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ABSTRACT OF THE DISSERTATION

Some Models in Relational Systems

by

Aaron Danielson
Doctor of Philosophy in Statistics
University of California, Los Angeles, 2018

Professor Mark Stephen Handcock, Chair

This dissertation contains two distinct parts. The first part presents a theory for the observation process in surveys
of human populations. Focus resides on the effect of survey instrument structure on the observed responses. If the effect
of instrument structure on a survey question can be estimated and certain exchangeability conditions hold, sampling
from the set of all possible survey instrument structures provides a way to assess the observed sample. This part then
introduces probability distributions that aggregate over the set of possible instrument structures thereby defining a way
to view data without an instrument structure. Methods to incorporate instrument structure are demonstrated in several
examples including a survey of a large organization. This dataset requires new techniques to account for dependence
between units in the population. The second part introduces a method to estimate latent networks of interacting nodes
when a group-level response variable is observed. In large populations, the number of possible ties between nodes
grows large. The models named CoordiNet and TriadNet place a prior over the dyads included in the model for the
group-level response. Doing so induces parsimony in the estimated social structures. This method is applied to data

from professional sports.
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Part I: Observation Effects in Survey Sampling



Chapter 1

Observation Effects in Survey Response

The first part of this dissertation addresses a type of incongruence between the phenomenon of scientific interest
and the data ultimately recorded in a survey. Contingencies thought to be unrelated to the system under study can
influence the survey process. For example, respondents interact with features of the survey instrument structure such
as the order of responses and the order in which questions are asked. These interactions can alter the probability
distributions over their responses. The observation of a phenomenon interferes with the system of scientific interest. If
the interaction has a large effect on a response variable of interest, then the observation process biases the sampled data.
If the probability distribution of the response variable can be expressed as a function of features of the observation
process, then probabilities can be computed for counterfactual values of the observation process thereby generating the
hypothetical population of probability mass functions associated with every value the features take. If survey designs
assign different features, such as response or question orders, randomly, then causal interpretations of the effect of

observational features on a response are warranted.

1.1 Observation vs. Data-Generation

Observation is the process by which a phenomenon becomes recorded data. Dependence between the random vari-
ables comprising these processes can bias the observed data according to the effect of features of observation variables.
Let Z be a set of random variables associated with the observation process, possibly connected according to graph
structure Gz. Observation variables describe features of the process by which data is collected. This set might
contain features associated with response order, the time allotted to complete the survey, sampling mechanisms and
nonresponse. Let X be a set of random variables associated with the data-generating mechanism, possibly connected
according to graph structure Gy. This set contains the variables thought to influence the value of the response if no

observation were made such as attributes of the respondent and responses to other questions in the survey.



Under ideal scientific circumstances the processes are completely independent. That is, forall X € X and Z € Z

pX,Z) = p(X)p(2).

Under these conditions realizations of the variables in the observation process do not influence the distributions of
the random variables in the data-generating process. Hence the data generating process can be estimated without the
random variables contained in Z. The observation process is ignorable. But when variables in Z interact with or

cause variables in X, the observation and data-generating process must be modeled jointly.

As documented in Chapter [2] attributes of the survey instrument ’s structure interact with the sampled individual’s
response process. Surveys can ask about two different types of information: data that could be externally verified and
data that is inherently subjective. For example, suppose a survey asks two questions. How many computers do you
own? And, how do you feel right now on a scale of one to five? The first question asks about a piece of information that
could be theoretically verified without consulting the respondent. But, the latter question cannot. Interaction between
of the observation and data-generating processes presents an interesting challenge for subjective questions. Suppose
the order of choice varies across designs, and different designs of the survey are randomly assigned to respondents. If
the presentation order of the responses interacts with the response process, the observation process is not ignorable.
In the case of the number of computers, external validation is possible. But there is no straightforward way to validate

the response. Responses to similar questions and actions can serve as proxies.

Because the subjective information cannot be verified externally, experiments are needed to test the effect of vari-
ation in the survey instrument structure on some result. Removing the dependence between the estimator and the

instrument structure leaves a probability distribution without the artifacts of the observation process.

1.1.1 The Observation Process in Surveys

Observation is a process: the primal phenomenon must be organized into a logico-semantic representation such as a
sequence of ordered responses indicating the respondent’s level of interest in some topic. The representation must be
measured via an instrument, the instrument must have a specific structure and sampled individuals must interact with

the instrument. As depicted in the following flow chart, observation comprises the measurement and recording of a



representation of a phenomenon as it is perceived by the survey respondents.

Phenomenon As-It-Exists — Phenomenon As-Can-Be-Represented
— Representation As-Can-Be-Surveyed
— Representation As-Can-Be-Perceived

— Representation As-Surveyed-In-Fact.

Realizations of each step in the process determine the observed data. The respondent’s perceptions of the underlying
phenomenon and mental state interact with the structure of the survey. Like the observer effect in physics, the features
of the survey used to elicit responses can change the system under study. For example, unfamiliar or complicated
survey designs may increase uncertainty in the mind of the respondent just as a thermometer may warm the liquid it is
used to measure. But, unlike bodies of water or quantum particles, the perceptions of the humans under measurement
also determine the responses. The respondent interprets the survey prompts in a way that need not match the inter-
pretation intended by the survey designer. Hence all survey data depends on the representation of the phenomenon of
interest, the instrument used to measure it and the perceptions of the sampled individuals. But, the dependence does
not imply that variation across representations, instruments, mental states and perceptions is meaningful in a scientific

context. When it is, the context of the data creation should be modeled explicitly.

New methods are needed to assess whether the realizations associated with the survey context are particularly ex-
treme and to understand the range of possible outcomes under counterfactual circumstances. Not only does this help
to get less obscured views of the scientific object of interest, it can reveal what type of designs can mitigate the obser-
vation effect. The results of explicit models for survey context can also reveal insight into the cognitive processes that
alter responses. If this can be done, context-adjusted samples can be produced that might constitute better depictions
of the real-world phenomenon scientists actually wish to study. The remainder of this section introduces a general

graphical model for the survey context.

1.1.2 A Graphical Model for Survey Response

Let the observation process be the collection of random variables O = {Z, E} with dependence graph Gy and X = {X, O}
with dependence graph Go. If there is dependence between variables in two sets, then the observation process may
intrude into the data-generating process. Aspects of the survey data creation process in general, and the network survey
data creation process, in particular, can be depicted as a graphical model. Let I" denote the representation chosen for

the phenomenon of interest. The scientific community in which observation is embedded dictates a convention for the



phenomenon’s representation. The convention reflects current theoretical understanding of the system, and practical
issues associated with feasible measurement devices and tractability of data analysis. Let Z be a random variable
describing features of the instrument used to collect the information required by a representation. Instruments include
tools such as surveys and sensors (both biological and mechanical); features of instruments include their material

composition and design.

Since surveys are completed by people, they contain artifactual information about the respondent. The way peo-
ple answer survey questions depends on the state of their cognitive processes and their perceptions of themselves and
the external world. The former represents the way the brain functions at the time of the survey; the latter describes
their internal conceptions of themselves and their relations. For example, respondents distracted by the memory of
something that occurred earlier in the morning may answer survey prompts differently than they would under other
circumstances. The survey responses are therefore imbued with cognitive artifact. To given an example of the second
concept, what constitutes “Interest” in a topic may differ between people. A person’s available and relevant social

context alters perception of the phenomenon of interest.

[S5] defines the notion of psychological entropy to be “the experience of conflicting perceptual and behavioral af-
fordances.” The psychological discomfort felt by respondents is associated with a heightened “degree of perceptual
and behavioral ambiguity within a situation.” Represent the entropy of a respondent’s mind by the random variable
E. Different values of E alter the probability distribution over responses in a survey setting. For example, suppose
objectively verifiable answers are available for the questions posed by a survey. When a higher entropy state is realized
due to some event independent of the survey process, the subject responds with increased levels of inaccuracy. In cases
where no such verifiable truth exists, such as how one person feels about another, the probability distribution exhibits

higher entropy thereby becoming less predictable.

Observation of the phenomenon of scientific interest may require that respondents perceive the questions in a way
that is similar to one another, and to the scientific community. When perceptions of the content of the questions
differ, and the difference in understanding is sufficiently large to change a sampled unit’s response, models of the
data-generating process suffer from omitted variable bias. If there is dependence between variables in two sets, then

the observation process may intrude into the data-generating process.

The level of cognitive entropy, E, determines the amount of variance in their reports. If cognitive entropy corre-
lates with ambiguity and novelty, then features of the survey instrument can affect the probability measure over E. A

novel or counterintuitive survey structure increases the probability of less reliable responses (if they could be verified).



Assume E and I' are independent given Z. The way in which a field of inquiry represents phenomena should not de-
pend on the particular state of E at the time and place of measurement. Moreover, given the features of an instrument,
Z, cognitive entropy does not depend on the representation. But, as previously mentioned, under some circumstances
the constitution of the instrument may be associated with E. Complex or unorthodox instrument designs induce greater

ambiguity in the respondent’s mind.

Scientists set the survey design Z ex ante; that is, they select an instrument to fit the needs of the data creation environ-
ment. The features of the survey affect the resulting data directly by framing the choice environment of the respondent
and indirectly by altering the respondent’s cognitive entropy. Some instrument designs may couple with certain rep-
resentations to have large effects on the resultant data; others can have relatively little effect. Lastly, the instrument
used to measure a phenomenon certainly depends on its representation. By setting a representation scientists identify
a subset of instruments concomitant with the representation. A possible theoretical framework for observation and
data-generating processes in surveys appears in figure If a variables belongs to the observation process its node
is colored green; if a node belongs to the data-generating process, it is shaded blue. The left panel displays a model
in which the cognitive entropy and instrument are marginally independent. The right panels depicts a slightly more
complicated scenario; it assumes the instrument structure causes changes in the probability distribution over cognitive
entropy. The third panel presents in which the variables associated with the data-generating process cause changes to
the probability distribution over cognitive entropy. Suppose the model in the left panel holds and the representation
for the phenomenon is held fixed, I" = y,, where yy denotes a conventional representation. Then the probability of this

relational system is

P(Q.Z EIX = z,T' = y9) = p(QIZ, E, X)p(E)p(Z]l" = o).

Similarly, suppose Z is fixed Z = zy so that z; are the features associated with a conventional instrument to observe
the phenomenon given the conventional representation I' = y,. Then the probability of the observed data given the

observation process is just

PQIZ = 20,T =y0) = ) p(QIZ = 20, E = &,T = yo)p(EIZ = 20, T = o),
ec&

Since E cannot be fixed, it is marginalized out of the expression. But, if a model for E is not tractable, then the survey
responses conflate the uncertainty associated with the phenomenon of interest with the uncertainty associated with

cognitive entropy of each of the respondents among other possible confounders.



Figure 1.1: Observation and Data-Generating Processes as a Graphical Model.

1.2 Survey Data without an Instrument Structure

How would individuals respond to questions if data were collected without a survey instrument? Consider a survey of
N subjects asking them to choose their favorite word from a list of options. Repeat the experiment |Z| times where
each z € Z is a distinct ordering of the options. Further suppose each z is sampled L times. The order in which the
various instrument structures were presented to respondents would influence their choices. Suspending disbelief for a

moment, suppose this is not the case and define

1 L
PO =9 =pQ=qZ=2=7 ) 1O =4qZ=2) (1.2.1)
=1

to be the probability of observing data Q with instrument structure z. The family of the probability mass function
{p(Q° = g)},c~ enables scientists to ask questions whether the differences in mass functions is significant. These
structures alter the data by changing the state of cognitive processes in the mind of the respondent. If such instrument
structures exist, they may reveal insights as to how respondents formulate responses to network surveys. Moreover,
the outlying data may provide different information about the object of interest. One way to compute this is to consider

the average KL-divergence

p(Q°)

[ p(QZ’)"Z']. (12.2)
7eZ

D KL(p(OINIp(Q7)) = KL

1
127l &4



The right side of the term on the right side is the geometric mean of the probabilities { p(OF = y)} meaning that the

7€Z
average KL-divergence is a measure of distance from the probability of agreement between all z’. As an alternative
define the expected probability that Q = g over the instrument structure. Since each z appears L times, they are equally

likely. The expected probability that Q = g is therefore

L

- 1
PQ)=pQ=q) = == > > O =qiZ =12, (1.2.3)
ZIL & 4

and the KL-divergence between p(Q°) and the expected probability is

KL(p(QO)IIp(Q%) = D p(Q* = g) log(

qeQ

p(O° = q)).

1.2.4
PO =q) (124

These two methods are not equal. Chapter [3|explores differences in the two means and their relation to the KL diver-

gence measures.

Of course, this thought experiment is not possible to perform. The order in which replications are introduced to the
respondent affects the downstream observations. More likely, the experiment could be run a single time in which the
possible survey structures are randomly assigned to the respondents, or in which a single survey instrument structure

is assigned to every respondent.

1.2.1 Exchangeability

Suppose only a sample of the possible instrument structures were implemented in a survey. In order to compute
probability mass functions of survey responses conditioned on counterfactual instrument structures, the data must be
exchangeable. The potential outcome Q* is distributed independently from the value of Z used to observe the data (see

[51). Symbolically, for all z € Z, Q%[ Z, so that
PO =qlZ=7X=x)=p(Q"=qlZ=7",X=X)

for all 7,7 € Z. Then if the instrument structures used in the experiment were randomly sampled the probability

mass functions can be interpreted as

p(Q*=¢qlX =x)=p(Q°=gqldo(Z =2),X =x).



Since Z is exchangeable, the effect of Z is causally identified if the positivity assumption holds. That is, there must be
a positive probability of receiving each treatment. Thus Q° can be interpreted as the counterfactual network whenever
Z # Zobs- As before, averaging over the counterfactual probabilities provides an estimate for the expected probability

distribution over Q. Then the probability distribution for Q adjusted for the survey instrument structure is given by

1
PQ=0)= ) pQ=qZ=0nZ == =3 pQ=dZ=2) (1.2.5)
€Z 7€Z

When the survey instrument structure is not randomly assigned to subjects due to dependence between the observation
and data-generating processes, methods from causal analysis identify instrument effects. For example, if a variable X

associated with the data-generating process is thought to cause Z, then

1
PQ=9=)pQ=dZ=0nZ=0= =) ) pQ=qZ=2X=0x. (12.6)
€l €Z X

Chapter [3] explores alternative aggregate measures such as mass functions proportional to the power means and the

Wasserstein barycenter.

1.2.2 Aggregate Measures for the Survey Process

Throughout this section assume I' = vy, where y is the conventional representation of the phenomenon of interest.
Suppose scientists survey Q in every way it could be observed, with every possible instrument structure. The procedure

generates a family of probability measures
PQ=¢qlE=e,X=x,2Z=2)},7- (1.2.7)

Each member provides a different lens through which humans view the primal phenomenon of interest. Average over
the different instruments and define an aggregate probability measure over the collection. Assuming the space Z is

finite, define

PQ=qE=eX=xT=y)=) pQ=¢Z=dE=eX=xT=y)
€Z

=Y pQ=gE=eX=xT=y,Z=rZ=dl=y).  (128)
€Z

The probability mass function n(Z = z|I' = ) places equal prior weight on each distinct instrument consistent with
the representation . The prior does not represent what design is likely to be used in the data created process, rather

it assigns probability to each of the ways the data could have been observed.



Note that £ depends on Z, but changes in E due to changes in Z are not included. This model conflates changes
in the level of cognitive entropy with changes in uncertainty due to Q under different Z. It does not account for dif-
ferent levels of cognitive entropy determined by different designs. Hence if cognitive entropy is thought to have a
negligible effect on the resulting data no matter the instrument structure, then [I.2.8]is a sensible choice. However, if a

model for E given Z is available, the probability

pP@=y.E=el =y)= Z pQ=4qlE=el'=vy0,Z=2)pE = elZ =n(Z =2l = o). (1.2.9)
€Z

can be used in its place. Here two the two sources of variation under different Z are modeled explicitly, but the
uncertainty in Q and E are conflated. If the cognitive entropy plays a large role in the behavior of the respondents, it

should be controlled in a similar manner to Z. Supposing E is finite, define the refined probability to be

PQ@=qR=r)=>" > pQ=qlE=e,Z=2p(E =elZ=n(Z=2IR =r.). (1.2.10)

ecE zeZ

This is the probability of observing realizations of Q absent a particular survey instrument structure and cognitive
entropy. Although the focus of this paper remains [T.2.8] methods to estimate this alternative probability measure are

discussed in

In typical situations it is not feasible to measure with every possible instrument. By modeling the data as a func-
tion of the instrument’s features, counterfactual data can be simulated and compared to the data created by instruments
actually used. This important step relies on exchangeability assumptions inherited from the causal inference tradition.
If statistics derived from the observed data appear to be extreme relative to statistics derived from the counterfactual
collection, then the particular instrument may have created data that does not reflect the distribution of data sets that
could be created by the set of all instruments. One must assess whether inferences made from such data sets reflect

properties of the scientific phenomenon of interest.
If use of these methods demonstrates that features of the observation process affect survey results to large degrees,

then it is possible observation effects exist in many social systems. The process at work in surveys represents a

particular example of a larger phenomenon.
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Chapter 2

Accounting for Observation Effects in

Subjective Surveys

2.1 Introduction

Surveys of subjective information differ from surveys of objective information in an important way: reports about
attitudes, preferences and impressions of the world do not refer to an unambiguous ground truth. If a respondent is
asked to report income, a birthdate or counts of some addictive behavior then, theoretically, these responses can be
compared to correct values. Inherently subjective surveys are therefore impossible to validate relative to an external
standard. Thus, a survey respondent cannot report subjective impressions incorrectly. It is well known that features
of the survey process such as the survey instrument’s structure affect the responses of sampled individuals. When
the responses can be modeled as a function of instrument structure, the population of possible survey responses can
be generated. This paper introduces a method to evaluate the extent to which a survey instrument structure produces
samples very different from the overall population. Then a method to aggregate over the population of counterfactual

responses to produce a distribution of responses free from the influence of a particular instrument structure is presented.

The structure of this paper proceeds as follows. Section [2.2] argues that surveys of subjective information are es-
pecially vulnerable to features of the survey instrument structure. Examples from existing survey data demonstrate
response and question order effects. These previous studies illustrate how reports of subjective impressions vary with
features of instrument structure. Section [2.3]introduces a general framework for surveys of subjective information.
This approach enables the researcher to assess the impact of the survey instrument structure relative to a population of

possible structures. Finally, a method to estimate a probability mass function aggregating over all possible instrument
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structures is introduced. Section [2.4] presents a method to model the entire survey jointly. Counterfactual methods
can be applied to aggregate over possible assignments of instrument structure and assess the extremity of the survey
instrument assigned in the observed data. Section [2.5addresses incorporating time limits on a survey as an additional

dimension of instrument structure.

2.2 Survey Instrument Structure and the Observation Process

Many random variables affecting survey data have been identified within the total survey error paradigm. [45] reviews
its history. Within this framework a taxonomy of errors is enumerated. Error associated with survey instrument struc-
ture nests within this larger conceptual structure. The authors write that, “Instead of concentrating on error models that
have nice estimation properties, we should focus on error models that better reflect the phenomenon being modeled.”
This is the approach taken in this paper. Rather than estimating error, interested is shifted towards a better understand-
ing of the data generating and data observation processes. The concept of an error implies a systematic deviation from
a true value. When surveys ask questions about objective information, theoretically verifiable facts, respondents can
answer correctly or incorrectly. For example, if asked to report the number of cups of coffee purchased per week,
researchers could compare the survey responses to an electronic purchase history. Objective survey questions refer to
answers that could be known with the use of the appropriate archival technologies. But, when surveys inquire about

subjective information, there exists no externally verifiable ground truth to which the response can be compared.

[94] posits a theory supporting the present thesis that subjective and objective survey questions differ in a funda-
mental way. Under their model respondents, “carry around in their heads a mix of only partially consistent ideas
and considerations. When questioned, they call to mind a sample of these ideas, including an oversample of ideas
made salient by the questionnaire and other recent events, and use them to choose among the options offered. But
their choices do not, in most cases, reflect anything that can be described as true attitudes; rather, they reflect the
thoughts that are most accessible in memory at the moment of response.” The authors contend individuals often have
conflicting opinions on an array of topics. Survey instrument structure biases cognitive processes towards a subset
of the respondents’ ideas. They argue systematic variation arises from the artifactual effects of the survey instrument
structure on responses. The present argument pushes strengthens these claims. Questions about subjective perceptions
cannot have error, rather the subjective report exists within the context in which it is observed. Changes in the context
of observation beget changes in the survey responses. Since responses can only be collected within a survey context,

the dependence between context and response is unavoidable.
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2.2.1 Examples of Response Effects

This section presents several examples of response effects owing to features of instrument structure. [30] states, “A
survey instrument is a tool for consistently implementing a scientific protocol for obtaining data from respondents. For
most social and behavioral surveys, the instrument involves a questionnaire that provides a script for presenting a stan-
dard set of questions and response options.” The particular form these questions and response options take comprise
the survey instrument structure. When the artifacts of the instrument structure interact with respondents’ cognitive
processes, omission of the association between features of the instrument structure and the surveyed data leads to a

misspecified model of the data generating process.

In the following examples, the presentation order of questions or responses varies. Then the researcher can perform
statistical tests to determine the degree of difference between the responses under different survey structures. The
focus of this paper is the effect of structure, not content. Structure involves 7ow humans observe a phenomenon while
content involves what humans observe. Changing the wording of a question changes the scientific object of interest;
the surveys elicits different information from respondents. But, changing the presentation order of responses elicits
information about the same content in a different way. Response changes persist across types of surveys whether they
are conducted face-to-face, by mail or electronically. This is important to note as simply changing the survey method
does not ensure that response effects do not bias the resulting data. Response effects are ubiquitous in surveys of

inherently subjective information.

[73]] reports several instances in which contingencies of sampling, such as the order in which questions appear, influ-
ence the behavior of survey respondents. In September of 1997 pollsters interviewed 1002 potential voters regarding
their impressions about the honesty and trustworthiness of Bill Clinton and Al Gore. Respondents were asked whether
each person is “honest and trustworthy.” When they were asked about Clinton first 50% said yes to Clinton and 60%
said yes to Gore. When asked in the opposite order, 57% said yes to Clinton and 68% to Gore. The probability of
observing this difference in support for Clinton given the two instrument structures is approximately 0.027 while the
corresponding number for Gore is approximately 0.010. Other studies reported in the paper also produce large dis-
crepancies when the survey instrument structure varies. The company that administered the poll averaged the results

across the two survey instrument structures so that

Pr{i affirms x|Z = z;} + Pr{i affirms x|Z = z,}
2

Pr{i affirms x} =

with equal weights since half of the sample responded to each structure. As the survey elicited subjective opinions, a

ground truth is not a coherent concept.
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Order Form A Form B

1 More difficult to obtain Easier to obtain
2 Stay the same Stay the same
3 Easier to obtain More difficult to obtain

Table 2.1: Actual Survey Instrument Structures Implemented in Mail Survey

[L1] provides another example as to how survey design can alter the process by which the object of scientific in-
terest becomes data. The authors present results of experiments on taxonomic and componential organization using
balanced incomplete block designs. Test subjects were asked to identify the most dissimilar word contained in each of
the triads presented to them. Dimension reduction via nonmetric multidimensional scaling was used with estimates of
the similarity between words as inputs. The second of the authors’ two goals for the paper is to “discuss the structural
problems which may arise with the use of” balanced incomplete block designs. They write, “Clearly, the similarity
measure for any two words depends upon context, i.e. in the case of the triads test the three words. For this reason, it is
important that triads tests be done on words which are from the same semantic domain, and which are at the same level
of contrast in that domain.” They find certain randomizations had a real effect on the resulting analysis. For example
the triad {corn, peas, lima beans} leads to what the authors call a structural problem with the design. The three form a
complete triad in the beans that there are strong dyadic associations between each. If another vegetable were chosen
from a different domain in place of one of the three, this object would be judged as most distinct. Hence the specific

random assignment of triads altered the observation process.

As reported in [3], response effects appear in mail surveys. Under these conditions respondents are free to com-
plete the survey in any order. Moreover, they may reread questions and change answers after taking time to deliberate.
The authors note mild question order and response order effects. Most notably, subjects were asked whether divorce
should be easier to obtain, more difficult to obtain, or stay the same as it is now. Choices were presented in ascending
and descending orders according to 2.1 The paper reports 57.9% of respondents chose the “more difficult” option
when the option to make divorce more difficult to obtain was presented before the option to make divorce easier to ob-
tain, while 47.4% chose this option under the alternative design. To generate an estimate of the probability distribution

over beliefs the data could be pooled so that

p(Q = q) = p(Q = qlA)p(A) + p(Q = q|B)p(B)

14



where p(A) and p(B) = 1 — p(A) are the marginal probabilities of the assigned instrument structure. Since the two
designs were assigned randomly, the estimate easier to obtain, while 47.4% chose this option under the alternative
design. To generate an estimate of the probability distribution over beliefs the data could be pooled so that

p(Q = qlA) + p(Q = q|B)
2

p Q=9 =

is the probability distribution unaffected by the specific realization of random assignment.

[63] investigates response-order effects in the General Social Survey of 1984. These are defined as “changes in the
answers to closed-ended survey questions produced by varying the order in which response options are presented.” Re-
spondents were asked about 13 qualities regarding children. After seeing the list, respondents were asked to name most
three desirable qualities, and from those three, to choose one as the most desirable. Analogously, respondents were
asked for the three least important and the least important among those three. They conclude responses to the questions
about child qualities are partially determined by the order of possible responses. In particular, placing a quality among
the first three choices increased the probability that it was chosen as one of the three most desirable traits. For example
when the trait ‘Manners’ was placed first rather than last, it was chosen as a top three quality in 16.3% more surveys.

When the trait ‘Honest” was placed second rather than 12%, it was chosen as a top three quality in 17.3% more surveys.

