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ABSTRACT OF THE DISSERTATION

Context-Based Smoothing for Personalized Prediction Models

By

Moshe Lichman

Doctor of Philosophy in Computer Science

University of California, Irvine, 2017

Professor Padhraic Smyth, Chair

Software applications that digitally collect and store individual activity data are increasingly

prevalent in our daily lives. With the widespread availability of such data, there is a growing

demand for predictive models that can provide a personalized experience, i.e., adapt the

application to an individual’s behavioral patterns. In recent years, such models focused on

problems in which the predictive task is to recommend new items that the user has not yet

interacted with. Yet, there is also a large number of applications in which users interact

with both old (i.e., that a user has interacted with in the past) and new items, such as

location tracking services, online music streaming platforms, and e-commerce websites. In

this dissertation, we investigate models that can predict an individual’s interactions with

both previously interacted (“old”) and novel (“new”) items. We develop novel probabilistic

models that combine memory-based components with components that can use contextual

information to make predictions that generalize to new items. We show that this approach

not only models detailed aspect of both repetitive and novelty-seeking behavior but also

infers the balance between the two from data.

For the dissertation’s first contribution, we focus on location data in which the observed

interactions are in the form of spatial footprints collected by digital services such as location

based social media platforms. We predict an individual’s future locations using a kernel den-
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sity mixture model (mixture-KDE) for continuous events. Using multiple evaluation metrics

based on location prediction and anomaly detection, we compare our model to existing meth-

ods and baselines based on latent-space representations and find that our mixture-KDE is

superior.

Next, we develop a model for discrete location event data. We investigate the use of geo-

parcel annotations to discretized continuous event data and show that it creates better

personalized data when compared to existing disjoint grid-cell based approaches. We de-

velop a framework that predicts an individual’s future locations using an adaptive mixture

of past observations and contextual information. We compare our approach to a variety

of existing latent-space-based approaches and show that our model outperforms them on

multiple evaluation metrics.

In the last chapter, we investigate a broader range of data sets byond location data that

describe consumption of both new and old items. We describe a data-driven zero-inflated

Poisson model that predicts the rate at which a user will consume a given item. We demon-

strate the advantages of our model with a series of quantitative and qualitative experiments.

For the former, we compare our model to a variety of state-of-the-art approaches and base-

lines and again show that our model provides more accurate predictions across multiple data

sets from different domains.

xvi



Chapter 1

Introduction

Individual-level activity data is increasingly prevalent in the digital world. With the acceler-

ating adoption of technology, an ever-increasing portion of our lives is being digitally collected

and stored. This collection provides rich individual-level observations of time-stamped event

data of interactions between individuals and a variety of virtual and real items. Examples

of such interactions include purchasing books online, online streaming of movies and music,

social interactions and even spatial footprints available through check-ins on location based

social media platforms.

With the constantly expanding volume and variety of this type of data, there is a rapidly

growing demand for applications that provide personalized experiences that can adapt to

context. Perhaps the most common example of such individual-level experience is the use

of recommender systems for which an individual’s past activity within the application influ-

ences the recommendation of future items (e.g., movies, shows, music, books, etc.). Another

recent example is the case of virtual personal assistants such as the Amazon Alexa, Google

Now and Microsoft Cortana. By recording an individual’s activity over time, the software

can provide more personalized assistance such as providing relevant news, scheduling ap-
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pointments, reporting relevant traffic and weather information at the right time, and even

automatically adding items to a shopping list based on past purchases.

While the methods being used to produce the individual-level personalization in each of these

application can differ widely, they are all based on predictive models of individual person-

item-level interactions. In broad terms, this type of modeling provides prediction of a set of

items an individual will interact with in the future based on past observations. For example,

the recommendation we received from online movie streaming services is based on our past

ratings of movies we watched. As a result, the ability to develop accurate individual-level

predictive models is becoming increasingly important.

Building accurate individual-level predictive models in a typical digital environment is a

challenging task for two primary reasons. First, limited budget (e.g., monetary or time),

exposure, or simply preference, limits the number of items with which individuals can inter-

act. As a result, the number of unique items each individual interacts with is only a small

fraction of the total set of available items. Second, the behavioral patterns that guide the

individual’s decision on which items to interact with can be characterized as a mixture of

repeated behavior (i.e., interactions with items the individual interacted with in the past)

and novelty-seeking behavior that leads to interactions with new “unseen” items. Therefore,

a predictive individual-level interaction model must generalize about an individual’s behav-

ior and preferences beyond an individual’s past observations. This challenge is particularly

hard in the context of applications in which the predictive task is also required to predict

future interactions with a set of “old” and “new” items. It is then not only required for the

model to generalize beyond past observations, but also to infer the balance of an individual’s

distribution of interest between items which were represented in the data and new items

which are only available at prediction time.
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1.1 Generalization Using Latent-Space Models

A common approach to addressing the generalization problem is to use individual-level pre-

dictive models based on latent-space representations. These models provide a principled way

of generalizing for both continuous and discrete event data.

Figure 1.1: Illustration of a 2-dimensional Gaussian Mixture Model with two Gaussian
components fitted to synthetic data set. Best viewed in color.

For continuous event data, latent-space models represent any point in the domain in a lower d-

dimensional space. Each individual is then represented as a basis over said space. Figure 1.1

shows a simple example of a 2-dimensional continuous space Gaussian Mixture Model (GMM)

with 2 components (d = 2). Each point in the space is represented by a set fixed d number of

mixture components where each component is the Gaussian density function. An individual’s

preference is represented as a categorical distribution over the d mixture components (for

details we refer the reader to [55] chapter 11.2.1). Gaussian Mixture Models are typically

used for modeling location-based event data in which each event is an observation of an

individual’s location in the form of GPS coordinates: (longitude, latitude) [13, 26, 36].
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Figure 1.2: Illustration of the Matrix Factorization algorithm. The sparse observations
matrix (on the left) is approximated as a product of two dense matrices representing the
individual’s “category” preferences and the item association of each “category”.

Discrete latent space models are perhaps more commonly used for modeling individual-level

event data. In those models, the set of possible items can be thought of as a vocabulary with

M unique options such as M movies, M restaurants, etc. The event data for N individuals

and M items can be represented as an N×M matrix in which the i, j element corresponds to

an interaction (or a number of interactions) between user i and item j. Matrix-factorization

approaches, illustrated in Figure 1.2, are widely applied in this context. These latent-space

models learn a d-dimensional representation for both items and individual with d << (M,N).

The jth element in the d-dimensional item and individual vector represents, roughly, the level

of item’s association with the jth “category” and the relative individual’s preference for the

jth “category” respectively (out of d “categories”). Some of the many modeling techniques

that are based on matrix-factorization include: PCA, LSI [45], Topic Modeling [4], and

Poisson Matrix-Factorization [27].

These methods have been shown to be highly accurate in predictive tasks for which the

goal is to infer the novelty-seeking behavior of individuals (i.e., interacting with new items).
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There are certainly a large number of applications for which such an emphasis is required

(such as picking a movie to watch, a book to purchase and so on), making latent-space

approaches highly appealing. However, there are also a variety of personalization applications

in which the individual’s behavior is a mixture of repeated and novelty-seeking behaviors.

Two examples in which users exhibit a mixture of repeat and novelty-seeking behavior are:

1) online music streaming applications in which users listen to the same artists habitually

and 2) micro-blogging websites such as Twitter and reddit where individuals will engage in

the same discussion repeatedly. Surprisingly, there has been little work to date on evaluating

latent-space methods in this context.

To that end, in this dissertation we focus on individual-level event data that contains interac-

tions between both “new” and “old” items and develop new approaches for probabilistic pre-

dictive modeling. In broad terms, our models are based on a combination of a memory-based

component and a generalization component that is estimated from contextual information.

In addition to capturing the detailed aspects of both repetitive and novelty-seeking behavior,

the use of the two components allows the model to infer the balance between the individual’s

tendency for novelty-seeking and repetitive behavior. We develop different predictive mod-

els based on this approach and apply them to a variety of applications spanning multiple

data domains. In terms of predictive power, we find that our models outperform all existing

methods and simple baselines, particularly when a significant portion of the interactions in

the data can be classified as repetitive behavior.

In the remainder of this chapter, we summarize the individual-level user-item interaction

data sets used throughout the dissertation. The chapter concludes with an outline of the

remaining dissertation chapters, summarizing the contributions of each chapter.
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Figure 1.3: Gowalla check-in data over 20 month period in San Francisco, CA.

1.2 Individual-Item Interaction Data

The models and algorithms presented throughout this dissertation are evaluated using mul-

tiple individual-level event data sets. Each event in the data consists of tuple (i, j, t) and

indicates an interaction between individual i with item j at time t. In chapters two and

three, our focus is on location data sets in which an event refers to individual i observed at

location j at time t. Figure 1.3 shows an example of location data taken from the widely

used Gowalla data set [13] (which will be described later in the dissertation) in the area of

San Francisco, California.

In chapter four, we investigate more general non-location data sets. We explore different data

domains such as online music streaming, restaurants reviews and online social interactions

on micro-blogging websites. We refer to this type of interactions as consumptions and model

the number of times (or rate at) which an individual i consumes item j at time t where time

t refers to a discrete time window (e.g., day, week, month etc.). Figure 1.4 illustrates this

type of data, where each matrix indicates the number of times individual i (row) consumed

item j (column) at a certain time t.

6



Figure 1.4: Illustration of consumption data over time. Each i, j element in a matrix repre-
sents the number of times user i consumed item j at a certain discrete time t.

1.3 Dissertation Outline and Contributions

The structure of the dissertation, including novel contributions, is as follows:

Chapter 2 addresses the problem of modeling continuous-space human location data. The

focus of this chapter is to develop predictive models that can infer individuals’ future loca-

tions. We investigate an adaptive bandwidth kernel density estimation approach and present

a mixture of kernel densities model that balances repetitive and novelty-seeking behavior

patterns (i.e., individuals both returning to known locations and visiting new locations) by

combining individual-level models with contextual information.

Contributions of Chapter 2 include:

• A thorough investigation of the use of kernel density estimation technique for predicting

individuals’ future locations. This includes investigating multiple approaches for the

model parameterization (i.e., different approaches for choosing bandwidths).

• A mixture of kernel densities approach for modeling individual-level human location

data that smoothes over multiple pieces of spatial-level information.
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• An extensive evaluation of our approach compared to existing methods for continuous-

space modeling of human location data.

• An anomaly detection evaluation where we apply our model to the task of simulated

fraud detection by detecting inconsistent spatial behavior. Results indicate that the

mixture of kernel densities approach produces more accurate results than all compared

models.

In Chapter 3, we address the problem of modeling human location data in discrete space.

In the context of location data, locations are typically categorized into a “vocabulary” of

L known point of interest (i.e., restaurants, bars, popular locations). Discrete spatial data

(this chapter) and continuous spatial data (previous chapter) are complementary: discrete

data can strengthen our inference by combining all events associated with a particular loca-

tion, while continuous events can provide more precise spatial information. In this chapter,

we investigate the use of an adaptive-mixture model that learns a categorical probability

distribution over the set of L locations from an individual’s historical data. Our model uses

contextual information such as spatial proximity, social ties, and overall popularity to gen-

eralize to new places and, similarly to Chapter 2, infer the balance between repetitive and

novelty-seeking behavior directly from the data.

Contributions of Chapter 3 include:

• A method for discretizing continuous-space location data based on geographic-parcels.

We show that this approach provides a more detailed personalization of discrete data

than the existing disjoint-cell-based approaches (e.g., grid boxed or cell tower areas).

• The introduction of an adaptive-mixture model framework that learns each individ-

ual’s balance of explore-exploit behavior as a mixture of individual level models and

smoothing components based on contextual information like spatial and social simi-
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larities. In addition, this approach automatically infers the optimal level of smoothing

for maximal predictive accuracy.

• A comparison between various state-of-the-art discrete-space models using multiple

evaluation metrics for predicting future individual-location data in both batch-

evaluation and online-evaluation experiments.

In Chapter 4 we broaden the range of data sets under investigation beyond location data

to include online music streaming, restaurants reviews and micro-blogging data sets. In

particular we focus on a consumption behavior that is a combination over time of new and

“known” items per user. We propose a data-driven zero-inflated Poisson regression approach

for modeling sparse consumption patterns consisting of combinations of both new and known

items. While zero-inflated Poisson regression models are well-known (e.g., in statistics) this

is the first application (that we are aware of) of these types of models to very high-dimension

user-item consumption data.

Contributions of Chapter 4 include:

• A thorough investigation of user-item digital consumption rate data sets from three

different domains where the individual’s behavior consists of a combination of con-

sumption of new and “known” items (repeated consumption).

• A data-driven zero-inflated Poisson regression model for predicting individual-level

user-item consumption rates. Our proposed model uses individual-level data and con-

textual information to model both repetitive and novel behavior and infer the balance

from the data.

• Extensive empirical evaluation using three large-scale data sets from different domains,

demonstrating systematic improvement in prediction accuracy in both batch and online

experiments.
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• Qualitative evaluation demonstrating the advantages of our proposed model in the

context of predicting sparse user-item consumption rates.
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Chapter 2

Modeling Human Location Data with

Mixtures of Kernel Densities

Location-based data is increasingly prevalent with the rapid increase and adoption of mobile

devices. In this chapter we address the problem of learning spatial density models, focus-

ing specifically on individual-level data. Modeling and predicting a spatial distribution for

an individual is a challenging problem given both (a) the typical sparsity of data at the

individual level and (b) the heterogeneity of spatial mobility patterns across individuals.

We investigate the application of kernel density estimation (KDE) to this problem using

a mixture model approach that can interpolate between an individual’s data and broader

patterns in the population as a whole. The mixture-KDE approach is evaluated on two large

geolocation/check-in data sets, from Twitter and Gowalla, with comparisons to non-KDE

baselines, using both log-likelihood and detection of simulated identity theft as evaluation

metrics. Our experimental results indicate that the mixture-KDE method provides a useful

and accurate methodology for capturing and predicting individual-level spatial patterns in

the presence of noisy and sparse data.
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2.1 Introduction

Human location data is increasingly available in the modern mobile world, often in the form

of geolocation tags attached to human behavioral data such as phone calls, text messages,

social media activities, and more. With the widespread availability of this data there is in-

creasing interest across a variety of fields of study in creating accurate models to characterize

the spatial distributions of populations and individuals. For example, Sadilek et al. [58] an-

alyze the spread of infectious diseases through geolocation data from Twitter, opening up

potential new approaches for real-time computational epidemiology. Culotta [16] studies

a large variety of health related statistics in different counties in the U.S using Twitter.

Cranshaw et al. [14] use Foursquare check-in data to identify local spatial clusters within

urban areas, with potential applications in urban planning to economic development and

resource allocation. From a commercial perspective, location-based services and person-

alization are becoming increasingly important to individual mobile device users, with an

increasing number of applications that are location-aware, including maps, localized search

results, recommender systems, and advertising [66].

In this chapter we focus on the problem of developing accurate individual-level models of

spatial location based on geolocated event data. The term “event” here can be interpreted

in a broad context—examples include communication events such as phone calls or text

messages, check-in events, social media actions, and so on. The goal is to be able to accu-

rately characterize and predict the spatial pattern of an individual’s events. The problem

is challenging for two main reasons. Firstly, there is often relatively little data for many

of the individuals making it difficult to build accurate models at the individual level. Sec-

ondly, there is often considerable variety and heterogeneity in the spatial pattern of events of

individual users, rendering techniques such as clustering less than ideal for individual-level

modeling.
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Figure 2.1: Geolocated Twitter tweets over the period of July-August 2013 from all individ-
uals in southern California.

Figure 2.2: Gowalla check-ins over the period of January 2010 to July 2010 from all individ-
uals in southern California.
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The primary contribution of this chapter is a systematic approach for individual-level mod-

eling of geolocation data based on kernel density estimates. Kernel density approaches have

been relatively unexplored to date in the context of spatial modeling of geolocation data.

While in principle they provide a flexible and general framework for spatial density estima-

tion, direct application at the level of individual event data will tend to lead to significant

over-fitting (because of the sparsity of data at the individual level). We propose a hierarchi-

cal extension of the traditional kernel approach that can avoid the over-fitting problem by

systematically smoothing an individual’s data towards the population data. We demonstrate

how adaptive bandwidth techniques provide better quality density estimates compared to

fixed bandwidths. Using two large geolocation data sets from Twitter and Gowalla (see

Figures 2.1 and 2.2) we show that the proposed kernel method is significantly more accurate

than baselines such as Gaussian mixtures for such data, in terms of the quality of predictions

on out-of-sample data.

This chapter is organized as follows. Section 2.2 provides an overview of existing approaches

for modeling human location data and elaborates on the challenges of developing spatial

models in practice. In section 2.3 we review kernel density estimation and discuss the

use of adaptive bandwidth methods and in section 2.4 we describe our proposed mixture-

KDE approach for modeling and predicting individuals’ locations. In section 2.5 we present

empirical experiments using two different geospatial/check-in data sets and using both test

log-likelihood and accuracy in detection of simulated identity theft. Section 2.6 discusses

scalability and online algorithms for the proposed approach and we conclude with a brief

discussion in Section 2.7.
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2.2 Background and Related Work

2.2.1 Notation and Problem Definition

In this chapter we consider data available in the form of individual-level geotagged events,

E = {E1, . . . , EN} where Ei = {e1
i , . . . , e

ni
i } and eji is the jth event for the ith individual,

1 ≤ i ≤ N . Each event eji consists of a tuple < i, x, y, t >, where x and y are longitude and

latitude respectively and t is a time-stamp, e.g., geotagged tweets based on GPS location.

One approach in analyzing such data is to focus on the problem of sequentially predicting

a user’s behavior in terms of their short-term trajectory, e.g., predicting where a user i’s

next event ej+1
i is likely to occur in terms of location < x, y > given their event history

{e1
i , . . . , e

j
i}, where events may be minutes or hours apart (e.g., Song et al. [65] and Scellato

et al. [59]). In this chapter we focus on a different problem, that of modeling a user’s spatial

patterns over a longer time-period in a more aggregate sense. Specifically, we focus on

learning probability density models of the form fi(x, y) that represent the spatial density

of user i’s events. Given an event has occurred for individual i, the probability that it

lies in any area A is
∫ ∫

fi(x, y)dxdy where the integral is over the region defined by A

(see also [26]). In this context we focus in this chapter on modeling fi(x, y) rather than

fi(x, y, t), and only use the time dimension t to order the data, e.g. for online training and

prediction. In principle it should be possible to extend the 2-dimensional spatial modeling

methods proposed in this chapter to include the temporal dimension, allowing for inclusion

of circadian and calendar-dependent aspects of an individual’s behavior.
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2.2.2 Modeling of Discretized Locations

A widely-used approach in location modeling is to restrict attention to a finite set of known

fixed locations, effectively discretizing space and turning the problem into a multivariate

data analysis problem where each location represents a single dimension1. One can use such

representations to generate a sparse matrix consisting of individuals as rows and locations as

columns, where each element i, j contains the count of the number of events for individual i

that occurred at location j. The locations (columns) can be defined in different ways. For

example, one can define the columns by identifying a set of specific locations such as shops,

restaurants, and so forth (e.g., see [9, 12, 14]). An alternative approach is to discretize the

spatial domain into disjoint cells (e.g., via clustering), and then associate a discrete set of

venues with each cell (as in Cranshaw et al. [15] who used Foursquare check-in venues) or

to aggregate the counts of geolocated events within each cell (as in Lee et al. [46] and Frias-

Martinez et al. [24]). The advantage of these discretized representations is that they allow

the application of broad set of multivariate data analysis tools, such as clustering techniques

or matrix factorization methods. However, they do not explicitly encode spatial semantics

and, as such, do not provide the ability to make predictions in continuous space, which is a

primary aim in our work in this chapter.

