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Abstract

Multivariate network-based analytic methods such as weighted gene co-expression network 

analysis are frequently applied to human and animal gene-expression data to estimate the first 

principal component of a module, or module eigengene (ME). MEs are interpreted as multivariate 

summaries of correlated gene-expression patterns and network connectivity across genes within 

a module. As such, they have the potential to elucidate the mechanisms by which molecular 

genomic variation contributes to individual differences in complex traits. Although increasingly 

used to test for associations between modules and complex traits, the genetic and environmental 

etiology of MEs has not been empirically established. It is unclear if, and to what degree, 

individual differences in blood-derived MEs reflect random variation versus familial aggregation 

arising from heritable or shared environmental influences. We used biometrical genetic analyses 
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to estimate the contribution of genetic and environmental influences on MEs derived from blood 

lymphocytes collected on a sample of N = 661 older male twins from the Vietnam Era Twin Study 

of Aging (VETSA) whose mean age at assessment was 67.7 years (SD = 2.6 years, range = 62–74 

years). Of the 26 detected MEs, 14 (56%) had statistically significant additive genetic variation 

with an average heritability of 44% (SD = 0.08, range = 35%–64%). Despite the relatively 

small sample size, this demonstration of significant family aggregation including estimates of 

heritability in 14 of the 26 MEs suggests that blood-based MEs are reliable and merit further 

exploration in terms of their associations with complex traits and diseases.

Keywords

heritability; module eigengenes; weighted gene co-expression network analysis

1 | BACKGROUND

Gene expression (GE) is the first link in the chain connecting genetic polymorphisms to 

complex outcomes. GE is understood to play a critical role in many human diseases (Carroll, 

2005; Emilsson et al., 2008; Kleinjan & Lettice, 2008; Kudaravalli et al., 2009; Schadt et 

al., 2005; Wray et al., 2007). Expression quantitative trait loci (eQTLs), which are single 

nucleotide polymorphisms (SNPs) regulating GE, provide a direct link between genome-

wide association and GE studies (Franke & Jansen, 2009; Lehrmann & Freed, 2008). 

eQTL analysis can be useful for discerning transcriptome adaptations underlying complex 

behaviors (Bhattacharya & Mariani, 2009; Coppola & Geschwind, 2006; Gu et al., 2002). 

The identification of eQTLs located in transcription-factor-binding sites, splice sites, or 

other regulatory regions is likely to reveal mechanisms by which genetic variants contribute 

to individual differences in complex behaviors (Hindorff et al., 2009; Liu, 2011; Shastry, 

2009). Yet, GE is also influenced by the environment, via epigenetic modifications. Thus, 

GE can be conceptualized as the primordial phenotype, and although likely influenced by 

genetic (G) and environmental (E) main effects as well as gene-by-environment interactions, 

the relative influence of genes and environment on GE is largely unknown.

A drawback of transcriptomic analysis is that functional genes with smaller effects on 

phenotypes may be undetectable at the single-gene level, particularly when relying on 

underpowered univariate statistics with high Type-I error rates (Langfelder et al., 2013; 

Langfelder & Horvath, 2008). Such analyses are also unlikely to capture biological 

interactions between genes, which seem likely to occur in complex traits (Horvath et 

al., 2006; Zhi et al., 2013). Indeed, notwithstanding questions regarding the direction of 

causation, dysregulation of disease-related gene networks is believed to be associated with 

many neurodevelopmental and psychiatric disorders (Oldham et al., 2008).

These limitations can be addressed with multivariate network-based analytic methods such 

as weighted gene co-expression network analysis (WGCNA) (Zhang & Horvath, 2005). 

WGCNA is a well-validated method for identifying genes associated with traits (DiLeo et 

al., 2011; Fuller et al., 2007; Langfelder & Horvath, 2008; MacLennan et al., 2009; Mason 

et al., 2009; Plaisier et al., 2009; Winden et al., 2011; Zhang & Horvath, 2005). It works by 
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classifying a set of genes with correlated expression and connectivity patterns into ‘network 

modules’. Each of these networks is summarized via a single quantitative metric called a 

‘module eigengene’ (ME). Each ME is essentially the first principal component of a module, 

and as such, it summarizes some of the correlated expression across all the genes in the 

module. Yet, despite the increasing application of MEs in human and animal studies for 

exploring associations with complex behaviors and disorders (Chen et al., 2021; Liu et al., 

2017; Wang et al., 2021; Zeng et al., 2020), the genetic and environmental etiology of MEs 

has never been empirically established. For instance, it is unclear to what extent individual 

differences in MEs derived from blood lymphocyte transcriptomes are simply a reflection of 

random variation (including measurement error) versus familial aggregation attributable to 

either genetic or shared environmental influences. To address this gap, we used biometrical 

genetic analyses that rely on human twin data to explore the genetic and environmental 

variation in MEs derived from blood lymphocytes collected on a sample of older male twins.

