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Abstract 

An m-th order linear recurrence system of N equations computes Xi =Ci+ L:!~f-m aijXj for 
1 ::; i ::; N. Linear recurrences have a role of central importance in computer design, numerical 
analysis, program analysis, image processing and vision. However, programs containing banded 
linear recurrences are difficult to parallelize due to loop-carried dependences. In this paper, we first 
present a family of schedules, called the exact schedules, for parallel evaluation of low order ( m ::; 2) 
banded linear recurrences with an execution time (2m2 + 3m)N/(p + (m(m + 1)(2m + 1))/(2(2 + 
llog mj))) for 0 < m::; 2 , N > (p + 5)(2p + 3)/6 and number of processors p > m. We show that 
the exact schedules achieve the strict time lower bound under matrix multiplication model. Next, 
we derive another family of schedules, called the pipelined schedules, with better program-space 
efficiency and with an execution time of pipeline startup time+ (2m2 + 3m)N /(p + (2m + 1)/2) for 
m = 1, and pipeline startup time+ (6m + 2)N /(p + (2m + 1) for m > 1, m < p ::; 4m + 1, and 
pipeline startup time+(2m2 +3m)N/(p+(m-1)(2m+1)) form> l,p > 4m+l. This is the first 
parallel algorithm that achieves this time bound, which improved the fastest prevoiusly published 
algorithm by a factor 2:'. (p+ 2m2 - m-1)/(p+ m + 1/2) form> 1. We illustrate the technique by 
parallelizing loops containing linear recurrences and demonstrate the available speedup on a VLIW 
architecture with experimental results obtained using our pipelined schedules. 

1 Introduction 

An m-th order linear recurrence system of n equations computes Xi = Ci + L:tf-m aijXj for 0 < m < N, 

1 ::; i ::; N. If the order m is a fixed number independent of the problem size N, the linear recurrence is called 

a banded linear recurrence. 

*This work was supported in part by NSF grant CCR8704367 and ONR grant N0001486K0215. 
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for(i=l;i<=N;i++) 

x[i] = c[i] + a[i] * x[i - l]; 

Figure 1: (a) first-order linear recurrence. 
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x[i] = x[i] + a[i][j] * x[j]; 

x[i] = x[i] + c[i];} 

(b) higher-order linear recurrence. 

The sequential program for the first and higher order linear recurrence can be written as follows, Clearly, the 

two loops above cannot be significantly parallelized (because of the loop-carried dependences) without breaking 

the dependences and introducing redundant operations. 

Linear recurrences have a role of central importance m computer design, numerical analysis, program 

analysis [16, 10]. Furthermore, many programs consisting primarily of loops with loop-carried dependences 

require real-time response and have a very high frequency of use. Typical examples include image processing, 

vision[18], and control in embedded systems. Since in all such applications speed is of paramount importance, the 

parallelization of linear recurrence is critical. Automatic loop parallelization techniques have been extensively 

studied. These techniques (13, 20, 8, 12, 2] have demonstrated good performance subject to preserving loop­

carried dependences, i.e., they do not parallelize the loops beyond loop-carried dependences. Thus, there 

may still exist considerable amounts of parallelism beyond loop-carried dependences that cannot be extracted 

by dependence-preserving transformations . Furthermore, many programs consisting primarily of loops with 

loop-carried dependences require real-time response and have a very high frequency of use. Typical examples 

include image processing, vision[18], and control in embedded systems. To understand how to parallelize loops 

with loop-carried true dependence beyond dependence-preserving techniques, it is essential to understand the 

fundamental forms of loops with loop-carried dependences, i.e., banded linear recurrence. The schedules and 

the technique used to derive them in this paper can be applied-with some extensions- to parallelizing many 

sequential algorithms containing loop carried true dependences. 

Since in practice a fixed number of resources(i.e., functional units, processors) are available, and since the 

techniques used to overcome dependence limitation introduce some computation overhead( redundant computa­

tion), a trade-off between this overhead and the performance achieved on the given resources exists. Thus, it 

is critical to devise a scheme which performs the computation in optimal time, given the amount of resources 

available. In particular, since the number of data elements usually far outnumber the number of processors 

available, it is important to consider situations in which a fixed number of processors independent of the size of 

the problem N- i.e., the number of results in a linear recurrence system- are available. Since the lower order 

banded linear recurrences( m = 1, 2) are most frequently seen in real programs containing linear recurrences, it 

makes sense to consider parallelizing them first. Needless to say, the method for scheduling parallel computation 

of lower order banded linear recurrences should be general enough to handle higher order linear recurrences. 
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Since we are interested in extending the technique to handle more general forms of loops with loop-carried 

true dependence, we are also concerned with other properties of these optimal schedules, such as the clarity, 

simplicity of implementation, and extendibility. 

Due to the importance of the problem, parallel evaluation of linear recurrences has been studied in various 

forms by some of the pioneers in the field for the past twenty years. Kogge and Stone(15) developed the 

recursive doubling technique for computing the first order linear recurrence system and defined some properties 

that extend applicability of their technique to a broader class of problems. Their technique assumes an unlimited 

number of processors. Ladner and Fischer(l 7) later found optimal circuits for a prefix of size N = 2.1: for k > 0 

assuming an unlimited number of resources. Note that the prefix in Ladner and Fischer's work is a form of the 

simplest first-order linear recurrence--all coefficients a;j equal 1, i.e., there is no multiplication in the recurrence 

system. Chen and Kuck(3] first gave time and processor bounds for parallel computing general linear recurrences 

with no resource constraints. Later, Chen, Kuck and Sameh(5] developed an algorithm for computing banded 

linear recurrence with resource constraints that achieves a time bound of (n/p)(2m2 + 3m) + O(n 2 log(p/m). 

Hyafil and Kung(14) established a time bound of 2/3p + 1/3 for parallel evaluation of the Horner expression, 

which is equivalent to evaluating the last equation in a first-order banded linear recurrence, i.e., evaluating 

XN only without having to compute x 1 , ... , XN-1· Hyafil and Kung thus does not require the values of all the 

equations other than the last, while we require the values of all the equations in the recurrence system. Gajski[9] 

lowered the time bound of (5) further to (2m2 + 3m)N/(p + m + 1/2) for p 2: m + 1 and N > p2 for computing 

the banded linear recurrence with resource constraints. 

For the analysis of our algorithms and to facilitate a formal comparison with previous techniques-to be 

discussed shortly- we use the parallel random access(PRAM) computation model: a PRAM consists of p 

autonomous processors, executing synchronously, all having access to a common memory. Each processor can 

perform an addition or a multiplication in one step, and different processors may perform different types of 

operations at any time. We consider a PRAM models: concurrent read, exclusive write(CREW). In a CREW 

model, several processors may read simultaneously from a memory location but exclusive access is required for 

writes. 

Recently, Nicolau and Wang(19] found the strict time lower bound for parallel evaluation of prefix sums to 

be 2N / (p + 1) for N 2: p(p + 1) and p > 1 for a fixed number of processors p independent of the problem size. 