2.2.3 Continuous Spatial Models

In the context of continuous models, a number of authors have explored such models for

individual location data in prior work. For example, Gonzalez et al. [26] and Brockmann et

al. [7] explored general distributional patterns of human mobility from location data. Eagle

and Pentland [20], Li et al. [49], and Cho et al. [13] demonstrated how different aspects of

individuals’ daily routines can be effectively extracted from traces of location data.

1In fact we pursue this discretization approach later in Chapter 3 in this thesis.
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Figure 2.3: On the left (a): Geotagged events in the area between Los Angeles and Las Vegas
near the city of Barstow, CA. (b): The contour lines of a Gaussian mixture model with 2
components. Figure best viewed in color.

A simple approach to modeling an individual’s spatial density fi(x, y) is to use a single

Gaussian density function, i.e.,

fG(x, y|µ
i
,Σi) = fG(ei|µi,Σi)

=
1

(2π) |Σi|
1
2

e−
1
2

(ei−µi)
′Σ−1
i (ei−µi) (2.1)

where ei = (x, y) is a 2-dimensional longitude-latitude pair, µ
i

is a 2-dimensional mean

vector, and Σi is a 2 × 2 covariance matrix. The unimodal and elliptical density contours

of a single Gaussian are too simple to accurately represent human location data in practice.

With this in mind, a finite mixture of C Gaussian densities can provide additional flexibility,

defined as

fMG(ei|θi) =
C∑
c=1

πicfG(e|µ
ic
,Σic) (2.2)

with parameters θi consisting of the C mixing weights π1, . . . , πC ,
∑

c πc = 1, and means

µ
ic

and covariance matrices Σic, 1 ≤ c ≤ C. For example, as described in Cho et al. [13],

a two-component (C = 2) spatial model may be a useful model for capturing the bimodal

variation due to “home” and “work” components in an individual’s spatial data.
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While the mixture model can provide additional modeling power beyond that of a single

Gaussian, it has a number of practical limitations. Firstly, the number of components C re-

quired for an accurate density model may vary considerably across different individuals, and

automatically and reliably determining the number of components is a non-trivial problem.

Secondly, the number of data points per individual is usually skewed towards small counts.

For example, in our Twitter data set, whiche will be described in a later section, 60% of the

individuals have associated with them 5 or fewer events over a 2 month period (July and

August 2013). This makes it challenging, if not impossible, to fit mixture models, even if the

number of components C for each individual is known and fixed. A third limitation of the

Gaussian mixture approach is a more pragmatic one. Human mobility is constrained by our

environment resulting in sharp transitions in spatial densities, due both to natural topogra-

phy (mountains, oceans) and man-made artifacts (roads, city centers, etc.). Figure 2.3(a)

shows Twitter data for a region near Barstow, California. The spatial density of the data

shows significant local variation, including regions of high density for the town of Barstow

(bottom left), for the military base (top center), and along the various major roads, with

very low density in the surrounding desert. Figure 2.3(b) shows a fitted mixture density

model with two components: it is unable to capture many of the high density patterns and

“wastes” considerable probability mass over sparsely populated desert regions.

2.3 Kernel Density Estimation for Location Data

To address these limitations, we investigate the use of kernel density estimation (KDE)

methods as outlined in detail in the next section. There has been limited prior work in-

vestigating the application of KDE methods in the context of human location data. Zhang

and Chow [70] illustrated the advantages of KDE techniques (over Gaussian mixture mod-

els) for data from location-based social networks, but used 1-dimensional kernel densities
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on distances rather than 2-dimensional spatial models, and Hasan et al. [30] illustrated the

use of 2-dimensional spatial KDE models for exploratory analysis of check-in data. KDE

methods have also been used in application areas such as epidemiology [3], ecology [22], and

marketing [19], for modeling spatial densities of populations of individual entities, but not

for modeling spatial densities of individuals themselves.

2.3.1 Kernel Density Estimation

Kernel density estimation is a non-parametric method for estimating a density function

from a random sample of data [61]. Let E = {e1, . . . , en} be a set of historical events where

ej =< x, y > is a two-dimensional location, 1 ≤ j ≤ n, and where we have suppressed any

dependence on individual i for the moment and dropped dependence on time t. We will

refer to E as the training data set. A simple approach for estimating a bivariate density

function from such data is to use a single fixed bandwidth h for both spatial dimensions and

a Gaussian kernel function K(·). This results in a bivariate KDE of the following form:

fKD(e|E, h) =
1

n

n∑
j=1

Kh(e, e
j) (2.3)

Kh(e, e
j) =

1

2πh
exp

(
−1

2
(e− ej)tΣ−1

h (e− ej)
)

(2.4)

Σh =

h 0

0 h


where e is the location for which we wish to compute the density and h > 0 is a fixed scalar

bandwidth parameter for all events in E. It is well known that the resulting density estimate
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Figure 2.4: Left plots: Events in the city of Laguna Beach in southern California (top
row) and in an area between Los Angeles and Las Vegas (bottom row). Points on the map
represent observed events. Middle plots: Contour of the log-probability of a KDE model
with fixed h = 10 meters. Right Plots: Contour of the log-probability of a KDE model with
fixed h = 400 meters. Best viewed in color.

fKD can be highly sensitive to the value of the bandwidth h, producing densities that are

sharply peaked around the training data points ej when h is too small, and producing an

overly smooth estimate that may omit important structure in the data (such as multiple

modes) when h is too large [61].

There are a number of techniques that can be used to evaluate the quality of a particular

value for the bandwidth h. One straightforward data-driven option is to measure the log-

probability (or log-likelihood) of a set of test data points not used in constructing the density

estimate, i.e.,

L(h) =
1

nt

nt∑
r=1

log fKD(er|E, h) (2.5)

where the nt events er are data points not included in the training data E (e.g., a validation
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set). Larger values of L(h) are preferred since it means that higher probability is being

assigned to new unseen data. Hence, a simple approach to bandwidth selection (at least for

a single bandwidth parameter h) is to perform a grid-search on h using a validation set. We

will use the above out-of-sample log-probability score function L(h) later in the chapter for

both bandwidth selection and for comparing different types of density models.

One could also use various “plug-in” estimates for h, such as that of Silverman [61, pages

86-88]. These estimates are optimal (e.g. in a mean integrated squared error sense) if

the true underlying density being estimated is Gaussian, and can work well in practice for

other related smooth non-Gaussian densities. However, for spatial location data we found

that “plug-in” estimates for h were much too large and significantly oversmoothed the KDE

results in a very poor fit due to the highly multimodal nature of location data (supporting

results are provided later in this section).

At this point in the discussion it is worth noting that, in addition to its advantages in terms

of flexibility, kernel density estimation has some well known drawbacks that have tended to

limit its use in practice in the past, particularly in machine learning and data mining. The

first drawback is that it is particularly susceptible to the curse of dimensionality, essentially

requiring an exponential number of data points as a function of data dimensionality d. This

is not an issue for location-data modeling since we are in the low-dimensional regime of

d = 2. A second drawback of kernel densities (as with related “neighbor-based” methods) is

the need to store all of the training data in memory at prediction time. This was arguably

a relevant point 10 years or more ago when memory was relatively expensive, but in current

times it is relatively inexpensive (both computationally and financially) to keep millions (or

even hundreds of millions) of points accessible in main memory at prediction time. We will

return to this point in more detail later in the chapter—here it is sufficient to note that kernel

density estimation is practical for 2-dimensional problems with millions of data points.
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2.3.2 The Adaptive Bandwidth Method

A limitation of the approach described above is that the smoothing is homogeneous, i.e., the

amount of smoothing is constant through the 2-dimensional region since the bandwidth h is

fixed for all events. This does not reflect the realities of human-location data where dense

urban areas will tend to have high event density and sparsely-populated rural areas will have

low event density. This limitation is clearly visible in Figure 2.4. The two plots in the center

use the same small fixed bandwidth of h = 10 meters, which works well for the relatively

dense area of Laguna Beach (upper plot), but works poorly (overfits) for the rural area near

Barstow, CA in the lower plot. If the bandwidth is increased to h = 400 meters, as in the

two plots to the right, we find that this produces a more acceptable result in the lower plot

(the rural area) but is vastly oversmoothing in the upper plot.

One approach to address this issue is to use an adaptive kernel bandwidth, several methods

of which have been proposed in the literature, that relaxes the assumption of a constant

fixed bandwidth parameter. Breiman et al. [6] suggested adapting the kernel bandwidth

hj to each data point ej. Using this idea, we let hj be the Euclidean distance to the kth

nearest neighbor to ej in the training data. Hence we can define an adaptive bandwidth

kernel density estimate as:

fKD(e|E) =
1

n

n∑
j=1

Khj(e, e
j) (2.6)

where Khj is defined as in Equation 2.4 replacing h with hj.

Table 2.1 shows the results from a series of tests on a validation data set, comparing the

fixed and adaptive bandwidth approaches using different values for (a) the fixed bandwidth

h, (b) the “plug in” estimate, and (c) the number of neighbors k (for the adaptive method).

We trained the models using 100,000 randomly selected events from our Twitter data set
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Bandwidth logPlogPlogP

Fixed

h = 10−2 −0.592

h = 10−3 −0.157

h = 10−4 0.139

h = 10−5 −0.326

h = “plug in” −8.273

Adaptive

k = 2 0.046

k = 5 1.275

k = 10 1.196

k = 20 0.354

Table 2.1: Average log-probability scores on held-out events, comparing the fixed, “plug in”
estimate, and the adaptive approaches for kernel density estimation for Twitter geolocation
data. Higher scores are better. Best performing method indicated in bold font.

(described in more detail later in the chapter) and then computed the log-probability score

(Equation 2.5) using a set of nt = 100, 000 randomly selected held-out events. From the

results, we can see that the adaptive bandwidth models dominate the performance of the

fixed bandwidth methods, including the “plug-in” estimate for the bandwidth value.

2.4 Modeling an Individual’s Location Data

So far, our predictive model fKD(e|E, h), does not depend on the identity of an individual

i. However, our primary goal in this work is to be able to build accurate predictive spatial

density models at the individual level.

2.4.1 Mixtures of Kernel Density Models

To address this task, we could apply the adaptive kernel density methods described above

at the level of an individual (rather than for aggregations of events across a population

of individuals), computing fKD(e|Ei) in Equation 2.6 where we now condition on just the
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individual’s event data Ei rather than the events for the population E.

A significant challenge with building individual-level models in this manner is the “cold-

start” problem, given that we typically have very little data for many of the individuals

for whom we wish to make predictions. To address this data sparsity problem we propose

a multi-scale kernel model where we use a mixture of (a) an individual’s potentially noisy

kernel density estimate with (b) more robust coarse-scale models2. More specifically we

define a mixture-KDE for individual i as

PMKD(e|E) =
C∑
c=1

πcfKD(e|Ec) (2.7)

where π1, . . . , πC are non-negative mixing weights with
∑

c πc = 1, and fKD(e|Ec) is the cth

component of the mixture. Here component c is a kernel density estimate computed as a

function only of a subset of points (or events) Ec. The component density estimates, fKD,

can be any density model, including fixed or adaptive bandwidth KDE. We use adaptive

bandwidth KDE, with k = 5 (following Table 1), for all of the components in the mixture-

KDE used in this chapter.

As a specific example consider a model for individual i where C = 2, with the first com-

ponent being the individual-level kernel density with E1 = Ei, and the second component

being a population-level kernel density estimate with E2 = E. This mixture will have the

effect of smoothing the individual’s density towards the population density, with more or

less smoothing depending on the relative size of the π weights. Note that this mixture is

significantly different in nature to the use of a Gaussian mixture for an individual’s data

(e.g., as in [13]). In that approach, each component typically represents a different spa-

tial location around areas which an individual’s activity is centered (such as “home” and

“work”), whereas in the mixture-KDE each mixture component is responsible for a broader

2A potential alternative option would be a Bayesian hierarchical model—however Bayesian modeling with
kernel densities is not straightforward given that kernels do not have parameters that can be “shrunk” as in
the usual Bayesian approach.
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spatial scale of activity.

For C components, where C > 2, we can have the first component be an individual level

density, and the Cth component be the population density, where the intermediate compo-

nents c = 2, . . . , C − 1 can represent different spatial scales (such as neighborhoods, cities,

states, and even countries). Given that the data sets we are using in this chapter are from

the southern California region, we chose to use a 3-level model (C = 3), with the first and

last components being the individual and population level models respectively, and the c = 2

model representing (approximately) the “home city” for an individual. To find the spatial

area that represents the individual “home city” we divided the area of southern California

into 81 regions corresponding to a 9 × 9 array of equal-sized grid boxes. Each individual i

was associated with the region that contains the majority of their individual events—thus,

the c = 2 component in the model represents the scale of a local region or city. A similar

approach was used in prior work for finding the “home” location of an individual [13].

This process of selecting additional spatial components, that are “between” the individual

and the full population, is somewhat arbitrary—we chose a single intermediate component

in the work below, but other choices could be explored for other applications.

To illustrate the differences between the kernel densities of the spatial scales we plot in

Figure 2.5 the heat maps representation of each density for a randomly selected user from

the Twitter data set. The c = 2 KDE, roughly corresponding to the “home city” of Newport

Beach, California for this individual, is shown in subplot (c). First, the individual-level

KDE focuses all the density around the few events that were observed. Next, the spatial-

scale KDE that represents the “home city” is computed based on the events from individuals

with the same “home city.” As a result, the estimated density is smoothed toward more areas

around Newport Beach, California. Finally, the third spatial-scale component, corresponding

to the entire population, smooth the density toward popular areas in southern California,

particularly around Los Angeles, California, and shown in subplot (d).

25



(a) Individual Data (b) Individual KDE

(c) “Home City” KDE (d) Population KDE

Figure 2.5: Top left: Location observations for a randomly selected individual from the
Twitter data set. All observations are located in Newport Beach, California. Top right:
Heat map representation of the learned individual-level kernel density estimation. Bottom
left: Heat map representations of the kernel density estimations for the c = 2 KDE, roughly
corresponding to the “home city” of Newport Beach, California. Bottom left: Heat map
representation of the population KDE (c = 3) learned using observations from the entire
population in southern California. Best viewed in color.

From a generative perspective, one interpretation of Equation 2.7 above for the mixture-

KDE is as follows. Assuming that the first component is based only on individual i’s data,

individual i has a probability π1 of generating events in the future in a manner similar to
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his/her past behavior, and a probability πc (c = 2, . . . , C) of generating events in accordance

with the larger “subpopulations” defined by events Ec. In this chapter, in the absence of

additional metadata about the individuals, we defined the larger subpopulations solely on

spatial characteristics (component 2 being roughly a city, and component 3 being the whole

southern California region). However, one could also define the larger subpopulations based

on metadata (if it were available), such as demographics, social ties, and so forth.

Another way to interpret the mixture-KDE model is that it provides a relatively simple

weighting mechanism to allow us to upweight data points from individual i in the kernel

density estimate and downweight points that don’t belong to the individual. Given that

kernel densities are defined as weighted sums over all points, the mixture-KDE can be thought

of as a form of kernel density estimate where the points are given an additional level of

weighting depending on what component they belong to. As a sidenote, in the results

presented here we allow data points to belong to multiple sets Ec, e.g., a data point for

individual i can be included in the kernel density estimate for all C components. The other

option would be to only allow points to belong to a single component. Either option is fine

in theory: from the weighted kernel perspective it only changes (in effect) the manner in

which we are assigning weights to each point in the overall weighted sum.

2.4.2 Training the Model

Given a set of components fKD(e|Ec), c = 1 . . . C, the next step is to compute the mixing

weights π1, . . . , πC in Equation 2.7. To do so, we randomly sample a validation set, disjoint

from the training set, and use it to learn the weights as follows. For each event in the valida-

tion set, its density value under each component c is computed (using the training set for the

KDE computation). This results in a fixed set of component density values on the validation

data points and we can optimize over the convex set of mixing weights πc to find the highest-
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Figure 2.6: Heat map representation of the mixture of kernel densities for selected user in
the Twitter data set from southern California. Best viewed in color.

likelihood combination. We used the Expectation-Maximization (EM) algorithm since it is

easy to implement and converges quickly (one could use other optimization techniques such

as gradient descent)—this is in essence the same as using EM for learning finite mixtures

(such as Gaussian mixtures) but where the parameters of the component densities are known

and fixed and one is just learning the mixture weights (see also Smyth and Wolpert [64]).

In Figure 2.6 we plot the resulting mixture of kernel densities learned for the randomly se-

lected individual that was used in Figure 2.5. From the figure we can see that the resulting

density is a mixture of all three spatial scale components, with high density around the indi-

vidual’s observed events, the areas nearby, and the most popular areas in southern California

(i.e., Downtown Los Angeles and Disneyworld, California).
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2.5 Experiments and Results

2.5.1 Data Sets

For our experiments, we use two geolocation/check-in data sets: Twitter and Gowalla.

Twitter is a popular micro-blogging service that allows the posting of short texts (up to

140 characters) and pictures. Using the Twitter Streaming API3 we collected over 4 million

public tweets from 230,450 unique individuals in the southern California area over the period

of July-August 2013. In the experiments in this chapter we use data only from weekdays,

i.e., Monday through Friday. To remove repeated and bursty events we replaced tweets

occurring with the same hour and within 50 meters of each other with a single effective

tweet. Figure 2.1 shows the spatial distribution of our data set. The Gowalla data is the

same data used by Cho et al. [13], containing 145, 558 events from 7, 653 unique individuals

on weekdays between January and October, 2010, in the southern California area as shown

in Figure 2.2. Training, validation, and test sets were extracted from both data sets for our

experiments (details provided later).

