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A relaxed-admixture model of language
contact

Will Chang and Lev Michael
University of California, Berkeley

Under conditions of language contact, a language may gain features from its neighbors
that it is unlikely to have gotten endogenously. We describe a method for evaluating
pairs of languages for potential contact by comparing a null hypothesis in which a
target language obtained all its features by inheritance, with an alternative hypothesis
in which the target language obtained its features via inheritance and via contact with a
proposed donor language. Under the alternative hypothesis the donor may influence
the target to gain features, but not to lose features. When applied to a database of
phonological characters in South American languages, this method proves useful for
detecting the effects of relatively mild and recent contact, and for highlighting several
potential linguistic areas in South America.

Keywords: probabilistic generative model; language contact; linguistic areality; Up-
per Xingú; South America; phonological inventory.

1. Introduction

Tukano pʰ p b tʰ t d kʰ k ɡ ʔ
Tariana pʰ p b tʰ t d dʰ tʃ kʰ k
Arawak 4 38 17 8 42 14 0 30 4 41 10 16
Tukano s h w j ɾ
Tariana m mʰ n nʰ ɲ ɲʰ s h w wʰ j ɾ l
Arawak 41 0 42 0 24 0 33 37 31 0 39 36 14
Tukano i i ̃ e ẽ a ã o õ u ũ ɨ ɨ ̃
Tariana i i ̃ iː e ẽ eː a ã aː o õ u ũ uː ɨ
Arawak 42 7 22 38 7 20 42 7 22 28 5 26 5 10 13 4

Table 1: The phonemes of Tukano and Tariana; how often each occurs in 42 Arawak
languages, not including Tariana.

Tukano is a Tukanoan language spoken in northwest Amazonia. Tariana, a linguistic
neighbor, is an Arawak language. Did Tariana gain phonemes as a result of contact
with Tukano? Table 1 shows the phonemes of both languages, along with counts of
how often each occurs in 42 Arawak languages. Arawak is geographically widespread
and has fairly diverse phonological inventories. But aspirated voiceless stops (pʰ tʰ kʰ),
nasal vowels ( i ̃ ẽ ã õ ũ), and the unrounded high central vowel (ɨ) are rare. The fact
that Tariana — and Tukano — have all of these sounds points to borrowing as the
right explanation. Upon closer inspection, we find that the aspirated voiceless stops
are shared by Tariana and other Arawak languages in the region, and thus may not



have been borrowed. However, the case for Tukano-Tariana influence is still intact, with
multiple possible causes, such as the fact that speakers from both communities practice
linguistic exogamy (where one inherits one’s language from one’s father, and may not
marry those that have inherited the same language) or the fact that Tariana speakers have
been switching to Tukano, which has been promoted as a lingua franca by missionaries
and civil authorities (Aikhenvald, 2003).

This abbreviated case study of phoneme borrowing had both quantitative and qual-
itative elements. In this article we describe a statistical test for performing the main
quantitative task: measuring the extent to which borrowing from a proposed donor
language is integral to explaning the phonological inventory of a target language. Just
as in the case study, this purely quantitative measure of the plausibility of borrowing
must be synthesized with sociohistorical and geographical considerations to yield a
complete picture. But even by itself, the test can, given a reliable linguistic database,
yield a panoptic view of how languages interact on a continental scale; and this can
direct the linguist to phenomena that may merit further attention.

For reasons that will become clear below, we call this statistical test a RAM test,
where RAM stands for relaxed admixture model. As a probabilistic model of admixture in
languages, RAM has at least two antecedents. One is STRUCTURE, which was originally
designed to cluster biological specimens by positing a small number of ancestral popu-
lations from which they descend, with the possibility for some specimens to be classified
as deriving from multiple ancestral populations (Pritchard et al., 2000). STRUCTURE has
been applied to linguistic data as well: Reesink et al. (2009) examined the distribution of
typological features in languages of Maritime Southeast Asia and Australia, and Bowern
(2012) evaluated the integrity of word list data from extinct Tasmanian languages as
preparation for classifying the languages. Another antecedent of RAM is a model by
Daumé (2009) in which a language’s features are treated as an admixture of phyloge-
netically inherited features and areal features. In this model, linguistic phylogeny, the
borrowability of each linguistic feature, and the locations of linguistic areas are all reified
underlying variables.

RAM differs from its antecedents in two significant ways. Both STRUCTURE and
Daumé’s model are global models, in the sense that they seek a coherent explanation
for the entire dataset. RAM is a local model. It evaluates the possibility of borrowing
between a pair of languages, without regard to other languages. Despite the crudeness
of this approach, we find that it suffices to generate interesting areal hypotheses and to
answer basic questions such as which features were borrowed. RAM’s simplicity also
yields dividends in computational speed: it allows for fast, exact inference in the main
calculation (see §4.3, §A.2).

