tailored, to maintain an

ordering of grid cells according to their distance to the eye-point.

The min heap for the seeding process and queue for the nested growing process are then

combined together as a min-priority queue, which can be implemented with a min-heap. Use the

min heap from the seeding process to start with. The structure then evolves just like the queue

in the growing process, while the top cell of the queue is now the element with the minimum

priority, that is the root cell of the min-heap. The min priority is kept by constantly re-balancing

the heap when adding and removing from the the min heap. In each loop checking out the root

cell of the min-heap, the tube expands to contain a ball of grid cells, centered at the root cell,

with a radius as the width of the tube. Then evaluations of ψ only depends on φ values within

in the tube. The following Algorithm 5 outlines the steps of the seeding and growing method
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altered and incorporated with the tube.

Algorithm 5: algorithm for finding visibility boundary: modified seeding and
growing method with tube

1 function visibility (φ ,x∗);
Input :a level set function φ on a uniform grid representing obstacles, and an

eye-point location x∗.
Output :visibility function ψ values on certain grid points next to the visibility

boundary.
2 min-heapify all grid cells crossing the boundary of obstacles according to distance to

eye-point;
3 while heap is not empty do
4 get the root cell;
5 update the tube to contain grid cells centered around the root cell up to a width;
6 evaluate ψ at vertices of root cell with information within the tube;
7 for each neighboring cell do
8 if it is not once in heap and the shared face cuts through the interface then
9 add it to the heap, mark it once in heap, and re-balance the heap;

10 end
11 end
12 remove the root cell and re-balance the heap;
13 end

Compared to the Algorithm 4, Algorithm 5 sacrifices a bit time complexity in maintaining

the min-priority queue. Let NO and NI represent the number of cells crossing the obstacle

boundary and cells crossing the visibility interface, respectively. Usually, NI > NO. Algorithm

4 needs O(NO) time complexity to build the min-heap, O(NO · logNO) to clear the min-heap,

and O(NI) operations for the queue. On the other hand, Algorithm 5 needs O(NO) to build the

min-heap, and the time complexity upper bounded by O((NO +NI) · logNO) to maintain the

min-heap. The additional complexity does not pose a significant challenge when the obstacles

are sparsely distributed and not too close to the observer, resulting in minimal obstruction.

In terms of complexity from evaluations, Algorithm 5 cuts down the number of φ function

calls significantly, and hence decreases operations in evaluating ψ . This especially helps in the

case when obstacles are far from the observer. In the meantime, the method used to evaluate ψ

is not specified as in Algorithm 4. In the case of using ray tracing method with phase flow, the
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Figure 2.4. Illustration of operations with and without tube when using ray tracing method with
time doubling phase flow on the grid point # 11. All red dots represent data calculated and stored
in evaluating ψ at point # 11. Each branching of the red lines from a higher level to a lower level
indicates an operation.

width of the tube is naturally set as the number of levels S+1 from the phase flow. Figure 2.4

shows how the introduction of the tube leads to a reduction in operations in a one dimensional

case.

Although the tube brings benefits by eliminating number of evaluations, due to its

limitation in width, Algorithm 5 can not perform well when obstacles are obscured by some

other obstacles far away. This is because the tube is too narrow to pass the signal that the region

is already obstructed by something farther along. To address this, a structure called ”cube” is

introduced to work in conjunction with the tube, serving as a framework for querying visibility

information outside the tube.

The cube develops from the eye-cell, i.e. the grid cell containing the eye-point, and it

advances by width in L-infinity norm to form concentric squares around the eye-cell. Figure 2.6
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illustrates the cube up to the layer with a width of 8, advancing in the direction of the gray arrows

pointing outward. Each cell contains information Vis indicating if the cell is completely blocked,

or else. The visibility information is updated along with the growing method, and advances layer

by layer until it covers the whole domain.

To better integrate the cubic structure with existing growing method, a new metric called

the ”cubic distance” is proposed as an alternative to the Euclidean metric for use in the min-

priority queue. It is modified based on the L-infinity distance between grid cells to the eye-cell.

The new cubic distance should help the growing method progress along with outgoing layer

of the cube, and maintain some ordering within the same cubic layer. A viable cubic distance

between a grid cell containing x and the eye-cell is defined as below:

||index(cellx)− index(cellx∗)||∞ +
||index(cellx)− index(Pro j(cellx∗))||1

(d−1)∗ ||index(cellx)− index(cellx∗)||∞ +1
,

where the Pro j(cellx∗)) is the project of eye-cell onto the cubic face containing x. The definition

guarantees the cubic distance between the eye-cell and cells on the layer with width w ranges

in [w,w+1), and the distance increases as the cell moves farther from the center of the face it

stands on, as illustrated by the horizontal arrows in Figure 2.6. As a remark, the level sets of the

cubic distance to the center eye-cell form star-shaped patterns, meaning the cubic distance keeps

viable ordering for the characteristics. This implies that when the cube extends to a specific grid

cell, all the cells along the ray tracing back to the eye-cell have a smaller Euclidean distance

to the eye-cell and are contained within the existing cube. Thanks to this property, the new

distance measure serves as an effective replacement for the Euclidean metric in sorting operations

involved in both the seeding and growing phases within the tube.

