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ABSTRACT OF THE DISSERTATION

Control-Theoretic Methods for the Robustness of Network Systems:
Application to Traffic Control and Cyber-Physical Security

by

Gianluca Bianchin

Doctor of Philosophy, Graduate Program in Mecahnical Engineering
University of California, Riverside, March 2020

Dr. Fabio Pasqualetti, Chairperson

Network systems model natural and engineered processes composed of groups of physical

components that interact with the environment, and that are coupled with each other by

means of an intricate communication network. Network systems have been widely adopted

to model and understand many complex physical processes, ranging from stock markets

in economics, transportation networks in engineering, to evolutionary processes in biology.

A fundamental property of these systems is their robustness to contingencies, that is, the

capability of operating effectively despite external perturbations, such as accidental com-

ponent failures, malicious targeted attacks, or external disturbances. In this dissertation,

we address four engineering problems concerning robustness in network systems.

First, we study robustness in highway transportation systems where travelers fol-

low routing suggestions provided by modern navigation apps (such as GoogleMaps, Waze,

Inrix, etc.). Navigation apps provide minimum-time routing directions to the travelers

based on global and instantaneous congestion information, thus transforming the way users

behave and impacting the aggregate system behavior. We propose and analyze new models
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to capture the routing decisions of app-informed travelers that are inspired from selection

and learning mechanisms in biology. Our analysis and techniques are rigorous, and can

be applied to any traffic network topology, independently of its size or interconnection

patterns. Our findings demonstrate that among numerous favorable benefits, routing apps

can introduce new undesirable congestion phenomena, and that appropriate information

design will be necessary to ensure the robustness of modern traffic infrastructures. Second,

we propose a set of robust control algorithms to optimize the operation of the signalized

traffic intersections in an urban traffic network in order to guarantee system-level optimal-

ity. Our methods are computationally-tractable, outperform state-of-the-art intersection

control policies, and are effective to reduce congestion in major cities, as demonstrated by

our simulations for Manhattan, NY. Third, with a focus on networks with linear dynam-

ics, we develop theories and tools to study the robustness of a network against changes

in the the communication links. Our methods include both rigorous algebraic conditions

and tractable numerical algorithms, and ultimately relate the robustness of a system to the

graph-theoretical properties of the underlying network interconnection. Fourth, with an

application focus to robotics, we tackle the problem of ensuring robust navigation despite

maliciously-compromised localization sensors. Our methods rely on the nonlinear notion of

zero dynamics, and unveil fundamental limitations for attack detection. More generally, our

results demonstrate for the first time that the choice of inputs adopted for control affects

the security of a dynamical system.
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Chapter 1

Introduction

Robustness is the ability to withstand unforeseen perturbations, failures, or possi-

bly malicious attacks while ensuring nominal performance. While the concept of robustness

is generic and applicable to many domains, this notion becomes exceedingly important when

groups of components are interconnected by means of a network. In fact, networks are often

nature’s solution to ensure the robustness of components that individually are exceedingly

fragile, thanks to their capability to quickly redistribute remotely located resources. The

application-domain of particular interest for this dissertation is networked dynamical sys-

tems (or network systems). Network systems model groups of physical components that

are interconnected through a network, such as coupled physical processes, production or

economic activities, biological processes, or groups of computational resources. Due to their

crucial role in real-world applications, ensuring the robustness of network systems is a cen-

tral engineering goal, aiming to design transportation systems, power networks, robots, cars,

or airplanes that can perform basic functions despite occasional failures of their components.
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This dissertation addresses four main engineering questions concerning robustness

in network systems: (i) how do we ensure network robustness in the face of fluctuations

in the behavior of its users or components, (ii) how do we adjust the network parameters

to ensure optimality in a variety of operating regimes, (iii) how robust are certain network

properties to changes in the communication arcs, and how do we identify the arcs that

mainly originate these fragilities, and (iv) how do we design controls to ensure robustness

in the face of targeted malicious attacks. These four research questions are addressed along

two main application domains: traffic control in transportation systems, and security in

cyber-physical systems.

1.1 Application to Traffic Control in Transportation Systems

Traffic networks are fundamental components of modern societies, making eco-

nomic activity possible by enabling the transfer of passengers, goods, and services in a

timely and reliable fashion. Despite their economic importance, traffic networks are im-

paired by the outstanding problem of traffic congestion, which wastes billions of gallons of

fuel each year in the United States [16]. Recent advances in vehicle technologies, such as

vehicle communication and vehicle automation, have demonstrated an enormous potential

to overcome the inefficiencies of traditional transportation systems. Notwithstanding, be-

cause of the tremendous complexity of these infrastructures, the development efficient and

robust control algorithms capable of effectively engaging these capabilities is an extremely

challenging task that often results in suboptimal performance [17], or can originate novel
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system fragilities [13, 18]. The increasing need for robust control algorithms to effectively

operate transportation infrastructures motivates our first two research questions.

How do we ensure network robustness in the face of fluctuations in the behavior

of its users? Increasing levels of congestion are affecting nominal travel times of freeways

and urban roads, thus incentivizing travelers to adopt alternative routes that are often

undesirable and suboptimal. These route alternatives are increasingly made available by

advanced traveler information systems, such as navigation apps (or routing apps), which

provide reliable minimum-time routing suggestions to the travelers based on real-time con-

gestion information. Yet, among numerous favorable advantages, routing apps can some-

times deteriorate traffic congestion and originate undesirable behaviors at the system level,

a phenomenon that is studied here for the first time.

In this dissertation, we focus on studying the impact of app-informed routing on

the dynamical properties of the traffic infrastructure, and on characterizing the consequences

of real-time traffic information on the stability of the traffic system. Our results show that

the general adoption of navigation apps will maximize the throughput of flow across the

network in the long run. Hence, these devices bring valuable system-level benefits to mod-

ern transportation systems. Unfortunately, our findings also demonstrate that navigation

apps can deteriorate the stability of the system, and can results in emerging undesirable

traffic phenomena such as temporal oscillations of traffic congestion. Hence, our results

demonstrate that the benefits in the adoption of real-time routing systems come at the cost

of increased system fragility, and suggest that adequate information design is necessary to

overcome these limitations.
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How do we adjust the network parameters to ensure optimality in a variety of

operating regimes? Modern urban transportation architectures comprise two fundamental

components: roads and traffic intersections. Intersections connect and regulate conflicting

traffic flows among adjacent roads, and their effective control can sensibly improve travel

time and prevent congestion. The ability to control modern signalized intersections, com-

bined with the increasing availability of sensors for vehicle detection and flow estimation,

have inspired the development control algorithms that adjust the operation of the infras-

tructure in relation to the current traffic conditions and congestion regimes.

In this dissertation, we propose a simplified version of classical models for urban

traffic networks, and we study the problem of optimizing the network overall efficiency

by controlling the signalized intersections. Differently from classical approaches to control

traffic signaling, our models are tractable, they allow us to effectively model large-scale

interconnections, and enable the design of critical parameters while considering system-

level measures of efficiency. By adopting these tractable models, we cast an optimization

problem to minimize network congestion by controlling the green times at the signalized

intersections. Our results and simulations demonstrate that tractable optimization frame-

works can outperform state-of-the art intersection control policies, and suggest that the

increase in system performance obtained by our control method justifies the increment in

complexity deriving from the adoption of a global system description.
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1.2 Application to Security in Complex Networks and Robotics

Complex Networks are a class of network systems where the physical components

have linear dynamics and the network interconnections is large-scale, namely, the number

of nodes and links is increasingly large. Complex networks are broadly used to model engi-

neering, social, and natural systems, such as power networks, social networks, and networks

of epidemic processes. On the other hand, Robotic Networks are a class of network systems

where the physical components are autonomous robots. In recent years, autonomous robots

have gained exceptional popularity thanks to their flexibility, their capability to accomplish

complex tasks, and broad range of civilian and military applications. Ensuring robustness

in complex and robotic networks motivates our second two research questions.

How robust are certain network properties to changes in the communication arcs?

Observability of a linear network guarantees the ability to reconstruct the state of each

node from sparse measurements, and is a fundamental property to ensure that the state of

the system can be correctly estimated from the available measurements. In this part of the

dissertation, we measure the robustness of a network based on the size of the smallest per-

turbation needed to prevent observability. We consider linear networks, where the dynamics

are described by a weighted adjacency matrix, and dedicated sensors are positioned at a

subset of the nodes. We allow for perturbations of certain edge weights, with the objective

of preventing observability of some modes of the network dynamics. To comply with the

network setting, our work considers perturbations with a desired sparsity structure, thus

extending the classic literature on the observability radius of linear systems.
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This dissertation proposes two sets of results. First, we propose an optimization

framework to determine the smallest perturbation that renders a desired mode unobserv-

able from the existing sensor nodes. Second, we study the expected observability radius of

networks with given structure and random edge weights. We provide fundamental robust-

ness bounds that depend on the connectivity properties of the network and we analytically

characterize optimal perturbations of line and star networks, showing that networks with

line topology are inherently more robust than networks with star topology.

How do we design controls to ensure robustness in the face of targeted malicious

attacks? In this part of the dissertation, we study the problem of navigating a robot in an

adversarial environment, where the objective is to perform localization and trajectory plan-

ning despite the malicious and unknown action of an attacker. We consider robots equipped

with a Global Navigation Satellite System (GNSS) sensor and a Radio Signal Strength In-

dicator (RSSI) sensor that provides relative positioning information with respect to a group

of radio stations, each with limited communication range. The attacker can simultaneously

spoof the sensor readings and send falsified control inputs to the robot, so as to deviate its

trajectory from the nominal path. We demonstrate the existence of undetectable attacks,

that is, attack actions that deviate the robot from the nominal trajectory and cannot be

detected by detection algorithms. Conversely, we show that by appropriately designing the

control inputs and by selecting certain intermediate waypoints, a trajectory planner can

ensure the detectability of any attack and thus secure navigation.

6



1.3 Organization and Summary of Contributions

The contents of this dissertation are organized into seven main chapters, followed

by a shared conclusion. The main contributions of each chapter are as follows.

Chapter 2 - Preliminaries in Control Theory, Graph Theory, and Non-

linear Control. In this chapter, we define the main notation adopted in this dissertation,

and we introduce few fundamental notions from Control Theory and Graph Theory that

will be used throughout this document. The chapter also includes a primer on concepts

from passivity in nonlinear dynamical systems that will be instrumental in Chapter 3.

Chapter 3 - Changes in User Behavior: The Impact of Navigation Apps.

In this chapter, we study the impact of navigation apps on the stability of transportation

systems. The bulk of literature on understanding the routing decisions of human drivers

in traffic congestion has been developed mainly by adopting simplified traffic models in

a game-theoretic setting (see e.g. [17, 19, 20]). In these models, traffic flows propagate

instantaneously across the network, and drivers make route choices by minimizing their

personal travel times in response to day-to-day information regarding traffic congestion [21].

Our approach, instead, is based on models that capture finite flow propagation times and

the availability of real-time traffic information, and focuses on understanding the dynamical

interplay between traffic congestion and routing behaviors.

The contribution of this chapter is fourfold. First, we propose a dynamical deci-

sion model to capture the routing behavior of app-informed travelers in response to traffic

congestion. Our model is inspired from evolutionary models (or learning models) in bi-

ology and game theory, and models scenarios inspired by the real-world where travelers
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make decisions iteratively and use the observations of other travelers to adjust their next

decision. Second, we study the properties of the fixed point of a traffic system where the

dynamical routing decision model is coupled with a dynamical traffic model, and we estab-

lish a relationship between the properties of the equilibrium points and the well-established

notion of Wardrop equilibria [21]. Third, we characterize the stability of the equilibrium

points, and we demonstrate the existence of periodic orbits for the system, demonstrating

the existence of temporal oscillations of traffic congestion. Fourth, we propose a control

technique to ensure the asymptotic stability of the fixed points. Our methods rely on reg-

ulating the rates at which travelers react to congestion information, a behavior that can

be achieved by appropriately designing the frequency at which navigation apps update the

routing suggestions provided to the travelers. Throughout this chapter, we also develop

important insights into the system-level benefits of using navigation apps, and demonstrate

for the first time the existence of temporal oscillations of traffic congestion.

Chapter 4 - Robust Network Optimization: Application to Traffic Inter-

sections. In this chapter, we study the problem of controlling the signalized intersections

in an urban traffic network with the goal of minimizing system-level congestion. Our work

is motivated by the fact that most of the state-of-the-art control policies adopted in major

cities are distributed, namely, the operation of a certain signalized intersection only depends

on the traffic congestion in the proximity of that intersection. Hence, research is needed

for the development of tractable models and optimization techniques that can guarantee

system-level performance and traffic efficiency.
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The contribution of this chapter is fourfold. First, we propose a simplified model

to capture the behavior of traffic networks operating in free-flow regimes with arbitrary

travel speeds. The adoption of a simplified model is motivated by the exceeding complexity

of urban transportation systems, and represents a novel, computationally-tractable, way of

capturing the macroscopic behavior of large traffic intersections. Second, we employ the

proposed model to design the durations of the green times at the signalized intersections.

Our methods relate congestion objectives with the problem of optimizing a metric of con-

trollability of the dynamical system associated with the traffic network. We use the concept

of smoothed spectral abscissa [22] to solve the optimization, and we demonstrate that our

methods outperform common intersection control algorithms. Third, we propose a tech-

nique to efficiently solve the optimization by parallelizing the computation among a group of

distributed agents, demonstrating that our methods can be solved efficiently in a distributed

fashion. Fourth, we assess the benefits of the proposed modeling and optimization frame-

work through macroscopic (based on Cell Transmission Model) and microscopic (based on

SUMO) simulations on daily commutes for the urban interconnection of Manhattan, NY.

Chapter 5 - Optimization-Based Techniques to Quantify Resilience. In

this chapter, we discuss the use of vehicle communication to partially influence the routing

decisions of drivers in a traffic network with the goal of optimizing a global measure of traffic

congestion. We define link-wise levels of trust to tolerate the non-cooperative behavior of

a certain fraction of the drivers, and we develop an optimization-based control mechanism

to provide real-time routing suggestions based on the current congestion levels. Differently
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from classical approaches to design routing suggestions, our methods focus on scenarios with

quickly-varying traffic volumes, and do not require the knowledge of the traffic demands.

The contribution of this chapter is threefold. First, we formulate and solve an

optimization problem to design optimal routing suggestions with the goal of minimizing

the travel time experienced by all network users. The optimization problem incorporates

link-wise trust parameters that describe the extent to which drivers on that link are willing

to follow the suggested routing policy. Second, we develop an online update scheme that

takes into account instantaneous changes in the levels of trust on the provided routing

suggestions. Third, we study the resilience of the network, measured as the smallest change

in the trust parameters that results in roads reaching their maximum capacity. We present

an efficient numerical technique to approximate the resilience of the network links, and we

discuss how these quantities can be computed from the output of the optimization problem.

Chapter 6 - Robustness Against Perturbations of the Network Edges.

In this chapter, we measure robustness of a network based on the size of the smallest

perturbation needed to prevent its observability. While network observability is a binary

notion [23], the degree of observability can be quantified in different ways, including the

energy associated with the measurements [24, 25], the novelty of the output signal [26], the

number of necessary sensor nodes [27, 28], and the robustness to removal of interconnection

edges [29]. A quantitative notion of observability is preferable over a binary one, as it

allows to compare different observable networks, select optimal sensor nodes, and identify

topological features favoring observability.

10



The contribution of this chapter is threefold. First, we introduce a metric of ro-

bustness that captures the capability of a network to withstand structural perturbations of

the communication edges. Our metric evaluates the magnitude of a perturbation needed to

make some of its states unobservable. Second, we formulate a problem to determine opti-

mal perturbations (with smallest Frobenius norm) preventing observability. Our findings

demonstrate that the problem is in general not convex, and we derive optimality conditions

that relate to a nonlinear generalized eigenvalue problem. To solve this problem, we then

propose a numerical procedure based on the power iteration method. Third, we derive a

fundamental bound on the expected observability radius for edges with random weights.

We characterize the robustness of networks with line and star topologies, and we demon-

strate that line networks are inherently more robust than star networks to perturbations of

the edge weights.

Chapter 7 - Robustness Against Attacks: Secure Navigation of Robots.

In this chapter, we study the problem of navigating a robot in an adversarial environment,

where the objective is to perform localization and trajectory planning despite the malicious

and unknown action of an attacker. We assume robots are equipped with a GPS sensor,

which provides absolute positioning information, and a RSSI sensor, which provides relative

positioning information with respect to a group of radio stations, each with limited com-

munication range. Moreover, we assume an attacker can simultaneously spoof the sensor

readings and send falsified control inputs to the robot, so as to deviate its trajectory from

the nominal path.
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The contribution of this chapter is threefold. First, we characterize undetectable

attacks, that is, the general form of attack inputs and spoofing signals that cannot be

detected by a security monitor. Moreover, we show how an attacker can systematically

design attacks that are undetectable, and we demonstrate that attacks can exist only when

the robot is located in certain regions of the plane. Second, we solve the problem of designing

optimal attacks, that is, attack inputs that maximally deviate the robot’s trajectory from the

nominal path. Third, we formalize the trajectory planner’s goal of designing secure control

inputs, that is, inputs that allow the detection of any attack action, and we demonstrate that

secure control inputs can only exist between certain subsets of initial and final positions.

Chapter 8 - Conclusions. This chapter concludes the dissertation and outlines

some aspects for future research in the area of network system robustness.
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Chapter 2

Preliminaries in Control Theory,

Graph Theory, and Nonlinear

Control

This chapter includes a primer on concepts from Control Theory, Algebraic Graph

Theory, and Nonlinear Control that will be used throughout this dissertation.

2.1 Control Theory and Algebraic Graph Properties

On the one hand, Control Theory is the fundamental mathematical framework

used for the study of dynamical systems. On the other hand, Algebraic Graph Theory

provides a link between the theory of graphs (Graph Theory) and the theory of matrices

(matrix theory in Linear Algebra), and it is a fundamental tool for the analysis and control
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of dynamical systems over networks. We begin this section by introducing some of the

fundamental notation adopted in this dissertation.

Vector notation, matrix notation, and basic linear algebra definitions.

Let R, R>0, R≥0, C, and N denote the set of real numbers, the set of positive real numbers,

the set of nonnegative real numbers, the set of complex numbers, and the set of positive

integers, respectively. For n, p ∈ N, a vector x ∈ Rn, and a matrix A ∈ Rn×n, we let ‖x‖p

be the Euclidean p-norm of x, and ‖A‖p be the induced p-norm of A. We denote by xT the

row vector obtained by transposing x, and by AT the transpose of matrix A. We denote

the n-dimensional vector of all ones by 1n, the n-dimensional vector of all zeros by 0n, and

the (n× n)-dimensional identity matrix by In.

Let A be a matrix describing a linear map between two subspaces X and Y, i.e.,

A : X → Y. The image or range space of A is defined as

Im(A) := {Ax : x ∈ X},

and the kernel or null space of A is defined as

Ker(A) := {x ∈ X : Ax = 0}.

We say that A is surjective if Im(A) = Y and injective if Ker(A) = ∅. Also, the map A is

bijective (or invertible) if A is injective and surjective. In this case, the map A admits an

inverse map, denoted by A−1.
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Fora matrix A, λ ∈ C is an eigenvalue of A if there exists a nonzero vector v ∈ X

such that Av = λv. The set of eigenvalues, which contains at most n elements, is called

the spectrum of A and is denoted by λ(A). The matrix A is Hurwitz stable if <(λ) < 0 for

all λ ∈ λ(A), where <(λ) denotes the real part of the complex number λ. The matrix A is

Schur stable if |λ| < 1 for all λ ∈ λ(A), where |λ| denotes the absolute value of the complex

number λ.

Linear dynamical systems. A continuous-time linear time-invariant system is

defined by the equations

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t), (2.1)

where x ∈ X ⊆ Rn, u ∈ U ⊆ Rm, y ∈ Y ⊆ Rp and A, B, C, and D are constant matrices of

appropriate dimensions. The signals x, u, and y are called the state, input, and output of

the system, respectively.

The controllability Gramian of the linear time-invariant system (2.1) is the n× n

matrix defined by

WT (A,B) =

∫ T

0
e−AσBBTe−ATσ dσ.

The controllability Gramian has widely been adopted as a quantitative measure of the degree

of controllability of a dynamical system. In fact, the unique minimum-energy control that

steers the system from the initial state x(0) = x0 to the final state x(T ) = xT at time
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T ∈ R>0 is given by [30]

u(t) = −BTeA
T(T−t)W−1T (A,B)(eATx0 − xT ),

where t ∈ [0, T ]. Hence, the controllability Gramian encodes the amount of energy needed

to control a dynamical system to a certain final state. Examples of quantitative measure of

controllability include the smallest eigenvalue of the controllability Gramian, the trace of

its inverse, and its determinant [31].

Basic graph definitions. A directed graph G = (V,L), consists of a set of

vertices (or nodes) V and a set of directed edges (or links) L ⊆ V × V. We use the

notation ℓ = (v, w) to denote a directed link from node v ∈ V to node w ∈ V and, for

each node v, we let vout = {(z, w) ∈ L : z = v} be the set of its outgoing links and

vin = {(w, z) ∈ L : z = v} the set of its incoming links. A path in G is a subgraph

p = ({v1, . . . , vk}, {ℓ1, . . . , ℓk}), such that vi 6= vj for all i 6= j, and ℓi = (vi, vi+1) for each

i ∈ {1, . . . , k − 1}. We will say that a path starts at v1 and ends at vk. A path p is simple

(or edge-disjoint) if no link is repeated in p. A cycle is a path where the first and last vertex

are identical, i.e., v1 = vk. Finally, G is acyclic if it contains no cycles.

