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Abstract 

 Foraging is an essential process for all mobile organisms. It allows organisms to locate 

resources such as food and mates. There is a long history of research on animal foraging in the 

ecology literature and recent work in cognitive science has revealed similarities between 

cognitive search behaviors and animal foraging behaviors. This gives rise to the possibility of 

bringing the rich animal foraging literature to bear on cognitive search processes. Historically 

there have been several major approaches to the study and modeling of foraging animals. One 

approach is known as optimal foraging theory which is focused on optimizing the amount of 

time an organism spends foraging a single location before moving on to another location. 

Another is an expansion on that approach which operationalizes those ideas into a spatial model 

known as area-restricted search. A third approach is known as the Lévy flight hypothesis.  It 

focuses on the longer term distributional properties of foraging animals, and optimizes coverage 

of a given search space.  

 These approaches all make assumptions about environmental conditions faced by 

foraging organisms. The degree of resource sparsity and clustering in a foraging environment are 

believed to be important, but it is unclear how they affect foraging behaviors. Additionally 

spatial memory is a key concept important to animal search strategies, but is frequently ignored 

in the existing literature. For this dissertation, a series of experiments utilized a web-based 

foraging game to test how these variables affect foraging behaviors. The first experiment 

demonstrated that the degree of clustering in the environment had a significant impact on search 

strategies, and provided qualitative evidence that memory played a role in people’s search 

behaviors. The experiments revealed distributional patterns very similar to those predicted by the 

Lévy flight approach. The second experiment refined the method and directly tested memory 

cues and a broader range of resource densities. This experiment revealed results similar to the 

first with the addition of significant effects of both memory cues and resource density. This 

dissertation then discusses a model that combined key concepts from both optimal foraging and 

Lévy foraging to produce results very similar to those produced by human participants, but with 

significantly higher performance. Experiment 3 examined how human performance changes 

when specific advantages are provided that can be found in our model, including perfect memory 

and accuracy.  

Finally a continuation of the model is discussed that explores the dynamics of multiple 

foragers searching the same space. Overall, I demonstrate that people will generate Lévy-like 

search distributions in a wide variety of environmental conditions, but that search strategies will 

alter based on the current environment. I also demonstrate that spatial memory is a key factor in 

foraging, and provide a simple memory-based model that produces foraging behavior very 

similar to those utilized by people. 
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Introduction 

Search functions are ubiquitous amongst living organisms, with foraging being perhaps 

the oldest (evolutionarily) and the most common. Foraging is a fundamental ability utilized by 

organisms to move around an environment in search of resources, such as food, shelter, or other 

organisms like mates. The study of animal foraging is a topic that has been difficult to study until 

relatively recently due to technical limitations. The advent of new technologies such as small 

global positioning systems (GPSs), or harmonic radar have begun to change that over the last 20 

years or so, with researchers now able to actually track the movements of animals in their natural 

environments.  

 The rapid growth of research into animal foraging has led to the development of a 

number of competing models and theories that attempt to explain and fit the patterns of 

movement exhibited by animals as they forage through their environments. Some of these 

models and theories have started to pick up notice in the cognitive science community. It is easy 

to imagine that some of the same mechanisms and functions observed in animals may be 

prevalent in Homo sapiens as well. There are also those who have postulated that those same 

systems may have been adapted into use in other search processes as well, such as memory 

search and visual search. Or if not the same systems, it is possible that the same sort of search 

function is utilized.  

 There are three major approaches to modeling foraging which are relevant to my work in 

the dissertation which I will discuss in detail below. The first is the Lévy flights theory which 

takes a random walk approach to modeling the movements of animals. Optimal foraging theory 

which abstracts resource distributions into abstract patches and models movements in terms of 

how long a forager should exploit a single patch before advancing to another one. Finally, area 

restricted search is a model of search that focuses on the adjustment of search patterns based on 

the recency of finding a resource. I will discuss all three of these models in terms of their 

approach, the data they best represent, and where they fall short. I will also discuss the current 

literature on the relationship between animal foraging and human cognitive search. 

 

Lévy Flights Theory 

There are two major approaches to studying foraging patterns in living organisms. One of 

these approaches is the Lévy flight approach. A Lévy flight refers to a special class of random 

walk, where the step lengths of the random walk are drawn from a Lévy distribution 

(Viswanathan et al., 1996). A Lévy distribution is a class of probability distribution with a 

power-law tail. The Lévy flight is characterized by the following distribution function: P(lj)~lj
-µ 

where lj represents the flight length, and µ serves as a slope parameter. For a Lévy flight µ falls 

between 1 and 3. When values are ≥3 the distribution becomes equivalent to a normal 

distribution (Viswanathan et al., 1999), and thus a Brownian walk. Lévy flights can be described 

as patterns of smaller movements occasionally interspersed by much larger movements. µ values 

near 2 have been shown to be optimal for foraging, and higher µ values within that range create 

distributions with more frequent small movements and fewer long movements. Lower values 

create more frequent longer movements, and fewer short movements. See fig. 1 below as an 

example. 



2 

 

 

 

  

 

 

 

Lévy flights have been observed across a range of physical phenomena including fluid 

dynamics, and dynamical systems (Shlesinger, Zaslavsky, & Klafter, 1993). The Lévy flight was 

popularized as a fit for animal foraging data by Viswanathan and colleagues (1996). 

Viswanathan and colleagues had data collected from five different adult albatrosses in the 

Atlantic Ocean. Each albatross in the study had a device attached to their leg that simply 

recorded whether or not it was wet. Being wet indicated that the bird was eating or taking a 

break. Thus, a collection of durations between foraging sessions was acquired. Long range 

correlations were found within these durations with a µ value of approximately 2. They 

hypothesized that long-range correlations, or scale invariance are the result of the animals 

foraging in a Lévy flight like pattern. They further suggested that such patterns of movement 

could be advantageous to foraging animals. To provide plausibility to their explanations they 

also exhibited the similarity between the movements of the albatrosses, and a simple random 

walk model that pulls movement distances from a Lévy distribution.  

 This work was followed up a few years later in an article that focused on the optimality 

of long-tailed power-law distribution based random walks in foraging (Viswanathan et al., 1999). 

This paper focused on a Lévy walk model as opposed to a Lévy flight model. They are very 

similar models, with the difference being that a Lévy walk model moves incrementally and may 

be interrupted by finding resources as it moves, as opposed to Lévy flight that does not observe 

resources until it arrives at a preselected destination. It is worth noting the specific mechanics of 

the Lévy walk model used. It had a vision parameter, such that any resources within a specific 

range were “visible” to the model, resulting in motion towards the nearest visible resource. If 

none were visible then a direction was chosen at random and a distance was pulled from a 

Figure 1: Three example patterns of movements created by Lévy flights. m in this 

figure refers to the µ parameter (Viswanathan et al., 1999). 
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probability distribution. The model then moved incrementally towards that new point, until it 

either reached it and picked a new direction and distance, or “saw” a resource along the way. 

With this model, they show that a µ value of 2 may be the optimal parameter for the Lévy 

exponent. Evidence was presented both by analytically solving a model equation, and then 

further supported through simulations. According to the simulations different slopes offer only a 

slight advantage when the distance between foraging targets is small, however the advantage in 

foraging efficiency at 2 was much greater compared to other slopes when targets were farther 

apart. It is also worth noting that resources in both the analytical analysis as well the simulations 

were assumed to be uniformly randomly distributed across the search space. The paper 

concluded by looking at the path length or path time distributions for bees, deer, amoebas and 

albatrosses. All four exhibited power law distributions with a slope parameter (µ) of around 2, 

matching nicely with their analytical and simulated results.   

 The regularity with which Lévy distributions with a slope of 2 have been observed in a 

diverse range of foraging animals is quite striking. It was mentioned earlier that bees, deer, 

amoebas, and albatrosses all exhibited distributions of path lengths when foraging that are fit by 

heavy-tailed power laws with slopes right around 2. While those four animals cover a broad 

swath of the animal kingdom, they are far from the only animals to demonstrate this pattern. 

Reindeer (Mårell, Ball, & Hofgaard, 2002), micro zooplankton (Bartumeus, Peters, Pueyo, 

Marrasé, & Catalan, 2003), grey seals (Austin, Bowen, & McMillan, 2004), spider monkeys 

(Ayala-Orozco et al., 2004), 14 different species of fish (Humphries et al., 2010), and even 

human manned fishing boats (Bertrand, Bertrand, Guevara-Carrasco, & Gerlotto, 2007), are a 

selection of species that have been observed to follow the same distributions of foraging 

movements. 

 However, recent literature has begun to place a great deal of doubt on the Levy flight 

theory as a realistic model of animal foraging. Benhamou and Collet (2015) demonstrate an 

alternative model that significantly outperforms Lévy flights in contexts in which it was 

theorized to be optimal. Additionally, researchers have demonstrated that patterns of movement 

that are Lévy distributed may result from patterns of movement that are not driven by Lévy 

flights (Breed, Severns, & Edwards, 2015; Hills, Kalff, & Wiener, 2013). 

 

Optimal Foraging Theory 

Another common approach to modeling foraging is known as “patch foraging” or more 

frequently “optimal foraging theory.” Optimal foraging theory is partly characterized by a 

tendency to group sets of nearby resources together into single resource “patches” as an 

abstraction, as well as calculating the optimal amount of time to spend in a given location. This 

patch-focused approach tends to stay differentiated in the literature from the power law focused 

approach that characterizes the Lévy flight literature. This patch foraging literature is heavily 

influenced by two papers that were released in the same year, that lay out the idea of abstracting 

resources into patches, as well as the idea of trying to calculate how to “optimally” forage 

(Emlen, 1966; MacArthur & Pianka, 1966)., These ideas where later summarized into a fairly 

simple equation known as the marginal value theorem (Charnov, 1976). 