The update of Vis is done along with the advancement of the Cube. To start with,

all cells are default to be visible (+∞). On a given cubic layer, as the growth with the tube

progresses, each time the root cell of the min-heap is checked, the Vis value is updated based

on ψ approximations at its vertices. If the cell is completely invisible, Vis is marked as −∞.
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Figure 2.5. Illustration of Vis customization for cells that cross the visibility boundary, con-
sidering a cube where the second layer of cells intersects the boundary. Gray arrows indicate
that the Vis determination in the current cell affects cells in the following layer. Red-filled
cells customize its Vis using the sign of ψ at either of the two red-marked vertices on the cell’s
outgoing edge. Green-filled cells use the sign at a single corner vertex. This logic extends to 3D.
Red cells determine Vis using the sign of ψ at any of the four red vertices on their outgoing face.
Green cells use two green vertices on an edge, and cyan cells rely on a single corner vertex.

Otherwise, it is further customized when the cell crosses the visibility boundary, facilitating the

update of Vis in the next cubic layer. Customization of Vis is based on the location of the cell in

the current cubic layer, as depicted in Figure 2.5 and detailed in the following scheme: The cell

is marked as ±1 or 0 based on the sign of the ψ value at any one of its vertices that is shared by

all the surrounding cells in the next cubic layer, as any such vertex yields the same result.

After the growing process finishes with all the cells in the min-heap from the current

cubic layer, the cube is ready to advance to the next layer. If the untouched cell on the current

layer has its preceding cell from the previous cubic layer with a negative Vis, it is completely

obstructed, and marked as −∞ accordingly. Over all, after Vis is updated to cover the whole

domain, all cells with Vis =−∞ are completely blocked, and all cells with finite Vis values are

the ones cross the visibility interface. Figure 2.6 demonstrates cubic layers, and how Vis is

updated alongside the growing method in a 2 dimensional scenario.

The cubic Vis information is used in conjunction with the tube for ψ evaluation. When

the ψ evaluation requires data outside of the tube, if Vis value of the involving grid cell shows
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Figure 2.6. Illustration of Vis update with cubic layers in 2 dimension. The black curve indicates
boundary of the obstacle, dotted line represents boundary of visible region, and the gray dot
represents the eye-point. All shaded cells are once in the min-heap from the growing process. At
gray cells, Vis is either −∞ or customized with ±1 or 0. When customized, vertices of a cell are
scanned counterclockwise from its lower left corner. At cells not in shade, Vis is set as −∞ when
its preceding cell from the previous layer has negative value. Otherwise, it is visible.
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it completely blocked, then the ψ evaluation is void, since anything behind a blocked obstacle

is invisible as well. Sub-figures from Figure 2.7 show how the tube and cube progress in two

dimensions as the growing method advances, while Figure 2.8 shows the final result once the

process is complete. The integration of cubic update of visibility information successfully fixed

the problematic case when there are obstacles obscured by others far away, as shown in Figure

2.9.

There is certainly some complexity introduced to maintain the cube in order to address

issues caused by the tube alone. However, no additional evaluations of ψ or function calls to φ

are required in the process, which would otherwise be the primary contributors to complexity.

As a note, upon the completion of the growing procedure with tube and cube, the cubic

Vis information can be used to query visibility information on the whole computational domain.

For cells that cross the visibility interface, the cube provides references to their corresponding ψ

values as determined by the algorithm. For cells located far from the interface, the cube stores

simpler binary information indicating whether they are visible or invisible. Optimizations can be

applied to the current data structure of the cube to enable faster queries and improved storage

efficiency.

The ultimate algorithm is shown in Algorithm 7 with the helper function Function 6. The

Function 6 is configured to operate on specified point and level, using the ray tracing method

with the time doubling phase flow in partnership with tube and cube, adapted for recursive use.

Algorithm 7 combines all the structures we introduce in this section, and functions as a seeding

and growing method with tube and cube.

In the following chapter, experiments are done with the Algorithm 7 to evaluate its order

of accuracy and complexity compared to other methods. The discretization unit τ is by default

set as the grid size h, and the width of the tube is set as the number of levels from the phase flow

part, roughly in the scale of logh−1.
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Function 6: formvisgridpttube function defined recursively to update visibility at
the current grid point: utilizing phase flow method with tube and cube

1 function formvisgridpttube (x, l,τ,V, tube,Vis,φ ,x∗);
Input :a grid point of interest x, the desired level l in phase flow, the discretization

unit τ , stored visibility function values at all levels V , an existing tube,
visibility information carried by the cube Vis, a level set function φ on a
uniform grid representing obstacles, and an eye-point location x∗.

Output :updated V , tube, and Vis.
2 if V (x, l) is not evaluated then
3 if l > 1 then
4 formvisgridpttube(x, l−1);
5 valuex←V (x, l−1);
6 else
7 valuex← φ(x);
8 end
9 if 2(l−2)+ · τ < ||x−x∗|| then

10 y = a−2(l−2)+ · τ x−x∗
||x−x∗|| ;

11 else
12 y = x∗;
13 end
14 if celly is in tube then
15 if y ̸= x∗ and l > 1 then
16 formviscelltube(celly, l−1);
17 valuey← multilinear(V (celly, l−1));
18 else
19 valuey← multilinear(φ(celly));
20 end
21 V (x, l) = min(valuex,valuey);
22 else
23 V (x, l) = valuex;
24 if Vis(celly) shows the cell completely blocked then
25 V (x, l) =−∞;
26 end
27 end
28 end
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Algorithm 7: visibility algorithm for finding the boundary of visibility area
given obstacles: operated by phase flow method with tube, together with growing
method and cubic update of visibility info

1 function visibility (φ ,x∗);
Input :a level set function φ on a uniform grid representing obstacles, and an

eye-point location x∗.
Output :visibility function ψ values on certain grid points next to the visibility

boundary, together with Vis data in a cubic structure for fast query of
visibility status of grid cells on the computational domain.