Although prefix sums is a first-order linear recurrence without multiplication, this result provides a number of 

insights into the optimal schedules for more general forms ofrecurrences(we shall mention them in the upcoming 

sections). Based on these insights, we developed a new method that enables us to systematically approach the 

minimum possible time( strict time lower bound) and to find the algorithm, and the exact schedules, that achieve 

the execution time of 
(2m2 + 3m)N 

+ (m(m+1)(2m+l)) 
P 2(2+(logm]) 

for 0 < m s 2 and N > (p+ 5)(2p+ 3)/6, which is a minimum problem size for which the bound can be achieved. 

This bound improves Gajski's bound by a factor of (p+ (m(m + 1)(2m+ 1))/(2(2+ llogmJ)))/(p+ m+ 1/2) 
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for m = 1, 2 This time bound applies to N > (p + 5)(2p + 3)/6 ::::: p2 /3, a wider range of problem size than 

that of Gajski's result, N > p2 . We define a period in the parallel schedule to be the size of a portion of the 

given linear recurrence such that the said execution time ratio of the schedule(the execution time per result, 

i.e., the total execution time of the schedule divided by N) can be achieved. Intuitively, a period is the number 

of results produced in an iteration of the loop body of a parallel schedule. Thus, a smaller period of a parallel 

schedule means a small schedule size since the size of a schedule is proportional to the period of that schedule. 

For any number of processors p, an exact schedule has a period of p2 /3 + p/2, a much smaller period than that 

of Gajski's algorithm, p2 • Moreover, a modification of the exact schedules we call the pipelined schedules further 

reduce the period at a very small time cost of pipeline startup, which is provably minimum. The pipelined 

schedule not only proves to be a natural candidate for compiling linear recurrences because of its program-space 

efficiency, but can also be used, as a much simpler vehicle than the exact schedules, to approach the time bounds 

for higher order linear recurrences. Using the pipelined schedules, an m-th order banded linear recurrence can 

be evaluated in time 

pipeline startup time+ (2m2 + 3m)N/(p + (2m + 1)/2), form= 1, and 

pipeline startup time+ (6m + 2)N /(p + 2m + 1) form > 1, m < p::; 4m + 1, and 

pipeline startup time+ (2m2 + 3m )N / (p + ( m - 1)(2m+1)) for m > 1, p > 4m + 1 and . This is the first parallel 

algorithm that achieves this time bound, which improved the fastest prevoiusly published algorithms[5, 9] by a 

factor ~ (p + 2m2 - m - 1)/(p + m + 1/2) form> 1. 

This paper is organized as follows. Section 2 gives the exact schedules for parallel evaluation of first and 

second order banded linear recurrence. In this type of schedules, all arithmetic operations complete precisely 

at the end of each iteration. In Section 3, we derive more program-space efficient pipelined schedules and 

their generalization for arbitrary order linear recurrences. We then illustrate the technique by parallelizing two 

Livermore Kernel loops containing linear recurrences using our pipelined schedules, and we give experiment 

results from running these benchmarks on a parameterized VLIW architecture simulator implementing the IBM 

VLIW machine[6] in Section 4. 

We now define the terms frequently used in this paper. A computation A can be performed using a sequential 

schedule A 8 eq on a sequential machine or using a parallel schedule Apar on a parallel machine 1 . We denote the 

time to run schedule Apar on a PRAM machine as Tp(Apar) (or Tp or T when unambiguous), where prefers to 

the number of processors in the machine. We refer to Tp and T interchangeably as execution time, time steps 

or steps. The time to compute A sequentially is denoted Ti(A8 eq). The speedup of a machine with p processors 

over a uniprocessor, for computation A, is denoted Sp(A) = Ti(A 8 eq)/Tp(Apar), or simply Sp = Ti/Tp when 

unambiguous. The efficiency of this computation is Ep = Sp/P, which can be interpreted as actual speedup 

divided by the machine's peak performance(maximum speedup for the machine) using p processors. Let Op be 

the number of operations executed in some computation using p processors. We define operation redundancy to 

1 We distinguish between our algorithm and schedule -our algorithm is used to produce a schedule(for parallel 
evaluation of the given linear recurrence) which, when run on a machine, will actually evaluate the linear recurrence in 
parallel. 
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Figure 2: A dependence tree of the sequential computation of a 1st-order linear recurrence 

be Rp = Op/01(?:. 1), where 01 = T1. Finally, we define utilization as Up= Op/PTp $ 1, where pTp is the 

maximum number of operations that p processors can perform in Tp steps. The final values of a linear recurrence 

are the values computed by the definition of the recurrence, i.e., the values assigned to the left-hand side of the 

statements in the loop body in Figure 1. The final operations of a linear recurrence are operations that compute 

the final values in the sequential computation. The redundant operations are operations that compute auxiliary 

values introduced by the parallel schedules in an effort to speed up the final values computation. The redundant 

values refer to the auxiliary values computed by the redundant operations. In accordance to the PRAM model 

and the IBM VLIW model, we assume that each operation takes one step to complete. However, our techniques 

extend to multi-step operations. 

2 The Exact Schedules 

The sequential evaluation of N first-order linear recurrences can be expressed as a chain of matrix multiplications: 

for 1 :::; k ::::; N. This is referred to as the matrix decomposition of the evaluation, which was used first by 

Chen[5], then by Kung[14) and Gajski[9). The sequential matrix chain multiplication above can be represented 

as a dependence tree as shown in Figure 2. 

The leaves of the computation tree, X1, M2 , .. ., Mki represent the matrices, called the operand nodes. The 

nodes on the top fringe of the tree, X 1 , .. ., Xk, represent the results of each recurrence in the system packaged 

in matrix form, called the result nodes or final nodes. A result node represents the result of the multiplication 

of the two matrices below it, i.e., Xi = Xi-lMi for 2 $ i $ k. In a matrix multiply only a sequence of two 
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Figure 3: A dependence tree for parallel computation of a 1st-order linear recurrence 

arithmetic operations, a multiply followed by an add, are necessarily done. The column of numbers above a 

result node represents the time steps at which the processor is allocated to execute the operations in that node. 

The number of operations in a sequential evaluation of Nm-th order banded linear recurrences is 2mN. Clearly, 

the computation above cannot be significantly parallelized without breaking the dependences and introducing 

redundant operations, because each result node Xi, 2 ::=; i ::=; k, depends on the previously computed result node 

Xi-1· 

By introducing redundant operations, a parallel evaluation of a system of eight 1st-order linear recurrence 

can be represented as the tree in Figure 3. In addition to the result nodes and operand nodes, a parallel 

computation tree uses the redundant nodes, Ri, ... , R5 in Figure 3. A redundant node represents the matrix 

resulted from the multiplication of two nodes with dependence arcs reaching it, for example, R1 = M 3M 4 and 

R4 = R2M1. For first-order linear recurrences, a redundant matrix is composed of three arithmetic operations, 

which can be done in two parallel chains of arithmetic operations, one consisting of a multiply followed by an 

add, called the long chain, and the other consisting of one add, called the short chain. As for the result nodes, 

the columns of numbers associated with the redundant nodes represent the time steps at which a processor in 

our parallel machine is allocated to execute the operations in those nodes. The parallel schedule in Figure 3 

computes the given recurrence in six steps on seven processors. 

