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Background. The live respiratory syncytial virus (RSV) can-
didate vaccine LIDcpΔM2-2 is attenuated through deletion of 
M2-2 and 5 cold-passage mutations.

Methods. RSV-seronegative children aged 6–24  months 
received a single intranasal dose of 105 plaque-forming units 
(PFU) of LIDcpΔM2-2 or placebo. RSV serum antibodies, vac-
cine infectivity, and reactogenicity were assessed.

Results. Four of 11 (36%) vaccinees shed vaccine virus with 
median peak titers of 1.6 log10 PFU/mL by quantitative culture 
and 4.5 log10 copies/mL by polymerase chain reaction; 45% 
had ≥4-fold rise in serum-neutralizing antibodies. Respiratory 
symptoms or fever were common in vaccinees (64%) and pla-
cebo recipients (6/6, 100%).

Conclusions. RSV LIDcpΔM2-2 is overattenuated.
Clinical Trial Numbers. NCT02890381, NCT02948127.

Keywords. immunogenicity; live-attenuated viral vaccine; 
neutralizing antibodies; pediatric RSV vaccine; respiratory syn-
cytial virus; RNA regulatory protein M2-2.

Respiratory syncytial virus (RSV) causes about 33 million 
episodes of lower respiratory illness (LRI), 3.2 million hospital 
admissions, and up to 118 200 deaths annually [1]. A substan-
tial burden of RSV disease occurs in children >6 months of age. 
Passive immune prophylaxis with monoclonal antibodies is ef-
fective for high-risk infants [2] but is not feasible for general use. 
Also, passive protection eventually wanes. Thus, there is a strong 
rationale for development of pediatric RSV vaccines for active 
immunization [3]. Live-attenuated RSV vaccines for intranasal 
application are attractive because they have the potential to in-
duce a spectrum of protective immune responses, including 
mucosal immune responses. Unlike formalin-inactivated or 
other nonreplicating RSV vaccines, they are not associated with 
a risk of priming for enhanced RSV disease [4, 5].

Use of reverse genetics [6] and improved understanding of 
RSV gene function allow for rational design of attenuated vac-
cine candidates for children as young as 4 weeks of age [7, 8]. 
A promising attenuation strategy employs deletion of most of 
the open reading frame (ORF) encoding the RNA synthesis reg-
ulatory protein M2-2. Deletion of M2-2 results in a shift in the 
viral RNA synthesis program such that gene transcription and 
antigen expression are increased, whereas genome replication is 
decreased [9], which might lead to greater immunogenicity per 
infectious unit.

A candidate vaccine, MEDI∆M2-2, was highly restricted 
in replication yet more immunogenic than prior RSV vaccine 
candidates in a previous study of RSV-seronegative children 
[10]. A second candidate with M2-2 deletion, LID∆M2-2 [11], 
based on a different laboratory isolate of RSV strain A2, seemed 
less restricted in replication. The current study evaluated 
LIDcp∆M2-2, a version of LID∆M2-2 that was further atten-
uated by an additional set of 5 well-characterized attenuating 
mutations derived from cold-passaged (cp) RSV [12, 13] in 
RSV-seronegative children aged 6–24 months.

METHODS

Vaccine

LIDcpΔM2-2 is based on LIDΔM2-2 (described in detail in 
McFarland et al. [11]). Both viruses are derived from a recom-
binant version of wild-type (wt) RSV subgroup A  strain A2 
(GenBank accession number KT992094) and are attenuated 
by a 241 nucleotide deletion of the M2-2 ORF (nt 8189–8429). 
LIDcpΔM2-2 differs from LIDΔM2-2 only by a set of 5 amino 
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acid substitutions in 3 RSV proteins that in aggregate are called 
the “cp” mutations (V267I in N, E218A and T523I in F, and 
C319Y and H1690Y in the L protein) [12, 13]. LIDcpΔM2-2 was 
generated by reverse genetics on World Health Organization 
Vero cells. Clinical trial material was manufactured at Charles 
River Laboratories (Malvern, PA). The live vaccine had a po-
tency of 5.6 log10 plaque-forming units (PFU)/mL, was stored 
at –80°C, and was diluted with Leibovitz L15 medium to a dose 
of 105 PFU in a 0.5-mL volume. The vaccine was administered 
intranasally as nosedrops in a single dose divided between the 
nostrils. Leibovitz L15 medium was used as placebo.