2 min-heapify all grid cells crossing the boundary of obstacles according to the cubic
distance to eye-point;

3 while heap is not empty do
4 get the root cell;
5 update the tube to contain grid cells centered around the root cell up to a width;
6 run formvisgridpttube at vertices of root cell;
7 for each neighboring cell do
8 if it is not once in heap and the shared face cuts through the interface then
9 add it to the heap, mark it once in heap, and re-balance the heap;

10 end
11 end
12 update Vis at the root cell;
13 remove the root cell and re-balance the heap;
14 while the next root cell is not covered by the current cubic layer do
15 advance the cube by one layer;
16 end
17 end
18 update the remaining cubic layers to cover the whole domain.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.7. Visualization of the tube and cube’s progression in two dimensions as the growing
method unfolds, shown sequentially from (a) to (f).
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Figure 2.8. Illustration of the final state of the tube and cube in two dimensions after executing
Algorithm 7. The blue lines outline the cubes storing visibility information of grid cells. All grid
cells in light gray are completely invisible, while the dark gray ones are crossing the visibility
interface. The red line is the approximate visibility interface based on visibility function values
on the dark gray cells. All evaluations rely on the grid points labeled with green cross, which
represent the vertices of grid cells from the tube.

Figure 2.9. Illustration of necessity of cube in Algorithm 7 in 2 dimension. It is a show case
when the tube itself is too narrow to pass enough visibility information to the obstacle obstructed
by the other one far away. The tube is highlighted in green, and the gray shade marks the
information carried by the cube.
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Chapter 3

Numerical Results

To ensure consistent scaling for comparison, all experiments are performed within the

fixed computational domain [−1,1]× [−1,1], with the eye-point positioned at (0.7,0). The

following three cases encompass the primary scenarios related to vision obstruction: obstacles

farther from the eye-point can be completely invisible, completely visible, or partially blocked,

as shown in Figure 3.1.

(a) Case1-1:
One circle centered at (−0.8,0.8)
with radius 0.1 completely blocked
by another circle centered at (0,0)
with radius 0.5

(b) Case2:
One circle centered at (−0.8,0.8)
with radius 0.1 and another circle cen-
tered at (0,0) with radius 0.2 mutu-
ally non-occluding

(c) Case3-1:
One circle centered at (−0.8,0.8)
with radius 0.1 partially blocked by
another circle centered at (0,0) with
radius 0.3

Figure 3.1. Three cases for accuracy and complexity testing of Algorithm 7.

3.1 Accuracy

There are two primary approaches for measuring accuracy of our approximation of the

visibility interface, referred to as E1 and E2. Both methods have their advantages and limitations.
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1. E1 quantifies the distance between the approximate visibility interface and the actual

visibility interface. Based on visibility function ψ values from the output of the Algorithm

7 adjacent to the approximate visibility interface, linear interpolation is used to compute

the approximate zero-level points on the grid lines, and the distance between these points

and the actual visibility interface is defined as E1. It is denoted as E in f
1 when measured

in L-infinity norm, and Eave
1 when measured in L-1 norm divided by the number of

evaluations.

2. E2 quantifies the difference between the approximate and actual values of the visibility

function ψ at grid points adjacent to the approximate visibility interface. It is denoted as

E in f
2 when measure in L-infinity norm, and Eave

2 when measured in L-1 norm divided by

the number of evaluations.

The distance between the approximate visibility interface and actual visibility interface

is generally a more reliable metric to assess accuracy across different scenarios or cases, since a

distance-based metric is more robust to variability caused by influence of different configurations

(e.g., obstacle function φ choices and scales) on the other metric. However, it is difficult to

measure numerically without knowing points right on the approximate visibility interface. E1

uses linear interpolation of approximate ψ values on the grip points next to the zero-level set,

basically a one-step secant method, to approximate the zero-level points on the grid lines. This

root-finding method introduces error in the quantification of the measure E1, but it aligns with the

default approach for visualizing a zero-level set in Matlab [16]. To ensure that E1 is meaningful,

it is typically evaluated on the actual analytic visibility function ψ as well for reference, denoted

as refE1, in order to exclude the effects of linear interpolation.

In Algorithm 7, the output visibility function ψ values are only available at end-points of

certain grid cells that cross the ”approximate” visibility boundary. Therefore E2 can not catch

the difference at grid points adjacent to the ”actual” visibility interface, as shown in Figure 3.2,

and it may introduce biases or unfairness when used as a comparison metric among different

40



visibility algorithm. More alarmingly, a significant limitation of E2 is that the analytic form of ψ

is often unavailable in experimental scenarios. This absence necessitates numerical methods,

which can introduce computational complexities and errors. Regardless, when analytic ψ is

available, E2 is more practical to calculate than E1.

In Table 3.1, the E in f
1 of Case3-1 shows significant lower order of accuracy, close to

O(h). This occurs at the sharp corner of the partially blocked region. When smoothing out with

Eave
1 , the result looks much better. This justifies that the O(h) accuracy is local when the analytic

ψ is not continuously differentiable at the corner. At the same time, Figure 3.3 shows that the

E in f
1 of Case3-1 is much higher than the other cases, and not much different from the reference

error refE in f
1 when calculated with its analytic ψ , indicating that the problem is dominated by

the error introduced by linear interpolation in E1.

As a remark, the periodic artifacts shown in Figure 3.3 is a result of finite precision and

rounding errors of floating-point arithmetic. Nevertheless, the general trend of convergence

of errors is still obvious from the plot, and the dominance of the error introduced by linear

interpolation in E1 less noticeable when averaging is applied, in Eave
1 . Therefore the order of

accuracy measured in Eave
1 makes sense, indicating the Algorithm has an order of accuracy not

far from 2. You can also get a sense of the order of accuracy from the Table 3.1 comparing row

N = 100,200,400.