The two designs were implemented in the study are depicted in [2.2] Since the order was reversed, the qualities at
the beginning and the end have significant variation across the two designs. But, unlike the Clinton-Gore example, the
set of possible survey instrument structures is much larger than these two. There are 13! ways to list the options for

survey respondents. Averaging over the two observed structures models
pYi=klZ =z 0rZ = 2).

If there exists a model for the data taking the ordering information as data, probability distributions associated with
counterfactual survey instrument structures can be estimated. Then the true counterpart to the Clinton-Gore averaging

is given by

1
7 2 i =Kz =2)

€Z

where Z is the set of possible instrument structures. Doing so requires a method to generate the set of counterfactual

probability mass functions. Note that the 13 traits comprising the list of alternatives admits admits no natural or pre-
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Order Design 1 Design 2
1 Manners Studious
2 Success Interested
3 Honest Considerate
4 Clean Responsible
5 Judgment Obey
6 Control Amicable
7 Role Role
8 Amicable Control
9 Obey Judgment
10 Responsible Clean
11 Considerate Honest
12 Interested Success
13 Studious Manners

Table 2.2: Actual Survey Instrument Structures Implemented

ferred order; neither of the two forms is more natural than the other. Then any counterfactual order would have been
as plausible as the two observed survey instrument structures. This empirical fact lends credence to exchangeability
assumptions. That is, responses to the survey prompted with counterfactual instrument structures are independent of

the observed survey instrument structure.

Electronic surveys are also subject to response effects. [68] provides an additional example of an intrusive obser-
vation process. Individuals were surveyed about their opinions regarding the response to Hurricane Katrina. Two
versions of survey were used: one listing ranked alternatives in ascending order and another listing them in descend-
ing order. For example the first question in the survey asked about respondents’ interest in the events surrounding
Hurricane Katrina. For a subset of questions the alternative responses were listed in one of the two variations shown in
[2.3] These are the two orders that preserve the relative ranking between alternatives. The authors demonstrate that the
format assigned to respondents has a significant effect on the number of questions for which respondents chose one of

the top two levels. Novel ordering response effects for this study are presented in

16



Order Form A Form B
1 Extremely interested Not interested at all
2 Very interested Slightly interested
3 Moderately interested | Moderately interested
4 Slightly interested Very interested
5 Not interested at all Extremely interested

Table 2.3: Actual Survey Instrument Structures Implemented

2.3 Counterfactual Survey Responses

This section proposes a method to evaluate the sensitivity of the observed survey responses to changes in the instrument
structure using the electronic survey introduced in [2.2] Respondents received either form A or B. [2.3] details the two
structures presented for question one. In one version, the choices are in ascending order; in the other they are presented
in descending order. Both structures preserve the ordinal nature of the data while altering the order of presentation. The
experiment records for each respondenti = 1, ..., N the response given A or the response given B, but not both. Figure
[2.1) shows the difference in responses between the two groups A Chi-Squared test of the contingency table associated
with[2.T] concludes the test statistic is as large at the observed statistic in 5.6% of samples under the null hypothesis of
independence. This result suggests meaningful variation exists in the responses between the two groups. Form A lists
the possible choices in descending order and places relatively more mass on the two largest values. The responses of
the individuals who received form B place relatively more mass on the bottom three levels - which appeared closer
to the beginning of the list of choices on their survey. The forms were assigned randomly to individuals. Hence the
potential outcome Q¢ is distributed independently of Z, the actual survey instrument structure, for all z € Z ([51]).

Thenfori=1,...,N and z; € {A, B}
p(Q; = qilZ; = A) = p(Q;' = qilZ; = B).

As a consequence the probability mass functions governing the response to the question can be computed for counter-

factual survey instrument structures. Consider the average of the two probability mass functions
= X (h0f = B_
P(Qi =) = 5 (P(Q = )+ P(QF = 40).

The resulting probability mass function equally weights the contribution of all potential outcomes: estimation of the
probability distribution over a respondent’s selection accounts for all the possible ways the survey data could have

been generated. The instrument structure assigned to a respondent biases the response. Use of form A leads to overes-
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Figure 2.1: Histogram of Responses by Survey Form.
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timates of interest in hurricane Katrina while form B leads to underestimates. Under this distribution Q; is distributed
independently of the survey instrument structure. If this is the true scientific object of interest, then averaging removes
the bias introduced by the survey instrument structure. In the theory advanced by [94], considering all possible survey
instrument structures leads to surveys in which the respondent oversamples from every subset of ideas made more

salient by a particular survey instrument structure. Averaging corrects for this oversampling.

Under certain conditions, averaging also reduces the variance in the estimates of the probability mass functions. Vari-
ation in py(Q; = ¢;lz) arises from uncertainty regarding the estimator 6. If the estimators 8, for z € Z are independent

of one another, then

var (p(Q; = ) =  (var (p(Q = ) + var (p(QF = )

< max {var (P(Q? = 611')) , var (P(Q,B = Cli)}
so that if

var (p(Q}' = ) < 3var (p(Q! = q;)

var (p(Qf = g1)) < 3var (p(Q}' = ;)
then
var (p(Q; = g;)) < min{var (p(Q} = g1), var (p(QF = )}

That is, the variance of the aggregated probability mass function is always less than the most variable mass function.
And, when the variances of the potential outcome mass functions are sufficiently similar, aggregation reduces the un-
certainty in the estimate. In general, though, the model parameters do depend upon one another, and the inequalities

do not apply.

In this analysis the parameter 6 is assumed to be invariant across instrument structures, 6, = 6 for all z € Z. The

probability respondent i chooses level k is a function of the estimated parameters. To model the choice as a propor-
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tional odds regression set

p(Q; = klzi, x5 0) PO £ klzi, x5 0) — p(Q; < k — 1z;, x5 6)

F(apsr — (@i %) (B2, ) — Fle-1x — (zir ) T (B2, Bx)) (2.3.1)

2.3.2)
where F'is the Cauchy distribution function with center zero and scale one,
1 1
F(v) = —arctan(v) + =.
Vg 2

The parameter vector 6 subsumes the cut-point parameters a, the parameters associated with survey instrument struc-
ture 3, and the parameters associated with respondent attributes 3. Figure [2.2] displays the coefficients with 95%

confidence intervals. The parameter ‘Form’ is an binary variable indicating whether the respondent received form

Parameters Estimates for Question One's Model

African—American

Female —_—
Moderate —_—
South —_—
Age o

Form x Bachelor's

Bachelor's _—

Form S —

Parameter Value

Figure 2.2: Parameter Estimates with Confidence Intervals for Question One’s Model.

A; ‘Bachelor’s’ indicates whether the respondent attained a Bachelor’s degree; ‘Age’ indicates the respondent’s age;
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‘South’ is an binary variable indicating whether the respondent lives in the American South; ‘Moderate’ is a binary
variable indicating the respondent identifies as a political moderate; ‘Female’ indicates whether the respondent is fe-
male and ‘African-American’ indicates whether the respondent is African-American. Corroborating results in [68]],
ordering effects disappear for respondents with a higher level of education. This can be seen by noting the sign and

magnitude of the coefficients for ‘Form’ and ‘Form x Bachelor’s.

2.3.1 Individual Responses

Define the aggregate probability mass function to be the arithmetic mean of the probability mass function conditioned

on the actual and counterfactual instrument for respondent i,

. 1
PHQi=Kxif) = 5 > p(Q; = ki xit) (2.3.3)
z€{A,B}
with the empirical counterpart
. A1 R
P (Qi = klxi;0) = & P(Qi = Klz, xi; 0). (2.3.4)
z€{A,B}

—

Since the maximum likelihood estimates of 6 are asymptotically normal, the variance of p*(Q; = k|x;; 8) can be ap-

proximated via the A-method as

T

var(p"(Q; = Kxi; 0) ~ | Vo D p(Qi = Kz, x:38) | ZO)Vy > p(Q; = Kz, xi:0) (2.3.5)
zeZ €Z

where X() is the estimated covariance matrix associated with the maximum likelihood estimate §. The estimator
of [2.3.3] converges in distribution to a Gaussian distribution with mean [2.3.4] and variance Bootstrapping provides
an alternative method to compute variances. Sampling respondents from the data with replacement and computing
the parameter estimate R times obtains estimates (9(1), .. ,@(R)). For each sample r = 1,...,R, compute the fitted
probability mass function conditioned on the actual instrument p(Q; = qi|xi, 2 = Zobs; @(’)), the fitted probability mass
function conditioned on the counterfactual instrument p(Q; = gilx;,z = zer; @) and the aggregate probability mass
function p*(Q; = gilx;;67). Figure shows bootstrapped estimates of the median and 95% confidence intervals
of the actual and counterfactual distributions for 25 randomly selected respondents. The blue letter in the plot - an
indication the version of the form assigned for the survey - marks the median probability for level two, “Slightly
interested.” Figure [2.4] shows the actual and averaged distributions. Note the bootstrapped sample variance of the
averaged distribution is less than the actual distribution for 242 of 397 respondents; a paired ¢-test indicates the mean

difference is less for the averaged distributions.
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Confidence Intervals: Actual and Counterfactual
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Figure 2.3: Bootstrapped Probability Estimates with Confidence Intervals.
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Confidence Intervals: Actual and Averaged
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Figure 2.4: Bootstrapped Probability Estimates with Confidence Intervals.
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2.3.2 Pooling Respondents

The electronic survey was sufficiently anonymous to make the stable unit treatment value assumption (SUTVA). That

is, assume
p(QF = qilZ; = A) = p(Q} = qilZ; = B)

foriand j # iin 1,...,N. By pooling across the respondents, the set of possible instrument structures becomes

Z = {A, B). The population average
1 &
PQ=alxd) = > p(0i = qilxiid) (2.3.6)
i=1

aggregates the probability mass function of each unit in the sample. Similar inferential conditions apply to the popu-

lation average. The distribution of the overall average is asymptotically normal with mean [2.3.6]and variance
* A * AN\T * A
var(p*(Q = qlx; ) ~ (Vop"(Q = qx;0)) Z(6)Vep™(Q = qlx; d).

Bootstrapped estimates of the response probabilities for levels two through five are presented in[2.5] Each panel shows

a bootstrapped distribution for the aggregate probability mass function defined by
&
* — .A(r)__§ = . -9
p (Q - q|x76 ) - N £ p(Ql - ql|Z, X,H )

where r = 1,..., R indexes the bootstrap replications. The proportions observed in the original survey are denoted
by the red line. The observed values for levels three and five deviate from the mean of the bootstrapped distribution
by more than .05. The observed data is an unlikely realization given the responses to the question are distributed

according to the aggregate probability mass function.

2.3.3 Extreme Instrument Structures

In the original survey, respondents were randomly assigned form A with some probability 4. Sampling from this
space creates counterfactual treatments to all respondents with the same marginal probabilities. A counterfactual
estimate of the population-wide probability mass function given a vector z of instrument structures can be compared

to the set of all such estimates by computing

Z d(p(Q =qlz = (z1,...,23)), P(Q = ¢l = (Z},....Z\) (2.3.7)

7€ #z
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Figure 2.5: Density Estimate of the KL Divergences.
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the total distance of p(Q = ¢|z = (zi,...,zy)) from all the alternatives. The sum indicates the extremity in the esti-
mate relative to all others in the collection. Since this is also a function of the estimator 8, a further application of
the A-methods yields an approximation of its asymptotic distribution. Figure [2.6] displays a non-parametric density
computed with the KL divergences between probability mass functions conditioned on z and their geometric mean.

The fitted mass function evaluated with the actual survey instrument structure is much closer to the majority of the
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Figure 2.6: Density Estimate of KL distances.

survey designs than the observed probabilities. The response generating process cannot be perfectly modeled; this
method works better when the responses can be explained well by the variables in the observation and data-generating
processes. The observed distribution’s distance from the majority of probability mass functions reflects two sources
of variation: variation due to the actual survey instrument structure and non-systematic variation at the unit level. The

latter combines the association of unmeasured variables and idiosyncratic noise.
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Setting the distance function in[2.3.7]to be the KL divergence implies a common reference point. Observe

[ p(QZ’)l'z].

1
1Z] 11

> KL(A@)lIp(Q7) = KL [p(QZ)
7eZ

The right side of the term on the last line is the geometric mean of the probabilities { p(Y? = y)} meaning that the

7eZ

average KL-divergence is a measure of distance from the probability of agreement between all z’. The most outlying

member of the collection is defined as the probability mass function association with

HP(QZ’)E].

7€Z

7" = argmax KL [p(QZ)
€Z

Then the ratio

KL (p(09)|[Teez p(@7)#)
KL (p(0)|[Moez p(0%)™)

measures the relative extremity of Q°. Note that by the AM-GM inequality, for all ¢ € Q,

, i 1 ,
[[m@ =07 <1z ) po” =y,
7€Z 7eZ

so that the sum over all elements in Q is less than one. Normalizing defines the probability mass function proportional

to the geometric mean of the collection of counterfactual probability mass functions,

Moz p(QF = @)=

W(Q=q) = mA L
S ez Q7 = @)
Then
KL (p(Q9)|I¥) = log(K) + KL[p(QZ) [ p(QZ’)é]
7eZ
where

K=Y []re ==

y 7€Z

Then the elements that maximizes (minimizes) the distance from the unnormalized version will also maximize (mini-

mize) the distance from the normalized version.
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Using the Wasserstein distance between functions implicitly compares the probability mass functions to their Wasser-

stein barycenter. The total Wasserstein distance from all others is given by

D dp P = ; jnf ZX: zy: d(x, y)m(x, y).

7'#2

The probability mass function closest to the {p(Q|z},. 7 is the Wasserstein barycenter. While

RQ=¢) = argmin > d(p.,p) (2.3.8)
P(Qlz1)p(Qlt) 772,

is the member of the collection closest to the other functions. This suggests a different diagnostic: rank the members
of the collection according to their Wasserstein distance from the Wasserstein barycenter. Observe that if p(Q = g)

solves[2.3.8] then it is also the member of the collection closest to the Wasserstein barycenter.

2.3.4 Range of Possible Survey Outcomes

The experiments already considered preserve the observed distribution of respondents assigned to form A and B.
But, the probability of assignment to each of the two groups is a feature of survey design. Removing the constraints
augment the set of possible survey instrument structure to be {4, B}". The surveys in which everyone receives A and
everyone receives B belong to this set. Sampling 74 from the uniform distribution and then drawing form assignments
generates the full set of possible survey instrument structures. Figure [2.7] shows the density estimates for a sample of
assignment vectors. In each of the four panels, the red line indicates the observed probability, the green line represents
the probability had all been given form A and the purple presents the probability of response had all respondents been
assigned to form B. The distance between the green and purple lines measures the range of possible probabilities
achievable by different designs. The probability distributions exhibit significant variation; for example, the percentage
of respondents indicating moderate interest ranges from about 21 under the all form A design to 35 under the all form
B design. These plots illustrate the extent to which the subjective opinions of human respondents can be manipulated
via alternative survey structures. As in the case in which the number of respondents receiving form A and B are fixed,

a measure of extremity can be defined.

2.4 A Multi-Question Framework

Unlike paper-based surveys, electronic surveys enforce the direction in which respondents complete the question-

naire; the questions must be answered in the order in which they appear. Any such temporally-ordered survey can be
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Figure 2.7: Estimates of the Aggregated Overall Mass Function.

0.18 0.20 0.22 0.24 0.26 0.28

29



ql/g2 | 1 2 3 4 5

1 0.025 | 0.008 | 0.005 | 0.003 | 0.005
0.035 | 0.038 | 0.010 | 0.003 | 0.003
0.005 | 0.076 | 0.164 | 0.030 | 0.000
0.003 | 0.003 | 0.149 | 0.197 | 0.005

w A W

0.000 | 0.000 | 0.013 | 0.081 | 0.144

Table 2.4: Observed Joint Distribution of Questions One and Two.

decomposed as

M
PQ=0=pQi =di,-...Qu =) = | | PQu =l m’ < m).
m=1

The choices made in the preceding questions affect the responses to subsequent questions. Table [2.4] depicts a simple
illustration of this phenomenon. The joint probability density of questions one and two from the survey exhibits
dependence. For example, 56.7% of respondents supplied the same answers to questions one and two. If the response
to question two can be modeled in terms of the response to question one and the response to question one depends
on the presentation order of the alternatives, then response to question two indirectly depends on the presentation of
question one. Survey instrument effects in one part of the survey can spill over to affect other responses. Questions

one and two can be modeled as

p(Q1,Q2lz, x) = p(Q2|Q1, z, X) p(Q1z, X).

The mass functions for Q; and Q, depend on the respondent level attributes x. Figure [2.8|depicts the causal relations
assumed to exist as a direct acyclic graph. Randomization in the assignment of Z to respondents ensures the causal
effect of Z on Q) is identified. Identification of the causal effect of Z on O, requires conditioning on Q; and X. Doing so
blocks the two backdoor paths between Z and O, ([80]). Hence probability mass functions defined with counterfactual
values of Z can be computed and compared. Since question two is ordered, the same probability distributions are used
as question one save for the parameters. Figure [2.9]shows the parameter estimates with 95% confidence intervals of
the marginal distributions of questions one and two for choices three, four and five. Bootstrapped estimates of the joint

probability distribution are computed as

P"(Qi1 = q1,Q2 = qolx; 67, 6).
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Figure 2.8: Survey Process Model

Parameters Estimates for Question Two's Model
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Figure 2.9: Parameter Estimates with Confidence Intervals for Question Two’s Model.
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Figure[2.10|plots the aggregate marginal probability distribution for question one by the aggregate marginal probability
for question two for a sample of counterfactual survey instrument structures with 95% confidence ellipses. The large
variation in the responses to question two of the survey reflect the two sources of variation: variation due to the effect of

Z on the response to question two and the variation in question one due to Z. In the actual survey the presentation order
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Figure 2.10: Aggregate Probability Estimates with 95% Confidence Ellipses for Question One and Two.

did not vary across questions. That is, (21, z2) = (z, z). But, theoretically, the presentation could have varied; it would
have been possible to alternate the order of responses across consecutive questions. Exchangeability in this scenario
requires the potential outcomes of questions one and two are distributed independently from the survey instrument

actually administered to respondents.

PQU I = (], 25) = pQ I = (&, 2))

for all /, 7 € {A, B}*". This assumption implies the same model would have been estimated had instrument structure
varied across questions. The graphical model depicting the survey process changes to the DAG in Figure 2.11} The

universe of possible outcomes expands greatly.
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Figure 2.11: Counterfactual Survey Process Model

More generally, this procedure offers a method to compute probability distributions for all questions in the survey.

The set of all probability mass functions Algebraically the counterfactual joint probability mass function is given by

Figure 2.12: Counterfactual Survey Process Mode of Length Three.

M
PQ=dlz= G120 = [ | PQulzts %, oo’ < m).

m=1

The variation introduced by instrument structures propagates through the survey. Then extremity measures for the
entire survey instrument can be computed, as can the range of possible surveys under the set of possible structures

{A, BN,

Integrating question order effects in the framework presents an interesting application. The model in [2:12]is altered

to accommodate the new question order. Let z, denote the question order; the set of question orders is the set of all
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permutations of length M. If the order of questions varies in the data the aggregate probability mass function

. 1
P'Q=qlx) = m—M!;Qp(ka:z: @12 200) 2 X)

averages over both question and response orders.

2.5 Discussion

Much occurs before data is ever analyzed. A scientific phenomenon of interest must be conceived in some way. This
conception is given a logico-semantic representation. This representation must be measured with an instrument in
some larger context. The various choices made prior to the analysis shape the observed values. Whether this has any
practical effect on the conclusions (or inferences) made from the data depends on the sensitivity of the values with
respect to the range of possible choices at each level. Survey data constitutes an interesting case study: the object that
is measured consciously participates in the measurement. In these cases the observation and data-generating processes
cannot be separated. This paper provides a graphical model encapsulating random variables belonging to the data-
generating and observation processes. Using counterfactual logic, a method is proposed to average over the different
contexts under which respondents could have completed the survey. The information in a collection of models with
counterfactual survey designs is aggregated to form a single probability function. This can be used to observe the
sample free from the hue cast by a particular instrument structure. Then the paper suggests a diagnostic to analyze the

extremity of a survey instrument’s structure.

Survey instrument structure matters. When scientists write a survey, they intend to measure the distribution of sub-
jective ideas in the minds of respondents. They do not seek to measure the opinions of a group of respondents as
restricted or influenced by a particular way of presenting the survey. This paper has shown that reports are sensitivity
to instrument structure across different instrument types: face-to-face, mail and electronic surveys. When the instru-
ment structure varies across respondents and assumptions about exchangeability are plausible, counterfactual survey
responses can be generated and compared to the observed data. Empirical examples computed using the post Katrina
survey conducted by Knowledge Networks in 2006 demonstrates strong response order effects. Since the survey en-
forced respondents to complete it sequentially, each question can be modeled in terms the previous questions, features
of instrument structure and respondent-level attributes. Variation in the joint probability mass function over elements

in the space of survey instrument structure can be assessed.

34



2.5.1 Counterfactual Survey Time Limits

The survey studied in this paper also contains data on the length of time required for the respondent to complete the
survey. The electronic format did not place an explicit constraint on the amount of time allowed to complete the survey.
If exchangeability assumptions are warranted, then time limits can be construed as another form of survey instrument

structure. Then for survey instrument structure for a single individual is the vector

(@15 2m D).

If respondents decided how much time to allocate to the survey prior to completion, then the causal effect of time on
the response can be computed. This can also hold if the amount of time allocated to each is decided upon reading the

prompt. If, however, the time spent answering questions is a consequence of the survey responses, then

p(Q¥IZ, 1) # p(Q*'I,1").

Additionally, since the survey was web-based, the amount of time required for a respondent to complete the survey
was recorded. Estimates of the survival curve are presented in[2.13] Since some rule regarding the amount of time
allotted for completion must be chosen, including the choice of no time limit, this feature of the data collection process
can also be characterized as survey instrument structure. Hence the survey instrument structure subsumes the ordering

of alternatives and the amount of time provided to respondents.

35



Density

0.02 0.04 0.06 0.08 0.10 0.12

0.00

Survey Completion Time

— Nonparametric Smoother
—— Log Logistic Fit

0 50 100 150 200 250

Time in Minutes

Figure 2.13: Results of Maximum Likelihood Estimation.

36



Chapter 3

The Aggregation of Measures

3.1 Introduction

In some scientific settings a collection of probability mass functions over a finite set of states must be aggregated.
In chapters |2 and |5| collections of probability mass functions conditioned on counterfactual instrument structure are
analyzed. In both cases the surveyed information depends upon the survey instrument. Then the responses do not
represent the primary object of scientific interest, the responses independent of a particular sampling instrument. To
average over the effects of the survey instrument structure, a method is needed to produce a probability mass function
independent of a particular survey instrument structure. Other common needs for such a procedure include the aggre-

gation of a collection of experts and the creation of informed prior distributions.

This chapter explores several methods to do just this in the absence of training data. Two options receive significant
attention: the arithmetic average and the Wasserstein barycenter. To do this criteria for the comparison of alternative
measures are defined. It is shown that the arithmetic average of a set of probability mass functions is optimal in the
sense that it is the closest to the component. Moreover, this measure is the only aggregating measure to give equal
weight to each measure for every collection of measures. This egalitarian property is a stronger version of positive
responsiveness - the aggregating measure is monotonically increasing in each of its arguments. Although it is a natural
choice, if the members of the collection belong to an exponential family, the egalitarian aggregating measure is not
conjugate. The probability distribution of the sum of members from an exponential family is not a member of that

exponential family.

An alternative to the egalitarian measure is the Wasserstein barycenter. The barycenter when the distance between
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any pair of distinct elements is O or 1 is explored. The barycenter solutions satisfy boundedness (and therefore una-
nimity), but they are not responsive. Boundedness ensures the aggregate measure places no more or less probability

than the members of the collection do individually.

A third class of aggregating measures are the measures proportional to the power means. The geometric mean be-
longs to this class. In applications, the power mean can confer computational benefit. Moreover, when the collection
of probability mass functions share a common exponential family, the (weighted) geometric results in a conjugate
aggregating measure. Although the aggregating measure proportional to the geometric mean is exchangeable and

unanimous, it is not positively responsive nor is it bounded.

By introducing weights to the class of geometric means an optimal approximation to the egalitarian measure can
be computed that is conjugate to the collection. This is achieved by minimizing the KL divergence (or other measures
of distance between probability mass functions) relative to the egalitarian measure subject to the boundedness condi-
tions and, possibly, the requirement that the aggregating measure is no more informed than the egalitarian measure
in the sense that the entropy of the aggregating measure is at least as large as the entropy of the egalitarian measure.
Unlike other aggregating measures proportional to a power mean, the geometric mean admits a probabilistic interpre-
tation; it is the normalized probability that the component measures agree on subsets of the outcome space. This is the

probability of unanimity.

3.2 The Egalitarian Measure

Consider a collection of probability measures {P,}, cq over a vector of random variables (Yy,...,Yx). Let ¥ be a
probability measure over the same set of random variables that aggregates the information contained in the collection
{Pu}oea. A natural solution, as presented in [86], is to define ¥ to be the measure nearest to the members of the
collection of measures. Let M be the N x K matrix with the j column equal to (p (D), ..., pji(K)). Choose ¥ € Ag_;

to minimize the squared distance from M,

K
DU () - pik)*.

N
j=1 k=

—_

The solution, given by the first-order conditions of the objective function

M=

N
L= )

Jj=1

K
(W) - pj(k)* = A P~ 1),
k=1

>~
Il

1
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is to use the average value for each k in the support,
| &
(k) = ; (k). (3.2.1)

In words, simply choose the aggregate measure to be the expected probability with respect to some measure over
subsets in Q. In some cases a measure over w may be known, such as the percentage of a certain type of sensor, or
can be estimated using data. But, many applications admit no obvious choice. These situations require a more general
formulation. This choice is the most natural definition and the subject of the next section. Equation satisfies

many important properties. In particular, it satisfies unanimity.

