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Randomization has been considered as the most important method to protect against bias

and ensure the internal validity of clinical trial studies. Conducting randomization procedures

could induce comparability with respect to known and unknown covariates, mitigate selection

bias, and provide a basis for inference. However, randomization can’t guarantee each covariate is

balanced in large scale clinical samples. While the advent of next-generation sequencing (e.g.,

RNA-Seq) technologies allows us to measure global gene expression in a large number of

samples with low cost, combining samples with imbalanced covariates in one RNA-Seq

experiment can lead to the ‘batch effect’ problem. Specifically, the biological variation is

confounded with unwanted variations from biased covariates. These unwanted variations must be

effectively removed to eliminate batch effects that could significantly bias the biological

conclusions. Unfortunately, they become indissociable and un-removable when examining

samples with unbalanced experimental factors in the design process of a RNA-Seq experiment.

Therefore, how to design a RNA-Seq experiment with fully balanced experimental factors to

guarantee removable batch effects is an important task in the high-throughput RNA-Seq study

era. In this study, we propose a genetic algorithm (GA)-based tool called BalanceIT to balance

experimental factors prior to sequencing. BalanceIT identifies an optimal set of samples with

balanced experimental factors to be used in the design of an RNA-Seq experiment. Using a panel

of ~1000 simulated samples we demonstrate that our proposed GA-based tool is superior to the

conventional randomization-based method in designing RNA-Seq experiments with samples of

unbalanced experimental factors.
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Introduction

With the advent of next-generation sequencing technologies, RNA-Seq now allows us to

measure global gene expression in large number of samples with low cost (Fomina-Yadlin et al.,

2015; Hsu et al., 2017; Vishwanathan et al., 2015; Wang et al., 2009; Yuk et al., 2014). However,

combining samples from different batches in one RNA-Seq experiment can lead to the ‘batch

effect’ problem (Akey et al., 2007; Sebastiani et al., 2012; Leek et al., 2010), in which biological

variation is confounded with unwanted experimental variation from differences in sample

processing procedures in different batches. These variations have to be effectively removed to

eliminate the batch effects that could significantly bias the biological conclusions (Yang et al.,

2008; Leek et al., 2010; Lambert & Black, 2012). Unfortunately, they become indissociable and

un-removable when examining samples with unbalanced experimental factors in the design

process of a RNA-Seq experiment. Therefore, how to design a RNA-Seq experiment with fully

balanced experimental factors to guarantee removable batch effects has become an important

task in the high-throughput RNA-Seq study era. The conventional randomization methods (Yang

et al., 2008) that randomly sample two subsets of samples from a large dataset can’t guarantee all

factors are balanced in the large-scale data set. GAs are powerful searching algorithms that are

commonly used to generate high-quality solutions to optimization and search problems by

relying on bio-inspired operators such as mutation, crossover and selection (Goldberg 1989 and

Melanie 1996). In this study, we propose a genetic algorithm (GA)-based tool that can identify

an optimal set of samples with balanced experimental factors that can be used in the design of an

RNA-Seq experiment. This tool mitigates batch effects prior to sample sequencing by using an

optimally balanced subset of samples. We refer to this pre-sequence balancing as library

balancing (BL).
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Post-sequencing batch effect mitigation has been proven to be an effective technique in

adjusting for known and unknown covariates (Leek 2014; Müller et al., 2016). However this

effectiveness has an upper limit depending on the severity of the batch effects (Zhou et al.,

2019). Furthermore due to the nature of post-sequencing techniques, these techniques are at the

mercy of their user since they cannot advise the user to organize samples in a way that would

lead to less severe batch effects. Additionally some of these methods struggle to remove batch

effects which are not orthogonal to one another due to the nature of their methods. More

specifically, Combat is not well suited for removing multiple batch effects as Combat is designed

to regress out one covariate at a time from the data, thus using combat iteratively for several

covariates may result in errors. For example, if two covariates are non-orthogonal then

estimating and removing the effect of the first covariate may interfere/hinder the estimation and

removal of the second covariate as the first estimation may have been confounded with the

second one. Similarly for SVA, estimating the effects of covariates may prove to be difficult if

covariates are not orthogonal to one another (Lee et al., 2018). In either of these cases each may

produce biased estimates and result in incorrect results. In this paper we explore the effect that

these conventional post-sequencing methods have using both our GA-based approach and the

randomized approach to illustrate the importance of quality library balancing.