Another noticeable observation from Table 3.1 is that Case 2 shows the best performance,

followed by Case 3-1, and then Case 1-1 in terms of Eave
∗ . First of all, the weaker outcome in

Case 1-1 is not a result of blockage or anything caused by the tube and cube in the growing

method, since another experiment is preformed with only the one circular obstacle in the front,

and the result with N ranging from 65 to 512 is identical, except for arithmetic calculation errors.

Instead, comparing the φ level sets in the three cases from Figure 3.4, the performance difference

may stem from the φ scale inside the obstacle, as calculating ψ essentially involves looking of

its minimum along lines, and φ is only negative inside. To validate this reasoning, another set

of three cases is tested for comparison, as shown below in Figure 3.5 and Table 3.2. The result
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Figure 3.2. Zoom-in picture of the problematic area in an experiment of Case 1-1 with N = 86.
The blue line indicates the actual zero-level set of the analytic ψ , while the red refers to the
approximate one from the Algorithm 7. At grid point (−0.2791,1), the approximate ψ gives
false negative, and consider the grid cell to the left of #211 completely obstructed while it is not.
Thus there is no valid data for E2 evaluation if measured at grid points adjacent to the ”actual”
visibility interface.
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reaffirms the second-order accuracy in Eave
1 , and O(h) accuracy in E in f

1 for the case with corner

on the visibility interface.

(a) E in f
1 : Case1-1 (b) E in f

1 : Case2 (c) E in f
1 : Case3-1

(d) Eave
1 : Case1-1 (e) Eave

1 : Case2 (f) Eave
1 : Case3-1

Figure 3.3. E1 and its reference refE1 on the three cases for accuracy.

3.2 Complexity

There are six quantities used to measure complexity of a iterative visibility algorithm

based on the problem set up in our work, as listed below:

• N1: number of requests of the key iterative function,

• N2: number of executions of the key iterative function,

• N3: number of interpolations needed,

• N4: number of requests of φ value, including redundant requests at the same grid point,

• N5: number of φ values involved at different grid points,
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Table 3.1. Accuracy of Algorithm 7 tested in the three cases of two circular obstacles.
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(a) Case1-1 (b) Case2 (c) Case3-1

Figure 3.4. Level sets of the obstacle function φ in the three cases for experiment.

(a) Case1-2:
One circle centered at (−0.8,0.2)
with radius 0.1 completely blocked
by another circle centered at (0,0)
with radius 0.2

(b) Case2:
One circle centered at (−0.8,0.8)
with radius 0.1 and another circle cen-
tered at (0,0) with radius 0.2 mutu-
ally non-occluding

(c) Case3-2:
One circle centered at (−0.8,0.5)
with radius 0.1 partially blocked by
another circle centered at (0,0) with
radius 0.2

Figure 3.5. Three new cases for accuracy testing of Algorithm 7.
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Table 3.2. Accuracy of Algorithm 7 tested in the three new cases of two circular obstacles. The
accuracy order results in Eave

1 for the three cases do not differ as significantly as the previous
results shown in Table 3.1.

N
Case1-2 Case2 Case3-2

E in f
1 Eave

1 E in f
1 Eave

1 E in f
1 Eave

1

100 1.960e-4 4.222e-5 4.188e-4 5.273e-5 3.031e-4 4.981e-5
150 1.748e-4 2.529e-5 1.784e-4 3.462e-5 8.144e-4 3.256e-5
200 7.780e-5 2.193e-5 1.134e-4 2.557e-5 8.402e-4 2.589e-5
250 8.621e-5 6.181e-6 8.621e-5 1.073e-5 2.353e-4 9.710e-6
300 4.343e-5 6.058e-6 4.702e-5 8.179e-6 1.893e-4 1.236e-5
350 3.289e-5 3.925e-6 3.289e-5 5.500e-6 5.856e-4 7.216e-6
400 2.323e-5 2.613e-6 3.611e-5 4.122e-6 1.012e-4 4.150e-6
450 1.454e-5 2.559e-6 2.627e-5 3.943e-6 1.443e-3 5.616e-6
500 2.115e-5 1.819e-6 2.115e-5 2.897e-6 4.147e-4 3.466e-6

O(hα) 1.7924 2.1340 1.8295 2.0699 1.1855 2.0296

• N6: number of ψ values calculated at grid points.

In the case of Algorithm 7, the key iterative function refers to Function 6.

Suppose N is the number of divisions along each axis and scales as O(h−1). The gridded

domain has O(Nd−1) number of grid points close to the visibility interface, and the width of

the tube is set to be O(logN). Therefore the number of ψ values calculated (N6) has order

of O(Nd−1) and the different φ values needed (N5) under the growing method with the tube

has order of O(Nd−1 logN). As we have seen in section 2.2, the construction of ψ̃T is divided

into S stages, and each stage requires applying the repetitive operations (minimization and

interpolation) B times. In our Algorithm 7, the iterative Function 6 uses the time doubling

scheme with fixed B = 2, so S scales as O(logN). In general, N1 to N4 should all be proportional

to O(Nd−1(logN)2). The Figure 3.6 below illustrates the trend and order of the dataset, with N

ranging from 64 to 512, and Table 3.3 provides a more quantitative approximation of the order

of complexity, both providing evidence to verify our analysis in the 2D case.

A horizontal comparison of complexity between methods is shown in Figure 3.7, featuring

the phase flow + growing method and the trivial method + growing. Together with Figure 3.6,
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Table 3.3. Complexity of Algorithm 7 tested in the three cases of two circular obstacles. The
order of complexity α and β are approximated by log-log regressions on a data set with N from
65 to 512. The value of α is below 2, and β for N1 through N4 is approximately 2 across all
three cases.