Definition 1. A probability measure ¥ aggregating the mass functions {pj(l), ... ,pj(K)} satisfies unanimity at

N
j=1
state k € Q if

pi(k) = pa(k) = - - = pn(k) = p(k)
implies
Y(k) = p(k).

Suppose N measures place probability % on the outcome that it rains on a given day. Under what conditions should
the aggregate probability differ from %? The evidence, represented by the probability mass functions, does not suggest
a larger or smaller probability is warranted. If an aggregating measure is unanimous at K — 1 states, then it is called
unanimous. Since it is an average of the of the N probability mass functions, when all probability mass functions agree

on the probability assigned to state k,
&
¥k = JZ; Py = p(k)

where p(k) is the probability mass assigned to state k by all of the probability mass functions in the collection. Beyond
unanimity, the egalitarian measure must be bounded by below and above by the minimum and maximum probability
masses, respectively.

;V:l {Pu(B)}yeq is said to be

Definition 2. A probability measure ¥ aggregating the mass functions { pi(1),..., pi,‘(K)}
bounded if forallk = 1,...,K,

W(k) € |min p;(k), max pj(k)] .
J J
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Figure 3.1: Region of bounded Aggregating Measures.

[3.1) depicts the boundedness conditions. The blue line segment is the set of bounded aggregating measures. A
bounded aggregate measure can be as pessimistic as the most pessimistic measure and as optimistic as the most
optimistic measure. If the collection places mass on every element in the state space, then it cannot place mass outside
of the union of the support of { P j(k)}. This will not be true, in general, if there exists elements in the state space k such

that p;(k) = O for all j = 1,..., N. Boundedness also implies unanimity.
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Lemma 3.2.1. If an aggregating measure ¥ is bounded, then it satisfies unanimity. Additionally,

N
supp(t) < U supp(p;)-

=l

Proof. Assume the experts agree on a state k. Then boundedness implies
k =min p;(k) < ¥(k) < max p;(k) = «.
J J

Suppose k € supp'¥. Then boundedness implies there exists some j € {I,...,N} such that p;(k) > 0 so that k €
supp p;. Hence k is contained the union of the support of each member of the collection. If p;(k) > O for all j, then
W(k) = min; p;(k) > 0 and

N

supp(¥) = |_Jsupp(p).
=1

Remark 1. Lemma[3.2.1|provides a useful necessary condition: if ¥ does not satisfy unanimity, it cannot be bounded.

Since any function that lies outside the range of the experts on a set of positive measure cannot be an adjusted
measure, our definition excludes any non-unanimous measure. To see the use of this characterization suppose the

proposed aggregating measure is

exp {8 X, p,(0)]
Seexp{BL 3, pito}

Y(k) =

Then whenever the experts agree on an element k so that p;(k) = g(k),

iy = P 1B

= —_— k
S cexp By~ 1P

for some k. Hence this choice is not bounded. Note the egalitarian measure is not the only bounded aggregating

measure. One could choose to place weights on the individual probabilities such that
&
W(k) = ; wipi(k)

with w € Ay_;. Any choice of w gives rise to a bounded aggregating measure including placing all the weight on a
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single expert. Such a construction ignores the information from the other N — 1 experts.

Definition 3. Say the measure Y aggregating over {pj(k)}jk is positively responsive to j € {1,..., N} at state k if

Pik) = pi(k) > 0 = ¥'(k) - ¥(k) > 0 (3.2.2)

where V' is the aggregating measure obtained by substituting p}(k) for pi(k). If'¥ is differentiable with respect to p;

at k, then

0
—WY(k 0.
a0 TR

Positive responsiveness implies an increase in expert j’s assessment of k is accompanied by an increase in W(k).

An aggregating measure can also be negatively responsive. To see this let
1 &
¥(k) =+ D (1= pj(k).
j-1

_0_

ﬁp_(k)‘P(k) < 0 for all j and k. Positive responsiveness implies the aggregating measure moves in the same
J

Clearly,
direction as component measures when they increase or decrease the mass placed on a given k. A stronger property

of aggregating measures concerns how the rates of change relate to one another. The next concept defines such a

property.
Definition 4. The aggregating measure ¥ is said to be egalitarian at k if
Pi(k) — Pi(k) = Pi(k) — Pj(k) = e >0 = W (k) - (k) = 5(e) > 0.

If' Y is differentiable with respect to P, at B, then this can be expressed as

0 0

In words, each measure receives equal treatment at every point in the support. A weaker version of egalitarianism is

possible. Let { p j(k)} and {q j(k)} be two probability mass functions and j, j two distinct indices in 1, ..., N. Whenever

p;(k) = q;(k) and g_;(k) = q_; (k). then
pitk) = pik) = ¢y (k) — q;(k) = V'(k; p) =¥'(k; 9);
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and, if the aggregating measure is differentiable

Y(k; p) = Y(k; ).

0
ap (k) dq (k)

This weaker form of egalitarianism is equivalent to saying that ¥ is invariant under permutations of the collection of
measure. Component measures do not always receive the same weight, but they receive the same marginal weight
whenever the two components agree and the remaining components are permutations of one another. To see an

example of such an aggregating measure consider an aggregating measure proportional to the geometric mean

)l/N

0
o = ™

2k (Hj pj(k)

Clearly, this measure is invariant under permutations of the collection, but it is not egalitarian. The properties and

egalitarianism imply the egalitarian aggregating measure. This is demonstrated in the following proposition.

Proposition 3.2.2. Suppose Q is finite and the aggregating measure Y for {P;} is bounded and egalitarian. Then
| &
¥Y(B) = — Pi(B). 324
(B) N; (B) (3.2.4)
Proof. Since ¥ is bounded, it must be unanimous. By unanimity for all B,
Y(B|P;(B) =0,i € [N]) =0.

Let any P;(B) increase to €; > 0. Then ¥(B) = 6(¢;). If another P;(B) increases to € > 0, then ¥(B) = 6(¢1) + 6(e2).

This implies for any {P;(B)},
N
W(B) = > 6(P(B)).
i=1
Now suppose each P;(B) = q(B), then
B
4(B) = Nota(B) = o(qB) = L2
Hence

N 1 N
W(B) = ) 6(Pi(B)) =+ ) Pi(B).
i=1 i=1
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If all measures are absolutely continuous,
| &
= — (B
Y(y) ~ 21 pi(B)

almost everywhere. m}

If a collection of independent experts receive the same weight in every part of the support, then the aggregating
measure is simply their average. Of course, this is the same result obtained by minimizing the distance of ¥(k) from
each of a set of finite measures p;(k) shown in the introduction. The egalitarian aggregate measure has yet another
motivation. In the absence of training data to guide the aggregation of a set of probability mass functions, the researcher
can appeal to the principle of insufficient reason as described in [4]]. They write, “in the absence of evidence to the
contrary, all possibilities should have the same initial probability.” Placing a uniform prior over the different mass

functions implies the egalitarian aggregating measure

N
1
¥k = ) pinti) = - > pi(k).
J=1 J
3.3 The Power Means as Aggregating Measures

This section considers a general class of aggregating measures defined by setting ¥ to be proportional to a power
mean of the collection of mass functions {p J} The power mean aggregating measures are unanimous, responsive
and exchangeable measures. The unweighted power means, characterized by a parameter r, satisfy one-side of the
boundedness constraints. For r sufficiently close to one, the power mean aggregating measure is bounded. Conditions
for additional regions are given. If the members of the collection have weights, they can be chosen to approximate
the egalitarian aggregating measure. This holds because the power means are continuous functions. In addition, if
certain constraints hold on the probability matrix M, the power measure will be bounded for all r sufficiently large.
These means there will be bounded aggregating measures formed by power means with very different properties. The
next two subsections show properties that a function of probability measures must satisfy to produce an aggregating

measure.
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3.3.1 Function of the Component Measures

Suppose the aggregate probability of set B € B is a function of the collection of measures. Let the aggregate measure

be
W(B) = F(P(B),...,Pn(B))

where F : [0, 11Y — [0, 1]. To be an aggregate measure, ¥ must be a measure, and therefore, countably additive. This

means
Y(U,E) = Z P(E).
For this to hold,
F (Z P(E),..., Z Py(E)|= Z F(Py(E)),...,Py(E)).

3.3.2 The Power Means

Consider the class of aggregating measures defined by

) o k(y) = £ EUPIOD, - FonG))) (3.3.)

where f : [0, 1] — R is injective and in C* and g : R — R in C®. A special case of the f-experts is the power mean

L& !
W) o koy) = (ﬁ D (pi(y))’] (3.3.2)
i=1

for r # 0.
Proposition 3.3.1. The aggregating measures proportional to the r' power mean satisfy unanimity. When

a2k () , Sy amke(v)
ko) " XykO)

N
they are responsive to changes in the collection { p j}j:l of probability mass functions. Additionally, the aggregating

measures are partially bounded in the sense that
P(y) < max p i)
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forr>1and

Y(O) 2 m]in piy)

otherwise.

Proof. To see that ¥(y) o< k,(y) satisfies unanimity suppose p;(y) = p(y) foralli € {1,..., N}. Then

L& ;
ki(y) = [ﬁ > (p(y))’] = pO)-
i=1

That this choice of ¥ is responsive follows from the fact that

2 D) Ty k() — k) Ty 2k ()
opi (2, 60)

where

N

9 m(y)’ !
k0 = ( Z( ) ]

The numerator is nonzero whenever

Pi )”( i . (y)))"z k), Ty 5k )
" L) T k)

To establish the inequalities first let » > 1. The power mean inequality states for all real numbers r; and rp, r; < 1
implies

ke, () < ki, ()

Since the egalitarian aggregating measure is the power mean with r = 1, for all » > 1

ki(y) < ke (y)

so that
Z kr(}’) >1
y

with equality when p;(y) = p(y) foralli € {1,...,N} and

max; pjy) __kQ)
Sy T Ey k)

max p;(y) >
J
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Thus forr < 1,
PEOES
y

with equality when p;(y) = p;(y) forall i, j € {1,..., N} and

min; p;(y) _ k()
Yok T X k()

mjin i) <

Although these aggregating measures are responsive, it is possible for

0
—¥() <0
ap;

so the aggregating measure moves in the opposite direction as mass function p;. For example, the matrix of probability

mass functions
0.300 0.500 0.050 0.150

M =10.220 0.220 0.440 0.120

0.980 0.010 0.005 0.005

gives rise to an aggregating measure proportional to k,(y) such that the derivative of ¥ with respect to the second

probability mass function (the second row of M) at the first state in the outcome space is negative. More exactly,

9
k(1 3y k(1)
¥(l) = XM 475 004~ e
2k () 3y sk
In this case the third row places a large amount of mass on the first state. Hence increases in the second row’s
assessment of the first state have a small effect relative to the other two rows. Moreover, this demonstrates that
aggregating measures proportional to power means are not egalitarian. For a collection of probability mass function

defined on a two-element set both sides of the bounding inequality hold.

Proposition 3.3.2. Suppose {Pi,..., Py} is a set of measures over the two-point set {«,}. Furthermore, suppose
the set is distinct: at least two differ on every set in the sigma algebra of Q. Let the density functions be positive

throughout €. Then for any k € Q the power mean of {P(k), ..., Py(k)} is a bounded aggregating measure.

Proof. 1t is first shown that the proposition holds for the case in which N = 2 and the support of measures is the two

element set {a,} and r > 1. Since the measures are distinct, P;(a@) > P>(a) and P1(8) < P»(B) or Pi(a) < P»(a) and
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P1(B) > P,(B). Without loss of generality let PJ** be the probability assigned to @ by the larger of P; and P,. Define
1 1/r
A= (5 (Pi(a)" + Pz(a)r))

and

1 ) 1/r
B= (E (P1(B)" + Pz(ﬁ)r)) .

It shown that

P a) < < P"™(a)

A+ B

and

Pmin(ﬁ) <

< Pmax .
A+ B ®)

The power mean inequality states that for any m, n with m > n, k,,(y) > k,(y). Since the probability mass functions are

distinct, if r > 1, then the power mean inequality implies A + B > 1 so that

PmaX(a,) >A>

A+ B

and

PmaX(ﬂ) Z B Z

A+ B’

Only the lower bounds remain to be shown. Observe that for the two expert case, the probability mass function giving

the maximum mass to 8 will necessarily give the minimal mass to @. That is,

) B B A ;
= 1-P"(a)> = 1- = > P"(a).

Pmax (ﬂ) >
A+ B A+ B A+B A+B

An analogous argument shows

>Pmin )
A+B "~ ®)

This argument is extended for any number of experts N when K = 2. The addition of extra members of the collection
of probability mass functions does not change the logic. The mass function placing maximal weight on a places

minimal weight on 8. When r < 1,

A+B<1

48



implies

>A>Pmin
A+B @

so that

1- PmaX(ﬁ) <

N Pmaxw) >

A+B A+ B’

Hence it has been that the power means give rise to an aggregate measure for any collection of probability mass
functions over a two-point set. The proof follows precisely because of complementarities between the mass functions.

]

When the set of possible outcomes increases, this argument no longer holds. Take the following stochastic matrix

as a counterexample. Let the set of states be {«, 8, y}.

0.792 0.018 0.190

0.058 0.676 0.266

Then ¥(y) ~ .167 < .19 = min {P;(y), P»(y)}. Taking the limit as r increases to infinity provides conditions about
boundedness for the range of values over r. The following proposition derives a necessary condition for boundedness

forr # 1.

Proposition 3.3.3 (Sufficient Conditions for Boundedness). Let {Py,..., Py} be a collection of distinct probability

mass functions over the space Q = {1,..., K} with K > 2. If

max  P;(k) .
—————— >minPjk)
Zk man Pj(k) J

then there exists an r* > 1 such that for all r > r*, Y(y) « k.(y) is bounded. Analogously, if

—————— <max P;
> min; P;(k) i

then there exists an r, < 1 such that for all r < r., ¥(y) < k,(y) is bounded.

Proof. The value of the power mean converges to the maximum probability placed on state y by any of the probability

mass functions as r approaches infinity,

lim k() = max P,
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and it converges to the corresponding minimum as r approaches negative infinity,

lim k,.(y) = min p;(y).
r——o00 Jj

Hence
lim, .. k, "
Jim W) = 2 ok zrfli’xff& (339
Let
€0) = % - min P,(K).
By|[3.3.3] there exists an r*(¢;(y)) > 1 such that [¥,(y) - % < €(y) for all r > r*. Then
2,00 > i PO ) = min )
2 max; p;(y) j
Analogously, there exists r.(v;(y)) < 1 such that
() < % +,0) = max p, ().
O

This result implies coupled with the observation that for every collection of distinct probability mass functions,
there exist at least three possible regions such that ¥,(y) is bounded: very small values of r, very large values of r and

values of r near 1.

3.3.3 Example: Gaussian Experts

For our Gaussian experts suppose

1 - u))?
i) = expl— ’;’) . (3.3.4)
2no? 2O—j

The choice of the parameters {(,u_i, a‘%)} defines the collection. It can be shown that the entropy of each expert is given

by
&p)) = %m (2rexp{o?}). (3.3.5)
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Hence, expert i is shaper than expert j if and only if a’? < o-?. The degree of diversity in the collection is given by the

sum

D H(pip)=NN-1)->" f \Piwp;(uydu.
} iJ

{i,j:i#]

It can be shown that the product of any two univariate densities p;(x) and p;(u) is

A _(Y_,uij)z
Pz](y) = Pz()’)l?]()’) = \/EO'U- exp{ 20_3 }

where

2 2
WO+
[ ] P
Hij oot

2,2
U L
b= 0'%4—0'?’

i—11)°
o A= 1 ex {_ (Wi—pj }
" \/271(0".2 +o’§) P 2((7'12 +(r%)

Then

N B ppy=NN-1)= \//T,f NG o2y < NV =1 = 3 [n; = UB).
ij ij

As each A;; grows larger, the total diversity in the collection decreases. That is,

9 up- ‘/A_”lﬂé_”’J > 0.
c’)|,u,<—;1j| 2 oi+o;

3.4 Approximating the Egalitarian Measure

3.4.1 Aggregating Measures and Exponential Families

Section [3.2] derives many of the benefits of the egalitarian aggregating measure. But, in general, it does not satisfy
conjugacy. That is, if p; belongs to a family of probability mass functions, then the arithmetic mean of the mass
functions need not belong to the same family. Exponential families are generally defined by the parameter 6 in the
sense that each member can be indexed by 6, and the collection can be written as {pg(y)}gee- Differences in the
elements of the set are associated with different values of the parameters multiplying the sufficient statistics so that

each probability mass function weights the sufficient statistics differently. A probability mass function aggregating the
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collection with members given by
Poy) o< exp (67T ()}
is conjugate to the collection is it can be written as
W(y) < exp {F(O) ()

where T'(y) is the sufficient statistic common to each probability mass function. The function F : ®¥ — @ selects a
value amongst the various possibilities. Note the mass functions agree on the value of the sufficient statistics, but not
in the parameter values. For a finite set ®, C ©, if the members of the collection are not unanimous so that 6; # 6; for

some i and j # i, then the egalitarian aggregating measure is not conjugate to the exponential family as
n

D po) = Y exp {07 TG) - AG)

0€0, i=1

# exp{F(01,....00) T() = GA®)), ..., A@6,))}

for some y € Q.
Proof. Ts this true? O

Note, however, since exponential families are closed under multiplication,

n n T n

[ [ 7o) =] Jexp {7 70) - A@)) = exp {(Z 0,-) HOEDY A(a,-)} :
1 i=1

0€0, i= i=1

and there exist functions F and G such that the product of probability mass functions is contained in the exponential

family.

The models described in chapter [I] present a nonstandard exponential family. Consider the family of probability

mass functions given by
Pi(y:0) = exp {07 T0lzi) — A@©)}.-

Rather than differing the value of the parameter 8, the members of collection differ in the value of the sufficient statistic
T;(y) = T(yl|z;). Variation in the members of the collection originates from differences in the feature associated with

the observation process, z, such as aspects of the survey instrument structure, contingencies that must be set to make
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measurements. As argued for the exponential family indexed by the parameter 6, this exponential family is not closed
under addition. In general, the egalitarian aggregating measure over the {p;(y; 6)} is not a member of the exponential

family. But, the aggregating measure proportional to the product of probability mass functions does belong the family.

3.4.2 Approximation with the Weighted Geometric Mean

The insights from the previous section can be used to define an approximation to the egalitarian aggregating measure.
To derive an aggregating measure that satisfies boundedness and is conjugate to the collection of probability mass
functions whenever they belong to the same family, the egalitarian measure can be approximated by choosing weights
in the geometric weighed mean of the probability mass functions. More formally, suppose p; € 7,(Q) for all j €
{1,..., N} where 7,(Q) is an exponential family of probability measures over Q indexed by the variable z. Choose a

RXN 5 RX to minimize the difference

function F :

xp 0 @10 vO) g

2y exp{0TF(g1(y), .., gn()}

(3.4.1)

2

subject to the boundedness constraints

L exp{0TF(g100), ... gn()} .
M) S e T F 100, gnO] )

N
for all y € Y where {g j(y)}jzl is a collection of sufficient statistics. The function F maps N vectors of length K to a

single vector of sufficient statistics of length K. One particular choice of functions is

1 N
F@0). - 8n0) = 5 ]Zl wigi().

Observe that this choice is implied by approximating the egalitarian measure P by the class of measures proportional

to the weighted geometric mean of the members of the collection as

N Y Y wigi)
¥, (y) o (1_[ exp {eng()’)} ’] = exp {9T =1 Wisj }

N
j=1 2j=t W)

forally € V.
Proposition 3.4.1. Let N = K. For every point (Py, wy) such that
“Pwo()’) = PO(y)
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for all y € Q with D, ,F(Py,wy) invertible, there exists an implicit function G such that in a neighborhood around

(P07WO)

G(P(y)) = w(y)

for all y € Q. Hence the egalitarian measure can be approximated exactly.

Proof. Suppose N = K. The implicit function theorem as stated in [33]] can be applied to show the result. Define the

mapping
F(P,w) =¥, (y) - P(y).

Observe there exist points (Py, wg) such that F(Py, wy) = 0. To see this choose Py so that Py(i, k) = Py(j, k) for every i
and jin {1,..., N}. If the family of exponentials only differs in the sufficient statistic, then g;(y) = g(y) for all i. Then

since the weighted geometric and egalitarian aggregating measures satisfy unanimity,

exp{0Tg(y) _
) = RSO p
2y exp{0Tg(n)}
If the matrix D, F'(Py, wp) is invertible, the result holds. ]

For all N = K, the probability can be approximated exactly.

The aggregating measures proportional to a power mean parametrized by r € R also satisfies many desirable proper-
ties. But, they can give rise to probability mass functions that are not bounded. The probabilities assigned to certain
states can vary greatly from those given by the egalitarian aggregating measure. Observe that the distribution of the
aggregating mean can be influenced by the introduction of weights {wi}f\i , on the N probability mass functions. The

weighted power mean is given by

- !
o (s w) = (ﬁ > wipi(yy]
i=1

with Zf\i . wi = 1. The egalitarian measure can be approximated by choosing weights to minimize

2

1 N
N D Pi0) = Eiyiw)
i=1

2

subject to the constraint that w € Ay_;.
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3.5 Wasserstein Barycenters as Aggregate Measures

This section explores properties of Wasserstein barycenters over a finite collection of probability mass functions. Let
Q = {1,...,K} be a set of outcomes and let P be a matrix with N rows and K columns with P;. € Ax_; where P;. is
the j row of P. Additionally, let D be the square matrix of distances between the elements in Q. It will be shown
that for all K and N, the constraint qualification holds. That is, there exist matrices {H j}];[:l such that the constraints
implied by the definition of the Wasserstein barycenter hold. Hence an optimal choice exists. This is demonstrated for

the case where the distance matrix is trivial,
D=1 K — I[[(

and for symmetric matrices generally. Anisotropic distance matrices can also be accommodated.

3.5.1 Definition of the Wasserstein Barycenter

The following definition can be found in [25]. Let (Q,d) be a metric space for which every measure is a Radon

measure and let P(w) be the set of measures on Q with finite p™ moment for some element in Q.

Definition 5. A Wasserstein barycenter of N measures {P\, ..., Py} is a minimizer of
| &
[ P .
fO¥) = & Z«;‘ Wi, P).
over the set of all measures over the state space Q where W), is the Wasserstein distance given by

l/p
w, :( inf )fd(x,y)pdﬂ(x,y)) .

el (u,v

The authors of [2]] present results for the support of discrete Wasserstein barycenter for finitely supported measures.
That is, each measure places mass on a finite number of points in Euclidean space. The authors show the set of support
points is not contained in the union of the support of the individual measures. Hence discrete Wasserstein barycenters
in Euclidean space are not bounded by the component probability measures. This section focuses on the case such that

Q is a finite set. The Wasserstein barycenter is any probability mass function ¥ that minimizes

N K
5[ in, >
—d | 7el(p;,¥)

j=1 x=1y

K
d(x,y)’n(x,y)|.
=1
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This section considers two cases. In the first case the distance function is the indicator function; i.e., the distance is

zero when the components match and one otherwise. In the second case, elements in Q are taken to be matrices with

distances defined by the Hamming distance.

3.5.2 Unordered Finite Outcome Space

Suppose for any two points x, y € €, the distance between x and y is defined to be

I x#y
d(x,y) = .
0 x=y
Then the problem is to choose matrices I, ..., IV to minimize the objective function
N (K K
fam =y {Z D de,y ), ,]
=1 \y=1 y'=1
N K
_ I
= Z Z ,
=1 y=1 y'#y

subject to the feasibility conditions for j=1,...,Nandlm=1,...,N

D= pi)
J

D W=,
J J

and the non-negativity constraints

., >0

Yy =

for all /, y, and y’. Note that the objective function is the sum of the off-diagonal probabilities,

Z Z Mk, k) =1- Z ' (k, k).
k

k'#k k

Hence minimizing the objective function is equivalent to maximizing the probability mass placed on the diagonal

entries of the joint probability density matrices {Hl }

There are KN row constraints of the form j Hf(j = py(k) and K(N — 1) column constraints of the form }; j H; =

2 H;”k. The latter statement is true because conditions between consecutive values of [ are sufficient to equalize the
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column sums of the matrices {H’ } Choosing N matrices of dimension K x K implies the selection of K>N probability
masses. Let A be the matrix with K(2N — 1) rows and K?>N columns representing the constraints placed on feasible

solutions for the Wasserstein barycenter. A feasible solution for the problem can always be found by solving
All=b = M =A%

where A* is the Moore-Penrose inverse of A. Then Hi v

N
S = PN = 1.
k k=1

= pi(k)/N for all ¥’ and [. The column sums satisfy

This feasible point gives rise to the uniform distribution over the states in . Moreover, since the objective function
is continuous and the set of feasible points is compact, there exists a solution to the Finite Wasserstein barycenter

problem.

The following proposition introduces a method to identify a feasible collection of matrices yielding a lower value

of the objective function. This implies any collection of matrices solving the Wasserstein barycenter problem satisfies

1 _ : 1 1
J J

so that the full diagonal criteria is a necessary condition for a collection of joint probability mass functions to comprise

a Wasserstein barycenter.

Proposition 3.5.1. Let 1!, ... TIV be Kx K matrices representing the joint distributions between a candidate barycen-
ter ¥ and the probability mass function py, . .., py defined on the set of outcomes Q = {1, ..., K}. Suppose the matrices

are feasible in the sense that foralll = 1,...,.Nandk =1,...,K,
DI = i)
J
andforallm=1,...,N
l m
PILTEDILA
J J

but for some | and i

M, <mind 10, 3" 0 4 (35.1)
J J
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Then there exists a feasible YI' # IT' such that

FAT, 7Y < Fant, .

Proof. First observe that Hf( . can never exceed min{z g, 2510 j,k}. If it does, then the set of matrices is not a
feasible solution for the barycenter problem. Next suppose Hf ;< min {Z g, X510 j,,-}. Recall the objective function

can be written

N K
fy =" 3= T0)).