Simulating genetic data has become a popular medium for validating bioinformatics

methods (Chen et al., 2011; Engstrom et al., 2013; Li et al., 2013; Goldstein et al., 2016; Zhang

et al., 2017). To illustrate the quantifiable differences between pre-sequencing and

post-sequencing batch correction techniques we created a framework for simulating RNA-Seq

data where the effect of covariates could be quantified and readily controlled. Using our

framework we organized a panel of ~1000 simulated samples to compare the effects of
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BalanceIT with other popular batch mitigation methods SVA and Combat. This application

helped us to demonstrate that our proposed GA-based tool is superior to conventional

randomization-based methods in designing RNA-Seq experiments with samples of balanced

experimental factors.
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Chapter 1 Results

Using our framework we simulated 1000 samples for 3 categorical covariates, 3

continuous covariates, 1 diagnosis, and a random plate design was used for testing library and

covariate balancing metrics (Table 1). These covariates were simulated to have interactions

between each other and thus not be orthogonal to each other. Prior to downstream analysis,

balance scores were computed to illustrate the necessity of balancing samples prior to

sequencing (Figure 1). After sample sequencing, we utilized the fact that our simulated

RNA-Seq framework provides the user with the true differentially expressed genes (DEGs).

These DEGs are used to perform Gene Set Enrichment Analysis (GSEA). Furthermore our

framework provides ideal datasets that illustrate the effects of both perfect library and covariate

balancing, serving as a baseline comparison metric.

Our tool BalanceIT aims to increase accuracy in downstream analysis by reducing

collinearity between factors of interest and artifacts such as batch, biological factors, or other

covariates. The results from our tool demonstrate its capability to decrease collinearity between

the factor of interest and other factors through subsetting (Figure 1). Prior to subsetting,

correlations between three of the six experimental factors and the diagnosis that were highly

significant (p-value < 0.05), the sum of these correlations, also referred to as balance scores, was

0.464 meaning it was 8%~ balanced (maximum balance score achievable 6.0). The sum of the

balance scores after the GA identified an optimal subset was 5.75, increasing the balance

percentage to 96%~. Additionally, each balance score had a p-value > 0.84. Furthermore, the

plate assignment from the GA increased the initial balance scores from the randomized design of

3.84 to 6.68. The GA demonstrated its capability to reduce collinearity between the biological
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factor of interest and other unwanted factors and this decreased collinearity in turn improved the

downstream results as illustrated in the GSEA and DE analysis. (Figure 2 & Figure 3)

As expected, for our dataset of collinear, non-orthogonal covariates the iterative use of

Combat performs poorly. Specifically we see that Combat drastically reduces the set of TP DEGs

from 359 to 58 from the fully unbalanced dataset ULUC to the dataset ULBC which is partially

balanced using Combat; this in turn negatively effects Combats GSEA results reducing its

overall sensitivity, specificity, and accuracy for gene sets of all sizes (Figure 2). The drastic loss

in sensitivity (60%) makes Combat unsuitable for datasets with multiple collinear covariates.

SVA’s performance differs from Combat as it doesn’t drastically decrease the quality of results,

however we observe no substantial increase/decrease in GSEA results when using SVA, in fact

the results are fairly comparable to ULUC. This in turn is observed in the DEA results where we

see minimal increases/decreases in specificity, sensitivity, and accuracy.

In terms of library balancing we observe that our tool performs favorably on our dataset

of collinear, non-orthogonal covariates. Specifically we see a significant reduction in the number

of FP DEGs identified when no balancing is done from 390 to 152, thus leading to increased

specificity and accuracy in the DE analysis, ( 20% and 14% increase respectively) (Figure 3).

This in turn improves the GSEA results and we observe a substantial increase in sensitivity for

gene sets of all sizes. As a comparison metric, we ran this analysis using the initial 750 balanced

samples, and observed that the GA outperforms the initial set of 750 samples. We attribute this to

the fact that the GA is a stochastic method in which more samples may be included if it increases

the balance score. This trend can be observed in both Figure 1 and Supplementary Figure 1

where the resulting balance scores of the GA are higher than the initial 750 balanced samples.

The GA outperforms the initial 750 balance samples most notably in sensitivity for the DE
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analysis, where the GA retains more 44 TP DEGs than the initial 750 balanced samples. This

performance difference can be further observed in the GSEA results where we see the GA

outperforms the initial 750 balanced subset across all metrics on datasets of all sizes Figure 2.