Case1-1 Case2 Case3-1

O(Nα) O(N · (logN)β ) O(Nα) O(N · (logN)β ) O(Nα) O(N · (logN)β )

N1 1.6039 1.9682 1.5430 1.7694 1.5981 1.9485
N2 1.5529 1.8019 1.4927 1.6056 1.5443 1.7729
N3 1.5119 1.6682 1.4565 1.4872 1.5138 1.6736
N4 1.7706 2.5127 1.7146 2.3299 1.7715 2.5147
N5 1.2578 1.0875 1.1964 0.9643 1.2684 1.4320
N6 1.2478 1.1669 1.1948 1.0288 1.2865 1.5288

it is evident that the phase flow method with tube and cube + growing requires the fewest

operations among the three methods, especially when compared to the trivial method at scale.

The improvement in the order of complexity is also clearly demonstrated in the comparison.

In terms of running time, Algorithm 7 requires approximately 1 second to run on a

100×100 grid resolution, making it both efficient and promising for practical applications.

3.3 Other Experiments

Due to the lack of an available analytic visibility function ψ in most cases, we cannot

conduct extensive experiments for accuracy analysis. However, Algorithm 7 is capable of

detecting visibility boundaries in many scenarios, even with complex-shaped obstacles. Below

in Figure 3.8 are additional experiments where our algorithm performs exceptionally well, as

evidenced by its visual results.

For sophisticatedly contoured obstacles, Figure 3.9 illustrates a butterfly shape [31]

represented by pixels. After pre-processing steps such as noise reduction, rotation, normalization,

resizing, and thresholding, the butterfly-shaped obstacle is placed at the center of the domain.

It is represented by its level set function φ , where φ ∈ [−1,0) inside the obstacle and padded

with 1 outside. The visibility algorithm is then applied, and Algorithm 7 demonstrates excellent
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Figure 3.6. Complexity test in Case 2, using of Algorithm 7: phase flow with tube and cube +
growing. N1 through N4 all scale approximately as O(N log2 N).
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(a) Phase flow + growing (b) Trivial + growing

Figure 3.7. Complexity comparison between methods. The trivial + growing method requires
O(N2) operations, while the phase flow + growing method has a slightly higher order of com-
plexity than our Algorithm 7, but performs better than the trivial method.

performance in capturing the visibility interface.
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(a) Experiment on a concave-shaped obstacle: the Pac-
Man.

(b) Experiment on an irregularly shaped obstacle: a
lollipop-like shape resembling the structure of the Greek
letter φ .

(c) Experiment on a path-connected but not simply-
connected obstacle: a triangular shape containing a
hollow circular cutout.

(d) Experiment on multiple occluding obstacles: several
circular obstacles scattered across the domain, illustrat-
ing layered obstructions.

Figure 3.8. Algorithm 7 performs well on complex-shaped obstacles.

51



(a) A butterfly-shaped gray-scale image.

(b) The visible parts of the butterfly’s left wing are accu-
rately captured.

(c) The antennae of the butterfly are properly captured.

Figure 3.9. Algorithm 7 performs well on gray-scale image. The gray-scale image can be
loaded as a pixel matrix. The pixel values are mapped linearly to create its level set function
φ , with 255 mapped to −1, 55 to 0, and 0 to 1. The butterfly shape is then placed in the region
[−0.5,0.5]× [−0.5,0.5] as an obstacle.
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Chapter 4

Approximation of Volume of visible region

Approximating the volume of the visible region is a fundamental goal in visibility-

related optimization problems, because it provides a quantitative measure of how much of the

environment can be observed from one or more viewpoints. This metric is instrumental in

optimizing viewpoints for maximal coverage [4] and is frequently employed to evaluate the

effectiveness of viewpoints.

4.1 Problem Set Up

Consider a subset in the domain D ∈ Rd denoted as Ω, with its boundary Γ. Then the

volume of the region inside the region Ω is given by

V =
∫

D
HΩ dx,

where HΩ is a Heaviside step function indicating the region Ω, that is

HΩ(x) =


1, if x ∈Ω,

0, otherwise.

We use Dh to denote the discretized computational domain, with h the step size. Let xi denote grid

points of Dh. Our goal is to find a discrete version of HΩ denoted H̃i so that the approximation is
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maintained to some order in h, that is,

V = ∑
i

hdH̃i +O(hp)

where p > 0.

In the visibility problem, when Ω represents the visible region, it is characterized by

{x : ψ(x)> 0}. Accordingly, Γ refers to the visibility interface. The volume of the visible region

is then given by

V =
∫

D
H(ψ(x))dx,

where H is the one dimensional Heaviside step function

H(x) =


1, if x > 0,

0, otherwise.

Numerically, given visibility values ψi at grid points xi over the entire computational

domain Dh, we can approximate the volume of visible region as

V = ∑
i

hdH̃(ψi)+O(hp)

where p > 0. As a remark, it is actually sufficient to consider only the ψi data close to the

visibility interface, together with binary visible/invisible information elsewhere, as in the format

of the output from the algorithm previously presented in the dissertation.

In the volume approximation of visible region, error could only occur close to the

visibility interface Γ. With O(h−(d−1)) grid points near Γ, setting H̃(ψi) = H(ψi) would only

guarantee a first order accuracy. Therefore, our goal is to find a higher order approximation of

the Heaviside function with a step jump on the zero-level set of a continuous function ψ . A

second order Heaviside approximation can be constructed based on the work from Peter Smereka
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[26] when he approximates the Delta Function.

