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RESEARCH

Impact of potential modifications 
to Alzheimer’s disease clinical trials in response 
to disruption by COVID-19: a simulation study
Lon S. Schneider1*  , Yuqi Qiu2, Ronald G. Thomas2, Carol Evans2, Diane M. Jacobs2, Shelia Jin2, Jeffrey A. Kaye3, 
Andrea Z. LaCroix2, Karen Messer2, David P. Salmon2, Mary Sano4, Kimberly Schafer2 and Howard H. Feldman2 

Abstract 

Background:  The COVID-19 pandemic disrupted Alzheimer disease randomized clinical trials (RCTs), forcing investi-
gators to make changes in the conduct of such trials while endeavoring to maintain their validity. Changing ongoing 
RCTs carries risks for biases and threats to validity. To understand the impact of exigent modifications due to COVID-
19, we examined several scenarios in symptomatic and disease modification trials that could be made.

Methods:  We identified both symptomatic and disease modification Alzheimer disease RCTs as exemplars of those 
that would be affected by the pandemic and considered the types of changes that sponsors could make to each. We 
modeled three scenarios for each of the types of trials using existing datasets, adjusting enrollment, follow-ups, and 
dropouts to examine the potential effects COVID-19-related changes. Simulations were performed that accounted for 
completion and dropout patterns using linear mixed effects models, modeling time as continuous and categorical. 
The statistical power of the scenarios was determined.

Results:  Truncating both symptomatic and disease modification trials led to underpowered trials. By contrast, adapt-
ing the trials by extending the treatment period, temporarily stopping treatment, delaying outcomes assessments, 
and performing remote assessment allowed for increased statistical power nearly to the level originally planned.

Discussion:  These analyses support the idea that disrupted trials under common scenarios are better continued and 
extended even in the face of dropouts, treatment disruptions, missing outcomes, and other exigencies and that adap-
tations can be made that maintain the trials’ validity. We suggest some adaptive methods to do this noting that some 
changes become under-powered to detect the original effect sizes and expected outcomes. These analyses provide 
insight to better plan trials that are resilient to unexpected changes to the medical, social, and political milieu.

Keywords:  COVID-19, Alzheimer, Clinical trials, Simulations, Mild cognitive impairment, Disease modification, 
Symptomatic treatment
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Background
The unexpected COVID-19 pandemic substantially 
disrupted ongoing randomized clinical trials for Alz-
heimer disease (AD), including seven trials being 

conducted by the Alzheimer’s Disease Cooperative 
Study (ADCS). In the first months of the pandemic, 
California and many other states instituted popula-
tion-wide “stay-at-home” orders to protect vulnerable 
individuals and to slow the spread of the virus. These 
orders prevented planned in-person study visits, forc-
ing investigators to make decisions to prematurely end 
trials, pause trials in place, or change trial methods 
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with adaptations such as extending treatment, delaying 
outcomes, or adopting remote assessment procedures. 
Investigators and sponsors were challenged to make 
these changes while maintaining trial validity and clini-
cal meaningfulness by mitigating the risks of introduc-
ing bias or loss of statistical power to detect a potential 
therapeutic effect. Unfortunately, little was known 
about the impact of many of these modifications on the 
integrity of typical AD randomized, controlled trials to 
guide trial decisions.

To better understand the effects of exigent trial modi-
fications due to disruptions caused by the COVID-19 
pandemic, we developed several scenarios with dif-
ferent potential trial modifications and simulated the 
impact of making these modifications on the power 
to detect a specified treatment effect. Simulations and 
statistical modeling were conducted with data from 
past therapeutic trials conducted by the ADCS and 
adjusted for patterns of enrollment, follow-up, and 
dropouts that occurred in those trials. Our goal was to 
show the potential effects of various trial modifications 
that might have been taken in reaction to disruptions 
caused by COVID-19 to inform both current trials and 
future trial planning.

Methods
We created two trial constructs based on common char-
acteristics of the AD randomized controlled trials, one 
for a symptomatic treatment and one for a disease modi-
fication treatment. Each construct was modeled after a 
similar symptomatic or disease modification treatment 
trial that had been conducted by the ADCS. Within both 
trial constructs, we assumed that in-person visits were 
paused for a 6-month period from the date of a strict 
stay-at-home order until the order was relaxed, and in-
person visits could resume. Within each construct, we 
assessed three representative hypothetical scenarios that 
differed in modifications made in response to the abrupt 
interruption of in-person visits. Simulations of the three 
scenarios were performed using data from past ADCS 
trials to investigate the impact of trial modifications on 
the power to detect a specified treatment effect. The 
details of the trial constructs, including trial status at the 
time the stay-at-home order was issued, protocol modifi-
cations due to the stay-at-home order, and specific mod-
eling assumptions and procedures, are described and 
summarized in Table 1. Assumptions regarding COVID-
related trial modifications differed in the two trial con-
structs; therefore, different approaches and methods 
were used in simulations. All simulations were conducted 
in R version 3.6.3.