 Optimal foraging theorists treat the resource environment as being a “patchy habitat” 

Essentially groups of nearby resources are clumped together into individual patches with values 

assigned to them based on the number of resources contained within the patch. In some 

environments this simplification makes sense. It is easy to imagine dense packs of prey animals, 

or schools of fish, or a number of meal worms in a chunk of wood. The abstraction of groups of 
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resources into patches is critical to the optimal foraging approach. With patches one no longer 

worries about what pattern of movement to utilize while foraging within a patch, instead it is 

abstracted into the quantity of resources that can be collected per unit time. It is also assumed 

that this rate of resource acquisition decreases as resources within the patch are consumed. 

Charnov (1976) demonstrated that the optimal amount of time to spend in a given patch to 

constantly maximize net resource intake can be calculated as a function of the value of the 

current patch, the expected value of patches in the area, and the travel time from one patch to the 

next. Thus with knowledge about the surrounding environment it is possible to determine exactly 

how to optimally forage. This ability to mathematically calculate optimal search times in a patch 

is a key strength to this type of foraging model.  

 

Area Restricted Search 

Another approach to studying animal foraging behavior is area-restricted search. Area-

restricted search in its most general form is very simple. When a resource is obtained the 

organism is more likely to stay in the same area for a period time (Kareiva & Odell, 1987). This 

kind of simple model can perform quite well under clustered or patchy resource conditions. 

Although, when implemented as a model it does leave one with a number of free parameters 

such as: How large an area is search restricted to? How long does the organism stay in the area? 

How should area restriction be realized, as an area of a specific size or more frequent turning? 

Etc…  In implementation the simple area-restricted search can become fairly complex, but serves 

to solve a key issue with optimal foraging theory. Optimal foraging theory abstracts space into 

arbitrary patches. Area-restricted search anchors these patches into space, and provides a 

concrete method for moving within and between them.  

 
  

 

 

Models of foraging are important tools for understanding how organisms locate resources 

in an environment, but in recent years researchers have begun to also apply these models towards 

certain cognitive functions. Processes such as visual search and memory search are the most 

frequent targets of such applications. This angle of research has begun to accumulate significant 

evidence of close similarities between foraging processes and cognitive search processes. 

 

Foraging in Cognition 

Visual search is an obvious cognitive domain to apply an animal foraging approach. 

Basic task constraints between the two are quite similar, beyond them both being search tasks. 

The goal in each is to move in a manner that best facilitates the location of resources in an 

environment. In visual search the resources are localized visual features, and the environment is 

Figure 2: Example movement through an environment with two types of 

patches. (Charnov, 1976) 
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the visual scene. Typical patterns of movement also contain important similarities between 

foraging and eye movements. They can both be described as clusters of small movements within 

an area of interest, interspersed with larger movements between areas of interest. For visual 

search, eye movements occur as microsaccades interrupted by saccades, and for foraging these 

are periods of acquisition interspersed by relocations (Liversedge & Findlay, 2000). Both of 

these domains also frequently restrict the acquisition of resources to only one of these phases of 

movement. Birds generally do not acquire berries while flying from bush to bush, and eyes do 

not register features while performing saccades (Henderson, 2003). The similarities between 

these two tasks have been previously observed by researchers both from a Lévy flight 

perspective, and an area-restricted search perspective. 

Unsurprisingly, researchers working from a Lévy flight perspective focused on the 

statistical properties of eye movement trajectories. Rhodes, Kello & Kerster (2011) demonstrated 

that eye movement trajectories follow heavy-tailed distributions with long-range correlations, 

across several different types of search tasks. Free viewing, counting, and a “find the hidden 

object” task were used, on a variety of naturalistic images that had various different power law 

spectra within them. Participants engaged in each of these tasks while wearing an eye-tracker to 

record the physical movements of their eyes. The tasks had a reliable effect on the parameters of 

the distributions, but remained power-law, while the distributional properties of the image, such 

as spatial distribution of luminance, had no reliable effect on eye movements. Power-law 

distributions in eye movements have also been observed in a visual search task known as the 

“visual world paradigm”(Tanenhaus, Spivey-Knowlton, Eberhard, & Sedivy, 1995), although the 

issue was only indirectly addressed (Stephen & Mirman, 2010).  Eye movements in these studies 

proved to be heavy-tailed, but were not necessarily Lévy distributed. In both studies the 

distributions were best fit by lognormal distributions. However, this does not rule out the 

possibility that eye movements during search follow a Lévy flight-like strategy, as lognormal 

distributions can be viewed as a “constrained” power law (Stephen & Mirman, 2010), which 

leaves the possibility that the Lévy distribution may have been discernible if the experiment did 

not occur in a constrained space (like the computer monitors that were used in these eye-tracking 

studies.) 

Visual search has also been approached from a marginal value theorem perspective 

(Wolfe, 2013). Marginal value theorem provides a very reasonable model of visual search 

especially if one is most interested in the relationship between saccade frequencies and the 

distribution of resources in the visual scene. It is a very small theoretical step to imagine the 

small eye movements an eye makes while it fixates in an area as being like foraging within a 

patch of resources. Then the important question becomes when do the eyes move their search to 

another fixation location? Wolfe frames this as a question of “search termination”; when do you 

terminate the search in one location to move on to the next? 

 Wolfe attempted to address the usefulness of marginal value theorem models, that is 

models which attempt to optimize the amount of time spent in a given patch before moving on to 

the next one, by using a computer based simulation, with a participant controlled mouse as a 

stand in for direct eye movements. The simulation had an “aerial view” and a “magnified view”. 

Clicking on a location in the aerial view caused their cursor to “walk” to that location. They 

could then collect berries within the magnified view by clicking on them (see Figure 3). Wolfe 

ran a series of six experiments using this general paradigm.  
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 This series of experiments tested a variety of different parameters to examine how they 

influenced the search behavior of participants. When resources were uniformly distributed 

behavior was well fit by a marginal value theorem model with participants becoming more likely 

to leave a patch as it was depleted such that the rate of yield from the patch dropped below the 

average rate for the task. For example, when travel time between patches was greater participants 

stayed longer in individual patches, or when it was more difficult to collect resources within a 

patch, both behaviors predicted by marginal value theorem. However, he also found that when 

patches were non uniform, behavior no longer appeared to fit with that predicted by marginal 

value theorem (Wolfe, 2013). It is also important to note that while this research may raise some 

interesting possibilities about foraging in human visual search, the experimental design failed to 

directly test visual search, and paid no attention to where participants were actually gazing at any 

point. 

 Optimal foraging models of visual search have been tested using methods that more 

directly test visual processes, although they have tended to use methods that have only one or no 

resources available per trial, and they measured the amount of time it took for participants to 

either spot the resource or give up looking, allowing researchers to look at search termination 

times (J. M. Wolfe et al., 2007). This line of research is was strongly focused on tasks such as 

finding the dangerous items in a baggage x-ray, and can be difficult to relate directly to foraging 

models (which are based around much less constrained environments, and generally contain 

multiple resources). However, this kind of methodology was used to show that individuals 

searched longer on each trial if they expected a higher target prevalence, as would be predicted 

by the marginal value theorem (Cain, Vul, Clark, & Mitroff, 2012). Individuals also 

demonstrated sensitivity to the resource distribution over the course of the experiment, and 

changed their strategies appropriately.  

Another domain that has been explored from the perspective of animal foraging is 

memory search. Rhodes & Turvey (2007) performed the first study of Lévy flights in memory. 

They focused specifically on the domain of semantic memory, using a category recall task. 

Semantic memory search has fewer obvious direct similarities to animal foraging than visual 

search, but it is easy to imagine that the resources in semantic memory, that is, words, are 

distributed across a mental space, in a way similar to how resources are distributed in nature. 

Participants were instructed to recite as many different animals as they could within a 

twenty minute time period. It should not be surprising that participants appeared to generate 

Figure 3: View of the simulation from (Wolfe, 2013) 
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animal names in bursts intervened by longer pauses. For example someone might name “cat, 

leopard, lion” then pause before continuing with “wolf, fox, dog.” Interestingly, these pauses 

appeared to be quite varied in duration, to the degree that some were exponentially longer than 

others. In fact, the distribution of the durations between utterances, that is the inter-response 

intervals, when plotted as distributions demonstrated heavy tails, and matched slopes within the 

range consistent with the Lévy distribution. They were also well fit by simulated Lévy flights. 

Duration between recalls functioned as a reasonable proxy for the “distance” between 

acquisitions used in physical search tasks, and the Lévy distributions produced in this task were 

striking in their similarity to the distributions produced by foraging animals. 

Semantic search has also been studied from the perspective of optimal search theory. It is 

easy to see how the bursts of utterances produced in these category recall tasks could be viewed 

as series of patches, rather than as one single time series of utterances. In fact, it is on the basis of 

observing such clusters that Hills, Jones, and Todd (2012) argued that optimal foraging could be 

applied to semantic memory. They tested this using an experiment very similar to Rhodes & 

Turvey (2009) where participants generated words based on the category “animals.” There a 

couple of key differences between the two experiments. Items were typed on a computer instead 

of uttered aloud (although this probably did not impact the results see (Thompson, Kello, & 

Montez, 2013)), and the experiment only lasted three minutes instead of twenty. They also 

compared the behavioral data to a pair of search models operating over an artificial 

representation of semantic space based on hand coded categorizations (Troyer, Moscovitch, & 

Winocur, 1997) and a corpus based semantic space model (Jones & Mewhort, 2007). Using this 

representation of semantic space they created two models, one which is referred to as a static 

model that simply moves through adjacent items in the space, and a dynamic model which swaps 

between categories when they grow sparser (likened more to an area-restricted search approach). 

They showed that the dynamic model better fits the behavioral data, and argued that the dynamic 

model is more akin to how individuals explore semantic space (Hills et al., 2012).  

In the domains I discussed prior to semantic memory search most of the experiments, 

models, and simulations are tested in very different environments between those interested in 

Lévy flight models, and those interested in optimal search models. These models are generally 

uniformly distributed individual resources for Lévy, and patchy distributions for optimal search. 