A weighted graph is a graph G where a scalar weight avw ∈ R is associated to each

link ℓ = (v, w). In compact form, a weighted graph is described by an adjacency matrix,

that is, a matrix whose entries are the edge weights [A]vw = avw.
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2.2 Basic Notions on Nonlinear Systems

In this brief section, we gather some preliminary results and basic concepts on

nonlinear dynamical systems that are used throughout this dissertation. A continuous-time

nonlinear time-invariant dynamical system is described by the equations

ẋ = f(x, u),

y = g(x, u), (2.2)

where x ∈ X ⊆ Rn, u ∈ U ⊆ Rm, y ∈ Y ⊆ Rp, are the state, input, and output of the

system, respectively. We observe that this definition generalizes that of (2.1) by considering

differential equations that do not necessarily satisfy the linearity property.

In the following, we summarize the basic definitions of equilibrium points.

• A point x∗ ∈ X and an input u∗ ∈ U are a fixed point (or equilibrium) of the dynamics

(2.2) if, for the initial condition x(0) = x∗ and constant input u(t) = u∗ at all times,

f(x∗, u∗) = 0.

• A fixed point is stable if, for every ϵ > 0 there exists δ > 0 such that

‖x(0)− x∗‖ < δ ⇒ ‖x(t)− x∗‖ < ϵ, for all t ≥ 0.
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• A fixed point is asymptotically stable (or locally asymptotically stable) if it is stable

and

lim
t→+∞

x(t) = x∗.

• A fixed point is globally asymptotically stable if it is stable and for every x(0) ∈ X

lim
t→∞

x(t) = x∗.

• A fixed point is unstable if it is not stable.

The dynamical system (2.2) is zero-state detectable if u(t) = 0 and y(t) = 0 for all

t ≥ 0 implies limt→+∞ x(t) = 0.

Next, we recall some basic definitions and results on passivity in nonlinear dynam-

ical systems that are instrumental for the analysis presented in Chapter 3. We begin by

recalling the notions of passivity [32].

• The dynamical system (2.2) is passive with respect to the input-output pair (u, y) if

there exists a differentiable function V : X → R≥0, called storage function, such that

for all initial conditions x(0) = x0 ∈ X , for all allowed input functions u ∈ U , and

t ≥ 0, the following inequality holds

V (x(t))− V (x0) ≤
∫ t

0
u(σ)Ty(σ)dσ. (2.3)
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• A dynamical system is input strictly passive if there exists a function φ : U → Rm
>0

such that uTφ(u) > 0 for all u 6= 0 and

V (x(t))− V (x0) ≤
∫ t

0
u(σ)Ty(σ)− u(σ)Tφ(u(σ)) dσ.

• A dynamical system is output strictly passive if there exists a function ρ : Y → Rp
>0

such that yTρ(y) > 0 for all y 6= 0 and

V (x(t))− V (x0) ≤
∫ t

0
u(σ)Ty(σ)− y(σ)Tρ(y(σ)) dσ.

Loosely speaking, a system is passive if the increase in its storage function in the

time interval [0, t] (left hand side of (2.3)) is no larger than the energy supplied to the

system during that interval (right hand side of (2.3)). Passivity is a useful tool to assess the

Lyapunov stability of a feedback interconnection. The Passivity Theorem [32, Proposition

4.3.1], [33, Theorem 2.30] is summarized next.

Theorem 2.1. (Passivity Theorem) Consider the pair of systems

ẋi = f(xi, ui),

yi = gi(xi, ui), i ∈ {1, 2},

where xi ∈ Xi ⊆ Rn, ui ∈ Ui ⊆ Rm, yi ∈ Yi ⊆ Rm, and assume the two systems are coupled

through a negative feedback interconnection, namely u2 = y1, u1 = −y2. Moreover, assume

each system is passive with storage functions Vi : Xi → R≥0. Then,
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(i) if V1, V2 have strict local minimum at x∗1, x∗2, then (x∗1, x
∗
2) is a stable fixed point of

the negative feedback interconnection.

(ii) Assume V1, V2 have strict local minimum at x∗1, x∗2. Moreover, assume each system is

zero-state detectable and input-strictly passive or output strictly passive, namely, each

system admits a storage function that satisfies

Vi(x(t)) − Vi(x0) ≤
∫ t

0
ui(σ)

Tyi(σ) − ui(σ)
Tφi(ui(σ)) − yi(σ)

Tρi(yi(σ)) dσ.

for (possibly zero) functions φi : Ui → Rm
≥0 and ρi : Ui → Rm

≥0. If

vTφ1(v) + vTρ2(v) > 0, and

vTφ2(v) + vTρ1(v) > 0, (2.4)

for all v 6= 0, then (x∗1, x
∗
2) is a locally asymptotically stable fixed point of the negative

feedback interconnection.
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Part I

Application to Traffic Control in

Transportation Systems
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Chapter 3

Changes in User Behavior: The

Impact of Navigation Apps

Traffic networks are fundamental components of modern societies, making eco-

nomic activity possible by enabling the transfer of passengers, goods, and services in a

timely and reliable fashion. Despite their economical importance, traffic networks are im-

paired by the outstanding problem of traffic congestion, which wastes over 3 billions of

gallons of fuel each year in the United States [16]. This chapter tackles the problem of

reducing traffic congestion by studying the effects of navigation and routing apps on the

robustness of modern traffic networks. We refer the reader to [1, 6] for an exhaustive

discussion of the technical results contained in this chapter.
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3.1 Introduction

In modern transportation systems, escalating levels of congestion are affecting

nominal travel times of freeways and urban roads, incentivizing travelers to adopt alterna-

tive routes that are often undesirable and suboptimal. These route alternatives are increas-

ingly made available through advanced traveler information systems, such as navigation

apps (or routing apps), which provide reliable minimum-time routing suggestions to the

travelers based on real-time congestion information. Yet, among numerous favorable advan-

tages, routing apps can sometimes deteriorate traffic congestion and originate undesirable

behaviors at the system level, a phenomenon that is studied here for the first time.

In this chapter, we focus on studying the impact of app-informed routing on the

dynamical properties of the traffic infrastructure, and on characterizing the consequences of

real-time traffic information on the stability of the traffic system. Differently from classical

results on congestion-responsive traffic routing, the focus of this work is on the dynamical

behavior of the transportation infrastructure, rather than on the economic properties of its

equilibria. In particular, our models allow us to take into account the fact that travelers

react instantaneously to changes in traffic congestion (other than from day to day), and

to study the interplay between the rates of reaction to traffic information and the phys-

ical limitations of the traffic roads, such as capacities and delays in the propagation of

flows. Our results show that the general adoption of navigation apps can maximize the

throughput of flow across the network, and thus these devices bring valuable benefits to the

traffic infrastructure. Unfortunately, our findings also demonstrate that navigation apps

can deteriorate the stability of the traffic system, and can results in emerging undesirable

23



traffic phenomena such as temporal oscillations of traffic congestion. Hence, our results

demonstrate that the benefits in the adoption of real-time routing systems come at the cost

of increased system fragility, and suggest that adequate information design is necessary to

overcome these limitations.

This work brings together two streams of independent literature. On the one hand,

dynamical traffic network models have widely been studied after the popularization of the

Cell Transmission Model [34]. In this line of research, the main emphasis has been on the

development of accurate models that can capture the behavior of the network in several

congestion regimes [35], and on characterizing the properties of the equilibria of the network

[36], while considering simplified (often time-invariant) routing models.

On the other hand, the routing decisions of the travelers have been studied by

adopting simplified traffic models in the game-theoretic setting of a routing game (see e.g.

[19, 20, 17]). In these models, traffic flows propagate instantaneously across the network,

and drivers make route choices by minimizing their personal travel times in response to day-

to-day information regarding traffic congestion [21]. Recently, Evolutionary Game-Theory

[37] has been applied to the routing game [38, 39], to capture not only the properties of

the equilibria of the system, but also the time evolution of its trajectories. Although these

works represent an important step towards understanding the dynamical properties of traffic

networks under real-time congestion-responsive routing, the results have been limited to

simplified traffic models and day-to-day driver behavior.

An important attempt to characterize the impact of congestion-dependent routing

on the dynamical behavior of traffic are the recent works [40, 41], which are however limited
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to routing models that are local, that is, where travelers make decisions based on one-road-

ahead congestion information. Finally, to the best of the author’s knowledge, the pioneering

work [42] was one of the few attempts to highlight that simplifications in either the traffic

model or the routing model are inadequate to accurately predict traffic patterns. In fact, the

authors demonstrate through simulations that in certain regimes static flow model indicate

that routing apps can improve network congestion, whereas dynamical models demonstrate

the opposite.

The contribution of this work is fourfold. First, we propose a dynamical decision

model to capture the routing behavior of app-informed travelers in response to traffic con-

gestion. Our model is inspired from evolutionary models (or learning models) in biology

and game theory, and models a setting where travelers make decisions iteratively and use

the observations of other travelers to adjust their next decision. Moreover, our dynamical

routing model can be naturally coupled with dynamical traffic models, and it allows us to ef-

fectively study the interplay between traffic congestion and routing behavior in time-varying

congestion regimes.

Second, we study the properties of the fixed point of a traffic system where our

routing decision model is coupled with a dynamical traffic model. We establish a connection

between the properties of the equilibrium points and the well-established notion of Wardrop

equilibria [21]. Our results show that, when travelers update their routing preferences at

every junction of the network based on the instantaneous congestion information, the system

admits an equilibrium point that satisfies the Wardrop First Principle. This observation

extends Wardrop’s practical observations, which were so far limited to scenarios where
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travelers update their congestion information from day to day and the traffic system operates

at equilibrium.

Third, we characterize the Lyapunov stability of the fixed points of the system. Our

analysis relies on the theory of passive nonlinear dynamical systems [32], and it demonstrates

that the open-loop dynamics of traffic models and the open-loop aggregate routing model

satisfy the passivity property.

Fourth, we propose a control technique to ensure the asymptotic stability of the

fixed points. Our methods rely on regulating the rates at which travelers react to congestion

information, a behavior that can be achieved by appropriately designing the frequency at

which navigation apps update the routing suggestions provided to the travelers. Our results

suggest that, in order to achieve asymptotic stability of the equilibrium points, travelers

that are close to the network origin must react faster to traffic congestion as opposed to

travelers that are located in the proximity of the destination.

This chapter is organized as follows. Section 3.2 illustrates our traffic network

model, our routing decision model, and reviews the Wardrop First Principle. Section 3.3

characterizes the properties of the equilibrium points, and contains a set of necessary and

sufficient conditions for their existence. Section 3.4 contains the stability analysis of the

equilibrium points, and illustrates through an example the existence of oscillatory trajec-

tories. Section 3.5 proposes a control technique to ensure the asymptotic stability of the

fixed points, and Section 3.6 illustrates our findings through a set of simulations.
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3.2 Traffic Network and App Routing Models

This section is organized into three main parts. First, we discuss a traffic model

that captures the physical characteristics of roads and traffic junctions. Second, we intro-

duce a decision model to capture the routing behavior of app-informed travelers in response

to traffic congestion. Third, we review the framework that describes the well-established

Wardrop First Principle. We begin with some preliminary notation.

Notation. A directed graph G = (V,L), consists of a set of vertices V and a set of

directed links (or edges) L ⊆ V×V. We use the notation ℓ = (v, w) to denote a directed link

from node v ∈ V to node w ∈ V and, for each node v, we let vout = {(z, w) ∈ L : z = v}

be the set of its outgoing links and vin = {(w, z) ∈ L : z = v} be the set of its incoming

links. A path in G is a subgraph p = ({v1, . . . , vk}, {ℓ1, . . . , ℓk}), such that vi 6= vj for all

i 6= j, and ℓi = (vi, vi+1) for each i ∈ {1, . . . , k − 1}. A path p is simple (or edge-disjoint) if

no link is repeated in p. We will say that a path starts at v1 and ends at vk, and use the

compact notation p = pv1→vk . A cycle is a path where the first and last vertex are identical,

i.e., v1 = vk. Finally, G is acyclic if it contains no cycles.

3.2.1 Traffic Network Model

We model a traffic network as a directed acyclic graph G = (V,L), where L =

{1, . . . n} ⊆ V ×V models the set of traffic roads (or links), and V = {v1, . . . , vν} models the

set of traffic junctions (or nodes). Every traffic junction is composed of a set of ramps, each

interconnecting a pair of freeways. We denote the set of traffic ramps (or adjacent links)
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by A ⊆ L× L and we let Aℓ be the set of ramps available upon exiting ℓ, that is,

A := {(ℓ,m) : ∃ v ∈ V s.t. ℓ ∈ vin and m ∈ vout},

Aℓ := {m ∈ L : ∃(ℓ,m) ∈ A}. (3.1)

We describe the macroscopic behavior of each link ℓ ∈ L by means of a dynamical

equation that captures the conservation of flows between upstream and downstream:

ẋℓ = f in
ℓ (x)− fout

ℓ (xi),

where xℓ : R≥0 → X , X ⊆ R≥0, is the traffic density in the link, f in
ℓ : X → F , F ⊆ R≥0, is

the inflow of traffic at the link upstream, and fout
ℓ : X → F is the outflow of traffic at the

link downstream. We make the following technical assumption.

(A1) For all ℓ ∈ L, fout
ℓ (xℓ) = 0 only if xℓ = 0. Moreover, fout

ℓ is differentiable, non-

decreasing, and upper bounded by the flow capacity of the link Cℓ ∈ R≥0:

d

dxℓ
fout
ℓ (xℓ) ≥ 0 and sup

xℓ

fout
ℓ (xℓ) = Cℓ.

We discuss in the following remark possible choices of outflow functions commonly adopted

in practice.

Example 3.1. (Common Link Outflow Functions) A common choice for the link out-

flow function is the linear saturation function, originally adopted by the Cell Transmission
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Model [34], described by

fout
ℓ (xℓ) = min{vℓxℓ, Cℓ},

where vℓ ∈ R>0 models the free-flow speed of the link. Linear outflow functions have also

been considered in the literature thanks to their simplicity [4]:

fout
ℓ (xℓ) = vℓxℓ,

where, in this case, Cℓ = +∞. Alternatively, exponential saturation functions have widely

been adopted in the recent literature (see e.g. [36]):

fout
ℓ (xℓ) = Cℓ(1− exp(aℓxℓ)),

where aℓ ∈ (0,∞). □

We associate a routing ratio rℓm ∈ [0, 1] to every pair of adjacent links (ℓ,m) ∈ A

to describe the fraction of traffic flow entering link m upon exiting ℓ, with
∑

m rℓm = 1. We

combine the routing ratios into a matrix R = [rℓm] ∈ Rn×n, where we let rℓm = 0 if ℓ and

m are not adjacent (ℓ,m) 6∈ A, and we denote by RG the set of feasible routing ratios for

the network defined by G. That is,

RG := {rℓm : rℓm = 0 if (ℓ,m) 6∈ A, and
∑
m∈L

rℓm = 1}.
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At every ramp, traffic flows are transferred from the incoming link to the outgoing link as

described by the routing ratios:

f in
m(x) =

∑
ℓ∈L

rℓmf
out
ℓ (xℓ).

We focus on single-commodity networks, where an inflow of vehicles λ̄ : R≥0 → F

enters the network at a (unique) source link s ∈ L, and traffic flows exit the network at

a (unique) destination link d ∈ L. In the remainder, we adopt the convention s = 1 and

d = n. We describe the overall network dynamics by combining the dynamical models of

all links in a vector equation of the form

ẋ = (RT − I)f(x) + λ, (3.2)

where I ∈ Rn×n denotes the identity matrix, x = [x1, . . . , xn]
T is the vector of traffic den-

sities in the links, f = [fout
1 , . . . , fout

n ]T is the vector of link outflows, and λ = [λ̄, . . . , 0]T

denotes the inflow vector. Finally, we illustrate our model of traffic network in Exam-

ple 3.2, and we discuss the relationship between our model and the well-established Cell

Transmission Model in Remark 3.3.

Example 3.2. (Dynamical Traffic Model) Consider the seven-link network illustrated

in Fig. 3.1. The traffic network model (5.6) is composed of the following seven dynamical
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equations:

ẋ1 = −fout
1 (x1) + λ̄,

ẋ2 = −fout
2 (x2) + r12f

out
1 (x1),

ẋ3 = −fout
3 (x3) + r13f

out
1 (x1),

ẋ4 = −fout
4 (x4) + r24f

out
2 (x2),

ẋ5 = −fout
5 (x5) + r25f

out
2 (x2),

ẋ6 = −fout
6 (x6) + fout

3 (x3) + fout
4 (x4),

ẋ7 = −fout
7 (x7) + fout

5 (x5) + fout
6 (x6),

where

RG = {r12, r13, r24, r25 : r12 + r13 = 1, r24 + r25 = 1}.

□

Remark 3.3. (Capturing Backwards Propagation) Our model can be interpreted as

a simplified version of the Cell Transmission Model [34]. In fact, while in the Cell Trans-

mission Model highways are characterized by two fundamental functions (a link demand

function and a link supply function), our model only captures capacities in the flows through

the link outflow functions fout
ℓ . As a result, in our model density accumulation can happen

on the links and congestion does not propagate through the junctions (and thus corresponds

to a vertical queue model). While more general traffic models could be considered in future
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Figure 3.1: (a) Seven-highway network discussed in examples 3.2 and 3.6. (b) We associate
two variables to each link: the link travel cost τℓ (the travel time to traverse that link) and
the link perceived cost πℓ (the total travel cost of reaching the network destination from
that link).

works, we note that density capacities can be captured in our model by considering unbounded

link delay functions, as we do in Section 3.3.3. □

3.2.2 Congestion-Responsive Routing Model

In what follows, we present a dynamical decision model to capture the behavior

of app-informed travelers in response to congestion. To this aim, we associate a state-

dependent travel cost to each link of the network

τℓ : X → T , T ⊆ R≥0,

which describes the instantaneous travel cost (or travel delay) of traversing link ℓ. We

denote by τ(x) = [τ1, . . . , τn]
T the joint vector of travel costs, and we make the following

technical assumption.

(A2) For all ℓ ∈ L, the travel cost τℓ(xℓ) is differentiable and non-decreasing.
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To capture the fact that travelers wish to minimize the overall (total) travel time

between their current location and their destination, we associate to each link ℓ a perceived

cost:

πℓ : X n → T ,

which describes the cost of link ℓ that is perceived by the travelers. The perceived cost is a

quantity that, in general, includes the combined cost of traversing multiple links (e.g. a path

in the graph). In this work, we model the perceived costs as the instantaneous minimum

travel times to destination (see Fig. 3.1(b))

πℓ(x) = τℓ(xℓ) + min
m∈Aℓ

πm(x). (3.3)

We note that the above equation is a recursive definition, and: (i) given the current traffic

state, the set of perceived costs can be computed backwards from the network destination

to every link in the graph, and (ii) the above equation states that a traveler located at any

point in the traffic network perceives a cost that is equal to the instantaneous minimum

travel time to destination. We discuss and generalize the choice of perceived costs in Remark

3.4.

Remark 3.4. (Choices of Perceived Costs) A choice that generalizes (3.3) is the

following convex combination:

πℓ(x) = αℓτℓ(xℓ) + (1− αℓ) min
m∈Aℓ

πm(x),
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where αℓ ∈ [0, 1] is a parameter that describes the level of confidence in the observed global

congestion information. For instance, the special case αℓ = 1 correspond to a situation

where the drivers rely only local congestion information, while αℓ = 0 models a scenario

where drivers rely on global congestion information, which is the focus of this work. An

intermediate value of αℓ can be interpreted as the level of confidence in the knowledge of the

travel delay of links that are distant in the network. Although all the results presented in

this chapter hold for the generalized perceived cost model, in the remainder of this chapter

we focus on the model (3.3) for the clarity of illustration. □

To model the reactions of app-informed travelers to changes in the traffic state, we

assume that at every node of the network drivers will instantaneously update their routing

by increasingly avoiding the links with higher perceived cost (in the current congestion

regime). To this aim, we model the aggregate routing ratios as time-varying quantities

rℓm : R≥0 → [0, 1] that obey a selection mechanism inspired by the replicator dynamics

[37]:

δ−1ℓmṙℓm = rℓm (
∑
q

rℓqπq − πm)︸ ︷︷ ︸
aℓm(x)

, (3.4)

where aℓm : X n → R is a function that describes the appeal of entering link m upon exiting

ℓ, and δℓm ∈ R>0 is the reaction rate, namely a scalar variable that captures the rate at

which travelers react to changes in the traffic state.

The dynamical equation (3.4) describes a real-time reaction mechanism, where

routing apps continuously revise their routing recommendations by increasingly suggesting
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links that have a more desirable travel time to destination, as detailed next. A positive

appeal (aℓm > 0) implies that the perceived travel cost of link m is preferable over the

travel cost of alternative links upon exiting ℓ (i.e. πm <
∑

q rℓqπq). Hence, equation (3.4)

states that the fraction of travelers choosing m will increase over time (ṙℓm > 0). As a

result, the appeal aℓm can be interpreted as the aggregate interest in selecting to traverse

link m upon exiting ℓ.