=1 k=1

Increasing the probability mass on Hf( . reduces the value of the objective function. There are three cases associated

with 33Tt

) 1 )
I, < an,j < ZH,;/@
7 7

1 1 I
M < Z I < Z I
J J

and

M, < Y MM, = > T,
J J
Suppose the first inequality holds. Then there exists some k; # k such that IT;x, > 0. Setting

=1l I
I = Iy + 1L

SO S e
Hk,kl - Hk,kl Hk,k] =0

transfers probability mass from an off-diagonal entry to a diagonal entry in the matrix while preserving the row sums
in the matrices. Since ), iy < >, jILjx there exists a set of indices {k’z} and numbers in [0, 1], {¢}, such that

> €l . = ik, . Then setting

= o
My, =T, , —all,,

I
+ 6,Hk£,k.



preserves the column sums. Hence IT' satisfies the row and column constraints. Since IT; 4, has been transferred from

an off diagonal term to a diagonal entry, the objective function decreases by Iy, . O

Since the diagonal criteria holds for any Wasserstein barycenter, the objective function must satisfy

fam = 1= min{ pi(y), Y 1T}
J

M= 1D

max { pi(y), Y I, b —mind py(y), »" I
j ]

-
Il

CHECHE
M=

)= ) T
J

—
]

-
Il

subject to the feasibility conditions for l,m = 1,...,Nandk=1,...,K

Z I, = Z I,
J J
DT = il
J

and the non-negativity constraints on the entries of IT', . .., TIV. Note that these constraints imply that 2y Dy H;y, =1

so that

YO = ) I,

is a probability mass function.

3.5.3 Wasserstein Barycenters for Networks

The previous section considers objects with the distance function equal to one when elements match and zero oth-
erwise. This section generalizes the discussion to collection of probability mass functions over the space of binary
networks using the Hamming distance Define the distance between two networks to be the Hamming distance between

their associated adjacency matrices. That is,

dy®,y®y =3 |vih v

m,n
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Set p = 2 so that the barycenter is defined with respect to the quadratic Wasserstein distance. Choose ¥ to minimize

the objective function

N K K 2
Z [n}sn Z Z [Z |xm,n - ym,n|] 7Tj()€, y)] .

j=1 x=1 y#x \m,n

subject to the feasibility conditions for ,m =1,...,Nandk=1,...,K

Z I, = Z I,
J J

2 ;= pik)
J

and the non-negativity constraints on the entries of IT', ..., ITV. Note that these constraints imply that 2y Dy H; v =1

so that

YO = ) I,
y

is a probability mass function. As in the case for unordered data, the optimal bivariate probability mass functions 7;

place as much mass as possible on the diagonal elements.

3.6 Comparison to Copulas

Thus far the examination of aggregating has been limited to probability mass functions over discrete spaces. Assume

the density functions are absolutely continuous so that for any set B € o7(Y),

P(yeB) = fB Pi)y.

The notions of unanimity and boundedness extend to the continuous case. A continuous aggregating measure over the

collection { pl}ﬁ | satisfies unanimity if
Y(B) = P(B)
whenever
P((B) = P(B) = P(B)
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forall ,m € {1,..., N}. Additionally, the aggregating measure is bounded if for all B € o(Y),
mlin P/(B) <¥Y(B) < mlax Pi(B).

This section explores the relations between copulas and aggregating measures of continuous probability functions.

[76] develops the theory of copulas; from it, the following definition is taken.

Definition 6. Let S1,...,S 7| be nonempty subsets of R, and let H be an |Z| real function such that the domain of H
is the Cartesian product of {S;}. Let B = [a,b] be an |Z|-box all of whose vertices are in the domain of H. Then the

H-volume of B is given by

Vu(B) = Z sign(c)H(c), (3.6.1)
or the |Z|"-order difference of H on B
Vu(B) = APH(t) = A’;g} - APTH(t) (3.6.2)
where
AZ;H(t) =H(ty,....te-1, b, tests - fiz) — H(ty, - et Gk, trests - - -5 HZ0)- (3.6.3)

An n-place real function H is n — increasing if Vi (B) > 0 for all n-boxes B whose vertices lie in Dom(H).
This last definition enables the following definition of a n-dimensional copula.

Definition 7. A function C : [0, 114 = [0, 1] is copula ifforalliin1,...,2Z,
o Cluy,...,ui-1,0,uir1,...,uz) =0 and
e C(1,....1Lu,1,...,1) =u; and

e Foreveryaandb in IV such that a; < b foralll=1,...,N,

Ve([a,b]) > 0.

A result, known as the n-dimensional Fréchet-Hoeffding bounds, implies there is exactly one bounded aggregating

measure in the set of copulas.
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Proposition 3.6.1. This set of continuous aggregating measures that are also a copula is nonempty. In particular, the

copula

y
C(uy,...,uy) = mlin (f pl(u)du)
has associated aggregating measure
Y(B) = P*(B)

where

P*(B) = min (f pi(u) du).
l B

Proof. By construction W(B) is the copula that achieves the Fréchet-Hoeffding upper bound. To see that ¥ is bounded,

observe that for all B,
mlin P/(B) =Y¥(B) < mlax P(B).
Since this choice satisfies boundedness, it satisfies unanimity. O

Remark 2. When absolutely continuous an adjusted measure, ¢, is a density and has an associated CDF given by

F(y) = fo by

An adjusted distribution’s CDF is a integral of a function of densities while the copula is a function of the individual

integrals.

Remark 3. Copulas are defined for multivariate distributions. Note that adjusted distributions are defined by multiple,
univariate distributions. That is, evaluate the probability a single realization of a single random variable with a pool

of experts.

Example 1. Adjusted measures with |Z|-increasing, grounded CDF. Two adjusted measures exist with a CDF that is

a near-copula. Observe that both

2 (i [, pulzdu) poyiz))

Q) = — :
5 (T L, ki) plokz
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and

¥ (Miss [, plulziddu) poyiz;)
Zj (Hi;tj f,}m P(“|Zi)du)

$(y) =

satisfy boundedness, although the demonstration of the former is more complicated. Both functions have a grounded
and |Z|-increasing CDF, but when all but of the component integrals are equal to one, the copula does not equal
the marginal CDF. This means that if all experts have placed all their mass save one, this last expert does not solely
determine the CDF. But, if there is an expert who places no mass in the region of study, she becomes the effective
dictator. Note that neither function is defined when more than one expert places no mass on the region. Finally, note

that

"y "y
Cluy, ... uy) = f Z (H f p(ulz[)du] p(vlzj)dv (3.6.4)
—00 j o

i#j Y

is a multiplicative copula.

3.7 A Probabilistic Approach

Rather than define an aggregate measure as an integral of a normalized generalized mean, let the aggregate measure

be the probability y € B conditioned on the set of component measures. That is,
Y(B) =E[Y € B[{P(B)}]. (3.7.1)

For countable additivity to hold, for all partitions of B given by {E j}i’

E[Y e uy:lEj|{P,»(u§£,E,)}] = E[Y e Ej'{P,-(Ej)}]. (3.7.2)

M
=1

J
Hence the expectation operator chosen must be linear. Note that unlike the kernel method, these models are undefined

whenever all measures agree. This can be corrected by setting ¥(B) equal to the consensus probability. Using a Beta

distribution to model P(B) results in the egalitarian aggregate measure.

Example 2. The Beta distribution is a natural choice to model probabilities. Conceptually, the probability that ¥(B)

is contained in some set S in the Borel set of [0, 1] is modelled as a beta distribution. That is,

w1 = wp ' du.

Pr{¥(B Pi(B)}} =
t{¥(B) € S [{Pi(B)}} fsB(a,,B)
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Under the assumption that the measures are independent of one another the maximum likelihood estimates gives
| &
E[Y(B)] = = P;(B),
(B = Zl (B)
and
T
¥(B)] = —— » (P«(B) - E[¥(B)])*.
Var [¥(B)] N_lg( {(B) — E[¥(B)])

Hence modeling the uncertainty associated with the aggregation of measures via a Beta distribution implies the egali-

tarian measure.

64



Chapter 4

A Joint Model for Response and Network

Formation

4.1 The Observation Process for Social Networks

Chapter [T] describes a general model for the observation and data-generating processes associated with surveys. In
this chapter this line of thought is applied to surveys of social networks. [47] and [48] introduce a theoretical and
computational framework for inference in networks surveys. They distinguish between the design mechanism and
the out-of-design mechanism. The former comprises the “part of the observation process under the control of the
surveyor,” such as the process used to sample dyads and the survey instrument structure. The authors focus on the
method used to sampled nodes; in this chapter focuses on decision of sampled dyads to provide responses. A model
suggested in [47] accounts for the reliability of reports by supposing respondents erroneously report non-links as links,
and vice versa, with probabilities @ and @y. Under these assumptions the sampling mechanism is non-ignorable That
is, the joint likelihood of the network and sampling mechanisms is not proportional to the product of their marginal

likelihoods.

The present model extends to cases in which the sampling D and response processes R need not give rise to sam-
ples satisfying the missing at random condition. For example, a sampled dyad’s response behavior may depend on
the response decisions of other dyads. In this case the network survey is relational: the sampling process or response
process depends on the underlying network structure. Consider two more common examples. In response driven
sampling (RDS) (see [41]]) the sampling process depends upon the local network of the seeds. Whether a node’s edges

are sampled depends on the sampling status of alters in some network Y. In egocentric survey sampling in which it
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is possible for sampled nodes to not respond, the response decisions may depend on the response decisions of other

nodes, in particular, the nodes in local networks.

The extended network survey model can be subsumed into the observation and data-generating processes. The obser-
vation process proceeds as follows. A network is represented as a collection of dyadic relations; this conception is
represented as an adjacency matrix; the adjacency matrix is sampled by a survey with a specific instrument structure;
individuals are sampled from the population of interest; and data is recorded for those sampled nodes who respond
to the survey. Let the observation process be O = {Z, D, R} where the random variable Z represents the instrument
structure, D is the sampling matrix and R is the response matrix. The data-generating process X = {¥, X} contains the

adjacency matrix Y, and node and dyad attributes.

Whenever an entire network cannot be surveyed, a sample is taken which introduces two additional sources of un-
certainty: uncertainty associated with the sampling and response processes. Let sampling and response be denoted by
the random variables D and R, respectively. The sampling and response processes determine which dyads are surveyed
and which are missing. If a dyad is not sampled or if a sampled dyad does not respond, then it is missing. The nodes
were sampled randomly in the survey data analyzed later in the paper, but the response decisions of the sampled nodes
were not made randomly. depicts three different models of observation and data-generation. The upper left and
right panels differ in how they represent the relationship between the network and the response decisions. In the left
panel, the response decisions do not depend upon the network Y. In the right, the response decisions depend upon
the response decisions of other nodes to whom the nodes are connected. The right panel presents a graphical model
with a social response mechanism; survey completion depends on social structure. The third model specifies that the
sampling process depends on social structure and other attributes X. This is a social sampling mechanism. Respon-
dent driven sampling provides an example of this. The instrument structure Z and the response decisions R could be
connected by an edge if response decisions are made after viewing the survey instrument structure. Sampled nodes

may decide to skip a survey if, for example, its structure is especially complex.

Let V be a set of N nodes. The probability a dyad is sampled can depend on the network Y and the sampling sta-
tus of other dyads. Whether a dyad responds to a survey depends on the response decisions of other other nodes in Y.

The joint probability of the relational system can be decomposed as

P,(Y =y,R=r,D =d|x,z) = Po(Y = y|x,2)Py(D = d|y, x)Pe(R = r|d, y, x)

where
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Figure 4.1: Observation (blue nodes) and Data-Generation (green nodes) in a Network Survey.

D is a binary matrix indicating whether the dyad was sampled,

R is a binary matrix indicating whether the dyad responded to the survey,

X is a matrix of dyad attributes possibly derived from node features, and

v = (,&,0) is a vector of parameters governing the sampling, response and the network formation process,

respectively.

The decomposition reveals the implicit assumption that networks exist prior to the survey process used to elicit them.
That is, conditioned on the survey attributes Z and dyad attributes X, the network does not depend on response or

sampling. To focus on the social response mechanism, assume ego were randomly sampled so that

p(DIY) = p(D|Y")

for all ¥, Y’ in the space of networks Y. Implications of this assumption are discussed in Section[4.2} generally, sam-
pling parameters can be estimated separately from the response and network formation parameters. A generalization
to estimate the three objects simultaneously is discussed in in Section4.3] Assume the network Y can be represented
as an exponential random graph model (ERGM) (see [59] for a good introduction). This framework posits the distribu-

tion of the network via sufficient statistics of the demographic and organizational data, the survey instrument structure
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and the network itself. If no data is missing, the probability of observing a graph is given by

exp {07 g0lx, 2)}

Py(Y =ylx,2) = K@)

where g(y|x, z) is a vector of sufficient statistics and

K©) = ) exp{07501x.2))

yey

is a normalizing constant ensuring the probabilities sum to one. More generally, the survey can obtain information
on several relational variables Yi, ..., Y. In this case more elaborate probability models are required. The appendix

provides strong conditions under which the multiple networks can be treated as a single network.

4.1.1 Violation of SUTVA

In an idealized survey setting the stable unit treatment value assumption (SUTVA) would hold (see [84] and [87]). That
is, the portion of the network supplied by an individual would not depend upon the assignment of survey instrument

structure to other respondents so that for every pair i and j of respondents
pYi=yilZi = 2,Z; =2, X) = p(Y; = yilZi = 2,Z; = 2/, X) = p(Y: = yilZ; = 7, X) 4.1.1)

for all z;, z}, z}’ € Z where Y; is the i" row of the adjacency matrix. But, networks exhibit dependence across dyads. If
the treatment alters the ties reported by respondents, then SUTVA cannot hold for an exponential random graph model
with arbitrary dependence across dyads. To see this suppose the reports are distributed as an exponential random

graph; i.e., let

exp {07 g(Y|1Z, X)}

P(Y =ylZ=2)= K@)

where g(Y|Z, X) is a vector of sufficient statistics, some of which depend on Z. Then the probability of the i" row of

the the adjacency matrix is

exp {ng(Y—i*, Vis |Z, X)}
K() ’

P(Yi=yulZ=2= )
V-in€Y i

Itisclear that P(Y = y|Z_; = z_;,Z; = 2;, X) # P(Y =)|Z_j = z_;,Z; = z;,X) for all j, z_;, z; and z} whenever the

coefficients associated with terms in Z are nonzero. Then for all i # j in models with dyadic dependence between

68



dyads incident on (i, j),
Py = yilZj=z2-jZ; = 2)) # Py = yiulZ-j = 2. Z; = 2)

Hence a network survey modeled as an exponential random graph with dyadic dependence cannot satisfy SUTVA.
Intuitively, suppose j receives z} rather than z; so that she no longer nominates i. Then under a model with mutuality

or transitivity terms, the probability that i would nominate j changes based upon values the corresponding parameters.

4.2 Modeling Social Survey Response

This section presents the sampling and response mechanisms. In network surveys it is possible that D and R depend

on the network structure they measure. That is,
p(D,RIX,Y) # p(D,RIX,Y")

for some Y, Y’ € Y. The following subsections explain the model choices for D and R with regards to the network Y.

4.2.1 The Sampling Process

The sampling status D and the response R are random variables. In the most general setting, D and R are random
matrices with components taking values in {0, 1} so that D;; = 1 indicates the dyad i is sampled and R;; = 1 indicates
the sampled dyad responds to the survey. Then the dyads in Y can be partitioned by the values of Y into Yqbs, Vs and Yy,
representing the observed, non-sampled and sampled but missing dyads, respectively. For the former the probability
a dyad is sampled can depend upon the sampling status of other dyads to which it is connected in the underlying
network. This holds for respondent driven sampling methods; an edge can only be sampled if it is connected to a seed
node. The organizational survey, however, followed an ego-centric design. Subjects were selected with probability 7.

This design is said to be conventional in the sense that
P(D =d|Y =y;n) = P(D =d:n)

forally € Y. If D; = 1, then dyads {i},,; are sampled. Two immediate examples demonstrate this. [48] shows the

probability of observing d given an ego-centric design with probability 7 is given by
p(D = dlY,m) =y (1 =MD
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where s € {0, 1}V is the vector of sampling statuses. Alternatively, suppose a sample of size n is drawn from the set of

nodes V. Then since a dyad is sampled whenever i or j is chosen, the probability of observing dyad i; is

p(Dij=1Y =y;n) =Pr{S;=1,5; =0} +Pr{S; =0,8; = 1} + Pr{s; = 1.8 ; = 1}
nn-1) N nn—-1)
Vidvi=2)  vidvl =1

and does not depend on the underlying network. Since the sampling matrix is independent of the network, the joint

probability mass function can be factored as

p(D,R.Y|X,Z) = p(D;m)p(R,Y|X,Z, D: £, 6).

Inference about the parameters associated with (R, Y) does not require evaluation of p(D;n). The next section discusses

models for the response decisions that violate this principle.

4.2.2 Regression with Interactions

In many cases response decisions in surveys cannot be coerced. Sampled units may not agree to participate in the
survey and those who do may not answer specific questions. For these reasons response behavior belongs to the out-
of-design mechanism of the sampling process. When non-response is present, its patterns may be associated with
characteristics of the sampled unit and the decisions of other sampled units. These two approaches are presented in
The former is a standard procedure in survey statistics. Models for survey response generally assume conditional
independence between units. That is, after accounting for observable features of the sampled nodes, decisions to
complete (or partially complete) the survey are independent; sampled units are not influenced by the response decisions
of others. Inference of the data must account for non-response bias by modeling it explicitly. After computing the
probability of response for each the units, they are weighted so that response is no longer correlated with the variables
of interest in a study. Under these conditions the joint probability of the response vector and network structure is given

by

P(R,Y;&,0) = p(RIX; §)p(Y|X, Z; 6).

Inference for & and 6 can be completed separately. Logistic regression can be used to estimate the probability of
response for each sampled unit. Whenever nodes can communicate prior to completion of a survey or can formulate
the expected responses of their peers, then a social response model should be considered. Under a social response

model the probability that unit i responds depends on R_;, the response decisions of the other sampled units. In
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complex social structures the dependence structures between sampled units is unclear. Fortunately, when network

information is available, it can be integrated into the model.

Exponential Family Model with Neighborhood Structure

Ising and Curie-Weiss models either assume all units depend on others or assume a neighborhood structure based on
physical proximity. But, for social networks one’s peer group can depend on a confluence of factors. The network
structure elicited by the survey serves as a reasonable approximation to the peer group. Response can therefore depend
on the sampling statuses and response decisions of nodes to whom they are connected in network Y. Suppose Y is a

directed network for the nodes in V. Then the response vector can be modeled as

PR =rY =y) o expié ZRi +§QZR,~ijaX{Yij,in}

i<j

Response decisions depend on number of total responses and the number of mutual responses between those connected
in the directed network. Sufficient statistics derived from the set of features of the sampled units can be added to the

model. Then the joint probability of the response vector and network can be decomposed as
PR, Y:£,0) = p(RIY, X:O)p(Y|X, Z; 6).
consider the model
P(R=1ID =d,Y = y;£) < exp (¢ h(rld, y, %)} .

If the vector of sufficient statistics depends on other response values, then R is an exponential random graph. Other-

wise, response decisions can be modeled as a logistic regression. Let Ny (i, k) be the set of nodes that are k edges away
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from i and define the functions

1
iri=1}]

R.
h(RIY,X,Z) = h = .
1Rl )= ) i:l;lljeN<i,1);D/-1 '{jeN(i,l):DJ: 1}'

1
=]
R;

hRIY, X,Z) = h =
2(RIY. X.Z) = hy(Rly) ]D_[1 o [[eNGD D= 1]

R, X, Z) = hy(RIY) = > 3" max(¥yj, ;i) f(Xs, X)R;
i:D;=1 j:D;=1,j#i

ha(RIY.X.Z) = (RIX) = ) XiRi
i:D;=1

hs(RIY, X, Z) = hs(RIZ) = > f(Z)iR;

i:D;=1

to be the vector of sufficient statistics for the response model. The function /; is simply the geometric mean of the
response rates within each node’s first-degree neighborhood. The function 4, measures the response rate of neighbor’s
neighbors. Association between node response and covariate values of the dyads with defined by Y is captured by /3.
Functions h4 and hs measure the association between response and covariates without the influence of Y. This is the
information available to estimate survey response models in typical cases. Functions A, and A, induce dependence
between the response behavior of sampled nodes; whether i responds to the survey depends on the response of alters
in i’s neighborhood. Since response depends on Y, it is not ignorable. This can be seen by writing the joint likelihood

as

L6,&,nY,D,R,X,Z) o p(Y,D,RIX,Z;0,&,n)
= pD=dY,X,Z;n)pR=rD=d,Y,X,Z;)p(Y = y|X,Z;6)
= p(D=d;n)pR =rld,y,x,2;6)p(Y = yl|x,2;0)

= L@n|D)L(,€ly,d,r, x, 7).

Correlated Response Model

While the exponential family model has intriguing properties and allows for flexible terms, estimated distributions

can exhibit degeneracy. An alternative is to model the response decisions using the social network as a dependence
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structure for the unsystematic variation in R. Let

R: = fTX,' + €

where € is distributed as a multivariate Normal random variable with mean zero and variance matrix

o? ifi=j

Po ifi#j,Yij+in=1

2(Y)ij = “4.2.1)
pr ifi# j,Y;Y; =1

0 else.

In this construction, R* is a vector of latent variables with
PR = 11X,Y) = p(R; > 01X,Y)

If i and j are related, then their response decisions have nonzero correlation. The model assumes mutual and asymmet-
ric relationships can have relations of different strengths. More elaborate structures are possible. Given a community
structure {Vy, ..., Vy}, nodes belonging to the same cluster V,, have correlation p,, while relations between members

of different groups are py. The conditional densities are then
PRRIR" 1 X jt, 5(Y)) = N (s + 2(V); 2V} (o = ), E( )i = XV 2007 S i)
Writing the joint density as an exponential family,
P(R*IX, y(u, 2(Y)) = exp {—% [(R*)TZ(Y)’IR* —2u"E) 'R+ " E(Y)  + log (2ndetz(y))]}
implies parameters
y=(EW wzm™)

for the sufficient statistics R* and R*(R*)". Then the joint distribution of (¥, R*) is also an exponential family.
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4.3 Estimation and Missing Data

Joint estimation exploits the Markov chain Monte Carlo maximum likelihood method developed in [39] and [40] and
applied to networks in [59]. [48] applies estimation to missing data in which the data is missing at random. The

present case extends this estimation methodology to cases in which data is missing not at random.

4.3.1 Complete Data Likelihood

Before analyzing estimation of the relational system for partially observed data, consider the complete data case.
Recall that the joint distribution of response behavior and network structure is an exponential random graph with

probability mass function

exp {£Th(rly, x) + 67g(lx, 2)}
K(£.0)

Peg(R=r1Y =ylx,z) =
where

K&0) =) > PepR=rY =)x2).

yeY reR

To simplify notation let 8 = (&, 6) and f(r, y|x, z) = (h(r|y, x), g(y|x, z)). Then the ratio of normalizing constants can be

written as

% = Egy [exp ((B - B) T f(rylx.2))]

= 3" > exp{(B - o) £y, ) Py (). 2.

yeY reR

To approximate this quantity, suppose {(7,,, y,,,)}f‘,;[=1 is a sample from Pg(r, y|x, z) and compute

% Z exp {(B = Bo) " f (s Ymlx, z)} .
m=1

This term converges to the expectation as M — oo. Then the ratio of the probability of observing the data (robs, Yobs)

for parameter (£, 6) and reference point (&, 6p) is

>

B
K(Bo

lo (P(ﬁ)(robs,yobs)

) = (ﬂ _ﬂO)Tf(robm yobs|x’ Z) - log(
P(ﬂo)(robs,yobs)

|

exp{(B = Bo) S (rms Yl D} |

~

N
M=

~ (B - ﬂO)Tf(robs’ Yobs|x, 2) — IOg[

1

3
Il

74



4.3.2 Partially Observed Data

This section derives an expression that can be maximized to obtain estimates of 5 based upon the observed likelihood.
Edges in the surveyed network are missing if D; = 0 or R; = 0. Then Y can be decomposed into observed dyads, Yops,

dyads associated with nodes who did not respond,
Yor = {Yij 1 R = 0,D; = 1},
and dyads associated with unsampled nodes,
Yoo = (Vi : D; = 0}
so that Y = Yops + Yis + Yy The pair (v, w) is concordant with the observed dyads yops if yops + v+ w € Y. Let
Yobs) ={u=v+w:yops +u €Y,v € Yy, w € Yy}

be the set of all subnetworks concordant with y,ps. Define the conditional distribution of Y given the observed responses

Tobs and the observed dyads yobs

exXp {ﬁTf(robs, Yobs + Ulx, Z)}
K(BIrobss Yobs)

Pﬁ(an =V, Yus = WIR = Fops, Yobs = Yobs» X, 2) =
forv+w = u € Y(yops) Where

K(Blrobs» Yobs) = Z eXp {ﬂTf(r7YObs + ulx, Z)}

ueY(obs)

is the conditional normalizing constant. Then reasoning as in Section 4.1 of [48] conclude

L(B|Yobs = Yobss R = Tobs) o Z P[J’(R = Fobs» ¥ = Yobs + ulx,2)

UEY (Yobs)

_ Z exp BT f(Fobs» Yobs + ulx, 2)}
UEY (Yobs) K®)

_ K(Blrobs» Yobs)

RO

Then the likelihood ratio satisfies

L(ﬁ|rob57 yobs) o K(ﬂlrobs’ yobs)K(ﬂO)
L(Bol7obs»> Yobs) K(Bol7obs> Yobs K (B)
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so that

K (Blrobs, Yobs K
g(ﬂlr‘obs’yobs) - g(ﬁ()lrobs’ yobs) = IOg(M) —-1lo ( (ﬁ) )

K(B0|robs’ Yobs) & K(EO)
= log (Eg, [exp {(8 — Bo) " £ (. Y1, 2)} Irobss Yobs |)
— log (B, [exp {(8 - B0)" f(r.)1x,2)}])
M
~ log [% > exp{(B— o) f(r}vipl, z)}] 43.1)

m=1

M
1
_log( Zexp {(ﬁ_ﬂO)Tf(rm’ym|x7Z)}]
where {(7,,, y,,t)}n]‘f:1 is a sample from Pg(r, ylx, z) and {(r/,, y;n)}nﬁfz1 is a sample from Pg,)(Ynr, YaslFobs, Yobss X, 2). Note
that since there is no missing data in the response vector, {(r/,, y;n)}nﬂf=1 does not contain sampled for r; the observed

values are used.