In the domain of semantic memory search both foraging approaches are now testing their ideas 

in effectively the same resource space, human semantic memory. This really begins to highlight 

some of the similarities and compatibilities between the two approaches. It is especially notable 

that both approaches have successfully fit themselves to what are effectively the same data sets 

by focusing on different aspects of the search process. Lévy focuses on the general shape of the 

distribution, and how it might be produced, while optimal value approaches focus on the larger 

transitions. This leads to both also having significant gaps in their explanations. Lévy 

approaches, while elegantly simple, also fail to account for the likely possibility that foraging 

decisions are probably not random pulls from a distribution, but are likely effected in some way 

by knowledge of the local environment. Optimal value approaches on the other hand ignore 

spatial and other relationships among patches, and the details of how foraging occurs within 

somewhat arbitrarily defined patches.  

The importance of the underlying distributions in the foraging environments remains an 

important question in semantic memory space, and one that may actually be partially addressable 

by looking at how these foraging models fit the behavioral data. It is still not entirely clear 

whether the underlying distributions are what drive patterns seen in behavioral data, or whether 
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foragers just engage in strategies that best fit their current environment. That is, do foragers use 

one general strategy, or do they engage in different strategies depending on the current 

environment. Either way, existing evidence makes it clear that foraging behavior changes, and 

has to be modeled differently under different resource environments. For example in Lévy 

research it is believed Lévy flights are most optimal under sparse resource environments 

(Viswanathan et al., 1999), and it has been observed that animal foraging patterns in animals no 

longer appear Lévy-like when resources are densely distributed (Humphries et al., 2010). 

Similarly optimal search theory relies entirely on being able to categorize the underlying 

resource environment in clusters (Charnov, 1976). Thus, given the success of these models in the 

domain of semantic memory search, it would seem reasonable to make certain inferences about 

the underlying “shape” of semantic memory. The strong fit exhibited by the Lévy flight model 

implies that semantic memory consists of randomly and sparsely distributed items (Rhodes & 

Turvey, 2007). The fit by optimal search theory models seems to contradict this, and instead 

implies that semantic memory is patchy and uniformly distributed (Hills et al., 2012). This will 

be one of the key questions addressed in the work to follow.  

The random walk approach, the patch foraging approach, and area-restricted search have 

led to findings that appear to reveal important characteristics of animal foraging. However, none 

serve as complete descriptions of observed behavior. It is likely that a more complete model of 

animal foraging could be generated by combining aspects of all three approaches. Area-restricted 

search has started this process by implementing the concepts of patch foraging, and maximizing 

the ratio of time spent and expected value in a location. My work integrates what has been 

learned from existing theories by incorporating Lévy Flights. My work will also address another 

issue that affects this body of research, which is a lack of clear understanding of the relationship 

between foraging distributions, and the underlying resource distributions that are foraged. Both 

approaches tend to make unrealistic assumptions regarding resource distributions, and both 

acknowledge that significant variations in behavior may occur as resource distributions change. 

The work in this dissertation focuses on providing several key new findings to the literature: 

demonstrating that people produce distributional search patterns that are well fit by a Lévy 

distribution, but that a random walk model of foraging is insufficient to capture the patterns 

displayed in human foraging behavior, showing that human foraging behavior is altered by the 

underlying resource distributions being foraged, and that spatial memory is a crucial feature for 

any model that attempts to accurately model human foraging.  

This dissertation consists of five elements including three empirical experiments and two 

models which serve to demonstrate and test findings listed above. All three experiments were 

built as online foraging games that allow for the easy collection of large quantities of data. The 

first experiment allowed users to forage a variety of different environmental resource 

distributions using a two-phase movement heavily inspired by ocular movements. The second 

experiment is similar but greatly simplifies the constraints of the task and explores a few 

questions raised by the first, including the role of memory and time costs. The final experiment is 

very similar to the second but provides aids to the player that should allow for near optimal 

performance in the task. I will also describe a simple computational model that provides a very 

close fit to the human data, while performing very well at the task. The final element of my 

dissertation expands the model to explore dyadic foraging. Many of the findings presented here 

have been previously published in other forms. Experiment 1 was published in Kerster, Kello, 

Rhodes, & Bien-Aime (2013), experiment 2 and the computational model were discussed in 

Kerster, Rhodes, & Kello (2016), and experiment 3 was discussed in Kerster & Kello (2016). 
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Experiment 1 

Lévy foraging paths can be modeled simply as random walks with path lengths sampled 

from a power law, although path directions may be correlated over time (Viswanathan et al., 

2001), and mechanisms of navigation are left unspecified. Despite their simplicity, Lévy walks 

have proven influential because they suggest that search benefits are conferred by power law 

path lengths, at least under certain foraging conditions (Viswanathan & Buldyrev, 1999). In 

particular, when α ~ 2 and targets are sparsely and randomly distributed, Lévy walks are able to 

search spaces more completely compared with Gaussian distributed random walks, and find 

targets at a maximal rate.  

The potential benefits of Lévy walks have led cognitive scientists to investigate whether 

they occur in perceptual, memory, and decision-making search tasks. Rhodes and Turvey (2007), 

investigated Lévy walks in a classic category recall paradigm (Bousfield & Sedgewick, 1944). 

Participants recalled as many animals as they could from long-term memory, for twenty minutes. 

Inter-response intervals were used as indirect measures of memory “path lengths”, and they were 

found to be best fit by inverse power law functions with exponents near two. Rhodes, Kello, and 

Kerster (2011) found that saccade lengths in visual foraging tasks also followed a heavy-tailed 

distribution resembling the optimal Lévy walk, although the lognormal function provided the 

best fit to data. A lognormal can be viewed as a constrained power law (Stephen & Mirman, 

2010), which should be expected when search is constrained to a relatively small space (a 

computer monitor). Most recently, Radicchi and Baronchelli (2012) found search intervals to be 

Lévy-like when buyers searched the bid space in online auctions, and observed exponents were 

shown to maximize economic gains.  

These and other similar studies raise the question of what mechanisms and factors give 

rise to Lévy-like search paths across so many different species and foraging conditions. 

Theoretical analyses suggest that sparsity of targets is a factor, but it is prohibitively difficult to 

test this hypothesis in natural foraging conditions, including visual and memory foraging of 

natural scenes and categories. Also, most theoretical analyses have assumed randomly 

distributed targets (Viswanathan et al., 1999), but food and other resources may instead tend to 

be clustered in nature, as is the case with plankton distributions, for instance (Mackas & Boyd, 

1979). In terms of mechanism, Lévy-like foraging may be intrinsic to both biological and 

cognitive search functions, in which case Lévy walks would occur regardless of search 

conditions. Alternatively, Lévy walks instead may emerge as a result of interactions between 

search processes and their environments. These interactions may unfold over the course of 

minutes and even faster timescales.  

Much of the data used in the study of animal foraging is observational, and in an 

ecological setting, it is frequently impossible to perform experiments. For example, you cannot 

change the distribution of fish available in the ocean to observe if an albatross changes its 

feeding habits. However, exactly these kinds of constraints can be experimentally tested in a 

simulated laboratory setting using human participants. There is sufficient evidence to indicate 

that humans seem to engage in foraging behaviors very like those observed in animals. This is 

true both in naturalistic foraging behaviors such as hunting, deep sea fishing and exploring theme 

parks (Bertrand et al., 2007; Raichlen, Wood, Gordon, Mabulla, & Marlowe, 2013; Rhee, Shin, 

Hong, Lee, & Kim, 2011) and in cognitive behaviors such as visual search and memory search 

(Rhodes, Kello, & Kerster, 2011a; Rhodes & Turvey, 2007). 
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In this experiment, we examined the roles of sparsity and clustering in a web-based video 

game designed to mimic canonical foraging. We used a video game because it allowed me to 

know and explicitly manipulate search conditions. We made the game web-based so that we 

could collect data from large numbers of participants on Amazon’s Mechanical Turk. Recent 

studies have shown that Turk yields data comparable to university participant pools (Germine et 

al., 2012; Snow, O’Connor, Jurafsky, & Ng, 2008), and we confirmed this in a pilot study of my 

video game run through the UC Merced participant pool (not reported). Turk allowed us to 

robustly sample the parameter space created by factorial manipulation of sparsity and clustering. 

Turk also allowed us to collect enough data to compare players who find greater versus fewer 

numbers of targets, i.e. high versus low performers. The main goal of this experiment was to 

determine how people’s foraging behavior is affected by the environment, specifically if 

people’s behavior are responsive to variations in resource clustering or density. Additionally, this 

experiment served to establish whether such variations in behavior would interact with foraging 

performance.  

 

Methods 

For this experiment we designed a two dimensional, web-based foraging game, focused 

on the manipulation of two resource distribution variables: resource density, and resource 

clustering. The design of this game was heavily influenced by the movement of flying animals 

such as the albatross flying over the ocean, and by how the eyes of humans move, as in a visual 

search task. 

The game was framed as a space exploration task, with the goal of finding resources on 

asteroids. Participants used their mouse cursor to move a spaceship over a 1280x1024 grid of 

space. Movement occurred at two discrete scales: zoomed in, and zoomed out. While zoomed out 

the entire space was visible to the participant. Clicking anywhere on the space would “fly” the 

ship to that location. Participants could then press the space bar to zoom in by 15X and explore 

the local vicinity by clicking. Images from the Hubble space telescope were used as backgrounds 

to help engage players by being visually interesting, and “outer spacey.” See figure 4 for an 

example of what the game looked like in play. 
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Asteroids were only visible, and could only be collected while zoomed in. Resources 

were collected for points by moving the ship graphic to collide with the asteroid graphic. 

Successful collections were indicated with visual and audio feedback, a point for each collected 

Figure 4: Example images from the task in play. The top demonstrates the zoomed 

out view. The bottom figure shows the zoomed in view with the ship near a resource. 
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asteroid was added to the score. A set amount of fuel was provided for each trial of the game, 

such that each trial would take approximately five minutes to complete based on pilot work. Fuel 

expenditure (which was indicated with a fuel bar in the top right of the screen) was a linear 

function of distance traveled, as well as a small constant for each zoom in and zoom out action. 

Fuel could never be increased, only consumed. Play continued until all fuel was consumed. 