Finally and most notably is the effect our tool has when used in tandem with Combat and

SVA. Our dataset of collinear, non-orthogonal covariates proved to be an obstacle for both

post-sequencing methods Combat and SVA. Despite the pre-balancing done by our tool we

demonstrate that Combat is still unable to accurately remove batch effects in a dataset with

collinear, non-orthogonal covariates. Yet, BalanceIT proved to be an effective measure for

pre-balancing the data when using SVA and we observe an increased performance in SVA when

BalanceIT is used. Specifically we observe an increase in accuracy from 76% to 90% and an

increase in specificity from 81% to 100% when solely SVA is used and when SVA is used in

conjunction with BalanceIT. This suggests that by in fact removing samples from an unbalanced

panel of samples we may further improve our downstream results in RNA-Seq analysis, even if

the samples have collinear, non-orthogonal covariates when using SVA. Further we observe a

slightly boosted performance in GSEA sensitivity and accuracy results when GA-based method

BalanceIT is applied to SVA.
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Chapter 2 Materials

To evaluate balancing techniques a simulated dataset of 1000 samples and 2000 genes

was generated. For the RNA-Seq count data, Five-hundred of the 2000 genes were simulated to

be differentially expressed. For the sample metadata, diagnoses, categorical covariates, and

continuous covariates were assigned for each sample (Table 1). Additionally samples were

randomly assigned to plates. Of the 1000 samples generated 750 samples were generated such

that their covariates were balanced with diagnosis (Supplementary Figure 1). Furthermore

interactions were simulated between two pairs of covariates such that not all covariates were

orthogonal to each other.
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Chapter 3 Methods

3.1 Simulating Data

As aforementioned, a major quantifier for our tool BalanceIT was our simulated dataset.

To quantify the effects of our tool it was requisite that we had the ability to both quantify and

control batch effects as well as know the ground truth DEGs; thus we produced our own

framework for simulating RNA-Seq counts. Simulated RNA-Seq datasets contained both the

count data as well as a phenotypic/covariate matrix. We now outline our strategies for building

our framework for our simulated datasets.

The simulated dataset is created in two steps, the first is the phenotypic/covariate matrix

generation and the second being the RNA-Seq count matrix generation. A covariate matrix for

1000 samples was generated for three continuous covariates (a,b, and c), three categorical

covariates (d,e, and f), and a single binary diagnosis. Seventy-five percent of the 1000 samples

simulated were generated separately to be well balanced for the six covariates. For these 750

samples to be considered “balanced”, balance scores for each covariate with the diagnosis must

be > 0.05. Balance scores were computed using chi-squared tests for categorical covariates and

linear models for non-categorical covariates. When simulating the covariate values for the

balanced subset each covariate had a uniform probability of occurring regardless of the

diagnosis, ensuring that there were no biases within the subset. The remaining 250 (25%)

samples were simulated to be unbalanced, each covariate value had varying probabilities of

occuring (Supplementary Figure 2). Furthermore, two pairs (a&d and c&e) of covariates were

generated to have interactions between each other. To simulate interactions between covariates in

the two pairs the covariate values were dependent on each other. For each pair there was one
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binary categorical variable and one continuous variable, depending on the value of the

categorical variable a specific portion of the possible values for the continuous variable was

used. Additionally, a plate matrix was generated. The plate matrix, P, represents the various

batches of the 1000 samples and is generated using a uniform random sampling of numbers 1

through 11 and assigning them to each sample.

After the phenotypic/covariate matrices are made, the diagnosis for each sample is used

to generate raw RNA-seq counts for 2000 genes. The raw counts for each gene were generated

using unique negative binomial distributions regardless of their diagnosis. For the DEGs, 500

genes were randomly selected to be DE, differential expression was simulated by first assigning

a fold change based on the diagnosis and the direction of the log fold change (positive/negative).

Magnitude (m) of the log fold change (LFC) were determined using a sampling of two random

normal distributions, one with a mean of 0.75 and a standard deviation of 0.5 and another with a

mean of -0.75 and a standard deviation of 0.5. Gene expression values of DEGs were changed

according to the magnitude of the their LFC using the formula e^(m)*original expression.

After initialization, the covariate and plate matrix are scaled to ensure covariates and

plates have a similar effect, each covariate and plate values were scaled to be within the range

[0,0.5] by dividing each value by the maximum value for that covariate or for the maximum plate

and then subtracting 0.5. Interactions between covariates were further simulated by combining

covariates values together randomly. Resulting in 6 interactions: (a+d), (b+e), (c+f), (d+b), (e+c),

and (f+a). All of the covariates and the plate values are multiplied by unique negative random

binomial distributions, to ensure that covariates/plates affect different genes. To randomize the

negative binomial distribution, while keeping them at the same magnitude, the same parameters
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were used for each distribution (1 successful trial, .008 probability of success), and the

distributions were taken for each factor.

Furthermore, to ensure that the covariates had the same effect on the dataset as the plate,

multipliers were used for both the covariate and plate effects. Multipliers of 0.7 and 15 were used

for the covariate and plate matrix respectively. To validate that these multipliers had a

comparable effect for both the covariate and plate downstream analyses using sample distance,

GSEA, and DEA were performed with datasets with perfectly balanced plates and perfectly

balanced covariates. These downstream analyses illustrated that the effect of the plate and of the

covariates were comparable with the aforementioned multipliers 15 and 0.7 (Supplementary

Figure 3). While we required that the plate and covariate effect be comparable we allowed for

the covariate effect to have a slightly stronger skew on the results as there are 6 covariates within

our data and only one plate.