Study Design

This randomized (2:1 vaccine to placebo), double-blind, placebo-
controlled study (https://clinicaltrials.gov: NCT02890381/
NCT02948127) was conducted at 5 clinical trials sites with ac-
crual between October 5 and October 26, 2016. Eligible children 
were ≥6 and <25 months of age, healthy, with no history of lung 
disease, and were RSV-seronegative at screening, defined as 
having a serum RSV 60% plaque-reduction neutralizing titer 
(PRNT60) ≤1:40.

Clinical assessments and nasal washes (NWs) were performed 
on study days 0 (before inoculation), 3, 5, 7, 10, 12, 14, 17, and 28, 
with telephone contact on intervening days. Additional physical 
examinations and NWs were obtained in the event of respira-
tory illness (upper respiratory illness [URI; rhinorrhea, phar-
yngitis, or hoarseness]; cough; acute otitis media [OM]; LRI) 
or fever. Adverse events were recorded through day 28; serious 
adverse events (SAEs) were recorded until day 56. Surveillance 
for medically attended respiratory illness associated with nat-
urally occurring RSV was conducted from November 1, 2016, 
through March 31, 2017, by weekly contacts. Within 3 days of 
each illness episode, a clinical assessment was performed and 
NW was obtained and tested for the presence of viral pathogens 
as described below. Sera to measure antibodies to RSV were 
obtained before inoculation, 56 days after inoculation, and after 
the surveillance period.

Written informed consent was obtained from parents/
guardians, and human experimentation guidelines by the US 
Department of Health and Human Services were followed. 
Studies were approved by each site’s institutional review board 
and monitored by the Independent Data Safety and Monitoring 
Board of the National Institute of Allergy and Infectious 
Diseases, Division of Clinical Research.

Laboratory Assays

Vaccine virus in NWs was quantified by immuno-plaque assay 
on Vero cells and by reverse transcription quantitative poly-
merase chain reaction (RT-qPCR) specific to the RSV matrix 
protein as previously described [11], and the genetic stability 
of vaccine isolates was determined as previously described 
[11]. NW specimens from days of illness were evaluated for the 

presence of adventitious respiratory agents by multiplex RT-PCR 
(FTD Respiratory pathogens 21, Fast-track Diagnostics, Esch-
sur-Alzette, Luxembourg).

Serum RSV PRNT60 were determined by complement-
enhanced 60% plaque reduction neutralization assay, and serum 
IgG antibody titers to the RSV F glycoprotein (anti-RSV F IgG) 
were determined by an IgG-specific enzyme-linked immuno-
sorbent assay (ELISA) as previously described [10, 11, 14].

Statistical Analysis

Medians and interquartile ranges (IQRs) were used to sum-
marize peak NW titers and serum antibody titers. Mean and 
standard deviation values are presented to allow descriptive 
comparisons with other studies. The summaries of vaccine virus 
shed in NW detected by culture and RT-qPCR were restricted 
to the vaccine recipients who were infected with vaccine (de-
fined as detection of vaccine virus by culture and/or RT-qPCR 
and/or a ≥4-fold rise in serum RSV PRNT60 or anti-RSV F IgG). 
Analyses were performed using SAS, version 9.4 (SAS Institute 
Inc., Cary, NC), and graphs were produced using R software.

RESULTS

The study accrued 11 vaccinees and 6 placebo recipients. The dis-
tribution of sex, age, ethnicity, and racial characteristics was sim-
ilar for vaccine and placebo recipients (Supplementary Table 1). 
All children were assigned study treatment. One placebo recipient 
did not have serum obtained at the postinoculation visit.