In compact form, the set of dynamical equations (3.4) describing the routing pa-

rameters reads as follows:

ṙ = ϱ(r, π), (3.5)

where r = [. . . , rℓm, . . . ]
T, (ℓ,m) ∈ A, denotes the joint vector of routing ratios. In the

following result, we show that the congestion-responsive routing model (3.5) evolves within

the feasible set of routing ratios RG at all times.

Lemma 3.5. (Conservation of Flows) Let G be a traffic network and let δℓm = δℓ ∈ R>0

for all (ℓ,m) ∈ A. If r(0) ∈ RG, then the vector of routing ratios is feasible at all times,

that is,

r ∈ RG for all t ∈ R>0.
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Proof. The proof of this claim is organized into two parts. First, we show that rℓm ∈ [0, 1].

To show that the routing ratios are non-negative, rℓm ≥ 0, we note that

rℓm = 0⇒ ṙℓm = rℓmaℓm(x) = 0.

To show that the routing ratios are upper bounded, rℓm ≤ 1, assume the ratio achieves the

boundary, i.e. rℓm = 1. Then, since r ∈ RG (i.e.,
∑

q rℓq = 1), we have

rℓq = 0 for all q 6= m,

which implies

aℓm(x) =
∑
q

rℓqπq − πm = rℓmπm − πm = 0.

Hence, the above observations prove the following implication

rℓm = 1⇒ ṙℓm = rℓmaℓm(x) = 0,

which shows that the routing ratios are bounded in [0, 1].
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Second, we prove that
∑

m rℓm = 1. To this aim, we equivalently show that∑
m ṙℓm = 0. By substituting the expression (3.4) in the summation term we obtain

∑
m

ṙℓm =
∑
m

rℓm(
∑
q

rℓqπq − πm)

=
∑
m

rℓm︸ ︷︷ ︸
=1

∑
q

rℓqπq −
∑
m

rℓmπm

=
∑
q

rℓqπq −
∑
m

rℓmπm = 0,

which shows the claim and concludes the proof. ■

We conclude this discussion by illustrating in Example 3.6 our routing model, by

discussing in Remark 3.7 the use of the replicator equation to model routing apps, and by

clarifying in Remark 3.8 the novelty of our framework with respect to the classical routing

game.

Example 3.6. (Dynamical Routing Model) Consider the seven-link network illustrated

in Fig. 3.1 and discussed in Example 3.2. By assuming that the drivers perceive the global
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cost to destination (3.3), the perceived costs read as

π1 = τ1 + π̄v1→d, π̄v1→d = min{π2, π3},

π2 = τ2 + π̄v2→d, π̄v2→d = min{π4, π5},

π3 = τ3 + π̄v3→d, π̄v3→d = π6,

π4 = τ4 + π̄v3→d,

π5 = τ5 + π̄v4→d, π̄v4→d = π7,

π6 = τ6 + π̄v4→d,

π7 = τ7.

We note that the perceived costs (3.3) are defined in a recursive way, where for all i ∈

{1, . . . , 7}, πi can be computed given πi+1, . . . , π7 . Moreover, the aggregate behavior of the

population at the nodes is described as in (3.4) by

ṙ12 = r12((r12 − 1)π2 + r13π3),

ṙ13 = r13((r13 − 1)π3 + r12π2),

ṙ24 = r24((r24 − 1)π4 + r25π5),

ṙ25 = r25((r25 − 1)π5 + r24π4).

Finally, we note that Lemma 3.5 ensures r12 + r13 = 1 and r24 + r25 = 1 at all times. □

Remark 3.7. (Modeling Aggregate Learning Through Replicator Equation) The

replicator equation was originally developed to study selection in biological evolution. How-
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ever, it was found recently in [43] (see also references therein) that the evolutionary replicator

dynamics can also arise from certain models of human learning. Moreover, in a more recent

work [44] it was shown that if models of reinforcement learning or other machine learning

techniques were aggregated over a large population, the resulting behavior would possess the

same qualitative properties as the replicator dynamics. □

Remark 3.8. (Relationship to Routing Game) A trend of literature (e.g. see [38, 39])

recently combined the classical routing game with evolutionary models in order to capture

dynamics in the path-selection mechanism of new drivers entering the network. Although

these works represent a significant step towards understanding the dynamics of traffic rout-

ing, they still critically rely on a static flow model, where traffic flows instantaneously

propagate across the network. Unfortunately, this assumption lacks to capture the fact that

traffic conditions can change while travelers are traversing the network, and that navigation

apps will instantaneously respond by updating the route of each driver at her next available

junction. To overcome these limitations, our framework (i) leverages a dynamical traffic

model that captures finite flow propagation times, and (ii) includes a junction-based routing

model where travelers can update their routing behavior at every node of the network in

relationship to the current congestion information. □

3.2.3 The Wardrop First Principle

The goal of this section is to establish a connection between the classical game-

theoretic setting and our framework. The routing game [21] consists of a static (time-

invariant) traffic model combined with a path-selection model. In this decision model, a
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new traveler entering the network selects a certain origin-destination path based on the

instantaneous traffic congestion and, because the traffic model is static, drivers do not up-

date their path while they are traversing the network. Once this path-selection mechanism

terminates, the network is at an equilibrium point known as the Wardrop Equilibrium, a

condition where all the used paths have identical travel time.

Next, we recall the notion Wardrop Equilibrium. To comply with the static nature

of the routing game, we will assume that the dynamical system (3.7) is at an equilibrium

point. Let x∗ be an equilibrium of (5.6), and let

f∗ℓ := fout
ℓ (x∗ℓ ), ℓ ∈ L,

be the set of equilibrium flows on the links. In vector form, f∗ := [f∗1 . . . , f
∗
n]

T. Moreover,

let P = {p1, . . . , pζ}, ζ ∈ N, be the set of simple paths between origin and destination, and

let f∗p := [f∗p1 , . . . , f
∗
pζ
]T be the set of flows on the paths. The flows on the origin-destination

paths are related to the flows on the links by means of the following relationship:

f∗ℓ =
∑

p∈P:ℓ∈p
f∗p ,

which establishes that the flow on each link is the superposition of all the flows in the paths

passing through that link. By inverting the above set of equations, the vector of path flows

can be computed from the vector of link flows as follows

f∗p = E†f∗, (3.6)
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where E ∈ Rn×ν is the edge-path incidence matrix:

Eℓp =


1, if ℓ ∈ p,

0, otherwise,

where E† denotes the pseudoinverse of E. Lemma 3.9 shows that the path flows are unique

for any choice of link flows.

Lemma 3.9. (Uniqueness of the Path Flow Vectors) Let G be acyclic. Then, for

every vector of link flows f∗ ∈ Fn there exists a unique vector of path flows f∗p ∈ Rζ that

solves (3.6).

We extend the definition of travel costs to the origin-destination paths by letting

the travel cost of a path be the sum of the cost of all the links in that path, namely,

τ∗p := ETτ(x∗).

The Wardrop First Principle states that all paths with nonzero flow have identical

travel cost, and is formalized next.

Definition 3.10. (Wardrop First Principle) Let x∗ be an equilibrium of (5.6). The

vector x∗ is a Wardrop Equilibrium if the following condition is satisfied for all origin-

destination paths p ∈ P:

f∗p (τ
∗
p − τ∗p̄ ) ≤ 0, for all p̄ ∈ P.
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Traffic Dynamics

ẋ = (RT
− I)f(x) + λ

Routing Dynamics

ṙ = ̺(π, r)
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Figure 3.2: Feedback interconnection between traffic and routing dynamics.

3.3 Existence and Properties of the Equilibria

In this section, we characterize the properties of the fixed points of dynamical

traffic networks with app-informed routing. Formally, we are interested in characterizing

the fixed points of the feedback interconnection between the traffic dynamics (5.6) and the

routing dynamics (3.5), which reads as:

ẋ = (RT − I)f(x) + λ, π = π(x),

ṙ = ϱ(r, π). (3.7)

Fig. 3.2 graphically illustrates the interactions between the two systems and depicts the

quantities that establish the coupling.
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3.3.1 Restricted Set of Equilibria

Let (x∗, r∗) be a fixed point of (3.7). It follows from the expressions of the routing

model (3.4) that, for all pairs of adjacent links (ℓ,m) ∈ A, one of the following conditions

is satisfied at equilibrium:

aℓm(x∗) = 0, or r∗ℓm = 0.

We next show that a subset of these points is unstable.

Lemma 3.11. (Unstable Equilibria) Let (x∗, r∗) be a fixed point of (3.7) and assume

there exists (ℓ,m) ∈ A such that

r∗ℓm = 0, and aℓm(x∗) > 0.

Then, (x∗, r∗) is unstable.

Proof. To prove this lemma, we adopt a perturbation reasoning and show that there exists

an infinitesimally-small perturbation from the equilibrium such that ṙℓm > 0. The proof is

organized into two main parts.

First, we show that at equilibrium all links alternative tom have identical perceived

cost. To this aim, we note that r∗ℓm = 0 combined with r∗ ∈ RG (i.e.
∑

q r
∗
ℓq = 1)

implies that there exists (at least) one alternative link w such that r∗ℓw > 0. In general,

let W = {w1, . . . , wξ}, ξ ∈ N, denote the set of all such links. Since r∗ℓwi
> 0 and x∗ is an
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equilibrium, we necessarily have aℓwi
(x∗) = 0 or, equivalently,

0 = aℓwi
(x∗) =

∑
q

r∗ℓqπ
∗
q − π∗wi

,

for all i ∈ {1, . . . , ξ}. The above system of equations admits the explicit solution π∗wi
=∑

q r
∗
ℓqπ

∗
q for all i ∈ {1, . . . , ξ}, which implies

π∗wi
= π∗wj

, for all i, j ∈ {1, . . . , ξ}, (3.8)

and proves the first claim.

Second, we show that at equilibrium all links alternative to m (i.e. links w ∈

W), have strictly suboptimal travel cost: π∗w > π∗m. To this aim, we use the assumption

aℓm(x∗) > 0 to obtain

0 < aℓm(x∗) =
∑
q

r∗ℓqπ
∗
q − π∗m

= π∗w
∑
q

r∗ℓq − π∗m

= π∗w − π∗m, (3.9)

where we substituted (3.4) to obtain the first identity, and (3.8) to obtain the second identity,

which proves the second claim.
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Finally, let ϵ ∈ R>0 be a scalar perturbation. By perturbing (3.4) from the equi-

librium point, r∗ℓm 7→ r∗ℓm + ϵ, we have

ṙℓm = ϵ(
∑

q ̸=m,w

r∗ℓqπ
∗
q + (r∗ℓm + ϵ)π∗m + (r∗ℓw − ϵ)π∗w − π∗m)

= ϵ(
∑
q

r∗ℓqπ
∗
q + ϵπ∗m − ϵπ∗w − π∗m)

= ϵ(π∗w
∑
q

r∗ℓq︸ ︷︷ ︸
=1

+ϵπ∗m − ϵπ∗w − π∗m)

= ϵ(π∗w + ϵπ∗m − ϵπ∗w − π∗m)

= ϵ(π∗w − π∗m)(1− ϵ) > 0,

where we used (3.8) to obtain the third identity, and the final inequality follows from (3.9)

and from ϵ > 0. The conclusion follows by observing that infinitely-small perturbations

ϵ→ 0 result in systems that depart from the equilibria ṙℓm > 0. ■

Lemma 3.5 shows that equilibrium points where at least one of the links has a

positive appeal function are unstable. Such scenarios can be interpreted in practice as a

situation where there exists a link in the network with a preferable travel time to destination

(i.e. aℓm > 0), but no driver is currently traversing that road (i.e. rℓm = 0). Hence, the

navigation app lacks of sufficient observations from other travelers to begin routing vehicles

towards that road, thus making the routing algorithm ignore the availability of such option.
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In order to disregard the unstable equilibria from the discussion, in the remainder

we focus on the equilibria (x∗, r∗) such that, for all (ℓ,m) ∈ A, satisfy:

aℓm(x∗) = 0, or rℓm = 0 and aℓm(x∗) < 0. (3.10)

Remark 3.12. (Relationship to Game Dynamics) The set of equilibria defined in

(3.10) is often interpreted in the game-theoretic literature as the set of Nash Equilibria of

the game dynamics (3.4) (see e.g. [45]). It is worth noting that Lemma 3.5 extends the

available results in this line of literature (e.g. see the Folk Theorem of evolutionary game

theory [37] and the specific conclusions drawn for the routing game by Fischer and Vöcking

[38]), by showing that the set of rest points that are not Nash equilibria are unstable for

replicator equations where the payoffs do not depend directly from the strategy. □

3.3.2 Existence of Equilibria

Next, we characterize the existence of fixed points of the interconnected system

(3.7). Our result relies on the following technical assumption.

(A3) The link travel costs are finite, namely, for all ℓ ∈ L

τℓ(xℓ) <∞ if xℓ <∞.

Assumption (A3) disregards cases where travel times are unbounded, and will be relaxed

later in this section.
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Next, we recall the graph-theoretic notion of min-cut capacity [46]. Let the set of

nodes V be partitioned into two subsets S ⊆ V and S̄ = V−S, such that the network source

s ∈ S and the network destination d ∈ S̄. Let Sout = {(v, u) ∈ L : v ∈ S and u ∈ S̄} be

a cut, namely, the set of all links from S to S̄, and let CS =
∑

ℓ∈Sout Cℓ be the capacity of

the cut. The min-cut capacity is defined as

Cm-cut = min
S
CS .

The following result relates the existence of fixed points to the magnitude of the

exogenous inflow to the network.

Theorem 3.13. (Existence of Equilibria) Let Assumptions (A1)-(A3) be satisfied. The

interconnected system (3.7) admits an equilibrium point that satisfies (3.10) if and only if

the network inflow is no larger than the min-cut capacity:

λ̄ ≤ Cm-cut. (3.11)

Proof. (If) The proof is organized into two main parts.

First, we show that, when λ̄ ≤ Cm-cut, there exists a pair (x∗, r∗) that is an

equilibrium point of the traffic dynamics with finite perceived travel costs, that is,

(R∗T − I)f(x∗) + λ = 0, and π(x∗) <∞.
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To this aim, consider the graph G with associated inflow λ̄. By application of the max-flow

min-cut theorem [46], there exists a feasible assignment of flows to the links of the graph

G, that is, a set of scalars {φ1, . . . , φn} such that the following conditions are satisfied:

0 ≤ φℓ ≤ Cℓ, for all ℓ ∈ L,∑
ℓ∈vin

φℓ =
∑

ℓ∈vout

φℓ, for all v ∈ V,

φ1 = λ̄.

By choosing r∗ℓm := φm/φℓ for all (ℓ,m) ∈ A, the above equations imply that

(R∗T − I)φ+ λ = 0,

where φ = [φ1 . . . , φn]
T. Finally, by choosing x∗ℓ so that fout(x∗ℓ ) = φℓ, we have that (x∗, r∗)

is a fixed point of the traffic dynamics (5.6), which proves the first claim.

Second, we show that for any traffic state x∗ ∈ X with finite perceived costs,

π(x∗) < ∞, there exists a vector of feasible routing ratios r∗ that is a fixed point of the

routing dynamics and satisfies (3.10). To this aim, we first consider a given link ℓ ∈ L and

we prove the claim for the single junction equation (3.4). The statement will then follow

by iterating the reasoning for all ℓ ∈ L. We distinguish among two cases.
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(Case 1) For all pairs a, ā ∈ Aℓ, where a = (ℓ,m) and ā = (ℓ, m̄), the costs satisfy πm(x∗) =

πm̄(x∗). In this case, the following identity holds:

ṙ∗ℓm = r∗ℓm(
∑
q

r∗ℓqπ
∗
q − π∗m)

= r∗ℓm(π∗m
∑
q

r∗ℓq︸ ︷︷ ︸
=1

−π∗m)

= r∗ℓm (π∗m − π∗m)︸ ︷︷ ︸
aℓm(x∗)

= 0,

which shows that ṙ∗ℓm = 0 and a∗ℓm = 0, and proves that (x∗, r∗) is an equilibrium point

that satisfies (3.10).

(Case 2) There exists a, ā ∈ Aℓ, where a = (ℓ,m) and ā = (ℓ, m̄), such that the costs satisfy

πm 6= πm̄. In this case, let

πm̄ = max
a=(ℓ,m)∈Aℓ

πm,

be the largest perceived cost at the junction. By letting r∗ℓm̄ = 1 and r∗ℓm = 0 for all m 6= m̄

we obtain the following identities

ṙ∗ℓm̄ = r∗ℓm̄(
∑
q

r∗ℓqπ
∗
q − π∗m̄) = (π∗m̄ − π∗m̄) = 0,

ṙ∗ℓm = r∗ℓm(
∑
q

r∗ℓqπ
∗
q − π∗m) = 0,
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which shows that the provided choice of r∗ is a fixed point of (3.4). Moreover, the above

identities also imply

aℓm̄(x∗) = (π∗m̄ − π∗m̄) = 0,

aℓm(x∗) = (π∗m̄ − π∗m) > 0,

which shows that the equilibrium point satisfies (3.10).

The conclusion thus follows by combining the two parts of the proof. In fact, when

λ̄ ≤ Cm-cut the first part shows that the traffic dynamics admit an equilibrium with finite

perceived costs for some choice of the routing. The second part of the proof guarantees that

the routing dynamics admit an equilibrium for any traffic state with finite travel costs.

(Only if) The proof of this statement follows by adopting a contradiction reasoning.

To this aim, assume (x∗, r∗) is an equilibrium point and that λ̄ > Cm-cut. The latter

assumption, combined with the Maximum Flow Theorem, implies that for any assignment

of flows to the links of the graph G there exists ℓ ∈ L such that φℓ > Cℓ. In other words,

link ℓ is required to transfer a traffic flow f in
ℓ (x∗) = φℓ, and thus:

ẋℓ = f in
ℓ (x∗)− fout

ℓ (x∗ℓ )

= φℓ − fout
ℓ (x∗ℓ )

≥ φℓ − Cℓ > 0,

which shows shows that xℓ grows unbounded, and hence contradicts the assumption that

(x∗, r∗) is an equilibrium. ■
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The above theorem bridges an interesting gap between the behavior of dynamical

systems and graph-theoretic notions. In fact, it relates the properties of the equilibrium

points of a dynamical system with the notion of minimum-cut capacity, which is a fea-

ture of static graphs. Two important implications follow from Theorem 3.13. First, by

recalling that the minimum-cut capacity equals the maximum flow through a graph (see

Maximum-Flow Theorem [46]), the result shows that a dynamical traffic network admits an

equilibrium point that transfers a traffic demand equal to the maximum flow. This obser-

vation demonstrates that routing apps not only optimize the travelers’ commute, but also

have a benefit at the system-level. Second, the result shows that when the traffic demand is

too large (λ̄ > Cm-cut), then the network does not admit any equilibrium equilibrium point,

in fact, it operates at a condition in which traffic densities in the links grow unbounded.

We conclude this section by discussing a special technical assumption that can

be used to capture back propagation of traffic congestion, a scenario that is particularly

relevant in practice. To this aim, we introduce the following assumption.

(A4) For all ℓ ∈ L, the travel cost becomes unbounded when ℓ reaches its flow capacity,

namely,

τℓ(xℓ) =∞ for all xℓ such that fout
ℓ (xℓ) = Cℓ.

Assumption (A4) states that if a link is approaching its maximum flow capacity,

then the travelers will increasingly avoid it. This setting can also be used to capture

back propagation, where if the density of a link reaches a critical value then no additional
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vehicles can enter that link (cf. Remark 3.3). The following corollary refines Theorem 3.13

for unbounded costs.

Corollary 3.14. Let Assumption (A4) replace (A3) in Theorem 3.13. The interconnected

system (3.7) admits an equilibrium point that satisfies (3.10) if and only if the network

inflow is strictly lower than the min-cut capacity:

λ̄ < Cm-cut.

3.3.3 Relationship to Wardrop Equilibrium

The following result relates the fixed points of the dynamical system (3.7) with

the established notion of Wardrop equilibria.

Theorem 3.15. (Relationship Between Fixed Points and Wardrop Equilibria)

Consider the interconnected system (3.7). The following statements are equivalent:

(i) x∗ ∈ X satisfies the Wardrop First Principle;

(ii) The pair (x∗, r∗) is a fixed point of (3.7) for some r∗ ∈ RG. Moreover, (x∗, r∗) satisfies

(3.10).

Proof. (i) ⇒ (ii) We begin by observing that, by assumption, a Wardrop equilibrium is

also an equilibrium of the traffic dynamics (5.6). Thus, we next prove that given a vector

x∗ that satisfies the Wardrop conditions, there exists a vector r∗ ∈ RG such that (3.10) is

satisfied.

Since the graph is acyclic, it admits a shortest path spanning tree [46], that is, a

directed tree rooted from the source with the property that the unique path from the source
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to any node is a shortest path to that node. Notice that, since in general the Wardrop First

Principle allows the existence of multiple paths with optimal travel costs, the shortest-path

spanning tree is typically not unique. Next, we distinguish among three cases.

(Case 1) For all p, p̄ ∈ P, τ∗p − τ∗p̄ = 0, namely, all origin-destination paths have

identical travel time. This assumption implies that for every node v ∈ V all its outgoing

links belong to one of the shortest-path spanning trees. This observation, combined with

the fact that the perceived costs are equal to the shorthest travel cost to destination, implies

that

π∗q = π∗m, for all pairs m, q ∈ vout.