Trial construct 1—Symptomatic trial
The first hypothetical trial construct is conceptual-
ized as a phase 2 proof-of-concept, 12-month, rand-
omized, double-blind, placebo-controlled trial of an 
oral agent for mild-to-moderate AD with change on 
the Alzheimer’s Disease Assessment Scale-Cognitive 
(ADAS-cog) as the primary outcome measure. Assess-
ments were planned at baseline, 3 months, 6 months, 
and 12 months (endpoint). The trial was powered with 
0.80 statistical power (α = 0.05) to detect a 2.6-point 
ADAS-cog difference between baseline and 12-month 
(endpoint) scores in a two-sided, two-sample t test 
analysis with 180 individuals required per arm (drug 
or placebo). We assumed that at the time of the pause, 
the trial was fully enrolled: a total of 360 individu-
als had been randomized to drug or placebo and had 
completed a baseline evaluation; 97.5% of participants 
had completed 3-month follow-up; 67% had completed 
6 months; 45% had completed 9 months; and 22% had 
completed the planned 12-month endpoint. We mod-
eled three potential scenarios in response to the pan-
demic stay-at-home order.

Scenario 0 (“trial as planned”)
We included for reference the “trial as planned” scenario 
that assumed no interruption to in-person assessments 
to confirm that original power was near 80%.

Scenario 1
The trial was abruptly ended on the date of the stay-at-
home order, and no further outcome data were collected. 
In this base condition, the hypothetical trial was trun-
cated and data available as of the date of the stay-at-home 
order were analyzed.

Scenario 2
Trial medications continued throughout the pause; out-
come assessments were stopped for 6 months and then 
resumed after the pause; windows for outcome assess-
ments were not extended, so assessments that were due 
during the pause were missing. Because there was no 
extension for visits to occur outside of the 12-month 
trial window, the 45% of individuals who had completed 
through month 9 before the pause did not have a chance 
for another assessment within the 12-month window, the 
31.5% of individuals who completed only through month 
6 before the pause did not have a month 9 assessment but 
did have a month 12 (endpoint) assessment, and the 2.5% 
of individuals who completed only through month 3 did 
not have a month 6 assessment but did have month 9 and 
month 12 (endpoint) assessments.
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Scenario 3
Trial medications continued throughout the pause; 
outcome assessments were stopped for 6 months and 
then resumed after the pause; the window to complete 
the 12-month endpoint assessment was extended by 3 
months so that endpoint outcomes could be assessed in 
person. Extending the window for the 12-month end-
point assessment represented a protocol change that 
allowed patients to be on study drug for up to 15 months. 
As a result, 22% of individuals would have been treated 
for the planned 12 months prior to the pandemic (i.e., 
completed before the pause); the remainder of study par-
ticipants could have been treated for a longer period of 
up to 15 months.

Statistical methods for trial construct 1
For each scenario, we performed a simulation to calculate 
power to detect each of three different 12-month ADAS-
Cog change score effect sizes for placebo vs. treatment 
(2.0, 2.5, and 3.0 ADAS-cog points, pooled standard 
deviation (SD) fixed at 6.0) using three different analysis 
methods (linear mixed effects with categorical time, lin-
ear mixed effects with continuous time, and Student’s t 

test) in three different sample sizes (the planned sample 
size of 360 and two others: 320, 400). Simulations were 
done with Monte Carlo methods applied to a pooled 
dataset of ADAS-cog scores from 641 participants who 
completed the ADCS homocysteine and lipid-lowering 
trials [1, 2].

As a first step, a least squares slope statistic was com-
puted for the ADAS-Cog scores of each participant in 
the pooled dataset as a measure of relative disease pro-
gression over a 12-month study period. This set of slopes 
was ordered from smallest to largest. The following algo-
rithm was then applied. (1) An N/2 sized subset of these 
slopes was selected at random without replacement using 
sampling weights biased toward larger slopes. These 
slopes represented the “placebo group.” (2) A second 
N/2 sized subset of slopes was selected in a similar man-
ner but using sampling weights biased toward smaller 
slopes. These slopes represented the “active drug group.” 
The weight distributions for “placebo group” and “active 
drug group” sample selection are shown in Fig.  1. (3) 
The sampling procedure was repeated to allow subsets 
of slopes to be drawn with means and SDs for ADAS-
cog change differences (i.e., active vs. placebo effect size) 

Table 1  Three representative COVID-19 scenarios for a symptomatic and a disease modification trial. No in-clinic visits are allowed 
during a 6-month interruption from March 19 to September 19, 2020. Bold text indicates significant distinctions between the two trials

a The original expected dropout rate is 25%. In this scenario, 66 discontinued due to COVID-19, and because some would have been “potential completers,” the final 
dropout rate is approximately 42%. See trial construct 2 statistical methods

Symptomatic trial
Phase 2 symptomatic trial in mild-to-moderate AD
  • Daily oral medication
  • Planned outcomes at 12 months
  • N = 360 randomized to drug or placebo

Disease modification trial
Phase 2/3 disease modification trial for early AD
  • In-clinic monthly drug infusions
  • Planned outcomes at 18 months
  • N = 280 randomized to drug or placebo

Trial status 
on March 19, 
2020

Fully enrolled Fully enrolled

97.5% completed 3 months 80% completed 3 months

67% completed 6 months 50% completed 6 months

45% completed 9 months 25% completed 12 months

22% completed 12 months 12% completed 18 months

Dropout 30% dropout rate evenly distributed across visits. No discontinua-
tion due to COVID19

24% (66 subjects) discontinued before or on March 19 (partially 
due to COVID19). An additional non-COVID dropout rate of 25%. 
Final dropout rate: 42%a

Scenario 1 Trial stopped on March 19; no further visits or data collection

Scenario 2 Outcome assessments paused during COVID interruption, resumed after interruption.