During the 28  days postinoculation, respiratory and/or fe-
brile illnesses were frequent in both vaccine and placebo 
recipients, with 7/11 (64%; 90% confidence interval [CI], 35%–
86%) and 6/6 (100%; 90% CI, 61%–100%) having 1 or more 
illnesses, respectively (Table 1). Six of these 7 vaccinees had res-
piratory agents detected in NWs, including rhinovirus (n = 5), 
adenovirus (n = 2), and parainfluenza 3 (n = 1), with (n = 2) or 
without detection of vaccine virus. Similarly, 4/6 symptomatic 
placebo recipients had 1 or more viruses isolated, including 
rhinovirus (n = 4), parainfluenza 2 and 3, and enterovirus (1 
each). Two placebo recipients had documented, symptomatic 
wt RSV infections during this period. There were 2 adverse 
events that were of Grade 3 severity: Fever (39.2°C) occurred 
in a vaccinee without vaccine virus or other agents detected, 
and fever (39.3°C) occurred in a placebo recipient, concurrent 
with isolation of rhinovirus and RSV subgroup B.  All other 
reactogenicity events in both groups were of Grade 2 severity 
or less. Two vaccinees had Grade 2 LRI, 1 noted on Day 21 with 
bronchitis and the other on day 28 with wheezing; both were 
accompanied by acute OM and URI symptoms. Both children 
had rhinovirus detected at the time of symptoms without detec-
tion of vaccine virus. No SAEs occurred.

Six of 11 (55%) vaccinated children met the definition of in-
fection with vaccine virus. Four of 11 (36%; 90% CI, 14%–65%) 
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vaccinees had vaccine virus detected by quantitative culture or 
RT-qPCR (Table 1; Supplementary Table 2). Two additional 
vaccinees had seroconversion without detection of vaccine 
virus. Among those 6 vaccinees, vaccine virus was shed for 
a median duration (IQR) of 6 (0–12) days by culture and 12 
(0–15) days by RT-qPCR. Median (IQR) peak titers of shed vac-
cine virus were 1.6 (0.5–3.4) log10 PFU/mL and 4.5 (1.7–6.8) 
log10 copies/mL for the 6 vaccinees meeting vaccine infection 
criteria (Table 1). Sequence analysis of LIDcp∆M2-2 isolates 
from which sequence analysis data could be obtained con-
firmed that the shed vaccine stably retained the cp codons 
(isolates from 3 participants) and the M2-2 deletion (isolates 
from 4 participants).

Changes in serum antibody titers are shown in Figure 1. 
Four-fold or greater rises in serum RSV PRNT60 and anti-RSV 
F IgG titers at day 56 (Supplementary Table 3) were present in 
5/11 (45%) vaccinees and 2/5 (40%) placebo recipients (1-tailed 
P =  .64). One vaccinee with virus identified by RT-qPCR but 
not culture did not seroconvert. Both placebo sero-converters 
had wt RSV isolated at the time of clinical symptoms on study 
day 27. Among vaccinees, only 18% achieved a serum RSV 
PRNT60 ≥ 6.0 log2 (1:64). Antibody responses at day 56 to RSV 
F glycoprotein were similar in vaccine and placebo recipients 
(Supplementary Table 3).