As a result,

aℓm(x∗) =
∑
q

r∗ℓqπ
∗
q − π∗m = π∗m(

∑
q

r∗ℓq − 1) = 0.

By iterating the above equation for all (ℓ,m) ∈ A we proved that the first condition in

(3.10) is satisfied.

(Case 2) There exists a unique p ∈ P such that f∗p = 0 and for all p̄ 6= p, τ∗p̄−τ∗p ≤ 0,

namely, the path p has suboptimal travel time to destination. This assumption implies that

there exists a certain node in the network v ∈ V such that one of its outgoing links m ∈ vout

belongs to p (i.e., it does not belong to any shortest-path spanning tree), while q ∈ vout

belongs to some p̄ (i.e., it belongs to a shortest path spanning tree). This observation,

combined with the fact that the perceived costs are equal to the shorthest travel cost to
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destination, implies

π∗m > π∗q .

Moreover, since m belongs to an origin-destination path with zero flow, there exists ℓ ∈ vin

such that r∗ℓm = 0, and thus

aℓm(x∗) =
∑
q

r∗ℓqπ
∗
q − π∗m

=
∑
q ̸=m

r∗ℓqπ
∗
q + r∗ℓm︸︷︷︸

=0

π∗m − π∗m

=
∑
q ̸=m

r∗ℓqπ
∗
q − π∗m

= π∗q
∑
q ̸=m

r∗ℓq − π∗m

= π∗q − π∗m < 0, (3.12)

which proves that aℓm(x∗) < 0, and shows that the second condition in (3.10) is satisfied

for the pair (ℓ,m) ∈ A.

(Case 3) There exists multiple p ∈ P such that f∗p = 0 and for some p̄ 6= p,

τ∗p̄ − τ∗p ≤ 0, namely, there exists multiple origin-destination paths with suboptimal travel

cost. Under this assumption, we note that the bound derived in (3.12) can be iterated for

all links m such that r∗ℓm = 0, which shows that the second condition in (3.10) is satisfied

for all these pairs, and concludes the proof of the implication.

(ii) ⇒ (i) To prove this implication we consider three cases.
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(Case 1) For all (ℓ,m) ∈ A, aℓm(x∗) = 0, namely, all links have identically zero

appeal. Under this assumption, for every ℓ ∈ L, all the perceived travel costs satisfy

0 = aℓm(x∗) =
∑
q

r∗ℓqπ
∗
q − π∗m, for all m ∈ Aℓ, (3.13)

which implies that π∗m = π∗m̄ for all m, m̄ ∈ Aℓ are identical (i.e. π∗m = π∗m̄ =
∑

q r
∗
ℓqπ

∗
q ).

This observation, combined with the fact that the perceived costs are equal to the shorthest

travel cost to destination, implies that every link in the network belongs to a shortest path

to destination. Hence, all origin-destination paths have identical travel cost, i.e. τ∗p−τ∗p̄ = 0,

which shows that x∗ satisfies the Wardrop First Principle.

(Case 2) There exists a unique (ℓ,m) ∈ A such that aℓm(x∗) < 0 and rℓm = 0.

Under this assumption, we first prove that there exists a path p ∈ P containing link m such

that f∗p = 0. Since the flow on any origin-destination path can be written as the network

inflow multiplied by the product of the routing ratios belonging to that path:

f∗p = λ̄
∏

q,w∈p
r∗qw,

we immediately obtain f∗p = 0.

Second, we prove that for all p̄ ∈ P, p̄ 6= p, the following inequality holds: τ∗p̄−τ∗p ≤

0. By using the assumption aℓm(x∗) < 0, together with π∗w =
∑

q r
∗
ℓqπ

∗
q , which holds for all
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w ∈ Aℓ, w 6= m, (see (3.13)), we have

0 > aℓm(x∗) =
∑
q

r∗ℓqπ
∗
q − π∗m

= π∗w
∑
q

r∗ℓq − π∗m

= π∗w − π∗m. (3.14)

Since path p contains link w and the minimum travel cost from w to destination is subop-

timal (π∗w > π∗m), we have that any path p̄ ∈ P containing link m satisfies

τ∗p̄ < τ∗p ,

which shows that x∗ satisfies the Wardrop First Principle.

(Case 3) There exists multiple ramps (ℓ,m) ∈ A such that aℓm(x∗) < 0 and

r∗ℓm = 0. Under this assumption, we note that equation (3.14) still applies because r∗ℓm = 0.

Hence, the reasoning adopted for (Case 2) can be iterated for all (ℓ,m) such that aℓm(x∗) < 0

and r∗ℓm = 0. ■

Three important implications follow from the above theorem. First, the result

shows that a Wardrop equilibrium is also an equilibrium of the dynamical model (3.7), thus

showing that if a dynamical network starts at a Wardrop equilibrium it will remain at that

equilibrium at all times. Second, the result shows that dynamical systems in which travelers

update their routing in real-time at every junction by minimizing their perceived travel cost

admit equilibrium points that satisfy the Wardrop conditions. This observation supports our
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Figure 3.3: Two-link network (a), and piecewise affine outflow function (b).

modeling choices, and demonstrates that the perceived costs are representative quantities

to describe the economical decisions of routing apps. Third, by combining Theorem 3.15

with (3.10), it follows that a Wardrop Equilibrium is perceived by the travelers when all the

network links have a nonpositive appeal function. This condition corresponds to a situation

where at every junction no link is more appealing that others.

3.4 Stability Analysis

In this section, we characterize the stability of the fixed points of the feedback

interconnection (3.7). Our main findings are summarized in the following theorem.

Theorem 3.16. (Stability of Interconnected Dynamics) Let (x∗, r∗) be a fixed point

of (3.7) satisfying the conditions (3.10). Then, (x∗, r∗) is stable.

The proof of this theorem is postponed to later in this section.

The simple stability of the fixed points implies that the state trajectories are

not guaranteed to decay asymptotically towards the equilibrium points, and can result in

nontrivial behaviors, such as oscillations, as illustrated in the following example.
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Example 3.17. (Existence of Oscillations in Two Parallel Roads) Consider the

network illustrated in Fig. 3.3(a), representing two parallel roads subject to a constant

inflow of vehicles λ̄ ∈ R>0. We assume that the travel costs are linear

τℓ(xℓ) = xℓ,

and that all outflows are identical and piecewise-affine:

fout
ℓ (xℓ) = min{vxℓ, C},

for all ℓ ∈ L = {1, . . . , 4}, where v ∈ R>0.

We distinguish among two cases: (a) the network is operating in congested regimes,

that is, at all times x1 > C/v and x2 > C/v, and (b) the network is operating in regimes of

free-flow, that is, at all times x1 ≤ C/v and x2 ≤ C/v. Fig. 3.4 (a) and (b) show the phase

portrait of the system trajectories in case (a) and case (b), respectively. As illustrated by the

plots: in case (a) the trajectories of the system are oscillating periodic orbits; in contrast,

in case (b) the trajectories converge asymptotically to an equilibrium point. The presence of

periodic orbits implies that the equilibrium points are stable, but not asymptotically stable,

thus supporting Theorem 3.16.
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The existence of periodic orbits in case (a) can be further formalized. To this aim,

we recall the dynamical equations governing the system in this regime:

ẋ2 = −C + r12λ̄,

ẋ3 = −C + r13λ̄,

ṙ12 = r12(1− r12)(x3 − x2),

where we used the fact that fout
1 = λ̄ after an initial transient. This system admits an

equilibrium point described by r12 = 0.5 and x3 = x2. We adopt the change of variables

z := x3 − x2, and rewrite the dynamical equations describing the new state [z, r12]
T:

ż = (1− 2r12)λ̄,

ṙ12 = r12(1− r12)z.

Next, we show that the following quantity:

U(z, r12) :=
1

2
z2 − λ̄ (ln r12 − ln(1− r12)) ,
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Figure 3.4: Phase portrait: (a) oscillatory trajectories, (b) stable trajectories. The red curve
illustrates an example of trajectories passing through the conditions x3 = x2 and r12 = 0.9.

is conserved along the trajectories of the system. To this aim, we compute its time derivative

to obtain

U̇(z, r12) = zż − λ̄
(

1

r12
+

1

1− r12

)
ṙ12

= z(1− 2r12)λ̄− λ̄((1− r12)z − r12z))

= z(1− 2r12)λ̄− z(1− 2r12)λ̄ = 0,

which shows that the quantity U(z, r12) is a constant of motion, and proves the existence of

periodic orbits. □

In the remainder of this section, we illustrate the key technical results that prove

Theorem 3.16. In short, the stability of the fixed points of (3.7) follows from interpreting

the system as a negative feedback interconnection between the traffic dynamics and the
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routing dynamics (see Fig. 3.2), and from showing that each open-loop component is a

passive dynamical system. We refer to Chapter 2 for a summary of the notions of passivity

utilized in the remainder.

We next show that the routing dynamics satisfy the passivity property. To this

aim, we first prove that the group of routing equations at a single junction are passive. For

every link ℓ ∈ L, recall that Aℓ is the set of links available at the downstream junction, and

let |Aℓ| := α be its cardinality. We interpret the set of α dynamical equations

ṙℓm = rℓm(
∑
q

rℓqπq − πm), for all m ∈ Aℓ, (3.15)

as a dynamical system with input and output, respectively,

uℓ = [πm1 , . . . , πmα ]
T,

yℓ = [rℓm1 , . . . , rℓmα ]
T. (3.16)

The following result formalizes the passivity of equations (3.15).

Lemma 3.18. (Passivity of Single-Junction Routing Dynamics) The single-junction

routing dynamics (3.15) is passive with respect to the input-output pair (−uℓ, yℓ).

Proof. We let [r∗ℓm1
, . . . , r∗ℓmp

] denote a fixed point of (3.15), and we show that

Vℓ(r) =
∑
m∈Aℓ

r∗ℓm ln

(
r∗ℓm
rℓm

)
, (3.17)
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is a storage function for the dynamical system defined by (3.15). We begin by observing

that Vℓ is differentiable because it is a linear combination of natural logarithm functions.

Moreover, by using the log-sum inequality, we have

Vℓ(r) =
∑
m

r∗ℓm ln

(
r∗ℓm
rℓm

)

≥
∑
m

r∗ℓm ln

(∑
m r

∗
ℓm∑

m rℓm

)

= ln(1) = 0,

where we used the fact that
∑

m r
∗
ℓm =

∑
m rℓm = 1, which shows that Vℓ is an appropriate

choice of storage function.

To show the passivity property, we first incorporate the negative sign of the input

vector into the dynamical equation, and we rewrite (3.15) as

ṙℓm = rℓm(πm −
∑
q

rℓqπq), for all m ∈ Aℓ,
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and we next show passivity of the above equation with respect to the input-output pair

(uℓ, yℓ). The derivative of the storage function is

V̇ℓ(r) = −
∑
m

r∗ℓm
ṙℓm
rℓm

= −
∑
m

r∗ℓm(πm −
∑
q

rℓqπq)

= −
∑
m

r∗ℓmπm +
∑
m

r∗ℓm︸ ︷︷ ︸
=1

∑
q

rℓqπq

= −
∑
m

r∗ℓmπm +
∑
q

rℓqπq

≤
∑
q

rℓqπq = uTℓ yℓ,

where for the last inequality we used the fact that rℓq ≥ 0 and πq ≥ 0, which shows the

claim and concludes the proof. ■

Next, we leverage the above lemma to show that the overall routing dynamics (3.5)

also satisfy the passivity property. To this aim, we consider (3.5) as a dynamical system

with input and output vectors, respectively,

ur = [uℓ1 , . . . , uℓn ]
T,

yr = [yℓ1 , . . . , yℓn ]
T, (3.18)

where uℓi and yℓi , i ∈ {1, . . . , n}, are defined in (3.16). Passivity of the overall routing

dynamics is formalized next.
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Lemma 3.19. (Passivity of Overall Routing Dynamics) Let the perceived travel costs

be modeled as in (3.3). Then, the overall routing dynamics (3.5) is passive with respect to

the input-output pair (−ur, yr).

Proof. The proof of this statement consists of two parts. First, we show that the dynamical

equations at every pair of junctions are independent, and thus the overall routing dynamics

(3.5) can be studied as a composition of independent subsystems. To this aim, we will show

that uℓ is independent of ym in (3.16), for all ℓ 6= m. This fact immediately follows by

observing that, when the perceived travel costs follow the model (3.3), the perceived cost

πℓ(x) is a function that only depends on x, and it is independent of the routing r.

Second, we show that passivity of all the individual junctions implies passivity of

the overall routing dynamics (3.5). To this aim, we consider the following storage function

for (3.5):

Vr(r) =
∑
ℓ∈L

Vℓ(r), (3.19)

where Vℓ denotes the storage function associated to junction ℓ. By taking the time derivative

of the above storage function:

V̇r(r) =
∑
ℓ∈L

V̇ℓ(r) ≤
∑
ℓ∈L

uTℓ yℓ = uTr yr,

where the inequality follows from the passivity of the individual junctions, which proves the

passivity of (3.5). ■
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Next, we show that the traffic dynamics (5.6) satisfy the passivity property. To

this aim, we interpret (5.6) as an input-output dynamical system with input described by

the set of routing ratios, and output described by the set of perceived link costs. Formally,

to the scalar input rℓm we associate the scalar output πm or, equivalently, in vector form

we consider the following input and output vectors:

ux = [r11, r12, . . . , r1n, r21, . . . , rnn]
T,

yx = [ π1, π2, . . . , πn, π1, . . . , πn]. (3.20)

The following result formalizes the passivity of (5.6).

Lemma 3.20. (Passivity of the Traffic Dynamics) Assume that all links ℓ ∈ L have

finite flow capacity Cℓ <∞. Then, the traffic network (5.6) is a passive dynamical system

with respect to the input-output pair (ux, yx).

Moreover, if for all ℓ there exists ρℓ ∈ R>0 such that

fℓ(xℓ) ≥ ρℓπℓ(xℓ), (3.21)

then the traffic dynamics (5.6) are output strictly passive.

Proof. We show that the following function

Vx(x) =
1

h

∑
ℓ∈L

∫ xℓ

0
πℓ(σ) dσ, (3.22)
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is a storage function for (5.6), where the constant h ∈ R>0 is chosen as follows:

h = max
ℓ∈L

Cℓ.

We note that Vx is non-negative and it is differentiable, because it is the combination of

integral functions, and thus it is an appropriate choice of storage function. By taking the

time derivative of the storage function we obtain

V̇x(x) =
1

h

∑
ℓ∈L

πℓ(xℓ)ẋℓ

=
1

h

∑
ℓ∈L

πℓ(xℓ)

−fout
ℓ (xℓ) +

∑
m∈Aℓ

rmℓf
out
m (xm)


= − 1

h

∑
ℓ∈L

πℓ(xℓ)f
out
ℓ (xℓ)

+
1

h

∑
ℓ∈L

πℓ(xℓ)
∑
m∈Aℓ

rmℓf
out
m (xm)

≤ 1

h

∑
ℓ∈L

πℓ(xℓ)
∑
m∈Aℓ

rmℓf
out
m (xm)

≤
∑
ℓ∈L

∑
m∈Aℓ

πℓ(xℓ)rmℓ = uTxyx,

where for the first inequality we used the fact that πℓ(xℓ)fℓ(xℓ) ≥ 0 for all ℓ ∈ L, and the

last inequality follows from the above choice of h (which implies fm/h < 1, for all m ∈ L).

Hence, the bound proves the passivity of (5.6).
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To show output-strict passivity, we substitute the inequality (3.21) into the time-

derivative of the storage function to obtain:

V̇x(x) = −
1

h

∑
ℓ∈L

πℓ(xℓ)f
out
ℓ (xℓ)

+
1

h

∑
ℓ∈L

πℓ(xℓ)
∑
m∈Aℓ

rmℓf
out
m (xm)

≤ −1

h

∑
ℓ∈L

ρℓπℓ(xℓ)
2 +

1

h

∑
ℓ∈L

πℓ(xℓ)
∑
m∈Aℓ

rmℓf
out
m (xm)

≤ −
∑
ℓ∈L

ρℓπℓ(xℓ)
2 +

∑
ℓ∈L

∑
m∈Aℓ

πℓ(xℓ)rmℓ

≤ −yTx yx + uTxyx,

where the last inequality follows from ρℓ > 0, which shows that (5.6) is output strictly

passive and concludes the proof. ■

The additional assumption (3.21) needed to ensure output strict passivity can be

interpreted as follows. By using the fact that for every xℓ ∈ X , πℓ(xℓ) > 0, the inequality

(3.21) can be rewritten as follows:

fℓ(xℓ)

πℓ(xℓ)
≥ ρℓ,

and, by deriving both quantities with respect to xℓ we obtain

dfℓ(xℓ)

dπℓ(xℓ)
> 0,
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where we used the fact that ρℓ > 0. Hence, in order to achieve output strict passivity, an

increase in travel cost of a link must imply an increase in traffic flow in the link.

We are now ready to formally prove Theorem 3.16.

Proof of Theorem 3.16: To prove the stability of the fixed points, we interpret (3.7) as a

negative feedback interconnection between the traffic dynamics and the routing dynamics,

and we leverage the Passivity Theorem [32] to infer the Lyapunov stability of the system.

We refer to Theorem 2.1 in Chapter 2 for a concise statement of the Passivity Theorem.

We begin by observing that the lemmas 3.19 and 3.20 ensure passivity of the

open loop systems. Next, we show that the equilibrium points are local minima for the

storage function of routing (3.19) and for the storage function of traffic (3.22). First, we

observe that the routing storage function Vr(r) in (3.19) is the summation of the storage

functions at the junctions (3.17), which are non-negative quantities that are identically zero

at the equilibrium points Vℓ(r∗) = 0. Hence, the equilibrium points are local minima of the

function Vr(r).

Second, we show that Vx(x) attains a minimum at the equilibrium points. To this

aim, we first let λ̄ = 0 and we study the equilibrium points of (5.6). Every equilibrium

point x∗ satisfies the following identity

0 = (RT − I)f(x∗).

By observing that (RT − I) is invertible (see e.g. [4, Theorem 1]), and that f(x∗) = 0 only

if x∗ = 0 (see Assumption (A1)), the above equation implies that the unique equilibrium

point of the system satisfies x∗ = 0. The choice of Vx(x) in (3.22) implies that Vx(x) is
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non-negative and that Vx(x∗) = 0, which shows that x∗ is a local minima of the storage

function. Lastly, we observe that any nonzero λ̄ has the effect of shifting the equilibrium

point, and thus it does not change the properties of the storage function.

Finally, the stability of the equilibrium points follows by application of condition

(i) in Theorem 2.1. ■

3.5 Robust Information Design

In this section, we propose a control technique to guarantee the asymptotic stabil-

ity the equilibrium points, and thus strengthen the robustness of the system. The method

relies on regulating the rate at which travelers react to congestion by properly modifying

the reaction rates. To this aim, we next introduce the notion of congestion-aware reaction

rates.

Definition 3.21. (Congestion-Aware Reaction Rates) A set of reaction rates for the

dynamics (3.5) is congestion-aware if, for all ℓ ∈ L,

δℓ : T n → (0,+∞).

Moreover, let Tℓ := {πm}m∈Aℓ
⊆ T n be the set of perceived costs at the links

downstream of ℓ. A set of congestion-aware reaction rates is local if, for all ℓ ∈ L,

δℓ : Tℓ → (0,+∞). (3.23)

□
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The class of congestion-aware reaction rates conceptualizes a setting where the rate

at which travelers react to changes in traffic congestion is a function of the instantaneous

perceived costs. We observe that this control scheme can be achieved, for instance, by

appropriately designing the rate at which navigation apps update their routing suggestions.

Similarly, local congestion-aware reaction rates model a setting where, at every node of the

network, the reaction rates at the incoming links only depend on the perceived costs at the

outgoing links.

We observe that the adoption of congestion-aware reactions does not alter the

equilibrium points of the interconnected system (3.7). In fact, reaction rates are positive

multiplicative quantities in the dynamical equation (3.4), and thus the properties of the

equilibrium points discussed in Section 3.3 remain unchanged. The following result charac-

terizes the stability of the equilibrium points under congestion-aware reaction rates.

Theorem 3.22. (Asymptotic Stability Under Congestion-Aware Reaction Rates)

Consider the interconnected system (3.7) where the routing dynamics adopt the class of local

congestion-aware reaction rates (3.23). Moreover, assume that for every link ℓ ∈ L there

exists a scalar ρℓ ∈ R>0 such that

fℓ(xℓ) ≥ ρℓπℓ(xℓ).

Then, every equilibrium point (x∗, r∗) that satisfies (3.10) is asymptotically stable.

The proof of this theorem is postponed to later in this section.
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The above theorem shows that the class of local congestion-aware reaction rates

ensures the asymptotic stability of the equilibrium points of the interconnected traffic-

routing system.

The result has an important practical interpretation that we illustrate next. Let

p = ({v1, . . . , vk}, {ℓ1, . . . , ℓk}) be an origin-destination path in the graph, that is, ℓ1 = s and

ℓk = d. It follows from the recursive definition of perceived costs (3.3) that the perceived

costs are non-increasing along a path, that is, for all i ∈ {1, . . . , n− 1},

πℓi ≥ πℓi+1
.

By combining this observation with the definition of local reactions (3.23), it follows that

the magnitude of the reaction rates is non-increasing along a path, that is,

δℓi ≥ δℓi+1
.

Hence, Theorem 3.22 states that in order to achieve asymptotic stability of the equilibrium

points, travelers that are closer to the network origin must react faster to changes in traffic

congestion as compared to travelers that are in the proximity of the network destination.

