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ABSTRACT1
Mesoscopic transport models can efficiently simulate complex travel behavior and traffic patterns2
over large networks, but simulating energy consumption in these models is difficult with traditional3
methods. Since mesoscopic transport models rely on a simplified handling of traffic flow, they can-4
not provide the accurate second-by-second measurement of vehicle speeds and accelerations that5
are required for widely-used energy models. Here we present extensions to the TripEnergy model6
that fill in the gaps of low resolution trajectories with realistic contextual driving behavior. TripEn-7
ergy also includes a vehicle energy model capable of simulating the impact of traffic conditions on8
energy consumption and CO2 emissions, with inputs in the form of widely-available calibration9
data, allowing it to simulate thousands of different real-world vehicle makes and models. This10
design allows TripEnergy to integrate with mesoscopic transport models and to be fast enough to11
run on a large network with minimal additional computation time. We expect it to benefit from and12
enable advances in transport simulation, including optimizing traffic network controls to minimize13
energy, evaluating the performance of different vehicle technologies under wide-scale adoption,14
and better understanding the energy and climate impacts of new infrastructure and policies.15
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INTRODUCTION1
A variety of transport simulation models allow researchers and policymakers to predict the behav-2
ior of travelers in great detail under different policy, infrastructure, and travel demand scenarios.3
Producing energy-use and emissions estimates with these models opens up an even larger set of4
possible research and policymaking applications—from estimating the emissions implications of5
different policies or traffic control strategies to evaluating the expected usage patterns of emerging6
vehicle technologies. However, barriers still remain to widespread application of linked transport7
and energy/emissions models. In this paper, we present a new, flexible energy model calibrated on8
a large sample of GPS driving behavior data and capable of linking with a mesoscopic transport9
model to efficiently produce energy estimates for personal vehicles on large transport networks.10

To be widely applicable to transport simulation, an energy model must balance efficiency11
and specificity (1). Increases in computational power allow city-sized transport networks to be12
simulated at the agent level—capturing the travel-related decisions and movements of millions of13
travelers at a seconds time-scale. These models can simulate congestion, trip-making decisions,14
and traveler response to information and incentives to a degree that is fundamentally impossible15
with simpler models. The massive scale of these simulations require that any energy model op-16
erating at vehicle scale operate very quickly and with minimal memory overhead. However, the17
large number of different vehicle types on the road and the variety of operating conditions they18
face during real-world use also require that any energy model either depend on vast amounts of19
calibration data or incorporate major simplifications. While striking this balance, a useful model20
must capture the relationship of vehicle energy use to the congestion, driver behavior, and external21
conditions that motivate the use of complex transport models in the first place.22

Here we present an extension of the existing TripEnergy model (2), allowing for the ef-23
ficient linking of a mesoscopic transport simulation model with an energy model calibrated to24
reproduce real-world energy use for a wide range of personal vehicles. By relying primarily on25
empirical observations and simple physical approximations, this energy model uses fewer tunable26
parameters than other methods. It neither requires high-resolution simulation of individual vehi-27
cle motion, nor does it use traffic flow theory to fill in the gaps of the moderate-resolution vehicle28
trajectories produced by more computationally efficient mesoscopic models. Both of these alterna-29
tive approaches require calibration against disaggregate data that, while available for traffic counts30
and speeds, are far more difficult to incorporate when the error to be minimized is against energy31
consumption (31). Instead, the model presented here draws from a database of over 100,000 GPS32
speed histories taken from various statewide travel surveys of real-world drivers (2–5) and fills33
in the gaps of moderate-resolution simulated trajectories with representative examples of realistic34
high resolution driving behavior. This energy model also does not require detailed emission rates35
as inputs, instead using a simple vehicle energy model that can be calibrated on widely-available36
regulatory data but that still reproduces energy consumption accurately enough for most purposes,37
allowing thousands of individual vehicle types to be simulated with minimal additional calibration.38
It achieves sufficient computational efficiency to run on large-scale networks through a novel sep-39
aration of the driving behavior and vehicle performance steps of the energy estimation procedure.40