4.2 Smereka’s Delta Function Approximation

Let δ (x) be the usual one-dimensional Dirac delta function, and d(x) be the signed

distance function to Γ from a point x ∈ D⊂ Rd , where d(x) is negative inside the region Ω and

positive outside. The arc-length in the case d = 2 or surface area in the case of d = 3 of Γ is

given by

L =
∫

Ω

δ (d(x))dx.

Peter Smereka constructed a discrete Delta function, denoted δ̃i on grid point xi, using a technique

developed by Anita Mayo [17, 18], so that

L = ∑
i

hd
δ̃i +O(h2).

In Smereka’s paper [26], firstly he treats the Delta function as a second order derivative

function based on the Green’s function for Laplace’s equation, and then rewrites its equivalent

form with jump conditions. In one dimensional space on the unit interval with 0 < xΓ < 1 as the

singular point,

g′′(x) = δ (x− xΓ) ⇐⇒

 g′′(x) = 0, x ̸= xΓ,

[g]x = 0, [g′]x = 1, [g′′]x = 0,

where [g]x denotes jump across xΓ in positive x direction, [g]x := limε→0 g(xΓ + ε)−g(xΓ− ε),

also denoted as gΓ+−gΓ− .

Similarly, in higher dimension, the paper devises the discrete delta function by consider-
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ing the following elliptic problem in its equivalent form with regard to jump conditions.

∆g(x) = δ (d(x)) ⇐⇒

 ∆g(x) = 0, x /∈ Γ,

[g] = 0, [∂ng] =−1, [∂ 2
nng] = 0,

where n is the normal direction of Γ pointing outward of Ω, i.e. the direction along which d(x)

goes down the fastest, referred to as the outward normal. ∂n and ∂ 2
nn represents the first and

second order directional derivative in the outward normal direction, and [g] denotes jump across

the singular boundary Γ in the outward normal direction n, [g] := limε→0 g(xΓ + εn)−g(xΓ−

εn).

Then he discretizes the second order term with good care of the jump conditions using

techniques from Anita Mayo [17, 18], and that in return, gives a numerical approximation of

the delta function. For consistency in terminology, we adhere to Mayo’s work, that grid points

are categorized into two types: irregular points and regular points. Irregular points are the ones

within one mesh distance to the interface. That is to say, if there is an interface point xΓ between

grid points xi and xi+1, then xi and xi+1 are irregular points. All the other grid points are denoted

as regular points.

4.3 Heaviside Function Approximation

Consider the Partial Differential Equation

∆g = HΩ (4.1)

with boundary conditions

[g] = 0,
[

∂g
∂n

]
= 0

on ∂Ω and g = 0 on computational domain boundary ∂D.
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Start with one dimension:

g′′ = HΩ (4.2)

with boundary conditions

[g] = 0,
[
g′
]
= 0

on ∂Ω, where n =±1 is the outward unit normal on ∂Ω, and g = 0 on ∂D.

Consider a boundary point xΓ lying in between grid points xi and xi+1, and suppose

xΓ = xi +αh where 0 < α < 1. From a Taylor Series expansion, one has

gi+1 = gΓ+ +(1−α)hg′
Γ+ +

(1−α)2h2

2
g′′

Γ+ +O(h3), (4.3)

gi = gΓ−−αhg′
Γ−+

α2h2

2
g′′

Γ−+O(h3). (4.4)

Since there are no jumps in g for xi−1 < xΓ, then

gi−1 = gi +hg′i +
h2

2
g′′i +O(h3). (4.5)

Combining (4.5) together with first and second order derivatives of (4.4),

gi−1 = gi−hg′i +
h2

2
g′′i +O(h3),

= gi−hg′
Γ−+αh2g′′

Γ−+
h2

2
g′′

Γ−+O(h3),

= gΓ−− (1+α)hg′
Γ−+

(1+α)2h2

2
g′′

Γ−+O(h3). (4.6)

Subtracting (4.4) from (4.3) gives

gi+1−gi = n[g]−αhn
[
g′
]
+hg′

Γ+ +
(1−α)2h2

2
g′′

Γ+−
α2h2

2
g′′

Γ−+O(h3). (4.7)

57



And subtracting (4.4) from (4.6) gives

gi−1−gi =−hg′
Γ−+

(2α +1)h2

2
g′′

Γ−+O(h3). (4.8)

Adding (4.7) and (4.8), and combining with second order derivative of (4.4),

gi+1−2gi +gi−1 = n[g]+ (1−α)hn
[
g′
]
+

(1−α)2h2

2
n
[
g′′
]
+h2g′′i +O(h3),

which can be reorganized as

g′′i =
gi+1−2gi +gi−1

h2 − n[g]
h2 −

(1−α)n [g′]
h

− (1−α)2

2
n
[
g′′
]
+O(h).

Now, with [g] = 0, [g′] = 0, and the jump condition [g′′] =−1, we have

g′′i =
gi+1−2gi +gi−1

h2 +
(1−α)2

2
n+O(h). (4.9)

Note the added factor of
(1−α)2

2
n.