The second way in which RAM differs from its antecedents is in how admixture is
actually modeled. In both STRUCTURE and Daumé’s model, every feature is assigned
one source. Admixture is modeled by allowing different features in the same language
to be assigned to different sources.1 In RAM, a feature may have two sources, and the
sources are additive. Each feature can be inherited with some frequency (first source),
but failing that, the feature can still be borrowed from a donor (second source). In effect,
the presence of a feature can be borrowed, but the absence of a feature cannot be. We

1 In STRUCTURE, the source is one of K ancestral populations. In Daumé’s model, the source is either the
phylogeny or the area. In both models, there is a latent matrix variable (written as Z in both cases) that
designates the source for each of a language’s features. The value of Zil determines the source for feature
l in language i. This source is used to look up the feature frequency for feature l, which is then used to
generate the feature value via a Bernoulli distribution (i.e. tossing a biased coin).
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Figure 1: Diagram of a probabilistic generative model.

term this mechanism relaxed admixture. It is this mechanism that allows the model to
detect more superficial contact, which we believe tends to be additive in nature.

In this paper we apply the RAM test to a database of the phonological inventories of
South American languages, described in §2. Some statistical concepts undergirding this
test are briefly discussed in §3. The test itself and the RAM model are presented in §4.
Analysis results are discussed in §5 along with cultural and linguistic areas proposed by
others. Finally §6 examines one such area more closely. The Upper Xingú, we argue, is
a linguistic area, but it is hard to demonstrate this by other quantitative methods.

2. Dataset

Our analyses operate on phonological inventories obtained from SAPhon (Michael et al.,
2013), which aims to be a high-quality, exhaustive database of the phonological invento-
ries of the languages of South America. For each of 359 languages, SAPhon encodes its
phonological inventory as a binary vector, with each element indicating the presence or
absence of a particular phoneme in the phonological inventory. There are also a small
number of elements in this vector that indicate more general things about the phonology
of the language, such as whether it has tone or nasal harmony. In this article we will refer
to the vector as a feature vector, and to each element as a linguistic feature. These features
are not to be confused with phonological features such as continuant or unrounded, which
are not features of languages but of phonemes.

Some regularization has been done on the phonological inventories, to make them
easier to compare. For example, /ɛ/ has been replaced by /e/ whenever /e/ doesn’t
already exist, since in this case the choice between /e/ and /ɛ/ is fairly arbitrary. After
regularization, the database has 304 features. Other information such as language family
and geography are discarded during analysis, but are used in plotting results.

For more details on the dataset or the regularization procedure, please see the article
by Michael et al. in this volume.

3. Probabilistic generative models

This work employs probabilistic generative models, which can be used to construct
expressive models for diverse physical phenomena. Such models are often surprisingly
tractable, thanks to a rich set of mathematical formalisms (Jordan, 2004). The term gen-
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erative means that the data we seek to explain are modeled as having been generated via
a set of hidden or underlying variables; and probabilistic means that variables are related
by probabilistic laws, as opposed to deterministically.

Such models are often represented graphically as in Fig. 1, in which each variable
is a node. By convention, an observed variable (i.e. data) is represented by a filled
node. Thus, x is data and ϕ, θ, and z are unobserved, underlying variables.2 Causal
relationships between the variables are shown by arrows, with the direction of the arrow
showing the direction of causation. Here, θ generates z; and ϕ and z together generate
x: the model defines the conditional distributions p(z | θ) and p(x | ϕ, z). Variables such
as ϕ and θ that lack arrows that lead to them are generated ex nihilo by drawing from
respective prior distributions p(ϕ) and p(θ). These distributions encode our beliefs about
what ϕ and θ could be, before we see the data.

It is important to note that the model as a whole is a description of how the data x is
generated, and that the model assigns a probability to the data. There are typically many
ways that the data could be generated, in the sense that the underlying variables could
assume many different values and still generate the data with varying probabilities. But
if we sum (or integrate) over all the possible values for the underlying variables, we get
the absolute (i.e. marginal) probability of the data. More formally, the model provides
that

p(x, z, ϕ, θ) = p(x | z, ϕ) p(ϕ) p(z | θ) p(θ).

Suppose that ϕ and θ are continuous variables, and that x and z are discrete. We can
integrate over the continuous underlying variables and sum over the discrete underlying
variables to get the marginal probability

p(x) =

∫
θ

∫
ϕ

∑
z

p(x | z, ϕ) p(ϕ) p(z | θ) p(θ) dϕ dθ.

We will interpret this probability as a measure of the aptness of the model. In this context,
the marginal probability of the data is known as the marginal likelihood of the model. In
the following section we will build two competing models for explaining the same data,
calculate their marginal likelihoods, and use the ratio as a measure for their relative
aptness.

4. RAM test

The RAM test is set up as a statistical hypothesis test. The analyst picks a target language
and a donor language — these are treated as givens. Then we ask the question: is the
inventory of the target language better explained as a product of inheritance from its
linguistic family alone; or is it better explained as a joint product of inheritance and
borrowing from the donor? These two hypotheses are fleshed out by two models: the
inheritance only model M0, which we treat as a null hypothesis; and the relaxed admix-
ture model M1, which we treat as the alternative hypothesis.

2 We will write x for both a random variable and for particular values of that random variable. We write
p(x) for the mass function of x if it is a discrete random variable, and the same for its density function if x
is continuous. In expressions such as x ∼ Beta(1/2, 1/2) or E[x] =

∫
xp(x)dx, context should suffice to

indicate that the first x in each expression is a random variable, and the other instances of x are bound
values.

4



..

N

.

L

.. x0..x0l ∼ Bernoulli(θl), ..
x0l ∈ {0, 1}.