The idea of the exact schedule is to do all operations on multiple processors so that minimization of 

redundant operations and full utilization of all the processors throughout the evaluation are simultaneously 

achieved. We know that the number of final operations in any schedule equals the number of operations in 

the sequential schedule and cannot be reduced- by the definition of the required outputs. Thus one way to 

6 



X1 M2 

2 type 1 
components 

M3 M4 Ms M6 M7 
'--.:_/ 

Ms Mg M10 

1 type 2 1 type 3 1 type 2 2 type 3 

Figure 4: Three types of components in a parallel schedule for first-order banded linear recurrence. 

speed up the computation is to use multiple processors to compute redundant values ahead of the final value 

computation, thus shortening the critical path in the computation of some final values , and then to obtain 

multiple final values in as a few parallel steps as possible by using previously computed (final , redundant) values 

in parallel. Thus we trade multiple processors and redundant operations for parallelism that can yield speedup. 

The speed of a schedule is therefore the average number of final values produced in a step . In order to compute 

as many final values as possible, given a fixed number of processors , a schedule should do as few redundant 

operations as possible. However, one cannot reduce the number of intermediate operations arbitrarily, say, to 

zero , since this will sequentialize the computation of final results , thus making a parallel schedule degenerate 

to a sequential schedule in the limit. Intuitively, the fastest parallel schedules for a fixed number of processors 

would use the fewest possible intermediate operations to achieve full utilization of all processors. 

A parallel schedule can be divided into a number of periods that have the same organization. In each period, 

the computation should be organized in a way such that full utilization and use of the least possible number of 

redundant operations are simultaneously achieved. The optimality of the entire parallel schedule may be proved 

based on the optimality of each period. We refer to this method as harmonic scheduling in [19]. 

We shall construct our schedule with three types of components as shown in Figure 4. The first type of 

component is composed of an operand node with a dependent result node( equivalently, we can say a result node 

with a reaching operand node), for example, X2 with M2 and X3 with M3 make two components of the first 

type respectively. The second type of component is composed of two result nodes that depend on a redundant 

node and two operand nodes, for example, nodes X4, Xs, R1 , M4 and M5 make a component of the second type. 

The third type of component is composed of a result node, a redundant node and an operand node chained by 

dependences, for example, node X6 , R2 and M6 make such a component. These three types of components are 

sufficient for constructing optimal parallel schedules for a first-order linear recurrence. 
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Let 7r stand for a period measured by the number of final values produced in that period. Let W.- be the 

number of arithmetic operations( also referred to as the work-load in the literature) in period 71". A computation 

is composed of a number of periods not necessarily an integer. Hence, the execution time for a computation, Tp, 

is the execution time of a period of that computation multiplied by the number of periods in the computation, 

i.e., Tp of a schedule = Tp of a period x number of periods in the schedule. Further, the execution time of a 

period is W.-/P = time for computing a final value x number of final values in a period. Thus we have 

aoYo + aiY1 + a2Y2 

Yo+ 2y1 + Y2 

5p 
p+3/2 

(1) 

where y0 , y1, y2 are the number of components of type one through three respectively, ao, ai, a2 are the number 

of arithmetic operations for each type of components. The average time for computing a final result for a first­

order linear recurrence is 5/(p + 3/2). W.- is a0 y0 + a1 y1 + a2Y2· The number of the final values in a period( also 

called the period size) is y0 + 2y1 + y2 • In a period, the length of the critical path should be no more than the 

number of processor cycles allowed, since otherwise there would be idle processor slots. Observe in Figure 3 

that the length of the critical path in a period is 2y0 + 2y1 for a first-order linear recurrence. We then have 

2 + 2 < aoyo + aiY1 + a2Y2 
Yo Y1 _ p (2) 

This is a necessary condition for an optimal parallel schedule. Other schedule constraints are y0 2'.: 0, y1 > 0 and 

Y2 2'.: 0, which says that the number of any type of schedule component should not be smaller than zero, and in 

particular that a parallel schedule should at least have some second type of components(since parallelization is 

impossible without type two components). 

Solving equation (1) for all the integer solutions, we have 

Yo 

Yi 

Y2 

where t1 and t2 are integers. Our task is to find all those solutions out of which feasible schedules can be 

constructed. This is a very difficult task. First, it requires solving a system of linear inequalities for all the 

integer solutions, which describe all the conditions for feasible schedules, which itself is a hard problem. Secondly, 

even if we find the system of linear inequalities encompassing all the conditions for feasible schedules, there is 

no known method for finding all the feasible integer solutions to a system oflinear inequalities[ll]. However, it 

is possible sometimes to construct a set of feasible solutions from the solutions for equation (1). 

We partition the set of possible numbers of processors into six congruence classes, (p + j) = 0, (mod 6) 

for 0 ~ j ~ 5 and p > 1, and provide a solution for feasible schedules for each congruence class. We can verify 

that the following are a set of solutions for p > 1. 

Yo= 1, Y1 = 5i - 1, Y2 = 12i2 
- 7i + 1, 

Yo= 1, Y1 = 5i - 1, Y2 = 12i2 - 9i + 1, 
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Yo= 2, Y1 = 5i - 2, Y2 = 12i2 
- l li + 2, for p = 6i - 2, i ;::: 1 

Yo= 2, Y1 = 5i - 2, Y2 = 12i2 
- 13i + 2, for p = 6i - 3, i > 1 

Yo= 3, Y1 = 5i - 3, Y2 = 12i2 
- 15i + 3, for p = 6i - 4, i ;::: 1 

Yo= 3, Y1 = 5i - 3, Y2 = 12i2 
- 17i + 3, for p = 6i - 5 i > l. 

The following algorithm can be used to construct a feasible schedule using the solutions above. 

Input: p processors and components for constructing a schedule for parallel evaluation of a first-order banded 

linear recurrence. y0 components of the first type , Y1 of the second type and y2 of the third type. 

Output: a schedule for parallel evaluation of the first-order linear recurrence . 

procedure construct....schedule_for Jr(p, components) 
l. construct a computation tree for a period of the computation 

using the given components; 
2. call procedure processor_slot..allocation(tree, slot....sets); 
3. transform the computation tree with allocated processor slots into a schedule; 
end ( construcLsched ule_for Jr) 

In step one, the computation tree should be constructed such that the height of a redundant computation tree 

increments by one when possible, starting with the first redundant tree of height one. Without loss of generality, 

let us do an example for p = 6i. Consider first constructing the components into a computation tree for a period 

of the schedule. The number of schedule components of type 1, 2 and 3 are y0 = 1, y1 = 5i -1, y2 = 12i2 - 7i+1 

respectively. The number of redundant trees should be the number of components of the second type, 5i - 1 

in this case. The question is how many components of type 3 should be allocated to each redundant tree. The 

criterion for allocation is that the longest operation chain in a redundant tree should be no longer than the 

critical path to any final operation on top of this redundant tree. There are more than one way of allocation. 