4.3.3 Methods to Obtain Initial Values

As indicated in equation@ a value for 3 is needed. The closer the initial value is to the actual MCMLE values, the
better. This subsection discusses two methods to do so: contrastive divergence and maximum pseudolikelihood. The
use of these methods in network data is not new; see [[59] or (other citation) for a review. But, the use of these methods
to solve for initial values for the parameters associated with the response process is not as well studied. In particular,
there is an important complication. The dyads in the network are only observed if an individual was sampled and

completed the survey. Hence
Ri=0vD;, =0 = Y,]ZNA

for all j # i. When D; = 1 and R; = 0 the dyads {Yj,-}],_R‘_] are observed. Hence node i can have no observed mutual
JAR =
ties. If only observed data is used to estimate &, then the only sufficient statistic available to us are the number of

respondents in node i’s in-neighborhood,

D1 ViR (4.3.2)

Jj#iR;=1
In these cases it is unknown whether those who nominated j are known to i. For this reason the response decisions of
mutual acquaintances may better capture the data-generating process. If a sampled individual i did not respond to the
survey, then their neighborhood of mutual ties (i.e., the number of alters an individual nominates who also nominates
the individual in return) is missing. Hence &, cannot be estimated with the observed data. To side-step this issue,

values are imputed for the missing dyads in the network. In the following subsections we apply maximum pseudo

76



likelihood and contrastive divergence to exponential family models with these two sufficient statistics. For the latter a

sample of imputed networks are drawn and then estimates are compute on the samples.

Maximum Pseudolikelihood Estimates

Let R be the response vector of sampled individuals in the population and let N(i, g(R|Y)) be the set of responses
on which R; depends conditioned on the response decisions of all other nodes as specified by the sufficient statistics

g(R|Y). More precisely define the set to be
NG, g(RIY)) = {j # i : Ri L R)IRi,k & )i}, g(RIV)}.
Then the pseudolikelihood of the vector of responses is given by
Lycuso @R ¥.X) = pR =) [ | p(Ri = 1IR; = 15,V € NG g(RIY).
The pseudolikelihood approximates the true likelihood. In the present case the response models takes the form
Pe(R = 1Y, X) o< exp {7 g(rIY, X))

The pseudolikelihood becomes

exp {£TA(g(r]Y, X));}
+exp{&TA(g(rY, X))}

R=rY,X) =
Pe(R = rlY. X) ]_[ 1
where
A(g(rlY, X))i = g(Ri = LR = r_i|Y, X) — g(R; = O,R_; = r_i|Y, X)
is the vector of change statistics. Then

§ = argmax -Epseudo (flR’ Ys X)

are the maximum pseudolikelihood estimates.

If the only sufficient statistic involving the edges of the network Y are given by then maximum pseudolike-
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lihood estimates can be computed without imputing the missing edges in the network. The change statistic is simply

A(g(rlY, X)); = (A(g(r1X))i, YR )

—i,i

and the estimate is approximately 0.0601.

To use the mutual response within mutual ties, an association social theory suggests should be larger, values for
the missing dyads must be imputed. The observed degree distribution of respondents within each department is used
to sample a degree for all alters who were not sampled or who did not respond to the survey. This methods assumes
the outdegree of nodes that were not sampled or did not respond are distributed according to the random sample of
respondents from the same department in the organization. The mean of these estimates can be used as an initial value

for &.

Contrastive Divergence Estimates

Estimation of the model parameters 6 and & can be performed by maximizing the observed likelihood derived in the
previous subsection. Optimization depends on the reference parameter 8y = (£, 8y). Choosing S, to be a value near
the ML estimator aids convergence. To find such a value I use contrastive divergence learning. Extending the work
in [47] and [48]], I use a run of contrastive divergence to find biased parameter estimates quickly, Bcp = (écp, Ocp)-

Gradient descent of the negative log-likelihood proceeds by updating the parameter to

0
tBlr,y, x,2)

(t+1) _ o _ 9
B B =n % .

at each iteration ¢ = 1,2, ... where 7 is the learning rate and

(BIr,y, x,2) = B f(r,ylx, 2) — log(K(B)).

Learning model parameters in this way requires computation of the (intractable) normalizing constant, K(8). Con-
trastive divergence ([54] and [18]) provides a method to approximate the gradient without evaluating the normalizing

constant. Rather than minimizing the negative log-likelihood, the likelihood is approximated by the contrastive diver-
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gence after n steps

CD, KL (pollpe) = KL (pallpeo)

Ppo(r,ylx, z) Ppi (1, ylx, 2)
B B
§ P, (r,ylx,z)log(— - E Ppi(r,ylx, 2) log| -—————
i Pp(rina) | 477 Py (ry1.2)

where 7™ is the realization of the Markov chain after # iterations given the current parameter value &. The estimates
are biased, but if the bias is small, the model can be used. Variances can be estimated by computing the approximate

information. Estimate Scp by iterating the following steps until convergence.
e Draw y’ in a Gibbs run.
e Draw 7’|y’ in a Gibbs run.

e Since %E(r, v;B) = —fi(r, ylx, z) where f;(-) denotes the 7" sufficient statistic. Set
J

B0 = B0 1 (£ (090, 2) = £ (F ), 2)).

434 MCMLE

If the bias is suspected to be large, a run of MCMC removes it. Then given our contrastive divergence estimates Sy,

repeat the following steps until a criteria is met.
1. Draw {(rn, ym)hoy from Pig,)(r, y1x, 2) and {(r/,, ¥, bz from Pigy)(Yae, Yaslrobss Yobss X, 2)-

2. Update the model parameters to
(¢',) = argmax {6 - téep, o)

where the approximation to £(¢,6) — £(£cp, O¢cp) is defined by

The first step is accomplished by MCMC. The complete data and conditional data distributions can both be decom-
posed so that the network and the response can be sampled serially. Given the current value of 8 = (£©, 69, sample
a network y” from Py, (ylx, z). Then sample a response vector * from P (r]y’, x, z). Generally, the Gibbs procedures

for each are straightforward for both cases and are given by

exp {£TAh(r))i}

P,f(Rl = llR_i =r-iY, ‘x) = 1+ exp {é‘:TA(h(r))l}
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and

exp {07 A(2())y)
1+exp{0TAGO);|

Po(Yij = 11Y_ij = y-ij, x,2) =

4.4 Sampling from the aggregate distribution

Given the estimate of 6 from the prior section, simulation of random samples is possible. Divide € into components

not associated with Z, 6, and those associated with Z, 6,. Then the survey instrument free distribution is given by

exp {0} &1(10)]

Zik@) 2ol a0k )

1
oY =) = = ), pOl) =
€Z €Z

_ exp {68101 +log i Tz exp (6] 82010
- K(9) '

Under ¥, Y is no longer an exponential random graph. To simulate a random sample free from the influence of
the survey instrument structure, an MCMC run through the network produces a sample. Thus to produce a random

network survey sample with respondents given in R, use the conditional probabilities

exp {HITA(gl(y))ij} Ycz Xp {92Tg2(ylz, x)}
1 +exp {GTA(gl(y))ij} Y cz Xp {GZng(ylz, x)}

Wo(Yij = 1|Y_ij = y-ij, X) =

for all i, j, to accept Metropolis steps with probability

. ez €xp 6] 82071z, X)

min{ 1, exp {HITA(gl(y))ij} { - . } .
€Z €XP {92 gZ(yijlz’ x)}

Unlike an exponential random graph model, ¥, requires computation of exp {9; 820z, x} for every z increasing the

computational burden. Chapter two explores alternatives to the arithmetic mean of probabilities. The geometric mean

is a special case of the power means. Under this alternative the probability of a network becomes

P(y) o«

1/1Zl
1_[ exp {HTg(ylx, Z)}]

€Z

1
oc exp {HTgl(yIX) +0; Z Z &20lx, z)},
€Z
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which is an exponential random graph. Note the interpretation of P, it is the probability all | Z| models agree normal-

ized by a constant. The metropolis acceptance probability for a single edge is

. 1
min { 1, exp {67 A1 (1)) + 1 A = > g201%,2)
12l & ;

L

The geometric mean confers computational benefits in that one only must compute the difference between sufficient
statistics, and not the statistics themselves. Any results that hold for exponential random graphs hold for ¥ under \P.
But, as discussed in chapter two, the probabilities P assigns to a given network may be greater than max. p(y|z, x) or

less than min, p(y|z, x) due to unequal weighting of the models.

Preserving the observed response decisions in the sampling implies the simulations control for Z given R. By the
letting the response vector differ from the observed so that there is some i such that Y;; is missing for all j # i, the
samples are from the joint distribution of R and Y. Rather than sampling, the model imputes the values of {Y,- j}j;ti'
If the number of respondents is held fixed, then the original sample and the imputation will have the same number
of sampled dyads. The observed sufficient statistics may be a reasonable target for imputations. Doing so gives the
researcher insight into new regions of the network. Given D, X, and Z, for all t = {1,..., T}, response and the network

can be sampled serially.

1. Use MCMC to sample Y(()gs and Y with ¥ or ¥. Set Y = 0.

2. Use MCMC to sample Rf)'gs and set R;?is =0.

4.4.1 Statistical inference of the counterfactual distribution

If the sampling distribution of the parameters of the estimation routine converges to a normal distribution, then the
Delta-method provides a method to estimate the uncertainty in the aggregate probability mass function. Asymptoti-

cally, the aggregate probability mass placed at Y = y is normally distributed with variance

—

Var (p* (Y =y1x:0)) =~ (Vop* (¥ = ylx:0)) 2@ Vop™ (¥ = yIx:6).
In the case of independence between dyads, the marginal distribution of edge ij is given by

L 1 exp {GTAU(Z)}
5= Py = 110, ) = @sz
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where A;;(z) = g(y;fj, x,2) = 8(y;;» X, 2). Otherwise the marginal distribution is computed by summing the joint distribu-

tion over all edges not equal to ij:

8= p*(ij = 116,%) = |Z|ZZp<Y,, L Y5 = Y516, x,2).
€Z ¢

The A-method provides an approximation to the variance of the edge aggregate probability

— i, TA T - Th
Var (p* (v = 11:8)) ~ = 8@ exp {0 Au@}2 i 3 Au@exp {o A,,<z>}2_
P\ (1+ exp|0702))) Z (1 +exp(0782)))

Compute the sample analogs

1 S
P = Z} p(Ylzs, ) (4.4.1)

and
e~ S

Var (p* (vij = 11x;6)) ~ 522[6,,@)(1 BijeN| AL@IE D [ = e )| Aizy).  (44.2)

s=1

The estimate of the population variance for edge ij is then

_—

1ZI-§ R
( = )Var(p*(yij=1|x;9)). (4.4.3)

Computation of can be costly if our network or S is large. To do this observe that we can compute it serially by

constructing the difference

Q

‘ N . N a A 2 -
Var (pf,,1)0vij = 11x:8)) = Var (p{, (v = 11x:9)) |811zee1)(1 = 83| AT (212 1)

+

2" 8121 = 8z )AL @IE8 )1 = iz DA )

4.5 Discussion

This chapter presents a method to estimate the network formation and survey response process simultaneously. Sam-
pled individuals’ decisions to complete the network survey depend on the completion of those to whom they are
connected in the social network. This accomplish by modeling the network as an exponential random graph and the
vector indicating survey completion as an exponential family. But, if the sampling process depends on attributes of

the pool of possible respondents and the network which connects, then specify the sampling matrix D is distributed
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according to an exponential family model,

pu(D = d|Y.X) « exp {4 f(dIY)}.

Then the relational system is distributed as

py(Y =y,R =r,D = dIX,Z) « exp {07g(IX, Z) + £Th(rIY, D, X, Z) + ¥ f(dIY, X)} .

[4.3.T] can be extended to include . As is the case for & and 6, a good value for ¥ is required. This can be estimated
using maximum pseudolikelihood or contrastive divergence. Note this methodology can be extended to any series of

random variables that depend on an underlying network. Network surveys provide an interesting case of the types of

problems that might be modeled in this way.

83



Chapter 5

Lifting the Fog

Chapter [4] develops a general framework for network surveys with non-ignorable dependence between random vari-
ables in the observation process and random variables in the data-generating process. This chapter applies to these
ideas to a specific network survey with a complex instrument structure. The structure did not vary across respondents.
Because sufficient statistics can be created using the order between names - and this feature does vary across dyads -
it is possible to estimate the effect of instrument structure. Then sufficient statistics are created to model the response
process. The model estimates are used to compute counterfactual quantities of interest as well as compare the actual

instrument design to other possibilities.

5.1 Operationalizing Instrument Structure in a Network Survey

Chapter[]introduces the distinction between the design mechanism and the out-of-design mechanism. When designing
experiments and surveys, researchers choose a structure for data collection instrument. Stimuli must be presented in
some sequence; when choosing from a list, the feasible options must be presented in some order. As the complexity
of a survey or experiment increases, so does the number of choices facing the researcher. The more complicated the
structure, the greater the opportunity for artifacts of the design to interact with the subject’s cognitive processes. If
changes in the structure lead to changes in the subject’s brain in a way that systematically alters the response process,
then the structure acts like a lens, influencing the observed information. A sample becomes more dissimilar from
the thing the researcher wants to measure as the association between cognitive processes and the instrument structure

grows stronger. This section describes the Lifting the Fog (LTF) survey.

The organizational survey motivating the methods developed in this chapter was given to a 20% random sample

of employees. Sampled individuals were asked to select known others from a roster. After selecting no more than
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56 alters, they were asked questions about the nature of their relationships with the identified nodes. Seventy-seven
percent of sampled employees completed the survey. See [65] and [[66] for additional details. The survey roster and
the form onto which the respondents record their responses are components of the survey instrument structure. The
organization was divided into divisions. Each division contained a set of departments. The roster preserved this nested
structure as it listed divisions numerically. Within divisions, departments were listed. Finally, names of the nodes
appeared in alphabetic order within the department blocks. Hence each node has an overall, intra-division and intra-

department order. Figure [5.1] illustrates a simple example of this nested structure. The survey instrument structure

Employee — Axr | Arz | Ass | Az1 | Azz | Azs | Asi | Asz | Ass | Bia | Biz | Bis | Bzt | B2z | Bzs | Bas | Baz | Bss | Cus | Ciz | Cia | Ca1 | Caz | Cas | Car | Caz | Cas
Department — Ay A, Az B, B, Bs C, C, Cs
Division — A B C

Figure 5.1: Simplified Version of Instrument Structure.

provides several natural hypotheses.

1. The number of response options may have distorted the neighborhood of a respondent. Some may have enu-

merated more or fewer than they would have given a different instrument structure.

2. Respondents might have used the order in which names appeared on the roster to complete the survey.

The first hypothesis cannot be operationalized. The number of spaces provided to enumerate names did not vary across

respondents. But, the second hypothesis can be investigated because sufficient statistics constructed from the surveys
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vary across respondents.

5.1.1 Permutation Tests for Survey Instrument Structure

This section presents a series of diagnostic tests to determine whether the survey responses depend on the instrument
structure. Permutation tests, [42]], can assess whether the observed network data depends on the survey instrument
structure z. Let the null hypothesis be that the sampled network does not depend on z. That is, under the null

hypothesis,

P(Y|z) = P(Y|Z')

for all z,z” € Z. If this holds, then any function of sufficient statistic, F(Y), of the network is independent of z as well.

Thatis, forallz,z7 €e Zand F : Y x Z — R,

P(F(Y)lz) = P(F(V)IZ).

Rejecting the null hypothesis that a function of Y is independent of the instrument structure implies that z is not inde-

pendent of Y. And, therefore, the observation and data-generating processes depend upon one another.

The sufficient statistics interact attributes of the network with the survey instrument structure. These functions are

guided by the following substantive hypotheses.
1. Names appearing towards the beginning of the roster are more likely to be nominated by respondents.

2. Names appearing closer to a the respondent’s name might have been more likely to be nominated than names

far from the respondent’s name.

3. Respondents might have been more likely to nominate groups of names close to one another rather than names

appearing farther apart from one another.

4. Respondents might be more likely to nominate names which appear towards the beginning of division blocks.

Distance Measures of the Survey Instrument Structure

Respondents may use salient names as reference points in the roster - alters they know well including themselves.

Alters may be clustered closer to these reference points.

86



The total distance between egos and their associated alters:

Z Z |absorderi — absorder| . (5.1.1)

i jeNG,1)

The total distance between an ego’s nominated alters:

Z Z Z |absorderj—absorderk (5.1.2)
i jENG,1) keNGi,1)k<j

The total absolute order in which a nominated name appears in the roster:

Z Y;jabsorder;. (5.1.3)

i,j<i

The total order in which a name appears in its corresponding division block:

> ¥ydivorder;. (5.1.4)

ij<i

Each of the sufficient statistics are evaluated after sampling from the set of all possible orderings such that the order
in which divisions appear, the order in which departments appear in the division, and the order of names within
departments are permuted. Figure [5.2] presents histograms of samples of size 50,000 - this sample represents just
5.74 x 1078% of the number of ways to permute the order in which division blocks appear. Onlydoes not present

strong evidence that the observed data is not independent of the survey instrument structure.

Reciprocity

Reciprocity measures the extent to which Y;; = 1 implies Y;; = 1 fornodes i and jin{v € V : R, = 1} and i # j. If the
network and survey instrument structure are independent, then the reciprocity would be equal under different survey
instrument structures. In particular, the reciprocity for a given node should not depend on its location in a list. Under

the assumption that the network is independent from the survey instrument structure, it must be the case that
Pr{v; = 11Y; = L.z} = Pr{v; = 1]Y;; = 1.7}
for all z,z’ € Z. Let the set of nodes located in the x quantile be given by
S(x)y={ieV:F(z) < x}.

87



Frequency

Frequency

3000

1000

0

2000 4000 6000 8000

0

Distance between Ego and Alters

[ I I I
9.0e+06 1.1e+07

Sum of Distances

Absolute Order of Alters

[ I
2.4e+07 2.8e+07

Sum of Absolute Orders

Frequency

Frequency

6000

2000

0

4000 8000 12000

0

88

Distance between Alters

[ I I
2.5e+08 3.0e+08 3.5e+08

Sum of Distances

Division Order of Alters

[ I I I I
3500000 3700000 3900000

Sum of Division Orders

Figure 5.2: Sufficient Statistics for the Roster of Names



Then the rate of reciprocity is equal under different z and, therefore, S (x).

Dizes YijYii

Fs(Y) =
Zi:z,-eS Yij

computes the rate of reciprocity for all egos with list locations in the set S and

Zi:z,-ES in

Fs(Y) = S|

computes the mean in-degree for all egos with list locations in S. When the number of sampled nodes is low, there will
be fewer reciprocal ties. In the case of the Lifting the Fog survey, implementation of this method is not suggested as
the number of reciprocal ties is very low. Reciprocity can be incorporated in ERGM models by introducing a sufficient

statistic equal to the number of reciprocal relationships.

Proximity in the Survey Instrument Structure

Intuition suggests that given a survey respondent finds her name in the survey roster, she is more likely to see names

near her own. The total distance between nodes that are connected by at least one edge is

FY,2) = Z d(zi, zj)

i, j:Yi Y =1
and the total distance for mutual ties is given by
Fho= | d@z).
i,_i:Y;iji=1

To test this compute the total distance between the nodes comprising each dyad for which an edge is present under
different survey instrument structures. Tests for three sufficient statistics are implemented: the sum of total distance
to alters, the sum of the total distance between alters in the same department and the total distance between alters
from different divisions. Figure displays the results. In each plot the red line indicates the observed value of the

sufficient statistic; the sample p-value is reported above the red line.

Concentration

In chapter [3] a measure for the concentration of a probability measure is discussed. Recall the survey instrument

structure is a list of length N. Each node selects M; fori = 1,..., N alters. Denote this vector v; € {0, 1}V, Define the
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finite concentration to be
Cuv) = ) THd(xv) 2 k)
where
d(x,v;) = rynElAn d(x,y).

If the survey process is independent from the instrument structure, then the degree of concentration of v; does not

depend on z. Hence the concentration of v; satisfies
Pr{Ce(v) |z} = Pr{Ce(vi) | 7'}

for z,7’ € Z. The nested structure of the survey instrument structure can be exploited to test within and between de-
partments and divisions. This must be done as the coincidence of department and division with survey order overstates
the effect. The measure of concentration given here is contrasted with the range and standard deviation of v;. The

degree of concentration does not suggest a particularly strong effect.

5.2 The Model

Chapter [ presents a general model for observation and data-generation in network surveys. This section adapts the
general model to the LTF survey data. The assumptions about the Lifting the Fog survey data are encapsulated in
ﬁgure The sets of variables X and X, are comprised of node and network attributes such that X; contains the data
causing the observed survey instrument structure. The data in X, is marginally independent of Z. More specifically
X contains the department and division of each node. The nesting structure described in section [3.1| determines the
order of the options in the survey instrument structure. Individuals within the same department must be adjacent to
one another, departments within the same division must be adjacent to one another and divisions were placed in a
numerical order. The outcome space of Z given the department and division assignments is all orders that can be
constructed by permuting the order of individuals within departments, the order of departments within divisions and
the order of divisions amongst themselves. Let N(z, x) be a binary variable indicating whether the z satisfies the nesting

structure given in x. Then the survey instrument structure is modeled as

lz: N(z, x1) = 1]

7 =7X = =
p(Z =z7|X) = x1) Z]
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The effect of the survey instrument structure on Y is confounded by X;. Before aggregating over all possible survey
instrument structures, the effect of X; on Y and the effect of Z on Y must be disentangled. Pearl’s so-called backdoor
adjustment formula described in [80] can be applied to identify the effect. Conditioning on X; blocks the backdoor
pathsZ « X - Y, Z X, & X, > YandZ « X| & X, — R « Y. The latter of the group contains a collider, R,
that is not in the conditioning set. Furthermore, it has no descendants so that none can be contained in the conditioning

set.

p(yldo(Z = 2), X5 = x3)

> POIZ = 2. X1 = x1. Xz = 0)p(xilXa = x2)
Z exp{0Tg(Y1X,, X2, 2)}
K(®)

p(x1lXa = x2). (5.2.1)

X1

If it is believed that Y and X are independent given X,, then there is no confounding and the effect of the survey
instrument structure on the network data is identified, then the only open backdoor path from Z to Y is Z « X| <

X, — Y. Conditioning on either X, or X, suffices to block the path and identify the effect of Z on Y. The probability

NTNNT

Figure 5.4: Models for Observation (blue nodes) and Data-Generation (green nodes).

measure p(X;|X,) models the probability of the assignment of departments to individuals given the information in Xj.

5.2.1 Modeling the Network Data

Exogenous attributes such as age, gender, ethnicity and years of education and attributes related to the individual’s role
within the institution such as salary, tenure, geographic location, functional area and organization structure are used to
explain the variation in the survey nominations. Three terms make estimation of an ergm model with a term based on
Z difficult: department, division and mutuality. The previous subsection explains identification of the effect of Z on
Y when a covariate X partially determines Z. Practically, if respondents are more likely to nominate names closer to
their own, then any variable that is highly correlated with the distance between the respondents and their alters will be

correlated with statistics such as |order; — order;| derived from Z. If i and j belong to the same department V., then
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the distance between them must satisfy
|order; — order;| < |Vg| -1
and if i and j belong to division V;_but different departments, then
|order; — order;| < |Vg| -1

Since the order of the departments is determined by the department numbers, these statistics can be furthered bounded.

For example if i and j are in adjacent departments, then
|order; — order;| < |Vg| + |Vg+1| -2.

If individuals from the same department are likely to nominate alters from the same department and individuals are
more likely to nominate alters listed near their names, then the effect of the order on their nominations is confounded

by department. Several terms are possible including

o ordering terms for dyads within large departments,

e ordering terms for dyads between nodes from different departments within large divisions,

o ordering terms for dyads between nodes from different divisions.

Given terms indicating nodes hail from the same department and same division, the ordering terms show a low asso-

ciation with the presence of edges.

A mutuality term in an exponential random graph model can also confound ordering effects. If respondents are
more likely to nominate alters listed closer to them on the survey instrument structure, then the graph will display
more mutual ties. If ordering effects are asymmetric with respect to the respondent’s order on the list or if the ordering
effects are not highly mutual the confounding is alleviated. To estimate ordering terms with a mutuality term in the

model, one can add the term

Z Z YiiYi |orderi — order;|. 5.2.2)

i j#
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An alternative is to use the dyadcov term in the ergm package. This introduces three terms to the model: the mutuality

term in[5.2.2] the lower triangular term

Z Z Y;i(1 = Y;)lorder; — order;|

i j<i

and the upper triangular term

Z Z Y;;(1 — Yj)|order; — order/].
i i
The lower triangular term captures the interaction of order with receiver and sender behavior. Computation indicates
the parameter associated with the mutuality term is positive while the latter two are negative. There are more mutual
ties between nodes at a greater distance than expected by random chance. But asymmetric ties are more likely when
pairs are near one another. This suggests the following hypothesis: when nominating alters respondents scanned the
names farther from their own with purpose, whereas, they nominate alters nearer to their own more haphazardly.
Models containing these terms indicate department and division are not highly associated with the presence of edges
in the network survey given the values of the other parameters in the model. Two options are possible: omit the terms
from the model and interpret the coefficients of the dyadcov terms are the effect of the instrument structure on Y, or
include one or both and adjust according to Small parameter values for department and division term implies
small variation between probability mass functions conditioned on different department assignments. Hence the effect

on the adjustment may be small in the sense that the absolute difference
Ip(Y|Z, X1, X>) — p(Y|do(2), X>)|

is small for many y € Y.