For additional random error, an error matrix was added to the RNA-Seq count data and is

generated using the absolute value of a random normal distribution with a mean of 0 and a

standard deviation equal to the maximum value of the raw RNA-Seq data divided by the number

of genes present. This was done to ensure that the random error was sufficiently large for the

number of genes.To ensure validity of the simulated RNA-Seq counts, in a separate analysis, an

airway dataset was upsampled for the number of samples and downsampled for the number of

genes to illustrate that our count data followed a standard distribution (Supplementary Figure

4).

Furthermore a necessary function of our framework was to have the capability to

generate ideal scenarios in which datasets of RNA-Seq data could be without plate or covariate
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effect to elucidate perfect library balancing and perfect batch effect correction. To enable this

functionality we allow the user to choose whether to include plate or covariate effects in a

dataset. Thereby creating datasets that could be considered ideally library balanced or ideally

covariate balanced or both. These served as baseline comparisons for the real covariate balancing

techniques (Combat and SVA) and the real library balancing techniques (BalanceIT and

randomization). The ideal balancing scenarios were validated by demonstrating that sample

distances become tightly associated with diagnosis as balancing techniques are applied

(Supplementary Figure 3).

3.2 Balancing Methods

Two types of balancing were performed for this project: covariate balancing and library

balancing. Covariate balancing, which refers to post sequencing balancing, was performed using

two popular methods: Combat and Surrogate Variable Analysis (SVA). Combat adjusts for

known batch effects in a data set using a normalized dataset and Empirical Bayes. Combat was

provided with RNA-Seq counts that were normalized using a variance stabilizing transformation

(VST). SVA removes unwanted artifacts by first estimating batch effects and then removing

them by using an iteratively reweighted least squares approach.

Library balancing is performed prior to sequencing and aims to minimize the impact of

covariates on RNA-Seq counts by minimizing the correlation between experimental factors and

the biological factor of interest. Our proposed tool BalanceIT utilizes a GA in order to minimize

these effects. The GA minimizes batch effects in two steps, first by reducing the collinearity
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between covariates and the diagnosis, and then by reducing collinearity between plates and

covariates and the diagnosis.

3.3 The Genetic Algorithm:

Our proposed tool hinges on the capability of GAs to optimize solutions. GAs work by

iteratively finding the best solution through repeatedly computing fitness scores, mixing samples,

and adding mutations (Figure 5). In the scope of this work the GA aims to reduce collinearity so

that covariates and plates do not drive the RNA-Seq count data. The Genetic Algorithm reduces

unwanted collinearity by working in two steps. The first step aims to reduce collinearity between

covariates and the diagnosis through finding the optimal subset, such that the optimal subset

increases the balance scores for each covariate. Balance scores are computed using chi-squared

and anova tests using covariate values and the diagnosis. After the GA has obtained an optimal

subset it assigns plate values to each sample such that balance scores for each plate are

maximized.

3.3.1 Prior Plate

Since GAs work by iteratively finding the best solution, it is crucial that solutions are

well defined. The Prior Plate GA identifies a subset of samples to sequence. For a subset of

samples to sequence to be considered optimal, it must increase the sum of the balance scores for

each covariates and retain the most number of samples possible. The Prior Plate GA takes in a

predetermined number of sample solutions, each solution takes the form of a list of zeros and
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ones, corresponding to the number of samples. A one in the solution indicates a sample being

included and a zero corresponds to a sample being removed. Using the included samples, balance

scores are computed and used to determine the fitness score in conjunction with the number of

samples included. (See 3.4.3 - 3.4.7 for full details).

3.3.2 Interplate

Interplate balancing using the GA is similar to that of balancing the covariates with the

diagnosis, except instead of identifying the optimal subset, it determines the optimal plate

assignments and needs not to discard samples. Using a modified version of the Prior Plate GA,

samples are assigned plates such that it minimizes covariate and diagnosis correlation with any

of the plates.  (See 3.4.3 - 3.3.7 for full details).

3.3.3 Initial Solutions

Initial solutions are generated randomly unless provided by the user. Each initial solution

contains a valid potential solution for either Interplate balancing or Prior Plate balancing. For

Prior Plate balancing a solution thus takes the form of {S1 ,S2 ,...,Sn } where S {0,1}, indicating

whether or not a sample is included. For interplate balancing, solutions take the same form but S

{1, … max_number_of_plates}, as no samples are discarded in interplate balancing. Each

sample Si in the individual is annotated with the known experimental factors {F1 ,F2 ,...,Fn }

where n is equal to the number of experimental factors. (Figure 5 i)
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3.3.4 Fitness Score

To assess whether the distributions of experimental factors in a solution is favorable, each

experimental factor is evaluated by performing the ANOVA (Analysis of Variance) test for

continuous factors and by the Chi-square (2) test for the categorical factors of the solution. The

p-value of these statistical tests are considered as the ‘balance’ score of the experimental factor.