2 | MATERIALS AND METHODS

2.1 | Subjects

Participants comprise middle-aged male twins from the Vietnam Era Twin Study of Aging 

(VETSA) (Kremen et al., 2013). The VETSA ascertained monozygotic and dizygotic twin-

pairs who were concordant for US military service at some time between 1965 and 1975, 

although nearly 80% reported no combat experience. Based on data from the US National 

Center for Health Statistics, the sample is very similar to American men in their age cohort 

with respect to health and lifestyle characteristics (Schoeneborn & Heyman, 2009). The 

sample is 88.3% non-Hispanic white, 5.3% African-American, 3.4% Hispanic, and 3.0% 

“other” participants.

To date, VETSA twins have been assessed on three occasions, each 5–6 years apart. Briefly, 

Wave 1 took place between 2001 and 2007 (Kremen et al., 2006) (mean age = 55.9, SD 

= 2.4, range = 51.1–60.7). Wave 2 occurred approximately 5.7 years later (mean age = 

61.7, SD = 2.5, range = 56.0–67.0). Wave 3 occurred a further 5.9 years later (mean age 

= 67.6, SD = 2.5, range = 61.4–73.3). Data for this study came from a subset of Wave 3 

subjects (N = 695) who were approached to participate in a gene expression (GE) study. 

Here, the average age of subjects at the time of blood draw was 67.69 years (SD = 2.6 years, 

range = 62–74 years). Subjects who participated in the GE study were marginally older than 

non-participants (67.4 vs. 67.7, t =−2.03, df = 1157.20, p-value = 0.04).

2.2 | Ethics approval

Written informed consent was obtained from all participants. The University of California, 

San Diego (UCSD) and Boston University institutional review boards approved the proposal 

to collect these data (Projects 4013E, 150572, 150572, 150537, 140361, 071446, 031639, 

and 151333). Data are publicly available through requests at the VETSA website (http://

www.vetsatwins.org).
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2.3 | Blood collection, RNA extraction, and quality control

PAXgene tubes were used to collect 9 mL of blood in total required for the RNA isolation. 

Total RNA was extracted from PAXgene tubes using whole blood gene RNA purification 

kits (QIAGEN). RNA from all samples was run on an Agilent Bioanalyzer to assess RNA 

quality and estimate RNA concentrations. Post-RNA quality assessment included total RNA 

conversion to cDNA, amplification, and purification using the Ambion Illumina TotalPrep 

RNA Amplification Kit (Ambion).

2.4 | RNA-seq analysis

RNA sequencing was performed on Illumina NovaSeq 6000 Sequencing System at the 

University of California, San Francisco and the UCSD IGM Genomics Center. Raw 

sequencing data in Fastq format (Babraham Bioinformatics, 2011) were transferred to 

SUNY Upstate Medical University and processed as follows.

Samples were sequenced on eight 96-well plates. An average 23 million paired-end 151 

base pair reads per sample were obtained from each run. For quality control, three samples 

were duplicated on every plate. Sequencing quality was accessed by fastQC v0.11.8, with 

multiple quality statistics collected and evaluated at each processing step. One plate failed 

quality checks for 49 out of 96 samples and was discarded; all samples from this plate were 

re-sequenced as the eighth plate.

Low-quality bases and reads were filtered out of Fastq files by trimmomatic v0.39 

(Bolger et al., 2014) with a quality score cutoff of 30. Trimmed reads were then mapped 

to the Gencode GRCh38.p12 release 30 human reference genome using STAR aligner 
v2.7.2b (Dobin et al., 2013). Mapping statistics were collected from alignment results 

using PicardTools v2.20.8 (Broad Institute, 2018). Reads were then summarized using 

featureCounts in subread v1.6.4 (Liao et al., 2014), and raw count data were combined and 

annotated using customized R scripts.

Transcripts, including protein-coding genes, miRNAs, and lncRNAs, were filtered to include 

only those with greater than or equal to one count per million in at least 50% of samples. 