5.2.2 Model Results

The model for network formation depends on variables capturing organizational structure in the organization, personal
attributes of the nodes, organization-related attributes of the nodes such as tenure and salary and the survey instrument

structure. (Make a quick plot with confidence intervals for the model terms)
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5.3 Aggregating Measure

As argued in section[5.2] the effect of the instrument structure on the data generation process obscures the object of
scientific interest. It imbues the resultant data with artifacts from the sampling process. The models examined in the
previous subsection demonstrate a clear link between the network and the instrument structure. The data required to
produce the term is the matrix of distances between each pair of individuals, Dyp. Values for the distance matrix D
such that D # D, give rise to counterfactual conditional probability mass functions. Hence it is possible to estimate

the probability distribution for the network survey had it been obscured by a different survey instrument structure.

5.3.1 Exchangeability

Using counterfactual distance matrices requires assumptions about exchangeability. Suppose only a sample of the
possible instrument structures were implemented. Then one must assume the data is exchangeable to compute proba-
bility distributions for Y conditioned on counterfactual instrument structures. In its simplest version, exchangeability

means that the potential outcome Y~ is distributed independently from the value of Z used to observe the data (see [S1]]).

Dyad ij, if assigned alternate identities k/ such that k assumes all of i’s information and / does the same for j, would
have the same marginal edge probability as dyad kI. This implies there can be no unmeasured variable, such as the
actual names of the people on the roster, that affects the probability of nomination. If there were a name effect, then
our estimates of the parameters associated with the sufficient statistics containing information from the instrument
structure would be conflated with the effect of having a certain name. For example, suppose the names are enumerated
in alphabetic order. If names beginning with the letter ‘“V’ are more aesthetically pleasing, then the ‘V’ effect would
be conflated with a greater preponderance to nominate alters listed towards the end of list. Counterfactual survey in-
strument structures, such as reverse alphabetic order, would contain relatively more nominations from the front of the
alphabet. Individuals’ names, something not observed in the survey data, do not alter the propensity for nomination in

either direction after conditioning on the observed attributes.

Since Z is exchangeable, the effect of Z is causally identified if the positivity assumption holds. That is, there must
be a positive probability of receiving each treatment. My assumption that instrument structures receive equal weight
assures this is so. Hence Y* can be interpreted as the counterfactual network whenever z # zqs. As before, averaging
over the counterfactual probabilities provides an estimate for the expected probability distribution over Y. Then the

probability distribution for Y adjusted for the survey instrument structure is given by

. 1
PO =)= pY =yZ=0rZ =2 = = ) p(¥ =¥IZ=2). (5.3.1)
€l €Z
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In most surveys of social networks, however, the survey instrument structure is not randomly assigned to subjects.
Frequently, the survey instrument structure does not vary across respondents. In many settings the distribution of the
desired quantity without introducing informed priors or external data sources. Fortunately the relational structure of
networks enables the creation of terms that vary across dyads. Hence, even though a single survey instrument structure
is observed, a model can account for the influence of the survey instrument structure on the resulting sample. Choosing
an unobserved z and transforming it to a vector sufficient statistics makes it possible to simulate counterfactual samples

of Y forz #z.

5.3.2 Types of Exchangeability with Survey Instrument Structure

Sampling from the set of possible orders subject to some set of conditions enables computation of the average distance

matrix. Consider the following sampling schemes:
e Sample orders Z by permuting the absolute order in which names are listed subject to no constraints.

e Sample orders Z by permuting the order of division blocks, departments within divisions and names within
departments. This preserves the nesting structure, but does not preserve the alphabetic order in which names are

listed.

e Sample orders Z by permuting the order of division blocks and departments within the divisions. This method

preserves the nesting structure and the order in which names appear within department blocks.

The first method assumes unconditional exchangeability; the second method assumes exchangeability conditioned
on the nesting structure and the third method assumes exchangeability conditioned on the nesting structure and the
alphabetic order in which names appear in their respective departments. Denote the support of the uniform distribution
given each of the assumptions by C;, C and C; respectively. Observe C3 C C, C C;. Hence there are three probability
mass functions defined over the space of all survey instrument structures given by

¢ ifzecC,

n(zlCy) =
0 else

where ¢, = lé—l‘ Suppose a prior probability distribution over the three sets of exchangeability assumptions exist.

Define the aggregating measure over the three probability mass functions to be

3

n(z) = Y 2@CH(C))

t=1

2\ 7(C))
=; ci I{zeC,}.
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To obtain a sample from this distribution, sample from the three pools with probabilities given by the prior.

Given a set of exchangeability assumptions or an aggregating measure over the various sets of exchangeability assump-
tions, sample {z,},—;s and compute the sufficient statistics needed to produce the aggregating measure over networks.
A distance matrix is extreme if its components D;; are very large or small relative to the counterfactual population. Let
D = E,[D]. Figure shows a density plot of the deviations between the observed distance matrix and D. Then the
probability that dyad D(z);; that depends on the uniformly distributed instrument structure z is less extreme than dyad

ij in the observed matrix is given by

d

If this estimate is large, then dyad has an extreme design relative to the sample. Figure [5.6] shows the probability

2zl (|D,ZJ - Dij| <
1<l

obs N ..
D - Dy

)

D, = Dy| < | D" — D,-,-|) ~

that for a randomly drawn z, D;;(z) is less extreme than D;’j!’s. The red bar on the histogram shows all D;?J‘?S such that
every z sampled leads to less extreme distances between i and j than in the observed data. These extreme dyads in the
observed data are those likely to be affected by artifacts of the instrument structure. Averaging over the dyads provides

a measure for the entire matrix

| N Zzezﬂ(‘D? - D,-j‘ <
NV =T72 2 1z

Dy - Dy

J<i

This provides a measure to compare the total differences between two distance matrices.

5.3.3 Sampling from the Geometric Approximation to the Egalitarian Measure

Given a sample of counterfactual distance matrices, an aggregating measure is defined as

1
YOIX) = = ) pOIdo(Z = 2. X2 = o) (53.2)

Sampling from this distribution is possible with a Gibbs or metropolized Gibbs algorithm. Since the probability
distribution over the network object is no longer an exponential random graph, networks cannot be sampled using
standard software. Consider the odds of the presence of an edge

Py = 1Y) = y-aplX2)  _ expforatri=1.Y-6p=v-0p o)} 55, exp{6l e¥=1.Y-ip=r-0yk0))
‘"P(Yij =0, Y—(ij) = y—(ij)|X2) exp{ 67 g(¥;;=0.Y_ij=y_|X2)} 25, exp{67 g(¥;j=0.Y_p=y-cplzs)}

— T ) Zi exp{fT (Y=Y p=y-apley)}
= exp {0 AGOIX))} S o o7 o) (53.3)
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Density Esimate of Deviation from the Mean of Distances
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Figure 5.5: Deviations in the Distances between the Observed and Counterfactual Average for all Dyads.
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Figure 5.6: Test for Extremity of the Instrument Structure Relative to Counterfactual Population. The red bar indicates
all dyads whose distance is most extreme than in any of the randomly sampled instrument structures.



Equation[5.3.3|shows the egalitarian aggregating measure equals an exponential random graph times the ratio of sums

of exponential random graphs.

A Gibbs or Metropolis-Hastings sampling routine requires evaluation of 25 K sufficient statistics at every step where
K is the length of g(Y|Z). An alternative discussed in [3is use the aggregating measure proportional to the geometric

mean of the counterfactual distributions

1/8

S
W (y1Xa) o ([_[ exp {67 g(r1X) + 6] g<r|zs>}]

s=1

S
1
= exp {91 g(rXa) + 67 5 § g("lzs)} :
s=1

Unlike the arithmetic mean, the aggregating measure formed by the geometric is an exponential random graph. The
sufficient statistics unassociated with the survey instrument structure remain unchanged while the sufficient statistics
derived from the survey instrument structure are the mean of the S sampled structures. Hence sampling from the prob-
ability mass function is as simple as sampling from any of the counterfactual probability mass functions. Moreover,
this choice admits an intuitive interpretation. The aggregating measure proportional to the geometric mean is a product
of experts model. The probability is the probability that all S experts agree. Despite its computational advantages, this

choice is not guaranteed to be bounded by the probability mass functions that comprise it.

5.3.4 Analyzing the Counterfactual Networks

Networks sampled from the aggregating measured proportional to the geometric mean provide a common reference
point for the observed and counterfactual networks. Figure displays the population of differences between the
observed dyads and the average of draws from the aggregating measure. That, these differences tend to be negative
suggests the aggregating mass function places small amounts of mass on dyads without edges in the observed data.
The probability that the observed networks is farther from the reference network Y™ that the potential outcome Y*

associated with randomly sampled z is given by

Dz ] (‘ij - Djj <
1ZI

Dy - Dif)

p (A, Y") < d(y*™,¥")) ~

Networks sampled from the aggregating measure can be compared to the observed network or networks sampled from

the probability mass function conditioned on the observed instrument structure, Zops.
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Figure 5.7: Deviations in the Distances between the Observed and Counterfactual Average for all Dyads.



5.4 Appendix

5.4.1 Modeling Multiple Networks

The LTF survey motivating this analysis asked respondents whom they knew in the organization. Then respondents
answered questions about each of the enumerated relationships such as frequency of communication. The relational
system setting permits interdependence between sampled networks: values of dyads in one network depend on the
values of dyads in other networks.. For example, the frequency with which i communicates with j can partially
determines whether i seeks advice from j. Suppose Y; and Y, are networks connecting nodes in V. Further suppose

there are no dyads connecting Y; and Y,. The networks can be jointly modeled as a single exponential random graph
P(Y) =y1, Y2 = y2) = K(O) exp {07 g(Y1, V1)

where g(Y1,Y>) is a vector of sufficient statistics derived from the dyads in Y} and Y,. Then the two networks are

independent if sufficient statistics are separable. In that case

expl0Tg(Yi. Y] exp{0]g(Y) + 6] g(Y)]
Ly exp 078V Y2} 3 exp {67 g(V1) + 63 (Y))
_ exp67s(V))}exp 0] g(Y)]
Sy exp {078} exp (67 5(12))
exp{07g(Yn)}  exp{6]s(¥2)
%, exp {07 (YD)} 5, exp {07 g(¥))

and the networks can be estimated separately. Suppose now that Y, depends on Y. The next section provides very

conditions under which the networks can not only be estimated separately, but can be condensed to a single network.

5.4.2 Nested Networks

I argue that when certain nesting conditions hold, the set of networks can be simplified to a single object. Suppose
V = {1,...,N} is a collection of nodes and Y, Y® .. Y™ are networks comprised of binary edges representing
M levels of nested relations. The relation underlying Y"1 is a necessary condition for the relation underlying Y.
That is, for all m > 1,

YW =1 = y" b=
ij :

1
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Then

(m) _ i e ym=1) _ y(m) P
P(Y(m) — ym|Y(m—l) — ym—l) — P<Y "= y”) if Yij Yij = ov L] € 4
0 otherwise

and
M
P(Y(l)’ Y(2)’ e, Y(M)) — P(Y(l) — yl) 1—[ P(Y(m) — ym|Y(m—1) — ym—l).
m=2

Clearly, the degree can only decrease as m grows. Define the aggregate network

>
Yo=> y™
m=1

as a valued network. Doing so reduces the complexity of the modeling. Observe
M
DV =k = ¥ =1¥m<k

m=1

and
M M-1 M-1
P[Z Y(m)} - P[y(M) Z Y(m)]P[Z Y(m))
m=1 m=1

M
- P(Y“))HP{Y(’“)

m=1
1

-
y® ]
=1

M
— P(Y(l)) l_[ p(Y(m)Iy(mfl))

m=2

m=2

=pPyW, . .. Y™,

Hence given full-information, the separate layers can be estimated as a single object. The result also holds if all but

the M™ level are binary and Y, .(jM) >0 forall i, j.

Let Y; be the binary knowledge network and Y, be the non-negative integer-valued communication frequency net-
work. The aggregate network is simply Y; + ¥,. The assumption Y;;; = 0 = Y,;; = 0 - if i does not know j,
then she does not communicate with j - means that the aggregate is functionally equivalent to Y5 in the sense that the
aggregate network is just ¥, with one added to all components equal to one in the knowledge network. For this reason,

a single network will be analyzed throughout the chapter.
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5.4.3 Accounting for Unobserved Edges

Now suppose the network is partially observed. Assume that if Yl.(jm) is unobserved, then so is Yi(]]f) for all k£ > m.
Further, suppose that if Yf;") = 0, then Y, .(j’f) is not observed for all k > m. Since the structure is assumed to be nested,

despite the fact the edges are not observed, I set them to zero.

P<Z OEDY P(Z Yo, Z Y&

{y(m)}

mis

_ (1) (D) (M) y(M)
- Z P(Yobs’ les’ Tt Yobs ’ Ymis )
Y(l) Y(M)

mis” mis

Hence the equality persists under this pattern of missingness. There are therefore two sources of zeros in each level. A
person may know someone, but does not communicate with him or her. Alternatively, a person may not communicate
with someone because she or he does not know the alter. These are differentiated in our model as the first and second

cases would sum to different values.
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Part I1: Latent Networks in Group-Level Outcomes
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Chapter 6

Review of Model Selection with Hierarchy

Constraints

6.1 Introduction

In sports competitions involving teams such as soccer, basketball, lacrosse and hockey, two lineups compete against
one another. These sports all feature objects used to score. The period of time in which a team assumes control of
the object is defined to be a possession. Each possession can have many outcomes such as length of time, number of
teammates who control the object (number of passes) and total movement of players, but the most essential is whether
the offensive team scores. Researchers in this area created the adjusted plus-minus model which has become a folk
method in sports statistics. Using the possessions as individual observations, the models estimate parameters for each
of the players on the court. Penalized versions improve the predictive efficacy of the model while Bayesian models are

used to set priors to the model terms, possibly from prior seasons of play.

6.2 Bayesian Model Selection with Hierarchy Constraints

Let V be an arbitrary matrix of variables and G be the space of all models - the set of vectors of length N = Zlk‘jo (“k/l)
with each index equal to one or zero. A model, M, is a vector in G. Let m;(M) = Pr{M; = 1|M_; = m_;, G} be the
probability that the i term is included in the model. For each term m;, there exists a family ¥ (m;) which contains

the lower-order that comprise m;. Define P(m;) C F (m;) to be the parents of m;. [89]] follows [22] by assuming (1)
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conditional independence of terms of the same order and (2) the probability of a term depends on its parents. The

probability that term i is included in the model is
mi(M) = Pr{M; = 1|P(M,), G}
and the probability of a model M is
7(MIG) = | [y = m(a) .

Under the assumption of strong hierarchy, m = 0 for any m € $(m;) implies m; = 0 while weak hierarchy imposes that

if m = 0 for all m € P(m;), then m; = 0. Several specifications for n(-) are possible.

6.2.1 Uniform Prior with a Hierarchy Condition

All terms that are not constrained to be zero by our hierarchy condition share the same probability of inclusion; that
is, for all distinct 7 and j such that m; and m; are not prohibited by a hierarchy condition, m;(M) = n;(M). Set
(M) ~ Beta(a, b) for all i. Let N(M|HC) < N denote the number of terms not constrained to be zero by the hierarchy
condition. Similarly, define G(HC) to be the set of binary vectors which satisfy the specified hierarchy constraint.

Then

p(M|GHO))

1
fo p(M|r, GHC))p(n|GHC))dr

1
f { 1_[ ﬂ_m,-(l _ ﬂ_)(l—m,-)
0 \ieG@HO)

1 1
>imi+a—1 1= |G(HC)|—Z,-m[+h—1d
B(a.b) fo e g

n_a—l(l _ ﬂ.)b—l

Bab) "

B( Z m; + a,|GHC)| — Z m,-+b)]/B(a,b).

i€G(HC) i€G(HC)

Hence all models with the same number of terms exhibit the same probability.
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6.2.2 Independence Prior with a Hierarchy Condition

Suppose the terms are distributed independently with ; ~ Beta(a;, b;). Then the probability of a model becomes

p(M|G(HC))

f[;) 1]GEHO pMr, GHC)) p(nlG(HC))dr

271 = !
7Tm'(1 )(] m)][ dm, -~-d7T|G(HC)\
f f {leG(HC) ,e<1::1[0) B(ai, bi)

mi+a—1 1-mj+b-1
= (L =m) T
[ | B(a,-,b,)fo i ) 8

i€eG(HC)

B I B(a,-+1,b,->)[ M B(ai,b,-+1>]
B(a;, b;) e GEHNim=0] B(a;, b))

ieGHC)N{i:m;=1}
B(ai, bi)(a;/(a; + b,»))] ( Blai, b)(bi/(a; + b,-»]
ieGHC)N{i:m;=0}

i€GHO)Nizm=1) B(ai, bi) B(a;, b;)

i al ] [ bl ]
iecOn(m=1) 4 0 \icoaicinfim=o 4 + i
6.2.3 Order Prior with a Hierarchy Condition

A more nuanced assumption specifies for all distinct i and j such that Order(m;) = Order(m;), n;(M) = n;(M) = .
That is, all terms with the same order have equal inclusion probabilities given the hierarchy condition. In particular,

assume 7, ~ Beta(a,, b,). Let O denote the maximal order of M and G,(HC) = G(HC) N {i : Order(m;) = o}. Then

p(M|G(HC))

L) 1ji6aHC) pMzr, GHC)) p(nlGHC))dr

a;—1 bi—1
_ . (1 =)™
f f [ 71""’(1 _ 7Ti)(1 ml)]( l_[ lB(—b) dm --.d7T|G(HC)\
ieG(HC) ieG(HC) di, bi
a,—1 by—1
_ Ny 1-m,)

l—lf f [ ﬂ,m‘(l _ ”a)(l nu)] %dﬂl ...dmo

zeG(HC)m{z Order(m;)=o0) (@0, bo)
_ f Siccue M= (1 _ 1 316, (HOSieg,miemi+bo~ gy

B(am b,)

= 121 B[ Z m; + a,,|G,(HC)| — Z m; + bn)] /B(a,, bn)

o=1 i€G,(HC) i€G,(HC)

:|°

6.3 Principled Model Averaging: Basketball as a Motivating Example

The model selection literature provides several methods for assigning prior probabilities to possible models from unin-

formed priors to priors giving differential weights to models which obey various hierarchy conditions. These methods
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have a conceptual appeal. Data may be generated according to mechanisms that obey hierarchy conditions; sparsity
may increase in the degree of polynomial terms. While useful guidelines, these methods do not use empirical evidence
- they do not make use of the data revealing the dependence between variables. This section defines preferential se-
lection and simultaneous selection for models over the polynomial expansion of a data set V, and introduces a novel

prior that maps observed relational data to model probabilities.

[89]] consider priors over models with various statistical dependencies between model terms. The graph structure
relies on term order, the number of parent terms or the term length. For researchers with substantial prior knowledge
about their respective problems, these approaches are insufficient. Suppose a set of networks, {Z}, is observed with
nodes equal to the variables in V. We wish to encode some properties of the networks in the model priors. As an

example let V = [A, B, C]. We define preferential selection via Z by
Pri{AB=1|1A=1,B=1,Z[A,Bl =1} # Pr{AB=1A=1,B =1,Z[A, B] = 0},
and simultaneous selection via Z
Pr{AB =1|,Z[A,B] = Z[A,C] = 1,AC = 1} # Pr{AB = 1|-, Z[A, B] = Z[A,C] = 1,AC = 0}.

The first assumption states that interactions between variables related via a prior network have a different propensity
for selection than terms which do not. The second assumption states interaction terms which interact in the prior
network with at least one of the component terms interacts with another variable such that their interaction is included

in the model exhibit differ inclusion propensities than if the latter interaction were not included.

Preferential selection via Z can be implemented in [89]]’s scheme. For example, suppose all interactions with an edge
in the prior network are group exchangeable and share a common Beta distribution. But, the simultaneity assumption
violates conditional independence of equi-ordered terms. The inclusion probabilities can no longer be written in terms
of the inclusion of the parents of an interaction term. To address this issue, consider another an alternative approach.
For a given model m € M let

Pr{ml6, {V,}} = exp {67t (mI{¥,}) - A@®)] (6.3.1)
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where Z is a set of relational networks, t(m, Z) is a vector of the sufficient statistics of model m the model, § measures

the association between the sufficient statistics and the model probability and

A@®) = log (Z exp (¢ 1(m, Z)}]

m

is the normalizing constant.

6.3.1 Passes-To Example (Second-Order Interactions with a Binary Network Prior)

Suppose a single, binary network, Z, is observed over three variables {A, B, C}. The following demonstrates how to
encode preferential selection via Z, simultaneous selection via Z with this formulation and a penalty for the hierarchy

constraint into the model. Write

0" t(m, Z) 61(AB + AC + BC)

+  6,(AB x max(Zug, Zga) + AC * max(Zuc, Zca) + BC * max(Zgc, Zcg))

+  63(AB = min(Zyp, Zps) + AC * min(Zac, Zca) + BC * min(Zpc, Zcp))

+ O4(AB % Zyp * AC % Zsc + AB * Zy * BC * Zpc + AC % Zcy * BC * Zcp)

+ @ Lmgncomy

where « is the hierarchy penalty. As @ — —oo the probability of an offending model goes to zero. Here 6, captures the
weight given to the total number of two-way interactions present in the model; 8, captures the weight given to nodes
with that have a relationship in at least one direction; 65 captures the weight given to reciprocal relationships and 8,
captures the weight given to two-stars - instances in which an individual exhibits a network relationship with more

than one alter. To extend the binary model to arbitrary dimension write

5 ]

i<j

0" t(m,2) 0

—_

+ 6 inxjmax(Zij,Zji)]

i<j

+ 93 Z XiXj min(Z,-j, Zﬂ))

i<j

+ 94 ZZ Z}xixj*Zij*xixk*Zik]

i J#i kelij

+ @ * Loy

110



6.3.2 Passes-To Example (Second-Order Interactions with a Valued Network Prior)

If the edges of Z contain non-negative counts, then write

0" t(m, Z)

6,(AB+ AC + BC)

+ 02(AB * (ZAB + ZBA) + AC * (ZAC + ZCA) + BC * (ZBC + ZCB))
+ 93(AB * min(ZAB * ZBA) + AC * min(ZAc, ZCA) + BC = rnin(ZBc, ZCB))
+ O04(AB % Zpp x AC % Zpyc + AB * Zps * BC * Zpc + AC * Zca * BC % Z¢p)

+  a* [ecmH0)) -

6.3.3 Pick and Roll Example (Third Order Interaction with Multiple Prior Networks)

The previous example only considers models of order two or less, but prior information may exist to model beliefs

over the inclusion of higher order terms. Suppose two prior networks are observed: ZP** and ZP™. Consider the triad

formed by a shooter, a ballhandler and a screener. Suppose V contains four individuals {A, B, C, D} and specify

0"1(m,2) =

0,(AB + AC + BC)
0:(ABC + ABD + ACD + BCD)

03(AB * (max(Zh,", Z52") + AC = max(Zh°, Z2)°) + AD = max(Z5)", ZD") + BC » max(Zp", Ziy")

+BD = max(Zyy', Z)p") + CD = max(Z0y), Z)))

04(AB * (min(Z} ", Z0'7) + AC » min(Z52°, Z2)°) + AD « min(Z3), Z0') + BC = min(Zy>", Z2)

+BD * min(Zyyy', Zpp) + CD = min(Zgyy', Zpe))

O0s(AB « Z5," « AC % ZL" + BA « Z\"  BC * Zp." + CAx Z0)" « CB* Z1)°

Os(AB * (max(erg, Zgr/:r) + AC * max(ZErg, Zg:) + AD % max(ZEI;, Zg;:) + BC * max(ZgnCr, Zgrg)

+BD * max(Zyp,, Zpyp) + CD * max(Z,, Zp))

67(AB (min(erg, Zgir) + AC = min(erg, Zg}:) + AD % min(erg, Zg;\r) + BC = min(Zgrg, Zgrg)

: pnr —pnr . pnr —pnr
+BD x«min(Zy,, Z)) ) + CD = min(Z ), Z), )
O3(AB * Zhy « AC x Z" + BA = Z\ « BC x Zi- + CA = Zloy « CB « Z1y

a * LymgGHo))-
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Chapter 7

A Latent Network Model for Competitive

Interaction

7.1 Introduction

This paper develops methods to learn the value of main and interaction effects when an outcome is observed at a
group level. Outcomes are associated with a subset of interacting nodes. Many examples can be subsumed into this
paradigm. Interaction between members of a commercial or political organization gives rise to measures of collective
efficacy, musicians collaborate to create pieces of music, and teammates coordinate to score points or prevent com-
petitors from scoring. The collective outcome can be attributed to the individuals comprising the group and the ways

in which these individuals interact.

Although this methodology applies to many social systems, this work focuses on basketball. This is a particularly
good application because relatively few individuals interact to produce group level outcomes repeatedly. Moreover,
some of the intra-possession interactions can be observed. Hence we can link relational events to the probability distri-
bution of outcomes. In this application estimation of a latent network model can be understood as a further innovation
in the family of the regularized main effect models commonly used in basketball analytics. These models capture a
node’s impact given the presence of all other nodes on the court. But, they fail to account for the inherently social

nature of the sport.