More generally, noting that

gΓ±−gΓ∓ =±n[g],
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suppose the boundary point xΓ is in between gi±1 and gi,

gi±1−gi =gΓ±± (1−α)hg′
Γ±+

(1−α)2h2

2
g′′

Γ±−gΓ∓±αhg′
Γ∓−

α2h2

2
g′′Γ∓+O(h3),

=±n[g]+ (1−α)hn
[
g′
]
± (1−α)hg′

Γ∓±
(1−α)2h2

2
n
[
g′′
]
+

(1−α)2h2

2
g′′Γ±

αhg′
Γ∓−

α2h2

2
g′′

Γ∓+O(h3),

=±n[g]+ (1−α)hn
[
g′
]
± (1−α)2h2

2
n
[
g′′
]
±hg′

Γ∓+
(1−2α)h2

2
g′′

Γ∓+O(h3),

=±n[g]+ (1−α)hn
[
g′
]
± (1−α)2h2

2
n
[
g′′
]
±
(
hg′i±αh2g′′i

)
+

(1−2α)h2

2
g′′i + ...,

=±n[g]+ (1−α)hn
[
g′
]
± (1−α)2h2

2
n
[
g′′
]
±hg′i +

h2

2
g′′i +O(h3),

with unknown g′i and g′′i ; if there is no boundary in between gi±1 and gi, we have

gi±1−gi =±hg′i +
h2

2
g′′i +O(h3).

Thus, in the one-dimensional case, we have two equations from ±, and two unknowns g′i

and g′′i . This allows us to solve for g′′i . In our case of jump conditions, we have

gi±1−gi =∓
(1−α)2h2

2
n±hg′i +

h2

2
g′′i +O(h3),

or

gi±1−gi =±hg′i +
h2

2
g′′i +O(h3).

This means if there is a boundary point xΓ ∈ (xi−1,xi+1),

(gi+1−gi)+(gi−1−gi) = h2g′′i +h2 (A+
i +A−i

)
+O(h3),
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where

A±i =


∓ (1−α)2

2 n , if interface point lies between xi,xi±1

0 , otherwise.

So
gi+1−2gi +gi−1

h2 = HΩ (xi)+A+
i +A−i +O(h). (4.10)

Notice that, on the left hand side of (4.10) is the central difference approximation for the second

derivative of g at xi, denoted as g′′h(xi). The O(h) error term is only nonzero when xi is an

irregular point. Otherwise on regular point,

g′′h(xi) = HΩ (xi)+O(h2). (4.11)

Combining (4.10) and (4.14),

g′′h(xi) = HΩ (xi)+A+
i +A−i +OI(h)+O(h2), (4.12)

where OI(h) term is only nonzero at irregular points. This is the discrete form of (4.2), and the

right hand side represents the discrete Heaviside function plus error terms.

In higher dimensions Rd , if xi is an irregular point, then

gi±e j−gi =±
n j∣∣n j
∣∣ [g]+(1−α)h

n j∣∣n j
∣∣ [gx j

]
± (1−α)2h2

2
n j∣∣n j
∣∣ [gx jx j

]
±h

(
gx j

)
i+

h2

2
(
gx jx j

)
i+ ..,

where e j denotes the unit standard vector, and gx j denotes partial derivative of g in the direction

of e j. Otherwise when xi is a regular point,

gi±e j −gi =±h
(
gx j

)
i +

h2

2
(
gx jx j

)
i +O(h3).

Assuming the jump terms can be calculated, this leads to 2d equations and the 2d
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unknowns
(
gx j

)
i ,
(
gx jx j

)
i. Using better notation, with s =±1 and noting

s
n j∣∣n j
∣∣ =−sign(φi) ,

we can write

gi+se j −gi =− sign(φi) [g]− s(1−α)hsign(φi)
[
gx j

]
− (1−α)2h2

2
sign(φi)

[
gx jx j

]
+

sh
(
gx j

)
i +

h2

2
(
gx jx j

)
i +O(h3)

=− sign(φi)

(
[g]+ s(1−α)h

[
gx j

]
+

(1−α)2h2

2
[
gx jx j

])
+

sh
(
gx j

)
i +

h2

2
(
gx jx j

)
i +O(h3),

when there is an interface.

Note that [
∂g
∂n

]
= [∇g ·n] = [∇g] ·n,

so

[∇g] ·n = 0.

Also, [g] = 0 implies

0 = [∇g · τ] = [∇g] · τ

for any τ ·n = 0. Altogether, this means

[∇g] = 0.

Finally, note

[∆g] =−1,
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and since [∇g · τ] = 0 for all τ ·n = 0,

[∇(∇g · τ) ·η ] = 0

for all τ,η orthogonal to n, and

[∇(∇g ·n) ·η ] = 0

as well. This means, since [∇g] = 0, that

η
T [

∇
2g
]

τ = 0,

η
T [

∇
2g
]

n = 0.

Now let {
τ
(1), . . . ,τ(d−1),n

}
be an orthogonal basis for Rd . Note there are

1+2+ · · ·+d =
d(d +1)

2

unknowns in the upper triangular portion of
[
∇2g

]
, and

(d−1)+(d−2)+ · · ·+1+(d−1)+1 =
d(d +1)

2

equations. The equations can be labeled as the following:

• For 1≤ k ≤ ℓ≤ d−1,

∑
i

τ
(k)
i τ

(ℓ)
i [gxixi]+∑

i< j

(
τ
(k)
i τ

(ℓ)
j + τ

(k)
j τ

(ℓ)
i

)[
gxix j

]
= 0;
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• For 1≤ k ≤ d−1,

∑
i

τ
(k)
i ni [gxixi]+∑

i< j

(
τ
(k)
i n j + τ

(k)
j ni

)[
gxix j

]
= 0;

• And,

∑
i
[gxixi] =−1.