In the remainder of this section, we present the key technical results that formally

prove Theorem 3.22. Loosely speaking, the asymptotic stability of the equilibrium points

follows by ensuring that the open loop components of the negative feedback interconnection

(3.7) satisfy a strong passivity notion. We begin by proving this property for the routing

dynamics.
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Lemma 3.23. (Input Strict Passivity of Routing Dynamics) Assume the routing

dynamics (3.5) adopt the class of local congestion-aware reaction rates (3.23). Then, the

overall routing dynamics (3.5) is input strictly passive.

Proof. The proof of this statement consists of two parts. First, we show that the single-

junction routing dynamics (3.15) are input strictly passive. To this aim, similarly to the

proof of Lemma 3.18, we reverse the sign of the dynamical equation to take into account

the negative sign in the input. Moreover, we consider the following storage function

Vℓ(r) =
1

h

∑
m∈Aℓ

r∗ℓm ln

(
r∗ℓm
rℓm

)
,

where [r∗ℓm1
, . . . , r∗ℓmp

] is a fixed point of (3.15), and the scalar hℓ > 0 is chosen so that

h = max
ℓ∈L

δℓ.
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We observe (3.23) implies h <∞, and that Vℓ(r) is an appropriate choice of storage function

(see proof of Lemma 3.18). By computing the time derivative of the storage we obtain

V̇ℓ(r) = −
1

h

∑
m

r∗ℓm
ṙℓm
rℓm

= −1

h

∑
m

r∗ℓm(πm −
∑
q

rℓqπq)δℓ

= −1

h

∑
m

r∗ℓmπmδℓ +
1

h

∑
m

r∗ℓm︸ ︷︷ ︸
=1

∑
q

rℓqπqδℓ

= −1

h

∑
m

r∗ℓmπmδℓ +
1

h

∑
q

rℓqπqδℓ

= −1

h

∑
m

r∗ℓmπmδ̃m(πm) +
1

h

∑
q

rℓqπqδℓ

≤ −
∑
m

πmδ̃m(πm) +
∑
q

rℓqπq

= −uTℓ φ(uℓ) + uTℓ yℓ,

where for the fourth identity we used the fact that δℓ is a function of πm, namely, δℓ =

δ̃m(πm), the inequality follows from our choice of h (which implies δℓ/h < 1), and φ(uℓ) =

[δ̃m1(πm1), . . . , δ̃mp(πmp)]
T. The above inequality shows that the single-junction routing

(3.15) is input strictly passive.

Finally, input strict passivity of the overall routing dynamics follows by combining

input strict passivity of the junction dynamics with the choice of storage function Vr(r) =∑
ℓ∈L Vℓ(r) for (3.5), and by adopting a reasoning similar to the one used in the proof of

Lemma 3.19. ■

We are now ready to formally prove Theorem 3.22.
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Proof of Theorem 3.22: To prove the asymptotic stability of the fixed points, interpret

(3.7) as a negative feedback interconnection between the traffic dynamics and the routing

dynamics, and we leverage the stronger version of the Passivity Theorem [32] for Lyapunov

stability. We refer to condition (ii) of Theorem 2.1 in Chapter 2 for a concise description

of the assumptions required to prove this result.

The proof of this claim is organized into three main parts, and leverages the fact

that the open loop components are passive dynamical systems with storage functions defined

in the proofs of lemmas 3.20 and 3.23. First, we observe that Theorem 3.16 immediately

implies that the equilibrium points are local minima for the storage functions.

Second, we show that each open loop systems is zero-state detectable [32]. Zero-

state detectability of the routing dynamics immediately follows from the choice of input

and output (3.16), and by observing that the state of the system coincides with its output.

Zero-state detectability of the traffic dynamics immediately follows from the choice of input

and output (3.20), and by observing that if the output of the system is identically zero then

its state is identically zero.

Third, we show that the inequalities (2.4) are satisfied. We begin by observing

that input strict passivity of the routing dynamics, proved in Lemma 3.23, ensures the

existence of a function φrouting : T → Rn
>0, such that

vTφrouting(v) > 0, for all v 6= 0.
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Moreover, output strict passivity of the traffic dynamics, proved in Lemma 3.20, ensures

the existence of a function ρtraffic : T → Rn
>0, such that

vTρtraffic(v) > 0, for all v 6= 0.

Finally, the statement of the result follows by combining the above observations,

and by application of condition (ii) in the passivity theorem 2.1. ■

3.6 Simulation Results

This section presents two sets of numerical simulations that illustrate our findings.

Data From SR60-W and I10-W in Southern California. Consider the traffic network

in Fig. 3.5(a), which schematizes the west bounds of the freeways SR60-W and I10-W

in Southern California. Let x60 and x10 be the average traffic density in the examined

sections of SR60-W (absolute miles 13.1− 22.4) and in the section of I10-W (absolute miles

24.4−36.02), respectively. Moreover, let r60 (resp. r10 = 1−r60) be the fraction of travelers

choosing freeway SR60-W over I10-W (resp. choosing freeway I10-W over SR60-W) for their

commute. Fig. 3.5(b) illustrates the time-evolution of the recorded traffic density1 for the

two freeways on Friday, March 6, 2020. The figure also illustrates an estimation of the

densities and of the routing fraction as predicted by our models, demonstrating that our

dynamical framework can predict the complex dynamical behaviors observed in practice.
1Source: Caltrans Freeway Performance Measurement System (PeMS).
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Table 3.1: Choice of Affine Travel Costs
ℓ 1 2 3 4 5 6 7

aℓ 1 10 1 1 1 10 1
bℓ 0 0 50 10 50 0 0

Oscillating Trajectories in Seven-Link Network. Consider the seven-link network

discussed in Example 3.2 and reported in Fig. 3.6(a), assume that the outflows are linear

fℓ(xi) = xi, for all i ∈ {1, . . . , 7},

and that the travel costs are affine:

τℓ(xℓ) = aℓxℓ + bℓ, for all i ∈ {1, . . . , 7},

where the parameters aℓ and bℓ are summarized in Table 3.1. Since the flow capacities of the

links are unbounded, Theorem 3.13 ensures the existence of an equilibrium point (x∗, r∗).

It can be verified that an equilibrium point that satisfies (3.10) is:

x∗1 = 6, x∗2 = 4, x∗3 = 2, x∗4 = 2, x∗5 = 2, x∗6 = 4, x∗7 = 6,

r12 = 2/3, r13 = 1/3, r24 = 1/2, r25 = 1/2.

Fig. 3.6 shows an example of trajectories, demonstrating that the system admits

a periodic orbit, which prevents the state from converging to the equilibrium points asymp-

totically.
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Figure 3.5: Time series data for SR60-W and I10-W on March 6, 2020. (a) schematic of
traffic network. (b) Sensory data (continuous lines with circles) and trajectories predicted
by our models (continuous lines). (c) Routing predicted by our models. Simulation uses
constant inflow λ̄ = 3340 veh/hr/ln.

Fig. 3.7 shows the trajectories of the same network when the routing apps use a

set of local congestion-aware reaction rates, demonstrating that this class of control policies

ensures the asymptotic stability of the equilibrium points.
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Figure 3.6: (a) Seven-link network. (b)-(c) Oscillating traffic state. (d)-(e) Oscillating
routing state.

78



0 10 20 30

0

2

4

6

8

(a)
0 10 20 30

0

2

4

6

8

(b)

0 10 20 30
0

.5

1

(c)
0 10 20 30

0

1

2

3

(d)

Figure 3.7: Asymptotic stability under congestion-aware reaction rates.
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Chapter 4

Robust Network Optimization:

Application to Traffic Intersections

In this chapter, we tackle the topic of network robustness by focusing on ap-

plications to urban traffic networks. Specifically, we consider the problem of controlling

signalized traffic intersections in a robust fashion, with the goal of ensuring system-level

optimality. We refer the reader to [4, 8] for a complete discussion of the technical results

presented in this chapter.

4.1 Introduction

The design of feedback policies for the control of traffic infrastructures is an

intensively-studied topic, and the available techniques can mainly be divided into three

categories: routing policies, flow control, and intersections control. Routing policies rely on

game-theoretic models to capture the behavior of the drivers and to influence their turning

80



preferences in order to optimize congestion objectives, and have been studied both in a

centralized [47] and distributed [48] framework. Flow control uses a combination of speed

limits and gating techniques to regulate the road flows and network inflows, respectively

[49, 50]. Conversely, intersection control refers to the design of the scheduling of the (au-

tomated) intersections so that the flow through intersections is maximized, and can be

achieved: (i) by controlling the signaling sequence and offset, and/or (ii) by designing the

durations of the signaling phases. The control of signaling offsets typically aims at tun-

ing the synchronization of green lights between adjacent intersections in order to produce

green-wave effects [51], and consists of solving a group of optimization problems that take

into account certain subparts of the infrastructure, while minimizing metrics such as the

number of stops experienced by the vehicles. In contrast, the durations of green times at

intersections affects the average behavior of the traffic flows in the network, and plays a

significant role in the efficiency of large-scale networks [52].

Widely-used distributed signaling control programs include SCOOT [53], RHODES

[54], OPAC [55], SCATS [56], and emerge as the most common techniques currently em-

ployed in major cities. The sub-optimal performance of these methods has recently mo-

tivated the development of Max-Pressure techniques [57]. The Max-Pressure controller is

based on a store-and-forward model, where queues at intersections have unlimited capacity

and, under this assumption, Max-Pressure is guaranteed to maximize the network through-

put by stabilizing the network. Centralized policies require higher modeling efforts but,

in general, have better performance guarantees [58]. Among the centralized policies, the

Traffic-Responsive Urban Control [52] has received considerable interest for its simplicity
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and good performance. Based on a store-and-forward modeling paradigm, the method con-

sists in minimizing the network queue lengths through a linear-quadratic regulator that

uses a relaxation of the physical constraints to abide with the high complexity. Variations

of these techniques to incorporate physical constraints have been studied in [59, 60].

The tremendous complexity of urban traffic networks has recently motivated the

adoption of model-free control methods that rely only on historical data [61] and, concur-

rently, the development of simplified models to deal with the switching nature of the traffic

signals [62]. However, the highly-nonlinear behavior of these dynamical systems still limits

our capability to consider adequate optimization and prediction horizons, and the develop-

ment of tractable models capable of capturing all the relevant network dynamics is still an

open problem.

Motivated by the considerable complexity of urban transportation systems, in this

work we propose a simplified framework to capture the behavior of traffic networks operating

in free-flow regimes with arbitrary travel speeds. In this model, each road is modeled

through multiple state variables, representing the spatial evolution of traffic densities within

the road. This assumption allows us to capture the non-uniform spatial displacement of

traffic within each road, and to construct a simplified network model that results in a

more-tractable framework for optimization.

We employ the proposed model to design the durations of the green times at the

intersections, and we relate congestion objectives with the optimization of a metric of con-

trollability of the dynamical system associated with the traffic network. To the best of

the authors’ knowledge, this work represents a novel, computationally-tractable, method
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to perform network-wide optimization of the green-splits durations at intersections. We

provide conditions that guarantee stability of the system, and we characterize the perfor-

mance of the control policy in relation to the network congestion. We use the concept of

smoothed spectral abscissa [22] to solve the optimization, and we demonstrate the benefits

of our methods through a microscopic simulation on the urban interconnection of Man-

hattan, NY. We characterize the complexity of our algorithms, and propose a method to

parallelize the computation so that it can be solved efficiently by a group of cooperating

distributed agents. Our results and simulations suggest that the increased system perfor-

mance obtained by our control method justifies the increment in complexity deriving from

the adoption of a global system description.

The rest of this chapter is organized as follows. Section 4.2 illustrates our model

of traffic network, and formalizes the problem of designing the durations of the green times

at the intersections with the goal of optimizing vehicle evacuation. The section includes a

discussion of the benefits in adopting a simplified model, and presents a comparison with

more-established macroscopic models. Section 4.3 illustrates the proposed centralized ap-

proach to numerically solve the optimization problem, while Section 4.4 presents a technique

to parallelize the computation among a set of distributed agents for more efficient compu-

tation. Section 4.5 is devoted to macroscopic and microscopic simulations to validate our

modeling assumptions and optimization techniques.
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4.2 Dynamical Model of Traffic Networks and Problem For-

mulation

We model urban traffic networks as a group of one-way roads interconnected

through signalized intersections. Within each road, vehicles move at uniform velocity, while

traffic flows are exchanged between adjacent roads by means of the signalized intersection

connecting them. In this section, we discuss a concise dynamical model for traffic networks

in certain regimes, that will be employed for the analysis.

4.2.1 Model of Road and Traffic Flow

Let N = (R, I) denote a traffic network with roads R = {r1, . . . , rnr} and intersec-

tions I = {I1, . . . , InI}. Each element in the set R models a one way link interconnecting

two signalized intersections, whereas intersections regulate conflicting flows of traffic among

adjacent roads (see Section 4.2.2). We assume that exogenous inflows enter the network

at (source) roads S ⊆ R and, similarly, vehicles exit the network at (destination) roads

D ⊆ R, with S ∩ D = ∅. The following standard connectivity assumption ensures that

vehicles are allowed to leave the network.

Assumption 4.1. For every road ri ∈ R there exists at least one path in N from ri to a

road rj ∈ D.

We denote by ℓi ∈ R>0 the length of road ri, and we model each road ri by discretizing

it into σi = dℓi/he segments of uniform length h ∈ R≥0 (see Fig. 4.1). We denote by

xki ∈ R the traffic density associated with the k-th segment of road ri, k ∈ {1, . . . , σi}. We
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Figure 4.1: (a) The portion of road comprised between two signalized intersections is mod-
eled with a set of σi variables. (b) The almost-flat behavior in regimes of free-flow or
congestion motivates our approximation γ(ρi) ≈ γi.

assume that inflows of vehicles f in
ri enter the road in correspondence of its upstream segment

(i.e. k = 1); accordingly, outflows fout
ri leave the road in correspondence of its downstream

segment (i.e. k = σi). We approximate the relationship between traffic flows and densities

by assuming that vehicles move from upstream to downstream with uniform velocity γi.

Then, the dynamics of the road state xi = [x1i · · · x
σi
i ]T are described by:



ẋ1i

ẋ2i

...

ẋσi
i


=
γi
h



−1

1 −1

. . . . . .

1 0


︸ ︷︷ ︸

Di



x1i

x2i

...

xσi
i


+



f in
ri

0

...

−fout
ri


. (4.1)

Differently from more-established network models where a single state variable is associated

to a uniform road segment (e.g., [57, 34]), the choice of a constant space-discretization step

allows us to capture the fact that the density of vehicles may not be uniform along the road.
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Remark 4.2. (Equivalence with Hydrodynamic Models) The dynamical model (4.1)

derives from the mass-conservation continuity equation [63] in certain traffic regimes, as we

explain next. Let ρi = ρi(s, t) ≥ 0 denote the (continuous) density of vehicles within road

ri at the spatial coordinate s ∈ [0, ℓi] and time t ∈ R≥0. Let fi = fi(s, t) ≥ 0 denote the

(continuous) flow of vehicles along the road, and let traffic densities and traffic flows follow

the hydrodynamic relation

∂ρi
∂t

+
∂fi
∂s

= 0.

We complement the above equation with the Lighthill-Whitham-Richards relation fi = fi(ρi),

where flows instantaneously change with the density. Then, we include the speed-density

fundamental relationship fi = ρiv(ρi), where v : R≥0 → R≥0 represents the speed of flow, to

obtain

∂ρi
∂t

+

(
v(ρi) + ρi

d v(ρi)

dρi

)
∂ρi
∂s

= 0.

Solutions to the above relation are kinematic waves [64], moving at speed γ(ρi) = v(ρi) +

ρi
dv(ρi)
dρi

. We consider regimes where the speed of the kinematic wave can be approximated

as γ(ρi) ≈ γi. As illustrated in Fig. 4.1(b), this approximation is accurate in regimes of

free flow or congestion, characterized by dv(ρi)
dρi

≈ 0. By letting γi denote the average speed

of flow, the approximated continuity equation reads

∂ρi
∂t

+ γi
∂ρi
∂s

= 0.
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We then discretize in space the above relation by defining the discrete spatial coordinate

sk = kh, k ∈ {0, . . . , σi},

and by replacing the partial derivative with respect to s with the difference quotient

∂ρi(sk, t)

∂t
= −γi

ρi(sk, t)− ρi(sk−1, t)

h
.

This discretization leads to the dynamical model (4.1), by introducing the boundaries inflows

f in
ri and outflows fout

ri , and by replacing ρi(sk, t) with the compact notation xki . □

4.2.2 Model of Intersection and Interconnection Flow

Signalized intersections alternate the right-of-way of vehicles to coordinate and

secure conflicting flows between adjacent roads. Every signalized intersection Ij ∈ I, j ∈

{1, . . . , nI}, is modeled as a set Ij ⊆ R×R, consisting of all allowed movements between

the intersecting roads. For road ri ∈ R, let Iriin denote the (unique) intersection at road

upstream; similarly, let Iriout denote the (unique) intersection at road downstream. We

model the switching behavior of a signalized intersection through the green split function

s : R × R × R≥0 → {0, 1} that assumes boolean values 1 (green phase) or 0 (red phase),
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Figure 4.2: Typical set of phases at a four-ways intersection.

and let the interconnection flows be

f in
ri =

∑
(ri,rk)∈I

ri
in

s(ri, rk, t) f(ri, rk) + uri ,

fout
ri =

∑
(rk,ri)∈I

ri
out

s(rk, ri, t) f(rk, ri) + wri , (4.2)

where f : R × R → R≥0 denotes the intersection transmission rate. We remark that

the notation f(ri, rk) represents the transmission rate from road rk to ri and, similarly,

s(ri, rk, t) denotes the green split function that controls traffic flows from rk and directed

to ri. We note that equation (4.2) incorporates the exogenous inflows and outflows to each

road (flows of traffic that are not originated or merge to modeled intersections or roads)

through the terms uri : R≥0 → R≥0 and wri : R≥0 → R≥0, respectively. We note that

uri 6= 0 if and only if ri is a source road (that is, ri ∈ S), and wri 6= 0 if and only if ri is a

destination road (that is, ri ∈ D).

Example 4.3. (Intersections and Scheduling Functions) Consider the four-ways

intersection I1 illustrated in Fig. 4.2. The intersection is modeled through the set of allowed
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movements

I1 = {(r1, r6), (r1, r8), (r5, r2), (r5, r4), (r7, r2), (r3, r6),

(r3, r8), (r3, r2), (r7, r4), (r7, r6), (r5, r8), (r1, r4)}.

Allowed movements at a certain intersections are typically grouped into sets of phases, where

each phase represents a set of movements that can occur simultaneously. For I1, a typical

set of phases is {P1,P2,P3,P4}, where

P1 = {(r1, r6), (r1, r8), (r5, r2), (r5, r4)},

P2 = {(r7, r2), (r3, r6)},

P3 = {(r3, r8), (r3, r2), (r7, r4), (r7, r6)},

P4 = {(r5, r8), (r1, r4)}.

The green split function alternates the set of available phases within the cycle time T ∈ R>0,

that is, for given scalars t0, t1, t2, t3, t4, with 0 = t0 ≤ t1 ≤ t2 ≤ t3 ≤ t4 = T , denoting the

switching instants, the green split function is

s(ri, rk, t) =


1 if (ri, rk) ∈ Pj and t ∈ [tj−1, tj),

0 otherwise,

where j ∈ {1, . . . , 4}. □
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We model the transmission rate during a green-light phase as a function propor-

tional to the density of vehicles “waiting” in the downstream section of the road, that is,

f(ri, rk) = c(ri, rk)x
σk
k , (4.3)

where c : R×R → R≥0. In particular, c(ri, rk) incorporates the turning preferences of the

drivers when decomposing c(ri, rk) = φ(ri, rk)ϕ(ri, rk), where φ : R×R → [0, 1] represents

the average routing ratio of vehicles entering road ri after exiting rk,
∑

i φ(ri, rk) = 1, and

ϕ : R×R → R≥0 captures the speed of the outflow from the dedicated turn lane.

Differently from traditional traffic network models where a single state variable is

typically used to model a uniform road segment [57, 34], our model associates multiple state

variables to each road segment interconnecting two signalized intersections. This approach

allows us to capture the fact that the density of vehicles may not be uniform along each

link, and to model the outflows during a green-light phase as functions that depend only

on the state of the section of road that is located in the proximity of the intersection. The

precision of the illustrated model is demonstrated through a set of microscopic simulations

in [65] for a small scale network.

Remark 4.4. (Model Validity and Limitations) Two main limitations can be identified

in the simplified modeling settings considered in this work with respect to more comprehen-

sive models, such as [34]. First, our model assumes a constant speed of flow along each

road segment connecting two signalized intersections. Second, the linear approximation does

not allow to limit the inflow to a certain road when that road is congested, which corre-

sponds to the assumption that roads have infinite capacity. We remark, however, that these
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Figure 4.3: Network model associated with a traffic network composed of nI = 4 intersec-
tions and nr = 12 roads. Each road is associated with a set of states that represent the
density of the cells within the roads.

two phenomena can be captured by appropriately tuning the parameters γi and ϕ(ri, rk),

respectively, when these situations occur. Thus, if the network conditions do not change

significantly fast with respect to the network dynamics, one can tune the parameters γi and

ϕ(ri, rk) and occasionally re-update the model to capture the current network conditions.