For Prior Plate balancing the experimental factors are the covariates of interest and for Interplate

balancing, the plates are used.

Experimental factors are handled differently for Prior Plate Balancing than they are for

Interplate Balancing. The degree that an experimental factor is confounded with diagnosis affects

that factors balance score and consequently all factors balance scores do not increase uniformly.

To facilitate even distributions of balance scores for a solution, each experimental factor has a

weight W = {W1, …, Wk} and scalar V = {V1, … Vk} associated with it, where k is the length

of experimental factors to be balanced with the diagnosis. The weights and scalars for each

experimental factor are set prior to the start of the GA and are held constant through all solutions

and through all iterations. The relation to a balance score of an experimental factor and its

corresponding weight and scaler takes the form of V_i * (balance score_i)^W_i.

Additionally, since the Prior Plate balancing aims to retain as many samples as possible,

size awards are given to solutions depending on the number of samples retained. To motivate the

GA to generate an optimal solution of a substantial size an award is given to each solution with

respect to the number of samples included. To influence the GA to generate a solution within an

acceptable range the sigmoid function is used to push solutions into an acceptable range. Prior to

the start of the GA the parameters for the sigmoid function: slope, offset, and size weight are set.
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3.3.5 Selection

The population is then sorted by descending fitness values, and the top 80% of solutions

are kept to be used in the next generation. The top 80% of the population (800 solutions) are

considered as candidates to select two individuals as parents (Ni and Nj) for further crossover

and mutation to generate a new individual of next-generation population. New individuals are

generated until there are a full set of samples. (Figure 5 iv)

3.4.6 Crossover

Crossovers occur between two parents at a rate of 10%, in the case that a crossover does

not occur, the child takes the father's solution. On the occasion that a crossover occurs, a single

crossover point on both parents chromosome strings {P1 , P2} is selected, and all data beyond

that point in either chromosome string is swapped between the two parent organisms. The

resulting chromosome string is the child (N’). (Figure 5 v)

3.4.7 Mutation

Mutation used to maintain diversity in individuals, mutation occurs in a child solution

after crossover. In the child solution 10% of the samples are mutated. (Figure 5 vi) For Prior

Plate balancing, mutations correspond with including or removing a sample. Mutations occur by

randomly changing the value of a sample flag in the child from 0 to 1 or vice versa. To influence

growth in the number of samples selected by the GA, mutations were biased to change sample
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flags to 1 by 5% . In Interplate balancing, mutation corresponds to changing plate assignments

for a given sample and needs not to consider the growth of the sample set.

3.5 Differential Expression Analysis (DEA) on Simulated Data

Validating BalanceIT, required utilizing known downstream methods of analysis. DEA is

a common method of downstream analysis for many modern day RNA-Seq studies.

Differentially expressed genes (DEGs) were determined using DESeq, for a gene to be a DEG it

must have an FDR < 0.05. All combinations of balancing methods (covariate and balancing)

were used on the unbalanced dataset, DESeq was used to identify predicted DEGs and

non-DEGs. The 500 known DE genes provided by our simulated RNA-Seq framework served as

a metric for comparing balancing methods, using the known DE and non-DE genes confusion

matrices were generated from the predicted DE and non-DE. The confusion matrices were used

to compute accuracy, sensitivity, and specificity; and used to further compare balancing methods.

3.6 Simulating GSEA

GSEA is a common down RNA-Seq analysis, thus motivating us to simulate GSEA as a

form of measuring the performance of our tool with respect to covariate and library balancing.

We simulated GSEA using a variety of gene sets and determined whether a gene set was

enriched using the true DEGs provided by our simulated RNA-Seq framework. One-hundred

gene sets were simulated containing 100, 200, 300, 400, and 500 genes, totaling for 500 total

gene sets. For each gene set, gi, genes were selected randomly without replacement. Using the
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true DE genes and the genes in the gene set, the hypergeometric distribution was used to identify

which gene sets were enriched and which ones were not enriched. Using the same strategy the

DE genes from the datasets ULUC, ULBC, BLUC, and BLBC were used to predict which gene

sets were enriched and which were not. Using the predicted and real enrichment results,

confusion matrices were generated for each gene set size (100, 200, 300, 400, and 500). Using

these confusion matrices sensitivity, specificity, and accuracy were calculated. This analysis was

then repeated 10,000 times, resulting in 50,000 confusion matrices (10,000 confusion matrices

for each size gene set: 100, 200, 300, 400, and 500). The sensitivity, specificity, and accuracy

metrics from these results were used to determine the enrichment quality of each dataset: ULUC,