Resource distributions were generated using an algorithm we designed that can generate 

distributions with varying levels of clustering. The algorithm takes a parameter which can vary 

from 0.0 (all resources on a single point) to 0.5 (a uniform random distribution). The algorithm 

functions by splitting the total area in half and then probabilistically placing the resources onto a 

given half based on the supplied parameter. For example with a parameter of 0.25, 25% of the 

resources would be assigned to one half, and 75% to the other half. Each half would then be split 

again, with assigned resources being again split in the same manner. This process continues 

recursively until either a single resource remains in a rectangle, in which case it will be assigned 

to a random location in the current rectangle, or until a rectangle less than the size of a pixel, in 

which case the all remaining resources are placed on that pixel. See the pseudocode (figure 5) for 

additional details on the algorithm. This algorithm created clusters whose sizes followed a nested 

scaling relation to varying degrees, consistent with findings of scaling law clustering of natural 

resource (Humphries et al., 2010; Mackas & Boyd, 1979). Conditions were generated using 

clustering algorithm parameters of 0.05, 0.15, 0.25, 0.35, and 0.5 (see figure 6 for examples). 

This was crossed with the following varying levels of resource density: 25, 50, 100, 150. These 

twenty different resource distributions were randomly assigned to participants.  

 
 

 

  

Figure 5: Pseudocode for the algorithm used to generate the resource 

distributions. 
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The game was coded in Adobe Flash so it could be distributed via the web, with game 

data collected on a local server. We used Amazon’s Mechanical Turk to find people willing to 

play the game twice (plus a 1 minute practice session to learn) for 75 cents in compensation. 

Pilot work indicated that the availability and quality of Turk workers fell off precipitously for 

tasks lasting more than 10-15 minutes. A step-by-step demo, along with instructions in English, 

was presented at the beginning of play, and each play was set to last about 5 minutes (assuming 

no breaks). Two plays were required for each paid work session. 

 

Results 

A total of 1,825 play sessions were administered on Mechanical Turk. Participants who 

did not produce more than 80 zoom in actions per play were excluded from analysis (603 

participants). Pilot work indicated that participants who simply expended fuel to complete the 

task, rather than endeavored to find asteroids, were usually revealed as making mostly large 

zoom out movements to expend fuel quickly. Of the remaining 1,222 participants, it was 

determined that 393 of them were participants who played in two or more Turk sessions. 

Figure 6: Example distributions with varying levels of clustering. .05 (top left), .15 

(top right), .35 (bottom left), and .5 (bottom right). 
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Analyses with and without these repeats indicated no qualitative change in results, so all plays 

were included in the reported results. Analyses combine zoomed in and zoomed out path lengths. 

Visual inspection of zoomed out flight paths revealed directional movements that ranged 

in their temporal correlations, which are a basic expression of memory in search paths. Two 

example paths at the two ends of this range are shown in Figure 7. Paths that consisted of highly 

regular directional movements were seen as “sweep” strategies designed to systematically cover 

the space in left-right, top-down, spiral, and other search patterns. Paths at the other end of the 

range consisted of seemingly haphazard directional movements, akin to random walks. In the 

middle were mixtures of the two, plus directional movements that followed irregular contours of 

Hubble images (despite instructions that distributions were independent of images). 

To minimize effects of practice and learning, only the second of two plays per Turk 

session was analyzed (unless specified otherwise). Performance was measured as the proportion 

of available targets harvested, and plays were divided into three categories of performance, for 

each of the 16 game conditions: Top 20, middle 20, and bottom 20 scores. More than 60 Turk 

sessions were randomly assigned to each game condition, so any additional plays were excluded 

from reported analyses. The constant of 20 plays per cell simplified statistical analyses, and 

excluding plays in between performance categories helped to make those categories distinct. 
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  Figure 7: Examples of movements produced by participants. Red lines 

indicate movements, and the pink squares demonstrate the locations where 

the players zoomed in. The top figure demonstrates a typical sweep strategy, 

the bottom a more haphazard strategy. 
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All results are graphed and analyzed as a function of sparsity, clustering, and 

performance category. A three-way analysis of variance was conducted using the three 

categories as predictors for each dependent measure, and only main effects and two-way 

interactions are reported because these are the statistical tests relevant to my research questions 

and hypotheses. First, we examined score as function of these three factors, shown in Figure 8. 

The main effect of performance category is itself based on score, and is so large throughout our 

analyses that reporting its reliability was unnecessary.  

For the other two main effects, sparsity was not reliable, F(3,18) = 2.1, p > 0.1, but 

clustering was, F(3,18) = 38.42, p < .05. The interaction of performance category with sparsity 

was also not reliable, F(6,18) = 0.84, p > 0.5, but it did interact with clustering, F(6,18) = 55.41, 

p < .05. Visual inspection shows that scores improved with clustering for high performers, but 

the opposite effect occurred for low performers. These results show that foragers adapted to 

clustering but not sparsity, and low performers appeared to adapt counterproductive strategies in 

terms of score. This provides initial evidence that high performers took advantage of the spatial 

correlations in clustering, suggesting that foraging paths emerged from interactions between 

search processes and game conditions.  

 
 

 

However, one might argue that each forager had an intrinsic strategy, or a strategy chosen 

without regard to conditions. Effects of clustering may merely show that the consequences of 

good versus bad strategies increase with clustering. We tested this possibility by examining the 

change in score from first to second play. We found that score increased over time for high 

performers (+19%), but decreased for low performers (-14%), t(638) = 17.7, p < .01. This 
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Figure 8: Demonstration of how scores varied across different resource distributions. 

Strong performers improved when resources were more clustered (left), and there is 

little effect of quantity (right) 
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difference suggests that strategies changed over the course of play, for better or worse, indicative 

of interactions between search processes and game conditions. 

Looking at mean path lengths high performers had shorter path lengths overall, which 

indicates that shorter path lengths allowed for greater coverage of the space (confirmed by 

coverage analyses not reported). This main effect would be expected to diminish, and possibly 

even reverse, if fuel cost more per zoom. 

There were no main effects of sparsity on mean path length (see figure 9), F(3,18) = 2.19, 

p > .1, or clustering, F(3,18) = 1.7, p > .2. The interaction of performance category with sparsity 

again was not reliable, F(6,18) = 1.66, p > .15, but it interacted reliably with clustering once 

again, F(6,18) = 4.61, p > .05. Visual inspection shows that path lengths for high performers 

increased with clustering, whereas they decreased for low performers. The increase for high 

performers presumably reflected the increased need for larger jumps as clusters became more 

tight and scattered. Again, low performers appeared to adjust strategies as well, but in 

counterproductive ways. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Next we examined whether foraging paths resembled Lévy walks, in the sense that path 

length distributions were power law distributed with estimated exponents near two. We used 

multi-model inference (Symonds & Moussalli, 2010) to test which of four different functions 

provided the best fit to the distribution of path lengths for each participant (mean of 217 path 

segments per participant): Normal, exponential, lognormal, and Pareto. Only the latter two are 

heavy-tailed and Lévy-like, and the method uses Akaike’s information criterion (AIC) to find the 

function with the shortest information-theoretic distance to the data. 

The lognormal function provided the best fit for 68% of the participants, with the 

remaining trials roughly evenly split between normal and exponential fits (Pareto never provided 

the best fit). As mentioned earlier, the lognormal is akin to a constrained power law, and the 

foraging game constrained movements in terms of a limited amount of space. An example 

distribution from one participant is plotted in Figure 10 in logarithmic coordinates, which is 
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Figure 9: The effect of resource distributions on mean path lengths. Generally better 

performers have shorter path lengths, although they increase with resource clustering 
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representative of the majority of participants. The constrained, normal-like portion of the 

distribution is seen as a slight hump on the left side, and the power law-like tail is seen as a 

negatively sloped line on the right.  

 

 

We further examined the tails of path length distributions in two ways. First, the fitted 

lognormal functions have μ and σ parameters, where the latter roughly corresponds with the 

heaviness of the tail. Heavier tails indicate more Lévy-like distributions. Best-fitting lognormal 

σ’s are used in the following analyses for all participants, including those whose data were better 

fit by normal or exponential distributions.   

The overall pattern of results were similar to previous ones. There was no main effect of 

sparsity, F(3,18) = 1.17, p > .35, but clustering was again reliable, F(3,18) = 10.52, p < .05. 

Visual inspection revealed the possibility of an effect in the high/mid performers which was 

supported by a reliable interaction of performance category with clustering, F(6,18) = 12.29, p < 

.05. Once again, there was no reliable interaction with sparsity, F(6,18) = 1.77, p > .15. Visual 

inspection shows that the tails of path length distributions were heavier overall for low 

performers, but they became heavier with greater clustering only for high performers. 

To gauge whether distributions were becoming more similar to the theoretical power law 

exponent of two, we fit regression lines to the right half of distributions in logarithmic 

coordinates, and results are shown in Figure 11. None of the main effects (excluding 

performance category) or interactions were reliable, but slopes were generally in the 

neighborhood of the theoretical optimum of -2. Moreover, slopes for high performers were 

closest in their approach towards -2 with greater clustering. 

 

Figure 10: A typical example of a path length distribution in log/log coordinates, along 

with its fit line (green). The rounding at the beginning of the distribution occurs across 

a range of a fairly small number of pixels, and is likely a result of the lack of precision 

people have when making very small mouse movements. 
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To summarize, search paths generally resembled the optimal Lévy walks predicted to 

occur, to some degree. The majority of path length distributions were heavy-tailed, and tails 

resembled power laws with exponents near two, to some degree. Distributions most closely 

resembled Lévy walks for high performers in the most clustered resource conditions. Foraging 

paths also departed from Lévy walks, in that directions were never drawn purely at random. 

Example paths showed that directions tended to be correlated in time. This tendency can be 

quantified simply by computing the proportion of times that next steps went in the same 

direction, within some threshold. Angular changes were between 0 and 180 degrees (collapsing 

left versus right turns) and divided evenly into 45 bins. The proportion of movements falling into 

the smallest angular bin was 25%, about ten times greater than chance. Thus, foraging paths had 

memory in terms of directional correlations. 