..Feature l in target language ..

x

..

xnl ∼ Bernoulli(θl),

..

xnl ∈ {0, 1}.

..

Feature l in language n,

..

which is in the target’s family.

..

θ

..

θl ∼ Beta(λlµl, λl(1− µl)),

..
θl ∈ (0, 1).

..

Frequency of feature l in the

..
target’s family.

..

µ

..

µl ∈ (0, 1).

..

Universal frequency of

..

feature l.

..

λ

..

λl ∈ (0,∞).

..

Generality of universal

..

feature frequency µl.

Figure 2: Inheritance-only model M0.

4.1. Model M0: Inheritance only

The inheritance only model is depicted in Fig. 2. The rounded rectangles are plates. They
convey that the variables contained by them are arrayed. For example, θ is a vector
with L elements, and x is an N × L matrix. Arrows that cross into a plate denote that
each element of the downstream variable is independently generated and identically
distributed. For example, the arrow from θ to x crosses a plate, denoting that for each
l, the elements x1l, x2l, . . . , xNl are independently generated from θl and are identically
distributed.

The inheritance-only model works by characterizing each language family as a
vector of feature frequencies θ = (θ1, . . . , θL), one for each feature. Each language of the
language family, including the target language, is modeled as being generated by these
feature frequencies. The variable x0 = (x01, x02, . . . , x0L) is a feature vector encoding the
phonological inventory and other phonological characteristics of the target language,
with x0l encoding the presence (1) or absence (0) of feature l. N is the number of
languages in the family of the target language, not counting the target language. The
variable x is an N × L binary matrix that encodes the inventories of the other languages
in the family. For each language n and feature l, xnl is generated from θl. It is present
(xnl = 1) with probability θl or absent (xnl = 0) otherwise. The feature frequency θl is
generated by drawing from a beta distribution whose parameters are a function of µl and
λl (see figure for details). The vector µ = (µ1, . . . , µL) contains “universal frequencies”
for each feature and λ = (λ1, . . . , λL) describes how universal these universal frequen-
cies are. When λl is high, the feature frequency of l in each language family closely
resembles the universal frequency µl, and the opposite is true when λl is low. These
parameters become very significant when the target is an isolate, or when its family is
small. There is not enough data to infer these parameters, so they are set before any RAM
tests are run by estimating them from the entire dataset, as described in §A.1.

4.2. Model M1: Relaxed admixture model

The relaxed admixture model (RAM) is depicted in Fig. 3. Under relaxed admixture, the
presence of a sound can be borrowed, but the absence of a sound cannot be.

The parts that are similar to the inheritance-only model have been grayed out. The
new elements model the possibility for the target language to obtain features from a
donor, whose feature inventory is denoted by feature vector y. The underlying variable
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Figure 3: Alternative hypothesis model M1.

z is a vector, of which each element zl encodes whether the target will attempt to borrow
feature l from the donor. The target language has two chances to gain a feature. If the
attempt is made (zl = 1) and the donor has the feature (yl = 1), it gets feature l from
the donor. Otherwise, it may still get feature l via inheritance, with probability θl. The
admixture parameter ϕ is used to generate z. Each element zl will be one with proba-
bility ϕ. Since any feature will be borrowed with this probability a priori, the admixture
parameter serves to denote the fraction of donor’s features that are given to the target.

How realistic is RAM as a model of phoneme borrowing? It is easy to find examples
where one language has influenced another to lose phonemes. Yánesha, an Arawak lan-
guage, lacks mid vowels due to influence from Quechua (Wise, 1976). Nukak, a Kakua-
Nukak language, lacks phonemic nasal stops due to influence from nearby Tukanoan
languages (Epps, 2011). Yet it is our (unquantified) impression that the borrowing of
phonemes is much more common than the borrowing of absences. We also proceed on
the assumption that gaining a sound can easily happen in instances of superficial contact,
but that losing a sound generally entails a deeper structural change in the phonology of
the language, which necessitates more intense contact. We felt that being unable to model
the latter phenomenon was a reasonable price to pay for having a simple model that was
sensitive to the former phenomenon, which we posit to be more common.

A more general respect in which RAM is unrealistic is that each feature is modeled as
largely independent of the others. Common sense (along with examples such as Tariana)
suggests that many phonemes are borrowed as a clump, as in the case of aspirated
voiceless stops or nasal vowels. Properly construed, what are borrowed are phonological
features such as aspiration or nasality, which manifest as new sets of phonemes. The
model, however, counts each phoneme as being borrowed on its own.

The way endogenous features are modeled is naive in the same way. Both M0 and
M1 model inherited phonemes as being generated independently. Since our method
relies on comparing two models, and the two models are naive in the same way, the
clumping of features does not bias the result in favor of either model. However, clumps
will cause the magnitude of the difference between the models to be exaggerated, since
each clump of phonemes, in essence a unitary phenomenon, gets counted many times.
Moreover, the borrowing of a large clump, such as nasal vowels, will have an outsized
effect compared to the borrowing of a phoneme such as /ɨ/ which tends not to partici-
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pate in clumps. This may cause the sensitivity of the RAM test to degrade substantially,
but we have no way to address this problem.

4.3. Borrowing score

In order to quantify the aptness of M1 with respect to M0 for explaining the data x0, we
compute the Bayes factor, which is the ratio of the marginal likelihood of each model:3

K =
p(x0 | x, y,M1)

p(x0 | x,M0)
.