Observe that, when

• For 1≤ i < j ≤ d,
[
gxix j

]
=−2nin j;

• For 1≤ i≤ d, [gxixi] =−n2
i .

we have [
∇

2g
]
= nnT ,

so

η
T [

∇
2g
]

v = η
T nnT v = 0

for all η ·n = 0, and the observation is the solution. This means

gi+se j −gi = sign(φi)
(1−α)2h2

2
n2

j + sh
(
gx j

)
i +

h2

2
(
gx jx j

)
i +O(h3),

if there is an interface point in between. And it follows that

gi+e j −2gi +gi−e j = h2 (gx jx j

)
i +h2

(
A+

i j +A−i j

)
+O(h3),

where

A±i j =


sign(φi)

(1−α)2

2 n2
j , if interface point lies between xi,xi±e j

0 , else.
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So
d

∑
j=1

gi+e j −2gi +gi−e j

h2 = HΩ (xi)+
d

∑
j=1

(
A+

i j +A−i j

)
+O(h). (4.13)

On the left hand side of (4.13) is the standard center differenced approximation for the Laplacian

of g at xi, denoted as ∆hgi. The O(h) error term is only nonzero when xi is an irregular point.

Otherwise on regular point,

∆hgi = HΩ (xi)+O(h2). (4.14)

Therefore,

∆hgi = HΩ (xi)+
d

∑
j=1

(
A+

i j +A−i j

)
+OI(h)+O(h2), (4.15)

where OI(h) term is only nonzero at irregular points. This is the discrete form of (4.1), and the

right hand side represents the discrete Heaviside function plus error terms.

4.4 Accuracy and Numerical results

From the previous analysis, we consider the accuracy from

V =
∫

D
H(ψ(x))dx,

=
∫

D
∆gdx,

= ∑
i

hd
∆hgi +O(h2),

= ∑
i

hd(H̃(ψi)+OI(h)+O(h2))+O(h2),

= ∑
i

hdH̃(ψi)+O(h2),

since there are O(h−(d−1)) irregular points and OI(h) only occurs at irregular points. In practice,

A±i j from the H̃(ψi) will be approximated to some level of accuracy in h, and that results from

the error approximating α and n j. Since this error only occurs at irregular points as well, as long

as n j is approximated up to first order on the interface, and α with O(1) accuracy, the overall
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accuracy would be of O(h2).

With

n j =−
De jψi

||∇εψi||
, (4.16)

where

De jψi =
ψi+e j −ψi−e j

2h
, ||∇ε

ψi||=
√

∑
j
(De jψi)2 + ε,

and with

α =

∣∣∣∣∣ ψi−1

D−e jψi

∣∣∣∣∣ · 1h ,
where

D−e j
ψi =

ψi−ψi−e j

h
,

as generated from the 2D case analysis of Smereka’s Paper [26], n j and α are up to the required

order of accuracy at the interface, which makes the Heaviside approximation second order

accurate. In practice, ||∇ψi|| tends not to be close to 0 at most of the irregular points around the

interface, so (4.16) is usually replaced by

n j =−
De jψi

max(||∇ψi||,ε)

instead for better accuracy result.

In a 3D experiment, the Heaviside function is used to approximate the volume of a ball

centered at (0,0,0) with radius 6 in the domain of [−9,9]× [−9,9]× [−9,9]. A loglog regression

is done based on a data set with N from 30 to 300. The result is shown in Figure 4.1. It indicates

an order less than 2, but still better than a first order approach.

65



Figure 4.1. Accuracy of the Heaviside Approximation in approximating volume of a ball in 3D.
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Chapter 5

Conclusion and Future Research

This study addresses the visibility problem within the level set framework. A novel

grid-based algorithm is proposed, striking a balance between computational efficiency and high

accuracy, along with a new method for approximating the Heaviside function to improve accuracy

in evaluating the volume of visible regions and optimizing related visibility calculations. At

the mean time, several aspects of the proposed methodology warrant further discussion and

exploration to optimize its performance and broaden its applicability.

The phase flow techniques currently employed in the algorithm use a fixed base number

B. While this approach simplifies the computational process and reduces complexity, it imposes

a limitation on the algorithm’s ability to achieve its full potential in terms of accuracy. Future

research should explore the impact of fixing the stage number S instead. This adjustment might

lead to a more refined phase flow representation, enhancing the resolution of visibility boundaries

without significantly increasing computational costs.

The growing method employed in this study demonstrates excellent localized computation

near visibility interfaces. However, its compatibility with multi-resolution representations

remains unexplored. Multi-resolution approaches have the potential to enhance computational

efficiency by dynamically adjusting resolution based on local complexity. Investigating how the

growing method can be integrated with such representations could unlock further efficiencies,

particularly for environments with heterogeneous visibility characteristics.
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The cube structure used in the algorithm plays a critical role in querying visibility

information. The structure could be further optimized to enhance the algorithm’s query speed

and computational efficiency, especially in higher dimensions.

A limitation of the current method lies in its storage requirements. The algorithm’s

reliance on high-resolution grids and auxiliary structures for accurate computations can lead to

substantial memory usage. Addressing this issue requires designing more efficient data structures

that strike a balance between storage efficiency and computational performance. Techniques

such as sparse data representations or hierarchical grids may offer promising directions for

improvement.

The current Heaviside approximation approach is conjectured to achieve second-order

accuracy, which suggests a promising balance between computational efficiency and preci-

sion. While preliminary results indicate favorable performance, rigorous theoretical analysis is

necessary to establish the conjectured accuracy and validate the approach in diverse scenarios.
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[12] Ibrahim Ibrahim, Joris Gillis, Wilm Decré, and Jan Swevers. An efficient solution to the
2d visibility problem in cartesian grid maps and its application in heuristic path planning.
arXiv preprint arXiv:2403.06494, 2024.

[13] Chiu-Yen Kao and Richard Tsai. A level set formulation for visibility and its discretization.
UCLA CAM report, 2006.

[14] Chiu-Yen Kao and Richard Tsai. Properties of a level set algorithm for the visibility
problems. Journal of Scientific Computing, 35(2):170–191, 2008.
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