This paper outlines the extensions to TripEnergy that allow it to process mesoscopic trans-41
portation model outputs, describes a validation procedure for the matching method and energy42
estimates, and presents results of simulation on a test network. We describe the energy estimation43
procedure in two steps—a vehicle model that translates characteristics of a high-resolution trajec-44
tory into an energy estimate, and a driving behavior model that links moderate-resolution simulated45
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vehicle trajectories to a database of high-resolution trajectories. Model validation is performed by1
down-sampling drive cycles to moderate resolution and then application of the driving behavior2
and vehicle models, comparing results to energy estimates given full knowledge of the trajectory3
and a much more detailed vehicle simulation (6) and dynamometer results (7). The model is then4
linked to the SimMobility mesoscopic transport simulation model (8) and results are examined for5
a toy road network, reproducing expected energy performance for a range of different real-world6
vehicle models.7

BACKGROUND8
Traffic Network Modeling9
Transport models work by considering the relationship between transportation supply and demand.10
The characteristics of the road and transit network such as travel times and costs are considered11
in the supply model, while the demand model considers the destinations, departure times, modes,12
and route choices for individuals’ trips.13

On the supply side, the state-of-the-art strategy is Dynamic Traffic Assignment (DTA),14
which involves moving vehicles through the traffic network based on real-time traffic conditions15
(9). Modern implementations of this method are able to capture certain effects, such as grid-16
lock, queuing, and rerouting, that cannot be easily modeled using static methods. Some vehicle-17
following models directly simulate acceleration, lange changing, and gap-acceptance behavior, and18
given extensive calibration, could reproduce the realistic high-resolution vehicle trajectories nec-19
essary to estimate energy use. However, it is often infeasible to run such detailed models on large20
networks. As an alternative, mesoscopic models are able to capture many of the complex aspects of21
transport supply while still achieving sufficient computational efficiency to run on large networks.22
Mesoscopic models also follow individual agents across the network, but they contain a simplified23
treatment of vehicle movement and often operate at a lower temporal resolution, typically on the24
order of five to fifteen seconds. While sacrificing some details such as variability in driving style25
and complex interactions between vehicles, such mesoscopic methods have been successfully ap-26
plied to large networks (10) and can run quickly enough to optimize controls and interventions27
(11). Mesoscopic traffic supply is included in many popular transport simulation models, such as28
SimMobility Midterm (8), DTAlite (12), and MATSIM (13).29

On the demand side, most state-of-the-art models are “activity based.” Unlike more tradi-30
tional methods, activity based models simulate trip-making decisions in terms of how they allow31
travelers to complete a daily sequence of activities. Activity based models can capture more real-32
istic feedback between transportation network performance and travel demand, and they are better33
suited to tracking individual travelers’ location (and energy consumption) throughout the day (14).34
Energy modeling is more closely related to the supply side of the modeling framework, as the35
energy consumption of each vehicle depends on the details on its trajectory through the trans-36
portation network. However, certain questions can be fully answered only by integrating energy37
calculations directly into the supply/demand interaction. For example, the limited range of existing38
battery-electric vehicles means that charging requirements will likely become a greater component39
of travel decision-making, motivating development of energy models that can run in concert with40
transport supply and demand calculations.41
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Model Resolution Needed Energy Method
COPERT-micro (15) Link Speed
EMFAC (16) Trip Speed
ADVISOR(6) High-resolution Microsimulation
VT-Micro (20) High-resolution Speed/Acceleration
EMEP/EEA (21) High-resolution VSP
MOVES County (22) Link VSP
MOVES Project (22) High-resolution VSP
MOVESlite (23) High-resolution VSP
VT-Macro (24) Link Speed/Acceleration
Zhou et al (25) Mesoscopic VSP

TABLE 1 : Summary of selected methods to calculate energy based on transport network simula-
tions.

Vehicle Modeling1
Transport models of all sorts implicitly or explicitly simulate vehicle movement, and there exist2
various software tools to turn simulated trajectories into energy estimates given a vehicle type.3
These characterizations of vehicle movement can vary in terms of their temporal resolution and4
the fidelity to which they can be expected to mimic real driving behavior, leading to different5
scales at which energy models must operate.6

Most traditional transport simulations model supply based on average speeds and densities7
of links on the road network. These link-level speeds can be turned into energy estimates by models8
such as COPERT (15) that rely on empirical measurements of typical energy and emissions rates9
but do not directly capture the local effects of accelerations on energy use. Link speeds can also10
be aggregated into beginning-to-end trip average speeds, which can be used to estimate energy11
consumption by models such as EMFAC (16).12