We expand this so as to be explicit about which underlying variables are being summed
or integrated over:

K =

∑
z

∫
ϕ

∫
θ p(x0, θ, z, ϕ | x, y,M1) dθ∫

θ p(x0, θ | x,M0) dθ dϕ
.

Both models are simple enough that the Bayes factor can be computed exactly (see §A.2
for details). We use the log of the Bayes factor as a borrowing score for each donor-target
pair. When the borrowing score is greater than zero, M1 is favored over M0, and one can
conclude that it is more likely that the target borrowed features from the donor, than that
all its features were inherited. In our analyses, we will look for borrowing by applying
the RAM test to all pairs of languages in the dataset.

4.4. Caveats

No tractable mathematical model can account for every detail of a phenomenon as
complex as language. This is all the more true of models as rudimentary as M0 and
M1, which are, by design, just complex enough to yield useful results. Below we list
the more conspicuous ways in which the models are unrealistic, and describe how this
influences our interpretation of the borrowing score.

1. It bears repeating that the phenomenon of feature clumping, discussed in
§4.2, causes the borrowing score to be exaggerated. Consequently it is
ill-advised to interpret the borrowing score as the logarithm of a Bayes
factor, despite the fact that formally, that is what it is. Applying the
well-known interpretive scale proposed by Jeffreys (1961) would yield
highly misleading results. Instead, we recommend evaluating a borrowing
score by comparing it to what might be obtained from pairs of languages
chosen at random (see analysis in §5) and by choosing a threshold that is
high enough to filter out language pairs that are deemed unlikely, on
extralinguistic grounds, to have interacted. It should be noted that more
sophisticated models of admixture such as STRUCTURE and Daumé’s
model (§1) also assume that linguistic features are conditionally
independent, and are susceptible to the same kind of problem. Short of

3 To avoid clutter we write p(x0 | x,M0) rather than p(x0 | λ, µ, x,M0), and p(x0 | x, y,M1) rather than
p(x0 | λ, µ, x, y,M1), since λ and µ are fixed parameters. When the model being referred to is clear from
context, we may write just p(x0 | x) or p(x0 | x, y).
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building in a model for featural non-independence (this is a hard) the only
way to ameliorate this problem is to choose datasets with features that are
less non-independent.

2. M0 and M1 are not phylogenetic models. They do not model cladal
innovations within language families. Consequently the borrowing score
is unreliable as an indicator of intrafamily borrowing, as it will tend to
ascribe to borrowing the effects of shared innovations. For example, a
subset of Arawak languages in Peru have /tʲ/, which could well be a
shared innovation. But since this phoneme is rare in Arawak as a whole,
the RAM test will tend to treat it as having been borrowed between these
Peruvian Arawak languages.

3. It must be emphasized that M1 is a local model of borrowing, in the sense
that if another language is a more suitable choice as a donor than the
donor in M1, that does not affect the borrowing score. In our analyses,
some targets will have high borrowing scores with a large number of
donors, but there is probably just one actual donor.

4. Borrowing score is often a poor indicator of the direction of borrowing. In
theory it is asymmetric: if we switch the target and donor in a RAM test,
the borrowing score will be different. In practice, however, the real
direction of borrowing may correspond to the configuration that yields the
lower score. How does this happen? Suppose language A1 from family A
has given features to languages B1, B2, and B3, which make up family B.
Since every language in B has features borrowed from A1, the model will
believe that these features are endogenous to family B, and may even
believe that they were given to A1. In some of our analyses we use a
symmetric version of the borrowing score by computing the borrowing
score for two languages both ways, and taking the larger score to be the
score between the two languages.

5. Borrowing score is mildly transitive. If A gives features to B that B gives
to C, the borrowing score between A and C may be high. This means that a
high borrowing score is not necessarily indicative of direct contact. In
practice this is not a serious problem: transitivity leads to a small amount
of clutter in the results, but it is easy to identify and discount it.

6. Borrowing score does not respect distance. If one had wanted to model the
effect of distance, one could, in M1, adjust the prior for the admixture
parameter ϕ to have a lower mean for greater distances, but we did not do
this, as we were unable to think of how to do it in a principled way. We
opted instead to account for distance post hoc, as discussed in the next
section.

5. Results

The plots in Fig. 4 show, for each pair of languages not in the same family, the higher
of the two borrowing scores involving the pair, plotted against the distance between the
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Figure 4: Interfamily borrowing scores by distance. The second plot is an enlargement
of the first.

pair in kilometers. Also shown are quantile lines, conditioned on distance.4 There are
three things about this plot that accord with our intuitions about how a useful indicator
of borrowing should behave.r The median line is well below zero. The probability that two languages not

from the same family, chosen at random, have a positive score is 0.17.r The median line is relatively flat, indicating that borrowing score is not
merely a function of proximity.r The higher-quantile lines get higher as the distance decreases. The RAM
test finds that the closer two languages are, the more profitable it is to posit
borrowing. The bulge at 3800 km is due to how Andean and Patagonian
languages have similar phonological profiles.