 

Discussion 

 This experiment revealed of number of interesting findings. First of all search movements 

appeared to follow a constrained power-law distribution in player search movements, with a 

slope near -2 as would be predicted by a Lévy-walk theoretical approach. Furthermore, better 

performers in the search task tended to be closer to the theoretical optimum than poor 

performers. These findings provided support for the idea that a Lévy distributed random walk 

model is an accurate representation of organisms forage in an environment.  

 However, we also find several effects that cannot be accounted for by a Lévy-walk model 

approach. We found that people may be responsive to their foraging environment, however that 

finding is possibly confounded by the fact that participants were grouped by their performance. 

We also found that search patterns alter significantly across varying resource distributions. This 

suggests that people were also not using a random walk strategy. They were instead using some 

kind of more sophisticated search process that is sensitive, at least to some extent, to the 
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Figure 11: Regression slopes as a function of quantity, clustering, and performance 

category 
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underlying resource distribution. Additionally the distributions of angular change in people’s 

movements were inconsistent with a random walk which would produce an even distribution, 

where participants demonstrated a tendency to prefer forward movement. 

 It is also interesting that we repeatedly found evidence for strong interactions between 

foraging performance (score) and different degrees of resource clustering in the environment, but 

not for the density of the resources. This is surprising because existing modeling work using 

Lévy-flight models has demonstrated strong relationships between resource density and search 

performance (Viswanathan et al., 1999). One possible explanation for this is the range of 

densities used was relatively small. This is one of the ideas that will be explored further in 

experiment 2.  

 

Experiment 2 

There were some concerns in experiment 1 regarding having two stages of movement 

baked directly into the task. One important aspect of the first experiment was that movement was 

multi-scaled by the very nature of how the ship moved in two separate scales. This was done 

with the intent of capturing a system akin to eye-movements or a foraging bird. However, this 

also gives rise to some concerns about how this two-scale movement translated into path length 

distributions. Perhaps multi-scale movement patterns emerged solely as the result of the 

movements being inherently multi-scale. To address this concern this second experiment further 

simplified the foraging game, and removed the “zoom” style movement and resource collection.  

Experiment one also made it clear that the strategies users chose to utilize in the game 

were clearly not random walks, as one might expect from the Lévy-flight foraging theory. In 

fact, many users used a “mowing” or “sweeping” strategy to cover the space, and in general 

users were much more likely to continue moving forward than any other direction. This suggests 

that spatial memory may be an important part of foraging strategy for organisms capable of 

utilizing it. At the very least, this appears to be the case for humans. Experiment two will attempt 

to test the importance of spatial memory.  

 

Methods 

For experiment two a second foraging game was created. This game attempted to 

simplify the task as much as possible to try to capture very basic foraging. This time the game 

was framed as a task to explore space by sending out “probes” to search for hidden resources. 

Participants were presented with a 1280 by 1024 pixel screen, where each pixel on the screen 

represented a location where resources could be hidden. Again, no visual cues were provided to 

indicate where resources might be hidden. Instead of moving a ship, and zooming in and out the 

game was played using a computer mouse (or functionally equivalent pointing device) to click 

on any area of the screen to “send a probe” to that location. This caused a 15 by 15 pixel area 

centered on the mouse cursor to be explored. Participants were notified of any found resources in 

an explored location through auditory and visual cues. Resources were removed when found and 

never regenerated. For example clicking on the same location with a resource twice would 

indicate a reward the first time, and indicate no resource the second time. A 15x15 pixel square 

outline was also placed around the mouse cursor at all times so that participants could see the 

size of the area that would be searched if they chose to click at that location. Instead of removing 

fuel based on distance travel, participants were allowed to search for resources 300 times per trial 

no matter what. This created a trial length of approximately two to three minutes. This change 

was made for two reasons, the first being to simplify the game further, and the second being to 
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discourage players from attempting to choose strategies that finish the game faster as opposed to 

maximize score. Such behavior was relatively common (although easy to detect) in experiment 

one. This change made the experiment take approximately the same amount of time regardless; a 

feature we discovered is especially useful for experiments that will be run online. A meter in the 

top right corner of the screen indicated what percentage of probes remained; the raw number of 

remaining probes was also displayed adjacent to the meter. In the top left corner of the screen, as 

in experiment one, the number of found resources for the current trial was displayed.  

At the beginning of each experiment, participants viewed a text briefing that described 

how to play the game and informed them that there would be a leader board. Participants then 

viewed an example distribution of resources that had the same density and clustering as would be 

in their trials. This meant that participants did not have to spend time during the trials to learn 

how resources were distributed, and could attempt to start with a strategy tailored to their 

particular distribution in their trials.  

This game was also written in Adobe Flash and Amazon’s Mechanical Turk service was 

used to find participants. Each participant was presented with the briefing, two trials, and a 

debriefing. Each trial was also preceded by a short practice trial. The entire experiment took 

participants approximately eight minutes, and they were compensated $0.50 for their effort. Data 

was collected from 2,040 participants. 

The experiment had four factors; three of them were manipulated between subjects: the 

density of the resource distribution, the clustering of the resource distribution, and image 

background. All three of these manipulations were randomly assigned.  

Resource density levels were chosen that were much greater than in experiment one, and 

cover a much greater range. In hindsight I realized that the range of density values in experiment 

one were much smaller than those used to test many models e.g. (Viswanathan et al., 1999). 

There were three levels: 100 resources, 600 resources, and 1,100 resources. 

Resource clustering was also manipulated across three levels. The parameters used were 

0.1, which produces a very heavily clustered distribution, 0.3, which produces a moderately 

clustered distribution, and 0.5, which produces a uniform random distribution.  

Half the participants were shown a background image during their trials. These images 

were randomly chosen from a small selection of Hubble space telescope images. The other half 

of participants saw a plain black background during their trials. This condition tested the effects 

of memory on foraging behavior. As in experiment 1 the content of the images was completely 

uncorrelated with the placement of resources, so any effects of this manipulation could be 

attributed to participants’ ability to use features in the images as landmarks. 

The within subjects manipulation adjusted the limitations on how frequently participants 

could click to use a probe. Each participant saw both levels of this manipulation in one trial with 

the order randomly determined. One version of this manipulation was that participants could 

click as frequently as they liked without any limitation until they ran out of probes. The other 

version created a variable delay linearly correlated with the distance since their last click. For 

example if a participant clicked somewhere on screen, and then somewhere far away there would 

be a significant delay before they could click again, however if they clicked somewhere nearby 

they would be able to click again with almost no delay. This delay was animated with a dot 

moving from the previous location clicked to the new one, with the delay ending when the dot 

reached the newly clicked location. This manipulation added an embodied cost to moving large 

distances, in an effort to see how this would change foraging strategies, similar to that 

experienced by participants in experiment one. We had questions from experiment 1 about the 



22 

 

 

 

impact this kind of embodied time cost might have on participants’ strategies. This ultimately 

had little effect on the results, so this manipulation is ignored in the analyses. 

 

Results 

The Euclidean distance between each successive pair of clicks was calculated, and 

distances were integrated into summed path lengths for consecutive segments that formed an 

angle of less than 10˚.  Each game yielded 165 integrated path lengths on average, and path 

length distributions were analyzed along with percent targets found per player, as well as path 

lengths as a function of number of consecutive locations foraged without targets.  An example of 

a foraging trial can be seen in figure 12. The effects of our foraging manipulations on these 

dependent measures were investigated to test the adaptive nature of search trajectories. 

 
 

 

 

 

 

For each path length distribution produced by each subject, the same maximum 

likelihood method from experiment 1 was applied to estimate the best fit estimates for 

lognormal, exponential, pareto (power-law), truncated power law and Gaussian functions.  The 

large majority of distributions were best fit by the lognormal (96%), whose heavy tail is 

indicative of clustered search trajectories.  While the distributions clearly were not strictly power 

law functions as predicted by Lévy walks, we could nonetheless estimate the amount of 

clustering by fitting a power law function to the tail of distribution, i.e. path lengths > 42 pixels 

as a minimum cutoff determined using the method developed by Clauset and Shalizi (2009). 

These distributions can be viewed in figure 13. The estimated exponent (referred to as ɑ in this 

experiment) served to quantify the heavy tail (Rhee, Shin, Hong, Lee, Kim, & Chong, 2011), and 

the cutoff separated out smaller path lengths that were more uniformly distributed, presumably 

Figure 12: An example distribution produced by a participant in experiment 

two. The boxes indicate the area searched on a click. The yellow dots 

indicate the locations of resources and were not visible to participants. 
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due to noise from screen, mouse, and motor control limitations.  Interestingly, estimated 

exponents (ɑ values) were near the theoretic optimum of 2 for Lévy walks, even though 

distributions were lognormal rather than power law. 

 
 

 

 

Our finding of heavy-tailed (lognormal) path length distributions in all conditions 

indicated that search trajectories were inherently clustered.  However, degrees of clustering 

changed as a function of target distributions and visual landmarks.  In particular, clustering of 

search trajectories increased with target density, decreased when targets were randomly 

distributed, and increased with visual landmarks.  These effects were tested using mixed effects 

analyses of variance (ANOVA) models, with subject as a random variable.  Each effect was 

tested using likelihood ratios to compare the full mixed effects model against a null model that 

excluded the effect in question.  Chi-square statistics showed reliable effects of target density, 

𝜒2(2) =  90.18, p < .0001 and target clustering, 𝜒2(2) =  48.70, p < .0001, and more clustering 

with visual landmarks (M = 1.92, SE = 0.007) than without (M = 1.86, SE = 0.007), 𝜒2(1) =
 18.54, p < .0001.   