Counts of zero were replaced with 0.5 and data were normalized to effective library size 

via the TMM method in edgeR v3.28.1 (Robinson et al., 2010). Batch effects were reduced 

using ComBat (Wang et al., 2017).

2.5 | Weighted gene co-expression network analysis

We performed weighted gene co-expression network analysis (WGCNA) (Zhang & Horvath, 

2005) on the GE data to identify the GE networks using the WGCNA v1.36 package in 

R (Langfelder et al., 2013; Langfelder & Horvath, 2008; Zhang & Horvath, 2005). This 

approach identifies higher-order interactions between genes by assembling the GE data 

into ‘network modules’. Each network module in WGCNA was then represented using a 

‘module eigengene’ (ME), which is a quantitative summary of the correlated expression and 

connectedness across all the genes within each module.

The goodsamplesgenes() function identifies genes and samples with low variance or too 

much missingness, and excludes these from network construction. This function was run to 
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ensure suitability of the features and subjects, detecting no samples or genes to be removed. 

Both functions relied on default parameters. The blockwiseModules() function was then 

used to create a signed co-expression network. Soft threshold power was set at 12 following 

the developer’s recommendation (Langfelder & Horvath, 2008) deepSplit was set to 2, with 

a minimum module size of 30. Using these parameters, expression data for 4571 transcripts 

were organized into 26 modules with sizes ranging from 114 to 1200 transcripts. The 26 

modules include a ‘gray’ or unclassified bin containing genes not reliably connected (ME0).

2.6 | Residualization and descriptive statistics

MEs were generated for 692 VETSA subjects. However, to improve the distribution, all ME 

means and variances were residualized for the effects of testing site, time between blood 

draw and storage, and storage times at −20°C and −80°C using the umx_residualize function 

(version 4.9.0) in R (version 4.1.1). A total of 31 cases were lost during residualization 

due to missing covariates. Another two subjects were removed due to missing zygosity. 

Descriptive statistics for each ME following residualization are shown in Table 1. Among 

the 661 individuals with complete MEs there were 160 monozygotic twin pairs, 67 

monozygotic singletons (incomplete pairs), 100 dizygotic twin pairs, and 74 dizygotic 

singletons.

2.7 | Statistical analyses

The OpenMx2.9.9.1 software package (Boker et al., 2011) in R3.4.1 (R Development Core 

Team, 2018) was used to fit univariate biometric genetic twin models (Neale & Cardon, 

1992) to estimate the relative contribution of genetic and environmental influences in each 

ME. Given the number of incomplete twin pairs, methods such as weighted least squares 

will result in significant listwise deletion thereby altering the accuracy of each ME’s mean 

and variance. Fortunately, the raw data full information maximum likelihood (FIML) option 

in OpenMx2.9.9.1 (Boker et al., 2011) is robust to violations of non-normality while enabling 

analysis of missing or incomplete data as well as the direct estimation of covariate effects. 

We included age at blood draw as a covariate. This enables accurate estimates of means 

thereby improving estimation of the variances and covariance structure used to test our 

competing hypotheses regarding the genetic and environmental etiology of each ME.

2.8 | Univariate analyses

In univariate analyses, the total variation in each of the 26 MEs was decomposed into 

additive (A) genetic (heritability), shared or common environmental (C), and non-shared or 

unique (E) environmental variance components (see Figure 1). This approach is referred to 

as an ‘ACE’ variance components model. The decomposition is achieved by exploiting the 

expected genetic and environmental correlations between monozygotic (MZ) and dizygotic 

(DZ) twin pairs. MZ twin pairs are genetically identical, whereas DZ twin pairs share, on 

average, half of their genes. Therefore, the MZ and DZ twin pair correlations for the additive 

genetic (A) effects are fixed to rA = 1.0 and rA = 0.5, respectively. The model also assumes 

that shared or common (C) environmental effects are equal for MZ and DZ twin pairs (also 

known as the equal environment assumption), that there are no genotype-by-environmental 

interactions or correlations, and that mating is random. Therefore, the MZ and DZ twin pair 

correlations for these ‘C’ effects are both fixed to one, that is, rC = 1. Finally, since all non-
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shared environmental influences (E), which include measurement error, are by definition 

uncorrelated, the MZ and DZ twin pair correlation (rE) for these influences is fixed to 

zero (Neale & Cardon, 1992). Shared environmental effects are defined as those that make 

siblings similar. Non-shared environmental factors are defined as those that make siblings 

different; this term also includes measurement error. Note that these variance components 

are derived from the association between phenotypic and genotypic similarities of the twin 

pairs.