It is desirable to plot these results on a map, to show the language pairs that are likely
to have had exchanged features. One possibility is to plot each pair with a score higher
than zero, by drawing a line between the languages on the map. But this plot would be
far too cluttered to be informative. In Fig. 5 we opt to plot just the pairs that are less than
400 km apart, that score higher than an arbitrary threshold of 3. At distances greater than

4 The median (50 percentile) line is drawn so that half the data points at any given distance are below it.
The 80 percentile line is drawn so that 80% of the data points at any given distance are below it. Etc.
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Vaupés

Middle Putumayo

Southern Andes

Upper Xingú

Figure 5: Line plot showing languages pairs with high borrowing scores. Some lan-
guages have been nudged apart for clarity. Languages in red belong to a proposed
culture or linguistic area. The supplement contains a larger diagram with all languages
labeled.

400 km, even borrowing scores in the 99 percentile range are mostly spurious, due to
coincidental resemblances and to how feature clumping exaggerates borrowing scores.

Fig. 5 has 143 line segments, each representing a hypothesis of contact. Only by
careful sociohistorical and geographical considerations can each of these hypotheses be
confirmed, but it is very suggestive that there are some places on the map where the
connections are especially dense. Four of these correspond to proposed culture areas
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Donor Target
2.7 23.4 ɬ d ʃ

6.9 58.8 hw kw ŋ

3.7 51.1 ɣ s ŋ

9.6 53.9 ɣ ŋ ẽ õ ɨ ̃ ũ i ̃ ã
15.4 65.9 ts ɣ ŋ ẽ õ ɨ ̃ ũ i ̃ ã l
11.8 59.1 ts ɣ ẽ ɨ ̃ ũ i ̃ ã l

2.7 25.9 hw

3.0 39.5 ɨ ̃ ũ ẽ i ̃ ã ɨ
3.7 42.3 ɨ ̃ ũ ẽ i ̃ ã ɨ
4.4 46.7 ɨ ̃ ũ ẽ i ̃ ã ɨ

4.6 49.4 ɣ l ts
3.0 37.5 ɣ l ts

4.3 38.7 ɣ ɨ ̃ ũ ẽ i ̃ ã ɨ
7.9 56.7 ɣ ɨ ̃ ũ ẽ i ̃ ã ɨ l
6.6 50.9 ɣ ɨ ̃ ũ ẽ i ̃ ã ɨ l

(T)Jurúna
(M)*Tapayuna
(T)*Kayabí
(C)*Ikpeng
(M)Suyá
(I)Trumai

(M)*Panará

(C)Kuikúro

(T)Kamayurá
(A)Yawalapití

(A)Mehináku

(T)Awetí

(A)Waurá

Figure 6: Languages of the Upper Xingú culture area, ordered from north (downriver)
to south (upriver). Asterisk marks those that entered the area after 1950. Line segments
show pairs with borrowing scores higher than 2. (Nodes on the left represent languages
as donors; nodes on the right respresent them as targets.) For each such pair, we report
the borrowing score, the mean percentage of the donor’s segments that were borrowed,
and the segments identified as likely borrowed, contingent on contact.

found in the literature on South American languages. The constituent languages are
colored red.

In two of these areas, phonological diffusion has already been documented: the
Vaupés (Aikhenvald, 2002) and the Southern Andes (Büttner, 1983). In the other two,
our findings of phonological diffusion are novel, but plausible. The middle reaches of the
Putumayo River and its tributaries constitute a culture area in lowland South America,
whose constituent ethnolinguistic groups are known as the People of the Center (Seifart,
2011). More well-known is the Upper Xingú, a very strong culture area located along an
upriver (southern) section of the Xingú River.
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6. Upper Xingú

6.1. Phonological diffusion in the Upper Xingú

In this section we take a closer look at RAM test results for the languages of the Upper
Xingú. Our main references for the linguistic situation in this culture area are articles by
Lucy Seki (1999; 2011). Since the time of the colonization of Brazil, the Upper Xingú has
served as a refugium for Indian tribes. As a culture area it is young — just 150 or 200
years in age — with a complex history of having other tribes pushed into its orbit by
settlers or transferred there by the Brazilian government. Intermarriage is common, and
on some occasions entire tribes that speak different languages came to live together. Of
the 16 languages or dialects that Seki (1999) lists as being in or associated with the area,
our dataset has phonological inventories for the 13 listed in Fig. 6. Their order in the
diagram corresponds to their order along the banks of the Xingú River. The languages
that entered the area after 1950 are marked with stars.

Except for Trumai, the Xinguan languages belong to four large families (Arawak,
Carib, Macro-Ge, and Tupí) that all happen to be widely dispersed in South America.
This makes it possible to infer the direction of borrowing. Accordingly, we distinguish
between donor and target, and draw line segments for the pairs that score higher than 2.
We have simplified the diagram somewhat by showing, for each target, only the highest-
scoring donor from each language family. For each line segment, we report two numbers
and a list of features. The first number is the borrowing score. The second is the estimated
mean of ϕ in M1 scaled up by 100. This is the percentage of the donor’s features given
to the target.5 The features that follow are the features that have the highest estimated
means for zl in M1. These are the features that were most likely to have been given to
the target. (See §A.3 for the details of these calculations.)

We note three patterns in how phonemes diffuse in the Upper Xingú.r Arawak and Carib languages are the recipients of nasal vowels.r Arawak languages are the recipients of /ɨ/r Carib and Tupí languages are the recipients of /ts/.