• ~ 50%, who had completed 9 months, missed their 12-month 
outcome
• ~ 25% missed their 9-month outcome but could have 
12-month assessments
• ~ 30% missed other outcomes
Medication continued during COVID interruption.

• ~ 50%, who had completed 12 months, missed their 18-month 
outcome
• ~ 25% missed their 12-month outcome but could have 18-month 
assessments
• ~ 50% missed other outcomes
Medication infusion paused during COVID interruption, resumed 
after interruption.

Scenario 3 No outcomes assessed during COVID interruption.
Medication continued during COVID, with extended medica-
tion provided beyond 12 months
Up to a 3-month extension of the final assessment win-
dow, to allow completion of 12 months outcomes after clinics 
reopened

Outcomes assessed remotely during COVID interruption; in-clinic 
assessment resumed after interruption.
Medication infusion paused during COVID interruption
No extension of the final assessment window
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centered around the targeted ADAS-cog change differ-
ence score (i.e., 2.0, 2.5, or 3.0 ADAS-cog points) and 
SD (i.e., 6.0 SD), and this repetition continued until the 
observed mean ADAS-cog change difference score and 
SD were within 0.001 of the targeted effect size and SD. 
This method of creating a dataset was repeated until we 
obtained 20 datasets of size N with the specified observed 
between-group ADAS-Cog change difference (i.e., 2.0, 
2.6 or 3.0) and SD (i.e., 6.0).

As a second step, a filtering process was applied to each 
dataset such that 30% of subjects were randomly selected 
to be dropped from the study prior to the 12-month 
endpoint. The timing of the dropouts was uniformly dis-
tributed over the 12-month trial period. Following the 
application of the dropout filter, one of three additional fil-
ters was applied to represent one of the COVID response 
modification scenarios (plus the “as-planned” scenario) 
described above. The 20 datasets for each combination of 
sample size, effect size, and scenario were submitted to a 
bootstrap analysis with 1000 replicates to determine the 
statistical power of each of three statistical testing proce-
dures: (a) linear mixed effects with categorical time, (b) 
linear mixed effects with continuous time, and (c) Stu-
dent’s t test. The bootstrap process involved resampling 

the dataset multiple times without replacement and cal-
culating the three test statistics and their associated P 
values. The proportion of P values less than 0.05 over the 
1000 replicates provided the power estimate.

Trial construct 2—Disease modification trial
The second hypothetical trial construct is concep-
tualized as a phase 2b or 3 disease modification trial 
with monthly intravenous infusions of a monoclonal 
antibody targeted to AD pathology. It is an 18-month, 
randomized, double-blind, placebo-controlled trial for 
early-stage AD (i.e., MCI due to AD, mild AD demen-
tia) with the ADAS-cog as the primary outcome. 
Evaluations were planned for baseline, 3 months, 6 
months, 12 months, and 18 months (endpoint). The 
trial was power with 0.80 statistical power (α = 0.05) 
to detect a 1.85-point ADAS-cog difference between 
treatments at 18 months using a two-sided, two-sam-
ple t test analysis with 140 individuals per arm (drug 
or placebo). We assumed that at the time of the pause, 
the trial was fully enrolled: a total of 280 individu-
als had been randomized to drug or placebo and had 
completed a baseline evaluation, 80% had completed 
3-month follow-up, 50% had completed 6 months, 25% 

Fig. 1  Weights distributions for placebo (red) and active group (blue) sample selection from a set of 641 ordered slopes
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had completed 12 months, and 12% had completed 
the planned 18-month endpoint. We modeled three 
potential scenarios in response to the pandemic stay-
at-home order.

Scenario 0 (“as planned”)
We included for reference the “as planned” scenario that 
assumed no interruption to in-person assessments to 
confirm that original power was near 80%.

Scenario 1
The trial was abruptly ended on the date of the stay-at-
home-order, and no further outcome data were collected. 
In this base condition, the hypothetical trial was trun-
cated and data available as of the date of the stay-at-home 
order were analyzed.

Scenario 2
Medication and assessments were stopped for 6 months 
and then resumed after the pause. This resulted in missed 
medication and assessments for visits planned during the 
pause creating a condition where approximately 20% of 
individuals who only completed baseline missed their 
month 3 and 6 outcome assessment, approximately 30% 
of individuals who had completed month 3 missed their 
month 6 outcome assessment, approximately 25% who 
completed month 6 had missed month 12, and approxi-
mately 13% who completed month 12 missed month 18. 
We also assumed that 24% discontinued before or on the 
date of the pause.

Scenario 3
Trial medication was stopped during the 6-month pause, 
but the cognitive outcome measure continued to be 
assessed remotely on the planned schedule. The impact 
of remote assessment was modeled by adjusting ADAS-
Cog scores by an increase (worsening) of 0.5 points. 
Medication was resumed after the pause. This created 
a condition similar to scenario 2’s scheme, but they had 
remote assessments rather than missing the assessments. 
We again assumed that 24% discontinued before or on 
the date of the pause.

Statistical methods for trial construct 2
For each scenario, we performed a simulation to calcu-
late power to detect each of four different ADAS-Cog 
effect sizes for placebo vs. treatment (1.5, 2.0, 2.5, and 3.0 
ADAS-cog points, pooled SD fixed at 4.7) and the well-
powered effect size 1.85 using three different analysis 
methods (linear mixed effects with categorical time, lin-
ear mixed effects with continuous time, and Student’s t 

test) in three different sample sizes (the planned sample 
size of 280 and two others: 240, 320). Simulations were 
based on resampling data from 769 participants with 
MCI from the ADCS donepezil vs. vitamin E trial [3], a 
trial with inclusion criteria and an assessment schedule 
(i.e., 3, 6, 12, and 18 months) similar to trial construct 2. 
Accrual and dropout patterns from this trial informed 
the simulation studies.