2.9 | Model fit

For each univariate analysis, we fitted an A + C + E model before determining the most 

likely sources of variance by fitting three additional sub-models in which the (i) A, (ii) 

C, and (iii) A and C influences were fixed to zero. In other words, the significance of 

each nested sub-model (i.e., ‘AE’, ‘CE’, and ‘E’) was determined using the change in 

minus twice the log-likelihood (Δ−2LL) when compared to the full ACE model. Under 

certain regularity conditions, this Δ−2LL is asymptotically distributed as chi-squared with 

the degrees of freedom equal to the difference in the number of free parameters in the two 

models (Steiger et al., 1985). Our determination of the best-fitting model was also based on 

the optimal balance of complexity and explanatory power by selecting the model with the 

lowest Akaike’s information criterion (AIC) value (Akaike, 1987).

3 | RESULTS

3.1 | Twin pair correlations

Table 1 shows the twin pair correlations by zygosity for all 26 MEs. If familial aggregation 

is entirely attributable to shared environmental influences, then the MZ and DZ twin pair 

correlations will be statistically equal. If, however, familial aggregation is attributable to 

shared additive (or non-additive) genetic factors, then DZ correlations will be less than 

½ the MZ twin pair correlations. Finally, if the hypothesis is that blood-based MEs 

are unreliable or that variability arises entirely from either random influences that are 

unshared between siblings or from measurement error, then both MZ and DZ twin pair 

correlations will not statistically differ from zero. For ME4, ME6, ME8, MEs10–11, 

MEs13–14, ME17 and ME0, the DZ twin pair correlations were greater than ½ of their 

MZ twin pair counterparts, which is consistent with familial aggregation attributable to 

shared or common environmental (C) influences. In contrasts, DZ twin pair correlations for 

MEs ME3, ME7, ME12, MEs18–19, ME21, and ME23 were approximately ½ (±0.05) of 

their MZ twin pair counterparts, which is consistent with familial aggregation driven by 

additive genetic influences. For the remaining MEs (ME1–2, ME9, MEs15–ME16, ME20, 

ME22, and MEs24–25), the DZ twin pair correlations were well below their MZ twin pair 

counterparts, which is consistent with non-additivity and dominance (D) influencing familial 

aggregation. In the classical twin design, ‘C’ and ‘D’ influences are negatively confounded, 

and therefore, cannot be modeled simultaneously (Martin et al., 1978). Since the sample 

sizes required to detect ‘D’ as a source of variation are very large, even for variables 

measured on a continuous liability scale, we chose to model ‘C’ influences in all subsequent 

univariate and multivariate models below.
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3.2 | Twin modeling

Table S1 shows the full univariate model fitting results, including comparisons between the 

‘ACE’ and the ‘AE’, ‘CE’, and ‘E’ sub-models. Table S1 also includes 95% confidence 

intervals for all A, C, and E variance components along with 95% confidence intervals. 

Among the 26 MEs examined, there were 15 MEs with evidence of significant familial 

aggregation attributable to either additive (A) genetic or common (C) environmental 

influences (see Table 2).

3.3 | MEs with significant additive genetic familial aggregation

There were 14 MEs (ME1, ME2, ME5, ME7, ME9, ME16, and MEs18–25) in which 

the 95% confidence intervals surrounding the additive genetic ‘A’ point estimates in the 

saturated ACE model did not include zero (Table S1). For these MEs, dropping the ‘A’ 

influences resulted in a significant change in chi-square, whereas removing the common 

‘C’ environmental influences (i.e., the AE model) improved the model fit in terms of a 

non-significant change in chi-square and producing the lowest AIC value. As illustrated in 

Figure 2, additive genetic influences explained 35%–64% of the total variance across these 

14 MEs (mean = 45%, median = 43%, and standard deviation = 9%).

3.3.1 | MEs with significant common environment familial aggregation—There 

were two MEs (ME10 and ME13) in which the 95% confidence intervals surrounding the 

‘C’ point estimates in the saturated ACE univariate model did not include zero. In both 

cases, dropping the ‘C’ influences resulted in a significant change in chi-square, whereas 

removing the ‘A’ influences (i.e., the CE model) improved the model fit in terms of a 

non-significant change in chi-square. Common environmental influences explained 42%–

54% of the total variances in ME10 and ME13, respectively.