Table 2 gives some intuition for how the model arrived at these conclusions, by listing the
continent-wide frequencies of these features in Arawak, Carib, Macro-Ge, and Tupí. We
see that in each case, the recipient of a feature belongs to a family in which the received
feature occurs less frequently. Table 2 also serves to show that the features in question
have diffused widely, at least among the languages that are older to the area.

5 One reviewer remarked that these borrowing percentages are huge — as much as 65.9% in the case of
Awetí to Kuikúro. Such a high figure is partly an effect of relaxed admixture, but also not surprising after
considering the particulars of these languages.

With a standard model of admixture, a borrowing percentage of 100% means that the target ends up
identical to the donor, since it borrows both presence and absence of each of the donor’s feature values.
Under relaxed admixture, even a borrowing percentage of 100% does not prevent the target from
receiving features by inheritance. It would only mean that the target receives every feature that the donor
has. The flexibility of relaxed admixture implies higher borrowing percentages.

As for Awetí and Kuikúro, each has 26 sounds, of which they share 22. Of the sounds that are in less
than a third of all Carib languages, Kuikúro has /ts dʲ ŋ ɣ l i ̃ ẽ ã õ ũ ɨ/̃ and Awetí has all of these except
/dʲ/. As a donor, Awetí thus accounts nicely for 10 of Kuikúro’s 26 sounds, and has only 4 sounds that
are not in Kuikuŕo: /ʔ ʐ j ɾ/.
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/ɨ/ /ts/ /ã/, etc.
Arawak 65 19 30

Carib 3 14 100
Macro-Ge 7 79 93

Tupí 15 85 96
Jurúna (T) Y Y

Suyá (M) Y Y
Trumai (I) Y Y

Kuikúro (C) Y Y Y
Kamayurá (T) Y Y Y
Yawalapití (A) Y Y
Mehináku (A) Y Y Y

Awetí (T) Y Y Y
Waurá (A) Y Y Y

Table 2: Feature frequencies in four South American language families, normalized to
100; and whether those features are present in the nine languages from Figure 6 that are
older to the Upper Xingú (those that predate 1950). The last column is for any nasalized
vowel.

Our analysis often suggests several candidate donors for each target, but there is
often no obvious reason to prefer one over another. It may even be the case that the actual
donor is now extinct. On the other hand, the identity of recipients is less equivocal, since
that is inferred from the fact that they have features that are unlikely to be endogenous,
and that possible donors exist. It is worth noting that of the five languages not identified
as recipients, three are recent arrivals.6

6.2. A linguistic area without distinctive features?

The Upper Xingú is not documented as having many distinctive linguistic features. We
can show that this is actually the case for phonemes by attempting to train a naive Bayes
classifier to discriminate between Xinguan languages and other Amazonian languages
(see Michael et al., this volume, for details on this method). Let us posit an areal core
consisting of the nine languages in Fig. 6 that were present in the Upper Xingú before
1950. We also construct a control class of languages to serve as a background to the core
languages. These consist of the 43 languages in SAPhon that are at a distance of between
400 km and 1,000 km from the nearest language of the core. These two sets of languages
are depicted via dots of different shapes in Fig. 7. They are fed into a naive Bayes clas-
sifier, which calculates feature deltas, which are the strength of the association between
each feature and each training class (Fig. 8). The classifier also calculates language scores,
which denote the probability of membership of each language in each training class
(Fig. 7).

6 The other two are Yawalapití and Trumai. Seki (1999: 426) refers to a reconstruction of Proto-Arawak to
suggest that Yawalapití /ɨ/ may be a diffused Xinguan feature; but since /ɨ/ is present in 30% of Arawak
languages, the RAM test, with its coarse model of inheritance, could not conclude the same. As for
Trumai, it is hard for the RAM test to decide if any of its features are exogenous because it is an isolate.
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Pre-1950 Upper Xingú language
Control class
Test language only

Figure 7: Language scores assigned by a naive Bayes classifier. Redness (or blueness)
denotes the probability of membership in the Upper Xingú core (or the control).

As can be seen from Fig. 7, the classifier is unsuccessful in discriminating between
core languages and other languages. There are languages in the core that it believes,
based on their features, are not core-like (the blue triangles). And there are a very large
number of languages in both the control set and farther away that the classifier believes
should be in the core (red squares and circles). This suggests that the core languages
lack distinctive features. Fig. 8 provides more direct evidence of this. There are just a few
features with deltas greater than 2 or less than -2: these are relatively strong indicators
of the membership of a language. The analysis tells us that a Xinguan language is
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Figure 8: Feature deltas assigned by a naive Bayes classifier. Positivity (or negativity)
along the y-axis denotes the strength of the association between a feature and the Upper
Xingú core (or the control).

distinguished from its Amazonian neighbors by the presence of /ts/ and the absence of
/ɡ/, /o/, /ə/̃, tone, and long vowels. Clearly it is easy enough for this sort of language
to arise by chance, as it has in many other parts of South America.