We choose to allocate to the second redundant tree one component of type 3, to the third tree two components, 

.. ., to the (5i - 1- (i(i -1)/2))th tree 5i- 2- i(i -1)/2 components, and to the rest of trees 5i - 2- i(i -1)/2 

components. The heights of redundant trees in a schedule period form a sequence: 

1, 2, 3, .. ., 5i - 1 - i( i - 1)/2,5i - 1 - i( i - 1 )/2, .. ., 5i - 1 - i( i - 1 )/2. 

i(i-1)/2 

For example, given p = 6( i = 1) processors , a schedule can be constructed from the solution Yo = 1, Y1 = 4, Y2 = 

6, as shown in Figure 5. Recall the organization of components of type one, two and three in Figure 4. 

We can verify that this tree height allocation satisfies the constraint (2). 

The second step can be done by the following procedure. 

Input: a computation tree for a period, and 60i2 processor slots evenly divided into lOi sets that are marked 

1 through lOi. 

Output: a computation tree for a period with allocated processor slots. 

procedure processor ....sloLallocation( tree, slot....sets) 
for time....step=l to lOi do 
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Figure 5: The computation tree constructed out of the solutions for p = 6. 

while (the slot set marked with time...step is not empty) 
{if (there is a vacancy on the critical path) 

fill the slot in; 
else if (there is a vacancy in any long chain for redundant tree 1 through 5i - 1) 

fill the slot in; 
else if (there is a vacancy in any short chain for redundant tree 1 through 5i - 1) 

fill the slot in; 
else fill the slot with some available final operation that is not on the critical path; 
end if} 
end while 

end for 
end (processor _slot-allocation) 

Let us run the procedure with the computation tree for p = 6 produced in the first step of the algorithm. 

See Figure 6. The boxes represent the arithmetic operations in the computation tree for a period. The numbers 

inside the boxes represent the time steps at which processor slots compute the operations. Each column of boxes 

in the two top rows corresponds to a final node. Each column of boxex in the three bottom rows corresponds 

to a redundant node. The numbers associated with redundant operation boxes are the indexes for temporary 

array t that stores the redundant values. 

In each step of the procedure, we have a set of p = 6 processor slots. In step one, we allocate one processor 

slot to the first operation on the critical path, and five slots to the redundant trees, four of which are allocated 

to the four long chains and the last one to the first short chain. We thus can see all the operation boxes marked 

with "l". Step two is done similarly to step one: the first slot is allocated the operation on the critical path, 

and the other five allocated to the redundant tree, four of which are allocated to the second operations on all 

the long chains and the last slot to the second long chain. In step five, we allocate the first slot to the operation 

on the critical path, and the next four to the operations in the third and fourth redundant trees. Then there are 

no available operations in the redundant trees for the last slot in step five; thus we fill the slot with an available 

final operation that is not on the critical path. The allocation proceeds until in step ten all the remaining final 

operations are allocated-our 60 processor slots are precisely filled with 60 operations in the computation tree 
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Figure 6: The computation tree with allocated processor slots for p = 6. 

for a period. 

It is straightforward to transform the computation tree with processor slot allocation into an exact schedule 

as follows. In the schedule, array a[N][N] holds the coefficients, c[N] holds the constant terms, x[N] holds the 

results and t(77] holds the results of the redundant operations of the first-order banded linear recurrence, where 

T/ is the number of redundant operations in a period, 7J = 30 for p = 6. Obviously, a careful use of memory can 

reduce memory size to an order of N. We chose to neglect the memory efficiency in the following schedule in 

favor of readability. 
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for i = 0, ... , N /11' - 1 do each step in parallel with p processors 
1. x[1T'k + 2] = a[71'k + 2][71'k + 1] * x[71'k + 1]; 

t[2] = c[71'k + 3] * a[71'k + 4][71'k + 3]; 
t[l3] = c[71'k + 8] * a[71'k + 9][71'k + 8]; 

2. x[71'k + 2] = x[71'k + 2] + c[71'k + 2]; 
t[7] = t[6] + c[71'k + 6]; 
t[24] = t[23] + c[71'k + 13]; 

3. x[71'k + 4] = t[l] * x[71'k + 2]; 
t[15] = t[14] * a[71'k + 10][71'k + 9]; 
t[5] = t[4] * a[71'k + 7][71'k + 6]; 

4. x[71'k + 4] = x[71'k + 4] + t[3]; 
t[l6] = t(15] + c[71'k + 10]; 
t(ll) = t[lO] * a[71'k + 10](71'k + 9]; 

5. x[71'k + 6] = t(4] * x[71'k + 4]; 
t(17] = t(16] * a[1T'k + 11][71'k + 10]; 
t[12] = t[ll] * a[71'k + 11][71'k + 10]; 

6. x[71'k + 6] = x[1T'k + 6] + t[7]; 
x[71'k + 4] = x[1T'k + 3] * a[1T'k + 5][71'k + 4]; 
t(28] = t(27] + c[1T'k + 15]; 

7. x[71'k + 8) = x[71'k + 7] * a[1T'k + 8][1T'k + 7]; 
x[71'k + 10] = x[1T'k + 7] * t[ll]; 
t[29] = t(28] * a[71'k + 16][71'k + 15]; 

8. x[71'k + 8] = x[1T'k + 8] + c[71'k + 8]; 
x[71'k + 10] = x[71'k + 10] + t(16]; 
x[71'k + 5) = x[1T'k + 5) + c[1T'k + 5); 

9. x[71'k + 12) = x[1T'k + 10) * a[1T'k + 12](71'k + 11); 
x[71'k + 14) = x[1T'k + 11] * t(20); 
x[1T'k + 16) = x[1T'k + 11] * t[22]; 