RSV Surveillance

During the RSV surveillance period, rates of MAARI were sim-
ilar between the vaccine and placebo groups (5/11, 45%; 90% CI, 
20%–73%; vs 3/6, 50%; 90% CI, 15%–85%), respectively). Three 
vaccinees (2 without vaccine take and 1 vaccinee with shedding 
detected by PCR but without seroconversion) and 1 placebo re-
cipient experienced RSV-associated MAARI during the surveil-
lance period, including 1 vaccinee with bronchiolitis, wheezing, 
rhonchi, rhinorrhea, OM, and cough (RSV type A), 1 with 
croup and cough (RSV type A), and a third with bronchiolitis, 

Table 1.  Vaccine Virus Shedding, Peak Virus Titers, and Clinical Assessment During the First 28 Days After Inoculation

Group
No. of 

Children
No. (%) Shedding 

Vaccine Virusc

Viral Detectiona No. (%) With Indicated Symptomb

Plaque Assay, 
Log10 PFU/mLd

RT-qPCR, Log10 
Copies/mLe Fever URI LRI Cough OM

Respiratory 
or Febrile 

Illness

Vaccine 11 4 (36%) 1.6 (0.5–3.4) 4.5 (1.7–6.8) 2 (18) 6 (55) 2 (18) 4 (36) 3 (27) 7 (64)

Placebo 6 0 0.5 (0.5–0.5) 1.7 (1.7–1.7) 4 (67) 6 (100) 0 (0) 4 (67) 0 (0) 6 (100)

Abbreviations: LRI, lower respiratory illness, defined as wheezing, rhonchi, or rales, or having been diagnosed with pneumonia or laryngotracheobronchitis (croup); NW, nasal wash; OM, 
acute otitis media; PFU, plaque-forming unit; RT-qPCR, reverse transcription quantitative polymerase chain reaction; RSV, respiratory syncytial virus; URI, upper respiratory illness, defined 
as rhinorrhea, pharyngitis, or hoarseness.
aMedian (25th–75th percentile) peak viral titers detected in nasal washes. For the vaccine group, these summaries were calculated only for the 6 children who were infected with vaccine 
virus; infection was defined as the detection of vaccine virus by culture and/or RT-qPCR and/or a ≥4-fold rise in RSV serum-neutralizing antibody titer and/or serum anti-RSV F antibody titer. 
As expected, no placebo recipients shed vaccine virus.
bNumber (%) of children with indicated respiratory symptoms occurring in the 28 days after inoculation.
cPercentage of children with vaccine virus detected in NW by culture and/or RT-qPCR. Three children had vaccine virus detected by both culture and PCR, and 1 only by RT-qPCR.
dFor each child, the individual peak (highest) titer, irrespective of day, was selected from among all titers measured in the NW by viral culture and expressed as log10 PFU/mL. The lower limit 
of detection was 0.5 log10 PFU/mL.
eFor each participant, the individual peak (highest) titer, irrespective of day, was selected from among all titers measured in NW by RT-qPCR and expressed as log10 copies/mL. The lower 
limit of detection was 1.7 log10 copies/mL.
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Figure 1. Serum respiratory syncytial virus (RSV) antibody titers in vaccine and 
placebo recipients. Serum RSV 60% plaque reduction neutralizing titers (PRNT60) 
(A) and anti-RSV F IgG titers (B) were determined by complement-enhanced 
60% plaque reduction neutralization assay and IgG-specific enzyme-linked im-
munosorbent assay against purified baculovirus-expressed F protein (provided 
by Novavax, Inc., Gaithersburg, MD), respectively, for vaccine (open circles and 
stars) and placebo (x’s) recipients in sera collected at pre-inoculation (screening), 
postinoculation (study day 56), and postsurveillance (after the RSV season, April 
1 to 30 in the calendar year after the inoculation). Titers are expressed as the re-
ciprocal log2. The lines indicate median (solid line) and mean (dashed line) values. 
P values were determined by Wilcoxon rank-sum test. Five vaccine recipients who 
did not shed vaccine virus are indicated with the star symbol. The data from the 
postinoculation visit are missing for 1 placebo recipient.
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dyspnea, OM, fever, rhinorrhea, and cough (RSV type B). One 
of the placebo recipients had cough and nasal congestion (RSV 
type A). A second placebo recipient demonstrated a rise in RSV 
titer during the season without evidence of a MAARI.

Assessment after the RSV season showed that serum antibody 
responses to vaccine in 5 vaccinees who did not have a boosted 
response and thus were presumed not to have been exposed to 
RSV during the surveillance period were unchanged, indicating 
that the serum antibody response to vaccine was durable.