Statistical power under each of the three scenarios 
and various effects and sample sizes was determined by 
simulations, with each simulation size N = 1000. Using 
the planned 280 participant sample size as an example, 
each simulation run resampled 280 participants from the 
donepezil vs. vitamin E trial population. We used strati-
fied sampling with replacement to retain the dropout 
pattern in the donepezil vs. vitamin E trial, drawing 75% 
of each sample from completers (the proportion of com-
pleters in the donepezil vs. vitamin E trial) and 7.5% from 
those who dropped before 18 months (the proportion of 
dropouts before 18 months in the donepezil vs. vitamin 
E trial). Sampled (and resampled) participants were ran-
domly assigned 1:1 to the “active drug” or the “placebo” 
arm. Participants were then randomly assigned to one of 
four predetermined accrual/start dates in the proportions 
described for trial construct 2, so that at the time of the 
stay-at-home order, 80% had completed 3 months, 50% 
had completed 6 months, 25% had completed 12 months, 
and 12% had completed the planned 18-month endpoint. 
After this assignment, 24% were randomly selected to 
have “dropped out” on the day of the stay-at-home order 
(i.e., ADAS-Cog data beyond their presumed last assess-
ment before the stay-at-home order were deleted). In this 
way, we simulated a 24% dropout due to the pandemic, 
overlaid on the naturally occurring dropout in the trial.

The treatment effect was constructed as follows: using 
the observed placebo arm, we first established that a 
mean difference of 1.85 points between arms in 18-month 
ADAS-Cog change scores (a standardized effect size of 
0.395) would be detectable at 80% power with a sample 
size of 280 and 24% drop out rate, using a two-sided t 
test at 95% significance level. We centered our simulated 
effect sizes around this value for the power studies, which 
were carried out for the mean between-arm differences 
in 18-month ADAS-Cog change scores of 1.5, 2.0, 2.5, 
and 3.0 points. For all scenarios, the effect of active treat-
ment was modeled by adding a quadratic time trend (i.e., 
an increasing treatment effect) to the outcome data for 
the “active drug” arm in each simulation.

Each simulated dataset was used to determine power 
to detect a significant difference at the 5% level (two-
sided) between “active drug” and “placebo” arms using 
three methods: (a) a t test comparing the difference at 18 
months; (b) a linear mixed effects model with categorical 
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time, testing for a difference at 18 months; and (c) a lin-
ear mixed effects model with continuous time, testing for 
a difference in slopes. Models included fixed effects of 
baseline ADAS-Cog score, treatment group, and baseline 
ADAS-Cog score x treatment group interaction. Assess-
ment visit (e.g., 3 months, 6 months) and the assessment 
visit x treatment group interaction were also included. 
The categorical time model assumed a random intercept. 
The continuous time model assumed an unstructured 
covariance matrix.

The programming code for both trial constructs are 
available on GitHub at https://​github.​com/​ucsan​diego-​
adcs/​manus​cript-​adcs-​covid-​19-​white-​paper.

Results
Trial construct 1—Symptomatic trial
The impact of each trial modification scenario on the 
power to detect 12-month ADAS-Cog change effect 
sizes (placebo vs. treatment) of 2.0, 2.5, or 3.0 ADAS-
cog points under each of four different statistical analy-
sis approaches are shown for three different sample sizes 
(n = the planned 360, 320, or 400 participants) in Fig. 2. 
To illustrate how various trial modification scenarios and 
analysis approaches affected power in the planned trial, a 
red horizontal solid line indicating 80% power and a red 
vertical dashed line indicating the expected 2.6-point dif-
ference in ADAS-cog change between arms (placebo vs. 
treatment) are shown on each set of smoothed power 
curves. Each statistical analysis approach is plotted sepa-
rately (in different colors). For reference, the power curve 
for the t test analysis under the original trial conditions 
(i.e., no impact of COVID-19 is assumed) is also shown.

Focusing on the results for the planned sample size of 
360 (Fig. 2, middle column), the trial as originally planned 
(scenario 0, no impact of COVID) was powered at or 
above the stated 80% to detect the expected 2.6-point 
difference in ADAS-cog change regardless of the statisti-
cal analysis approach used. Power to detect the expected 
difference was higher for the linear mixed effects with 
categorical time and Student’s t test approaches (approxi-
mately 90% or higher) than for the linear mixed effects 
with continuous time approach. The impact of trial mod-
ifications made under each scenario is presented below.

Scenario 1 (the trial is stopped)
With the planned sample size of 360 (Fig. 2, middle col-
umn), power to detect the expected 2.6-point differ-
ence in ADAS-cog change was greatly reduced and fell 
below 0.60 regardless of the statistical analysis approach 
applied. The linear mixed effects with categorical time 
approach provided more power (0.51) than the linear 
mixed effects with continuous time (0.35) or t test (0.33) 
approaches. If the expected effect size was increased to a 

3.0-point difference in ADAS-cog change, and/or sample 
size was increased to 400 (Fig.  2, right column), power 
remained below 80% regardless of the statistical analysis 
approach used.