Without doubt, the inclusion of interaction terms captures the data-generating process in a more faithful way. But,

even for groups of moderate size, the space of possible models is huge. To avoid overfitting (by estimating far too
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many terms), one can perform model selection via a penalized regression method such as the Lasso developed in [91]].
While such procedures produce a parsimonious model, they do not provide information as to why certain subsets of
nodes are selected and others are not. By placing a structured network prior on the set of feasible interactions terms,
the possible models (dyadic and/or triadic interactions), one can estimate the influence of various features on the model
probabilities. Typical examples are dyadic relational events such as passes and fouls. Both are examples of directed
relational events, but in the former case one teammate throws the ball to the other while in the latter a defensive node
fouls an offensive node (or vice versa). Parameters corresponding to sufficient statistics derived from the relational
events indicate why certain subsets of players are selected by the model. The network approach provides a method
to capture and interpret the extent of a team’s connectedness. Bayesian inference learns about the model probabilities

from observed relational events, and average over the possible models to make better predictions.

The chapter is organized as follows. Section introduces the scientific framework, important concepts and no-
tation. Two variations of the general method are described: CoordiNet and TriadNet. The primary distinction between
the models is the degree of interaction considered in the latent networks. The former considers dyadic interaction while
the latter considers dyadic and triadic interaction. As the degree of interaction grows large, hierarchy of interactions
are needed to preserve the interpretation of model parameters. Section examines possible the estimation strategy
for CoordiNet. Then alterations needed for TriadNet are presented. Section applies CoordiNet to the Boston-
Washington series during the 2016-17 NBA playoffs. Section compares the network prior method to competing

procedures to select interactions. Model variations and extensions are examined.

7.2 Team Sports as a Relational System

This section presents the conceptual framework and justification for the latent network approach to group interaction.
The introduction argues that basketball is not an atomistic sport; people must coordinate their actions to achieve a
collective outcome. The ball cannot be passed without a sender and receiver, and the so-called hockey assist (a pass
from i to j followed by an assist from j to k) is not possible without three individuals. The triadic interaction of a pick
and roll pair with a shooter in the corner requires all three to be present for certain actions to be efficacious. When
these interactions, coordinated or not, have a differential effect on the propensity to score, game play is relational. That

is, models accounting for interaction provide a more realistic framework than atomistic models of play.

As noted in the introduction, the models developed can be applied to many team sports such as soccer, hockey and
lacrosse, but from this point forward focus resides on the model’s application to basketball for several reasons. The

possession in basketball serves as a natural unit of analysis as it is clearly defined and many possessions occur during
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a typical game. Since rosters are small, many combinations of players are observed; to estimate interaction terms,
observations with the two nodes separately and together are required. If lineups are changed completely, many players

never face or play with one another, limiting the range of interactions.

For each possession many outcomes are possible such as the number of points scored, the amount of time elapsed,
the amount of movement during the possession and counts of particular events. The latent network estimated by the
models developed in this paper are defined relative to the outcome of interest. Hence, when the number of points
scored during a possession serves as the outcome, the network measures the propensity to score as a function of the
individuals on the court. Alternatively, if total ball movement per second is the outcome, the latent network measures

feet moved per second as a function of the players.

Many events transpire during a possession that lead to the observed outcome of interest. Observed relational events
can be understood as networks in-themselves. For example, when every pass is recorded during possessions, one can
model the data as a network directly or as a sequence of relational events ([14]). Doing so allows one to model the
frequency of interaction, and therefore, make predictions about the flow of intra-possession phenomena. Defining
a network relative to an outcome, while using the observed relational data, enables one to make predictions about
efficacy of the set of players. Outcomes can be modeled in terms of relational events directly. That is, the number of

points scored can be modeled in terms of the number and order of relational events observed during a possession.

A network need not be modeled for play to be relational. Estimating the probability that player i will pass to player j
given features describing the possession is a relational account of the play. To continue the example, a passing matrix
between nodes on the same team can be estimated as part of this approach. After a pass from i a probability mass
function can be estimated for model j’s action. But, as models become more complicated, the demands on the data
become more extreme. Moreover, the focus shifts from estimating interpretable parameters representing structure to

recreating game play.

Highly-detailed intra-possession models require that relevant relational information is present in the data. Given
the subtlety and complexity of most possessions, many relational events are missing from the data. For example, play-
by-play data sources record a lob thrown to a player for a dunk, but neglect the back screen used to free the dunker
from the defense. Modeling outcomes in terms of observed relational events makes interpretation difficult because
many crucial relational events are omitted from the model. Omission of such events bias parameter estimates of the
relational events that are recorded in the data. Thus, an analyst may identify important relational events, but if they are

not recorded in the data, they cannot be used to model intra-possession dynamics. Aside from the lack of important
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events, some relational events may not be recognized by human cognition. That is, teammates may coordinate their
actions in ways that are difficult to classify or capture with a label. These type of relational events include subconscious
positioning relative to others, non-verbal communication such as eye contact or boxing out an opponent so a teammate
can rebound a missed shot. So not only will important, known relational events be missing, other important, unknown
relational events are missing from the data. True chemistry on the court cannot be fully explained by charting the
motions of players. The lobs, screens, spacing and other relational events can instead be thought of as manifestations
of team chemistry represented as an underlying or latent network. The latent network approach generalizes the rela-

tionships between the nodes in a population.

Two general models for group-level outcomes generated by interacting nodes are depicted in In both the right
and left panels, the group-level response R is generated by the main effects 3, interaction effects ¥ and additional
parameters @. The two panels show two types of model selection methods. In the left panel, M is random variable
indicating which interactions are to be included in the response model. By choosing to model M as an exponential
random graph, it is recognized as a network between nodes. Additionally, this choice allows M to depend on relational
data Y between members of the population. Note the prior placed on the network does not directly model the value
of nonzero dyads in the interaction adjacency matrix ¥. Hence the values of 6 learned during estimation relate to
the probability of inclusion as a function of relational events. The prior provides no information about how relational

events are associated with the values.

The model in the right panel does not include M. Rather, the dyads of ¥ are modeled via an additive-multiplicative

model. The parameters 6y do reflect the association between relational events and the value of ¥ directly. By adjusting

Figure 7.1: Group Outcome Model as a Directed Acyclic Graph

the assumptions associated with the various components in the model, many variations are possible. As discussed in
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this section, a network prior is placed over the interaction terms. Although this technique is novel in the study of social
networks, network priors have been used in the analysis of brain networks, particularly Bayesian connectomics. [52]
and [53]] assume connections between regions in the brain are distributed as a network. In the former paper the graph
connecting brain regions is distributed as an exponential random graph such that the edge length follows an exponen-
tial distribution. This choice prefers networks exhibiting the so-called small-world property. The latter assumes the
prior network follows an Erdés-Rényi model. The remainder of this section explores two common variation dubbed

CoordiNet and TriadNet, respectively.

7.2.1 Dyadic Interaction Models: CoordiNet

The most basic version of group-level outcome modeling with a network prior, called CoordiNet, assumes the pos-
session outcomes are a function of main effects and dyadic interaction effects. Two players exhibit a relation if they
share an edge in a given model. The edges are real-valued; pairings associated with a higher propensity for offensive
have positive edges, while dyads associated with lower scoring propensities have negative edges. Hence a negative
edge between two offensive players indicates a worse outcome for the offensive team. And, a positive edge between an
offensive and defensive player indicates a better outcome for the offensive team, and a worse outcome for the defensive

team.

An edge is said to be feasible if the dyad appeared on the court at any time during the sample. Since the number
of possible models becomes large as the set of the feasible dyads increases, the dyadic model must be able to select
good candidates. While we do want to include every feasible edge to clarify interpretation of the model parameters,
it would be absurd to consider this model only. The inclusion of too many terms can lead to overfitting, and in some
extreme cases, aliasing. Moreover, practical experience dictates that not every dyad has an impact on the offense’s
propensity to score. Model selection is made tractable by placing an exponential random graph prior on the model
space. Observed relational events between dyads guide the model exploration process. Let V be a population of nodes.

The model analyzes outcomes generated by subsets of V. Define the following model objects referenced in the two
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panels in[7.1] as follows.

R = avector of possession-level responses,

= individual player effects in the underlying model,

Y = interaction effects for the underlying model,

a = additional parameters for the underlying model,
{Y g} = layers of data relating the nodes in V,

@ = parameter measuring association between

{Y g} and M in the left panel,
6y = parameter measuring association between

{Y g} and Y in the right panel,

7 = the prior standard deviation for ¥ and g in the left panel,
y = hyperparameter for prior over a,
03 = parameters for main effects in the right panel.

The relational system contains three pieces of observed data, the possession outcomes R, the lineups present on the
court during each possession W and the observed relational events between players {Yg}:=1' Points are scored as the
result of the myriad events which transpire during a possession. Some of these things can be captured in the layers
of relational data, {Yg}, such as passes between nodes, assists between nodes, fouls against between two nodes, shots
blocked, pick and rolls run, double teams executed and so on. Observable directed actions are manifestations of under-
lying connections between nodes. Of course, as explored in the discussion, outcomes can be modeled as a function of
these actions directly. But, the current interest focus is in the general connections between nodes. Consider that latent
ties may exist between players who have not coordinated via one of the observable directed actions {Yg} available
to us. This method includes these instances in the same way that (regularized) adjusted plus-minus models account
for individual actions not recorded by boxscores or optimal cameras. Response data is assumed to be conditionally

independent of {Y g} given ¥ so that the outcome is a function of lineup indicators and the parameters «, 8 and ¥.

The main effect parameters 8 represent the vector of main (or individual) effects on the propensity to score. The
CoordiNet model includes a main effect term for every player in the dataset. The interaction terms in ¥ are selected
according to the prior probability distribution over the network. Since every main effect is included, every model

explored in the ensuing MCMC sampling satisfies strong hierarchy; i.e., if an interaction between nodes is included
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in the model, then both of the main effect terms associated with the dyad are included. The exact form « assumes
depends upon the probability distributions chosen to model the response. Since CoordiNet takes the response R to be
the number of points scored during a possession, an ordinal logistic regression framework is assumed. Then « is the

set of cut-point parameters. Precise details follow in Section

Since CoordiNet assumes only dyadic interaction, ¥ can be represented as an adjacency matrix as in[7.2] Two nodes

01 e oy X1 e X|v|
| 01
\PO—O | \PO—X
| o
— — — | — — —
| X1
\{JX—O | \{JX—X
| 1 xw

Figure 7.2: The Adjacency Matrix in CoordiNet.

i and j can be tied to one another in four different ways. If i and j play on the same team and appear on the court
together while their team is on offense, the offensive edge \Pin—O is feasible. Similarly, the value of defensive coordi-
nation between nodes i and j is represented by ‘Pfi.‘x . If i and j belong to different teams, when i is on defense and j is
on offense, their interaction is captured by ‘Pf.i‘o. Finally, when i’s team is is defended by j’s, their interaction is cap-
tured by ¥ ~*. Note that ¥~ and ¥*~¥ are symmetric matrices. Only dyads connecting pairs of players who have
appeared on the court together for at least one possession are feasible and all self-loops are set to zero. The networks
WX-0 and WOX are transposes of one another and connect dyads nodes from different teams. Competition between
two teams can be represented as interacting subnetworks as in The models presented in can be decomposed

into

p(R, ‘P,,B,a'W,{Yg}) pP(R|Y.B,a, W)p(‘i’,ﬁ, a| s ﬂ{Yg})

p(RIY,B,a, W) plely)p@Bit) D" p(¥1m,7) p(ml6, {Y,})
meM
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Network Between Two Lineups

PXQ
x x4

o5

Figure 7.3: Competitive Interaction in CoordiNet.

and

p(R¥Ba|W{Y]) = p(RI¥SaW)p(.5 0|70 0. (1))

PRIV, .0 W) plabp@ip)p (¥ 00, 1)),

respectively. Here p(R|-) is the probability distribution for the response, and p(‘W|m, 1), p(8lt) and p(aly) are the prior

densities over ¥, 8 and «, respectively. These probabilities are specified in Section[7.3]

7.2.2 Triadic Interaction Models: TriadNet

Beyond the dyad, the next most fundamental social structure is the triad. CoordiNet implicitly assumes that triadic
effects are the sum of the main and dyadic effects. But, basketball commonsense suggests this is not the case. Con-
sider three offensive players performing specific roles: a ballhandler, a screener and a spot-up shooter. The ballhandler
and screener perform a pick and roll while the shooter waits for any opportunity to shoot or cut to the basket. If all
three perform their rolls extremely well, the three-term offensive interaction is positive. Hence the full value of the

trio exceeds the sum of the main and dyadic effects. Similarly, particularly young or inexperienced trios may perform
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worse than the sum of their main and dyadic effects. Geometrically, the introduction of a third node changes the spatial
orientation from a line to a triangle thereby increasing the dimension of the space the defense must traverse to move

between the offensive players. More complicated strategies become feasible with three nodes.

The triadic network can be represented as Each sublattice represents a different type of triadic interaction. For ex-
ample the green sublattice (top, left cube closest to the the reader) is the triadic offense cube. Each point represents an
offensive interaction between teammates. Since hyperedges are undirected, the symmetry exhibited in the adjacency
matrix for CoordiNet carries over to the adjacency cube for TriadNet. Every two dimensional subspace derived by
fixing the value of one coordinate is a symmetric matrix. The red cube represents the defensive sublattice; it exhibits
similar symmetry properties. The blue cube represents the defense-offense-defense interaction lattice. Because the
edges are undirected every sublattice containing the same number of offense and defense terms contains the same

information. In the adjacency lattice the yellow cube contains the same information as the blue cube. Four types of

Figure 7.4: The Adjacency Cube in TriadNet.

triadic interactions can be included in the model:

o ®979-0 _triads of offensive players;

o XXX _triads of defensive players;

o ®XX-0 _triads consisting of two defenders and one offender; and
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o ®Y-9-X _triads consisting of two offenders and one defender.

Strong and Weak Hierarchy

Because dyadic effects are chosen probabilistically, interpretability demands some notion of interaction hierarchy. A

triadic model, represented by the adjacency matrix and lattice (¥, @), satisfies strong hierarchy if

0-0-0 0-0 0-0 0-0
L @200 20 = W0 £0APL0#0AWE0 %0,

2008520 = XX 20AP 20APN 20,

3,08 0#0 = PEX#0APIC£0AY 7 #0,and

0-0- 0-0 O— O0—-
4. OY X120 = by ¢0A‘I’ij¢O/\‘I’ikX¢O.

These conditions constrain the space of feasible models. In order to estimate a triadic effect, three dyadic effects must
also be included in the model. If a certain scheme requires three players to implement it effectively, strong hierarchy
may miss important coordination between nodes and fail to learn interesting structures. As an alternative consider a
version of weak hierarchy in which at least one of the interactions must be present. Formally, the adjacency matrix

and lattice (W, @), satisfies weak hierarchy, denoted WH (¥, ®) = 1, if
1. @3,;0*0 0 = ‘ng‘) 0V Tﬁ;o £0VY) 220,

X-X-X X-X X-X X-X
2. QXXX 20 = WEX £ 0v WY 20V WY 20,

3.0EX0#0 = P20V £0V Y #0,and

0-0-X 0-0 0-X 0-X
4. @GO 20 = WIO£OVWEY 20V £0.

There are at least two different strategies to induce hierarchy in models. One can sample from triadic networks that
satisfy weak hierarchy only. Then every model in the probability distribution over models represented by (¥, @) satis-
fies weak hierarchy. This ensures a minimal level of interpretability. However, constraining the model space reduces
predictive ability. One cannot minimize mean squared error by restricting the space of possible optima. An alternative
approach is to introduce a hierarchy condition as a sufficient statistic in the model probability. Possibilities include
the number of violations of weak and/or strong hierarchy in a model or simply whether a model satisfies weak and/or
strong hierarchy. Using the number of violations as a sufficient statistics dictates the relative importance of hierarchy

in terms of explaining the variation in the possession outcomes.

In addition to hierarchy terms, triadic sufficient statistics can be used in the prior over ® given . If triadic rela-

tional events are available, they can be used as sufficient statistics. Examples of offensive relational events include
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hockey assists in which i passes the ball to j who assists k and the aforementioned ballhandler, screener and shooter

triangle. A common X — X — O relational event is the so-called double team. Nodes i and j defend k collectively.

The model grows to admit ® and mg. As in the dyadic model, the latter object is binary whereas the former is
real-valued. The primary change to the model is reflected in the alternative decomposition where the relational data Y
and the lineup indicator data W have been suppressed for intelligibility. The probability distribution of the relational

system can be written as

P(R,®,Y,B,a) P(R|D,Y,B,a)p(D,¥,Baly,T,)

P(RID,¥.B,0) paly)p@Blr) Y, > p(©,¥|mo,my,7) pime, myl, 0)

myeMqp mypeMy

p(RID,Y.B,0) plety)p@l) > > p(®|ma,my,) plmolmy, Op (¥ |my, T) pimyl6).

myeMop mype My

7.3 Modeling a Latent Network

This section provides the probability distributions assumed for each random variable in the models depicted in
The mathematical structure for the response model and cut-point parameters is invariant across the two panels. Recall
the left panel performs model selection explicitly by modeling the probability that a subset of dyads is included in the
model as an exponential random graph while the right places a model selection prior directly on V. Since the systems
contain so many random variables the hyperparameter for the priors over ¥ and g are fixed thereby constraining the

strength of the prior. Possible probability models for these parameters are introduced and discussed in[7.6]

Model Averaging versus Model Selection Model selection is helpful whenever the number of features, in this case
main effects and interactions of maximum degree two or three, is large and a parsimonious explanation is desired.
However, the decision to choose models probabilistically requires a method to interpret the results. One method is

sum over the possible values for M - this is model averaging. Then for ¥,

Pr{¥=yIR} = > p(¥,mlR)
meM
_ 3 PRI DpCEm)

meM p(R)

o< > p(Rim, ¥)p(¥lm)p(m; 6)
meM

= p(R¥)p(YIm")p(m"; 6)
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where m* is the model that concords with ¥ given by I{¥ # 0}, and

P(RIY) = f f p(R, @, BI¥) dadp.

This method requires that the conditional probability of p(‘W|m) is estimated. In practice this means running MCMC
chains for the model parameters for every model. Note that for a given m, choices of ¥ can be infeasible if a dyad in ¥

is nonzero and the corresponding dyad in M is zero. Hence the probability is then determined by exactly one model.

Alternatively, one can choose some of the highest performing models and compare them. Doing this requires compu-

tation of the model probabilities. Generally, the posterior probability of a model is

P(R|m)p(m)

R) =
PR = PRI )it

where

p(RIm) = f f f p(RIY, o . m)plax, . Wm) derdfd ¥

= f f f PRIY, a. B, m)p(a) p(B)p(¥|m) dadpd¥. (7.3.1)

Unless a small group of models are far more probable than the many alternatives, model averaging provides probabili-
ties that each term is included in the model. The MCMC routine reflects this decision. Parameters are sampled serially
and individually. Hence model selection can be implemented by introducing a point mass on that probability that a
term is zero. Once the sampling routine visits a new model, it must sample the from the parameter space conditioned
on the model. The goal of the sampling is to produce samples of the form

{ o™, g, wOR, m}N }
meM

n=1

from the joint posterior distribution with N samples taken for every possible model. In practice only a subset of models
will be visited. Before constructing the routine, the next few subsections introduce model assumptions for the various

random variables.

7.3.1 The Response Model

The network prior method admits any probabilistic response model at the group level. To make the latent network

reflect a node’s or dyad’s ability to affect the score, the response is chosen to be the number of points scored during
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a possession. If parameters are needed for each node and dyad, then the proportional odds logistic regression is a
natural choice ([16]]). A single set of parameters provide each unit’s probability distribution over outcomes. This has
its benefits and drawbacks, a higher rate lineup will always have a higher probability to obtain the largest outcome.
In Section the higher number of points in a possession is four (though possessions of five or more points are
possible). Teams without four point plays will be predicted to achieve them with higher probability. Section
discusses modifications to address this issue. In addition to the vector of responses, the lineups used during play are
observed. Denote this matrix as W. Where each column indicates whether a player is on the court during a possession.
Let WO be the columns corresponding to the offensive players and WX be the columns corresponding to the defensive
players. Define the interaction matrices WO, WX=X and W9-X. Each contains terms indicating which offense-
offense, defense-defense and offense-defense pairs share the court during a possession, respectively. Following [37]],
for each observation define the latent variable

S s A P S O (7.32)

Cste (1.3.3)

where (w;, ¥) is the inner product of the i row of the interaction matrix and the vectorization of P, and the ¢; are

independent and have logistic distribution given by

t

1+e’

ple < 1) = logit™'(r) =

This assumption implies

PRI <D =p(si+€&<1)=ple<t-—ys).

The quantity s; is the latent value of the lineup w;. With outcomes in {0, 1, 2, 3, 4} the model requires the estimation of
a vector of cut-points « satisfying

0 if —co <R <a

1 ifa; < R:f <

ifas <R <as

ifos <R <ay

A~ W

if ay <R < oo
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Note that we only consider possessions in which 0, 1,2, 3 or 4 points are scored - this accounts for more than 99% of

the possession from the 2016-17 season. The probability that the i observation results in outcome j is

PR =)=pR; < )-pR;<j-1)

PR} <aj)— pR; <ajy)

ea,—si e(lj;l—s,'

1 +e%5 1+ %15

The likelihood of observing the vector of responses R is therefore given by

1=

PRRIY, @) o | | p(RiIY) (7.3.4)

]
—_

p(R: < j) (7.3.5)

1=
::]\

1

J

Zij

(7.3.6)

—
1~

T
~
I

(logit_l(aj - 85;) - logit_l(aj,l - si))
=1

)Zf;w,»:z Tj

-
1~

(logit™(aj — 5;) - logit™ (aj1 — 1) (7.3.7)

~
]
—_
~.
1]
—_

where z;; = 3 I{R; = j} and [ indexes the L distinct lineups in the N observations.

7.3.2 Prior for the Cut-points
Prior Over the Proportion of each Level

Although they are not typically the object of interest in analysis, the cut-points @ require a prior distribution. By
assumption, the prior for « is independent of all other random variables in[7.1] The authors of [35]] specify a Dirichlet
prior over the probability of each outcome with the predictors evaluated a their sample means. In the context of the
current application, the mean of the data refers to a possession played by all players with weights determined by the
number of possessions played. Since all input data W is binary, the sample mean is never realized in the data. But, it

corresponds to the league averages for all outcomes. For j € {0, 1,2, 3,4} let

;= Pr{R = j|x} (7.3.8)
and
J 1
paly) « ]_[ 7 (7.3.9)
j=1
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where v is a vector of prior counts. Setting y; = 1 assumes 1 observation in each of the categories. To compute the

cut-point j, sum the is given by
J i
a; = logistic™! m|=1n| ==L |
! ; ( 1- 2{:1 ﬂi)

Hence cut-points are not estimated directly. To derive the implied prior distribution observe that

Zj: . exp {a/j}

P exp {aj} +1

J

for j=1,...,J. The prior for @; is a function of 2{:1 n; hence the prior distribution over the }.;_,

p(a;). If the first j terms sum to 7, then the vector of proportions is in the set

VZ{HEA[(_l Ziﬂizﬁ',iﬂ'izl—ﬁ'}
i=1

i=j+1

and
J
_ .| _ vol(V)
Agmed)- i
Note that V is a subset of the J dimensional simplex. The vertices k = 0, ..., J are given by

r  ifk<jl=k
V= 1-7 ifk>jl=k

0 else

Then a change of variable yields

d
p(aj = a) = det d_%g_l(a])p(g_l(a,]))

exp {“j} vol(V)
(exp{aj}+l)2 1

If they are available, aggregate counts or proportions from prior seasons can be used.
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Direct Prior Over «

While the prior distribution over the probability of each outcome is quite intuitive, there are alternative formulations

that may perform better. Recall the cutpoints must satisfy

ay << y. (7.3.11)

so that any prior distribution over o must satisfy

la: plai=a)>0}n{a: plaiyy =a)>0}=0

fori =0,1,2,3. Let @ be a vector of means satisfying

@ < -+ < ay.

Then a joint prior for @ can be defined by

pla = a) <N(ag; @&, o) {ap < ai} *
N(ay; @, 00 {ag < a < a}
N(az; @, 02){ay < ay < as)

-2
N(az; @3, 0,){ax < a3 < as}.

Note the prior gives zero weight to any a that does not satisfy The vector of means can be the observed
frequency of each outcome by transformed as in Under this construction, the likelihood and proposal can be

written in terms of a. Details on the proposal distribution are in Section[7.4]

7.3.3 The Network Prior

This section specifies the prior probability distributions used to model dyadic interaction. Two types of models are

presented: the exponential random graph in the left panel and the additive-multiplicative model in the right panel.

Exponential Random Graph Prior

The random variable M indicates which dyads in ¥ are nonzero. That is, for all , j € V with j # i, M;; = 1 if and
only if ¥;; # 0. CoordiNet assumes ¥ can be partially explained in terms of relational data between nodes. Two

conceptualizations are possible. In the first case a prior for model selection is introduced while in the second the dyads
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are directly modeled in terms of relational data.

colre{n )

Z(0)

p(M=m|{Yg},0)= (7.3.12)

where g (ml X, {Yg}) is a vector of sufficient statistics and

Z©) =Y exp {ng(m|{Yg})}

meM

is a normalizing constant. The probability that M takes a given value can depend on a variety of sufficient statistics,

many derived from the layers of observed relational data. Some possibilities include
e a term for sparsity: the total number of nonzero terms in M,
¢ a term for the number of possessions played together: for edges of types t € {O — O, X — X},

tpt
ZieV Z_j;ti pOSS,‘j\P,‘j
2 2

and

Z Z possioj‘x \Pioj—x

iV j#i

for offense-defense interactions;

e terms for transitivity: for 7 € {O — O, X — X} the number of triangles in M are computed by

Diev 2jsi Zk#i,k;ﬁjﬂ{\yﬁj # O}H{T;k # O}H{‘I’;d # O}.
3 ’

o terms interacting different relationships: the number of dyads with a term for both offensive and defensive

interactions
Diev Z.,-#]I{‘I—’g‘o + o}ﬂ{qzij—x + 0}‘
2 ;

e terms involving relational events: counts such as
0-0 yyast 0—-0 yyoreb X—X yblkreb
DN DI e DI
i i A i

for teammates, and

Z Z \Pl;;—o Yis;l’ Z Z \Pg—x Y;r;)ul’ Z Z \P?;—o Yg}lk

i j# i J# i j#
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for opponents;

o terms involving dyadic attributes: These are terms commonly found in exponential random graph models

such as the difference in age between two nodes.