ULBC, BLUC, and BLBC.
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Chapter 4 Conclusion

There have been many techniques pioneered for the downstream removal of batch effects

after sequencing. However when a dataset is fraught with many batch effects, particularly

significant batch effects, or non-orthogonal covariates, these downstream removal techniques

may fail to eliminate artifacts. Randomization, a popular method for mitigating batch effects

prior to sequencing, may not always properly mitigate these affects. In fact, we demonstrate that

it may be best for a researcher to discard samples to obtain a clear biological signal. If a

researcher can identify problematic samples and remove them, the dataset may provide a clear

biological signal and improve the effects of modern downstream removal of batch effects. We

created a tool for identifying problematic samples using a genetic algorithm to optimize balance

scores and number of samples, and demonstrated its effectiveness in mitigating batch effects and

improving pre-existing balancing techniques such as SVA and Combat.

Furthermore, we demonstrated that iterative methods for batch effect removal, such as

Combat, can dramatically fail when batch effects are collinear and non orthogonal and further

that our tool BalanceIT may not aid these iterative methods. Additionally, we illustrated that the

performance of SVA may be further enhanced when the GA-based tool BalanceIT is applied.

Interestingly enough, without post-sequencing balancing tools such as Combat and SVA

BalanceIT still proves to improve GSEA and DEA results. More specifically BalanceIT

improves DEA results with respect to accuracy and specificity and GSEA results with respect to

sensitivity and accuracy. Interestingly enough BalanceIT outperformed our initial subsample of

750 balanced samples due to the stochastic nature of the GA approach which enabled it to

include more samples that would increase its balance score.
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Finally, we tested our methods on a simulated clinical RNA-Seq dataset which we

generated using a framework we built in house. This framework allowed us to properly control

and quantify the effects of the covariates and of the plates. Our results from these datasets

demonstrated that the GA method for library balancing strengthens the biological signal and

reduces the number of false positives, thereby increasing DE results and GSEA accuracy, going

directly against the notion that more samples is better, illustrating that in some occasions less is

more.
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Chapter 5 Discussion

Batch effect mitigation has been proven essential in related works (Leek JT. 2014, Müller

et al;. 2016), and there exist several methods for mitigating batch effects after samples have been

sequenced i.e. Combat and SVA. The most popular methods for post-sequencing batch removal

in 2021 are Combat and SVA. Combat, a supervised batch effect removal technique, is designed

to remove a single covariate, or multiple orthogonal covariates using Empirical Bayes. Due to

the stringent nature of the covariates needing to be orthogonal, Combat may not be effective in

removing multiple collinear covariates. This can be a significant drawback as it is not uncommon

for covariates to be dependent on one another. In this work we demonstrate Combat’s inability to

remove multiple collinear covariates and effectively show that using Combat with collinear

covariates may worsen the quality of the resulting RNA-Seq counts.

SVA in contrast is an unsupervised method which identifies and estimates covariates to

be removed using methods defined by the user (i.e. regression). SVA estimates covariates by

finding a set of orthogonal vectors that span the same linear space as a single experimental factor

across all genes (Varma, 2020). As in Combat, SVA may fail if collinear covariates are within the

data as they may be difficult to estimate. However one of the main benefits of SVA is that it can

identify covariates that are unknown to the user providing a hidden utility that is unavailable to

supervised methods. Despite the challenges of the non-orthogonal covariates presented in our

work, SVA proved to be successful in improving overall GSEA and DEA results. Yet, our work

demonstrates that SVA performs best when used with a library balanced dataset.

Similarly, the package DESeq2, which identifies differentially expressed genes, has been

designed for batch effect removal through a user-specified design. Covariates provided by the
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user are included in the DESeq model to inform the value for a fitted mean for each gene on each

sample. More specifically, for each gene on each sample there is a covariate dependent parameter

which measures the variance which is included when calculating the fitted mean. While this

mathematical modeling of covariates is intuitive and follows traditional approaches to modeling

covariates, it simply does not remove batch effects as effectively as other downstream methods

such as SVA. This fact is demonstrated in our work where we compare DESeq on its own

(ULUC) with DESeq in conjunction with SVA (ULBC); in which we illustrate SVAs improving

effect on DESeq2’s performance.

While there exist a variety of methods for post sequencing correction of batch effects, the

primary method for library balancing is randomization. Randomization has been proven to

mitigate batch effects to a degree in regards to plate and sample sequencing. However,

randomization makes no attempt to mitigate covariates since randomization only controls the

plate design. Thus if you have a sample design in which a covariate (i.e. sex) is heavily

correllated with your diagnosis randomized plate design cannot mitigate this affect. Hence

motivating the need for a library balancing technique that handles more than the plate effect.