Scenario 2 (medication continued; assessments paused 
but resumed after 6 months; fixed 12‑month endpoint)
With the planned sample size of 360 (Fig.  2, middle 
column), power to detect the expected 2.6-point dif-
ference in ADAS-cog change using the linear mixed 
effects with categorical time analysis approach was 0.89, 
a value greater than the originally planned 0.80. In con-
trast, the power to detect this effect dropped below 0.80 
for the linear mixed effects with continuous time (0.69) 
and Student’s t test (0.72) analysis approaches. If the 
expected effect size was increased to a 3.0-point differ-
ence in ADAS-cog change, power increased (as expected) 
for all analysis approaches and was now at or near 0.80 
for both the linear mixed effects with continuous time 
and Student’s t test approaches. If the sample size was 
increased to 400 (Fig.  2, right column), neither the lin-
ear mixed effects with continuous time nor Student’s t 
test approaches had 0.80 power to detect the expected 
2.6-point difference in ADAS-cog change. If the sam-
ple size was reduced to 320 (Fig. 2, left column), power 
to detect the expected 2.6-point difference in ADAS-cog 
change remained above 0.80 for the linear mixed effects 
with categorical time analysis approach (but not other 
approaches).

Scenario 3 (medication continued; assessments paused 
but resumed after 6 months; endpoint extended to 15 
months)
With the planned sample size of 360 (Fig. 2, middle col-
umn), power to detect the expected 2.6-point differ-
ence in ADAS-cog change was 0.80 or higher regardless 
of the statistical analysis approach applied. The linear 
mixed effects with categorical time approach (0.98) and 
Student’s t test approach (0.90) had higher power than 
the linear mixed effects with continuous time (0.85) 
approach. As expected, power to detect the expected 
2.6-point difference in ADAS-cog change increased for 
all statistical analysis approaches if the sample size was 
increased to 400 (Fig. 2, right column). If the sample size 
was reduced to 320 (Fig. 2, left column), power for the lin-
ear mixed effects with continuous time analysis approach 
(but not other approaches) to detect the expected 2.6-
point difference in ADAS-cog change fell below 0.80 (and 
was below 0.80 for the original trial conditions).

As a summary, the power to detect the expected 2.6-
point difference in ADAS-cog change with the planned 
sample size of 360 is compared across trial-modification 
scenarios and statistical analysis approaches in Table 2. 

https://github.com/ucsandiego-adcs/manuscript-adcs-covid-19-white-paper
https://github.com/ucsandiego-adcs/manuscript-adcs-covid-19-white-paper
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Acceptable power (i.e., ≥ 0.80) cannot be maintained 
if the trial is abruptly stopped and no additional out-
come data are collected (scenario 1), regardless of the 
analysis approach taken. However, acceptable power 
can be maintained with a 6-month pause in data col-
lection (scenario 2) if the analysis approach is changed 
to a linear mixed effects model with categorical time. 
Well above acceptable power (i.e., ≥ 0.80) can be main-
tained with a 6-month pause in data collection, if data 

collection is resumed after the pause, and the trial end-
point is extended (scenario 3). This is particularly true 
if a linear mixed effects model with categorical time or 
Student’s t test analysis approach is applied.

Trial construct 2—Disease modification trial
The impact of each trial modification scenario on the 
power to detect 18-month ADAS-Cog change effect sizes 
(placebo vs. treatment) of 1.5, 2.0, 2.5, or 3.0 ADAS-cog 

Fig. 2  Simulation results by sample size and scenario for symptomatic trials. There are two MMRM tests per facet: categorical time model (lme-cat), 
red, and continuous time model (lme-slp), purple. The original t test (z test), blue, power calculation is added to each plot. The green (t test) curve 
represents the simulation results evaluated using a simple t test. The data points were smoothed using the stat smooth command in the ggplot2 R 
package, with the link function set to probit
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points under each of four different statistical analy-
sis approaches is shown for three different sample sizes 
(n = the planned 280, 240, or 320 participants) in Fig. 3. 
To illustrate how various trial modification scenarios and 
analysis approaches affected power in the planned trial, a 
red horizontal solid line indicating 80% power and a red 
vertical dashed line indicating the expected 1.85-point 
difference in ADAS-cog change between arms (placebo 
vs. treatment) are shown on each set of smoothed power 
curves. Each statistical analysis approach is plotted sepa-
rately (in different colors). For reference, the power curve 
for the t test analysis under the original trial conditions 
(i.e., no impact of COVID-19 is assumed) is also shown.

Focusing on the results for the planned sample size 
of 280 (Fig.  3, middle column), the trial as originally 
planned (scenario 0, no impact of COVID) was powered 
at or above the stated 80% to detect the expected 1.85-
point difference in ADAS-cog change regardless of the 
statistical analysis approach used. As anticipated, power 
to detect the expected 1.85-point difference in ADAS-cog 
change increased for all statistical analysis approaches 
if the sample size was increased to 320 (Fig. 3, right col-
umn) and decreased if the sample size was decreased to 
240 (Fig. 3, left column), although with n = 240, Student’s 
t test analysis approach fell below 0.80 power to detect 
the expected 1.85-point difference in ADAS-cog change. 
Regardless of the sample size or analysis approach, power 
approached 100% when the effect size was increased 
from a 1.85-point to a 2.5-point or higher difference in 
ADAS-cog change. The impact of trial modifications 
made under each scenario is presented below.