2.5.2 Evaluation using Log-Likelihood

The training set for the Twitter data consists of all events recorded for the month of July,

2013. The test set for Twitter is all of the events in August 2013 for a randomly selected

set of 2000 individuals, selected from the individuals that have at least 2 events in July.

To create the Gowalla training set we used the data from the months of January to June,

2010. The test set for Gowalla is all of the events from the months of July to October, 2010

for a randomly selected set of 1000 individuals, selected from the individuals that have at

least 2 events in the months of January to June, 2010. A validation set was generated for

3https://developer.twitter.com/en/docs/tweets/filter-realtime/overview.html
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each of the Twitter and Gowalla data sets by setting aside approximately 37,000 and 25,000

randomly selected events from each training data set.

We built models on the data from our training data set and computed the test set log-

probability score of the events in the test set, under each model. We report results both in

terms of the mean and median log-likelihood per event, denoted as e-logP , and the mean

and median log-likelihood per individual, denoted as i -logP (the latter giving equal weight

to individuals, the former to events).

2.5.3 Mixture of Kernel Densities Individual vs. Global Mixing

Weights

We first compare two versions of the mixture of kernel densities model: one which uses

globally-shared mixing weights π and another which uses individually learned mixing weights

πi. For both models, we learn the individual kernel density components on the training set

and optimize the mixing weights on the validation data set.

For the mixture model with globally-shared mixing weights, we learn a single set of mixing

weights, π, which is shared across all users. In the M-step of the learning algorithm, we

use a flat Dirichlet prior on the weights with a strength parameter that is optimized on the

validation data set. For the individually-learned mixing weights model, we learn a unique

set of mixing-weights for each individual in each M-step. We use an empirical Bayes prior

proportional to the average mixing weights across all users with a strength parameter that

is optimized using the validation data set. The use of such prior allows users with small

amount of historical data to effectively “borrow” information from users with more historical

information.

Table 2.2 shows that in terms of mean log-likelihood, the mixture of kernel densities model
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i -logP e-logP
Data set indiv -πi global -π indiv -πi global -π
Twitter 4.065 4.279 5.352 5.293
Gowalla 5.847 6.599 6.323 6.568

Avg. 4.956 5.439 5.838 5.931

Table 2.2: Mean i -logP and e-logP on the test data for Mixture-KDE with individually
and globally learned mixing weights across the different data sets and on average. Higher
results are better. Best performing methods indicated in bold font.

with globally-learned mixture weights outperforms the model with individually learned mix-

ing weights on average by a small margin. The results for median log-likelihood were con-

sistent with the mean log-likelihood results and were omitted from the table for clarity.

Further analysis of the results showed that users for whom the global mixing weights ap-

proach performed better had relatively small validation data sets at optimization time. As a

result, the quality of their individually-learned mixing weights was low which leads them to

underperform the globally-learned mixing weights model. In real life applications however,

when the amount of data available for each user is significantly larger, it is possible that the

individually-learned mixing-weights mixture of kernel densities model or a hybrid approach

will outperform the globally-learned mixing-weights mixture approach.

In addition, the model complexity (i.e., number of learned parameters) of the global mixing-

weights mixture model is much lower than that of the individual-learned mixing-weights

version as the number of mixing weights grows linearly with the number of users. For these

reasons we focus on global mixing-weights model throughout the remainder of this chapter.

2.5.4 Comparing Mixture-KDE and Existing Methods

We also compare our mixture of kernel densities model to existing individual-level continuous

space models. By an “individual-level model” we mean a model that is fit to each individual

i using only their data Ei, and then used for predicting future events for that individual i.
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Gaussian: A Gaussian density model. We used maximum likelihood estimates for the

mean and maximum a posteriori (MAP) estimates for the covariance matrices (e.g., see [55],

chapter 4.6.2):

µi = µ̂iMLE, Σi = λΣi
0 + (1− λ)Σ̂i

MLE, λ =
n0

n0 + ni

where the prior parameters were set to n0 = 3 and σ = 5 kilometers (for the diagonal on

the prior covariance) via a grid search over the log-likelihood on a validation set across all

individuals.

Gaussian Mixture Model (GMM): Two different Gaussian mixture models with C = 2

and C = 4 components. The models were fit using the EM algorithm. Again, we used

maximum likelihood to estimate the µc and MAP estimates for the Σc. Parameters for the

priors were also determined on a validation set.

Fixed KDE: A fixed bandwidth kernel density estimate using Equation 2.3. The value

of the fixed bandwidth, h, was determined via grid search using the validation set. For

both metrics i -logP and e-logP the best value was approximately corresponding to h = 5.3

kilometers, for all users.

Adaptive KDE: An adaptive kernel density estimate using Equation 2.6. The nearest-

neighbor value of k was determined via grid search using the validation set. For both metrics

i -logP and e-logP the best value was k = 5, for all users.

In addition, for our log-likelihood experiments we evaluated a single “global” population

model (Population KDE) using an adaptive kernel density estimate (k = 5) based on all

data points in the training set (i.e., not an individual-level model).

For our mixture-KDE model we used 3 components corresponding to the individual i, the

“home city” and the full population, respectively. Each component is an adaptive bandwidth
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i -logP e-logP
Model Mean Median Mean Median

Gaussian -0.586 0.151 -0.242 1.357
GMM (C = 2) -0.469 0.221 0.001 1.676
GMM (C = 4) -0.474 0.279 -0.015 1.712

Fixed KDE -1.025 -0.714 -0.869 -0.688
Adaptive KDE -7.154 0.446 (∗) -4.908

Population KDE 2.014 0.563 0.784 0.237
Mixture-KDE 4.279 4.312 5.293 6.302

Table 2.3: Average log-probabilities on the test data for individuals and events from the
Twitter data set. Higher scores are better. Best performing methods indicated in bold font.

i -logP e-logP
Model Mean Median Mean Median

Gaussian -1.513 0.008 -1.133 1.027
GMM (C = 2) -1.532 0.308 -0.956 1.412
GMM (C = 4) -1.522 -0.479 -0.958 1.471

Fixed KDE -1.136 -0.749 -1.092 -0.742
Adaptive KDE (∗) -0.247 -3.288 1.355

Population KDE 3.388 1.237 4.021 0.923
Mixture-KDE 6.599 6.296 6.568 2.619

Table 2.4: Average log-probabilities on the test data for individuals and events from the
Gowalla data set. Higher scores are better. Best performing methods indicated in bold font.

KDE with k = 5 neighbors. Using EM to determine the mixture weights resulted in the

following values for the π’s: 0.85 for π1 (the individual level), 0.12 for π2 (the region level),

and 0.03 for π3 (the population level) for the Twitter data set, and π1 = 0.50, π2 = 0.32 and

π3 = 0.18 for the Gowalla data set.

The mean and median scores, for both individual and event-level scores, are shown in Tables

2.3 and 2.4 for the Twitter and Gowalla data sets respectively. A (∗) indicates that the

test log-likelihood was not computed due to numerical underflow. The mixture-KDE model

clearly outperforms all other methods, on both data sets, for all metrics, assigning signifi-

cantly higher log-probability to the test events than any of the other modeling approaches.

Figures 2.7 and 2.8 show the comparison between the mixture-KDE approach and the GMM

(on the left) and fixed KDE (on the right) when looking at each individual separately, again
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Figure 2.7: Upper plots (a) and (b): scatter plots for a sample of test set log-probability
scores for Twitter individuals with (a) individual Gaussian mixtures (C = 4) versus the
mixture-KDE, and (b) individual fixed-KDE versus the mixture-KDE. Lower plots (c) and
(d): histograms of the score differences per event for the mixture-KDE minus the score of
the corresponding model on the y-axis in the upper plot.

clearly showing the improvement of the mixture-KDE approach over the other methods.

2.5.5 Evaluation using Simulated Identity Theft

We now compare the different models by using a simulated real-world application based on

identity theft. Over 8 million people are victims of identity theft every year in the United

States alone, with an annual cost exceeding 4 billion dollars and over 32 million hours

spent by individuals to resolve the problem [21]. To simulate identify theft we replaced the

geolocation events for an individual over a specific time-window with the geolocation events

of a different individual and then tested the ability of our models to detect the resulting

anomalous spatial patterns of events.

We used the Twitter data set for our experiment since the Gowalla data set did not show

any significant differences for this problem between the different models (single Gaussian,
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mixtures of Gaussians, various forms of KDEs). We believe this may be due to the fact that

our data set for Gowalla has fewer individuals than Twitter, and that these individuals use

many of the same checkins, limiting the effectiveness of Gowalla data for detecting “identity

switching”.

Focusing on the Twitter data set, we defined the training set to be all events in the month

of July, 2013. The test set consists of two types of event streams in August, 2013: events for

normal “control” individuals and events with simulated identity theft. The control individ-

uals are a randomly selected set of 950 individuals that have at least 2 events in July and at

least 10 events in August. The individuals with simulated identity theft correspond to a set

of 50 randomly selected individuals with at least 2 events in July. For each of these 50, we

then replaced their real test data events in August, with the set of events from a different

randomly selected individual, among individuals who have at least 10 events in August. In

this manner, our test data has 50 event sets where the spatial distribution for each sets will

in general look different (in a realistic manner, as if a different individual were using the

Twitter account), compared to the event sets for the “true” individual in the training data

from July.

To evaluate the different models we computed a surprise index Si for each individual i,

defined as the negative log-probability of individual i’s events in the test data set relative to

a model constructed on historical data:

Si = − 1

ni

ni∑
r=1

log f̂i(e
r
i ) (2.8)

where eri is the rth event in the test data set for individual i, and f̂i is the density estimate for

individual i constructed using the training data. The larger the surprise score Si, the more

anomalous the events eri are relative to the model f̂i. In these experiments we used all of the

models that we used in the log-likelihood experiments as described earlier in the chapter,
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Figure 2.8: Upper plots (a) and (b): scatter plots for a sample of test set log-probability
scores for Gowalla individuals with (a) individual Gaussian mixtures (C = 4) versus the
mixture-KDE, and (b) individual fixed-KDE versus the mixture-KDE. Lower plots (c) and
(d): histograms of the score differences per event for the mixture-KDE minus the score of
the corresponding model on the y-axis in the upper plot.

except for the population model which is unable to generate rankings at the individual level.

We used a grid search on the validation set (defined in a similar manner to the training-test

setup above) to determine various parameters of the models, where the parameter values

were selected to optimize precision on the identity theft task. In general, optimizing for

precision results in different parameter values for the various models compared to optimizing

for likelihood. The priors of the Gaussian mixture model resulted in n0 = 0.1 and σ = 5

kilometers. The optimal parameters for the individual KDE were estimated to be a fixed

bandwidth of h = 3 kilometers and k = 5 for the adaptive method. The optimal mixture

weights for the mixture-KDE model were π1 = 0.90 (the individual level), π2 = 0.08 (the

region level), and π3 = 0.02 for the population model.

For each model, we then ranked all of the individuals in the test data by their surprise

index Si and computed precision relative to the known ground truth in terms of which
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nte = 1 nte = 5 nte = 10
Gaussian 0.612 0.470 0.325

GMM (C=2) 0.320 0.240 0.160
GMM (C=4) 0.240 0.170 0.130
Fixed KDE 0.500 0.500 0.460

Adaptive KDE 0.432 0.309 0.274
Mixture-KDE 0.531 0.747 0.816

Table 2.5: Average precision (over 50 runs) for the top 20 ranked individuals in the test
data, as a function of the number of observed test events nte per individual. Higher scores
are better. Best performing methods indicated in bold font.

nte = 1 nte = 5 nte = 10
Gaussian 0.379 0.341 0.240

GMM (C=2) 0.260 0.220 0.150
GMM (C=4) 0.240 0.190 0.150
Fixed KDE 0.330 0.370 0.320

Adaptive KDE 0.296 0.188 0.142
Mixture-KDE 0.459 0.589 0.644

Table 2.6: Average precision (over 50 runs) for the top 20 ranked individuals in the test
data, as a function of the number of observed test events per individual, for “cold-start”
individuals (as defined in the text). Higher scores are better. Best performing methods
indicated in bold font.

individuals correspond to simulated identity theft and which to the controls. Table 2.5

shows the precision at 20, the fraction of simulated identity theft cases correctly detected

in the top 20 ranked individuals. These precision numbers are the result of averaging over

50 different randomly generated test sets, using the methodology described earlier. The

rows correspond to different models and the columns correspond to 3 different scenarios:

computing the surprise-index per individual based on their first nte events (in time) for

each individual in the test set, with nte = 1, nte = 5, nte = 10. Table 2.6 shows the same

information for a “cold-start” scenario, where now test sets are generated for simulated

identity theft and normal individuals (using the same general procedure as before) who are

constrained to have between 2 and 5 events in their training data (compared to any number

greater than or equal to 2 for the general case).

The results in the two tables show that the mixture-KDE model dominates all of the other
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methods, with a Wilcoxon signed rank p-value of p < 0.02, except for the Gaussian model

in the non-cold-case situation for nte = 1. This may be due to the fact that for a simulated

identity theft case, a sampled new event has a high probability of coming from a popular

area.

The mixture-KDE model improves as it sees more events in the test set (as nte increases

from left to right in the table). However, the other methods all decrease in precision as nte

increases. On closer inspection we found that this was being caused by their sensitivity to

false alarms, i.e., with more data points per individual there is a higher chance that a control

individual (a false alarm) will have an event in the test data that is not close spatially to the

individual’s events in the training data, resulting in a high-surprise score and a high rank

for that individual. The mixture-KDE is more robust to this type of variation, consistent

with results earlier in the chapter in terms of log-likelihood.

2.6 Scalability and Online Computation

2.6.1 Scalability

Our experience suggests that kernel density models are quite scalable for two-dimensional

data, and can likely be scaled to millions of individuals and hundreds of millions of events

relatively easily. To compute the density of a new point e, given a training data set E, we need

to compute the contribution of each training point to e’s density, as shown in Equation 2.3.

In general, storing the N training data points requires O (N) space and computing the

density for a new event will result in time complexity O (dN) where d is the dimension of

the data (here d = 2). In our implementation of the KDE models for the results in this

chapter we used k-d trees, as described in [28], to further speedup our KDE implementation.

This effectively computes only contributions from nearby points to e, based on a k-d tree
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i -logP e-logP
Model Mean Median Mean Median

Mixture-KDE 4.279 4.321 5.293 6.302
Online 4.892 4.913 5.788 6.531

i -logP e-logP
Model Mean Median Mean Median

Mixture-KDE 6.599 6.296 6.568 2.619
Online 6.987 6.742 7.432 3.022

Table 2.7: Predictive log-probability scores, averaged over individuals and events for a)
Twitter (top table) and b) Gowalla (bottom table). “Online” is the online version of the
Mixture-KDE model as described in the text. Higher scores are better. Best performing
methods indicated in bold font.

partition of the 2-dimensional space, resulting in a significant reduction in computation time.

We implemented our algorithm for kernel density estimation in Java4 and ran the code on an

8-core 2.4GHz Intel Xeon CPU with 8 hyper threads and 48 GB of RAM memory. Using one

million events as training data points, the average time for computing the density of a new

event is 8 milliseconds, making the model tractable for large data sets. Additional speed-ups

could be achieved for example by distributed computation since the density contribution

from different subsets of points are independent from one another. Hence, one can “split”

the training data set into disjoint groups and aggregate the density contributions in parallel.

2.6.2 Online Prediction

The results presented up to this point in the chapter have used a batch approach to training

and testing. A useful feature of the kernel density approach, including the mixture-KDE,

is that it is quite easy to implement an online version that can sequentially be updated as

new events arrive in streaming fashion. When a new event e arrives we simply add it to the

training set. For the adaptive bandwidth approach, every time the training set changes, we

need to find the k neighbors of the new point, as well as potentially needing to find new

4The code is available for download at http://www.datalab.uci.edu/resources/
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neighbors for all N existing points. In practice, however, only a very small fraction of existing

points will need to have their neighbors updated. Other parameters of the mixture-KDE

model, such as mixture weights for the components, are likely to change relatively slowly

over time, and can be periodically updated on validation subsets.

Table 2.7 shows predictive log-probability scores for the same training and test data used

earlier for likelihood experiments, but now, each sequential test event is included in the

training data in an online fashion before computing the log-probability of the next event.

The online model shows a significant systematic improvement in predictive scores compared

to the batch model, suggesting that online adaptation is beneficial with human location data.

This certainly makes intuitive sense, as we expect individual behavior to be non-stationary

and changing over time. In a practical application of an online model one would likely

incorporate some downweighting (e.g., via exponential weighting) or windowing of events

that are further back in time, allowing the model to adapt to changes in individual behavior.

2.7 Conclusions

The primary contributions of this chapter include the following:

• We investigated the use of kernel density estimation technique for modeling individual-

level human location data.

• We explored and evaluated different approaches for selecting the model parameters

(i.e., kernel bandwidth).

• We developed a mixture of kernel densities model that provides a principled way to

learn and model the balance between exploitation and novelty seeking in the context

of continuous space.
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• We applied this framework to the problem of predicting individuals’ future locations

using two large scale data sets from Twitter and Gowalla, showing that our approach

outperforms existing baselines.

• We evaluated our model using the task of fraud detection, based on spatial anomaly

detection, showing again that our model outperforms existing approaches.
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Chapter 3

Personalized Location Models with

Adaptive Mixtures

In the previous chapter we presented a mixture approach for modeling repetitive and novelty-

seeking behavioral patterns as observed in continuous-space location data. In this chapter,

we extend this work and develop a general adaptive mixture framework, using techniques

from the previous chapter, for individual-level discrete-space location data. The model we

develop in this chapter adpatively combines individual-level data with different smoothing

components derived from contextual information such as spatial distance and popularity. In

a series of experiments with Twitter geolocation data and Gowalla check-in data we demon-

strate that our proposed approach can be significantly more accurate than more traditional

smoothing and latent-space models based on matrix factorization techniques. The improve-

ment in performance over the existing approaches is pronounced and may be explained by

the tendency of dimension reduction methods to over-smooth and not retain enough detail

at the individual level.
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3.1 Introduction

In recent years we have gained the ability to record human behavior in increasingly fine-

grained detail. Such data can provide significant insights and predictions related to human

behavior at the population level. At the individual level, this type of data holds the promise

of personalization: delivering information, products, and treatments in a manner that is

optimized for each specific individual.

A key challenge in personalization is being able to generalize about an individual beyond

their historical data. For location data we can anticipate that individuals are often likely to

visit new locations for which we have zero counts in their historical data. The challenge is

how to model their propensity to visit new locations (including which new locations) while

respecting their tendency to revisit locations from their past.