DISCUSSION

The RSV vaccine candidate LIDcp∆M2-2 is overattenuated 
and not suitable for further development. A  related product, 
LID∆M2-2, was previously shown to have excellent infectivity 
and immunogenicity in RSV-seronegative children aged 
6–24  months, inducing 4-fold increases in serum RSV-
neutralizing antibodies in 90% of vaccinees [11]. The cp 
mutations were added with the expectation of slightly reducing 
the level of replication of LID∆M2-2. However, the results of the 
present study suggest that adding the additional 5 cp mutations 
significantly increased attenuation, exceeding the moderately re-
strictive effects observed in preclinical studies [13] and resulting 
in a candidate vaccine with suboptimal vaccine take and immu-
nogenicity. In preclinical studies in African Green Monkeys, 
LIDcpΔM2-2 at doses of 1 and 2 × 106 PFU demonstrated low 
or undetectable levels of replicating virus and excellent anti-
body responses (Investigator’s Brochure, version 29 July 2016). 
Cold-passaged RSV was originally derived by 52 sequential cell 
culture passages at low temperatures. Earlier studies of cpRSV 
demonstrated that the vaccine was underattenuated, and sub-
sequent studies evaluating cpRSV with additional attenuating 
mutations have shown over- [14] or underattenuation [15].

The median peak titer of vaccine virus shed among those 
vaccinees who shed virus (1.6 log10 PFU/mL by culture, 4.5 log10 
copies/mL by qRT-PCR) was lower than that of LIDΔM2-2, 
which produced median peak titers of 3.8 log10 PFU/mL and 6.2 
log10 copies/mL, respectively [11]. However, the peak titers were 
higher than those seen with at least 1 other product, RSVcps2, 
which produced a median peak titer of 0.5 log10 PFU/mL by 
culture and 2.9 log10 copies/mL by RT-qPCR [15]. Despite the 
low magnitude of vaccine virus detected in RSV-seronegative 
children, 77% of recipients of RSVcps2 shed vaccine virus, 
whereas in the present study, only 36% of recipients of RSV 
LIDcp∆M2-2 had demonstrable viral replication.

The rates of respiratory events after inoculation were high 
among both vaccine and placebo recipients, and there was no 
evidence that the vaccine virus was causally associated with 
any of these events. Further, there was no evidence of enhanced 
RSV illness when participants subsequently acquired wt RSV 
infection.

This study has several limitations. The small sample size 
precludes firm conclusions regarding rates of vaccine-associated 

events and the precision of the point estimate of the rate of im-
mune response. Further, the timing of enrollment and overlap 
of the first 56  days of follow-up and RSV season resulted in 
some children acquiring RSV infection before the collection of 
the day 56 serum sample. Future studies will measure antibody 
response 28  days after immunization, rather than 56  days, to 
minimize the overlap with RSV season. Nevertheless, the very 
low incidence of vaccine virus replication as measured by cul-
ture and RT-qPCR indicates that this vaccine is overattenuated.

In summary, the LIDcpΔM2-2 vaccine is not a candidate for 
further development. RSV ΔNS2/Δ1313/I1314L, attenuated by 
the deletion of the viral interferon antagonist NS2, and RSV 
276, attenuated by deletion of the M2-2 ORF but without ad-
ditional cp mutations, are proceeding to larger clinical trials 
(ClinicalTrials.gov: NCT03422237/NCT03227029). It is ex-
pected that both of these candidate vaccines will demonstrate 
viral replication in a higher proportion of children immunized, 
with improved vaccine immune response rates.

Supplementary Data
Supplementary materials are available at Open Forum Infectious Diseases 
online. Consisting of data provided by the authors to benefit the reader, 
the posted materials are not copyedited and are the sole responsibility of 
the authors, so questions or comments should be addressed to the corre-
sponding author.
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