Scenario 1 (the trial is stopped)
With the planned sample size of 280 (Fig. 3, middle col-
umn), power to detect the expected 1.85-point differ-
ence in ADAS-cog change was greatly reduced and fell 
below 0.50 regardless of the statistical analysis approach 
applied. The linear mixed effects with categorical time 
(0.42) and linear mixed effects with continuous time 

(0.40) approaches were similarly powered, and both were 
better powered than Student’s t test (0.19) approach. If 
the expected effect size was increased to a 3.0-point dif-
ference in ADAS-cog change, and/or sample size was 
increased to 320 (Fig. 3, right column), power remained 
below 0.80 regardless of the statistical analysis approach 
used (although it approached 0.80 for the two linear 
regression analysis methods).

Scenario 2 (medication and assessments paused)
With the planned sample size of 280 (Fig. 3, middle col-
umn), power to detect the expected 1.85-point differ-
ence in ADAS-cog change was below 0.80 regardless of 
the statistical analysis approach applied. The linear mixed 
effects with categorical time (0.71) and linear mixed 
effects with continuous time (0.67) approaches were 
similarly powered, and both were better powered than 
Student’s t test (0.56) approach. If the expected effect 
size was increased to a 2.0-point difference in ADAS-
cog change, power remained below 0.80 regardless of 
the statistical analysis approach used. However, power 
to detect a 2.5-point difference in ADAS-cog change was 
above 0.80 for all analysis methods. If the sample size was 
increased to 320 (Fig. 3, right column), power to detect 
the expected 1.85-point difference in ADAS-cog change 
remained below 0.80 regardless of the statistical analysis 
approach applied, although power approached 0.80 for 
the linear mixed effects with categorical time analysis 
approach.

Scenario 3 (medication paused; assessments continued 
remotely)
With the planned sample size of 280 (Fig. 3, middle col-
umn), power to detect the expected 1.85-point differ-
ence in ADAS-cog change was below 0.80, regardless 
of the statistical analysis approach applied; however, 
power approached 0.80 for the linear mixed effects with 
categorical time (0.75) and linear mixed effects with 
continuous time (0.71) approaches. Both were better 
powered than Student’s t test (0.64) analysis approach. If 
the expected effect size was increased to a 2.0-point dif-
ference in ADAS-cog change, power for the linear mixed 
effects with categorical time analysis (0.81), but not the 
other analysis approaches, was greater than 0.80. Power 
to detect a 2.5-point difference in ADAS-cog change was 
above 0.80 for all analysis methods. If the sample size was 
increased to 320 (Fig. 3, right column), power to detect 
the expected 1.85-point difference in ADAS-cog change 
was 0.80 for the linear mixed effects with categorical time 
analysis approach and approached 0.80 for the linear 
mixed effects with continuous time (0.75) and Student’s t 
test (0.70) analysis approaches.

Table 2  Trial construct 1—symptomatic trial. Power to detect 
an expected 2.60-point difference in ADAS-cog change in the 
planned sample (n = 360)

Trial 
modification

Linear mixed 
effects 
model: 
categorical 
time

Linear 
mixed 
effects 
model: 
continuous 
time

Student’s 
t test

Original 
t test (for 
reference)

Scenario 1 .51 .35 .33 .80

Scenario 2 .89 .69 .72 .80

Scenario 3 .98 .85 .90 .80
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To summarize, the power to detect the expected 1.85-
point difference in ADAS-cog change in the planned 
sample size of 280 is compared across trial-modifi-
cation scenarios and statistical analysis approaches 
in Table  3. Acceptable power (i.e., ≥ 0.80) cannot be 
maintained if the trial is abruptly stopped and no addi-
tional outcome data are collected (scenario 1), regard-
less of the analysis approach taken. Power remains 

below 0.80 for all analysis methods if there is a 6-month 
pause in medication and data collection (scenario 2); 
although, if the analysis approach is changed to a lin-
ear mixed effects model with categorical time, power 
exceeds 0.70. Power also remains below 0.80 for all 
analysis methods if there is a 6-month pause in medica-
tion, but remote assessments are continued on sched-
ule (scenario 3). If the analysis approach is changed 

Fig. 3  Simulation results by sample size and scenario for disease modification trials. There are three scenarios for three different approaches. 
The horizontal solid line (red) shows 0.80 power, and the vertical dashed line (red) indicates the 1.85-point difference in the ADAS-cog between 
treatment groups that the trial was originally powered to detect. The categorical time model (lme-cat, red), continuous time model (lme-slp, 
purple), and t tests (green) are presented. The blue curve shows the power of the t test under the original conditions with no impact of COVID-19 
assumed
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to a linear mixed effects model with categorical time, 
or a linear mixed effects model with continuous time, 
power exceeds 0.70. The difference in power achieved 
with scenario 2 and scenario 3 trial modifications is 
small for either linear mixed effects model with cate-
gorical time (.71 vs. .75) or a linear mixed effects model 
with continuous time (.67 vs. .71) analysis approaches. 
Acceptable power (i.e., ≥ 0.80) can be obtained in sce-
narios 2 and 3 by increasing the assumed effect size 
to a 2.5-point difference in ADAS-cog change or by 
increasing the sample size (at least for the linear mixed 
effects model with categorical time analysis approach). 
Detailed power performance for all three methods at 
each effect size under sample size of 280 can be found 
in Table 4.