The effects of target density and clustering indicate that players modified search 

trajectories based on information in the foraging environment.  Analyses of search performance 

indicate that these modifications were adaptive to the search environment because effects on 

exponents corresponded to similar effects on percentages of targets found:  Target density and 

clustering again had reliable effects on percent targets found, 𝜒2(2) =  79.44, p < .0001 and 

Figure 13: The path length distributions from all participants sorted by 

distribution category.   
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𝜒2(2) =  575.8, p < .0001, where performance increased with density and was lowest when 

target distribution was random.  Also in line with exponents, performance was marginally better 

with visual landmarks (M = 7.51%, SE = 0.19) than without (M = 7.03%, SE = 0.17), 𝜒2(1) =
 3.39, p = .066.   

These additional results indicated that clustering behavior in search trajectories adapted 

to clustering structure in target distributions in order to enhance performance. We examined the 

relationship between search and target clustering directly by dividing the range of observed 

exponent values into 10 bins with equal numbers of data points, and plotting the mean exponent 

of each bin against its corresponding mean percent targets found (see figure 14).  Graphs showed 

positive linear relationships that were steeper with greater target clustering, and no discernable 

effect of target density.  Using linear regression, estimated exponents were reliably correlated 

with percent found at each of the three levels of target density, and in both clustered conditions 

(p < .0001 in each case). Surprisingly, score appeared to increase as α increased, where prior 

research would predict a peak at 2.0. There was no such relationship in the random condition 

because finding targets provided no information about locations of other targets.  

 

 

Finally, correlations between search and target clustering provided indirect evidence that 

foraging movements were adapted as search unfolded and specific target clusters were found.  

We also tested the dependence of search movements on learned information about target 

distributions more directly by examining the relationship between each individual path length 

and the corresponding number of prior clicks without finding a target (figure 15).  These 

analyses showed that players made shorter movements soon after finding targets, which became 

increasingly longer as the number of consecutive unsuccessful clicks increased.   

 

 

Figure 14: Demonstration of how ɑ correlates with score at different levels of clustering 

(left) and density (right). A higher ɑ value indicates a more clustered pattern of movement. 
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Discussion 

 This experiment confirmed several of the key findings from experiment 1. Despite 

significant differences in how players physically explored the space in the two experiments, both 

revealed that people generate Lévy-like lognormal distributions with estimated power-law 

exponents near the theoretical optimum of 2, much like the distributions produced by foraging 

animals. This occured even on trials where participants failed to find any resources which 

Figure 15: Normalized time since last click (z score) plotted against log binned path 

lengths. Path lengths increase with the time since the last resource was found across 

all conditions. 
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implies that Lévy-like movement distributions are a feature inherent to how people forage and 

not solely a product of the search environment. Furthermore, higher power-law exponents 

correlated with better search performance. These findings would be predicted by a Lévy-flight 

modeling approach.  

 However, we also found that people are sensitive to both the density and clustering of 

resources in their search environment and make significant adjustments to their foraging patterns 

in order to compensate, and unlike in experiment 1, we can be confident in this effect because no 

post hoc grouping of participants was performed for those analyses. This result would not be 

predicted by a Lévy-flight model. The fact that people clearly used memory to help guide their 

searches also makes it clear that people were not searching using canonical Lévy-flights, as they 

are a memory-less process. The fact that participants used shorter paths after finding resources 

would instead suggest people were performing an area-restricted search. However, that model 

fails to explain the Lévy-like distribution of path lengths, especially in the case where no 

resources are ever discovered. A new model is needed to be able to account for all of these 

findings. 

 

Computational Model 

The first two experiments revealed several important features that as a group are not yet 

accounted for by any single model of foraging behavior. People produced inherently clustered 

movements with distributional properties that resemble a Levy walk. But they also adjusted their 

movements to match the search environment, and produced shorter path lengths shortly after 

finding resources. Those are both behaviors that would be predicted by an area-restricted search 

model. However, it also appears that people were utilizing memory to a degree that neither 

model would predict. In order to address the shortcomings of these existing models we have 

designed a memory-based computational model which combines important aspects of both area-

restricted search and Lévy-flight search. This model assumed complete spatial and temporal 

memory as a simplification, rather than a necessity. The foraging space is represented as 2D grid 

of squares, where the search agent chose each move by sampling from a probability distribution 

of unvisited squares indexed by xy, 
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where Exy is the expected number of targets at square xy, Mxy is the Euclidean distance from the 

agent’s current location.  The model has two free parameters, one to balance randomness versus 

determinism in selecting squares to visit (γ), and one to weigh the effect of distance on 

movements (β).  The parameter space was searched and two values were found (γ = 5.5 and β = 

0.125) that maximized overall fit of the model to the human data. More details on the effects on 

these parameters can be found in Appendix A. For the findings described here the values were 

held constant across all simulations and conditions, which means that patterns of differential 

effects across conditions reflect how model behavior changes solely as a function of the target 

distribution.   
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Expected numbers of targets were based on previously visited locations weighted by 

distance, i.e. 𝐸𝑥𝑦 = ∑ 𝑉𝑖 𝐷𝑖⁄ , where Vi is the trace value at each previously visited square i, Di is 

the distance between xy and each visited square, and the sum is over all previous visits.  Traces 

encoded numbers of targets as they were found, i.e. Vi = Ni for N > 0 upon visiting each square i.  

Thus expected numbers of targets were partly extrapolated from previously found targets, and 

movements were drawn to locations nearby.  However, when no traces were found, an opposite, 

repelling force is applied, i.e. Vi = −ln(Exy) for N = 0.  These negative values played an essential 

role in offsetting unmet expectations, and thereby driving movements away from previously 

found targets as searching around them failed to yield more targets (the logarithm was necessary 

to attenuate repulsion and thereby ensure clustering).  The dynamic can be conceptualized as a 

spatially continuous version of patch foraging, with the added feature of spatial memory to guide 

movements towards or away from specific locations based on search history.  

Figure 16: Plot comparing the path length distributions of the model and humans 

across each resource distribution. 
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 The model simulated each game play by each subject, and model trajectories were 

analyzed in the same manner as the human trajectories were.  The model exhibited the same 

qualitative patterns of results as humans, shown throughout the figures and tables.  Trajectories 

were inherently clustered (figure 16) with similar exponents fit to heavy-tailed path length 

distributions, although model trajectories were all best fit by power law functions instead of 

lognormal.  The power law means that search trajectories resembled Lévy walks, and thus the 

Figure 17: Time since last resource found plotted by path length for both humans and 

the model. The model follows the same trend as humans where path lengths increase as 

a function of the time since a resource was last found. 
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model may help to explain evidence for environmental influences on Lévy walks in animal 

foraging (Ferreira, Raposo, Viswanathan, & da Luz, 2012).  The discrepancy with human players 

requires further study, but may be due to the empirical limitations noted earlier. 

 Like humans, the model generated clustered movements around targets when first 

discovered, and then made longer movements away as locations were increasingly barren (figure 

17).  This dynamic was an adaptive feature of the model, but the same underlying mechanism 

also caused inherent clustering when no targets are found.  The reason is that, when target 

expectations drop below one, −ln(Exy) becomes positive and a trace is encoded as if a target was 

found.  The search process then clusters around this internally generated trace, until enough 

empty locations are visited to trigger a long excursion, and the cycle may be repeated.  This 

dynamic of target expectations was responsible for the intrinsic power law path length 

distributions, and it distinguished our model from previous foraging models with spatial memory 

(e.g. see Gautestad & Mysterud, 2010). 

 
 

 
 
 
 
 
 

Figure 18: An example movement created by the model. Red indicates a visited 

location where a negative trace was left. Green indicates a positive trace. The yellow 

dots indicate the actual locations of resources. 
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Model performance and estimated exponents followed the same patterns as those observed for 

human players, including the variability in scores, as seen in similar coefficients of variation (see 

table 1 and figure 19).  The main differences between human and model foraging derived from 

the model’s complete memory—performance was about double that of humans when target 

distributions contained information about target locations, and path length distributions for the 

model were less variable than for human players, as seen in smaller coefficients of variation for 

estimated exponents.   

  % Found  Est. Exponent 

  Human  Model  Human  Model 

D
en

si
ty

 Sparse 9.9% (0.81)  14.1% (1.00)  1.84 (0.16)  1.74 (0.03) 

Medium 11.3% (0.90)  22.5% (0.94)  1.95 (0.19)  1.89 (0.05) 

Dense 13.2% (0.88)  28.1% (0.80)  2.00 (0.16)  2.08 (0.08) 

C
lu

st
er

in
g

             

Most 21.7% (0.57)  42.8% (0.53)  1.97 (0.16)  1.92 (0.09) 

Less 7.4% (0.23)  14.5% (0.35)  2.00 (0.17)  1.98 (0.11) 

Random 5.5% (0.17)  7.1% (0.17)  1.81 (0.18)  1.84 (0.05) 

 

 

  

 

Experiment 3 

The model demonstrated the importance of accuracy and spatial memory in foraging 

tasks. The difference in performance between participants in experiment 2 and the model raise 

Figure 19: Demonstration of how ɑ correlates with score at different levels of 

clustering (left) and density (right) for the model. 

Table 1: Table comparing search performance and estimated exponents and their 

standard errors for the humans and model. 
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the possibility that improving people’s spatial memory and accuracy would improve their 

performance to a level comparable to the model. Experiment 3 empirically tested the predictions 

of the model by utilizing a method very similar to experiment 2 while externally boosting 

participants spatial memory and accuracy.  

 This experiment used the same methods as experiment 2 with some minor changes to 

explore these questions of memory and accuracy. Rather than allow users to click anywhere on 

the screen, the screen was explicitly divided into 15x15 pixel squares. This created a search 

environment that is effectively identical to the one used by the model, and it will not be possible 

for users to accidently overlap portions of their search attempts. It was also indicated to players 

locations that they had visited, using hue to indicate the magnitude of a find at the location. This 

provided them perfect memory similar to what the model enjoys. These adjustments created an 

experiment with results that could be more validly compared directly to the model, and 

ultimately confirm the importance of spatial memory on foraging performance (see figure 20 for 

an example). 

  
  

Figure 20: An example of how experiment 3 appeared during gameplay. Squares 

indicate where the player has foraged thus far. White squares indicate nothing 

was found at that location, and red squares indicate that resources were found, 

with brighter shades indicating higher values. 