We anticipate that, although this approach implies that the model is accurate only in the

current network regime, the approach is well-suited for the receding horizon technique that

will be later adopted in this chapter (see Section 4.2.4). □

4.2.3 Switching and Time-Invariant Traffic Network Dynamics

Individual road dynamics can be combined into a joint network model that cap-

tures the interactions among all modeled routes and intersections. To this aim, we adopt
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an approach similar to [60], and assume that exogenous outflows are proportional to the

number of vehicles in the road, that is, wri = w̄rix
σi
i , w̄ri ∈ [0, 1]. By combining Equations

(4.1), (4.2) and (4.3), we obtain



ẋ1

ẋ2

...

ẋnr


︸ ︷︷ ︸

ẋ

=



A11 A12 · · · A1nr

A21 A22
. . . A2nr

... . . . . . . ...

Anr1 Anr2 · · · Anrnr


︸ ︷︷ ︸

A



x1

x2

...

xnr


︸ ︷︷ ︸

x

+



In1 0 · · · 0

0 In2

. . . 0

... . . . . . . ...

0 0 · · · Inr


︸ ︷︷ ︸

B



u1

u2

...

unr


︸ ︷︷ ︸

u

, (4.4)

where A ∈ Rn×n, n =
∑nr

i=1 σi is the overall number of states, u derives from (4.2), and

Aik=


s(ri, rk, t)c(ri, rk)e1e

T
σk
, if i 6= k,

Di−(
∑

ℓ s(rℓ, ri, t)c(rℓ, ri) + w̄ri) eσie
T
σi
, if i = k,

where ei = [0 . . . 1 . . . 0]T is a vector with a single nonzero entry with value 1 in position i

and of appropriate dimension.

We note that the matrix A in (4.4) is typically sparse because not all roads are

adjacent in the interconnection, and its sparsity pattern varies over time as determined by

the splits s(ri, rk, t). Thus, the network model (4.4) is a linear switching system, where the

switching signals are the split functions.

Example 4.5. (Traffic Network Interconnection) Consider the network illustrated

in Fig. 4.3, with R = {r1, . . . , r12} and I = {I1, . . . , I4}. The network comprises four

destination roads D = {r2, r5, r8, r11} (w̄ri = 1 for all ri ∈ D, and w̄ri = 0 otherwise), and
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four source roads (S = {r1, r3, r10, r12}, with uri 6= 0 only if ri ∈ S). Let ℓi/h = 3 and

γi/h = 3 for all i ∈ {1, . . . , nr}. Then, the matrices in (4.4) read as

Aii =


−1

1 −1

1 − (
∑

ℓ s(rℓ, ri, t)c(rℓ, ri) + w̄ri)

 ,

Aij =


0 0 s(ri, rj , t)c(ri, rj)

0 0 0

0 0 0

 ,

for all i, j ∈ {1, . . . , nr}. Notice that s(ri, rj , t) = 0 for all times if (rj , rk) 6∈ Ik for all

k ∈ {1, . . . , nI}. □

Next, we make the classical assumption that scheduling functions are periodic,

with period T ∈ R>0. That is, for all (ri, rk) ∈ Ij , j ∈ {1, . . . , nI}, and for all times t:

s(ri, rk, t) = s(ri, rk, t+ T ).

Let T = {τ1, . . . , τm} denote the set of time instants when a scheduling function changes

its value, that is,

T = {τ ∈ [0, T ] : ∃(ri, rk) ∈ I,

lim
t→τ−

s(ri, rk, t) 6= lim
t→τ+

s(ri, rk, t)}.
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Notice that the matrix A in (4.4) remains constant between consecutive time instants τi−1

and τi. We denote each constant matrix by Ai, and refer to it as to the i-th network mode.

Further, let di = τi − τi−1, with i ∈ {1, . . . ,m} and τ0 = 0, denote the duration of the

i-th network mode. We employ a state-space averaging technique [66] and define a linear,

time-invariant, approximation of the switching network model (4.4):

ẋav = Aavxav +Buav, (4.5)

where Aav = 1
T

∑m
i=1 diAi, and uav = [uav,1 . . . uav,nr ], uav,i = (1/T )

∫ T
0 ui(τ) dτ . We

note that the averaging technique preserves the sparsity pattern of the network, that is,

Aav(i, j) 6= 0 if and only if Ak(i, j) 6= 0 for some k.

In general, the approximation of the behavior of the switching system (4.4) with

the average dynamics (4.5) is accurate if the operating period T is short in comparison

to the underlying system dynamics. Under suitable technical assumptions, a bound on

the deviation of average models with respect to the network instantaneous state has been

characterized in [66]. In particular, the bound becomes tighter for decreasing values of T

and increasing values of road lengths. A numerical validation of the averaging technique

and its validity in relation to T is discussed in Section 4.5 (see Fig. 4.5).

4.2.4 Problem Formulation

In this chapter, we consider the average model (4.5) and focus on the problem of

designing the durations of the green split functions so that a measure of network efficiency

is optimized. Motivated by the relationship Aav = 1
T

∑m
i=1 diAi (see (4.5)), the average
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model allows us to design the durations of the network modes, rather than their exact

sequence. This approach motivates the adoption of a two-stage optimization process. First,

the durations of the modes is optimized by considering a global model that captures the

dynamics of the entire interconnection. Second, offset optimization techniques (e.g. [51])

can be employed to decide the specific sequence of phases given the durations of the splits,

and by considering reduced or local interconnection models. This chapter is devoted to the

former. To formalize our optimization problem, we denote by yav the vector of the queue

lengths originated by the signalized intersections, and model yav as the density of vehicles

”waiting” at the downstream section of each road:

yav = Cavxav, Cav =


eTσ1

. . . 0

... . . .

0 . . . eTσnr

 . (4.6)

We assume the network is initially at a certain initial state x0, and focus on the

problem of optimally designing the mode durations {d1, . . . dm} that minimize the H2-norm
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of the vector of queue lengths yav, formalized as follows

min
d1,...,dm

∫ ∞

0
‖yav‖22 dt,

subject to ẋav = Aavxav, (4.7a)

yav = Cavxav, (4.7b)

xav(0) = x0, (4.7c)

Aav =
1

T
(d1A1 + · · ·+ dmAm) , (4.7d)

T = d1 + · · ·+ dm, (4.7e)

di ≥ 0 i ∈ {1, . . . ,m}. (4.7f)

Loosely speaking, the optimization problem (4.7) seeks for an optimal set of split durations

that minimize the L2-norm of the impulse-response of the system to the initial conditions.

Thus, similarly to [50], our framework considers the “cool down” period, where exogenous

inflows and outflows are not known a priori, and the goal is to evacuate the network as

fast as possible where the final condition is an empty system. In order to take into account

for the model inaccuracies due to linearization and time-averaging, the matrix Aav and the

initial state x0 shall be updated when the network conditions have significantly changed,

and the solution to (4.7) shall be recomputed with the updated parameters. In particular,

we denote by Tupdate the time interval between two updates, and note that Tupdate is a

fundamental design parameter that should be accurately chosen. Finally, we note that

constraint (4.7e) implies that for any solution to (4.7) there exists a set of split with the

selected green durations, and thus ensures feasibility of the solutions.
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4.3 Design of Optimal Network Mode Durations

In this section we propose a method to determine solutions to the optimization

problem (4.7). The approach we discuss is centralized, namely, it requires full knowledge of

the network dynamics and initial state. An extension of the framework to fit a distributed

implementations is proposed in Section 4.4. Our approach consists in rewriting the cost

function in (4.7) in terms of the controllability Gramian of the associated dynamical system,

and is formalized next.

Lemma 4.6. (Controllability Gramian Cost Function) Let

W(Aav, x0) =

∫ ∞

0
eAavtx0x

T
0 e

AT
avt dt.

The following minimization problem is equivalent to (4.7):

min
d1,...,dm

Trace
(
Cav W(Aav, x0) C

T
av

)
,

subject to Aav =
1

T
(d1A1 + · · ·+ dmAm) ,

T = d1 + · · ·+ dm,

di ≥ 0, i ∈ {1, . . . ,m}. (4.8)
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Proof. By incorporating (4.7a), (4.7b), and (4.7c) into the cost function of optimization

problem (4.7), we can rewrite:

∫ ∞

0
‖yav‖22 dt =

∫ ∞

0
xT0 e

AT
avtCT

avCave
Aavtx0 dt

= Trace

(∫ ∞

0
xT0 e

AT
avtCT

avCave
Aavtx0 dt

)
=

∫ ∞

0
Trace

(
Cave

Aavtx0x
T
0 e

AT
avtCT

av

)
dt

= Trace

(
Cav

∫ ∞

0
eAavtx0x

T
0 e

AT
avtdt CT

av

)
,

from which the claimed statement follows. ■

We now use the above result to characterize the stability of the proposed control

policy. To this aim, we note that the cost function in (4.7) is finite only if the choice of

parameters {d1, . . . , dm} leads to a matrix Aav that is Hurwitz-stable. Requiring Hurwitz

stability of Aav corresponds to imposing that all real parts of the eigenvalues of Aav are

strictly negative. Formally, we require α(Aav) < 0, where α(Aav) := sup{<(s) : s ∈

C,det(sI − Aav) = 0} denotes the spectral abscissa of Aav. The following result proves

stability of the system under optimal green time durations.

Theorem 4.7. (Stability of Optimal Solutions) Let Assumption 4.1 be satisfied and

let s(ri, rk, t̄) 6= 0 for all (ri, rk) ∈ I, and for some t̄ ∈ [0, T ]. Then,

α(Aav) < 0.
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Proof. From the structure of (4.4) and from the assumption s(ri, rk, t̄) 6= 0 follows that

Aav(i, i) < 0 for all i ∈ {1, . . . , n}, while Aav(i, j) ≥ 0 for all j ∈ {1, . . . , n}, j 6= i. Moreover,

all columns of Aav have nonpositive sum. In particular, the columns corresponding to

destination cells have strictly negative sum, that is,
∑n

i=1Aav(i, j) ≤ 0 for all j ∈ {1, . . . , n},

and
∑n

i=1Aav(i, j) < 0 for all j such that rj ∈ D. To show α(Aav) < 0, we use the fact that

destination cells in D have no departing edges, and re-order the states so that

Aav =

A11 0

A21 A22

 ,

where A22 ∈ Rnd×nd , nd = |D|, is the submatrix that describes the dynamics of the destina-

tion cells, A11 ∈ R(n−nd)×(n−nd), and A21 ∈ Rnd×(n−nd). The fact α(A22) < 0 immediately

follows from (4.2). The stability of A11 follows from the connectivity assumption in the orig-

inal network, and from the analysis of grounded Laplacian matrices (see e.g. [67, Theorem

1]). ■

Next, we discuss a method to determine solutions to the optimization problem

(4.8). Our technique relies on constructing a new optimization problem that constitutes

a relaxation of (4.8), and that builds upon the concept of smoothed spectral abscissa.

The smoothed spectral abscissa is a generalization of the spectral abscissa [22] and, for a

dynamical system of the form (4.5)-(4.6), it is defined as the root α̃ ∈ R of the implicit

equation

Trace
(
Cav W(Aav − α̃I, B) CT

av

)
= ϵ−1, (4.9)
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where ϵ ∈ R≥0. It is worth noting that the root α̃ is unique [22], and for fixed B and Cav

it is a function of both ϵ and Aav. Formally, we shall denote α̃ = α̃(ϵ, Aav).

Remark 4.8. (Properties of the Smoothed Spectral Abscissa) For any ϵ > 0, the

smoothed spectral abscissa is an upper bound to α(A), and this bound becomes exact as

ϵ→ 0. To see this, we first observe that the integral
∫∞
0 e(Aav−α̃I)tBBTe(Aav−α̃I)Ttdt exists

and is finite for any α̃ > α(Aav), as the function e(Aav−α̃I)t is bounded and convergent as

t→ +∞. On the other hand, for any α̃ < α(Aav) the function e(Aav−α̃I)t becomes unbounded

for t→ +∞ and the above integral is infinite. It follows that, the left-hand side of (4.9) is

finite only if α̃ > α(A) or, in other words, for any finite ϵ, α̃ satisfies α̃ > α(A). □

By letting α̃ = 0 in (4.9), we recast the optimization problem (4.8) in terms of the

smoothed spectral abscissa as follows:

min
d1,...,dm,ϵ

ϵ−1,

subject to Aav =
1

T
(d1A1 + · · ·+ dmAm) ,

T = d1 + · · ·+ dm,

di ≥ 0, i ∈ {1, . . . ,m},

α̃(ϵ, Aav) = 0, (4.10)

where the parameter ϵ is now an optimization variable. In what follows, we denote by

{d∗1, . . . , d∗m, ϵ∗} the value of the optimization parameters at optimality of (4.10). Prob-

lem (4.10) is a nonlinear optimization problem [22], because the optimization variables

{d1, . . . , dm} and ϵ are related by means of the nonlinear equation (4.9).
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For the solution of (4.10), we propose an iterative two-stages numerical optimiza-

tion process. In the first stage, we fix the value of ϵ and seek for a choice of {d1, . . . dm}

that leads to a smoothed spectral abscissa that is identically zero. In other words, we let

ϵ = ϵ̄ (fixed), and solve the following minimization problem:

min
d1,...,dm

|α̃(ϵ̄, Aav)|

subject to Aav =
1

T
(d1A1 + · · ·+ dmAm) ,

T = d1 + · · ·+ dm,

di ≥ 0, i ∈ {1, . . . ,m}. (4.11)

We note that every a solution to (4.11), namely Āav, which satisfies α̃(ϵ̄, Āav) = 0, is a point

in the feasible set of (4.10) that corresponds to a cost of congestion
∫∞
0 ‖yav‖22 dt = 1/ϵ̄.

In the second stage of the optimization, we perform a line-search over the parame-

ter ϵ. In particular, the value of ϵ is iteratively increased until the minimizer ϵ∗ is achieved.

This approach is motivated by the fact that the optimizer of (4.11) with ϵ set to ϵ = ϵ∗

is {d∗1, . . . , d∗m}, that is, the optimal solution to (4.10). Finally, the iterative process is

concluded when α̃(ϵ̄, Aav) = 0 is no longer achievable in (4.11).

The benefit of considering a two-stage optimization process and of solving (4.11)

as opposed to (4.10) is that we can derive an expression for the gradient of the cost function

α̃(ϵ̄, Aav) with respect to the parameters {d1, . . . , dm}. The derivation of the descent direc-

tion is the focus of the remaining part of this section. In the remainder, with a slight abuse
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of notation, we use the compact form α̃(ϵ̄, Aav) = α̃ϵ̄ and,for a matrix M = [mij ] ∈ Rm×n,

we denote its vectorization by Mvec = [m11 . . .mm1,m12 . . .mmn]
T.

Lemma 4.9. (Descent Direction) Let α̃ϵ̄ denote the unique root of (4.9) with ϵ̄ ∈ R>0.

Let d = [d1, . . . , dm]T, and let K = 1
T [A

vec
1 Avec

2 . . . Avec
m ]. Then,

∂α̃ϵ̄

∂d
= KT

(
QP

Trace (QP )

)vec

where P ∈ Rn×n and Q ∈ Rn×n are the unique solution to the two Lyapunov equations

(Aav − α̃ϵ̄I) P + P (Aav − α̃ϵ̄I)
T + x0x

T
0 = 0,

(Aav − α̃ϵ̄I)
TQ+Q(Aav − α̃ϵ̄I) + CavC

T
av = 0, (4.12)

and I ∈ Rn×n denotes the identity matrix.

Proof. The expression for the partial derivative of the smoothed spectral abscissa with

respect to d can be obtained from the composite function

∂α̃ϵ̄

∂d
=
∂Aav
∂d

∂α̃ϵ̄

∂Aav
,

where ∂Aav
∂d follows immediately from (4.7d), and the expression for the derivative of α̃ϵ̄ with

respect to Aav is given in [22, Theorem 3.2]. ■

We remark that the equations (4.12) always admit a unique solution. To see this,

we use the fact that α̃ is an upper bound to α(Aav), and observe that (Aav − α̃ϵ̄I) is
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Algorithm 1: Centralized solution to (4.7).
Input: Matrix Cav, vector x0, scalars ξ, µ
Output: {d∗1, . . . d∗m, ϵ∗} solution to (4.7)

1 Initialize: d(0), ϵ̄ = 0, k = 1

2 while α̃(k)
ϵ̄ = 0 do

3 repeat
4 Compute α̃(k)

ϵ̄ by solving (4.9);
5 Solve for P and Q: (A

(k)
av −α

(k)
ϵ̄ I)P + P (A

(k)
av −α

(k)
ϵ̄ I)T + x0x

T
0=0;

(A
(k)
av −α

(k)
ϵ̄ I)TQ+Q(A

(k)
av −α

(k)
ϵ̄ I) + CavCT

av=0;
6 ∇ ← KT

(
QP

Trace(QP )

)vec
;

7 Compute projection matrix P(k);
8 d(k) ← d(k) − µ P(k)∇;
9 A

(k)
av ← 1

T (d1A1 + · · ·+ dmAm);
10 k ← k + 1;
11 until P(k)∇ = 0;
12 ϵ̄← ϵ̄+ ξ;
13 end
14 return d;

Hurwitz-stable for every Aav. A gradient descent method based on Lemma 4.9 is illustrated

in Algorithm 1. Each iteration of the algorithm comprises the following steps. First, (lines

4− 6) a (possibly non feasible) descent direction ∇ is derived as illustrated in Lemma 4.9.

Second, (line 7−8) a gradient-projection technique [68] is used to enforce constraints (4.7d)-

(4.7f). The update-step follows (line 9). Algorithm 1 employs a fixed stepsize µ ∈ (0, 1), and

a terminating criterion (line 11) based on the Karush-Kuhn-Tucker conditions for projection

methods [68]. The ϵ-update step, which constitutes the outer while-loop (line 2−13), is then

performed at each iteration of the gradient descent phase, and the line-search is terminated

when |α̃ϵ| = 0 cannot be achieved. To prevent the algorithm from stopping at local minima,

the gradient descent algorithm can be repeated over multiple feasible initial conditions d(0).
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Table 4.1: Execution time of Algorithm 1 on a 2.7 GHz Intel Core i5.
n 23 113 265 309 431 665 852

Exec. Time [sec] 0.5 4.5 33.4 59.3 142.9 409 893

Finally, we illustrate in Table 4.1 typical execution times of Algorithm 1 on a commercial

(laptop) processor.

Remark 4.10. (Complexity of Algorithm 1) The computational complexity of Algo-

rithm 1 can be derived as follows. First, solving (4.9) to determine the value of the smoothed

spectral abscissa can be performed via a root-finding algorithm (such as the bisection algo-

rithm), whose complexity is a logarithmic function of the desired accuracy. Since computing

the trace of a matrix has linear complexity in the matrix size, for given accuracy the com-

plexity of this operation is O(n). Second, modern methods to solve Lyapunov equations

(i.e., (4.12)) rely on the Schur decomposition of the matrix Aav [69], whose complexity is

O(n3). It is worth noting that, given the Schur decomposition Aav = UTUT, where T is

upper triangular and U is unitary, a decomposition for (Aav − α̃I) follows immediately by

shifting T to (T − α̃I). Therefore, a single decomposition is required at each iteration of

the gradient descent and the complexity of Algorithm 1 is therefore O(n3).

The space complexity of the algorithm can be derived as follows. Storing each

matrix A(k)
av , Q, P requires n2 units of space, while each vector ∆ and d require m units of

space. Thus, the space complexity of Algorithm 1 is O(n2 +m).

Finally, we note that a constant-step discretization technique (4.1) implies that the

system size n scales linearly with 1/h. □
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4.4 Distributed Gradient Descent

The centralized computation of {d∗1, . . . , d∗m, ϵ∗} assumes the complete knowledge

of matrices A1, . . . Am, and requires to numerically solve the Lyapunov equations (4.12).

For large-scale traffic networks, such computation imposes a limitation in the dimension of

the matrix Aav and, consequently, on the number of signalized intersections that can be

optimized simultaneously. Since the performance of the proposed optimization technique

depends upon the possibility of modeling and optimizing large network interconnections, a

limitation on the number of modeled roads and intersections constitutes a bottleneck to-

ward the development of more efficient infrastructures. A possible solution to address this

issue is to distribute the computation of the descent direction in Algorithm 1 among a group

of agents, in a way that each agent is responsible for a subpart of the computation (e.g. see

Fig. 4.4). In addition, certain model parameters describing the instantaneous state of net-

work components (e.g. the current speed of flow in a certain road or the instantaneous value

of the transmission rate at a certain intersection), may be readily measurable by an agent

that is located in the proximity of that component, while they may be unknown to other

agents that are remotely located in the network. In this case, the benefit of a distributed

implementation is that it allows local agents to directly include these model parameters into

the optimal solution, thus avoiding unnecessary overheads due to transmission. In partic-

ular, agents may represent geographically-distributed control centers or clusters in parallel

computing, each responsible for the control of a subset of the network.
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Figure 4.4: (a) Manhattan-like traffic interconnection. In this example, agents are signalized
intersections that have local knowledge of the road interconnection (attached black arrows)
and can communicate with neighbors (dashed red lines). Colored circles illustrate the
information available to each agent. (b) Error between distributed and centralized solution
vs iterations. Internal agents experience faster convergence due to shorter longest paths in
the graph.