Discussion
The COVID-19 pandemic caused unplanned, severe 
disruptions to the conduct of clinical trials for AD. 
Our simulations of potential modifications to sympto-
matic and disease-modifying trials using ADCS legacy 
trial data enabled us to address a number of funda-
mental questions that arose from these disruptions. 
These include (1) whether it would be better to trun-
cate a trial or continue it to a fixed endpoint, perhaps 
extending the final visit window; (2) would there be suf-
ficient power to detect group differences in longitudi-
nal change with smaller than planned sample sizes and 
how beneficial it would be to increase the sample size; 
(3) is there a benefit to incorporating remote outcome 
assessments during the period of interruption; and (4) 
what increase in acceptable effect size would be needed 
if the trial had fewer participants and outcome assess-
ments than anticipated. We were also able to examine 
the effects of applying potentially more sensitive sta-
tistical modeling procedures than simple t test com-
parisons of baseline-endpoint difference scores, such as 
mixed models of repeated measure (MMRM) treating 
time as a categorical or continuous variable (i.e., slope).

The results of our simulations of various COVID-
related modifications to a 12-month symptomatic treat-
ment trial show that acceptable power (i.e., ≥ 0.80) to 
detect an expected 2.6-point difference in ADAS-cog 
change with a planned sample of 360 MCI or early AD 
patients cannot be maintained if the trial is abruptly 
stopped and no additional outcome data are collected, 
regardless of the analysis approach taken. However, 
acceptable power can be maintained with a 6-month 
pause in data collection if the analysis approach is 
changed to a linear mixed effects model with categori-
cal time, and well above acceptable power (i.e., ≥ 0.90) 
can be maintained with a 6-month pause in data col-
lection, if data collection is resumed after the pause, 
the trial endpoint is extended, and a linear mixed 
effects model with categorical time analysis approach 
is applied. These adaptations would need to be updated 
in the statistical analytic plan prior to unblinding of the 
trial. The recent CONSERVE statement provides some 
of the framework for the trial reporting [4].

Similarly, our results showed that acceptable power 
(i.e., ≥ 0.80) cannot be maintained if an 18-month AD 
disease modifying treatment trial with an expected 
1.85-point difference in ADAS-cog change and a 
planned sample of 280 MCI patients is abruptly stopped 
and no additional outcome data are collected, regard-
less of the analysis approach taken. If there is a 6-month 
pause in medication and data collection, power remains 
below 0.80 for all analysis methods, but increases 
to just over 0.70 if a linear mixed effects model with 

Table 4  Trial construct 2, N = 280 power performance by 
methods and scenarios with delta = 1.5, 1.85, 2.0, 2.5

N = 280 Effect size lme cat lme slp t test orig

Scenario 0 D = 1.5 .77 .75 .66 .66

D = 1.85 .90 .89 .82 .82

D = 2.0 .94 .92 .87 .87

D = 2.5 .99 .99 .97 .97

Scenario 1 D = 1.5 .32 .30 .15 .66

D = 1.85 .42 .40 .19 .82

D = 2.0 .46 .44 .22 .87

D = 2.5 .60 .62 .32 .97

Scenario 2 D = 1.5 .56 .51 .41 .66

D = 1.85 .71 .67 .56 .82

D = 2.0 .78 .74 .65 .87

D = 2.5 .92 .89 .82 .97

Scenario 3 D = 1.5 .59 .55 .46 .66

D = 1.85 .75 .71 .64 .82

D = 2.0 .81 .78 .72 .87

D = 2.5 .94 .92 .88 .97

Table 3  Trial construct 2—disease modification trial. Power to 
detect an expected 1.85-point difference in ADAS-cog change in 
the planned sample (n = 280)

Trial 
modification

Linear mixed 
effects 
model: 
categorical 
time

Linear 
mixed 
effects 
model: 
continuous 
time

Student’s 
t test

Original 
t test (for 
reference)

Scenario 1 .42 .40 .19 .82

Scenario 2 .71 .67 .56 .82

Scenario 3 .75 .71 .64 .82
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categorical time analysis approach is adopted. If out-
come assessments are continued remotely during the 
6-month medication pause, power remains below 0.80 
for all analysis methods, but exceeds 0.70 with linear 
mixed effects models with categorical or continuous 
time.

Our results provide information about the relative 
value of various strategies for mitigating the impact 
of trial disruption due to COVID-19. First, acceptable 
power (i.e., ≥ 0.80) can be obtained in an 18-month AD 
disease-modifying treatment trial with a 6-month pause 
in medication by increasing the sample size (at least for 
the linear mixed effects model with categorical time anal-
ysis approach). Adding patients to an interrupted trial is 
usually not a viable option as there most likely has been 
a considerable time gap between the original completion 
of randomization and restarting recruitment, resulting in 
potential selection bias, particularly around a pandemic.

Second, acceptable power (i.e., ≥ 0.80) can be obtained 
in an 18-month Alzheimer disease-modifying treatment 
trial with a 6-month pause in medication if the effect 
size is increased from a 2.0-point to a 2.5-point ADAS-
cog difference. If a conservative estimate of expected 
effect size was used in planning the trial, it may be feasi-
ble to increase the expected effect size. Estimation of an 
expected effect size is often based on results from previ-
ous treatment trials (including earlier phase dose finding 
trials) or determination of a “clinically meaningful” differ-
ence on a particular outcome measure.