Sparsity is in the models selected is appealing as there exists sparsity of data. That is, many offense-offense, offense-
defense and defense-defense combinations rarely appear in the data. Hence many interaction terms should be set to
zero. Interacting sections of the latent networks permits connectedness on defense to influence connectedness on of-
fense and vice versa. The use of relational events in the prior allows observed events to nudge the model towards those
concomitant with the events. For example, if the corresponding coefficient is positive, the number of assists between
two players, the higher the probability their offensive interaction is selected. More examples of possible sufficient

statistics can be found in [59].

The dyads included in the model relate to observed relational data. As discussed in Section specifying the prior
probability as an exponential random graph models ¥ in terms of Y indirectly. Equation |7.3.12]establishes the prior.
Choices of the sufficient statistics have also been introduced. More specifically, the model m includes models for the

offense-offense network, ¥2-9, the defense-defense network, W¥X=X, and the offense-defense network, ¥2=X. Then
m= (mOfo’meX’m07X) e M070 % MX*X X MO*X

where each M’ is the set of feasible models for dyads of type ¢. If the sufficient statistics in the exponential random
graph model governing the three networks are separable, then the priors over these three submatrices are independent.
This implies selection of a dyadic offensive term is independent of selection of a dyadic defensive term. A violation

of this condition is demonstrated in the following example.

Dependence between Prior Distributions Suppose the vector of sufficient statistics g(m|6, Y) contains just the two

terms
_ E 0-0, X-X E 0-X
(glagz)_ mij mlj ’ m .
i<j i#]

The term on the left counts the number of two-way dyads in the model; i.e., it measures reciprocity in the model space
and accords with the intuitive notion that dyads who coordinate well with one task likely coordinate well with another.

The term on the right is the number of offense-defense dyads included in the model. Then the prior over the model
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space can be expressed as

pmO=C, X m®X|9, Y) « exp {HTg(m|9, Y)}
=exp {g16) + g202)
= exp{g101} exp {2261}

= p(m®=C, m* %16, ) p(m®~X)0, Y).

The offense-offense and defense-defense networks depend upon one another. Dependence between dyads implies
the dependence between networks. Such nuances may be important for particular applications, but they introduce

computational complexity to estimation.

Additive and Multiplicative Effects Prior

Model selection is possible without introducing a new random variable to represent the set of active interactions in
the model. The value of dyads in ¥ can depend on relational events between nodes directly. An alternative to the
exponential random graph is an AMEN model as developed in [S7]]. Consider a mixture prior such that the elements of
Y are equal to zero with some probability; otherwise they are given by an additive-multiplicative model for relational

data. Let the prior probability over the interaction terms for a symmetric matrix ‘¥ be

pFlw,00) = | | pylow,w)

i, j<i
[ ]p¥;; = Ok, 60) + p(¥i; # O, )
i,j<i

]—[ Sij(@)I{®;j = 0} + (1 = 6;;(w) PCEIP # 0, 6). (7.3.13)

ij<i

This mixture distribution places an atom of mass at zero. The probability that dyad ij is excluded from the model is

ij = m where n;; is the number of possessions during which i and j shared the court. This type of prior will
ij

simultaneously perform model selection while informing the value of ¥ via relational data.

The continuous probability density for the value of ¥ when it is nonzero is given by the following equations. For

dyad ij of type offense-offense or defense-defense, suppose

Vij=604Yi+uAu;+ ¢ (7.3.14)
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with € ~ N(0, Z,) where

1 ifi=j
z:e,ij =
p else

. Then
p (i) = vIY: 04, 5) = N(OFY; ; + u] Au, 02).
While for dyad ij of type offense-defense the prior specifies that
Y, =0gY;+u/v,+ € (7.3.15)
Under the same assumptions for the error structure,
p(¥;; = YlY;0y) = N(OGY;; +u]v;,02).

Suppose the systematic variation not captured by the dyadic features or the individual effects is represented by the

symmetric matrix M. Then the eigenvalue decomposition implies
M =UAU"
where A is a diagonal matrix of eigenvalues and U is an orthonormal matrix of eigenvectors. Then the product
u/ Au;

is the effect of the latent factors w; and u;. For the asymmetric offense-defense matrix, the latent factors can be

expressed as

where

M=UVT
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for square matrices. Finally the terms used in Y;; can be the same as those which appear in the exponential random

graph prior.

The advantages are that the network prior is real-valued. Hence it models the values of W directly. The coefficients 6
therefore indicate not the effect on the probability an edge is included, but the effect on the value of the dyad itself.
This procedure, however, increases the number of parameters in an already large model. Equation[7.3.13|contains the
random variable . Assumptions on the mass at zero affect the number of new parameters. Suppose a matrix of ¢ are
estimated, then N(N — 1) parameters are added to the model. introduces a latent vector for every node in the
population while [7.3.15]introduces two latent vectors for every node. If this is too demanding for the data, then the

latent factors can be omitted. Furthermore, if model selection is not necessary, then prior simply becomes
2
‘I"ij ~ N(Q\;Yi’j, O'E).

Then the model has the same number of parameters as the exponential random graph model. The crucial difference is

the role relational data plays in determining ‘¥.

7.3.4 The Prior for Main and Dyadic Effects

The model exists to provide estimates of node and dyad effects. Regularized plus-minus methods shrink parameter
values to improve the model fit. Models like the elastic net, set a number of terms equal to zero while shrinking the

rest of the coefficients. Let 8 and ¥ have normal priors centered at zero with variance 7. That is, for all nodes v € V,

pByIt) = N, 7)
and for all dyads v,v' € V with v/ # v,

1 myy =0AY,, =0
p(¥ym,7) = 0 my, =0AY,,, #0

N@O,7) m,, =1

so that forr € {O — O, X — X},

¥ =[] p¥mo

(@6, )):i<jmij=1

0,7)

= ] w~w;

(@ )):i<jmij=1
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and

p#Mmn =[] p¥ Mmoo

(6,)):i# jmij=1
= [] ~Nwg%o0.

(6,)):i# jmij=1
Since (PO = X0, p(¥°Xm, 1) = p(¥*~Cm, 7). Note the same shrinkage parameter applies to the main and
dyadic effects. CoordiNet and TriadNet share this features with methods like the Lasso or the Elastic net; a single
A is chosen to regularize all variables. Section reviews alternative choices for a fixed 7 and proposes a method
to estimate the shrinkage parameter as one would any other hyperparameter. This formulation shrinks coefficients
towards zero; i.e., it assumes nodes and dyads have no effect in expectation. If estimates from prior periods of play are

available, they can be used in place of zero. Posterior samples are shrunk towards values estimated in prior periods.

7.3.5 The Model Selection Hyperparameter
Exponential Random Graph Prior

The vector of sufficient statistics 6 drives the model selection in the methodology. Two methods to estimate 6 are
discussed in this subsection. The first choice is to make the model fully Bayesian by placing a prior distribution on
6. Many alternative have been proposed in the literature on Bayesian analysis of statistical networks. The conjugate

prior is a standard choice. Assume

P61y, no) o< exp {07 = noA()) (7.3.16)

where A(0) = log(Z(8)). With the conjugate prior, the marginal prior of m is given by

p(m|Y) = f@ p(m,0|Y)de

= f@ p(ml|6, Y)p(6lv, no) dé
- f@exp {(v +g (m |{v.) ))T 0 — (no + l)A(G)} do.

The posterior distribution for the 6 is

pEIR) = D" p(®,mIR)

meM

& > P(RIm)p(mif)p(6)

meM
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where p(R|m) is the expression in[7.3.1] But, due to factors such as computational efficiency, 6 is estimated by Markov
chain Monte Carlo maximum likelihood developed in [39]]. The sampler treats the current model as if it were data.

Then given the current model and relational data Y, choose

é = argmax -L(mcurrent; 0, Y)
0e®

Doing this is equivalent to sampling the most likely part of the conditional distribution. For large networks this method

confers substantial computational benefit.

Dyadic Independent Models When the prior distribution for over the model space satisfies dyadic independence,
then it is equivalent to logistic regression. In this case, standard methods can be used to apply priors such as the
prior suggested in [38]]. For such models, the choice between the two should be made on the availability of prior

information. A simple choice is

p(6) = N(0,v%)

with 2 fixed.

The Additive Multiplicative Latent Factor Model

Recall the prior introduced in|[7.3.13|such that the offense-offense and defense-defense interaction terms satisfy

_nT T
\I'I,'j = H‘PYU +lll- Allj + €ij

with

1
(€.j,€ji) ~ N|0,07?
p 1

where u; and u; are latent factors, and

6y ~ N(O, I).

The priors over the vector of parameters Oy is

p6y = 1) = N(t;0,02).
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[58] develops a method to simulate orthonormal matrices capturing the latent factors. Given the complexity of the

model a low-rank approximation is sufficient to capture unobserved data relating pairs in V. A rank-one approximation

is simply
liuu’
where u is the first eigenvector of Z. The prior for the matrix Z is

PZIU,A) = p(UAU" + E|U, A)

= p(E|U,A)
{ -(Z-UAUN(Z - UAUT)}
oc exp 4 tr
4
The prior for the diagonal matrix A is
R 2777 2
™U'ZU, 2t
AZ,U) = N4 . , .
iz 0= | ( Q2+1) (2+T2))

r=1
And, the prior for orthonormal matrix U is

ZTUAUT }

p(U|Z, A) o« exp {tr >

The offense-defense matrix is asymmetric. Hence the latent factors will be as well. Then

p(ZIU, V) o exp {tr—(z —U AVTZT(Z = UAVT)}

The prior distributions on U and V are uniform on the space of orthonormal N X R matrices.
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7.3.6 Alterations for TriadNet

Denote the cube of three-term interactions as ®@. The main issues involve the prior over the additional parameters. One

particularly simple strategy is to suppose @ is an exponential random graph given ¥; i.e.,
P(OI) o< exp {{Th(® = ¢, V). (7.3.17)

Since the prior for @ is set conditionally, it can be used to introduce hierarchy conditions to the set of interactions
included in the model. By assumption, the triadic model includes all main effects, but not all dyadic interaction

effects. Hence model hierarchy depends upon which dyadic effect terms are included in a particular model. Consider
POIP) oc T{H(DIP) = 1}exp{LTh(® = ¢I¥, V)] (7.3.18)

where H(®|Y) indicates whether hierarchy condition H holds for ® given V. If the prior values of ® only depend on

whether the terms in ¥ are nonzero, the distribution can be written
p(@lmy, £) o< T{H(®my) = 1} exp {{Th(Dlmy, )}

if hierarchy is encoded into the sufficient statistics h(mg|my, Y), then the prior is given by with sufficient statis-
tics such as an indicator for a hierarchy conditions or the proportion of terms that satisfy the hierarchy condition.
Relational data in CoordiNet records events that transpire between two individuals. In a triadic model, ternary rela-
tional events are used to inform the prior over models. Interestingly, many ternary motifs or relational events can be
decomposed into binary events. A triangle in a social network provides an example. Let i, j and k form a triangle if
and only if ¥;; = Y3 = Y = 1. A double team in basketball follows the same logic; let i and j be a double team k if
and only if i/ and j defend k. This observation aids in the intuition of a triadic term learned by TriadNet. A triadic term

captures systematic variation that cannot be decomposed into the dyads that comprise it.

Dependence between my and mg Assumptions about the interaction hierarchy conditions to which the model is
subject induces dependency between ¥ and @. But, one can imagine various mechanisms connecting these random

variables.
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The priors over the values of the selected triadic interaction terms is

1 My =0AD,, =0
P(‘va’v” Im,7) = 0 My =0A D, #0

N(Oa T) Myyryr = 1

Hence the joint prior for mg, my, ® and ¥ given 6, ¢ and, Y will be an exponential random graph. A conjugate prior
for £ can be assessed or the maximum likelihood estimate can be used within the sampling scheme. The next section

reviews the MCMC sampling strategy.

7.4 Posterior Inference and Sampling

Estimation procedures for the dyadic and triadic interaction models are developed. The former obtains a sample from

{p(¥, B, @, m)},cpq and the latter obtains a sample from {p(®, ¥, B, @, me, my)},, myem-

7.4.1 Posteriors of Interest

In this subsection the objects of primary interest are reviewed and methods to sample from the posterior distribution
of each are presented. Focus resides on three posterior computations: computation of model probabilities, model-
averaged parameter estimates and the posterior predictions. Comparison of model probabilities requires good estimates
of the posterior distribution of the parameters dependent on a given model m. Hence whenever the sampler moves to a
new model, it must sample from the conditional distribution of the relevant parameters. For each m; withi =1,..., D,

@ pW

draw (a;"”, B; ,‘PE” )for j=1,...,S from the conditional posterior p(a, 3, ¥|m, R) and compute

p(RIm;) = f f f PRI, B PP m)pa)p(B)p(Plm) dadBd¥

~ > pRIa, B, m)pa”)pBP) p(¥ m).
J

Then, combining all sampled models, compute the posterior model probability

P(RIm;) p(m;)

p(milR) ~ .
2 p(Rlm;)p(m;)

The sampled models can be ranked according to their probabilities. The parameters sampled at each model can be
used to infer characteristics of the posterior distribution of highly likely models. Usually, the parameters § and ¥

are of greater interest than a. The joint posterior of these parameters can be computed for a given model, or the
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model-averaged parameters can be used to analyze the main and dyadic effects. The latter can be computed by

M
p¥.BR) = f pla. B, Wlmi, R)p(mi|R) dex
i=1
M -
~ ) ) @ B ¥imi, RpomiIR)
=l
Posterior Predictive
Samples drawn from the posterior distribution of the main effects, 3, the network ¥ and the cut-point parameters @ can

be used to compute the posterior predictive distribution. Given the sequence of values Ry, ..., Ry, a new point with

design W is distributed as

p(le»Rl,'- '7RL7 W)

f f f p(R, ., B, YW, R, W) dadBd¥
5, pRia, B9, W) [TE, p(Ria?, B9, W) p(ah, f0, W)

~ L (7.4.1)
ZFI lel p(R”a(J)’ﬁ(J)’ \I/(J))p(a/(J)’ﬁ(J)’ \{/(1))

where {oz(J), BD, ‘P(f)} _, are samples from the posterior distributions of @, 8 and ‘¥, respectively. Note the models have
j=
been averaged out of this expression. can be used to compare the performance of CoordiNet to other modeling

techniques.

7.4.2 Algorithm Details

Gibbs sampling provides a method to draw from the posterior distribution of p(a, 8, ¥, m|R). In order to average over
models, the sampler must explore the space of models and explore the parameter space for every model considered. A
Gibbs sampler of the conditional distribution p(a, B, ¥|m, R) is regular and therefore converges to the unique stationary

distribution.

Choose initial values for the random variables a, 82, 8%, ¥O-0, ¢X=X pO-X g0 gX gOX r Note that M°~C and MXX
are implicitly defined as M;; = H{‘I’i j* 0} fori < j, i, j € V. Consider a Gibbs sampling algorithm for the model. To

sample from p(6lm, ¥, B, @, R) when r < ry, solve

6 = argmax L(m;6,Y)
6O
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and set Q(¢'10) = N(6, a'g). Otherwise, if r > rq, set Q(6'|0) = N(6, 0'5). For the latter condition, the acceptance ratio

for the offense-offense and defense-defense dyadic effect models is

mij

pmle)p@) 0@y i ()" (1 =m)! N0, 0%)
P(m|9)P(9)Q(9/|9) Hi<j (ﬂ,’j)mlj (1 - ﬂij)l_mijN(Q; 0, 0'5)

exp{67gij}

Trexpl g]]" This simplifies to

where 7;; =

exp {_(G)Tgij} ‘1 ]mz‘j ( exp {(G)Tgl]} ‘1 ]l—mij
exp{—(é")Tgij} +1 exp {(9')Tgij} +1 '

k i<j

After updating #°-9, X=X and §°*, perform a Gibbs run through each feasible dyad in ¥°~¢, ¥*~* and ¥9~X. For
each model, sample m and ¥ jointly to improve mixing. For some fixed 6 > 0 propose ‘Plfj = 0 so that mlfj =0;

otherwise propose ¥’ ~ N(¥, 0-\21,) and mlfj =1

In to Out Suppose the latent networks ¥ and ¥’ differ by a single edge. Let M;; = 1 so that ¥;; # 0, and M ;=050

that ¥ ;=0 Then the acceptance probability is

p(¥, M'|B, a0, NQPIY)  p(RIY'. B, a)p(¥'|M’, D)p(M'l6) (1 = ON(¥ij; W} o)

POV, MIB,a, QYY) p(RIY, B,)p(¥IM, 7)p(MI0) 5
_ Tliew, PRI, @, p) p(¥}; = OM]; = 0.7) exp (67 f(M')} (1 = ON(Ti2 ¥} 0y)
" Tlier, PRI, @.B) p(¥;; = yIM;; = 1.7) exp (67 F(M)} 5
_ T (L=0) 11 (PRIV, @, )\ N(¥ij: 0. 075)
= oxp {07 )) Q(paem,m) N¥i7:0.7)

where the last line holds whenever the network prior satisfies dyadic independence and L;; is the set of lineups con-

taining dyad ij.

Out toIn Let M;; = 0 so that ¥;; = 0, and lej = 1 so that ‘P;j # 0. Then the acceptance probability is

P B ROHY) s
@ 5. oww ~ M) 751 ]

leLi;

(p(R;I‘P’,a,ﬂ)) N(¥7;:0,7)
PRIY.@.p) | N(¥;;0,0%)
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IntoIn In this case M;; = M =1 and ¥;; # ¥; - The acceptance probability becomes

p(¥, M|, @, R)Q(¥|¥") M (p(RzI‘I”,a,ﬁ)) N(¥};:0,7)

p(¥. MB.a. R)Q(P¥) P(R|¥,a.B) | N(¥i;; 0,7)

leL;;

Then many draws are taken given the fixed model. Doing so provides the samples necessary to compute model

probabilities. Sampling for the ¥ and 8 parameters is straightforward. Sample from the conditionals
p(¥il¥Y_ij, 7.8, ., 0)

and

P(ﬂiW—h T, lﬁa a, 9)

Sample o by sampling proportions of observations falling into each of the categories 7’ from the J — 1 unit simplex.

Observe that p(7|R, ') can be sampled via a run of Metropolis-Hastings with proposal distribution

I'(J
) = L) <

and accepted with probability

>

p(ﬂ’I‘I’,R)qe(ﬂIﬂ’))_ . ( p(n’))
——————— | =min|1, .
p(m)qe(n’|m) p(m)

Given d(n’, ) < € the instrumental densities cancel. Then the parameters are transformed.

Note this choice is not necessary. One could sample m without ¥. Doing so can lead to many dyads ij with m;; = 1,

but ¥ = 0. The acceptance probability for these models.

1. Sample 7’ from p(7|R, a, 8°, 8%, P00, wX-X 49, 6).

2. Sample ¥ (and implicitly sample M’). Iterate over each dyad in the network and with probability 6 > 0O set

k4 ;= 0. With probability (1 — 6) sample ¥; ; from

p(Yil¥Y_ij, 7. B, @, 6) (7.4.2)
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3. Tterate over each node and sample §3; from

PBilB-i, . ¥, @, 0) (7.4.3)

4. Sample o by sampling proportions of observations falling into each of the categories 7’ from the J — 1 unit

simplex. Observe that p(n|R, ¥) can be sampled via a run of Metropolis-Hastings with proposal distribution

I'(J
0. = L) <

and accepted with probability

L p(n'rP,R)qE(mn')) i (1’ p(n’))’
P P

Given d(n’, m) < e the instrumental densities cancel. Then the parameters are transformed.

5. Update 6 by maximum likelihood estimation of the simulated values or the appropriate conditional posterior.

Again, Metropolis-Hastings can be used.

7.5 Application: Eastern Conference Semifinals

CoordiNet was applied to the play-by-play data generated during the Eastern Conference Semifinals in 2016-17 in the
NBA. Two teams played seven games against one another. The prior for the main effects used data on the player’s
attributes like; the prior for the dyads is based upon an intercept and the total height of a pair. Results for the additive-
multiplicative network prior are demonstrated. Figure ?? presents a histogram of the number of terms selected. Figures
and show a run of MCMC for dyadic and main effects. Some of the information can be presented in network
plots with the color of node indicative of the sign of the estimated main effect. Edges are colored green if their
parameters are positive and red otherwise. Dyads not included in the model do not share an edge. Figures [7.8]and [7.9]

display network plots for the Eastern Conference Semifinals.

7.5.1 Prediction of Counterfactual Dyads

Prediction of the response for dyads that were actually observed can be accomplished by sampling from This
type of prediction implicitly assumes the potential outcome of a lineup is independent of the other lineups in which
they were observed. Under this assumption, every lineup composed of dyads that have played together in the observed

play-by-play can be computed.
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Figure 7.7: Posterior draws for main effects in the direct prior CoordiNet.
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Figure 7.9: Boston’s inferred offensive network via the direct prior CoordiNet.

Prediction of counterfactual lineups composed of players who have never played with one another requires stronger
assumptions. The exponential random graph prior model can provide priors over the probability of an edge, but it
cannot determine the sign and magnitude. In the Normal model, there is no object representing the model. Suppose
the prior for dyad ij is

pC¥ijlx) ~ N(xj8,07)

J

and {0(1)}j are samples from p(6|R). Then for counterfactual dyad ¥’ with associated data x’,

S
P(¥'IR.X) ~ ) p(¥.07IR).
j=1
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7.6 Discussion

This chapter outlines methods to estimate models with dyadic and triadic interactions, and fits the former using the
Eastern Conference Semifinals data from 2016-17. For CoordiNet two priors are suggested for dyadic interactions. In
the first the prior over the dyads included in the regression is an exponential random graph. This has the feature of
modeling dependence between the dyads included in the model. The second prior assumes dyads are distributed inde-
pendently conditioned on data x. No model term must be introduced in this version. Moreover, this method provides

a way to simulate counterfactual dyads.

There are several issues which merit further investigation. The model assumes the responses {R;} are distributed
independently of one another. A more general model allows responses to be correlated in time. Although the propor-
tional odds logistic regression provides interpretable parameters, there are some issues associated with it. One obvious
problem with this formulation is that lineups can score four points in a single possession frequently, but may perform
poorly otherwise so the sum of their parameters is quite low. They will be expected to score four points fewer times
than a lineup who never scored four points. This can be an issue when certain lineups are used strategically for short
periods of time. Some lineups specialize in scoring one or two points while others score three or none. The assumption
of ordinal data obscures this phenomenon. One solution is to remove the assumption that the data is ordinal. In this

case far more parameters are required.

The estimated parameters provide a network structure. They can be analyzed to create measures of centrality within
teams. Let g = 1,...,G be a collection of teams to which the nodes belong. Consider the spectral decomposition
of the dyads contained within a team. For all g and ¥, € {‘Pg‘o,‘l’if‘x }, the component associated with the largest
eigenvalue of an adjacency matrix is called the eigenvalue centrality, the best one-dimensional approximation of the

adjacency matrix. Intuitively those with positive values are highly connected to those with positive values.

The relational events used to inform the prior are assumed to non-stochastic in the model. But, this is clearly not
a realistic assumption. The outcomes of possessions result from the myriad actions that occur. Not only are these
actions indicative of important dyadic and triadic effects, the efficacy of relational events vary across the dyads. Co-
ordiNet and TriadNet assume relational events are only associated with the dyads included in the model. Taking these
events seriously enables modeling of different sequences of events with different lineups. Outcomes can be modeled

as a function of the relational events and the lineup in which it occurs.
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7.7 Appendix

7.7.1 The Prior for 7

In the exponential random graph model the components of the parameters are distributed independently and normally
around zero with standard deviation 7. Since 7 is a hyperparameter - a parameter in a prior distribution - its value
can be fixed or can vary according to a prior distribution. Results in the main text use a fixed value of 7 to reduce

computation. Alternatively, let the prior for 7 be

Ifr €[z, 71}

p(T;1,7) =
T-1T

Propose all values within 2¢ of 7 with equal probability. Define the proposal distribution as

I{re(0,7+€]}
B Pe— T<E€E
qr'|r) = HEmemal z_e> 1>
{re(r—eT]} =
—25—(?—‘0 T—€e<T

There are 5 types of moves possible in the sampling scheme. Each has a different scheme.

Lower Boundary to Interior Accept a proposal with probability

- {1, PO (" ?)q(T’IT)}
p(¥, Blt)p(T; Dg(tlr’)
— min {17 p(¥,BIT)(2e - T)} .
p(¥,BIr)2e

Interior to Lower Boundary Accept a proposal with probability

» = min {17 p(‘I’,,BIT’)p(T’;_ ?)q(T’IT)}
p(¥, Blt)p(T; Dg(tlr’)
— min {17 M} ,
p(¥,BIT)(2e — 1)

Interior to Interior Accept a proposal with probability

vy = min {1, P—(\P,ﬁh")}'
p(¥,BI7)
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Upper Boundary to Interior Accept a proposal with probability

. { p(‘I’,ﬁIT')(26—(?—T))}
y =min{ 1, .

p(¥,BIr)(2€)

Interior to Lower Boundary Accept a proposal with probability

v:rmn{l P(¥.BIr)(2€) }
pE A2~ G- [

The likelihood in the acceptance proposal is just the normal distribution with standard deviation 7 centered at zero.
Then

WA - (7)) B - @)
T T i
P<‘Pﬁ>=ﬂ;exp{—’zfz7}ﬂ?“f’{‘ )

B ( T )2N+2M { Ziﬁ,-z(Tz - (@) + 2 ‘1’3(‘1'2 - (T’)z)}
exp{—

‘ZT' 27-2(7./)2
A (Ziﬁ? +3; lIl?)(TZ — (™))
- (‘7’) X T 22(r' )
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