32 

 

 

 

 

Results 

 The data was analyzed using the same methods as in experiment two. The movement 

patterns observed in this experiment proved to be very similar to those observed in previous 

experiments (figure 21). The distributions of movements demonstrate the same tendency towards 

inherent clustering, with most of the distributions being lognormally distributed. This was 

determined using the same maximum likelihood method described earlier. 939 out of 1033 

(90.1%) trials were determined to be lognormal.  

One of the key goals in this experiment was to see if giving participants the same benefits 

we afforded the model, perfect memory, and perfect accuracy (that is the ability to never overlap 

previous search locations) would boost scores into ranges similar to those observed in the model. 

On this front, the experiment was wildly successful. Scores were boosted substantially across all 

conditions (table 2). In fact, participant’s scores in this experiment surpass those produced by the 

model. This experiment demonstrates empirically how search performance can be boosted 

drastically simply by improving memory. 

 

 

Figure 21: Path length distributions for each trial. The results are very similar to the 

earlier experiments and demonstrate the same power law like distribution. 
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% found 
 

Est exponent 

Density Mean Variation Mean Variation 

100 22.8% 0.86 1.93 0.11 

600 28.2% 0.80 1.97 0.12 

1100 32.6% 0.75 2.06 0.15 

Clustering 
    1 55.6% 0.20 1.95 0.10 

3 15.9% 0.28 2.04 0.14 

5 7.0% 0.14 1.98 0.14 

 

 

As mentioned earlier, two key changes were made between this experiment and 

experiment 2. Without further controls it is difficult to precisely determine how much of the 

increases in score were due to improvements in spatial memory, and how much were due to 

increased search efficiency because search locations could no longer overlap. Nevertheless, we 

developed a simple method to control for search efficiency by scaling normalized score by the 

number of unique pixels visited. This allows for the relative comparison of scores accounting for 

inefficiency due to repeatedly searching the same area. This analysis revealed that, for each 

condition except the random conditions, the majority of observed performance increases (about 

70-80%) were due to improvements in spatial memory (see Table 3). 

  

Table 2: Performance of the model across levels of density and clustering in 

terms of the percent of resources found, and degree of clustering as measured 

by the estimated α value from a pareto distribution. 
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Density 

% increase 

due to 

search 

efficiency 

% increase 

due to 

perfect 

memory 

Sparse 23.2% 76.8% 

Medium 24.5% 75.5% 

Dense 26.5% 73.5% 

Clustering     

Most 20.3% 79.7% 

Less 30.7% 69.3% 

Random 77.9% 22.1% 

The next question is whether the degree of clustering in the search movements is 

modulated by the underlying resource distributions in the same way that was observed in 

experiment 2. The pattern observed here is similar to that in experiment 2, but has a few 

differences. The most striking of these is that the ɑ values in the most clustered condition are 

actually lower than the values in both of the other conditions (figure 23). In experiment 2 this 

condition fell between the values of the medium and random clustering conditions. It is also 

worth noting that the observed values fall within a narrower range than in the previous 

experiment, so there are fewer overall differences between search strategies in this experiment 

(see figure 22). The reason for these differences is unclear and remains a potential topic for 

future research. 

 

Table 3: Percent of the increase due to each of the two changes made between 

Experiment 2 and 3, across density and clustering. 

Figure 22: Average α values across each condition. 
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While there is less overall variation in the search strategies utilized by participants in this 

experiment, there is still a clear effect of search clustering on score. For both of the clustered 

conditions higher ɑ values correlate with higher search performance. The pattern observed across 

clustering remains the same as before, however when measured across density there is no longer 

a correlation.  

 
 

 This experiment succeeded in replicating many of the findings from both experiments 1 

and 2. Most notably the path lengths remained Levy distributed with exponents near 2. In fact, 

granting improved memory slightly increased clustering as measured by the power law exponent 

value, and brought it closer to the theoretical optimum of 2. This experiment also confirmed 

several of the assumptions tested by the model, by demonstrating the importance of spatial 

memory in foraging performance. Foraging performance was nearly doubled in this experiment 

largely due to the effects of improving spatial memory.  

 This experiment also revealed how task dependent some of the findings from experiment 

2 were. Both the effect of clustering on estimated α values and the interaction between estimated 

α and score are quite different. Given the size of the samples involved in both experiments it is 

reasonable to believe these are real differences in behavior driven by the subtle differences in the 

task constraints. Unfortunately, teasing out how these constraints are interacting with these 

effects will have to remain a task for future research. 

 

Dyadic Search Model 

Organisms rarely have the opportunity to forage a physical space in isolation. Typically, 

there will be other organisms competing or cooperating with them. This extends beyond physical 

search and foraging as well. People frequently engage in collaborative cognitive search tasks 

together. Examples of collaborative search tasks can range from problem solving to memory 

recall to visual search. Interestingly, while people regularly engage in collaborative search tasks, 

Figure 23: Demonstration of how ɑ correlates with score at different levels of 

clustering (left) and density (right). Unlike previous experiments there is no clear 

correlation across resource density. 
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it has been shown that groups are often outperformed by individuals (Rajaram & Pereira-Pasarin, 

2010). The model presented earlier offers the opportunity to explore questions of collaborative 

search from a foraging perspective. The model is based on new findings, as well as findings from 

two competing areas of foraging research and so should be a good tool for exploring 

collaborative search behaviors.  

The work presented in this section is both preliminary and exploratory. Multi-agent 

foraging and search are rich and important areas of future study, and a natural extension of the 

work presented here thus far. However, moving to multiple agents also amplifies many of the 

difficulties of studying foraging through increased complexity. Multi-agent collaborative search, 

is already an area of study for many fields, but adding a foraging perspective would provide a 

new and valuable approach. 

In this exploratory work the model was used to look at how a variety of different dyadic 

interaction styles affect several key foraging behaviors. Specifically, how do clustering behaviors 

change as measured by power law exponents, and how does search efficacy and efficiency 

change? 

Minor modifications were made to the foraging model to allow for the exploration of 

three different dyadic foraging approaches: attraction, avoidance, and following. The model was 

adjusted such that two agents were able to act on the same space by taking turns. Each model in 

the space “knows” the locations that have been searched by the other model in the space. This 

prevents either model from moving to any previously visited location. In order to allow 

interaction between the two models, each model had an “attraction” value that they associated 

with the other agent. That value was placed as a trace value for any location that the other agent 

visited. For the control condition in which two models forage the same space without interacting 

the trace values were set to 0. This meant that the locations visited by the other agent had no 

effect on the probability of the current agent visiting any given location. The only exception to 

this being that the current agent no longer had visited locations available.  

To generate interactive patterns of behavior these values were adjusted. Setting the values 

positive for both agents led to an attraction dynamic. The visited locations of the other agent 

served as small attractors to the current agent, in much the same way that finding a resource 

would. Generally this created a dynamic where if one agent spent a large amount of time in one 

location it is likely that the other agent would also visit that general location. Effectively the 

agents are able to share locations where they have been successful. 
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If the values for both agents are set to negative numbers then a repelling dynamic was 

generated. Each agent was slightly repelled by the locations that the other agent has visited. This 

creates a dynamic that is very much the opposite of the attraction dynamic. Instead of sharing 

locations where the agents have been successful they avoid them. One could imagine that this 

would be a useful strategy as it should lead to the agents exploring separate areas.  

Finally, a kind of following dynamic was created by setting the values for one agent to be 

positive, and the values for the other agent to be negative. This led to a kind of following 

dynamic in which one agent is attracted to the other, who in turn is repelled away from the first. 

This had the possibility of leading to a dynamic in which agent effectively acted as a “searcher”, 

while the other agent acted as a “collector.” 

These “interaction values” were effectively free parameters that I chose to set to +0.5 or      

-0.5 depending on the condition. These values were chosen by performing a parameter search 

and selecting values that were high enough to lead to interactive behaviors between the two 

agents while also low enough that they did not completely dominate the behavior of the agents. 

Choosing fixed values for these parameters also led to interesting behavior, where when nothing 

has been found or the probability distribution is relatively flat for an agent (each agent generates 

separate probability values based on the resources they find) the interaction component became 

more important. When an agent had more local information about the space (i.e. has recently 

found resources) then the behavior of the other agent had less of an effect. 

These four conditions (control, attract, avoid, follow) were each tested by running the 

model 100 times on each density and clustering condition used by both experiment two and the 

solo model. This means there were 900 runs of the model per dyadic interaction condition. Each 

individual agent in the dyadic conditions moved 150 steps, for a total of 300 steps between the 

two agents. This allowed for direct comparisons between the interaction conditions of the dyadic 

model, as well as with the solo model. 

 

Results 

 Before discussing the results in more detail there are several qualitative differences worth 

noting between the interaction conditions. These can be easily observed in the example images 

provided in figure 25. The major difference worth noting is in how movements cluster in the 

Fig 24: The dyadic model is identical in function to the single model with one exception. The 

models take turns selecting locations, and locations selected by other agents are treated by the 

non-moving model as having been visited with a trace value equal to that model’s attraction value 

parameter. 
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repel condition. In this condition movements appeared more tightly clustered, with many small 

tight clusters of movements. This was an effect of the models having many small repellers placed 

throughout the space. This created many “hills” that made it more difficult for the model to leave 

a location, and more likely that it would explore only directly next to the location it was currently 

at before leaving (assuming no new resources are found.) Essentially these repellers increased 

the “cost” of visiting new locations. This same effect can also be observed in the follower 

condition, but only on the agent that is repelled.  

 

 

  
 

 

  

 
 Foraging path length distributions were generated for each condition as described in 

experiment 2. In prior examples of path length distributions presented earlier in this document 

distributions generally appeared mostly flat in logarithmic coordinates with slopes near -2. Some 

of the dyadic interaction conditions demonstrated some surprisingly different trends. See figure 

26. Visually the attract condition, and the attract agent for the follow condition appeared as 

expected. The repel condition differed in that many of the distributions had longer paths in 

Figure 25: Examples of model movements. In order the images are examples of the attract, repel, 

follow, and control conditions. For each image yellow dots indicate the location of resources, and 

blue and red squares indicate the locations each agent visited. For the follow condition red is the 

follower and blue is repelled. 