Our tool offers to balance both covariates and the plate effect via a GA-based method. In

using a stochastic optimization scheme the GA-based tool identifies a subset of samples in which

covariates are optimally balanced with the diagnosis and plates are balanced for all covariates

and the diagnosis of interest. What we demonstrate in this work is that in intelligently removing

20% of samples and assigning plates using the GA optimization scheme we achieve better

accuracy in both GSEA and DEA; and further remove correlations pre-existing in the data.
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In this paper we illustrated that our GA-based method BalanceIT can effectively mitigate

batch effections when used prior to sequencing, when samples are fraught with co-linear,

non-orthogonal covariates. However we have not fully explored the utility of this tool when

re-sequencing is not an option, i.e. when samples along with their RNA-Seq counts are provided

for the user. Exploring whether the GA may be used post-sequencing can help to further studies

in which combining samples would result in indistinguishable batch effects. To illustrate the

effectiveness of BalanceIT on already sequenced RNA-Seq samples we suggest to use data that

is publicly available from The Cancer Genome Atlas (TCGA), as it is a comprehensive dataset

with many covariates, cancer types, tissues, and is collected from a variety of studies.

Finally, in this paper we explore a dataset with two highly collinear, non-orthogonal

covariate pairs. Finding the threshold of collinearity in which the GA becomes comparable to

standard post-sequencing batch effect mitigation methods would prove useful to illustrate when

the GA should be used and when it may not be used. Exploring this threshold would provide a

good utility to future researchers.
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FIGURES:

Figure 1: Covariate and Plate Balance Scores Before and After Library Balancing on
Simulated Data

a) Covariate Balancing Balance scores of covariates before and after balancing using the GA.
Continuous covariates balance scores were computed using anova test with the covariate value
and the diagnosis. Categorical covariates balance scores were computed using a chi-squared test
with the covariate value and the diagnosis. b) Plate Balancing Balance scores for the covariates
and diagnosis with the plate assignment for random assignment with the full sample set, random
assignment with subsetted sample data, and GA assignment with subsetted sample set. Balance
scores were computed using anova tests for continuous variables and chi-square tests for
categorical variables.
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Figure 2: Gene Set Enrichment Analysis with and without Library and Covariate
Balancing on Simulated Data.

a-c) Sensitivity, Specificity, and Accuracy for GSEA. Using the original unbalanced dataset
(ULUC) as a base, three metrics were tested: applying only covariate balancing (ULBC) with
either SVA or Combat, applying only library balancing (BLUC) with either the GA or with the
original 750 balanced, and applying both library and covariate balancing (BLBC). These results
are displayed in tandem with the ideal dataset, demonstrating ULUC when it is entirely free of
either covariate or library effects, or both. GSEA was performed using 5 million randomly
generated gene sets. Over 10,000 iterations, 100 gene sets were generated for each respective
size gene set 100, 200, 300, 400, and 500; totalling for 500 total gene sets per iteration. Using the
true DE genes from the simulated RNA-Seq count data the 500 total gene sets were labeled as
enriched or unenriched, the predicted DE genes from each method were then used to predict
whether each gene set is enriched or unenriched. The results of the true and predicted gene sets
were used to compute Sensitivity, Specificity, and Accuracy metrics for covariate and library
balancing.
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Figure 3: DE Analysis on Simulated Data

a) Categorizing DE Genes, TP, TN, FP, FN. Numbers from confusion matrices using the
known DE genes and non-DE genes and the predicted DE genes and non-DE genes by balancing
method. For post-sequencing balancing (covariate balancing) SVA and Combat are used, for
pre-sequencing balancing (library balancing) the GA and the original 750 samples are used. b)
Changes in DEA Results. Scores for accuracy, FDR, sensitivity, and specificity are computed
for each method using confusion matrices from DE gene classification.
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Figure 3: DE Analysis on Simulated Data, Continued

a) Categorizing DE Genes, TP, TN, FP, FN. Numbers from confusion matrices using the
known DE genes and non-DE genes and the predicted DE genes and non-DE genes by balancing
method. For post-sequencing balancing (covariate balancing) SVA and Combat are used, for
pre-sequencing balancing (library balancing) the GA and the original 750 samples are used. b)
Changes in DEA Results. Scores for accuracy, FDR, sensitivity, and specificity are computed
for each method using confusion matrices from DE gene classification.
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Figure 4: The Genetic Algorithm Process