This problem is particularly challenging in the presence of sparse data. Assume for example

that we are representing our data as an N ×M matrix where N is the number of individuals

in the population and M is the number of locations. Each entry i, j is the number of times

we have seen an event (such as a check-in) from individual i at location j. These data

matrices are typically highly sparse with as few as 0.01% (or less) of the entries being non-

zero depending on the context. Furthermore, the total number of data points per individual

(per row) is often highly skewed, with relatively little data for many individuals and a long

tail of a relatively small number of individuals with large amounts of data. As an example,

consider the data shown in Figure 3.1 which shows the probability that a randomly selected

individual visits L unique locations in both Twitter and Gowalla data sets (both data sets

will be discussed later in section 3.3). We see the usual long tail of individuals with large

numbers of observations, but for most individuals there are very few observations.

In this chapter we consider the problem of generalizing from sparse location data to learn

models that can make accurate future predictions at the individual level. Our goal is to
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Figure 3.1: The probability that a randomly selected individual visits L unique locations,
where L is the x-axis, for both Twitter and the Gowalla data. Values of L > 50 where
omitted from the plot for clarity. Best viewed in color.

construct for each individual i a model in the form of a multinomial (categorical) distribution

θi over M locations, where θij is the probability that the location is j given that individual

i generated an event, with
∑M

j=1 θij = 1.

A central idea in building personalized models is to “borrow strength” across individuals.

This way we can leverage patterns at the population level to build more accurate models at

the individual level. A simple example of this is the smoothing of a frequency-based estimate

of θi towards a prior distribution as specified by a Dirichlet prior, using a hierarchical or

empirical Bayesian framework (see for example [25]).

This type of approach is often very effective. It will typically provide better predictive

power than using only the individual’s own data. However, it does make a strong implicit

assumption of homogeneity, i.e., that our prior expectation is that each individual can be

modeled as the deviation from a common global pattern of behavior. Thus, a weakness of

these types of smoothing methods is that they do not accommodate enough heterogeneity

at the individual level. For location data in particular, data at the individual-level often

exhibits high variation, such as locations that are relatively unique to one individual or to a

small set of individuals.

44



There are a variety of other approaches that rely on “borrowing strength” across individuals

for addressing the sparse individual data problem. The approach of collaborative filtering

for example uses similarity between individuals to share information (e.g., [67]). Techniques

such as matrix factorization [14, 12] and latent space models [9, 32] map the original M -

dimensional count vector for each individual to a latent and more dense d-dimensional space,

where d << M . The latent space is represented by d basis functions estimated from the ob-

served count matrix, and individuals are represented as linear combinations of these globally-

derived basis functions. One limitation of these approaches is their reliance on co-occurrence

data which can limit their effectiveness in the presence of sparse location data [12, 47]—as we

will see later in the chapter, they can be improved upon by incorporating individual-specific

information.

We address these problems by proposing a flexible framework that can trade-off global and

local information to learn an effective predictive location model for each individual. The

primary contributions of our work are (1) an adaptive mixture model framework that infers

appropriate levels of smoothing, and (2) experimental results in both batch and online modes

demonstrating systematic improvements in prediction accuracy (compared to traditional

global methods) on a range of large-scale location data sets.

In the remainder of the chapter we discuss related work in Section 3.2 and describe the

Twitter and Gowalla data sets that we use in our experiments in Section 3.3. In Section 3.4

we outline our mixture modeling approach and present the learning algorithm in Section 3.5.

Section 3.6 describes our experimental setup used to evaluate our proposed model and ex-

isting approaches. In Section 3.7 we describe a series of experiments in batch mode and in

Section 3.8 we describe a framework and experimental results for online day-by-day learning.

Section 3.9 discusses the scalability of the approach and we conclude with a brief summary

in Section 3.10.
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3.2 Background

As discussed in the introduction, our focus in this chapter is on building models from location

data in the form of event tuples 〈i, x, y, t〉 where i is the individual who generated the event,

(x, y) is the location (e.g. longitude and latitude from GPS) and t is a discrete timestamp

(e.g., day, week, etc.). From such data we wish to create individualized location models. We

will assume that the locations (x, y) can be mapped to a discrete set of M locations. This is

a standard approach in location modeling and will be discussed in more detail in Section 3.3.

In contrast to Chapter 2, here we model locations discretely. Both continuous and discrete

representations have their strengths and weaknesses. Continuous representations allow for

very fine-grained resolution - but the location-based discrete locations we use here have the

advantage of ”borrowing strength” locally (e.g., all tweets within an airport are categorized

as such) in a way that a continuous isotropic representation cannot.

There are three broad strands of relevant work on learning individual-level location models

that we can distinguish in terms of the time-scale of the predictions being made for an

individual’s location. The first line of work deals with instantaneous location prediction

where there is metadata about an event (such as the text of a social media post) and the

goal is to predict the specific location of the individual when the event occurred, e.g., [40].

The second line of work focuses on the time-scale of minutes to hours, predicting where an

individual or a vehicle is likely to be within a relatively short time-frame (e.g., [73, 5]). This

type of work often takes advantage of relatively high sampling rates for the location data,

such as GPS measurements of a vehicle every few seconds, and typically casts the problem

as some form of predictive trajectory modeling.

Our focus is on the third broad class of predictive location modeling, in which the time-scale

is that of learning about an individual’s typical behavior over days and weeks. Here we

are interested in learning predictive distributions that characterize the locations where an
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individual is likely to visit in the future, often based on relatively sparse historical data such

as occasional geolocated social media posts or check-ins. The data here is often in the form

of a matrix of N individuals by M locations where cell i, j contains a count of the number of

times individual i visited location j. From this data we wish to infer predictive distributions

θi over the M locations for each individual.

As mentioned earlier, matrix factorization and collaborative filtering techniques are widely

used in this context. Both however, can oversmooth individual-level details and potentially

lead to suboptimal predictive performance (e.g., see [12]).

A common approach for preserving individual-level information is to use geographical pref-

erences related to each individual. As shown in [12, 13] individuals tend to visit locations

within a certain proximity and the further a location is from where an individual was ob-

served in the past the lower the probability for the individual to visit those locations in the

future. This inherent characteristic of human mobility data can be used to constrain the

traditional methods in order to allow for additional personalization. One way of doing so, is

to learn a geographical preference for each individual independently, using each individual’s

historical data and geographical information such as pairwise distances between locations.

When combined with the smoothed predictions from collaborative filtering or matrix factor-

ization methods, the geographical component lowers the score of locations that are far away

from the individual and increase for those that are close by [12, 70, 71]. However, these

methods use the individual information to learn geographical context and apply it to the

smoothed check-in data; they do not provide a direct method to control the degree to which

the geographical context component affects the predictions.

An alternative and more systematic approach is to use the geographical preferences for each

individual during the learning process, e.g., during matrix factorization [53, 50, 47, 54].

These methods project the data into a lower dimensional space while taking into account

the individual geographical preference. While this approach improves location prediction
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over direct matrix factorization, it does not take advantage of other available sources of

information such as using social ties to infer the similarities between individuals. In addition,

as with the previously discussed approaches, the individual-level data is only used to learn

geographical preferences and is not used directly.

Our contribution in this context is to develop new approaches that are better at retaining

the details of each individual’s behavior. In particular, we develop a mixture modeling

framework that learns a model for each individual based on their own historical data, but

also learns to blend this model with information from the individual geographical preferences

as well as other individuals in a manner that tries to optimize the predictive ability of the

model.

3.3 Geolocation Data Sets

We consider two different data sets in our experiments, from Twitter and Gowalla. The

Twitter data set contain tweets from two different regions: Orange County (California), and

New York and referred to as TwOC and TwNY respectively. The tweets were gathered using the

Twitter API1 from May 2015 to February 2016, selecting tweets that have geolocation (GPS)

coordinates for each tweet. The Gowalla data set (obtained from [13]) contain check-ins from

San Francisco and New York, and denoted as GoSF and GoNY respectively.

For the experimental results reported later in the chapter we retained individuals with in-

formation from at least 5 unique days and locations with 3 events or more. This was done

primarily to reduce the computation time in the experiments (by truncating the long tails of

sparse individuals and locations) particularly for some of the baseline methods using matrix

factorization. For the purpose of this work, we defined the discrete time window t as a single

day starting at 4AM and ending at 3:59AM (local time). This step resulted in 4 different

1https://developer.twitter.com/en/docs/tweets/filter-realtime/overview.html
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Events Individuals Locations Days
TwOC 449306 13559 11347 240
TwNY 690801 30320 11260 240
GoSF 138934 2593 7706 507
GoNY 77761 1831 7692 441

Table 3.1: Number of unique events, individuals, locations and days for the different data
sets.

data sets presented in Table 3.1.

3.3.1 Defining a Vocabulary of Locations

In location-based modeling the GPS coordinates of events are typically categorized into a

“vocabulary” of M locations in one of two different ways. In the first method locations are

mapped to a set of known “high volume” locations such as businesses and public venues

(e.g., [13, 72]). A disadvantage of this approach for personalization is that it can ignore a

lot of potentially relevant data for individuals such as events associated with homes or work

places. An alternative approach is to partition the continuous two-dimensional space into M

disjoint cells using a regular grid, boundaries defined by cellular towers or applying partition

techniques on the data (e.g., [35, 43]), and to then assign each GPS measurement to the cell

it is contained in. This has the advantage of including all of the available data. However a

disadvantage is that the resulting cells can be somewhat arbitrary in terms of what space

they cover and they do not necessarily correspond to meaningful locations. Another issue

(for cells based on regular grids in particular) is that there is a trade-off between the spatial

resolution of the grid (how large the cells are) and how much data is available per cell —

cells may need to be quite large in order to have enough data points per cell for modeling

purposes.

Given the limitations of these discretization methods in this work, we used publicly-available
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Figure 3.2: Area around the Orange County airport (SNA) in Santa Ana, California showing
both the parcel boundary for the airport and grid-based boundaries, as well as Twitter events
within the airport parcel. Best viewed in color.

geoparcel information to partition space into cells (for the Twitter data sets—the Gowalla

data is already discretized). Geoparcels are a set of disjoint polygons on a map where each

polygon represents a specific property or a lot (such as a house, a stadium, a store/shop, an

airport etc.). The polygons vary in size and shape depending on the function of the property

(e.g., typically smaller polygons for houses, much larger polygons for sport stadiums and

theme parks) providing a natural trade-off between spatial granularity and number of data

points per cell. In addition the geoparcels have a direct semantic interpretation allowing for

ease of interpretation of the model’s spatial vocabulary.

In our work we analyze two areas using geoparcels: Orange County, CA and New York,

NY. The parcels for Orange County are publicly available from the Southern California

Association of Government website2. The data for New York was obtained through the

OpenStreetMap API3.

As an example, Figure 3.2 shows the parcel boundary for the Orange County airport, cap-

turing precisely the extent of the airport footprint. Overlaid on this image are boundaries of

cells in a regular grid where each cell roughly covers the same area as the airport parcel. We

2https://www.scag.ca.gov/
3http://wiki.openstreetmap.org/wiki/API
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can see that the grids are less precise, consisting of a mix of events from different locations

(e.g., from the airport and from nearby business and residential locations)—and the data

from a large location such as the airport is fragmented into multiple different cells in the

grid representation.

In our experiments with Twitter data in Section 3.7 we use these parcel-based cells to define

our set of M locations for each region.

3.4 Model Description

3.4.1 Adaptive Smoothing with Mixtures

The key ideas behind our modeling approach are to build models for individuals that (a)

smooth individual-level information towards population patterns, geographic constraints,

and social contexts, and (b) learn to combine these sources in a manner that optimizes

predictive performance.

Let θi = [θi1, . . . , θiM ],
∑

j θij = 1, be an unknown probability distribution over M locations

for individual i. To estimate this distribution from data we could use the maximum likelihood

estimate θMLE
ij =

rij
ri

, where rij is the historical count for individual i and location j and

ri =
∑

j rij. This estimate is problematic with sparse data — a count rij = 0 should not

necessarily imply that the probability of an individual visiting location j in the future is 0.

An alternative approach is the Bayesian framework where the θi parameters are treated

as random variables with a prior. In particular, given a Dirichlet prior with parameters

α1, . . . , αM , the mean posterior estimate (MPE) (and also the predictive probability) for the
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probability of category j given individual i can be written as [25]:

θ̂ij =
rij + αj
ri + α

= γi
rij
ri

+ (1− γi)
αj
α

(3.1)

with ri =
∑M

j=1 rij, α =
∑M

j=1 αj, and where γi = ri
ri+α

. Thus, the posterior mean can be

viewed as a convex combination of individual data and a prior, where the mixing coefficient

γi serves to smooth the individual estimate towards the prior.

A natural idea in this context is to define individual models of the form θi = πθIi +(1−π)θP

where θIi is the maximum likelihood (frequency) estimate given individual i’s data , θP is

an empirical prior distribution based on pooling the location counts across all individuals,

i.e., θPj =
∑
i rij∑
i ri

, and where π ∈ [0, 1] is a mixing coefficient. This general idea has been used

extensively in language modeling for example, where adaptive smoothing based on mixtures

is commonly used and found to be effective for building predictive models tailored to specific

individuals or corpora [1, 23].

While this adaptive mixing provides some power over direct smoothing, as discussed earlier

in the chapter it nonetheless tends to pull all estimates in the same direction, i.e., towards

the global θP in our example above. What we would ideally like is to smooth towards parts

of the data matrix that are more relevant to individual i. If we have some knowledge about

the similarities of our rows (individuals) and our columns (locations) then two additional

smoothing strategies immediately suggest themselves, namely smoothing using data from in-

dividuals that are similar to individual i, and smoothing using data from locations (columns)

that are similar to the columns that are present in individual i’s data. In particular, in this

chapter we use social network friendships to measure similarities between individuals and

spatial distance for similarities of locations. The use of side-information for similarities be-

tween rows and columns has also been exploited in the past in the context of location data

matrix factorization and recommender systems. Here we are using similar ideas but without
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doing dimension reduction, and instead model the categorical distributions directly in the

original space. As we will see later in the experimental results, this allows us to retain details

about each individual that tend to get blurred in dimension-reduction techniques.

3.4.2 Defining the Mixture Components

Given the above we can set up a model (described below) where there are 4 components: one

“unsmoothed individual” component, a population component, and two components based

on row and column smoothing. We represent each individual as a convex combination (finite

mixture) of component distributions as follows:

θi =
∑

k∈{I,P,L,S}

πk θ
k
i (3.2)

where the πk are mixture weights with 0 ≤ πk ≤ 1,
∑

k πk = 1, and where the components

are each a categorical distribution over the M items (locations), with elements θkij for each

component defined as follows:

Individual:

θIij =
rij
ri

where rij is the count for individual i and location j and ri =
∑M

j=1 rij is the total count for

individual i. This is the maximum likelihood (frequency-based) estimate of an individual’s

distribution.

Population Smoothing:

θPj =
rj + α′

r +Mα′

where rj =
∑N

i=1 rij is the count for location j across all individuals, r =
∑M

j=1 rj is the

sum of all counts (across all locations and all individuals), and α′ is the parameter of a flat
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symmetric Dirichlet smoothing prior (to allow for non-zero probability mass on locations

that have no counts in the historical data). Note that this is the only component that does

not vary by individual i. In the results later in the chapter we used α′ = 10
M

. An alternative

will be to optimize this value (e.g., via grid search) as part of the model learning procedure.

Location (Column) and Social (Rows) Smoothing:

In addition to the standard individual and population smoothing we use two additional

components for individual-based smoothing that allow for generalization toward nearby lo-

cations and locations that are popular among individuals that share social ties. We use

kernel diffusion weight matrices [41] KL(j, j′) and KS(i, i′) for column and row smoothing

respectively, where KL(j, j′) ≥ 0 is a non-negative similarity kernel defined for all pairs of

locations 1 ≤ j, j′ ≤ M , and KS(i, i′) ≥ 0 is defined similarly for rows, 1 ≤ i, i′ ≤ N . This

type of diffusion approach is commonly used to propagate information across similar items

in a variety of contexts (e.g., see [74, 48]). The particular form of the diffusion weights is

not critical—below we use relatively simple measures based on location and social distance.

For the location smoothing we define

rLij =
1

Zj

∑
j′,j′ 6=j

KL(j, j′)rij′

where Zj =
∑

j,j′ 6=jK
L(j, j′) is a normalization constant and the rLij values can be viewed

as smoothed pseudocounts for a particular location (column) j, obtained from a sum of

weighted counts from similar locations (similar columns), with the weights being a function

of location-to-location similarity.

From these pseudocounts we can estimate a predictive distribution for each individual i and

location j as

θLij =
rLij∑
j r

L
ij

.
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In the results in this chapter, for location (column) smoothing, we use the spatial distance

between two locations as an indicator of similarity. The (j, j′)th element in KL(j, j′) is pro-

portional to the probability density function of a univariate Gaussian model of the distance

(in kilometers) between j and j′ (or equal to 0 for j = j′) using a fixed bandwidth σ. Later in

this chapter, we used σ = 2km in our experiments. This was based on initial data analysis in

which we observed that two kilometers was approximately the distance individuals traveled

to new locations.

For the social smoothing we define

rSij =
1

Zi

∑
i′,i′ 6=j

KS(i, i′)ri′j

where Zi =
∑

i,i′ 6=iK
S(i, i′) is a normalization constant and the rSij values can be viewed as

smoothed pseudocounts for a particular individual (row) i, obtained from a sum of weighted

counts from similar individuals (rows), with the weights being a function of individual-to-

individual similarity. From these pseudocounts we can again estimate a predictive distribu-

tion for each individual i and location j as

θSij =
rSij∑
j r

S
ij

.

The social (row) smoothing is estimated using the social graph. Each similarity KS(i, i′)

is proportional to the cosine similarity between the two binary vectors that represent the

individuals’ social ties.

Kernel-based approaches for location and social smoothing have been used for location pre-

diction problems in the past (e.g., [70, 71]) where a similarity matrix is created using the

data or external information (geographic distances) and then used to smooth the individual’s

data in collaborative filtering fashion. Our approach can be viewed as similar in the sense

that we use location and social similarity kernels, but different in that we learn to combine
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these sources of information by learning mixture weights in an adaptive manner.

To ensure that our approach is scalable we do not work with the full dense or M×M location

kernel matrix, but instead use sparse versions of these matrices that in effect set to 0 any

small similarity values below a small threshold value. The social kernel matrix is naturally

sparse.

To illustrate the effect of each smoothing component on an individual we plot in Figure 3.3

the top 100 locations with the highest probability under each component for a randomly

selected user from the Twitter data set. The plot shows that without smoothing the model

only puts probability mass in the “known” locations, which will likely not be effective at

prediction time.

3.5 Learning Individual Models

We explore both batch learning and online (day by day) learning of individual-level models

in this chapter. We begin below by discussing the batch learning approach and return to

online learning later. In our experiments we chronologically partition our data into 3 disjoint

subsets:

• Training data Dtr, for estimating the components in the mixture model (as described

above);

• Validation data Dv, for estimating the mixing weights π (described below);

• Test data Dte, which is holdout data used for evaluation of different models (as de-

scribed later in the experimental results section).