If a network simulation produces high-resolution trajectories (typically 1 Hertz or greater),13
those trajectories can be fed into detailed vehicle simulations such as ADVISOR (6). These models14
simulate the mechanics of vehicles in great detail and are best equipped to simulate complicated15
processes such as criterion pollutant emissions or engine performance under extreme operating16
conditions. However, these detailed models are slow to run, making them impractical to run on the17
output of large network simulations.18

To achieve greater efficiency while still capturing the detail provided by high-resolution tra-19
jectories, researchers have developed simpler models to approximate vehicle performance. Some20
estimate energy consumption rates based on polynomial fits to instantaneous speed (15) and others21
use fits based on speed and acceleration, including the widely-used VT-Micro model (17). To bet-22
ter incorporate factors such as road grade, a number of models estimate energy and emissions rates23
using vehicle specific power (VSP), a measure of the relative power being used by the engine. One24
commonly used VSP-based model is CMEM (18), which relies on measurements from a variety of25
different vehicle types that cover the breadth of models in the on-road vehicle fleet. Other vehicle26
models, some requiring less calibration data, have been proposed and evaluated as well (19).27

One particularly comprehensive and widely-used energy and emissions model is MOVES28
(22), which uses a database of emissions rates for a large number of different vehicle types over a29
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variety of speed and VSP bins known as operating modes. The distribution of time spent in each1
of these operating mode bins for a geographic area is estimated based on a combination of disag-2
gregate speed, temperature, travel behavior, and vehicle fleet data. MOVES can be cumbersome to3
run at its most detailed settings, so for the added efficiency and flexibility others have developed4
a simplified version, MOVESLite(23), with a more limited but still comprehensive set of vehicle5
types and operating modes.6

In all of these cases, there is an underlying difficulty: efficient simulation of large networks7
requires some sort of simplification in the treatment of traffic flow, but energy consumption mod-8
eling requires a high-resolution representation of vehicle movement. This tradeoff is apparent in9
the various available levels of detail in MOVES. At the ‘County’ level, MOVES populates its op-10
erating mode distribution table with results from a small set of high-resolution drive cycles, and11
then calculates aggregate emissions by weighting these operating mode distributions for different12
vehicle types based on traffic patterns. This method, however, is not capable of directly simulating13
individual vehicle consumption or taking advantage of the full level of detail present in simulated14
mesoscopic trajectories. At the higher-detail Project level, however, MOVES requires as inputs15
drive schedules or operating mode distributions for each road link. To provide these inputs, it is16
necessary either to run a full high-resolution simulation of the network or to rely on default val-17
ues that do not reflect local traffic conditions. In practice, this means that there is no widely-used18
energy estimation methodology that is capable of taking advantage of both the computational effi-19
ciency of mesoscopic models as well as their ability to capture individual vehicle trajectories at a20
higher resolution than link average speeds.21

More recently, some researchers have proposed inferring detailed trajectory information22
from the moderate-resolution trajectories produced by mesoscopic network simulations. This ap-23
proach has been implemented (24, 25) using traffic flow theory to model the acceleration behavior24
of drivers based on traffic density, and then inferring vehicle specific power from these interpo-25
lated trajectories. The method we present has three main differences. First, TripEnergy fills in the26
details of mesoscopic trajectories with empirical, real-world behavior, requiring fewer calibration27
parameters; second, it is designed to simulate the energy consumption of a large number of real-28
world vehicle types without needing large amounts of calibration data for each one; and third, it29
uses a simpler model of instantaneous vehicle energy use, trading the ability to simulate emission30
of non-CO2 pollutants and engine performance under extreme operating conditions to allow for31
more flexible and efficient implementation using a linear model.32

METHODS33
Vehicle Model34
Drive Energy35
This method of calculating energy consumption from a high-resolution trajectory relies on a sim-36
plification that allows the important aspects of the trajectory to be stored in a vehicle-independent37
manner but allows energy consumption for any vehicle type to be efficiently calculated from those38
stored values. The basis for the energy model is the version presented in a previous paper (2) and39
applied to questions of range constraints in battery electric vehicles (26), reformulated here to de-40
pend only on instantaneous quantities. Unlike other pollutants such as CO and particulate matter,41
CO2 emissions from a gasoline-powered vehicle are almost precisely linearly related to the energy42
content of the fuel used, allowing this method to be a useful way of estimating CO2 emissions from43
gasoline-powered vehicles as well.44
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The basis for the energy calculations is the tractive power, a function of the vehicle’s instan-1
taneous speed v, acceleration a, and slope θ , as well as its mass m, a set of polynomial coastdown2
coefficients A, B, and C, and a rotational inertia fraction ε , set to be 0.05 here (27):3