We thus conclude that the Upper Xingú lacks truly distinctive phonemes. But could
it still be considered a linguistic area? Seki has called it an incipient linguistic area, noting
that as a culture area, it is young, and that there are relatively few features that have
diffused throughout the area. Our analysis favors the less nuanced conclusion that it
is a full-fledged linguistic (or, more precisely, phonological) area. The Upper Xingú
was one of the areas to be picked out by the RAM test as exhibiting a high density of
potential pairwise borrowing. We looked into M1 to see which languages and sounds
were involved, and found that the inferred targets of borrowing and the sounds inferred
as transfered were plausible. We also saw that some of these sounds were widespread
among the more longstanding members of the area. Despite that the sounds are not
distinctively Xinguan, we were led to the conclusion that they diffused throughout the
area. What remains is for other linguistic features (lexical, typological) to be investigated,
and other investigations to be carefully synthesized with ours, before an unequivocal
conclusion can be reached.
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A. Appendix

A.1. Universal feature frequencies

Both the inheritance-only model M0 and the relaxed admixture model M1 require
reasonable settings for the universal feature frequencies µ and the generality parameter
λ, both of which are vectors of L elements, where L is the number of features in the
analysis. In order to set µ and λ, we extend M0 to include all languages in the dataset
(Fig. 9) and estimate the mean of µ and λ in this extended model using Markov chain
Monte Carlo sampling. We set µ and λ in M0 and M1 to these estimated means.

The extension of M0 is defined as follows. We write K for the number of language
families, and Nk for the number of languages in family k. The data x is organized
as a vector of binary matrices (x1, . . . , xK), where xk is a matrix of size Nk × L. Each
family k is characterized by a bank of feature frequencies θk = (θk1, . . . , θkL), one for
each feature. Feature l in language n of family k is present (xknl = 1) with probability
θkl or absent (xknl = 0) otherwise. Feature frequency θkl is generated by drawing from a
beta distribution whose shape is determined by λl and µl, and whose mean is µl. Each µl

is drawn from a beta distribution parameterized by ρ1 and ρ0. Each λl is drawn from a
gamma distribution with shape parameter α and rate parameter β. Tying the elements of
µ, λ, and θ together in this way is a form of data smoothing. It prevents them from being
too extreme with features that are very common or very rare, as would be the case if they
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Figure 9: Model for estimating µ and λ.

were estimated in a less structured way (e.g., assigning to θkl the number of occurrences
of feature l in cluster k, divided by the number of languages in cluster k).

During inference we collapse θ and work directly with the relationship between x,
λ and µ. If we define Nkl = xk1l + xk2l + · · ·+ xkNkl, then for all k ∈ {1, . . . ,K}, condi-
tioned on λl and µl, Nkl has a beta-binomial distribution, and

p(xk1l, . . . , xkNkl | λl, µl) =

(
Nk

Nkl

)−1

p(Nkl | λl, µl)

=
B(Nkl + λlµl, Nk −Nkl + λl(1− µl))

B(λlµl, λl(1− µl))
,

where B(·, ·) is the beta function B(a, b) =
∫ 1

0 ta−1(1− t)b−1dt. We sampled each of the
uncollapsed variables α, β, ρ1, ρ0, λ, and µ from their posterior distributions using the
Metropolis-Hastings algorithm (Hastings, 1970).7 We write α̂ for the posterior mean of
α, etc. We obtained these posterior means for the following hyperparameters.

ρ̂1 ≈ 0.34 ρ̂0 ≈ 2.24 α̂ ≈ 3.89 β̂ ≈ 1.75

It is interesting that of the features for which µ̂l > 0.1, the ones with the highest λ̂l values
are /h/, /dʒ/, and /p/, which have λ̂l values of 3.45, 3.31, and 3.20 and µ̂l values of
0.68, 0.14, and 0.91. These phonemes are inferred to have similar feature frequencies in
all language families. The ones with the lowest λ̂l values are /k'/, /t'/, and /q/, which
have λ̂l values of 0.50, 0.54, and 0.77, and µ̂l values of 0.14, 0.16, and 0.10. These are
sounds that appear either at high or low frequencies, depending on the language family,
but seldom at frequencies close to µ̂l.

7 In our MCMC sample chain, we resampled each uncollapsed variable in a fixed order, and did this
100,000 times. Each element of λ and µ was resampled individually. We discarded the first half of the
sample chain and used the second half as the posterior sample.
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A.2. Marginal likelihoods
A.2.1. Marginal likelihood of M0. To compute the marginal likelihood of M0, we
observe that it factorizes:

p(x0 | x) =
L∏

l=1

p(x0l | x·l),

with x·l being a shorthand for the vector (x1l, . . . , xNl). We capitalize on the fact that the
beta distribution is the conjugate prior of the Bernoulli distribution, and observe that

θl | x·l ∼ Beta(Nl + λlµl, N −Nl + λl(1− µl)),

where Nl = x1l + · · ·+ xNl. This implies that

p(x0l | x·l) =

{
Nl+λlµl

N+λl
if x0l = 1,

1− Nl+λlµl

N+λl
if x0l = 0.

(A.1)

A.2.2. Marginal likelihood of M1. To compute the marginal likelihood of M1, it is
useful to think of this model as a mixture of M0-like models, with each possible value
of z yielding a component of the mixture:

p(x0 | x, y) =
∑
z

p(z) p(x0 | z, x, y). (A.2)

We write H(z) for z1 + · · ·+ zL and observe that H(z) has a beta-binomial distribution,
and thus

p(z) =
B(H(z) + 1

2 )

B(L+ 1)
.