In the first step of learning the training data Dtr is used to compute the four component
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(a) Individual Component (b) Location Smoothing Component

(c) Social Smoothing Component (d) Population Smoothing Component

Figure 3.3: Top 100 locations with the highest probability in the individual component and
for each smoothing component for a randomly selected user with two observed locations in
the twitter data set from Orange County, California.

Figure 3.4: Top 100 locations with the highest probability according to the adaptive mixture
model for a randomly selected user in the twitter data set from Orange County, California.

distributions θIi ,θ
P ,θLi and θSi . Three of the four components are individual-specific (the

individual θIi , location θLi , and social θSi components) and the other (population θP ) is
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shared across all individuals.

In the second step, the validation data Dv is used to estimate the mixture weights π, given

the known components estimated from Dtr. We use the Expectation-Maximization (EM)

algorithm for this purpose, which iteratively estimates the mixing weights π that maximize

the likelihood of Dv times a prior. We used a Dirichlet prior with parameters β ·m0 over the

weights, where m0 = 1
4

is a flat uniform prior and β is a scalar hyperparameter that controls

the prior strength. We learned β by using simple gradient descent algorithm at the end of

each iteration in the EM algorithm. EM typically converges very quickly in this context

since the component distributions are known and fixed. By learning the mixture weights

on validation data we are in effect learning the weights that are best in a predictive sense,

i.e., combining the different smoothing components in a manner that best generalizes to new

data. It is important that the mixture weights are estimated using a data set Dv that is

separate from the data Dtr used to estimate the components—otherwise EM will overfit and

put all the weight on the individual component θIi that “memorizes” Dtr and will not learn

to smooth appropriately (e.g., see [64]).

In Figure 3.4 we plot the top 100 locations with the highest probability according to the

learned adaptive mixture model for the same user that was presented in Figure 3.3. The

figure shows that the locations with the highest probability are a combination of spatial

locations at and near the individual’s data, as well as generalizing to spatial locations that

are either popular in the population (e.g Disneyland) or popular in the individual’s social

network of friends.

58



3.6 Experimental Setup

We describe two experimental frameworks for model evaluation in the remainder of the

chapter: (1) evaluation with a single training and test data set, i.e., a batch approach (in

this section below) and (2) sequential evaluation in an online framework (described later in

the chapter). The batch framework has the advantage of simplicity, while the online approach

mimics more closely how these algorithms would be used in real-world applications.

In the batch framework, each individual’s data is partitioned chronologically into three dis-

joint data sets as described earlier in Section 3.5: Training, Validation and Test, with 60% of

the data used for training, 20% for validation and the other 20% for test. The training data

set is used to learn the model components while the validation data set is used to optimize

the mixing weights and the hyperparameters. We then perform out-of-sample evaluation

using the test data.

3.6.1 Evaluation Metrics

We evaluate our model using three different evaluation metrics based on item rankings and

probability assigned to observed outcomes.

Average Percentile Rank on Test Data

For each individual, we can produce a ranking of the likelihood of visiting different locations

in the future. Specifically, for each individual i, once a model is fit for that individual using

the training and validation data, the model yields a predictive probability distribution θi over

all j = 1, . . . ,M locations. The M location probabilities for individual i are then ordered

and each new unseen event (location) in the test data for that individual yields a rank. To
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make it easier to interpret these scores we linearly scale each rank to generate a percentile

ranking (PR) between 0% and 100% such that if an event is ranked highest among all M

locations it gets a score of 100% and if it is ranked lowest it gets a score of 0%.

We compute an average percentile rank (APR) by first computing the average of percentile

ranks over the events for each individual and then averaging across individuals. This gives

each individual equal weight in the evaluation experiments. An alternative is to simply aver-

age the percentile ranks across all events, which effectively gives more weight to individuals

with more data. We evaluated both approaches to computing APR in our experiments and

found that they yielded qualitatively similar results—so for simplicity we only report results

below for APR computed by averaging over individuals.

Recall@T

This metric evaluates the ability of the model to assign high rank to observed locations in

the test data set for each individual. For a given model, for each individual i, the predicted

probabilities over the M locations are sorted in descending order, and Recall@T measures

what fraction of locations in the test data for the ith individual were ranked at the top T

locations (in all of our evaluations we set T = 50). For an individual i with ni events (each

with location j) in the test data, the Recall@T is evaluated as

Recall@T =
1

ni

ni∑
k=1

I(rank(i, jk) ≤ T ) (3.3)

where I denotes the indicator binary function I(·) ∈ {0, 1}.

Note that Recall@T is less fine-grained than the APR method: it only focuses on the top-T

ranked locations and only analyzes the order of these locations (and not if their probabilities

are calibrated correctly).
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Rank-based evaluation is frequently used in evaluation of recommender systems in which the

goal is to be able to generate a ranked list of items (locations). Ranking using probabilities

is common, but models without probabilistic semantics (such as non-negative matrix factor-

ization methods) can also be evaluated as long as they produce scalar values that (broadly

speaking) vary monotonically with the likelihood of occurrence.

Log-Probability on Test Data

Many applications require the probability of an event rather than just its rank. A typical

example is in mobile advertising where decisions on which ads to show to an individual are

often based on expected value calculations that are based on having available a probability

distribution over different possible outcomes. A natural and widely-used evaluation metric

for probabilistic models is to compute the average of the log-probabilities of events that

occur in the test data. For example, if individual i has a predictive probability model

θi = [θi1, . . . , θiM ] (learned from the training and validation data), and ni events (each with

location j) in the test data, then that individual’s average log-probability score is defined as

logP =
1

ni

ni∑
k=1

log θijk

Higher log-probability scores are better in the sense that intuitively model A is generalizing

better than model B on new test data if model A places more probability mass than model

B on events that actually occur in the test data (and has a higher log-probability score as a

result). This intuition can be made rigorous in the sense that asymptotically (as the number

of test data points grows) the model with the highest test log-probability score among a

set of competing models is in fact the model that is closest (statistically) to the true data-

generating process [63]. Since all models have a total probability mass of 1 that they must

each distribute over the M possible outcomes, the log probability metric is fair in the sense
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that more complex models do not necessarily have any advantage over simple ones.

Note also that because each θij is a probability then the log probability scores for an indi-

vidual’s events log θij will always be negative, as will their average. In fact, for categorical

outcomes, the best possible log probability score is a score of 0, which is only attainable if

a model is perfectly accurate and it perfectly predicts with probability 1 every event in the

test data set.

This evaluation metric was also used in Chapter 2 with the distinction of using a categorical

probability distribution in this chapter for all models instead of a continuous density f(·).

As with the APR metric, we found that averaging over individuals or over events yielded

very similar results, so in the interest of clarity we just present results for averaging over

individuals below and will denote the resulting average log-probability score as logP .

3.6.2 Adaptive Mixture with Individual vs. Global Mixing

Weights

We first repeat the experiment from Section 2.5.3 and compare two versions of the four-

component Adaptive Mixture model: one which uses globally-shared mixing weights π and

another which uses individually learned mixing weights πi. For both models, we learn the

individual multinomial components on the training set and optimize the mixing weights

on the validation data set. We train both versions of the model and compare the APR,

Recall@50 and logP results across all four data sets.

The results presented in Table 3.2 are consistent with the ones in Table 2.2. The Adaptive

Mixture model with globally-learned mixture weights outperforms the model with individu-

ally learned mixing weights on average. Further analysis of the results showed that users for

whom the global mixing weights approach performed better had relatively small validation

62



APR Recall@50 logP
Data set Indiv Global Indiv Global Indiv Global
TwOC 0.954 0.955 0.712 0.715 -4.448 -4.451
TwNY 0.931 0.934 0.577 0.580 -5.855 -5.802
GoSF 0.876 0.882 0.440 0.436 -6.670 -6.680
GoNY 0.832 0.841 0.395 0.392 -7.016 -7.022
Avg 0.898 0.903 0.531 0.531 -5.997 -5.989

Table 3.2: APR, Recall@50 and logP on the test data for the Adaptive Mixture model with
individually and globally learned mixing weights across the different data sets and on average
(last row). Higher results are better. Best performing methods indicated in bold font.

data sets at optimization time. As a result, the quality of their individually-learned mixing

weights was low which led them to underperform the globally-learned mixing weights model.

This echoes our results from Chapter 2 that suggested that it is possible that a hybrid ap-

proach will outperform the globally-learned mixing-weights Adaptive Mixture approach in

real life applications.

In addition, similarly to the mixture-KDE model from the previous chapter, the model com-

plexity (i.e., number of learned parameters) of the global mixing-weights Adaptive Mixture

model is much lower than that of the individual-learned mixing-weights version as the num-

ber of mixing weights grows linearly with the number of users. For this reasons we focus on

the global mixing-weights Adaptive Mixture model throughout the remainder of this chapter.

3.6.3 Adaptive Mixture with Varied number of Components

To justify the use of our individually-based mixture components, we evaluate the performance

of the Adaptive Mixture model using different sets of components. Namely, we compare a

two-component Adaptive Mixture model which includes individual and population compo-

nents (AM2), and a pair of three-component models with either the Location-smoothing

or the Social-smoothing components removed from the four-component model, notated as

Soc-AM3 and Loc-AM3 respectively. We omit from this experiment any configuration of
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Figure 3.5: Recall@50 (top left) APR (bottom left) and logP (bottom right) results for the
AM4, Soc-AM3 and Loc-AM3 models compared to the AM2 model that is used as baseline.
Higher results are better. Best viewed in color.

the model that does not include the population components as it led to probability estimates

of 0.0 for some test locations and to a computational error (log of 0).

We use the results of the AM2 model as baseline comparison and plot in Figure 3.5 the

differences between the evaluated Adaptive Mixture configuration and the baseline. The

plot shows that adding each component resulted in a systematic improvement of the model’s

predictive power across all evaluation metrics and data sets.

3.6.4 Comparing Adaptive Mixture and Existing Approaches

In our evaluations, we also compared the performance of our adaptive mixtures with well-

known general-purpose baselines as well as with several recently-published models for loca-
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tion recommendation that are considered to be state-of-the-art.

For the general-purpose baselines (i.e., models that are not tailored to location prediction)

we used the following:

Baseline Multinomials: We evaluated two variants of a simple multinomial model for each

individual. As a strawman baseline we used a maximum likelihood estimate (MLE) with

θ̂ij =
rij
ri

, i.e., simple frequency ratios using each individual’s own data, with no smoothing.

We expect this to generalize poorly since it assumes that an individual will never visit a new

location they have not visited in the past. A more realistic (and surprisingly competitive)

baseline is to use a mean posterior estimate (MPE): θ̂ij =
rij+γ·αj∑
j rij+γ

∑
j αj

where the α’s are

proportional to the global counts for each location (plus a small constant c to provide prior

mass for locations with no counts in the historical data) and γ controls the strength of the

prior. Both c and γ are estimated via grid search on the validation data.

NMF: Non-negative matrix factorization. In this approach the original N ×M matrix of

training data is approximated by the product of two matrices of size N×d (row weights) and

d×M (column bases), where d is a lower-dimensional representation of the data (typically

d << M,N). NMF is similar in spirit to classical matrix factorization methods such as

singular value decomposition, but is better suited to count data since it adds the constraint

that the basis functions and weighting coefficients are non-negative. We use the scikit-learn 4

implementation of NMF in our experiments and in the learning step we optimized (using

grid search) the dimensionality d of the reduced space and the regularization term on the

validation data.

PMF: Bayesian probabilistic Poisson matrix factorization [27]. This method can be viewed

as a state-of-the-art probabilistic variant of NMF. It assumes that the counts are generated

from a Poisson distribution with hierarchical Gamma priors on the levels of both individual

4http://scikit-learn.org/
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activity and location activity. The priors allow the model to take into account individual and

location effects. PMF produces estimates of Poisson rates of events λij for each individual i

and location j: we convert these rates into event probabilities by normalizing the rates for

each individual, i.e., θij = λij/
∑

j λij. The hyper parameters used in this method and the

value of d were determined via grid search on the validation data.

PMF+: This is a simple ad-hoc extension of PMF where we use a 2 component weighted

mixture with the PMF model as one component and the individual MLE estimate as the

other component. The purpose of adding the individual MLE component is to provide

additional personalization, i.e., individual-level detail. The mixture weights were optimized

on the validation data set.

Our second set of comparisons is with methods that are considered state-of-the-art in

location-based recommendation and prediction, specifically methods that incorporate the

geographical preferences of an individual in order to increase the level of individual-level

personalization:

Fused: A matrix factorization approach tailored for location data as described in [12]. For

each individual, the geographical preference is learned via a multi-center Gaussian model. In

addition, a general location preference is learned jointly for all individuals using probabilistic

matrix factorization. The two components are learned independently and then combined as a

product to produce a predictive probability distribution for each individual. In our evaluation

we used the PMF as the matrix factorization component.

iGSLR: Individual geo-social location recommendation [70], an approach that combines

collaborative filtering component, learned using social ties between individuals and individual

geographic preference. The geographical preference is learned using a non-parametric kernel

density approach (in contrast to the multi-centered Gaussian approach used in the Fused

method).

66



TwOC TwNY GoSF GoNY Average
MLE 0.799 0.701 0.669 0.651 0.705
MPE 0.936 0.925 0.848 0.777 0.871
AM4 0.955 0.934 0.882 0.841 0.903

NMF 0.871 0.869 0.821 0.759 0.830
PMF 0.914 0.904 0.830 0.759 0.852

PMF+ 0.937 0.920 0.850 0.780 0.872

iGSLR 0.605 0.597 0.615 0.555 0.593
RGFM 0.914 0.912 0.841 0.757 0.856
Fused 0.919 0.904 0.830 0.759 0.853

Table 3.3: Batch Average APR on test data across individuals, for each data set and
averaged across data sets. Higher scores are better. Best-performing methods indicated in
bold font.

RGFM: Known as Ranked-GeoFM, this is a state-of-the-art method that has been shown to

outperform a wide variety of other techniques [47]. The method has a geographical influence

function that allows sharing of information between nearby locations. In addition, it uses

a rank-based objective function, which in principle can lead to better ranking performance

compared to methods trained using log-likelihood.

We compared all of these methods to our proposed 4-component adaptive mixture model

(AM4), with individual, population, location, and social smoothing components.

3.7 Batch Experimental Results

For the batch evaluation experiments we computed the APR and Recall@50 test metrics

using all of the models described earlier in Section 3.6.4 and the average log-probability test

metric for models that produce probability distributions as predictions.

Tables 3.3 and 3.4 show the APR and Recall@50 results for the different models (rows)

across the 4 different data sets (columns) as well as a 5th column that shows the average for
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TwOC TwNY GoSF GoNY Average
MLE 0.600 0.405 0.336 0.303 0.411
MPE 0.700 0.572 0.423 0.378 0.519
AM4 0.715 0.580 0.436 0.392 0.531

NMF 0.390 0.310 0.270 0.189 0.290
PMF 0.524 0.412 0.305 0.229 0.368

PMF+ 0.712 0.569 0.426 0.376 0.521

iGSLR 0.156 0.138 0.146 0.080 0.130
RGFM 0.539 0.443 0.281 0.203 0.367
Fused 0.528 0.412 0.305 0.229 0.369

Table 3.4: Batch Average Recall@50 on test data across individuals, for each data set
and averaged across data sets. Higher scores are better. Best-performing methods indicated
in bold font.

TwOC TwNY GoSF GoNY Average
MPE -4.50 -5.93 -7.21 -7.43 -6.27
AM4 -4.45 -5.80 -6.68 -7.02 -5.99
PMF -6.33 -7.10 -7.53 -8.02 -7.25

PMF+ -4.56 -5.94 -6.77 -7.15 -6.11
Fused -6.31 -7.10 -7.53 -8.02 -7.24

Table 3.5: Batch Average Log-Probability on test data across individuals, for each
data set and averaged across data sets. Higher scores are better. Best-performing methods
indicated in bold font.

each model across the data sets. The result for the best-performing model for each data set,

and for the average across data sets, is highlighted in bold in each table.

The models have been divided into 3 different groups of 3: the first group consists of proba-

bility distributions and smoothed mixture variants (the MLE and MPE estimate, as well as

our proposed adaptive mixture model with 4 components, AM4); the second group consists

of matrix factorization methods (NMF, PMF, and PMF+); and the third group consists of

methods customized for location prediction (iGSLR, RGFM, and Fused).

A number of trends emerge from the data in the tables. The MLE method is relatively poor

as one might expect since it incorporates no spatial smoothing. The MPE estimate improves
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significantly over the MLE estimate—and in fact is better than many of the more complex

methods. The proposed AM4 method has the best APR, Recall@50 and logP of any of the

methods evaluated, providing a systematic improvement over MPE.

The “generic” matrix factorization methods (NMF and PMF) do not perform as well as the

simple MPE estimate—this confirms our conjecture earlier in the chapter that matrix factor-

ization methods tend to oversmooth and do not retain enough detail about the individual’s

behavior to be able to predict well.

Among the location-prediction methods that we tried, RGFM and Fused are competitive

with PMF but again are outperformed by the simpler MPE estimate (which in turn is

outperformed by our proposed AM4 approach). The iGSLR method did not perform well on

our data sets. We surmise that two factors impacted its accuracy on these data sets. In the

original work, the collaborative filtering component was learned using a similarity between

individuals’ home locations [70]. In our data set we did not have that information and we

used the social ties information instead, which is likely much less informative than knowing

home locations. In addition, the data set used in our work is much sparser than that used

in the original paper, and as a result the kernel density method may have been somewhat

limited in its ability to learn meaningful geographical preferences for individuals.

To further analyze the predictive performance of our model, we compare in Figure 3.6

the batch APR for the AM4 approach (x-axis) and the best performing baseline (y-axis)

from each of the three groups when looking at each individual separately. We performed

a Wilcoxon signed rank test on the individual results and found that the AM4 approach

dominates all of the other methods with a p-value of of p < 0.001 across all four data sets.

Table 3.5 shows the logP results for the 5 models that produce probability distributions.

Note that although the MLE model produces probabilistic predictions, because it produces

probability estimates of zero for new locations that an individual has not been to in the past
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Figure 3.6: Scatter plots comparing the AM4 (x-axis) batch APR results for each individual
with the best performing baseline from each group (y-axis) in the TwOC (top row), TwNY

(second row), GoSF (third row) and GoNY (bottom row) data sets.
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(i.e., no smoothing), the log-probability for such events are −∞. For this reason we did not

include MLE in Table 3.5.

The results for average log-probability in Table 3.5 reinforces the trends in Tables 3.3 and 3.4.