Ptr(t) = Av(t)+Bv(t)2 +Cv(t)3 +(1+ ε)mv(t)a(t)+mgsin(θ(t))v(t) (1)

In this paper, final energy quantities are written in script, whereas pre- conversion energy values4
(measured at the battery or gas tank) are written in normal font.5

The rate of change of stored energy in the gas tank or in the battery consists of power going6
to the wheels, returning via the brakes (if regenerative braking exists), and going towards auxiliary7
electronics such as climate control. All of these processes involve conversion losses, taken into8
account with loss functions P = L(P). The rate of change of energy stored in the vehicle is9
the power going towards motion Paccel = Laccel(Ptr) minus the power sourced from regenerative10
brakes Pbrake = Lbrake(Ptr), plus power going to the auxiliaries Paux = Laux(Paux), which depends11
on climate control and dashboard settings.12

For clarity, we can define an indicator function for whether tractive power is positive (and13
the engine is active) or negative (and the brakes are active):14

PT F(t) =

{
1 Ptr(t)> 0
0 Ptr(t)≤ 0,

(2)

Finally, we make the further simplifying assumption that all of the loss functions are
linear and that auxiliary power is constant over the course of a trip. The linear approxima-
tion has been shown to be reasonably accurate for internal combustion engine vehicles (28),
and the framework we present here can easily be adjusted to allow for higher order polynomial
terms, such as those tested by Saerens et al. (19). Using the linear approximation we have
Laccel(Ptr(t)) = Pidle+

Ptr(t)PT F(t)
ηmax

, Lbrake(Ptr(t)) = ηbrakePtr(t)(1−PT F(t)), and Laux =
Paux
ηaux

.
Pidle is the rate of energy use at no tractive power (including rest and coasting), in effect accounting
for lower engine efficiency at low power. ηmax is the slope of the Ptr-Ptr line, in effect giving the
engine efficiency approached at higher power. ηbrake is the portion of energy going through the
brakes re-cycled into the vehicle’s battery and then back to the wheels. Defining the acceleration
energy and braking energy as

Eaccel =

T∫
t=0

Ptr(t)PT F(t)dt; Ebrake =

T∫
t=0

−Ptr(t)(1−PT F(t))dt, (3)

we can simplify the total energy equation:15

Euse =
Eaccel

ηmax
−ηbrakeEbrake +

(
Pidle +

Paux

ηaux

)
T. (4)

This function for Eaccel is heavily dependent on the distance traveled and the average speed16
of the trip, so we can separate out the effects of these two quantities by replacing t, v(t) and a(t)17
with unitless quantities: τ = (t− t0)/T , u(τ) = v(τ)/v̄, and α(τ) = a(τ)/a0, where T is the total18
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duration of the drive cycle, v̄ is its average speed, and a0 is a characteristic acceleration, defined1
here as 0.15 m/s2.2

We can express the equation for Eaccel by defining a set of ‘moments’ consisting of the3
time-integrals of these unitless quantities:4

µ1 =

1∫
τ=0

u(τ)PT F(τ)dτ µ2 =

1∫
τ=0

u(τ)2PT F(τ)dτ (5)

µ3 =

1∫
τ=0

u(τ)3PT F(τ)dτ µa =

1∫
τ=0

α(τ)u(τ)PT F(τ)dτ

These definitions allow us to express the total acceleration energy without any integrals:5

Eaccel = D
(
Aµ1 +Bv̄µ2 +Cv̄2

µ3 +(1+ ε)mα0µa +mg∆Zµ1
)

(6)

where D is the total distance traveled. For the road grade component, and we assume that road6
grade is relatively constant over each time interval, leaving the energy impact dependent on the7
total elevation change ∆Z. Braking energy is calculated similarly for PT F(t) < 0, for which we8
define the comparable moments as νi:9

Ebrake =−D
(
Aν1 +Bv̄ν2 +Cv̄2

ν3 +(1+ ε)mα0νa +mg∆Zν1
)
. (7)