10.x(d + 12] = x[71'k + 12) + c(d + 12]; 
x[1T'k + 14] = t[26] + x[1T'k + 14]; 
x[71'k + 16] = t[30] * x[71'k + 16]; 

end for 

t[l] = a[71'k + 3][71'k + 2] * a[71'k + 4][71'k + 3]; 
t[6] = c[1T'k + 5] * a[71'k + 6](71'k + 5]; 
t[23] = c[1T'k + 3] * a[1T'k + 4][71'k + 3]; 
t[3] = t[2] + c[1T'k + 4]; 
t[14] = t[l3] + c[d + 9]; 
t[4] = a[1T'k + 5][1T'k + 4] + a[71'k + 6][71'k + 5]; 
t[8] = t[7] * a[1T'k + 7](71'k + 6); 
t(25] = t(24] * a[1T'k + 14](71'k + 13]; 
t[lO] = a[1T'k + 8][1T'k + 7) * a[1T'k + 9][1T'k + 8); 
t[9] = t[8] + c[1T'k + 7]; 
t[26] = t(25] + c[1T'k + 14]; 
t[l9] = a[71'k + 12)(11'k + 11) * a[71'k + 13](71'k + 12); 
x[71'k + 7) = t[5] * x[71'k + 4]; 
t[27] = t(26) * a[1T'k + 15](71'k + 14); 
t[20] = t(19] * a[1T'k + 14][71'k + 13); 
x[71'k + 7] = x[11'k + 7] + t[9]; 
t[18] = t(17) + c[71'k + 11]; 
t[21] = t[20] * a[71'k + 15](71'k + 14]; 
x[71'k + 9] = x[1T'k + 7] * t[lO]; 
x[71'k + 11] = x[1T'k + 7) * t(12); 
t(22) = t(21] * a[71'k + 16](71'k + 15]; 
x[1T'k + 9] = x[71'k + 9] + t(14); 
x[71'k + 11) = x[1T'k + 11] + t(18]; 
t[30] = t(29] + c[1T'k + 16); 
x[71'k + 13] = x[71'k + 11] * t(19); 
x[1T'k + 15] = x[71'k + 11] * t(21]; 
x[1T'k + 2] = x[71'k + 1] * a[1T'k + 3](71'k + 2]; 
x[71'k + 13] = t(24) + x[71'k + 13); 
x[71'k + 15) = t[28) + x[71'k + 15]; 
x[1T'k + 3] = x[71'k + 3] + c[1T'k + 3); 

The most important properties of these schedules we are concerned with are the correctness, the execution 

time, and the optimality under the matrix chain multiplication model. We now prove them in turn. 

Theorem 2.1 There exists a processor slot allocation for an exact schedule, called a feasible a/location, which 

satisfies the full utilization of all processors and preserves the semantics of the sequential evaluation of a first­

order linear recurrence. The procedure "processor_sloLallocation()" gives a feasible allocation. 

Proof: To prove the correctness of the exact schedules, it suffices to show that the procedure "proces­

sor..sloLallocation()" allocates the processor slots correctly since the first step and the third step in procedure 

"construct_schedule_forJr()" are straightforward. 

We prove the claim for the first congruence class(i.e., p = 6i). The proofs for p in other congruence classes 

can be done similarly. We prove the claim by showing an allocation scheme as shown in the following table. 

Note that there are many allocation schemes and we choose to show this particular one because it is easier to 

use in the proof. The column with header "Step" gives the step numbers from 1 through lOi. The columns 

with header "number of slots allocated to final ops" and "number of slots allocated to redundant ops" give 
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respectively, for each step, the number of processor slots allocated to the final operations and the redundant 

operations in the computation tree. The sum of these two columns for each step in the table should be 6i. 

The columns with header "number of slots allocated to redundant ops in the long chain" and "number of slots 

allocated to redundant ops in the short chain" give, for each step, the number of processor slots allocated to 

redundant operations in the long chain and short chain of the redundant trees respectively. The sum of these 

two columns for each step should be the same number as in the column titled "number of slots allocated to 

redundant ops". 
Step number of slots number of slots number of slots number of slots 

allocated to allocated to allocated to allocated to 
final ops redundant ops redundant ops redundant ops 

in the long chain in the short chain 
1 1 6i-1 5i-l i 
2 1 6i-1 5i-1 i 
3 1 6i-1 5i-2 i+l 
4 1 6i-l 5i-2 i+l 
5 1 6i-1 5i-3 i+2 
6 1 6i-l 5i-3 i+2 
... ... . .. ... . .. 
4i 1 6i-1 3i 3i-1 
4i+l i+l 5i-1 3i-1 2i 
4i+2 i+2 5i-2 3i-2 2i-1 
4i+3 i+3 5i-3 3i-2 2i-1 
... . .. ... ... .. . 
8i-l 5i-1 i+l i 1 
8i 5i i i 0 
8i+l 6i 0 0 0 
... ... ... . .. . .. 
lOi 6i 0 0 0 

The processor slots allocat10n can be seen as proceedmg m three phases, the first phase going from step 1 

through 4i, the second phase going from step 4i + 1 to 8i and the third phase going from step 8i through lOi. 

In each step of the first phase, only one processor slot is allocated to a final operation on the critical path and 

the rest of slots are allocated to the redundant operations. As presented in the procedure, we prefer the long 

chain over the short chain for each redundant computation tree, and the lower numbered redundant tree over 

the higher numbered redundant tree, because otherwise we cannot keep progressing along the critical path in 

each step. In each step of the second phase, we allocate, starting with i + 1, an increasing number of processor 

slots to the final operations and a dual decreasing number of slots to the redundant operations. By the end of 

the second phase, all the redundant operations are allocated to processor slots. In each step of the third phase, 

we allocate all the slots to the remaining final operations. D 

Theorem 2.2 The execution time of the exact schedule for a first-order linear recurrence on p processors is 

T. _ lON 
p - 2p+ 3 

for p > 1, N > l/6(p+ 5)(2p+ 3) and for N being a multiple of period. When N is not a multiple of the period, 

the performance formula holds subject to a ceiling effect. We shall not discuss it due to the length of the proof. 
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Proof: We only need to show equation (1) holds when we substitute into the equation the solution set Yo, Yi 

and Y2 for each of the six congruence classes. Here we prove the claim with the solution set for the sixth 

congruence class (i.e., p = 6i - 5 and p > 1). The truth of the claim with the solution sets for other congruence 

classes can be shown similarly. Note ao = 2,a1 = 7,a2 = 5, and i = (p+5)/6. Substituting Yo,y1,y2 into 

equation (1), we have 

the left of (1) 

0 

2(3) + 7(5i - 3) + 5(12i2 
- 17i + 3) -

3 + 2(5i - 3) + 12i2 - l 7i + 3 
10(6i - 5) 
12i- 7 
lOp 

2p+ 3 

the right of (1). 

(note p = 6i - 5) 

Theorem 2.3 There does not exist a parallel schedule under the matrix multiplication model such that it gives 

a better execution time for m = 1, p > 1, N > l/6(p + 5)(2p + 3) and for N a multiple of the period. 

Proof: It suffices to show that a contradiction would result from assuming that there existed a parallel 

schedule with better execution time. A schedule with better execution time, say S0 , would turn equation (1) 

into a strict inequality: 
aoYo + aiY1 + a2Y2 5p ------- < ---

Yo + 2y1 + Y2 p + 3/2 

By substituting a0 = 2, a1 = 7, and a2 = 5 into the inequality above, we have 

(6 - 6p)yo + (21 - 6p)y1 + l5y2 < 0. 

Assume that this schedule So satisfies constraint (2). Thus the constraint can be written into an equivalent 

inequality: 

(2p - 2)yo + (2p - 7)y1 - 5y2 ~ 0. 

Adding this inequality multiplied by three to the preceding inequality would result in 0 < 0, a contradiction. 