Attract Repel 

Follow Control 
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greater frequency leading to a shift in the top of the distribution. Much of this effect can be 

attributed to the difference in how the agents in the repel condition move that was described 

earlier. Surprisingly, the control condition also demonstrated a similar effect although to a 

smaller magnitude. This was caused by each agent blocking locations that the other agent would 

have normally visited. This caused the model to pick longer movements than it otherwise would 

have thus shifting the distribution. One can be confident that this was the cause for the control 

condition because that is the only difference between the solo model and the dyadic model in the 

control condition. The attract condition appeared “normal” because the extra attractors created a 

tendency for shorter path lengths to pull the distribution towards the right compared to the 

control condition. The repelled agent in the follow condition provided yet another changed 

behavior. Rather than shifting as in the repel condition, it instead bowed outwards with a flatter 

distribution towards the midsized to longer path lengths.  
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Figure 26: Logarithmically binned plots of the path length distributions produced by the models. 

The interaction conditions are in order: attract, repel, follow attracted, follow repelled, and 

control. 

Attract Repel 

Follow Attracted 

Control 

Follow Repelled 
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 Differences in search behavior were further explored by looking at the clustering in the 

search movements. This was measured in the same way as before by using the method developed 

by Clauset, et al. (2009) to estimate the power-law slope of the distribution. Table 4 provides a 

breakdown of estimated α values and their variance. This view of the data revealed that the 

attract condition is more tightly clustered than any of the other conditions which were much 

closer to the expected value of 2. This view of the data also revealed that there was much more 

variance in path length distributions with the dyadic model compared to the original solo model. 

Many of the differences that can be seen in the distribution plots are at least partially driven by 

the increased variance.  

 

Estimated α 
Standard 
Deviation 

attract 2.419 0.2653 

follow 2.105 0.2394 

independent 2.060 0.2608 

repel 2.080 0.3132 

solo 1.849 0.1567 

So far we can see that the dyadic model led to remarkable shifts in model behavior. 

Changes in behavior were based largely on how agents were interacting however, increased 

variation occurred regardless. But how did these shifts in behavior affect model performance in 

finding resources? Based on existing work on collaborative search one would have expected a 

drop in performance from the solo model. Based on Viswanathan’s theories one might have 

expected the conditions with α values closest to 2 to perform best.  

 

 

% Found Efficiency 

attract 0.1086 7.2257 

follow 0.1064 6.9719 

independent 0.1175 7.5726 

repel 0.0944 6.7469 

solo 0.1278 7.8484 

 

   

In this case the results fell in line with what would be predicted based on behavioral 

research on collaborative search. All of the dyadic conditions performed worse in terms of 

resources found than the solo model. The fact that the model’s performance matches the existing 

literature may be a sign that this is a valid approach to studying more complicated dyadic search 

problems.  

Table 4: Clustering of each dyadic condition as measured by estimated α. 

Table 5: Average performance and efficiency for each dyadic condition. For the solo 

condition efficiency is measured over the first 150 steps. (All other conditions only 

have 150 steps). Values are also normalized for easier interpretation. 
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However, these results also raised a question that often comes in collaborative search 

research. If collaborative search is inferior why do people do it? Some theories suggest that more 

people allows for work in parallel saving time overall, or that having more people may also 

increase the chance of finding something difficult (although this is more applicable to larger 

groups than pairs) (Panait & Luke, 2005). The results from these simulations may offer an 

alternative theory. Collaborative foraging may be more efficient, even if you are finding fewer 

overall resources per unit time. Efficiency is operationalized here in terms of more resources per 

unit of energy expended, in this case energy is measured as the distance traveled.  

Efficiency was measured for each of the dyadic conditions by taking the percentage of 

resources found and dividing by the total distance moved by the agent. The values presented in 

table 5 were also normalized for the sake of easy viewing. For the solo model efficiency was 

only measured by the first 150 steps of movement so as to have an even comparison between the 

single dyadic agents and the solo agents. Even using this measure which should favor the dyadic 

models the solo condition remained the best performing.  

This set of dyadic models served as an early exploration of how the findings presented 

earlier could be applied to foraging situations involving multiple agents. It also showed that 

multi agent foraging can lead to different search behaviors. These findings are limited because 

interaction between agents was implemented in a very basic and simplified way, and changes in 

how interaction is implemented will likely lead to further changes in behavior.  

 

Conclusion 

Foraging is an ancient and nearly universal search process. Prior work by several 

researchers has demonstrated probably connections between the processes by which animals 

forage for food, and various forms of cognitive search including memory and visual search. This 

dissertation has attempted to utilize the power of crowd sourcing in order to gain a better 

understanding of how people forage, and answer questions about what leads to some of the 

previously observed foraging behaviors. 

Inspired by the Levy flight approach to foraging, experiment 1 tested the effect of a 

variety of different resource distributions on foraging behavior in a task with constraints inspired 

by both the movement of the eye, and limitations of the flying albatross. This experiment 

revealed that people will produce a power-law like clustering of search movements pretty much 

regardless of underlying resource distribution, and that they will adjust their search distribution 

in response to current environmental conditions. This experiment also revealed that people are 

not moving in Levy flights, as their movements were clearly not memory-less, as would be 

predicted by a random walk model.  

Experiment 2 simplified the constraints of the task and attempted to explore in greater 

detail how people respond to resource distributions, and whether memory aids would boost 

search efficacy. This experiment confirmed the results of the first one, and demonstrated that 

people’s search patterns could be receptive to both clustering and sparsity in the environment.  

Based on the findings of the first two experiments a model was developed informed by 

both the Levy flight, and area restricted search approaches to foraging. This model had several 

key features: it utilized spatial memory, chose locations based both on prior experience, and 

distance from the current location, and produced inherently clustered movements. This model 

proved to be a good fit for the behavioral data with one key exception. It proved to be much 

better at foraging than people in experiment 2.  
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Experiment 3 served as both a follow up to experiment 2 and the model, by attempting to 

provide people with two of the key benefits of the model: perfect spatial memory, and perfect 

accuracy. This experiment confirmed the results of the model when people demonstrated 

performance at or above the level of the model. Specifically, this experiment demonstrates how 

powerful a tool spatial memory can be in increasing search performance.  

Finally, some explorative work was performed to begin to expand this line of research to 

foraging situations involving multiple searchers. The model was modified to allow for two 

agents to forage and interact in the same space. This early work demonstrated the value of future 

research in this direction, by matching some basic predictions of current collaborative search 

literature, and allowed for testing hypotheses about why people may choose to engage in 

collaborative search even though it frequently leads to poorer results.  

Overall this line of research has answered many basic questions about how people forage. 

I have demonstrated that people will produce power-law clustered patterns of movements, almost 

regardless of their environment, but that they will also adjust those distributions to match their 

current context. Further I have demonstrated the importance of spatial memory in basic foraging 

processes. All of these findings were made in the specific context of foraging, but I believe that 

all of these findings are also applicable to a variety of cognitive search tasks with sufficiently 

similar constraints. To some extent this findings could be useful for the study of visual search, 

memory search, information search, and problem solving, as all of these are search problems of 

some kind. I have also begun the expansion of this research to collaborative search between 

multiple agents, which I think could eventually add to our understanding of a great number of 

collaborative tasks. 
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Future Directions 

 Search processes are important to a wide variety of human cognitive tasks. My approach 

to studying human search is based on findings in animal foraging, and has focused thus far on a 

very basic and simplified foraging type task in order to more closely understand the basics of 

how people forage in an environment. There is already a variety of evidence for similarity 

between the foraging patterns observed in wild animals, those observed in my series of 

experiments, and various cognitive domains such as visual and memory search. One area of 

future work would be to look again at these areas now that we have a greater understanding of 

how humans search, and how different search environments affect search patterns. For example, 

it would be interesting to compare eye-tracking data from a visual search task with how my 

computational model performs searching the same image.  

 Another promising area of research is infant language development. Pilot data from Anne 

Warlaumont’s lab indicates that infant vocalizations may also be Lévy-distributed similarly to 

animal foraging distributions. Examining this in detail may provide an important new 

understanding of how infants learn to vocalize. A very ambitious study could possibly even 

examine the vocal environment around the child to see if it affects the distribution produced by 

the infant. It may even be possible to correlate background “resource” distribution, and the 

infant’s distribution with the speed at which they reach speech milestones. 

 Another possible area for future research is an applied approach. I see two interesting 

possible directions this line of research this could take. The first of this is to use what I have 

learned about human foraging in the form of our computational model to use in Artificial 

Intelligence (AI) foraging tasks. One could modify the model for use in unmanned drones in a 

variety of foraging tasks such as locating water, or search and rescue applications. 

 Another applied application could be to create tools that will help human searchers (like 

search and rescue workers, or someone just trying to find their keys). For example, a phone app 

that simply marks where a forager has been may be sufficient to boost human searching, or 

alternatively a program that aids human searchers by suggesting locations to search based on 

where they have been, and where they have found “resources.” Such an approach would take out 

some of the difficulties associated with a more pure AI approach, like not having to have a direct 

method of identifying resources. 
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Appendix A 

The model has two free parameters, γ and β, and thus four combinations of extreme values that 

lead to aberrant model behaviors.  When γ is very low, β has no appreciable effect on model 

behavior, which means there are actually only three types of aberrant behaviors at the parameter 

extremes.  These types are demonstrated in the following three figures. 

 

 

Figure A1.  Example model run with high β and moderate-to-high γ values. The movement 

cost becomes overly strong and forces movements to mostly remain near one location.   
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Figure A2.  Example model run with high γ and low-to-moderate β.  High gain makes the 

probability distribution overly peaked, which causes the model to make movements among a 

small number of overly dense clusters. 
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Figure A3.  Example model run with low γ paired with any β values. Low gain makes the 

probability distribution too flat, which causes movements to become random and hence not 

sufficiently clustered. 