These two equations and an estimate of auxiliary power yield total energy consumption via Equa-10
tion 4. Pulling these average quantities outside of the integral in effect treats the total energy11
consumption as a linear combination of these average quantities multiplied by correction factors12
that depend on the specific details of the true speed history. The final expression for energy con-13
sumption is a linear combination of ten terms relating to the vehicle and its use:14

V =



A/ηmax
B/ηmax
C/ηmax

(1+ ε)m/ηmax
Aηbrake
Bηbrake
Cηbrake

(1+ ε)mηbrake
Pidle

1/ηaux


; U = D



1
v̄
v̄2

1
−1
−v̄
−v̄2

−1
1/v̄

Paux/v̄


◦



µ1
µ2
µ3

α0µa
ν1
ν2
ν3

α0νa
1
1


; Edrive =

10

∑
k=1

VkUk. (8)

These moments are a helpful way of expressing the total energy because they are almost15
independent of vehicle type. This is a simplification only because the function PT F(t) varies16
slightly from vehicle to vehicle, but these differences end up having little effect on the total energy17
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and are ignored here. The moments, calculated for a partial or full vehicle trajectory, can serve a1
similar purpose to the link-specific driving schedules or operating mode distributions required as2
an input to MOVES, defining the factors of a vehicle’s use that determine energy requirements.3
Rather than querying a detailed set of vehicle-specific emissions rates or evaluating integrals, all4
that is needed to evaluate this energy function is to access these stored parameters that can be5
calculated in advance, allowing for faster computation.6

Drive Efficiency Calibration7
The vehicle-specific component of the total energy in Equation 8, V, depends in part on physi-
cal vehicle road load characteristics A, B, C, m that are all published by the US EPA (29). The
remaining three parameters, Pidle, ηmax, and ηbrake are estimated by approximating measured en-
ergy consumption over a set of EPA test cycle results, similar to methods proposed elsewhere
(2, 19, 26, 30). We minimize mean squared error between the predicted (MPGest) and measured
(MPG) fuel economy values for a set of test cycles DC with known fuel economy:

argmin
Pidle,ηmax,ηbrake

∑
i∈DC

(MPGi−MPGesti(Pidle,ηmax,ηbrake))
2 . (9)

For light duty vehicles, these drive cycles can consist of the EPA city (FTP) and highway (HWFET)8
drive cycles, as well as for the high speed (US06) cycle for the vehicles with it available. For this9
paper, we calibrate these parameters for 3,784 vehicle types with model years from 2010 to 2016.10
During calibration, Pbrake is fixed to 0 for vehicles without regenerative braking. For vehicles with11
regenerative braking but only two test cycles available, Pidle is fixed—to 1409 W for hybrid electric12
vehicles and 741 W for fully electric vehicles—to ensure a unique solution. The value for hybrid13
electric vehicles is chosen by taking the median fit value for Pidle of the hybrid vehicles for which14
three unique fuel economy estimates are available. The value for fully electric vehicles is fixed15
to the value for Pidle found by calibrating the 2013 Nissan Leaf on additional drive cycles whose16
energy consumption is provided in the Downloadable Dynamometer Database (7).17

Each vehicle being simulated in the transport model linked to TripEnergy must be assigned18
a specific vehicle type and associated energy parameters. Accurately assigning each simulated19
agent with a correct vehicle type is likely too burdensome to be worthwhile for many applications,20
and in such cases a representative vehicle can be chosen for different vehicle categories available21
to the population. For cases where more detail in the vehicle fleet is required, vehicle types can22
be assigned to households by a discrete choice model as part of the population synthesis. This23
functionality is especially useful for emerging integrated models where household location and24
vehicle ownership decisions are tied to the utilities of different transportation alternatives (8).25

Drive Cycle Matching26
We frame the process of estimating energy consumption from simulated trajectories as a prediction27
problem. Given limited information about a vehicle j’s characteristics: V j, and about its trajectory:28
U j, we estimate the expected value of a vehicle’s energy consumption over timestep i under those29
conditions: E[Ei j|U j,V j]. In this case, the information known is the vehicle’s cumulative distance30
traveled every advance interval, and vehicle characteristics. We assume that the vehicle could have31
followed any speed profile over each timestep, but that the measurements at advance intervals are32
accurate. The linear nature of Equation 8 means that the goal becomes to predict the components33
of the moment vector U for each timestep given the vehicle’s trajectory U :34



Needell and Trancik 9

E[Ei j|U j,V j] = E

[(
10

∑
k=1

Ui jkVjk

)
|U j,V j

]
=

10

∑
k=1

E[Ui jk|U j]Vjk. (10)