Third, the difference in power achieved with or with-
out continuing assessments remotely during a 6-month 
medication pause of our disease-modifying trial scenario 
is small. The results are similar, regardless of whether a 
linear mixed effects model with categorical (0.71 vs. 0.75) 
or continuous time (0.67 vs. 0.71) analysis approach is 
applied.

The COVID-19 pandemic brought to the fore the need 
for cognitive outcome measures that are validated for 
remote assessment. While there is mounting evidence 
that assessments conducted remotely can yield compara-
ble results to face-to-face assessments in older adults [5] 
and in patients with MCI and mild AD [6], most of this 
evidence comes from studies that assess participants via 
videoconference in a highly controlled and structured in-
clinic setting, with the examiner located remotely. Two 
small validity studies comparing performance on the 
ADAS-Cog administered in-person and via (in-clinic) 
videoconference suggest that reliability is high in mildly 
impaired patients (MMSE > 20) but decreases substan-
tially with increasing dementia severity [5, 6]. There have 
been few validity studies of remote assessments done 
with participants located in their own homes and using 
their own devices. Remote assessment may change the 

expected psychometric properties of a cognitive outcome 
measure, changing the mean and variance from those 
used in designing and powering the trial, leading a bias 
of effect, inflation of type I error, or a loss of power. Pre-
vious work supports the feasibility and utility of home-
based cognitive assessments in nondemented individuals 
[7, 8], but until properly conducted validity studies are 
completed, it is premature to consider face-to-face and 
remote, home-based cognitive assessments as compara-
ble for purposes of efficacy analyses.

The choice of statistical analysis approach to be applied 
is seen in these data to influence the power available to 
detect a treatment effect in a disrupted trial. In the symp-
tomatic trial, a categorical model appeared to have bet-
ter power than a slope analysis across the scenarios. By 
comparison, for the disease-modifying trial, categorical 
and slope analyses were very similar. The unmodeled t 
test analysis performed worst in both trials and across all 
scenarios, as expected.

We simulated slightly different expected dropout pat-
terns in the symptomatic and disease-modifying trial 
constructs. Our sense was that the COVID-19 induced 
disruption would have a greater impact on more bur-
densome disease-modifying trials that often requires 
in-clinic infusion or intravenous administration of medi-
cation compared to oral medication generally used in 
symptomatic trials. With the disease modification trials, 
we planned dropouts based on the scenario assump-
tions in the table. Typically, however, dropouts tend to 
occur early; here, there may have been additional drop-
outs induced later than usual because of the pandemic. 
Extending the endpoint of a trial may further dropouts, 
exacerbating this potential problem.

Limitations
A strength of the study is that the symptomatic and dis-
ease-modifying trial designs were derived from actual 
trials and for purposes of modeling each design was 
modified and adjusted to be deidentified so that it could 
be viewed more broadly.

There are several limitations to this study. First, the 
datasets used for our simulations were from trials com-
pleted over a decade ago, and there may be changes in 
diagnostic criteria, patient characteristics, and outcome 
assessment procedures that could reduce the applicabil-
ity of our results to the current treatment trials. How-
ever, we carefully chose ADCS clinical trial datasets for 
our simulations that used long-standing, standardized 
assessment procedures and in which participants were 
demographically and clinically very similar to current 
early-stage trials.

Second, we did not consider the effect of a treat-
ment/medication hiatus on the outcome of a disrupted 
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treatment trial. It may be the case that under some sce-
narios, treatment/medication would have to be stopped 
during a pause while outcome assessments could con-
tinue (e.g., our scenario 2 for trial construct 2). Under 
other scenarios, treatment/medication could continue 
during a pause, but outcome assessments would have to 
be stopped. This may be of concern only for treatments 
that have a cumulative effect over time (e.g., an exercise 
intervention or monoclonal antibody used to decrease 
amyloid plaques). Finally, we did not examine the effect 
of a 12-week visit window extension with a categorical 
endpoint analysis in the disease-modifying construct.

Conclusions and implications
The results of our simulations demonstrate the poten-
tial utility of various adaptations that might be made to 
maintain the validity and integrity of treatment trials 
disrupted by COVID-19 [9], including the use of remote 
outcome measures and interventions [10]. Clearly, con-
tinuing a trial after a pause is a substantially better 
option than prematurely ending it and analyzing trun-
cated trial data, even in the face of increased dropouts, 
medication disruptions, missing outcomes, and other 
exigencies. When there are missing endpoint outcome 
assessments, adopting a repeated measures statistical 
analysis approach with either a categorical or continuous 
outcome is better than applying a simple t test approach 
to examining group differences in baseline-endpoint cog-
nitive outcome measure (e.g., ADAS-Cog) change scores. 
Extending the duration of the trial to allow more partici-
pants to reach endpoint while applying a repeated meas-
ures categorical or continuous time statistical analysis 
approach can be beneficial, but it must be kept in mind 
that as outcomes are delayed, later assessments have a 
greater influence on the results of the trial and drop-outs 
may increase. While many of these modifications may 
work to maintain power to detect a treatment effect in 
symptomatic trials, it is less clear that they are effective 
for disease-modifying trials where expected effect sizes 
are often smaller, participants are milder, and drop-outs 
more likely. Adopting remote assessment of a cognitive 
outcome measure appears to be of limited value in main-
taining statistical power. The value of remote assessment 
may be greater for other common outcome measures 
(e.g., Clinical Dementia Rating (CDR)), but this awaits 
further research.
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