In order to distribute the computation of solutions to (4.12), we focus on distribu-

tively solving equations of the form

ΛX +XΛT +D = 0, (4.13)

where X = XT ∈ Rn×n is unknown, D = DT ∈ Rn×n is a given matrix, and Λ ∈ Rn×n. Let

Λ be partitioned as

Λ = Λ1 + · · ·+ Λν , (4.14)

where Λi ∈ Rn×n, i ∈ {1, . . . , ν}. We assume that each agent i knows Λi only. Note that Λi

are sparse matrices, and their sparsity pattern depends upon the subpart of infrastructure
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associated with that agent. In addition, we assume that neighboring agents are allowed to

exchange information by means of a communication interconnection. Let G = (V, E) be the

communication graph, where each vertex i ∈ {1, . . . , ν} represents one agent, and E ⊆ V×V

represents the communication lines. The method we propose to distributively compute X

relies on an equivalent decomposition of equation (4.13) as a set of ν independent linear

equations, as discussed next.

Lemma 4.11. (Distributed Solutions to (4.13)) Let Λ be Hurwitz-stable. The following

statements are equivalent:

(i) X∗ solves (4.13);

(ii) For all i ∈ {1, . . . , ν}, there exists Di ∈ Rn×n s.t.

ΛiX
∗ +X∗ΛT

i +Di = 0, and
ν∑

i=1

Di = D.

Proof. In order to prove the claim, we first observe that under the assumption of Hurwitz-

stability for Λ, the solution X∗ to (4.13) is unique.

(i) ⇒ (ii). Let X∗ denote the unique solution to (4.13). By expanding Λ = Λ1 + · · ·+ Λν ,

we obtain

ν∑
i=1

(ΛiX
∗ +X∗AT

i ) +D = 0.
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Thus, by letting Di = −(ΛiX
∗ +X∗AT

i ), (ii) immediately follows.

(ii)⇒ (i). Let (X̃, D̃1, . . . , D̃ν) satisfy (ii), that is, for all i ∈ {1, . . . , ν}

ΛiX̃ + X̃ΛT
i + D̃i = 0,

ν∑
i=1

D̃i = D̃.

Notice that the existence of the solution to (4.13) guarantees the existence of (X̃,

D̃1, . . . , D̃ν). By substitution, we obtain −
∑ν

i+1(ΛiX̃ + X̃ΛT
i ) = D, or in other words,

X̃ satisfies ΛX̃ + X̃ΛT +D = 0. The uniqueness of the solution to (4.13) implies X̃ = X∗

and concludes the proof. ■

Next, we show that the unknown matrices X∗, D1, . . . , Dν can be reconstructed by

the set of agents by cooperatively exchanging information. To this aim, for all i ∈ {1, . . . , ν},

we vectorize the set of Lyapunov equations in Lemma 4.11, and let Λ̄i = Λi ⊗ I + I ⊗ Λi.

Then, from Lemma 4.11, we can restate (4.13) as a system of linear equations of the form



Λ̄1 I 0 · · · 0

Λ̄2 0 I
...

...
... . . . . . .

0 I · · · I I


︸ ︷︷ ︸

H



Xvec

Dvec
1

...

Dvec
ν


︸ ︷︷ ︸

w

=



0

0

...

Dvec


︸ ︷︷ ︸

z

, (4.15)
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where H is a given (known) matrix and w is an unknown parameter. In order to distribute

the computation of vector w (and thus of X∗) among the ν distributed agents, we let

Hi =

Λ̄i 0 · · · I · · · 0

0 I · · · · · · I

 , zi =

 0

Dvec

 ,

for all i ∈ {1, . . . , ν}. At every iteration k, each agent i constructs a local estimate ŵ(k+1)
i

by performing the following operations in order for all its neighbors:

(i) Receive ŵ(k)
j and K

(k)
j from neighbor j;

(ii) ŵ
(k+1)
i = ŵ

(k)
i + [K

(k)
i 0][K

(k)
i K

(k)
j ]†(ŵ

(k)
i − ŵ

(k)
j );

(iii) K
(k+1)
i = Basis(Im(K

(k)
i ) ∩ Im(K

(k)
i ));

(iv) Transmit ŵ(k+1)
i and K

(k+1)
i to neighbor j;

where,

ŵ
(0)
i = H†

i zi, K
(0)
i = Basis(Ker(Hi)).

The convergence of the procedure (i)-(iv) can be ensured by adopting an approach

similar to the one discussed in [70].

Remark 4.12. (Communication Complexity) To characterize the communication com-

plexity of the distributed algorithm, we observe that at every iteration each agent is required

to transmit a set of packets describing the vector ŵ(k+1)
i and the subspace K

(k+1)
i . From

(4.15), we note that each vector ŵ
(k+1)
i has length νn2, while the dimension of the sub-
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space K(k+1)
i is variable at each iteration. In particular, the size of the subspace decreases

at each iteration when the index i increases, with dim(K
(k+1)
i ) = 2n2ν when i = 0, and

dim(K
(k+1)
i ) = 0 at the final iteration. Thus, at each step (iv) of the algorithm a set of

packets describing (at most) n2ν variables is transmitted. Finally, we note that the num-

ber of iterations that each agent is required to perform depends on the cardinality of its

neighbors and on the diameter of the network. We also note that, in order to reduce the

communication burden of the algorithm, each agent can first perform operations (i)-(iii)

sequentially for all its neighbors, and then re-transmit (i.e., perform step (iv)). □

Next, we numerically validate the algorithm for a test-case traffic interconnection.

To this aim, we consider the Manhattan-like network interconnection depicted in Fig. 4.4

[71], and assume that each signalized intersection is equipped with a computational unit

that is responsible for a subpart of the computation of (4.12), and is allowed to exchange

information with the neighboring intersections by means of a set of communication channels

(dashed-red lines in Fig. 4.4). To decompose the system as in (4.14), we assume that each

agent has the sole knowledge of: (i) the local structure of the traffic interconnection, that is,

the layout of interconnection between roads that are adjacent to that intersection (colored

areas in Fig. 4.4(a)), and (ii) the current values of the intersection outflow parameters

c(ri, rk), and of the speed of the flow γi in the adjacent roads. We illustrate in Fig.4.4(b)

the convergence of the distributed procedure (i)-(iv), by comparing the accuracy of the local

estimate X̂(k)
i with respect to the centralized solution X∗ as a function of the iteration step

k. As discussed in [70], this class of procedures will compute X̂(k)
i = X∗ in at most diam(G)

steps, where diam(G) denotes the diameter of G.
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Figure 4.5: Accuracy of average dynamical model (4.5) with respect to microscopic simu-
lations for a single signalized road. (a) Time evolution of the density at downstream for
different intersection cycle time T . (b) Accuracy of the average dynamics in relation to the
intersection cycle time T .

4.5 Simulations

This section provides numerical simulations in support to the methods presented in

this chapter. We generate test cases using real-world traffic networks from the OpenStreet

Map database and validate the techniques on a microscopic simulator based on Sumo [72].

A demo of the experimental setup adopted in this section is available online [14].

4.5.1 Averaging Technique

In order to validate our averaging technique, we first focus on a single road con-

nected at downstream to a signalized intersection. To illustrate the discharging pattern

emerging from the switching behavior of the signalized intersection, we assume the road

has initially xσ(0) = 65 vehicles in its downstream section, and zero inflows at all times. In

all our simulations, we assume that each green phase is followed by a yellow phase, and we

incorporate the durations of each yellow phase (clearance time) into the green times. We
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illustrate in Fig. 4.5(a) a comparison between the road discharging patterns in the micro-

scopic simulation and in the average model (4.5) for different choices of the cycle time T .

The precision of the model is quantified in Fig. 4.5(b), where we illustrate the approximation

error for different T , where

Error% =
1

H

∫ H

0

‖x− xav‖
‖xav‖

dt,

captures the deviation between the microscopic simulation and the average model, normal-

ized over the time horizon [0,H]. As illustrated in the figure, inaccuracies due to lineariza-

tion and time-averaging are lower than 5% for common cycle times.

4.5.2 Macroscopic Simulations

To validate our modeling assumptions and optimization techniques, we initially

perform a set of macroscopic simulations based on the well-established Cell Transmission

Model (CTM) [34]. We consider its averaged version discussed in [62, 66], with piecewise

affine demand and supply functions, and adopt a proportional allocation rule to model

congestion at the intersections [47]. The averaged Cell Transmission Model builds upon

the traditional (non-averaged) version of the model by replacing the switching behavior of

the signalized intersections with the average flow through the junction (see [62]). We stress

that the Cell Transmission Model is adopted here to simulate the actual dynamics of the

network, while model (4.5) is the system description used in the optimization.

We consider the Manhattan-like traffic network interconnection sketched in

Fig. 4.4(a), with nr = 24 roads of length ℓ = 0.1mi. We construct the CTM by asso-
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Figure 4.6: Performance of the method evaluated on the Cell Transmission Model. (a)-(b)
constant network inflows. (c)-(d) time-varying network inflows.

ciating a state (cell) to each section of road interconnecting two signalized intersections.

For all cells, we let the free-flow speed be vff = 30mi/h, the speed of backward propa-

gation be vbp = −30mi/h, the jam density be xmax = 20veh, and use maximum flows

fs
max = fd

max = 30veh/min. Turning ratios at each intersections are chosen so that vehi-

cles are split equally among all outgoing links, and the cycle time is T = 100sec.

In order to generate comparable results between the CTM and our model, we

construct (4.4) by letting σi = ℓi for all ri ∈ R (i.e. we model each road by means of a

single state variable). In all simulations, source roads S and destination roads D are the
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roads at the boundaries of the network, network inflows are identical uri = ur for all ri ∈ S,

and x0 = 10veh in all roads.

We evaluate the benefits of our intersection-control method by comparing its per-

formance with: (i) a fixed-time control policy, and (ii) the control technique proposed in

[62], that we briefly illustrate in the following. The fixed-time control policy consists in as-

signing constant split times at all the intersections, where green times are divided uniformly

among all links connected at downstream to that intersection. The method discussed in

[62] consists in performing network-wide design of the green split times by implementing a

Model Predictive Control (MPC) optimization technique that relies on the averaged Cell

Transmission Model for state prediction. We remark that the latter technique is adopted

here for comparison because of its similarity with our framework in the adoption of a

time-averaging method. In particular, MPC is performed by discretizing the averaged Cell

Transmission Model and by considering a one-step ahead prediction horizon (representing

a full cycle of the intersections, with T = 100sec), where the instantaneous values of the

network state (density) are sensed from the network at each time step. In particular, we

discretized the system using the Euler discretization with sample time Ts = 10sec, which

satisfies the stability assumption vffTs/ℓ < 1 that guarantees convergence of the model [34].

We report in Fig. 4.6 a comparison between the time-evolution of the cost of

congestion obtained by simulating the averaged Cell Transmission Model for the three con-

trollers under consideration. In particular, we consider two scenarios. First, we let the

inflows be constant ur = 15 veh/min for all source roads (Fig. 4.6(a)-(b)). Second, we let

the inflows be time-varying ur = 15(1+sin(t))veh/min (Fig. 4.6(c)-(d)). We observe that in
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both cases our controller outperforms the two control policies considered in the comparison.

In particular, for constant network inflows our controller achieves an improvement of over

80% with respect to fixed-time control, and of about 40% with respect to the MPC-based

control technique. We interpret these results by observing that, although our approach is

based on a simplified model description of the system, it allows us to take into account

larger control horizons with respect to (tractable) MPC control policies, thus resulting in

increased network performance in the long term. This observation is further supported by

the transient phase of the cost function in Fig. 4.6(b). In fact, we can observe that dur-

ing the time interval 0 − 3min the MPC-based control method reacts more effectively to

changes in inflows thanks to (i) the availability of a more precise model that can capture

quickly-varying regimes, and (ii) the shorter update interval. However, the benefits of a

faster response degrade over time (see time interval 3− 12min) due to the lack in adequate

prediction horizons that can capture all the relevant system dynamics. We conclude by

observing that in the presence of quickly-varying inflow rates, both methods suffer from the

lack of appropriate knowledge in the unknown network inflow rates and, in this case, the

performance of the two techniques is comparable.

4.5.3 Microscopic Simulations

We consider a test case scenario inspired by the area of Manhattan, NY (Fig. 4.7),

which features nr = 958 roads and nI = 332 signalized intersections. We replicate a daily-

commute scenario, where sources of traffic S are uniformly distributed in the central area of

the island (Area 1), and routing is chosen so that traffic flows are departing from the city,
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Figure 4.7: Urban interconnection of Manhattan, NY. (a) Red dots denote the set of sig-
nalized intersections considered in the study. (b) Commute zones.

that is, destinations D are uniformly distributed within Area 2. Inflow rates used in the

simulations are illustrated in Table 4.2. To estimate the network turning rates, we set the

simulator so that each vehicle follows the shortest path between its source and destination,

and derive the turning rates φ(ri, rk) for every pair of roads by computing the fraction of

traffic flow on every route. Although in our simulations we make the assumption that the

traffic patterns are known, in many practical scenarios the turning preferences are typically

inferred from measured or historical traffic data [61].

We consider three control policies, described next.

Gramian-Optimization Settings: We model the network by means of the technique

discussed in Section 4.2, where we let h = 0.1mi and associate σi = dℓi/he ≥ 1 states

to each section of road interconnecting two signalized intersections. We observe that, for
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Table 4.2: Manhattan Network Inflow Rates
Time [sec]

(From - To) Area 1 Inflow [veh/h] Area 2 Inflow [veh/h]
0− 2500 4000 0

2500− 4000 0 0

the Manhattan interconnection shown in Fig. 4.7, we obtain n =
∑nr

i=1 σi = 3091, which

corresponds to an average of approximately 3 states associated with each link. We solve

the optimization (4.11) with cycle time T = 100sec (corresponding to Error% ≈ 3%, see

Fig. 4.5). Moreover, the solution to (4.10) is re-computed with updated network conditions

Aav and x0 every Tupdate = 500sec by sensing these parameters from the microscopic simula-

tion. The implementation of the gradient-descent algorithm was performed in Python, and

the computation of the descent direction (Lemma 4.9) was performed using tools from the

NumPy library. Finally, in order to emphasize the benefits of our optimization method and

to make the results independent on the offset optimization algorithm adopted, we performed

no offset optimization to decide the specific sequence of phases at the intersections. Thus,

our simulation results represent a lower bound on the performance that can be achieved

when offset optimization is applied to the output of our optimization.

Max-Pressure Settings: The Max-Pressure [57] is a controller that can be distributively

implemented at the single-intersection level, and that requires only local information con-

cerning the instantaneous traffic densities in the roads that are adjacent to that intersection.

In particular, at each intersection and at each time step, the controller computes the dif-

ference between the number of vehicles waiting (on each road) and the number of vehicles

at their downstream road, and activates the phase associated to the road with the largest
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Figure 4.8: Network performance of the Manhattan interconnection assessed via a micro-
scopic simulator for three control policies. Blue triangles denote the instants when the
optimal solution is recomputed with updated Aav and x0.

difference value (“pressure”) for a fixed time interval. In the simulation, the Max-Pressure

is implemented through the Sumo TraCI tool, by associating a set of four phases to each

intersection, where the activation time of each phase is set to T/4 = 25sec (thus, similarly

to the Gramian-based optimization settings, the cycle time is T = 100sec).

Fixed-Time Settings: Fixed-time control is widely-adopted policy in practice thanks

to its simplicity [58]. In this policy, the activation time of each phase is constant and
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proportional to the average traffic flow in the upstream roads, which are inferred from

historical data. To implement this policy we estimated the average traffic flows by combining

the network demand with the vehicles routing policy, and used T = 100sec.

Fig. 4.8(a) shows a comparison between the cost functions resulting from the three

policies considered, while Fig. 4.8(b) shows the time evolution of the total number of vehicles

in the network (network occupancy). The plots demonstrate the benefits of using the

optimization (4.7): the improvement in cost function is of almost 60% with respect to

fixed-time control, and of about 46% with respect to Max-Pressure. Moreover, Fig. 4.8(b)

demonstrate the effectiveness of the cost function in (4.7) to capture the network congestion.

In fact, control policies that minimize the cost (4.7) result in networks with reduced overall

congestion (i.e. total number of vehicles in the network), and thus in increased network

throughput.

The benefits of more efficient control policies on the network overall congestion

can be further visualized by means of the illustration in Fig. 4.9. The figure illustrates the

time evolution of the network congestion (measured as [veh/mi]) in the simulation for two

control policies: Gramian-Based and Max-Pressure. The graphic shows that in the absence

of external inflows, the network is evacuated faster when the former control technique is

adopted, supporting our claim that a global model description results in increased network

performance as compared to distributed techniques that rely on local knowledge of the

traffic dynamics.
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Figure 4.9: Time evolution of the network state [×10veh/mi] for two control policies. (a)
solution to (4.7). (b) Max-Pressure policies. Simulation time from left to right is 1000sec,
2000sec, 3000sec, 4000sec.
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Chapter 5

Optimization-Based Techniques to

Quantify Resilience

In this chapter we investigate the resilience of traffic networks against changes in

the user behavior, namely, we quantify the magnitude of the smallest perturbation in the

routing decisions of the travelers that causes one of the highways to reach its jam density.

We refer to [7] for a comprehensive discussion of the results contained in this chapter.

5.1 Introduction

Recent advances in vehicle technologies, such as Infrastructure-To-Vehicle (I2V)

communication and Vehicle-To-Vehicle (V2V) communication, set out an enormous poten-

tial to overcome the inefficiencies of traditional transportation systems. Notwithstanding,

the development efficient control algorithms capable of effectively engaging these capabilities

is an extremely-challenging task due to the tremendous complexity of the interconnections
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[65], that often results in suboptimal performance [17], and that can potentially generate

novel fragilities [18, 13].

In this chapter, we propose the use of Infrastructure to Vehicle (I2V) communi-

cation to influence the routing decisions of certain travelers in the network with the goal

of optimizing the system overall congestion. We define highway-specific levels of trust to

tolerate the non-cooperative behavior of a certain fraction of the drivers, and we develop an

optimization-based control mechanism to provide the cooperative drivers real-time routing

suggestions. Differently from traditional approaches for network routing design, our meth-

ods allow us to take into account quickly-varying traffic volumes, and do not require the

knowledge of the traffic demands associated with every origin-destination pair. Moreover,

we study the impact of changes in routing that result in roads reaching their maximum

capacity, thus leading to traffic jams or cascading failure effects. We develop a technique to

classify the links based on their resilience, and we study the fragility of the network against

changes in routing. Surprisingly, our findings demonstrate that networks where the routing

is partially controlled by a system planner can be more fragile to traffic jam phenomena as

compared to networks where drivers perform traditional selfish routing choices.

Routing decisions of traditional human drivers are non-cooperative, namely, drivers

act as a group of distinct agents that make selfish routing decisions with the goal of mini-

mizing their individual travel delay [21]. The inefficiencies of such noncooperative behavior

are often quantified through the price of anarchy [73, 74, 75], a measure that captures the

cost of suboptimality with respect to the societal optimal efficiency. The availability of V2V

and I2V has recently demonstrated the potential to influence the traditional behavior of
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drivers in a transportation system [17, 76]. In particular, the control of the routing choices

was proposed as a promising solution to improve the efficiency of the network [76] and to

enhance its resilience [41]. Differently from this line of previous work, this chapter focuses on

systems operating at non-equilibrium points, on tolerating the presence of non-cooperative

driver behaviors, and on characterizing the impact of controlled routing on the resilience of

the system.

The contribution of this chapter is fourfold. First, we formulate and solve an

optimization problem to design optimal routing suggestions with the goal of minimizing the

travel time experienced by all network users. The optimization problem incorporates link-

wise trust parameters that describe the extent to which drivers on that link are willing to

follow the suggested routing policy. Second, we develop an online update scheme that takes

into account instantaneous changes in the levels of trust on the provided routing suggestions.

Discrepancies between the modeled and actual trust parameters can be the result of quickly

varying traffic demands, or can be the effect of selfish routing decisions. Third, we study

the resilience of the network, measured as the smallest change in the trust parameters that

results in roads reaching their maximum capacity. We present an efficient technique to

approximate the resilience of the network links, and we discuss how these quantities can be

computed from the output of the optimization problem. Fourth, we demonstrate through

simulations that, although partially controlling the routing may improve the travel time for

all network users, it also results in increased network fragility due to possible fluctuations

in the trust parameters.
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The rest of this chapter is organized as follows. Section 5.2 describes the dy-

namical network framework, and formulates the problem of optimal network routing with

varying levels of trust. Section 5.3 presents a method to numerically solve the optimization,

and illustrates our real-time update mechanism. Section 5.4 is devoted to the study and

characterization of the network resilience, while Section 5.5 presents simulations results to

validate our methods.