We estimate E[Ui j|U j] by searching a database of real-world drive cycles for intervals that are sim-1
ilar to the portion in advance interval i being estimated. The vector of moments can be calculated2
for each matched trajectory segment and then averaged, producing an estimate Ūij of those mo-3
ments for the unknown partial trajectory, which can then be combined with the vehicle parameters4
V j to estimate Ei j.5

This matching and averaging procedure has several advantages. It can be implemented6
efficiently, it does not require that detailed energy use measurements be stored for multiple vehicle7
types, and it is robust to modeling decisions about driving style that must be made for short-term8
simulations—a useful property because trajectories simulated by short-term models might not be9
entirely accurate or consistent for energy-consumption purposes (31). This solution for storing10
driving moments does not directly incorporate elevation change. For networks where elevation11
change is expected to greatly effect energy consumption, separate moment databases can be created12
for different grades and accessed based on the instantaneous grade of the simulated vehicle at each13
timestep.14

To efficiently implement this matching procedure, we create a lookup table of averaged15
moments that can be accessed based on binned properties of the medium-resolution trajectory.16
For instance, the lookup table for a simple speed-based matching scheme can be implemented17
by breaking each GPS drive-cycle into segments of the same duration as the advance interval,18
assigning each segment to a bin based on its average speed, calculating the mean moments for19
each bin, and then using those mean moments to calculate E[Ui j|U j]. The drive cycle database20
used for matching consists of over 100,000 trips with 1-Hz speed measurements and has been21
described in detail (2–5).22

Various matching methods are possible. A one-dimensional matching scheme (v̄t) was23
tested, using only the average speed over the current advance interval. This is expected to give24
results similar to a best-possible method based only on timestep average speed, assuming the driv-25
ing behavior in the area being modeled is relatively similar to that captured in the driving behavior26
database. Two two-dimensional schemes were tested: one based on the current and previous av-27
erage speeds (v̄t−1, v̄t) and one based on the average speed and average acceleration of the current28
advance interval (v̄t , āt), with average acceleration determined based on the instantaneous speeds29
at the beginning and end of the advance interval1. Two three-dimensional matching schemes were30
tested: one based on the average speed over the current advance interval as well as the instanta-31
neous speeds its the beginning and end (v̄t ,vi,v f ), and one based on the average speed over the32
preceeding, current, and following advance intervals (v̄t−1, v̄t , v̄t+1).33

As explained below, the most accurate was found to be matching based on a trajectory’s34
average speed over a given advance interval, the previous interval, and following interval. Here, we35
divide speeds into 38 bins in each of three dimensions, leading to 54,872 individual bins, each of36
which needs to store 8 different moments—a data structure that can be accessed quickly and uses37
a non-substantial amount of memory. This database is sufficiently well populated if it captures the38
extent of movements experienced during typical driving well enough to provide a valid expected39

1Accurate instantaneous speeds is a possible output of some but not necessarily all mesoscopic traffic simulations
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value for the moments in each bin. A large set of drive cycles is needed to populate this database,1
and additional drive cycles can be added as needed. Indeed, 84.5% of the bins for which there are2
at least 10 observations in the GPS dataset are not observed at all in the 49 drive schedules provided3
in the MOVES database. These behaviors not observed in the MOVES database account for 29%4
of the total driving time in the GPS dataset, showing the value of incorporating this additional5
driving behavior.6

A visualization this lookup table is shown in Figure 1. The average speed over the advance7
interval being estimated is fixed for each of the three columns, the average speed for the previous8
time interval determines the y-position and the average speed for the next time interval determines9
the x-position within each subfigure2. The first row of subfigures shows the number of observations10
in each bin, with much of the range of plausible vehicle movements having over 1,000 distinct 5-11
second observations. The second row shows the average value of µ1, a moment relating to the12
portion of time during which the engine was active. The third row shows the average value of µa,13
a moment related to the amount of work the engine does towards acceleration.14