Figure 4 The GA-based optimization approach consists of six steps: (i) initial population–the
initial population termed as N={N1, N2, …, N300}; (ii) fitness function–the function to assess how
balance of the experimental factors in an individual solution Ni. For each Ni, each experimental
factor is evaluated by performing the ANOVA test for continuous factors and by the Chi-square
test for the categorical factors. The p-value of statistical test is considered as the ‘balance score’
of the testing experimental factor; (iii) stop criteria–the optimization process will be terminated
after a predetermined number of iteration; (iv) selection– top 30% of individuals served as
candidates for further crossover and mutation to generate a new individual of the next-generation
population; (v) crossover– the child individual is generated by swapping two parent
chromosomes with a single crossover point; and (vi) mutation– a mutation occurs by randomly
changing the value of a chromosome in the child individual to maintain population diversity.
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SUPPLEMENTARY FIGURES:

Supplementary Figure 1: Known Balanced Subset

Known Balanced Subset. The 1000 samples were divided up into a balanced subset of 750
samples and an unbalanced subset of 250 samples. The two of these combined produced a final
unbalanced dataset of 1000 samples. Continuous covariates (d-f) balance score was computed by
fitting a model with the covariate value and the diagnosis. Categorical covariates (a-c) balance
score was computed using a chi-squared test with the covariate value and the diagnosis.
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Supplementary Figure 2: Covariate Distributions for 250 Unbalanced Samples

a) Covariate Distributions of Covariates based on Diagnosis. Covariate distributions without
the posterior probability of interactions. Covariates were assigned to the 250 unbalanced samples
according to the above biased distributions. For diagnosis 0, the above distributions were used,
for diagnosis 1 covariates were assigned using the original distribution, dist, in the formula
abs(dist - 1). b) Covariate Distributions for Covariates based on Interactions. Covariate
distributions for two interacting covariate pairs after covariates were simulated, p values
computed using a linear model fitting a relationship between the two covariates.
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Supplementary Figure  3: Ideal Metrics

Ideal Metrics for the four ideal datasets: Unbalanced Library and Unbalanced Covariates
(ULUC), Unbalanced Library and Balanced Covariates (ULBC), Balanced Library and
Unbalanced Covariates (BLUC), and Balanced Library and Balanced Covariates (BLBC). BLUC
and BLBC use the 750 samples that are known to be balanced for all the covariates. In these four
datasets balancing is Ideal, meaning that covariate/plate effect is fully removed. a) Sample
Distances for Ideal Metrics. Heat Maps visualizing sample distances for the four balancing
scenarios. Sample distances are computed using the euclidean distances between samples using
their VST normalized RNA-Seq counts. (b) GSEA for Ideal Metrics Specificity, sensitivity, and
accuracy scores for GSEA for the four datasets. (c) DE Analysis for Ideal Metrics
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Supplementary Figure 4: LFC Patterns

a) Default Size. LFC by mean value for a dataset of airway scaled counts. b) Increased Sample
Size. Using the original dataset of 8 scaled airway samples, the dataset was randomly upsampled
to reach a sample size of 750 samples. c) Decreased Number of Genes. One thousand genes
were randomly selected from the dataset in a) using a uniform distribution, the remaining genes
were removed from the gene pool. d) Decreased Number of Genes and Increased Sample
Size. Using the methods in b) and c) the original dataset in a) is modified to have 750 samples
and 1000 genes. e) Unbalanced Simulated MA plot. 1000 samples with 2000 genes
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TABLES:

Table 1. Overview of the samples used in the unbalanced library design of Simulated
RNA-Seq experiments

Diagnosis f
0 491 1 8 51 15
1 509 2 2 52 10

a 3 7 53 12

0 491 4 7 54 15
1 509 5 9 55 11

b 6 10 56 11

0 338 7 8 57 10
1 335 8 5 58 11
2 327 9 10 59 7

c 10 16 60 11

0 508 11 7 61 9
1 492 12 12 62 14

d 13 6 63 14

1 91 14 11 64 16
2 103 15 11 65 10
3 99 16 15 66 10
4 98 17 7 67 7
5 100 18 7 68 12
6 105 19 11 69 4
7 63 20 9 70 12
8 98 21 19 71 9
9 79 22 11 72 3
10 92 23 14 73 12
11 72 24 9 74 13

e 25 7 75 9

1 108 26 10 76 15
2 125 27 3 77 9
3 154 28 8 78 15

Table 1. Overview of the samples used in the unbalanced library design of Simulated
RNA-Seq experiments,  Continued
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e f
4 121 29 8 79 10
5 96 30 10 80 10
6 94 31 10 81 8
7 97 32 7 82 14
8 97 33 10 83 11
9 108 34 8 84 10

plates 35 18 85 9

1 95 36 11 86 5
2 81 37 11 87 9
3 96 38 8 88 9
4 103 39 4 89 4
5 105 40 8 90 12
6 99 41 10 91 10
7 109 42 11 92 9
8 95 43 12 93 12
9 108 44 7 94 12
10 109 45 12 95 17

46 16 96 7
47 4 97 6
48 11 98 11
49 14 99 9
50 7 100 14
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