If schedule So did not satisfy constraint (2), i.e., 

2 + 2 > aoyo + aiY1 + a2Y2 
Yo Y1 p , 

This means that the critical path of the period would be longer than the number of steps needed to fully utilize 

the processors. Hindered by the critical path, the computation tree for the period could not be completed 

in ( aoyo + a1y1 + a2y2)/p steps, resulting in a slower schedule than the exact schedule. Therefore, the exact 

schedule gives the optimal execution time under the matrix chain multiplication model. D 
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The following corollary gives the ratio of final operations to redundant operations in a period of an exact 

schedule for p > 1. This ratio will be useful in deriving simpler, more concise and more program-space efficient 

schedules than the exact schedules. 

Corollary 2.1 The ratio of the number of final operations to redundant operations in a period of an exact 

schedule is (2p + 3)/(3p- 3), for a first-order banded linear recurrence of size N > (p + 5)(2p + 3)/6 and p > 1. 

Proof: The proof is done by obtaining the ratio of the number of final operations (2y0 + 4y1 + 2y2) to the 

number of redundant operations (3y1 + 3y2) and substituting into this ratio the solution Yo, Y1, y2 for equation 

(1) for each congruence class. D 

Next, we state the results by our exact schedules for computing second-order linear recurrences. The 

algorithms and the proofs are in [22]. 

Theorem 2.4 There exist exact schedules for a second-order linear recurrence on p processors that achieves 

the strict time lower bound under the matrix multiplication model, 

for p > 2, N > l/6(p + 5)(2p + 3). 

T. _ (2m2 + 3m)N 
P - p+ 2m+ 1 

In addition to the properties above, the exact schedules have other desirable properties. The generation 

of exact schedules depends only on the number of processors p, for N > (p + 5)(2p + 3)/6 and p > 1. When 

the number of processor p is known, an exact schedule can be generated at compile time in 5p2 /3 time steps 

for p = 6i(the time for generating exact schedules for p in other congruence classes is about the same). In 

comparison with previously proposed algorithms for first-order linear recurrences, the exact schedules not only 

have the best execution time(strict time lower bound) but also the smallest schedule size. 

3 The Pipelined Schedules 

The exact schedules specify the parallel evaluation with an execution time of ION /(2p + 3) for a first-order 

banded linear recurrence of size N 2: (p + 5)(2p + 3)/6 and p > 1. Note that an exact schedule has lOi 

steps in the loop body for p = 6i processors and i > 1. Although this does not make the exact schedules less 

practical than any of the previously published algorithms (in fact it is already more space-efficient), we wondered 

whether more program-space efficient schedules than the exact schedules exist. By Corollary 2.1, the ratio of 

final to redundant operations in an iteration(i.e., a period) of an exact schedule for first-order linear recurrence 

is (2p + 3)/(3p - 3) for N 2: (p + 5)(2p + 3)/6 and p > 1. An exact schedule exhibits this ratio in every lOi 

steps(i.e., an iteration). If a schedule can achieve this ratio in much fewer steps than lOi, then it will have a 

much smaller loop body than an exact schedule. Because a program with a small loop body is more likely to fit 

in processor caches, this gain may well offset any small overhead that may be introduced in a trade for better 

15 



space-efficiency. Applying the idea of software pipelining[2, 12], we can derive a simpler, more concise and more 

program-space efficient schedule than the exact schedule, called a pipelined schedule. 

The idea of the pipelined schedules is that, in the loop body of a pipelined schedule, we compute the final 

operations of a period and the redundant operations of the next period. The size of the loop body of such a 

schedule is the number of operations in the period. With such an arrangement, there is no need to match the 

final computation and the redundant computation strictly inside a single period in order to satisfy the dual 

criteria for an optimal schedule-full utilization of resources and the minimum number of redundant operations. 

By allowing the matching of final and redundant computations across multiple periods, we can make a period as 

small as implied by full utilization of resources and as constrained by the semantic correctness of the schedule. 

We need not worry about the performance since it is already implied by the ratio. From Corollary 2.1, we 

establish a system of linear inequalities as follows. 

2yo + 4y1 + 2y2 
3y1 + 3y2 

Yo > 

2p+3 
3p+2 
0 

Yi > 1 

Y2 > 0 

(3) 

The solutions for the first equation of the linear inequalities above cover all the schedules, including the exact 

schedules and non-exact schedules, for which the ratio holds. All the integer solutions for the first equation of 

linear inequality system 3 are given by: 

Yo to - ti 

Y1 (4) 

Y2 

where to and ti are integers. 

Next, we shall show how a pipelined schedule is constructed for the example in Section 2 and state interesting 

properties of pipelined schedules. The details of the algorithms and proofs can be found in [22]. We can verify 

that, given p = 6 processors, y0 = 0, y1 = 2 and y2 = 2 is a solution for linear inequalities (3). Recall that yo, Yi. 

and Y2 are the numbers of components of three types respectively. A pipelined schedule is constructed with 

parameters p, y0 , y1 and y2 , in four stages: (1) generating pipeline startup code, (2) building the computation 

tree for two consecutive periods of the pipelined schedule, (3) allocating the processor slots to the operations 

in the computation tree, and ( 4) transforming the computation tree with processor slots allocated into the 

pipelined schedule. 

The idea of the startup of a pipelined schedule is to use some processor slots to compute the redundant 

operations in the first pipeline period, and to use the remaining processor slots to compute as many leading 

final values as possible to reduce startup overhead. In the worst case, the number of overhead steps, i.e., the 

time steps in which no final results are produced, is no more than that of a pipeline period. A careful design 
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The leading period 

M10 Mu Mi2 Mp 

The succeeding period 

Figure 7: The computation tree for a pipeline period with p = 6. 

can reduce the startup overhead to very few idle processor slots. In the second stage, we build the computation 

tree by distributing the components of the third type to all the redundant trees( the number of redundant trees 

is Y1) as shown in Figure 7. 

In the third stage, we allocate processor slots to the operations in the computation tree for two consecutive 

periods, specifically, to the final operations of the leading period and the redundant operations of the succeeding 

period. 

Figure 8 shows the computation graph of two periods with processor slots allocated for p = 6. We have 

p = 6 slots available. For time....step= 1, we allocate the first three slots to the first three final operations 

in the leading period, and no further allocation can be made onto the leading period. We then allocate the 

other three slots to redundant operations in the succeeding period, i.e., to the three ready operations in an 

operation chain with the largest number of vacant operations. When two chains have the same number of 

vacant operations, we can allocate a processor slot to any of them. For each processing step, we first allocate as 

many processor slots as possible to the final operations in the leading period, and then allocate the rest of the 

slots to the redundant operations in the succeeding period following the rule "redundant operation chain with 

largest number of vacant operations first". Thus in 2 x y1 = 4 steps, the 2y1p = 24 processor slots are exactly 

allocated to 12 final operations in the leading period, and to 12 redundant operations in the successive period. 