2For example, the pixel at Y = 35, X = 45 in the middle (41 mph) column of Figure 1 represents drive cycle
segments averaging 41 mph and accelerating—where the previous interval averaged 35 mph and the following interval
will average 45 mph.
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FIGURE 1 : Visualization of the lookup table of drive cycle moments produced by matching on
three consecutive average speeds, for a 5-second advance interval.
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MODEL VALIDATION1
Microsimulation2
The preferred matching methods was chosen based on the root mean square error of fuel economy3
predictions, ease of applicability to mesoscopic simulations, and robustness to errors in mesoscopic4
trajectories. Errors were calculated by comparing estimated energy values to ‘ground truth’ values5
given by microsimulation. 20% of approximately 100,000 available 1-hz GPS trajectories were6
chosen as a test set. These were converted into simulated mesoscopic trajectories by downsam-7
pling them into 5-second resolution average speeds, consistent with a mesoscopic simulation with8
a 5-second advance interval. An estimate for the true energy consumption was produced by simu-9
lating vehicle performance with the ADVISOR sofware (6). The vehicle simulated was a compact10
ICEV, with physical characteristics modeled after a 2014 Ford Focus. The vehicle model described11
above was then calibrated based on ADVISOR outputs—coastdown coefficients A, B, and C were12
estimated based on a polynomial fit to instantaneous road load, and drive cycle fuel economy mea-13
surements used for model calibration were produced by running the simulated vehicle through14
the EPA HWFET (Highway) and USDDS (City) drive cycles. The final vehicle model parame-15
ters used were A : 172.8 N, B : −4.676 Ns/m, C : 0.5516 Ns2/m2, m : 1406 kg, Pidle : 11.50 kW ,16
ηmax : 0.4081. No additional auxiliary energy use is assumed.17

The remaining 80% of trips were used to generate a database of binned driving behavior18
moments as described above, using different binning methods. The robustness of the matching19
methods to errors in mesoscopic trajectories is tested by adding different degrees of uncorrelated20
random noise to individual timesteps in the medium-resolution trajectories.21

No noise ±1 mph noise ±2 mph noise
Estimation Method RMS (mpg) Total RMS (mpg) Total RMS (mpg) Total

Spline 1.08 -2.2% 0.96 -1.2% 1.13 1.98%
v̄t 2.47 -0.78% 2.47 -0.73% 2.46 -0.55%

v̄t−1, v̄t 1.33 -0.65% 1.44 -0.19% 1.92 2.19%
v̄t , āt 0.93 -0.36% 1.08 0.50% 1.64 3.4%

v̄t ,vi,v f 0.88 -0.40% 1.33 1.01% 2.39 4.12%
v̄t−1, v̄t , v̄t+1 0.90 -0.45% 0.99 -0.06% 1.47 2.24%

Vehicle Model 0.71 -0.28% na na na na

TABLE 2 : Performance of different matching methods given different levels of error in vehicle
trajectories.

Models were compared based on root mean square estimation error for trip average fuel22
economy, given a five second advance interval. Two other models were simulated as a comparison,23
neither of which is expected to be as scalable to large-scale simulations. The “Spline” model in-24
terpolated the mesoscopic trajectory to a high-resolution one using cubic splines. “Vehicle Model”25
assumes access to the true high-resolution trajectory, useful as a bound on the error introduced by26
the matching algorithm as opposed to the vehicle model.27

Given accurate mesoscopic trajectories, the methods (v̄t , āt), (v̄t ,vi,v f ), and (v̄t−1, v̄t , v̄t+1)28
all perform roughly equivalently, with root mean square errors of trip-averaged fuel economy of29
approximately 0.9 mpg, compared to RMS error of 0.71 mpg given high-resolution knowledge of30
the trajectory and 1.08 for the spline method, and an error for the estimated total energy of all trips31
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within 0.5% of the true value. Under increased uncertainty, the method based on three consecutive1
average speeds outperforms those incorporating instantaneous measurements. At high uncertainty,2
a spline-based method outperforms the methods based on binned moments, but all other binned3
methods outperform the method (v̄t) based on only average speeds. Given these results, the three4
dimensional (v̄t−1, v̄t , v̄t+1) method is chosen.5