In small twin studies, estimates of ‘C’ should always be interpreted in the context of 

statistical power. We, therefore, performed post-hoc power calculations using the umx 
package power.ACE.test (Bates et al., 2019) to determine the minimum amount of ‘C’ 

that could be detected at 80% power (see Appendix S1). Given the current sample size, we 

estimated that there was 80% power to detect estimates of ‘C’ as low as 44%. In terms of the 

power to detect the ‘C’ estimate of 42% observed in ME10, the power was 73%.

3.3.2 | MEs without significant familial aggregation—For the remaining 11 MEs 

(ME3, ME4, ME6, ME8, ME11–12, ME14–15, ME17, and ME0) there was insufficient 

power to choose between the competing ‘AE’ and ‘CE’ univariate models. Consequently, we 

retained the saturated ‘ACE’ model as the best fitting in each instance. Note that in each of 

these MEs, the 95% confidence intervals surrounding both the ‘A’ and ‘C’ point estimates 

spanned zero.

4 | DISCUSSION

To our knowledge, this is the first study to explore the genetic and environmental 

contributions to weighted gene co-expression network analysis module eigengenes (MEs). 

Among the 26 derived MEs, 50% had statistically significant additive genetic variation 
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with an average heritability of 46% (SD = 0.09, range = 35%–64%). Additionally, there 

were two MEs with evidence of significant shared environmental influences accounting for 

42%–54% of the total variance. For the remaining 11 MEs, estimates of additive genetic 

and shared environmental influences were non-significantly different from zero. Despite 

the small sample size for a classical twin study, the demonstration of significant family 

aggregation including estimates of significant heritability suggests that blood-based gene 

expression networks are reliable and merit further exploration in terms of their associations 

with complex traits and diseases.

Our average estimate of ME heritability is higher than the heritability estimates of individual 

differentially expressed genes reported previously. For example, Monks et al.’s (2004) 

analyses of human lymphoblastoid cell lines (LCLs) taken from 167 individuals found that 

among N = 2340 differentially expressed genes, 31% (N = 762) were significantly heritable 

(h2), with a median h2 of 34%. McRae et al. (2007) estimated a mean heritability of 31% 

for normalized gene expression levels based on N = 15,887 transcripts in LCLs taken 

from a small sample of monozygotic twin pairs (MZ). Powell et al. (2012) analyzed 9555 

genes in LCLs and whole blood (WB) taken from 50 and 47 MZ twin pairs, and estimated 

average heritabilities for differential gene expression of 38% for LCLs and 32% for WB. 

We note that the methods used by these three reports captured broad sense heritability and 

assumed an absence of common environmental influences; our results have shown these 

‘C’ influences to be present in at least two module eigengenes. Wright et al. (2014) used 

the classical twin design, which unconfounds additive genetic and common environmental 

influences, to analyze gene expression levels based on peripheral venous blood taken from 

2752 twins. Among differentially expressed genes, they reported an average heritability of 

14% (±15%). While these previous reports demonstrate a clear pattern of heritability for 

QTLs, our findings suggest that the average heritability of MEs is potentially higher than 

differentially expressed genes. Complex gene networks and interactions are the hallmark 

of complex traits (Horvath et al., 2006; Zhi et al., 2013), and since MEs are multivariate 

summaries of correlated gene expression patterns and network connectivity across all genes 

in a module, the signal detection power when based on the heritable MEs is likely to be 

greater compared to analyses based on univariate GE loci (Horvath, 2011).

Of interest are the two MEs with evidence of significant shared environmental (C) 

influences. As with additive genetics, ‘C’ influences also drive twin pair similarity. The 

advantage of the twin methodology applied here is that the use of age-matched siblings 

reared together provides a natural control for environmental influences that were either 

shared during infancy and youth, continue to be shared, or are persistent and continue to 

exert an impact. Naturally, as siblings age and spend less time together, the number of 

directly shared environmental influences, relative to the time in their lives when reared 

together, is expected to diminish. Despite the expected waning of environmental influences 

shared between siblings, familial aggregation in ME10 and ME13 was unequivocally 

explained by shared environmental influences ranging from 42% to 54% of the total 

variance. Given that batch effects can also drive twin pair similarity when correlated within 

twin pairs, all 26 MEs were corrected for the effects of testing location, the time from blood 

draw to placement in −20°C storage, total time spent in −20°C storage and − 80°C storage, 

the time between blood draw and RNA extraction, and finally, the time between blood draw 
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and sequencing. Although caution should normally be applied when interpreting ‘C’ in small 

twin studies, the power to detect the ‘C’ influence of 41% for ME10 in this sample was 