In the last stage, we compose the two portions of the two periods into the loop body of the pipelined 

schedule, combined with the startup code, and transform it into a program form as follows. In the schedule, 

array a[N](N] holds the coefficients, c[N] holds the constant terms, x[N] holds the results and t[N/?r](7J] holds 

the results of the redundant operations of the first-order banded linear recurrence, where 7J is the number of 

redundant operations in a period, 7J = 12 for p = 6. Obviously, a careful use of memory can reduce memory size 

to an order of N . 
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The leading period The succeeding period 

Figure 8: The computation tree with allocated processor slots for p = 6 for pipeline schedule. 

pipeline startup code; 

for k = 0 to N /7r - 1 do each step in parallel with p processors 

1. x[7rk + 2] = a['lrk + 2][7rk + 1] * x['lrk + 1]; x[7rk + 3] = t[k][l] * x[7rk + 1]; 
x[7rk + 4] = t[k][2] * x['lrk + 1]; t[k + 1][3] = c[7r(k + 1) + 2] * a[7r(k + 1) + 3][7r(k + 1) + 2]; 
t[k + 1][9] = c[7r(k + 1) + 5] * a[7r(k + 1) + 6][7r(k + 1) + 5]; 
t[k + l][l] = a[7r(k + 1) + 17][7r(k + 1) + 16] * a[7r(k + 1) + 18][7r(k + 1) + 17]; 

2. x[7rk + 2] = c[d + 2] + x['lrk + 2]; x[7rk + 3] = t[k][4] + x['lrk + 3]; 
x[7rk + 4] = t[k][6] + x['lrk + 4]; 
t[k + 1][10] = c[7r(k + 1) + 6] + t[k + 1][9]; t[k + 1][4] = t[k + 1][3] + c[7r(k + 1) + 3]; 
t[k + 1][7] = a[7r(k + 1) + 20](7r(k + 1) + 19] * a[7r(k + 1) + 21][7r(k + 1) + 20]; 
t[k + 1][10] = c[7r(k + 1) + 6] + t[k + 1][9]; 

3. x['lrk + 5] = c[7rk + 5] * x['lrk + 4]; x[7rk + 6] = t[k][7] * x[7rk + 4]; 
x[7rk + 7] = t[k][B] * x[7rk4]; t[k + 1][2] = t[k + 1][1] * a[7r(k + 1) + 4][7r(k + 1) + 3]; 
t[k + 1][5] = t[k + 1][4] * a[7r(k + 1) + 4][7r(k + 1) + 3]; 
t[k + 1][11] = t[k + 1][10] * a[7r(k + 1) + 7][7r(k + 1) + 6]; 

4. x[7rk + 5] = c['lrk + 5] + x['lrk + 5]; x['lrk + 6) = t[k][lO] + x['lrk + 6]; 
x[7rk + 7] = t[k][12] + x[7rk + 7]; t[k + 1][6] = c[7r(k + 1) + 4] + t[k + 1][5]; 
t[k + 1][8] = t[k + 1][7] * a[7r(k + 1) + 7][7r(k + 1) + 6]; 
t[k + 1][12] = t[k + 1][11] + c[7r(k + 1) + 7]; 

end for 

The pipelined schedule on p = 6 processors has four steps and 4p = 24 operations in its loop body as 

opposed to 10 steps and lOp = 60 operations in the loop body of its equivalent exact schedule, a saving of 60% 

in the program space. This program-space efficiency is obtained at a small time cost of the pipelined startup 
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number of loop body size loop body size saving 
processors in number ops in number ops in% 

exact schedule pipelined schedule 
2 20 20 0% 
4 20 20 0% 
8 160 80 50% 
16 480 320 33% 
32 1920 960 50% 
64 7040 3200 55% 
128 28181 12800 55% 

Table 1: A comparison of program sizes of exact and pipelined schedules. 

code of no more than the time steps in the loop body of the pipelined schedule, e.g., no more than four steps 

of the pipelined startup for p = 6 processors. 

As with the exact schedules, we are interested in the execution time of the pipelined schedules and the 

reduction in the size of the loop body of the pipelined schedules. In general, full utilization of processors can 

be realized in the loop body of a pipelined schedule. Thus the execution time for a pipelined schedule with p 

processors is: pipeline startup time+ (2m2 + 3m)N/(p+ (2m+ 1)/2) form= 1. 

For simplicity of comparison, we show the savings in the size of the loop body by the pipelined schedules 

from the exact schedules for some frequently-used numbers of processors in Table 1. 

In addition to the better program-space efficiency, the pipelined schedules also share other desirable prop­

erties with the exact schedules. In contrast with the previous techniques, t he generation of pipelined schedules 

depends only on the number of processors p, regardless of the problem size N. It offers flexibility in processor 

slot allocation-one can allocate processor slots differently within the computation tree of a pipelined schedule 

without affecting execution time. In all the previously published methods, the allocation schemes are fixed. 

The pipelined schedule not only proves to be a natural candidate for compiling linear recurrences because 

of its program-space efficiency, but can also be used, as a much simpler vehicle than the exact schedules, to 

approach the time bounds for higher order linear recurrences. Using the pipelined schedules, an m-th order 

banded linear recurrence can be evaluated in time 

pipeline startup time+ (2m2 + 3m)N/(p + (2m + 1)/2) form= 1, and 

pipeline startup time+ (6m + 2)N /(p + (2m + 1) form> 1, m < p $ 4m + 1, and 

pipeline startup time + (2m2 + 3m)N/(p + (m - 1)(2m + 1)) form > 1,p > 4m + 1 and N > 

(a period of the pipelined schedule) . 

This is the first parallel algorithm that achieves this time bound. Our results improve on the fastest prevoiusly 

published algorithm by a factor ~ (p + 2m2 - m - 1)/(p + m + 1/2) for m > 1. Due to the length of this 

paper, we omit the details of the proofs. Interested readers can refer to (23] for details of the schedules and the 

proofs. In Table 2, we illustrate the speedup obtained by our pipelined schedules in comparison with the best 

two previously published algorithms(5, 9] for a range of number of processors and order of linear recurrence. 