MPE outperforms both PMF and Fused, and adding MPE to PMF improves the PMF

score significantly which again confirms that including individual-level detail, via the MPE

distribution, can help improve the quality of predictions from matrix factorization methods

such as PMF. Once again, the proposed AM4 method is better than all other methods across

all 4 data sets.

Batch Prediction for New Unseen Locations

In addition to the standard out-of-sample evaluation above, we also evaluated how well

our AM4 method compares to the other baseline models in making predictions only for

locations that are new for each individual, i.e., computing ranks and log-probabilities for

each individual only for locations that are new (in the test data) for that individual. This

type of evaluation is motivated by point-of-interest recommendation systems in which the

system only recommends locations (or items) that the individual has not visited before.

Our initial assumption was that because of the Individual components in our model, the

AM4 approach would be significantly outperformed by other approaches such as matrix fac-

torization. However, the results in tables 3.7, 3.6 and 3.8 show that AM4 is still competitive

to the most accurate methods. In terms of APR, Table 3.6, the AM4 method was the most

accurate method on average. It significantly outperformed the matrix factorization methods

NMF and PMF as well as the Fused method. The RGFM method was competitive with

AM4 in general, having better APR on one data set and being close to AM4 on the rest.

The log-probability results, in Table 3.8, tell a somewhat different story: here the PMF and

Fused approaches performed better than the AM4 approach across all 4 data sets. This
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TwOC TwNY GoSF GoNY Average
MPE 0.830 0.870 0.764 0.675 0.784
AM4 0.890 0.887 0.820 0.774 0.843

NMF 0.839 0.829 0.767 0.693 0.782
PMF 0.833 0.862 0.768 0.681 0.786

PMF+ 0.832 0.862 0.767 0.681 0.785

iGSLR 0.557 0.574 0.587 0.536 0.563
RGFM 0.885 0.893 0.820 0.727 0.831
Fused 0.845 0.862 0.768 0.682 0.789

Table 3.6: Batch Average APR evaluated on new locations across individuals, for each
data set and averaged across data sets. Higher scores are better. Best-performing methods
indicated in bold font.

TwOC TwNY GoSF GoNY Average
MPE 0.235 0.272 0.121 0.106 0.183
AM4 0.272 0.285 0.140 0.124 0.205

NMF 0.200 0.191 0.116 0.085 0.148
PMF 0.269 0.274 0.154 0.126 0.206

PMF+ 0.258 0.264 0.129 0.103 0.188

iGSLR 0.105 0.107 0.090 0.051 0.088
RGFM 0.339 0.323 0.179 0.145 0.246
Fused 0.272 0.274 0.152 0.126 0.206

Table 3.7: Batch Average Recall@50 evaluated on new locations across individuals,
for each data set and averaged across data sets. Higher scores are better. Best-performing
methods indicated in bold font.

may indicate that the AM4 method could be improved by better calibrating its probability

estimates of unseen locations.
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TwOC TwNY GoSF GoNY Average
MPE -9.23 -8.83 -9.05 -9.08 -9.05
AM4 -8.96 -8.40 -8.53 -8.69 -8.64
PMF -8.03 -7.92 -8.26 -8.53 -8.19

PMF+ -9.27 -8.62 -8.67 -8.87 -8.86
Fused -8.01 -7.92 -8.26 -8.52 -8.18

Table 3.8: Batch Average Log-Probability evaluated on new locations across individu-
als, for each data set and averaged across data sets. Higher scores are better. Best-performing
methods indicated in bold font.

3.8 Online Experimental Results

Online Learning Framework

While experiments based on batch training and test data sets are commonly used in re-

search evaluations, for location data it is natural to learn the models in a sequential online

fashion given that (a) location data typically contains time-stamps (allowing for sequential

evaluation), and (b) in real-world applications it is likely that individual models would be

built online (i.e., incrementally as new data arrives). For these reasons we include below

additional experiments evaluating the different models in an online context where we learn

models using data up to day t and make predictions for day t+1, then move one day forward

and update the model with the new data from day t+ 1 and predict for day t+ 2, and so on.

We use the same three metrics as earlier, APR, Recall@50 and logP , where now each metric

is computed by averaging over individuals on each prediction day, and then averaged over

all prediction days. When making predictions for day t+1 we use data from the most recent

w days (up to and including day t) for validation and the data prior to t − w for training.

Using w = 2 provided a validation data set with sufficient amount of data for optimization.

However, in real-world applications in which the amount of data is significantly larger the

value of w could in principle also be optimized. The complete online evaluation scheme is

illustrated in Figure 3.7.
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Figure 3.7: The online evaluation scheme used to simulate more realistic applications. Best
viewed in color.

In our experiments we also used an initialization window for each individual before making

any test predictions. The reason for doing this is primarily to assist in evaluation of the

baseline methods: techniques based on smoothing such as MPE and AM4 do not need an

initial window, but techniques such as NMF and MLE need an initialization period when

used in an online mode. For each of the data sets, we defined the initial period to be 4 days,

divided into 2 days of training data and 2 days of validation data. The first evaluation (test

prediction) for each individual was performed on their 5th day of data.

For models with mixture components (AM4, BPF+), for each day t the components are

learned on the training set and the mixture weights are learned via EM on the validation

data, and where instead of using a flat prior as in the batch method here we use a prior on

the weights that is proportional to the estimated weights for previous days.

We found that our experiments with the RGFM method did not complete in a reasonable
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TwOC TwNY GoSF GoNY Average
MLE 0.849 0.764 0.710 0.704 0.757
MPE 0.933 0.927 0.830 0.785 0.869
AM4 0.960 0.937 0.869 0.853 0.905

NMF 0.627 0.605 0.513 0.544 0.572
PMF 0.917 0.911 0.798 0.731 0.839

PMF+ 0.933 0.924 0.824 0.777 0.865

iGSLR 0.596 0.595 0.601 0.547 0.585
Fused 0.924 0.911 0.800 0.732 0.842

Table 3.9: Online Average Percentile Rank (APR) evaluated on test data across in-
dividuals, for each data set and averaged across data sets. Higher scores are better. Best-
performing methods indicated in bold font.

TwOC TwNY GoSF GoNY Average
MLE 0.697 0.529 0.398 0.399 0.506
MPE 0.747 0.637 0.436 0.435 0.564
AM4 0.757 0.639 0.442 0.441 0.570

NMF 0.137 0.115 0.057 0.084 0.098
PMF 0.567 0.476 0.298 0.266 0.402

PMF+ 0.751 0.628 0.432 0.432 0.561

iGSLR 0.099 0.100 0.000 0.000 0.050
Fused 0.572 0.476 0.298 0.266 0.403

Table 3.10: Online Average Recall@50 evaluated on test data across individuals, for each
data set and averaged across data sets. Higher scores are better. Best-performing methods
indicated in bold font.

time on a standard Amazon server. This does not necessarily mean that it cannot perform

in an online fashion, but indicates that a more scalable implementation would be required

for online operation5.
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TwOC TwNY GoSF GoNY Average
MPE -4.01 -5.15 -6.96 -6.91 -5.76
AM4 -3.92 -5.05 -6.68 -6.68 -5.58
PMF -6.38 -6.88 -7.79 -8.06 -7.28

PMF+ -4.02 -5.21 -6.85 -6.86 -5.73
Fused -6.34 -6.88 -7.79 -8.06 -7.27

Table 3.11: Online Average Log-Probability evaluated on test data across individuals,
for each data set and averaged across data sets. Higher scores are better. Best-performing
methods indicated in bold font.

Online Prediction Results

The results presented in tables 3.9, 3.10 and 3.11 show the average score across all days for

each data set as well as the average across all of the data sets. Not surprisingly the results

are completely consistent with the batch results: the simple MPE method is typically more

accurate than any of the more complex matrix factorization or location-based baselines, and

our proposed AM4 method is more accurate again (often by relatively large margins) across

all data sets.

To further explore why our model outperforms the other approaches we compared the day by

day performance of the AM4 approach with three of the better-performing baselines: MPE,

PMF+ and Fused. In Figure 3.8 we view the daily APR scores from the three models as

a function of time. In order to reduce the day-to-day variability we smoothed the results

using a moving average filter and plotted the smoothed lines. In general we can see that the

models become more accurate over time (higher APR) as more data is available with the

exception of the TwNY (top right) data set which is due to users with high variability in the

test data that enter the data set during the first 50 days—this is typical of the “cold-start”

problem where data is too sparse early on to learn accurate models. However the proposed

AM4 model appears to have significantly less of an issue with “cold-start” than the other

5To learn this model, we used the Matlab code that was used in this publication for this model that uses
a non-sequential batch learning algorithm. The code was provided by the author of the paper upon request
via email.
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Figure 3.8: Moving average of the daily APR score for the top three ranked models for the
TwOC (top left), TwNY (top right), GoSF (bottom left) and GoNY (bottom right) data sets. Best
viewed in color.

approaches given that it is making relatively accurate predictions early on. Another way to

look at this is that the benefit of the AM4 approach appears to be greatest, compared to the

other methods, when there is relatively little data available for each individual (a common

situation in real-world applications).

3.9 Scalability

Here we consider the complexity and scalability of our method in terms of the number of

users N and number of locations M . At each time t it takes O(NM) time to update the
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training counts and to compute the Individual and Population multinomial components. In

addition, the time complexity of computing the Location smoothing and Social smoothing

mlutinomial components is O(N2M) and O(NM2) respectively. The latter two complexities

stem from the fact that we can think of the process as matrix multiplications CWL and WSC

respectively where C is the individual-by-location observation matrix of size N ×M and WS

and WL are the diffusion weight matrices size N × N and M ×M respectively and used

for Social (rows) smoothing and Location (column) smoothing (both matrices are described

earlier in Section 3.4).

In addition to the component computations, at each time t our model runs an EM algorithm

to optimize the mixing weights. With k components, the time complexity of a single iteration

of the EM algorithm is O(Nk). However, since k is fixed to k = 4 in our algorithm the time

complexity in practice is O(N). The time taken for hyperparameter optimization is not

significant.

Overall it is clear that the time complexity of our method is dominated by the matrix

multiplications that are required to compute the Location and Social smoothing components

θL and θS: O(N2M + NM2). The space complexity of our approach is O(N2 + M2), the

sizes of the Social and Location diffusion weight matrices. However, in practice both these

matrices, as well as as the observation matrix C are sparse and require much less space to

represent in a sparse representation.

In order to scale our algorithm for large data sets, we took couple of steps to reduce both

space and time requirements. First, the time consuming process of computing the smoothing

components θL and θS is independent for each user. By implementing this process using a

multicore architecture, we can reduce this process (in principle) by a factor of P (number of

processors) to O(N
P
NM + N

P
M2). While this speedup is just a constant factor reduction in

complexity, it is very noticeable in practice. Second, by using sparse matrix multiplication

techniques we can take advantage of the sparse structure of C and WS. The time complexity
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of computing the Social smoothing components is reduced from O(N2M) to O(wM) where

w is the number of non-zero values in WS and w << N2, the total number of elements

in WS. For the Location smoothing component the time complexity using sparse matrix

operations is O(cM) where c is the number of non-zero values in the observations matrix C

and c << NM , the total number of elements in C.

Our implementation of the algorithm used in the experimental results part of this chapter

utilized both techniques for time complexity optimization, resulting in a highly scalable

implementation. We implemented the algorithm in Python and ran it on a 16 core machine,

where each core is a Intel Xeon E5620 with 2.4 GHz processor, and measured the clock-time

using the largest data set of geotagged tweets from New York, NY. At each time t in the

evaluation, the algorithm process includes: estimation of the individual components, EM

for the mixture weights, and optimization of the hyperparameters, and took approximately

100ms on average per user. The time for test predictions and accumulating the training

counts was negligible (less than 1ms).

3.10 Conclusions

The primary contributions of this chapter include the following:

• We introduced a general framework for smoothing of individual-level categorical dis-

tributions using mixture models.

• Based on this approach we developed an Adaptive Mixture model that is relatively

simple to implement, computationally efficient, and can easily operate in an online

manner.

• We explored continuous space geolocaion data discretization based on publicly available

geo-parcel information.
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• We applied this framework to the problem of learning location models from historical

matrices of individual-location counts.

• We evaluated our model with extensive batch and online schemes using multiple eval-

uation metrics showing results on Twitter and Gowalla data sets. The results showed

that our model outperforms existing approaches for individual-level location modeling

in both the batch and online prediction scenarios.
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Chapter 4

Prediction of Sparse User-Item

Consumption Rates with

Zero-Inflated Poisson Regression

The previous two chapters presented predictive models for individual-level event data where

the focus is on predicting the identity of future items that a user will interact with. In this

chapter we broaden the range of data sets under investigation beyond location data and

address the problem of developing user models that can predict the rate at which individuals

consume both old and new items. We use zero-inflated Poisson (ZIP) regression models as

the basis for our modeling approach, leading to a general framework for modeling user-item

consumption rates over time. We show that these models are more flexible in capturing

user behavior than alternatives such as well-known latent factor models based on matrix

factorization. We compare the performance of ZIP regression and latent factor models on

three different data sets involving online music streaming, restaurant reviews, and social

media interactions. The ZIP regression models are systematically more accurate across all

three data sets across different prediction metrics.

81



4.1 Introduction

In many aspects of our daily lives the way we consume products and items has evolved from

physical consumption to virtual shops and services. We purchase books online instead of

shopping at brick-and-mortar stores, stream music and movies online instead of purchasing

physical copies, and so on. The digital nature of our consumption provides the opportunity

for tailoring of individual user experiences that can benefit both the consumer and the

provider. As a consequence, the ability to develop predictive individual-level models for

user-item consumption from past observations is increasingly important.

Building accurate models of consumption in a typical digital environment is challenging for

multiple reasons. In particular, as an individual moves forward through time, their future

behavior can be broadly categorized as consisting of a combination of (a) consuming items

that they have interacted with in the past (i.e., repeat consumption), and (b) seeking novel

items that they have not consumed in the past (i.e., new consumption). User modeling in this

context requires that a model must learn to balance these two aspects of behavior. Individual

heterogeneity (i.e., the fact that there is significant variability in behavior across users)

further complicates the modeling process. Another significant challenge is data sparsity

given that the number of items a user typically consumes is a very small fraction of the total

number of available items.

In this chapter we focus on the problem of predicting rates of item consumption per unit

time (days, weeks, months) for individual users. The prediction of rates is broadly useful

in a variety of applications since it allows us to predict not only which items a user will

consume, but also how often those items will be consumed. For example, prediction of rates

of consumption for specific items and specific sets of users is important in the design and

engineering of proxy-caching systems for online streaming media content [56]. For contexts

where items have different costs associated with them, predictions of the rates at which a
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user will consume specific items can be used as the basis for estimating the expected value

of a customer from the provider perspective. Rates also can be used to help evaluate the

expected benefit of interventions such as providing incentives to a user. For example, if some

users have a high rate of usage for a particular app on their mobile phones and other users

have low rates of usage for the same app, the latter group is likely to be a better target for

incentivization than the former [31].

Consumption behavior is often a combination of repeat and new consumption. For example,

some users’ behaviors may be highly repetitive in nature, i.e., they tend to visit the same

restaurants, listen to the same music, etc., and rarely try new items. Other users may have

behavior at the other extreme, continuously exploring new items and rarely returning to old

items. The explore-exploit tradeoff, well known in computer science within the context of

reinforcement learning, is also well-established in cognitive science as a basic trait of how

humans interact with the world around them (e.g., [17, 69]).

These observations suggest that in addition to handling significant heterogeneity in terms

of individual behavior, the notion that there is a steady-state behavior for many users may

be a fallacy in the sense that users are continuing over time to both exploit and explore the

choice of items available to them. Rather than having user models that are represented as

fixed distributions over items, individual behavior can be thought as a dynamic process over

time that is driven by feedback from past item consumption, both positive and negative.

To capture these ideas we develop individual-level Poisson-based regression models where

the predicted rate that a user will consume an item in the next time period is modeled as

a function of an individual’s past behavior. In addition, our model uses global contextual

information (such as item popularity) in order to better generalize to prediction of new items.

The primary contribution of this chapter is the development of a systematic approach for

modeling user-item consumption rates over time using Poisson-based regression models with

zero-inflation. We show that our proposed approach is scalable to large-scale data sets.
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Through a systematic investigation of several user-item consumption data sets from multiple

domains, we demonstrate that this model can capture individual-level user preferences for

both old and new items as a function of past behavior and contextual information. We

compare our model to state-of-the-art alternatives both empirically and qualitatively.

On the surface the problem we address looks very similar to that of the classic recommender

system problem. However, it is important to note that the modeling goals and evaluation

criteria in our work are significantly different. Recommender systems focus only on prediction

and ranking of new items that a user has not consumed in the past, e.g., for items such as

movies or books, where typically an item is only consumed once by a user. In contrast

we specifically focus on problems where consumption is a mix of repeated and novel item

consumption (such as music listening and online websites visits), where the natural approach

is to model the rates at which items are consumed and where evaluation considers how well

these rates are predicted (rather than just evaluating the likelihood of whether a user will

consume an item or not).

The rest of this chapter proceeds as follows. In Section 4.2 we explore different user-item

consumption sequence data sets, and provide motivation for our modeling approach in Sec-

tion 4.3. In Section 4.4 we describe our proposed ZIP model for understanding and predicting

user-item consumption rates and we show how this model is learned using user-item consump-

tion observations in Section 4.5. Section 4.6 provides an overview of the existing approaches

for modeling user-item consumption data. In Section 4.7 we compare our proposed model

to a variety of state-of-the-art models and interpret the results. Section 4.8 discusses the

scalability of the approach and we conclude with a brief summary in Section 4.9.
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Dataset N M t T % non-zero
reddit 1000 1000 week 52 2.5
lastfm 931 19997 month 50 0.5
Yelp 2836 203 2 months 12 1.7

Table 4.1: Summary of the three data sets used in this chapter: number of unique users N ,
unique items M , time-window t, number of windows T , and the percentage of data points
that are non-zero.

4.2 User-Item Consumption Data

In this chapter we consider user-item consumption counts in discrete time (by day, week,

month, etc.). We define ytij ∈ {0, 1, 2, . . .} as the number of consumptions of item j ∈

{1, 2, . . . ,M} by user i ∈ {1, 2, . . . , N} in time window t ∈ {1, 2, . . . , T}.

Our work is motivated by the challenge of creating a general framework for consumer behavior

data across different domains. To that end, we investigate multiple publicly available data

sets that represent different types of items and consumption activities. The three data sets

are summarized and compared in Table 4.1.

reddit : reddit is a popular social network with over 15M unique active monthly users1. It

contains on the order of 1 million topic-focused subgroups (known as subreddits) where users

can post, comment, vote on content and more. In our work we considered data from a sample

of N = 1000 users with high activity and M = 1000 highly active subreddits throughout

2015. The value of ytij is defined as the number of times user i posted (or commented) in a

subreddit j during a given week t.

lastfm : lastfm is an online music streaming service that allows users to listen to a selected

song or playlist. The particular dataset we use contains the listening actions over time of

nearly N = 1000 users2. We consider artists as items and retain the top M = 20K artists

that are most frequently listened to during the period of time of February 2005 to June 2009.