Aggregate Performance Measures6
Additional evaluation was performed by running a simulation of a traffic network containing a7
variety of vehicle types, comparing fuel economy measurements for the different vehicles to EPA8
estimates. The transport network simulation was performed using SimMobility Midterm (8), a sim-9
ulator linking an activity-based demand simulator with a mesoscopic, DTA supply model. TripEn-10
ergy was implemented in C++ and run concurrently with SimMobility, leading to an increase in11
simulation time and memory use of less than 5%. The tests were performed on the ‘Virtual City’12
network, containing 94 nodes and 254 links, with constant elevation. The simulation was run for13
a full day, during which vehicles made a total of 174,594 individual trips. Four vehicle types were14
simulated—a 2013 Nissan Leaf (a battery-electric sedan), a 2016 Toyota Prius (a hybrid-electric15
sedan), a 2014 Honda Accord plug-in hybrid operating in charge depleting mode (a sedan), and16
a 2010 Ford F150 (a pickup truck). Additional auxiliary energy consumption of 1000 W was as-17
sumed to account for typical auxiliary use. Charging efficiency of 83.7% was assumed for the Leaf18
(32).19

Vehicle fuel economies were then compared to EPA adjusted fuel economy estimates. Each20
trip was classified as “Highway” (more than 50% of the time spent at greater than 55 mph), or21
“City” for the remaining trips. Expected results were observed, with the gasoline internal com-22
bustion engine-powered F150 achieveing lower fuel economy for city driving, while the hybrid-23
electric Prius and fully-electric Leaf typically achieving lower fuel economy for highway trips.24

Average fuel consumption values for each vehicle over each class of trip were compared25
to EPA-published “City” and “Highway” ratings, showing generally close agreement. EPA ad-26
justed city/highway fuel economies for the Leaf, Prius, Accord PHEV in charge-sustaining mode,27
F150 are 126/101, 58/53, 49/45, and 15/21, respectively. In this simulation, average stop-and-28
go/highway fuel economies for the different vehicle types are 143/125, 59/55, 56/53, and 17/18,29
respectively. EPA unadjusted fuel economy ratings are used in the calibration of the efficiency pa-30
rameters in the TripEnergy vehicle model, but EPA adjusted values (typically lower) are produced31
through a complicated process not factored into the TripEnergy model (33). Any agreement be-32
tween TripEnergy results and EPA-adjusted values are the result of the less-energy-efficient driving33
and additional auxiliary use present in SimMobility and the real world but not the unadjusted EPA34
tests.35
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DISCUSSION1
This paper links an existing mesoscopic transport simulation with an energy model that can es-2
timate the energy consumption and CO2 emissions from personal vehicles. Given moderate res-3
olution vehicle trajectories from a mesoscopic traffic model, TripEnergy can efficiently estimate4
energy consumption more accurately than simple speed and acceleration-based methods. TripEn-5
ergy offers various improvements more over widely-used methods such as MOVES: it utilizes the6
full detail on vehicle movements provided by mesoscopic simulations; it is computationally ef-7
ficient enough to be run concurrently with a transport model; and it produces energy estimates8
that can be traced back to individual vehicles and agents. In addition, because it relies primarily9
on independent measurements of high-resolution driving behavior, this method is less reliant than10
alternative models on tunable parameters governing vehicle movement, which are not typically11
calibrated to reproduce trajectories that are accurate from an energy perspective.12

Because this model was developed to take advantage of the strengths of state-of-the-art13
transport simulations, we expect it to prove increasingly useful as simulations continue to evolve14
and be applied to new questions and research directions. These include problems where energy15
consumption of vehicles needs to be integrated into agents’ travel choice framework; where the16
vehicles being studied do not have detailed energy-use measurements beyond EPA mandated tests;17
and where energy consumption and CO2 emissions, rather than other pollutants, are the primary18
target of study. Such problems include the development of tools and policies targeted at individual19
travelers, understanding the effects of fuel economy on long-term vehicle purchasing decisions,20
and for studies of electric vehicle range and charging behavior. Additionally, the ability to calcu-21
late energy consumption from limited-resolution trajectories will be useful for contexts outside of22
traditional transport modeling, including suggesting energy-efficient routes given estimates of the23
congestion state of a traffic network, or estimating energy consumption of a trip given trajectory24
information captured by a smartphone.25

In future work, several extensions to this analysis will be pursued. Further work is needed26
to quantify the degree to which mesoscopic models capture realistic traffic movement. The im-27
pacts of user-specific driving style on energy use and the degree to which the database of driving28
behavior data captures this variability will also be investigated further. Finally, the vehicle model29
could be augmented through the inclusion of additional, higher-order moments. The additional30
energy estimation accuracy allowed by this modification will be assessed using onboard diagnostic31
recorders in on-road vehicles, and the gains in accuracy will be weighed against the complexity32
added to the vehicle model.33
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