73%. If, after future efforts at validation and replication based on larger samples, estimates 

of C persist, then further analyses should elucidate which aspects of environments shared 

between siblings, broadly indexed by ‘C’ here, are responsible for these observed individual 

differences for example, allostatic stressors, diet, geographical location, and so forth.

Our results must be interpreted in the context of at least two limitations. First, between-

group differences are likely to exist and may be complex (Royse et al., 2021). Therefore, 

our results may not generalize to women or other age or ancestral groups. It is unclear to 

what extent there are sex differences in the genetic and environmental etiology of MEs in 

similarly aged women. It is plausible that the genetic and environmental etiologies of these 

MEs may differ between ancestral groups. Only by ascertaining larger and ancestrally varied 

samples can we begin to test hypotheses regarding sex and ancestral group differences.

Second, while estimating GE patterns from whole blood has become a common alternative 

to postmortem brain studies (GTEx Consortium, 2013, 2015), our analyses did not account 

for cell heterogeneity, which can bias results. For instance, cell heterogeneity can result in 

GE differences due to different proportions of cells between samples, or mask important 

disease-relevant differences. It is therefore important to control for such differences in order 

to extract accurate and meaningful GE information. One solution would be to account for 

cell-specific contributions is assessing GE patterns in certain cell populations derived from 

fluorescence-activated cell sorting (FACS) approaches. An alternative, emerging solution 

would be to rely on ‘computational deconvolution’ methods to infer cell type-specific 

information from data generated from heterogeneous samples (Novershtern et al., 2011; 

Shay & Kang, 2013; Shen-Orr & Gaujoux, 2013).

5 | CONCLUSION

Weighted gene co-expression network analysis MEs are interpreted as multivariate 

summaries of correlated gene-expression patterns and network connectivity across genes 

within a module. Because they have the potential to elucidate the mechanisms by which 

molecular genomic variation contributes to individual differences in complex traits, they 

have been increasingly used to test for associations between modules and complex traits. 

This is the first empirical study to explore the genetic and environmental contributions to 

MEs. Among 14 MEs with statistically significant additive genetic variation, the average 

heritability was 46%. Because network modules may not be well preserved between 

blood and brain (Cai et al., 2010), blood-derived GE may not recapitulate neurobiological 

mechanisms of complex behaviors and disorders. Therefore, while blood GE and MEs can 

be used as proxy biomarkers for brain-based phenotypes and complex traits, blood tissue 

should only be considered a useful proxy for gene expression in the brain provided that the 

relevant gene(s) are expressed in both tissues (Joehanes et al., 2012; Sullivan et al., 2006). 

To address this problem, we have recently developed a novel transcriptome-imputation 

method called Brain Gene Expression and Network Imputation Engine (BrainGENIE) (Hess 

et al., 2023) that is capable of imputing brain-region-specific gene expression levels from 

peripheral blood gene expression. In addition to applying BrainGENIE to the current data, it 
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remains an empirical question as to how well blood-based MEs assessed in early old age can 

be leveraged as useful biomarkers for complex traits and disorders that emerge later in life.
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Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Univariate structural equation model used to decompose and estimate the relative 

contribution of additive genetic (A), common or shared environments (C), and non-shared 

environmental (E) influences to individual differences or variation in each module eigengene 

(ME). Individual differences in each ME are decomposed into additive genetic (A), common 

or shared environmental influences (C), and unshared or random environmental influences 

as well as measurement error (E). Double-headed arrows represent the freely estimated 

within-person genetic and environmental latent factor variances (a, c and e) and the fixed 

twin pair correlations (rC, rA). rC = correlation of 1 for MZ and DZ twin pairs. rA = 1 

or 0.5 for MZ and DZ twin-pairs, respectively. Single-headed arrows represent the causal 

contributions of the A, C, and E effects for a given ME. Phenotypic means not shown.
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FIGURE 2. 
Standardized estimates (including 95% confidence intervals) of additive genetic variance in 

ascending order for the 14 MEs with significant heritability.
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