1https://www.reddit.com/r/AskReddit/about/traffic/
2http://www.dtic.upf.edu/˜ocelma/MusicRecommendationDataset/lastfm-1K.html
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Figure 4.1: The distribution of item-consumption rates for a sample of user-item pairs with
similar average rates.

In the lastfm dataset, the value of ytij represents the number of times that user i listened to

a song performed by artist j during a month t.

Yelp: Yelp is a popular review platform that allows users to share their experience with

different service providers such as restaurants. The dataset that we use has been widely used

as a benchmark across recommender system studies3. For our experiments we focused on the

histories of N = 2836 unique users and their reviews of M = 203 types of restaurants (e.g.

fast food, Mexican, sushi, etc.) in the Scottsdale and Phoenix (Arizona, USA) metropolitan

areas between June 2014 and June 2016. ytij is the number of times user i reviewed a

restaurant of type j during every two months t.

4.3 Excess of Zeros and Heterogeneity

Two typical characteristics of sparse user-item data sets are (1) an excess of zeros and (2)

heterogeneity across both users and items. We discuss both characteristics below in turn

and describe our approach to handling each from a modeling perspective.

3http://www.yelp.com/dataset challenge
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4.3.1 Excess Zeros

A common feature of user-item consumption data sets, particularly when the number of

items is large, is a very high rate of zeros, i.e., most users have zero consumptions of the vast

majority of items. This is certainly true of the three data sets we analyze in this chapter

where 98% to 99% of the entries are zero across the data sets. This is not surprising. For

high-dimensional data sets each user will only be exposed to or be aware of a relatively small

fraction of the potential items that they could interact with. In addition, there are practical

limits (e.g., from cognitive and economic perspectives) in terms of how many items a user

can realistically interact with.

In statistical modeling an overabundance of zeros is often referred to as “zero-inflation” [57,

44], to reflect the phenomenon that the frequency of zeros in the data is significantly higher

than what a typical parametric model for count data (such as a Poisson model) can han-

dle. This observation has been made in application contexts as diverse as epidemiology,

economics, and manufacturing (e.g., see [8]), but has seen relatively little application to the

type of high-dimensional user-item consumption data that we investigate in this chapter. To

illustrate the phenomenon of zero-inflation Figure 4.1 shows a histogram of the ytij values

for a sample of user-item pairs from all datasets with an average consumption rate between

5 and 6 across time (values of ytij = 0 were excluded in computing the average). The his-

togram illustrates the variability of ytij values across all time windows. We can see that

the consumption rate has a bimodal distribution with one mode at ytij = 0 and additional

mode at ytij = 6. We selected the average rate of 5 to 6 for illustration; however, similar

bimodal patterns occur for different values of average number of user-item consumption. The

bimodal nature of this data suggests that user-item rate can be represented as a mixture of

two processes: an exposure process and a rate process.

Exposure Process: The exposure process describes whether or not a user i has been
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exposed to item j at time t. The concept of exposure captures the idea that for large item

sets a typical user is likely to be unaware of (or unexposed to) most items in the “item

vocabulary” (see also [51, 33]), e.g., in music-listening many artists are unknown to many

users. We define ztij ∈ {0, 1} as an indicator variable to indicate if user i was exposed to

item j at time t. We can model P (ztij = 1) via a Bernoulli distribution with parameter πtij,

where the Bernoulli parameter will be a function of the past history of user i and item j.

Rate Process: Conditioned on exposure, i.e., ztij = 1, the rate process accounts for the

number of times user i consumes item j at time t. A natural and simple distribution for the

rate process is the Poisson model, parameterized by the expected consumption rate λtij:

P (ytij = k|λtij) =
λtij

k
e−λ

t
ij

k!
(4.1)

where k = 0, 1, 2, . . . is the number of consumptions. There are a number of other alterna-

tives for defining probability distributions over count data that we could have used in our

modeling approach, such as the Non-Negative Binomial distribution. We chose to use the

Poisson distribution in this chapter for a couple of reasons: (a) it is simple to implement

and reproduce and (b) it is straightforward to interpret the model parameters.

4.3.2 Data Heterogeneity

Another common feature of high-dimensional user-item data sets is heterogeneity. Figure 4.2

shows boxplots of the average number of unique items each user consumes (left panel) and

the average number of total consumed items for each user (right panel), per week, for each of

the three data sets. The figure clearly indicates (a) significant variability across users, as well

as (b) significant variability across the different data sets. A plausible explanation for user

variability is that different users can have significantly different budgets, either monetary

or non-monetary (e.g. time), for consuming items. In addition there can be significant
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Figure 4.2: Average number of unique consumed items (left) and total number of consumed
items (right) per week for each user across each of the three data sets.

variation in the domain-specific cost for the consumption of a typical item across different

data sets, leading to significant differences in the scale of user-item consumption across

different domains, i.e., domain-specific cost offsets. For example, the “cost” to a user of

listening to a song (lastfm) is significantly less than the cost of eating at a restaurant (Yelp).

Another contribution to data heterogeneity is the natural variation across users (and data

sets) of some users to explore new items compared to their tendency to exploit known items.

For example, a user who has a low tendency for exploration will naturally tend to repeat

their behavior and, therefore, the number and identity of unique items this user consumes

is likely to remain relatively small and static over time. On the other hand a different user

could have a tendency to be easily bored with items (a state that could be detected from

recent activity [38]) and a corresponding tendency to often explore new items, where the

new items are perhaps strongly influenced by global popularity and trends in the data.
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4.4 Poisson Regression with Zero-Inflation

Given the prevalence of zero-inflation and heterogeneity in user-item data sets we propose

to model the observations ytij for user i, item j, at time t, as

1. a mixture of an exposure process and a rate process, where πtij is the mixture weight

and λtij is the expected rate that user i will consume item j at time t (conditioned on

being exposed to the item), and

2. regression models for each of πtij and λtij, conditioned on features xtij.

4.4.1 Zero-Inflated Poisson Models

The exposure and rate processes are modeled via a mixture of two components: (a) a delta

function at zero and (b) a Poisson distribution. The mixture model weights and Poisson rate

parameters, πtij and λtij respectively, are user and item-dependent and are implicit functions

of the features xtij—we provide more details on the conditional models for these parameters

later in this section.

We can write the probability of Pzip(y
t
ij = k|πtij, λtij) as:

Pzip(y
t
ij = k) =


(1− πtij) + πtijPλ(k|λtij), k = 0

πtijPλ(k|λtij), k = 1, 2, . . .

(4.2)

where Pλ(k|λtij) is the Poisson probability defined in Equation 4.1. The model above is

known as the zero-inflated Poisson (ZIP) regression model, where the regression aspect arises

through the conditioning of πtij and λtij on the features [44]. In the ZIP model, zeros can be

90



generated either by (a) the Bernoulli random variable πtij taking value 0 or (b) πtij taking

value 1 and the Poisson model generating a value k = 0. From a generative perspective

these two “routes” for generating zeros can be interpreted as either (a) the user i not being

exposed to item j, or (b) the user being exposed but deciding not to consume the item (by

drawing a zero from the Poisson distribution).

An alternative to the ZIP model is to use a shifted Poisson process for the rate that has a

minimum value of k = 1 (rather than k = 0). In the statistical literature this is known as a

hurdle model in the sense that the Poisson model is invoked if the count is greater than the

“hurdle” (where here the hurdle value is 0). We empirically compared the hurdle and the

ZIP model (results not shown) and found that the ZIP model systematically outperformed

the hurdle variant in terms of modeling and predicting user-item consumption rates for our

three data sets. For this reason we focus on the ZIP model in the rest of the chapter.

4.4.2 Regression Features for the Mixture Parameters

We model heterogeneity across users and items via generalized linear regression models for

both πtij and λtij, where the regression models depend on feature vectors xtij that vary by

user i, item j and time t. The regression models use two constant intercepts, globally-shared

and individual-specific, that capture the effect of global domain costs and heterogeneity in

individual-specific budgets respectively. In addition, to capture the personal balance between

explore and exploit for each individual, we use four data-driven features from an individual

user’s historical data and contextual information:

• Past user-item preference (xt̄ij): Represents the average rate that user i consumes

item j over time. This feature is motivated by repetitive users who have a high prob-

ability of exploitation, i.e., they consume similar items at the same rates in each

time period. For each user, we compute the past item consumption preference as
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Covariate Notation Value
Global domain costs x0 1
User-specific Budget xi0 1

Past user-item preference xt̄ij log
(

1 +
∑t
τ=1 y

τ
ij

t

)
Current user-item activity xtij log(1 + ytij)

Historical item popularity xt̄j log(1 +
∑
i

∑t
τ=1 y

τ
ij

tN
)

Current item populrity xtj log(1 +
∑
i y
t
ij

N
)

Table 4.2: Definition of features used in our regression models, based on user and item
historical data.

xt̄ij = log
(

1 +
∑t
τ=1 y

τ
ij

t

)
. We add one to prevent numerical errors in the log function.

• Current user-item activity (xtij): For each user i and item j we compute the recent

activity as the log of (plus one) the number of times the item was consumed in the

current time-window xtij = log(1 + ytij). This feature is motivated by recent studies

on the effect of recency in user-item consumption. For example, in [11] and [2] it was

shown that users with preference for exploitation are more likely to consume items

from their recent past, whereas users with high preference for exploration are likely to

avoid recently consumed items as a result of boredom [37], [38], [34].

• Historical item popularity (xt̄j): This feature models the overall popularity of an

item. It is estimated as the average past consumption rate of item j across all users:

xt̄j = log(1 +
∑
j

∑t
τ=1 y

τ
ij

tN
). This features is expected to capture the behavior of users

whose exploration preferences are affected by conformity [68].

• Current item popularity (xtj): In addition to the overall item popularity, this feature

captures immediate trends. It models users who are more affected by trends such as

hype as a result of a sale, or “death” of an item. The value of this feature is computed

as xtj = log(1 +
∑
j y
t
ij

N
).

A complete summary of the features and their values is presented in Table 4.2.

92



The use of features based on a user’s past observations to predict the future behavior of

the individual is an instance of an observation-driven time-series modeling approach (which

we discuss further in the related-work section below). In particular, this allows for an

individual’s behavior to change over time in a non-stationary fashion. For example some

individuals could be permanently in exploration mode to the extent that their future behavior

is always different to their past (in terms of specific item consumption). More typical is the

case where future behavior is a combination of repeat and novel item consumption, to varying

degrees across different individuals.

The particular set of features we use in this chapter (in Table 4.2) are quite general. More

specific features could also be incorporated (e.g., depending on the specific semantics of the

domain), including (potentially) static features that provide side-information about users

and items, or exogenous time-varying features such as seasonality or calendar effects [60].

4.4.3 Regression Modeling of Mixture Parameters

Using the regression feature from Table 4.2 we model the parameters of the exposure and

rate processes in the following way:

Exposure Process: The value of πtij is estimated using logistic regression, conditioned on

the globally-shared and the individual-specific intercept coefficients η0 and ηi0 respectively,

as well as the individual-based feature coefficient vector ηu = {ηi1, ηi2, ηi3, ηi4}. We denote

the data-driven feature vector as xtij = {xt̄ij, xtij, xt̄j, xtj} and write the logistic function as:

πtij =
1

1 + e−(η0x0+ηi0xi0+ηix
t
ij)

(4.3)

Rate Process: Similarly, the value of λtij is modeled via Poisson regression with a globally-

shared and individual-specific coefficient β0 and βi0, as well as an individual-specific coeffi-
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cient vector βu = {βi1, βi2, βi3, βi4}. In addition, as proposed in [27] and [42], we added an

additional intercept (xj0 = 1) with an item-specific offset βj0 to accommodate heterogeneity

across items.

The resulting Poisson regression model can be written as

log λtij = β0x0 + βi0xi0 + βj0xj0 + βix
t
ij (4.4)

where the feature vector xtij is defined in the same way as in Equation 4.3.

4.5 Learning Algorithms

Since the ZIP regression model can be expressed as a two-component mixture model, with

Pλ(y
t
ij|λ = 0) as the zero-inflation component, the model parameters can be estimated via

a standard application of the Expectation-Maximization (EM) algorithm. EM is a general

procedure for iterative optimization of a likelihood function with missing information. For

mixture models the missing information for each data point ytij is the identity of which

component generated that data point. In particular, for ZIP mixtures this information is

missing for all the zeros in the data set, ytij = 0, since these data points could have been

generated by either component. For values ytij > 0 the data are unambiguously assigned to

the rate component Pλ(y
t
ij|λtij).

The E-step computes the membership probability (equivalent to the expected value of the

binary membership indicator) for each data point ytij = 0, conditioned on current estimates

of the model parameters. The M-step generates maximum likelihood estimates of the pa-

rameters conditioned on the membership probabilities provided by the E-Step. Under fairly

broad conditions, repeated application of E and M steps is guaranteed to converge to a

(local) maximum of the likelihood function.
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E-step: In the E-Step, for each of the zero-valued data points ytij = 0, we compute the

membership probability wtij, namely the probability that this zero was generated by the rate

component. These membership probabilities can be computed by applying Bayes rule to the

definition of the mixture model above, Pzip(y
t
ij = k|πtij, λtij), where the parameters πtij, λ

t
ij

are the current parameter estimates (from the most recent M-step or their initial values at

the first iteration).

wtij =
πtijPλ(y

t
ij|λtij)

(1− πtij)Pλ(ytij|λ = 0) + πtijPλ(y
t
ij|λtij)

(4.5)

Data points with membership weights closer to 1 are more likely (according to the current

parameters) to have been generated by the rate component and, conversely, data with weights

closer to 0 are more likely to have been generated by the zero-inflated component.

M-step: The M-step optimizes the parameters of the model conditioned on the current esti-

mates of the wtij membership values. Our ZIP model has two sets of parameters, the logistic

regression parameters for the mixture weights η = {η0,ηi}, and the rate parameters for the

Poisson rate component in the mixture model, β = {β0,βj,βi}. The logistic regression uses

the membership weights as targets and the Poisson regression uses weighted regression with

the weights being the membership weights.

Neither the logistic or Poisson regression can be performed in closed-form, so we use gradient

descent within each M-step to estimate the coefficients for each model. The gradients in both

cases (logistic and Poisson) involve dense sums over all N ×M ×T data values, where N,M

and T are the number of users, items and time-windows respectively. This is in contrast to

sparse estimation methods such as Poisson matrix factorization that can ignore the zeros

in the data, effectively working with only a tiny fraction of the full data matrix for highly

sparse data. Thus, in order to achieve a scalable algorithm, we use stochastic gradient descent

(SGD) instead of full gradient methods, inspired by the success of SGD in training of large-
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scale deep neural networks on large data sets. SGD approximates the exact gradient at each

gradient update by estimating the gradient in a stochastic manner using a small randomly-

selected subset of rows (“mini-batches”) from the data matrix. We discuss the convergence

of our EM + SGD method in more detail in Section 4.8 later in the chapter—at this point

it is sufficient to note that our implementation is as fast (or faster) in wall-clock time when

compared to publicly-available implementations of other competing approaches.

The step size in each SGD step was determined via the ADAM algorithm [39] which provides

a systematic way of conditioning the step size on the level of confidence in the gradient. We

found empirically that ADAM worked well for our SGD-based optimization problems (and

that convergence could be difficult to attain without it) in agreement with work in deep

learning literature where the combination of SGD and adaptive step-size (such as ADAM)

is essential to the success of training models on large data sets.

One final note is that rather than maximizing the likelihood we maximized the likelihood

times a prior, i.e., maximum a posteriori EM estimation. In log-space this corresponds to

maximizing (in the M-step) the log-likelihood plus a regularization term corresponding to

the log prior. In our experiments we found that empirically-determined MAP priors were

particularly effective. To compute the empirical prior we trained the model using global

coefficients (assuming all data belong to a single user) with L2 regularization. The learned

coefficients were then used as a common prior for all users.

4.6 Related Work

The conceptual basis of our work builds from a rich literature in statistics on modeling count

data [8]. For example, within the framework of generalized linear models the Poisson mean

is modeled as exp(
∑
βkxk) where the βk’s are regression coefficients and the xk’s are the
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inputs to the model. In the context of longitudinal data (data across multiple individuals),

it is common to use fixed and random effects to account for individual-level heterogeneity,

e.g., by allowing for individual-specific intercept terms in the mean such as exp(βi+
∑
βkxk)

where βi is the offset for individual i (e.g., [18], ch.7). The incorporation of time-dependence

into such models can typically be categorized into one of two general categories ([8], ch

7.2): observation-driven models where the counts are modeled directly as functions of past

counts (such as autoregressive models for count data), or parameter-driven models where

the counts depend on a latent state-space process (such as a hidden Markov model or a

linear-Gaussian filter). The models we propose in this chapter are in the observation-driven

category. The dynamic matrix factorization methods (discussed below) that we compare

to in our experiments are in the parameter-driven category. The use of zero-inflation is

also well-known in statistical modeling of count data (e.g., [44, 29]) and can be combined

with other modeling components (as we do in our proposed approach) such as temporal

dependence and fixed effects.

While our work builds on much of the above, a significant difference is that we model

high-dimensional count vectors (i.e., a large number of items), orders of magnitude larger

in dimensionality than the low-dimensional (often scalar) count data that is usually the

primary focus in the statistical literature for modeling of count time-series. To handle

the optimization challenges of parameter estimation for high-dimensional counts we use

techniques from stochastic gradient optimization, which have not (to date at least) been

used in statistics for count modeling.

Another significant line of related work is in matrix factorization of user-item consumption

data. The most well-known approach in this context over the past decade has been the

bilinear Gaussian model based on an SVD decomposition (e.g., [42]). The expected target
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value yij is usually represented in such models as

E[yij] = θ′iφj + β0 + βi + βj, (4.6)

where θ′iφj is the inner product of low-dimensional latent vector representations for user

i and item j, and β0, βi, and βj are constant, user, and item offsets respectively. In this

framework the latent vectors θi and φj and parameters β0, βi, βj are typically estimated from

the data using least-squares. This is equivalent to maximizing the likelihood of a Gaussian

model for the yij’s (e.g., [62]). This is a useful approach for data that can be approximated

by a symmetric distribution but is not ideal for the types of highly skewed count data we

are focusing on in this chapter.