The conditional probability of x0, like the marginal probability of x0 under M0, factor-
izes:

p(x0 | z, x, y) =
L∏

l=1

p(x0l | zl, x·l, yl).

When zl = 0, the lth factor is identical to the quantity computed in Eq. A.1:

p(x0l | zl = 0, x·l, yl) = p(x0l | x·l,M0)

When zl = 1, it is

p(x0l | zl = 1, x·l, yl) =



Nl+λlµl

N+λl
if x0l = 1 and yl = 0,

1− Nl+λlµl

N+λl
if x0l = 0 and yl = 0,

1 if x0l = 1 and yl = 1,

0 if x0l = 0 and yl = 1.

(A.3)
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Note that this equation is what establishes relaxed admixture. In a more convention
model of admixture, the right hand side would simply be one when x0l = yl and zero
otherwise.

Now that we explained the elements of Eq. A.2, we turn to the question of how to
evaluate it. Since z has 2L possible values, simply summing over all terms is compu-
tationally infeasible. Our solution exploits a recurrence relation to evaluate Eq. A.2 in
O(L2) arithmetic operations. For notational convenience, we define:

al = p(x0l | zl = 0, x·l, yl),

bl = p(x0l | zl = 1, x·l, yl)

for l = 1, . . . , L.

and

qh = p(z) when H(z) = h,

sh =
∑

z:H(z)=h

p(x0 | z, x, y)

for h = 0, . . . , L.

To be explicit, the summation for sh is over all values of z that contain h ones. We can
rearrange the terms of Eq. A.2 thus:

p(x0 | x, y) =
L∑

h=0

qhsh. (A.4)

What remains is to compute sh efficiently. We define the recurrence relation

Sl
h =


1 if h = 0 and l = 0,
0 if h > l or h < 0,

Sl−1
h al + Sl−1

h−1bl otherwise,

whence sh = SL
h for h = 0, . . . , L. To make it easy for the reader to verify this recurrence,

we write out Sl
h for small values of l and h:

h = 0 h = 1 h = 2 h = 3
l = 0 1 0 0 0
l = 1 a1 b1 0 0
l = 2 a1a2 a1b2 + b1a2 b1b2 0
l = 3 a1a2a3 a1a2b3 + a1b2a3 + b1a2a3 a1b2b3 + b1a2b3 + b1b2a3 b1b2b3

Note that Sl
h is what sh would be if just the first l features were part of the model. In our

routines for computing Sl
h we represent it on a log scale, to avoid problems of floating-

point underflow.
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A.3. Borrowed features
A.3.1. Fraction of features transferred. In the relaxed admixture model M1, the param-
eter ϕ describes the fraction of the donor’s features that are transferred to the target. We
describe how to infer the posterior mean of ϕ. Variables defined in our calculation of the
marginal likelihood (§A.2.2) apply here. As in that calculation, we treat M1 as a mixture.

E(ϕ | x0, x, y) =
∑
z

E(ϕ | z)p(z | x0, x, y).

By Bayes’ theorem,

E(ϕ | x0, x, y) =

∑
z E(ϕ | z)p(z)p(x0 | z, x, y)

p(x0 | x, y)
. (A.5)

The denominator is the marginal likelihood. The numerator is similar in form to the
marginal likelihood as stated in Eq. A.2, but each term has an extra factor of E(ϕ | z).
We capitalize on the fact that we are working with conjugate distributions, and observe
that

ϕ | z ∼ Beta(H(z) + 1
2 , L−H(z) + 1

2 ),

whence

E(ϕ | z) =
H(z) + 1

2

L+ 1
.

Since this is a function of H(z), we can evaluate the numerator of Eq. A.5 efficiently. We
write rh for E(ϕ | z) when H(z) = h. Then,

∑
z

E(ϕ | z)p(z)p(x0 | z, x, y) =
L∑

h=0

rhqhsh.

A.3.2. Loan probability of a feature. We now describe how to compute the transfer
probability of feature l, i.e. the probability that feature l was transferred from the donor
to the target under model M1. Variables defined in §A.2.2 apply here. The transfer
probability of feature l is

Pr(zl = 1 | x0, x, y) =

∑
z:zl=1 p(z)p(x0 | z, x, y)

p(x0 | x, y)
.

The denominator is the marginal likelihood (§A.2.2). The numerator can be computed
in a similar way as the marginal likelihood. For feature l = L, the numerator could be
restated as

∑
z:zL=1

p(z)p(x0 | z, x, y) =
L∑

h=1

qhS
L−1
h−1 bL.
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To calculate the transfer probability of other features, we reorder the features so that
the feature of interest is in position L. Concomitantly we must recompute SL−1

h−1 for h =
1, . . . , L, necessitating O(L2) operations.8

8 There is a way to compute the numerator for any feature l in O(L) operations, but it is numerically very
unstable. We describe it here in hopes that an interested reader could invent a numerically stable version
of it. We restate the numerator as ∑L

h=0 qhth, where

th =
∑

z:H(z)=h,
zl=1

p(x0 | z, x, y).

By this definition, t0 = 0. Other values in the sequence can be derived via the recurrence relation
th = (bl/al)(sh−1 − th−1).
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