In Table 2, the speedups by Chen, Kuck and Sameh's schedule are worse than one at some coordinates of p 

and m. That was because that the speedups were calculated directly from their speedup formula 2p/(2m + 3) 
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p order of linear recurrence 
lst J 2nd .I 3rd ] 4th 1 5th ] 6th 1 7th 1 8th 
Sp j Sp I Sp J Sp J Sp J Sp 1 Sp 1 Sp 

12 I Chen'' rs Gajski's 1.4 
ours 1.4 

3 Chen's 1.2 0.857 
Gajski's 1.8 1.571 
ours 1.8 2.286 

4 Chen's 1.6 1.143 0.889 
Gajski's 2.2 1.857 1.667 
ours 2.2 2.571 3.3 

5 Chen's 2.0 1.429 1.111 0.909 
Gajski's 2.6 2.143 1.889 1.727 
ours 2.6 2.857 3.6 4.308 

6 Chen's 2.4 1.714 1.333 1.091 0.923 
Gajski's 3.0 2.429 2.111 1.909 1.769 
ours 3.0 3.143 3.9 4.615 5.313 

7 Chen's 2.8 2.0 1.556 1.273 1.077 0.933 
Gajski's 3.4 2.714 2.333 2.091 1.923 1.8 
ours 3.4 3.429 4.2 4.923 5.625 6.316 

8 Chen's 3.2 2.286 1.778 1.455 1.231 1.067 0.941 
Gajski's 3.8 3.0 2.556 2.273 2.077 1.933 1.824 
ours 3.8 3. 714 4.5 5.231 5.938 6.632 7.318 

16 Chen's 6.4 4.571 3.556 2.909 2.462 2.133 1.882 1.684 
Gajski's 7.0 5.286 4.333 3.727 3.308 3.0 2.765 2.579 
ours 7.0 6.0 6.667 7.692 8.438 9.158 9.864 10.56 

32 Chen's 12.8 9.143 7.111 5.818 4.923 4.267 3.765 3.368 
Gajski's 13.4 9.857 7.889 6.636 5.769 5.133 4.647 4.263 
ours 13.4 10.5714 10.222 10. 727 11.692 12.933 14.353 15.68 

64 Chen's 25.6 18.286 14.222 11.636 9.846 8.533 7.529 6.737 
Gajski's 26.2 19.0 15.0 12.455 10.692 9.4 8.412 7.632 
ours 26.2 19. 714 J 17.333 16.545 J 16.615 17.2 18.118 19.263 

Table 2: The comparison in speedup of three parallel schedules. 

in [3]. And their schedules were designed for N, p, m all being some powers of two. For any one of N, p, m that 

is not a power of two and p = m + 1, a direct application of their schedules would give an execution time worse 

than sequential schedule. 

4 Experiments with Pipelined Schedules 

Our architectural model is similar to the IBM VLIW machine[7]. It has a single flow of control(single PC), 

thus is totally synchronous, has multiple functional units and a multi-ported register-file. The simulator for 

this architecture is parameterized for the number of functional units and for functions performed by each 

functional units. Because this architecture facilitates mapping of our parallel schedules in source code to 

parallel instructions, we chose to run some illustrative benchmarks on this model. Obviously, this choice of 
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bench- problem number of functional units 
mark size 8 16 32 64 

Rp Sp Rp Sp Rp Sp Rp Sp 
LL5 1000 1.58 3.531 1.767 6.194 1.76 10.804 2.333 12.942 

2000 1.58 3.573 1.708 6.56 1.76 11.956 2.333 16.184 
5000 1.574 3.604 1.697 6.758 1.76 12.757 1.871 22.075 
10000 1.571 3.616 1.685 6.842 1.76 13.048 1.871 23.673 
00 1.569 3.627 1.683 6.898 1.751 13.403 1.785 26.427 

LLll 1000 1.369 5.757 1.468 10.602 1.493 19.381 1.493 31.957 
2000 1.381 5.766 1.467 10.747 1.517 20.036 1.543 36.024 
5000 1.381 5.781 1.464 10.873 1.503 20.849 1.533 39.346 
10000 1.383 5.781 1.464 10.903 1.508 20.997 1.533 40.51 
00 1.383 5.786 1.464 10.929 1.508 21.214 1.531 41.786 

Table 3: Speedup and redundancy for benchmarks. 

experimental environment does not imply that our schedules can only fit onto VLIW architectures. 

In order to illustrate the speedup obtained by our parallel schedules, we did experiments on two Livermore 

Kernels: Livermore Kernel 5 and 11. Actually, six Livermore Kernels out of 24 Livermore Kernels contains 

loop-carried dependences, and five of those six consist primarily of first-order banded linear recurrences. We 

have only been able to conduct our experiments on two of them due to time constraints on this paper( we will 

have more results in the final version of the paper). 

Table 3 demonstrates the speedup of actual runs using our pipelined schedule on the benchmarks and the 

redundancy, for some frequently used numbers of processors and a range of problem sizes (i.e., the upper-bound 

of loop in a sequential benchmark). As defined in Section 1, the speedup Sp is dynamic, i.e., the ratio of the 

number of cycles running a sequential program to the number of cycles running the parallel version using our 

pipelined schedule for a given problem size. For comparison, the speedup for an arbitrarily large problem size 

N is calculated by 

1
. N x CSL + CSNL 
Im 

N--+oo _lf,_dCPL + CPNL' 
per10 

where CSL is the number of cycles in the loop body of the sequential program, CSNL is the number of cycles 

in the prologue and epilogue of the sequential program, CPL is the number of cycles in the loop body of the 

parallel program and CPNL is the number of cycles in the prologue and epilogue of the parallel program. The 

redundancy is the dynamic ratio of the number of operations executed in the parallel version to the number of 

operations executed in a sequential program. The redundancy for an arbitrarily large problem size is given by 

Jim CPL. 
N--+oo CSL 

The functional units in these runs are assumed to be homogeneous, i.e., they all can execute the same set of 

operations. 

As indicated in Table 3, the speedup is linear as predicted (at the source level) by the formulas. The 

speedups are obtained at the cost of redundant operations. 
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5 Summary 

Linear recurrences have a role of central importance in computer design, numerical analysis, program analysis, 

image processing and vision. However, programs containing banded linear recurrences are difficult to parallelize 

due to loop-carried dependences. In this paper, we first presented a family of schedules, called the exact 

schedules, for parallel evaluation of low order (m ~ 2) banded linear recurrences with an execution time (2m2 + 

3m)N/(p+ (m(m+ 1)(2m+ 1))/2(2 + llogmJ)) for 0 < m ~ 2 , N > (p+ 5)(2p+ 3)/6 and number of processors 

p > m. This is the first parallel algorithm that achieves this time bound. We showed that the exact schedules 

achieve the strict time lower bound under the matrix multiplication decomposition. Next, we derive another 

family of schedules, called the pipelined schedules, with better program-space efficiency and with an execution 

time of pipeline startup time+ (2m2 + 3m)N/(p + (2m + 1)/2) for m = 1, and pipeline startup time+ (6m + 

2)N/(p+ (2m+ 1) form> 1, m < p ~ 4m + 1, and pipeline startup time+ (2m2 + 3m)N/(p + (m -1)(2m + 1)) 

for m > 1, p > 4m + 1. This is the first parallel algorithm that achieves this time bound, which improves 

upon the fastest prevoiusly published algorithms by a factor 2: (p + 2m2 - m - 1)/(p+m+1/2) for m > 1. In 

comparison with the previously published algorithms, these schedules not only have the best execution time, but 

also better program-space efficiency and more flexibility in being adapted to different architectures and higher 

· order recurrences. In addition, our schedules are parameterized only in terms of the number of processors 

available, i.e., they can be generated efficiently in time proportional to the period size of a schedule at compile 

time when the number of processors is known. 
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