More recent work in matrix factorization has built on ideas from non-negative matrix factor-

ization to develop models that are more appropriate for count data, e.g., where the expecta-

tion in Equation 4.6 above represents the mean of a Poisson model for the yij’s—known as

Poisson matrix factorization (PMF). A typical approach is to estimate the parameters within

a Bayesian framework (such as variational inference) and to place priors (such as Gamma

priors) on the parameters θi and φj [27, 52].

Of particular relevance to this chapter is the recently-introduced dynamic Poisson matrix

factorization model (DPMF) [10] which models the expected counts as a function of time t

as:

E[ytij] = θ′itφjt + . . .

where t is a discrete time index (such as days, weeks, etc). Here the latent user and item

vectors are allowed to evolve dynamically over time, such that predictions for time t + 1

are functions of the latent vectors estimated at time t. This DPMF approach (and matrix

factorization in general) can be viewed as an instantiation of a parameter-driven latent-space
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model, in contrast to the observation-driven model that we pursue here.

Another recent strand of related work (in the non-dynamic PMF context) is the use of zero-

inflated models in probabilistic matrix factorization. Liang et al. [51] proposed the framework

of exposure matrix factorization (ExpoMF) which uses zero-inflation to explicitly account for

exposure effects in matrix factorization of large binary user-item data sets. They found that

ExpoMF systematically outperformed traditional PMF methods that did not account for

exposure. In a similar vein, Jain et al. [33] developed a probabilistic matrix factorization

framework with zero-inflation to handle exposure effects in multi-label classification with

very large numbers of labels

Our work differs from all of the above work in matrix factorization, in terms of (a) prediction

of consumption rates rather than ratings or binary data, (b) modeling both repeat and novel

consumption over time, and (c) the use of user and item-specific regression models rather

than matrix factorization.

There has also been recent work on continuous-time modeling of time-stamped user-item

data, using Markov approaches [37, 38, 2], Poisson point processes [31], and neural net-

works [34]. While these papers share a common motivation with our work in terms of

analyzing explore/exploit aspects of user consumption, the focus and methodologies are sig-

nificantly different to what we pursue in this chapter, with less emphasis on user-item rate

prediction and without the use of zero-inflation or regression models.

4.7 Experiments and Results

Below we describe the results of comparing the ZIP model to baselines and to a number of

well-known approaches from the literature for modeling sparse user-item count data. For all

of the experiments described below the model parameters were estimated using data from
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times t = 1 to time t = T − 2, with hyperparameter tuning via grid search using data at

time t = T − 1. The models were then evaluated on holdout test data at time t = T .

4.7.1 Performance Metrics

We evaluated our models using four different metrics.

Log-Loss: The log-loss is the sum of the negative log-probabilities of each user-item con-

sumption rate in the test data:

− logP = − 1

Nte

∑
i

∑
j

logP (yTij)

where P (yTij) is the probability of the observed count yTij, under the model being evaluated,

and where Nte is the total number of test points. The log-loss metric is widely used in

the evaluation of machine learning algorithms that produce probabilistic predictions and

is bounded below by zero. A model that assigns higher probability, or lower negative log-

probability, to the observed test data is preferred over a model that assigns lower probability

(or a higher negative log-probability).

Precision, Recall, and F1: Let ŷTij denote the expected number of times (according to a

particular model) that user i will consume item i during time-window T . For the ZIP model,

by the linearity of expectation we have that ŷTij = π̂Tijλ̂
T
ij where π̂Tij and λ̂Tij are point (MAP)

parameter estimates learned by the model on the training data.

For each pair i, j we can compute the precision and recall of a prediction ŷTij, relative to

the observed value yTij, as follows. Precision can be defined in the context of count data

as
min{yTij ,ŷTij}

ŷTij
, i.e., it is the fraction of user-item consumptions that the model predicted

would occur that actually did occur. Similarly, recall can be defined as
min{yTij ,ŷTij}

yTij
, which

is the fraction of observed user-item consumptions that did occur that the model predicted
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would occur. These pairwise user-item precision and recall values can be averaged over all

user-item pairs to obtain overall precision and recall numbers. Models that systematically

underestimate yTij (e.g., that predict all zeros) will have high precision but low recall, and

vice-versa for models that systematically overestimate yTij. For our experimental results

below we report the F1 score, which combines both precision and recall, in the standard

fashion as:

F1 = 2× Prec× Rec

Prec + Rec

MSE: Mean squared error between the expected number of times that a user i will consume

item i during time-window T and the observed value yTij:

MSE =
1

Nte

∑
i

∑
j

(
yTij − ŷTij

)2

MAE: Mean absolute error between the expected number of times that a user i will consume

item i during time-window T and the observed value yTij:

MAE =
1

Nte

∑
i

∑
j

∣∣yTij − ŷTij∣∣

4.7.2 Poisson Regression with and without Zero-Inflation

We first compare the ZIP Poisson regression model (ZIP) to a Poisson regression model (PR)

without a zero-inflation component. We use the same features for both models. Table 4.3

shows that the ZIP model systematically outperforms over the PR model on holdout data,

for all four metrics across all 3 data sets.

To further analyze the contribution of the zero-inflated component we evaluated each of
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Log-Loss F1 MSE MAE
Dataset PR ZIP PR ZIP PR ZIP PR ZIP
reddit 0.287 0.118 0.73 0.84 167.56 135.78 0.38 0.22
lastfm 0.115 0.045 0.12 0.34 2.46 1.68 0.06 0.03
Yelp 0.092 0.071 0.09 0.16 0.03 0.03 0.06 0.04

Table 4.3: Log-Loss, F1 measure, MSE and MAE on the test data for the PR and ZIP
models across different data sets. Lower values are better for Log-Loss, MSE and MAE and
higher values better for F1. Best performing methods indicated in bold font.

the models in terms of their ability to predict the zeros. We focused on user-item pairs

with yTij = 0 and computed the Log-Loss for those pairs under each model. The Log-Loss

values for the PR model are 0.064, 0.035 and 0.042 in the reddit, lastfm and Yelp data sets

respectively. The corresponding values for the ZIP model are an order of magnitude lower:

0.004, 0.004 and 0.017. This significant improvement is directly attributable to the presence

of the zero-inflation component in the ZIP model.

4.7.3 Comparing ZIP to Baselines and Matrix Factorization

Below we describe results obtained from comparing the ZIP model to a set of simple baselines

and to several well-known approaches in the literature based on matrix factorization for count

data.

GR (Global Rate): This is defined as the global rate at which each item is consumed in

the training data, computed by averaging across all users and time-stamps:

λ̂GRij = λ̂j =
1

N

1

T

N∑
i=1

T∑
τ=1

yτij 1 ≤ j ≤M

MPE (Mean Posterior Estimate): This is the mean posterior estimate (MPE) of each

user-item rate, with a conjugate Bayesian Gamma(γ0, γ1) prior, based on the counts in the
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training data:

λ̂MPE
ij =

∑T
τ=1 y

τ
ij + γ0

T + γ1

where γ0 and γ1 are determined via grid search to optimize the log-loss of the validation data

for the MPE model.

PMF (Poisson Matrix Factorization): This is a latent factor matrix factorization model

with a Poisson distribution for the observed counts. In our results we used a state-of-the-

art Bayesian PMF version implementation by Liang et al. [52] The model was fit to the

aggregated data across all time windows. At prediction time the predicted rates from the

model were divided by the number of time-windows in the training data set to scale the rate

for predictions for a single time-window.

λ̂ij =
θ′iφj
T

DPMF (Dynamic Poisson Matrix Factorization): This is an extension of the PMF

model that learns latent-space decomposition from a sequence of user-item consumption

counts [10]. The latent-space vectors for users and items are estimated for each time-window

jointly by modeling the change in θti and φtj between different time steps t using a Kalman

filter.

Hyperparameters for both PMF and DPMF were determined via grid search on the validation

data. One hyperparameter of particular interest is the number of factors used by both

models. In Figure 4.3 we plot the Log-Loss computed on the validation data set using the

PMF algorithm with different numbers of factors, fixing all other hyperparameters. For all

data sets, the number of factors that resulted in the best predictive results on the validation

data set was larger than min(N,M) (normally, a value of d << min(N,M) is selected).
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Figure 4.3: Log-Loss value on the validation data set for different number of factors across
all data sets.

A possible explanation for the high number of factors is the fact that matrix factorization

approximates a lower dimensional representation of users and items in order to generalize

from past observation. This means that for PMF (and similarity for DPMF), using a low

number of factors does not offer sufficient modeling power to capture the details of the

target historical data. For data sets with a significant amount of repeat consumption, this

is a considerable setback since a user’s history is indicative of future behavior.

In keeping with standard matrix factorization methodology, we limit the number of factors

we are willing to consider to a moderate range. For all data sets the number of factors used

was in the range of 200 to 500.

Tables 4.4, 4.5 4.6 and 4.7 show the Log-Loss, F1, MSE and MAE scores on the test data,
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GR MPE PMF DPMF ZIP
reddit 2.978 0.233 0.332 0.812 0.118
lastfm 0.147 0.085 0.097 0.100 0.045
Yelp 0.075 0.090 0.077 0.077 0.071

Table 4.4: Log-Loss on the test data for different algorithms across different data sets. Lower
scores are better. Best-performing methods indicated in bold font.

GR MPE PMF DPMF ZIP
reddit 0.07 0.66 0.61 0.56 0.84
lastfm 0.03 0.27 0.15 0.21 0.34
Yelp 0.11 0.12 0.14 0.11 0.16

Table 4.5: F1-scores on the test data for different algorithms across different data sets.
Higher scores are better. Best-performing methods indicated in bold font.

GR MPE PMF DPMF ZIP
reddit 544.782 142.191 144.656 464.711 135.782
lastfm 1.825 2.809 2.152 1.831 1.676
Yelp 0.031 0.029 0.029 0.029 0.028

Table 4.6: MSE on the test data for different algorithms across different data sets. Lower
scores are better. Best-performing methods indicated in bold font.

GR MPE PMF DMF ZIP
reddit 0.975 0.339 0.339 0.462 0.217
lastfm 0.055 0.045 0.051 0.042 0.034
Yelp 0.040 0.033 0.037 0.046 0.036

Table 4.7: MAE on the test data for different algorithms across different data sets. Lower
scores are better. Best-performing methods indicated in bold font.

for each of the baselines and PMF and DPMF models, compared to the ZIP model. The

ZIP model is significantly more accurate than the other methods for all metrics for all data

sets, except for the MAE score for the MPE model on the Yelp data set.

We further analyze the predictive performance of our model and compare in Figure 4.4 the

ZIP model Log-Loss and the best performing alternative approaches when looking at each

individual separately. We performed a Wilcoxon signed rank test on the results and found

that the ZIP model dominates all other methods with a p-value of p < 0.001 across all data

sets.
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Figure 4.4: Scatter plots comparing ZIP with MPE (left column), PMF (middle column)
and DPMF (right column) test Log-Loss scores for individuals in the reddit (top row) lastfm
(middle row) and Yelp (bottom row) data sets.

For both the reddit and lastfm data sets the margins of improvement of the ZIP model over

both the PMF and DPMF models are quite large (shown in Table 4.8). There are two likely

reasons for this improvement. The first is that the zero-inflation component in the ZIP model

provides a more flexible way to handle excess zeros than PMF or DPMF. The second reason

is that the user-specific features in the regression approach (such as the history variable

of what specific items a user consumed in the past) allows the regression model to more

accurately model individual-level details than the matrix factorization (MF) approaches.
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ZIP / PMF ZIP / DPMF
Data Set Log-Loss F1 MSE MAE Log-Loss F1 MSE MAE

reddit 0.36 1.38 0.93 0.64 0.15 1.50 0.29 0.47
lastfm 0.48 2.27 0.78 0.67 0.45 1.62 0.92 0.81

Table 4.8: Relative Log-Loss, F1, MSE and MAE in percentage on the test data for the ZIP
model compared to PMF and DPMF across different data sets. Lower values are better for
Log-Loss, MSE and MAE and higher values better for F1.

The MF approaches are constrained by the dimensionality of their latent spaces, limiting

the level of detail (e.g., specific combinations of items) available for modeling individual

users. We explore both of these in more detail below.

Figure 4.5: The ratio of probability for the number of consumptions for selected users from
reddit (left) and lastfm (right) at time T assigned by the evaluated models compared to the
ground truth (GT). Best viewed in color.

Modeling excess zeros: Modeling the zeros provides the ZIP model with a principled

way of down-weighting the 0’s in the process of learning the rate parameter. As a result the

rate-process coefficients are free to fit a larger range of yTij values (in particular, high numbers

of consumptions). In Figure 4.5 we plot the ratio between (a) the predicted number of ŷTij

counts, across different ranges of y, for the different models, and (b) the ground truth number

for those values in the test data. These plots are for users with high variance in their yTij

values, for both the reddit (left) and lastfm (right) data sets. We can see that in order to

fit the excess of 0’s, the baselines tend to systematically and significantly overestimate the
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low rates and to underestimate the high rates, relative to ground truth—while the proposed

ZIP regression model (green squares) tends to be much more accurate.

Balancing Explore-Exploit: By separately modeling the exposure and rate processes, the

ZIP model is able to capture the heterogeneity across users in terms of their explore/exploit

behavior. In particular, the exposure process coefficient ηi0 corresponds to the estimated

user-specific budget and captures the number of unique items a user will consume. As ηi0

increases, the probability that a user will be exposed to an item and consume it is also pre-

dicted to increase, corresponding to a higher predicted tendency for exploration. To illustrate

this, in Figure 4.6 we plot the correlation between the value of ηi0 and the number of unique

items the user consumed in the lastfm (left) and reddit (right) data sets. The clear positive

correlation between the two (shown as the regression line in red) demonstrates the ability of

our model to achieve an appropriate balance between exploration and exploitation, result-

ing in better individual-level predictive models. In addition, the individual-level coefficients

provide interpretable detail about each specific user, quantifying their individual tendency

for exploration within the context of a broad rate prediction model.

Figure 4.6: Number of unique items each user consumed as a function of the user-specific
budget coefficient (ηi0) in the lastfm (left) and reddit (right) data sets. The red line indicates
an exponential curve fitted to the scatter plot.
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4.7.4 Online Predictions

One advantage of using observation-driven models is that it is natural to make predictions

at multiple discrete time points t. For each new time t we simply use the learned parameters

η and β to make predictions based on the data features at time t − 1 (i.e: no re-training

of the model is needed for time t). This is in contrast to steady-state parameter-driven

models where without additional training, new data will not be taken into consideration at

prediction time.

This is particularly useful in applications in which the behavior patterns observed from the

data are especially dynamic but the user-specific preferences for explore and exploit are

relatively fixed. As a simple example, consider a user that consistently explores new items

without consuming an item more than once. For such a user, the explore preference is fixed

(roughly speaking) whereas the identity of consumed items changes with each consumption.

Approaches such as PMF and DPMF will require frequent retraining in order to reflect

the constant change of consumed items, a process which can be prohibitively expensive for

real-world applications.

For an alternative, more realistic example in the context of applications with repeated con-

sumption, consider a user with a relatively high preference for exploiting known items. At

time t′ the user is introduced to a new item (e.g. new music artist) and starts to exploit it

(i.e. engage in repeated consumption). Observation-driven models are capable of reflecting

the interest in the new item quickly, as future predictions are derived directly from the data.

However, it is possible that parameter-driven models will require multiple observations of

the new item consumption in order to represent the new interest in the model’s parameters.

To illustrate the advantage of using an observation-driven model for predicting user-item

consumption, we train all models on the first T − 10 time windows and plot the Log-Loss

results for each time-window t in the last 10 time-windows without additional training in
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Figure 4.7: Log-Loss reported by the different models at each time-window in the lastfm
(left) and reddit (right) test data sets. The Yelp data set only has 10 time-windows and was
omitted from this experiment. Best viewed in color.

Figure 4.7. The plot clearly shows that the ZIP model predictive accuracy stays roughly

the same over time, while the predictive accuracy of the baseline decreases over time. This

indicates that the use of an observation-driven model can better represent dynamic user-

consumption behavior. In practice, it would be possible to re-estimate the model parameter

at pre-determined intervals or when accuracy falls below a certain threshold.

4.8 Scalability

In fitting our regression models our dense “data matrix” can be thought of as having N ×

M × T rows and d columns (for the features), where d is the number of coefficients in the

regression, N,M and T are the number of users, items and time-windows respectively. Thus,

direct gradient optimization would be O(dNMT ) per gradient computation. Using SGD,

the time complexity of a single gradient step is O(d× R) where R is the minibatch size. If

we think of NMT as the effective total number of rows in the full data set, then to gain the

benefits of SGD we need to select R such that R << NMT . In typical applications of SGD

with dense data the minibatch size can be quite small, e.g., R = 10, R = 100. However,
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Figure 4.8: Optimization cost value (negative log-Likelihood) at each SGD iteration for each
dataset. Markers denote the point in the iterative process where E-steps were performed.
Best viewed in color.

with highly skewed data (as in the user-item data sets of interest here), the minibatch sizes

need to be significantly larger to ensure that there are enough non-zeros in each minibatch.

We found that a minibatch size of R = 50, 000 worked well in terms of relatively fast and

reliable convergence. The time complexity of a single E-step is O(d × N ×M × T ), i.e.,

proportional to the number of rows, making it the most expensive part in the algorithm

in terms of time complexity. It is possible that some efficiency could be gained here via

an approximate E-step but we did not investigate this here given that we execute far more

gradient steps (within the M-step) than E-steps.

Figure 4.8 shows convergence plots, where the y-axis is the cost function (Log-Loss) at each

iteration. Each iteration on the x-axis marks a single stochastic gradient (minibatch) step

and the markers indicate the point in the algorithm where E-steps occurred (each M-step

consists of multiple gradient steps). We see from the convergence plots that the algorithm

converges quickly for each of the three data sets in our experiments. We implemented

our algorithm in Python (with Cython to speed-up)4. Each mini-batch iteration in our

implementation ran in a matter of few milliseconds and the relatively expensive E-step took

4https://github.com/MosheLichman/ZIP-Regression
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7, 62, and 1 seconds on average for the reddit, lastfm, and Yelp data sets respectively.

Our implementation used a single core — it is relatively straightforward to distribute the

computation of the gradients and membership weights by using multiple cores, rendering the

algorithm scalable to much larger data sets than what we used here.

4.9 Conclusions

The primary contributions of this chapter include the following:

• We explored individual-level user-item consumption rate data sets where user con-

sumption is a mix of repeat (exploit) and novel (explore) behavior over time.

• We introduced a framework using a zero-inflated Poisson regression for prediction of

consumption rates in high-dimensional user-item consumption data sets.

• We evaluated our model with batch and online schemes using multiple evaluation met-

rics showing results on the reddit, lastfm and Yelp data sets. The results showed that

our model outperforms existing approaches for individual-level user-item consumption

modeling in both the batch and online prediction scenarios.
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