5.2 Design of Optimal Routing Suggestions

We model a traffic network with a directed graph G = (V, E), where V = {1, . . . ,m}

denotes the set of nodes, and E = {1, . . . , n} ⊆ V × V denotes the set of edges. Nodes

of the graph identify traffic junctions, while edges identify sections of roads (links) that

interconnect two junctions. An element (i, j) ∈ E denotes a directed link from node j to

node i. We associate to every link i ∈ E a dynamical equation of the form

ẋi = f in
i (x, t)− fout

i (x, t),

where t ∈ R≥0, xi : R≥0 → R≥0 denotes the traffic density of link i, and f in
i (x, t) and

fout
i (x, t) denote the inflow and outflow of the link, respectively. We assume that vehicle

inflows enter the network at on-ramp links Eon, while vehicle outflows exit the network at

off-ramp links Eoff. We denote by E in the set of internal links that are connected through

junctions, and assume that Eon, Eoff, and E in are disjoint sets, with E = Eon ∪ Eoff ∪ E in

(see Fig. 5.1 for an illustration). The network topology described by G imposes natural

constraints on the dynamics of the links, where flow is possible only between links that are
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interconnected by a node. We associate to every pair of links a turning ratio rij ∈ [0, 1],

describing the fraction of vehicles entering link i ∈ E after exiting j ∈ E . We combine the

drivers turning preferences into a matrix R = [rij ] ∈ Rn×n, where

rij ∈ [0, 1], rij 6= 0 only if (i, j) ∈ E . (5.1)

The conservation of flows at the junctions imposes the following constraints on the entries

of R:

∑
i

rij = 1, for all j ∈ E \ Eoff,

∑
i

rij = 0, for all j ∈ Eoff. (5.2)

We let RG be the set of matrices

RG = {R = [rij ] ∈ Rn×n : rij satisfy (5.1) and (5.2)},

and let nr = ‖R‖0 denote the number of nonzero entries in matrix R. We assume that

the vehicles routing is partially controllable, and denote by σi : R≥0 → [0, 1] the ratio of

controllable vehicles that instantaneously occupy link i. For every i ∈ E , we assume that

a fraction (1 − σi) of vehicles leaving i will follow a selfish route choice rs
ij , for all j ∈ E ,

while the remaining vehicles can be routed according to the routing decisions made by a

system planner, namely rc
ij . The parameter σi can be interpreted as the (average) extent

to which drivers follow the routing suggestion rc
ij . We combine the selfish and controllable
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routing parameters into matrices RS ∈ Rn×n and RC ∈ Rn×n, respectively, and decompose

the matrix of turning preferences as

R = ΣRC + (I − Σ)RS,

where Σ is a diagonal matrix Σ = Diag(σ1, . . . , σn). Note that the graph topology and

sparsity pattern of R impose the following constraints on RS and RC:

RS ∈ RG , RC ∈ RG .

We stress that in this workRC is a design parameter containing the set of routing suggestions

provided by the system planner to influence the drivers routing choices.

Remark 5.1. (Selfish Route Choices) Typically, the selfish behavior of drivers is cap-

tured by a Wardrop equilibrium [21], that is, a configuration in which the travel time asso-

ciated to any source-destination path chosen by a nonzero fraction of the drivers does not

exceed the travel time associated to any other path. We remark that, in our settings, such

equilibrium configuration is captured by the selfish routing matrix RS. □

We adopt Daganzo’s Cell Transmission Model [34], and model the physical charac-

teristic of each link by a demand function di(xi) and a supply function si(xi), that represent

upper bounds on the outflow and inflow of each link, respectively:

f in
i (x, t) ≤ si(xi), fout

i (x, t) ≤ di(xi). (5.3)
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Figure 5.1: Example of traffic network interconnection. For this network, Eon = {1, 2, 3},
E in = {4, . . . , 15}, and Eoff = {16}.

For every link i ∈ E we let Bi := sup{x : si(x) > 0} denote its saturation density, which

corresponds to the jam density of the road. We model on-ramps i ∈ Eon as links with

infinite supply functions si(xi) = +∞, and denote by λi(t) the corresponding inflow rate.

Then, road inflows and outflows are related by means of the following equations

f in
i (x, t) =


λi(t), i ∈ Eon,

∑
j rijf

out
j (x, t), i ∈ E \ Eon,

(5.4)

which capture the conservation of flows at the junctions. We model the outflows from the

links as

fout
i (x, t) = κi(x)di(xi), (5.5)

where κi(x) ∈ [0, 1] is a parameter that enforces the bounds (5.3) or, in other words,

guarantees that every outgoing link has adequate supply to accommodate the demand of

its incoming links. Different models for κi(x) have been proposed in the literature, and
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prevalent roles have been played by FIFO policies [35] and proportional allocation rules

[36]. We combine the link dynamical equations with (5.4) and (5.5) to derive the overall

network dynamics

ẋ = (R− I)f (x, t) + λ, (5.6)

where I ∈ Rn×n is the identity matrix, x = [x1 . . . xn]
T is the vector of link densities,

f = [fout
1 . . . fout

n ]T is the vector of link outflows, and λ = [λ1 . . . λn]
T denotes the vector

of exogenous inflows, where we let λi = 0 if i 6∈ Eon.

We consider the network performance measured by the Total Travel Time (TTT),

TTT :=

∫ H

0
x1(t) + · · ·+ xn(t) dt,

which is a measure of the delay experienced by all users [50], and we focus on the problem

of designing the matrix of turning preferences in a way that

min
RC

TTT

subject to ẋ = (R− I)f (x, t) + λ, (5.7a)

R = ΣRC + (I − Σ)RS, (5.7b)

RC ∈ RG , (5.7c)

x ≤ B, (5.7d)
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where H is the control horizon, x(0) = x0 is the (given) network initial configuration, and

B = [B1 . . . Bn]
T denotes the vector of jam densities. From a real-time control and imple-

mentation perspective, solving (5.7) sets out a number of challenges. First, the length of the

optimization horizon H is a fundamental parameter that should be accurately chosen. One

should chose H adequately large to include all relevant system dynamics, but unnecessarily

large values of H can drastically increase the computational burden. Second, rapid changes

in traffic volumes and driver preferences require the development of control mechanisms

that are capable to adapt in real-time to sudden variations of σ. In fact, the performance

of the optimization strongly depends on σ, and fluctuations in this parameter can lead to

considerable variability in network performance and efficiency.

To study the effects of fluctuations in σ, in the second part of this chapter we

consider the problem of quantifying the fragility of the network against changes in the trust

levels that result in links reaching their jam density. We assume that a link irreversibly fails

if it reaches its jam density, and argue that such failure may propagate in the network and

potentially cause a cascading failure effect. We measure the network resilience ρ(G, x0) as

the L1-norm of the smallest variation in σ that results in such failure phenomena, that is,

ρ(G, x0) := min
σ̃

‖σ̃ − σ‖1

such that ẋ = (R− I)f (x, t) + λ,

R = ΣRC + (I − Σ)RS,

xi ≥ Bi,
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where x(0) = x0, t ∈ [0,H], and i ∈ {1, . . . , n}.

5.3 Design of the Turning Preferences

In this section we present a method to numerically solve the optimization problem

(5.7), and illustrate an online-update technique to address the control challenges outlined

above.

5.3.1 Computing Optimal Routing Suggestions

We begin by recasting the optimization problem (5.7) in a way that allows us to

numerically compute its solutions. We perform three simplifying steps, described next.

First, in order to generate a tractable prediction of the time evolution of the net-

work state, we discretize (5.6) by means of the Euler discretization technique. We use a

sampling time Ts ∈ R>0 that is chosen to guarantee the Courant-Friedrichs-Lewy assump-

tion maxi
viTs
Li
≤ 1 for all links [34], where vi ∈ R≥0 and Li ∈ R>0 denote the maximum speed

and the length of the section of road, respectively. Let vec (R) = [r11 . . . rn1 r12 . . . rnn] de-

note the vectorization of matrix R = [rij ], and let tk = kTs, k ∈ N. Then, the time-evolution

of (5.6) from tk to tk+1 = tk + Ts can be discretized as

xk+1 = xk + Ts((Rk − I)f(xk) + λk) := F(xk, rk, λk), (5.8)

where rk = vec (Rk). We remark that the dependency on time of the routing matrix is the

result of time-varying σ.
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Second, we vectorize equation (5.7b) and let

rk = (ΣT
k ⊗ I)rc + ((I − Σk)

T ⊗ I)rs := Ψ(σk, r
s, rc),

where rc = vec
(
RC), rs = vec

(
RS), the symbol ⊗ denotes the Kronecker product, and

where we used the identity vec (AXB) = (BT ⊗ A) vec (X) for matrices A, X, and B of

appropriate dimensions.

Third, we observe that the Euler discretization technique employed in (5.8) pre-

serves the sparsity pattern of RC, and we rewrite the sparsity constraints (5.7c) as

∑
i

rc
ij = bj , 0 ≤ rijc ≤ 1, (i, j) ∈ E ,

where bj = 1 if j ∈ E \ Eoff, and bj = 0 if j ∈ Eoff.

Finally, we recast the optimization problem (5.7) by using the discretized dynamics

as

min
rc

h∑
k=1

1Txk

subject to xk+1 = F(xk, rk, λk), k = 1, . . . , h, (5.9a)

rk = Ψ(σk, r
s, rc), k = 1, . . . , h, (5.9b)∑

i

rij = bj , j = 1, . . . , n, (5.9c)

0 ≤ rijc ≤ 1, (i, j) ∈ E , (5.9d)

xk ≤ B, k = 1, . . . , h, (5.9e)
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where 1 ∈ Rn denotes the vector of all ones, and h and Ts are chosen so that hTs = H. As

discussed in e.g. [77], the constraints (5.9a) are often nonconvex in the decision variables.

Thus, the optimization problem (5.9) is of the form of a nonconvex nonlinear programming

optimization problem, over nr = ‖R‖0 decision variables, and can be solved numerically

through common nonlinear optimization solvers, such as interior-point methods [78].

5.3.2 Online Update Mechanism

In order to take into account for the quick variability of the parameter σ and

to deal with the considerable computational effort required to determine the solution to

(5.9), we propose an adaptive control scheme that generates real-time updates based on the

instantaneous changes in σ. The proposed adaptive mechanism is outlined in Fig. 5.2, and

is structured as follows. We assume that a central processing unit is in charge of computing

RC∗(σ0), that is, the solution to the optimization problem (5.9) with a given (fixed) set of

trust parameters σ0. The underlying choice for σ0 can reflect the current network conditions,

or can be dictated by the availability of historical data. Moreover, we assume that the

solution RC∗(σ0) is intermittently made available at time instants t = kTc, where Tc ∈ R>0

is the time required to solve the optimization. We are interested in constructing an efficient

mechanism to determine RC∗(σ), the optimal solution to (5.9) with the instantaneous value

of σ, by updating RC∗(σ0). Our online update method is motivated by the fact that σ

is subject to small variations from the nominal value σ0. In fact, the following inequality
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Figure 5.2: Real-time update scheme.

follows from (5.1)

‖σ − σ0‖ ≤ ‖[1 · · · 1]T‖ =
√
nr.

Next, we derive our online update mechanism. We denote in compact form by

f0(r
c, x̂, σ) =

h∑
k=1

1Txk, g(rc, x̂, σ) =


rij

c − 1

−rijc

xk −B

 ,

h(rc, x̂, σ) =


xk+1 −F(xk, rk, λk)

rk −Ψ(σ, rs, rc)∑
i rij − bj

 ,
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where x̂ = [xT1 . . . x
T
h ]

T ∈ Rnh denotes the joint vector of model-prediction variables, and

rewrite (5.9) as

min
rc

f0(r
c, x̂, σ)

subject to gi(r
c, x̂, σ) ≤ 0, i ∈ {1, . . . , q},

hj(r
c, x̂, σ) = 0, j ∈ {1, . . . , p}, (5.10)

where we have made explicit the dependency of the optimization problem on the decision

variables rc, on the prediction variables x̂, and on the parameter σ. To characterize the

solutions to (5.10), we compose the Lagrangian

L(rc, x̂, σ, w, u) = f0(r
c, x̂, σ)+

uTg(rc, x̂, σ) + wTh(rc, x̂, σ),

where u = [u1 . . . uq]
T and w = [w1 . . . wp]

T are the vectors of Lagrange Multipliers, and we

write the first order Karush-Kuhn-Tucker (KKT) conditions:

∇L(rc∗, x̂∗, σ0, w
∗, u∗) = 0,

uigi(r
c∗, x̂∗, σ0) = 0,

hj(r
c∗, x̂∗, σ0) = 0,

with the additional inequalities u∗i ≥ 0, and gi(r
c∗, x̂∗, σ0) ≤ 0, where ∇ =

[∂/∂rc
1 . . . ∂/∂r

c
nr
]T denotes the gradient operator with respect to the decision variables
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rc. We denote the set of KKT equality conditions in compact form as

F (rc∗, x̂∗, σ0, u
∗, w∗) = 0, (5.11)

and note that (5.11) is an implicit equation that characterizes the optimal solutions to

(5.10). Finally, by letting y = [rc(σ) u(σ) w(σ)] and by assuming that (5.11) holds for σ

near σ0, we compute the total derivative of the implicit function (5.11) with respect to σ

to obtain the following relationship that holds at optimality:

M(σ)
dy

dσ
+N(σ) = 0,

where the matrices M(σ) = [∂Fi/∂yj ], dy/dσ = [dyi/dσj ], and N(σ) = [∂Fi/∂σj ]. Finally,

to formalize our online update rule we make the following classical assumption (see e.g.

[79]), which guarantees: (i) that rc∗ is a local isolated minimizing point, (ii) the uniqueness

of the Lagrange Multipliers, and (iii) the invertibility of matrix M(σ0).

Assumption 5.2. (Second Order Minimizer Point)

(Second-order KKT conditions) The inequality vT∇2L(rc∗, x̂∗, σ, w∗, u∗)v > 0 holds for every

vector v ∈ Rn+m+p, v 6= 0, that satisfies

vT∇gi(rc∗, x̂∗, σ0) ≤ 0, for all i where u∗i = 0,

vT∇gi(rc∗, x̂∗, σ0) = 0, for all i where u∗i > 0,

vT∇h(rc∗, x̂∗, σ0) = 0.
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(Constraints independence) The vectors ∇g(rc∗, x̂∗, σ0) and ∇h(rc∗, x̂∗, σ0) are linearly in-

dependent.

(Strict complementary slackness) If gi(rc∗, x̂∗, σ0) = 0, then u∗i > 0. □

Lemma 5.3. (Linear Update Rule) Let Assumption 5.2 hold, let rc∗(σ0) denote a solution

to (5.9) with σ = σ0, and let η :=M−1(σ0)N(σ0) be partitioned as

η =


η1

η2

η3

 ,

where η1 ∈ Rnr×n, η2 ∈ Rq×n, and η3 ∈ Rp×n. Then,

rc∗(σ) = rc∗(σ0) + η1(σ − σ0) + o(‖σ − σ0‖2). (5.12)

We argue that the update (5.12) can be computed through simple vector multipli-

cations, and thus is significantly more efficient than solving (5.9). The accuracy of the linear

approximation rule is numerically validated in Fig. 5.3, which demonstrates the quadratic

decay of the approximation error as σ approaches σ0 (see Section 5.5 for a thorough discus-

sion).

5.4 Network Resilience

In this section, we study the resilience of the network against changes in the degrees

of trust of the drivers, and we illustrate a technique that allows us to classify the links in
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Figure 5.3: Numerical validation of the update rule (5.12).

relation to their resilience properties. We start with the following definition of margin of

resilience of a network link.

Definition 5.4. (Links Margin of Resilience) Let i ∈ E, and let Bi be its jam density.

The margin of resilience of link i is

ρi(x0) := min
σ

‖σ − σ0‖1

such that ẋ = (R− I)f (x, t) + λ,

R = ΣRC + (I − Σ)RS,

xi ≥ Bi, for some t ∈ [0,H].

□

In other words, the resilience of a certain link is defined as the smallest change in

σ that generates its jam failure. Next, we present a lower bound on the margin of resilience
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of the links. Our approach is based on the real-time control rule (5.12), and on first-order

approximations of the constraints.

Theorem 5.5. (Lower Bound on Margin of Resilience) Let i ∈ E, let F(xk, rk, λk) =

[F1(xk, rk, λk) . . .Fn(xk, rk, λk)]
T, and let

Ψi(rk, xk, λk, σ) :=
∂Fi(xk, rk, λk)

∂σ
+
∂Fi(xk, rk, λk)

∂rc η1,

where η1 is defined in (5.12). Then,

ρi(x0) ≥ min
k

Bi −Fi(xk, rk, λk)

‖Ψi(k, λ, σ0)‖∞
.

Proof. We first recast the notion of margin of resilience in terms of the discretized system

(5.9). The margin of resilience of link i is the smallest change ‖σ − σ0‖1 such that

Fi(xk, rk(σ), λk) ≥ Bi, (5.13)

for some k ∈ {1, . . . , h}. We then rewrite Fi(xk, rk(σ), λk) by taking its Taylor expansion

for around σ0

Fi(xk, rk(σ), λk) = Fi(xk, rk(σ0), λk)+

dFi

dσ
(xk, rk(σ), λk)

∣∣∣∣
σ=σ0︸ ︷︷ ︸

Ψi(rk,xk,λk,σ)

δσ + o(‖δσ‖2),
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where δσ = σ − σ0, and where we used the implicit differentiation rule to compute

Ψi(rk, xk, λk, σ) = ∂Fi
∂σ + dFi

drc
drc

dσ , with drc/dσ = η1. By substituting into (5.13) and by

rearranging the terms we obtain

Bi −Fi(xk, rk(σ0),λk) + o(‖δσ‖2) ≤ Ψi(rk, xk, λk, σ)δσ.

Finally, we take the L1-norm on both sides of the above inequality, which yields

|Bi −Fi(xk, rk(σ0), λk) + o(‖δσ‖2)|

≤ |Ψi(r
c, xk, λk, σ)δσ| ≤ ‖Ψi(r

c, xk, λk, σ)‖∞ ‖(δσ)‖1

where we used Holder’s inequality [80]. To conclude, we iterate the above reasoning for all

times k ∈ {1, . . . , h}, which yields the given bound for the margin of resilience and concludes

the proof. ■

We conclude this section by observing that the quantity Ψi(rk, xk, λk, σ) is also a

constraint of (5.9), and thus can be directly computed from the output of the optimization.

The tightness of the bound and the implications of the theorem are discussed in the next

section.

5.5 Simulation Results

This section provides numerical simulations in support to the assumptions made

in this chapter, and includes discussions and demonstrations of the benefits of the proposed
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Figure 5.4: Travel time reduction for different degrees of trust and optimization horizons.

methods. We consider the network shown in Fig. 5.1, which comprises n = 16 links and

m = 7 nodes. Each link has capacity Bi = B = 200veh, length Li = L = 5.25mi, and

velocity vi = v = 35mi/h. For all i, we let di(xi) = v(1 − exp(−axi)), a = 0.01, and

si(xi) = v
L(B − xi) be the link demand and supply functions, respectively, and choose

κi(x) according to a proportional allocation rule [36]. We let Ts = 0.15h, and observe that

maxi
vTs
L = 1 satisfies the Courant-Friedrichs-Lewy assumption [34]. We let the network

inflows be λi = 10veh/min for all i ∈ Eon, and assume that the density of the each link at

time t = 0 is 100veh/mi, for all i ∈ E . The selfish turning preferences are chosen so that rs
ij

is split uniformly between the outgoing links at every node. Moreover, we assume σi = σ

for all i.

We begin by evaluating the benefits of partially controlling the network routing.

Fig. 5.4 illustrates the reduction in Total Travel Time in relation to different trust levels.

The figure highlights that a consistent reduction in Total Travel Time is the combined result

of significant levels of trust in the provided routing suggestions and of considerably-large
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control horizons. Next, we investigate the network resilience in relation to changes in σ

(Fig. 5.5 (a) and (b)). To this aim, we show in Fig. 5.5(a) the distance from jam density

of every link in the network when drivers follow non-cooperative routing (i.e. σ = 0).

Formally, this quantity is captured by the link residual capacity

RCi := min
k

Bi −Fi(xk, rk, λk)

Bi
,

which is a measure of the distance between the link density over time and its jam density

Bi. Note that, for the considered case study, all links operate with less than 30% of their

residual capacity. The lower bound on the links margin of resilience (Theorem 5.5) is show

in Fig. 5.5(b). Two important implications follow from the simulation results illustrated in

Fig. 5.5(b). First, the trends observed in the figure support our observation that partially

controlling the routing can result in increased fragility. In fact, ρi(x0) for σ0 = 0 is strictly

larger that ρi(x0) for σ0 = 30% for all i ∈ {4, . . . 16} \ {5, 12}. Second, values of ρi(x0)

greater than 100% (observed, for instance, on link i = 16) imply that no feasible change

in σ can lead to a jam failure of that link, while values of ρi(x0) < 100% imply that there

exists a feasible perturbation in σ that results in jam-failures of that link. We note that

the values reported in Fig. 5.5(b) are consistent with the considered network topology. In

fact, the dynamics of link i = 16 are independent of the routing choices performed by the

drivers in the rest of the network.

141



4 5 6 7 8 9 10 11 12 13 14 15 16

0%

5%

10%

15%

20%

25%

30%

(a)

4 5 6 7 8 9 10 11 12 13 14 15 16

0%

20%

40%

60%

80%

100%

120%

(b)

Figure 5.5: (a) Distance from constraint violation (non-cooperative routing). (b) Lower
bound on links margin of resilience.
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Chapter 6

Robustness Against Perturbations

of the Network Edges

In this chapter we study the observability radius of network systems, which mea-

sures how robust is the property of system observability against perturbations of the com-

munication edges. The goal of this chapter is to relate robustness of a network to the

topological properties of the underlying communication structure. To this aim, we will

specifically focus on networks with common communication structures, such as lines and

stars. We refer to the published works [5, 10] for a comprehensive discussion of the results.

6.1 Introduction

Observability of a network guarantees the ability to reconstruct the system overall

state from sparse measurements. While observability is a binary notion [23], the degree

of observability, akin to the degree of controllability, can be quantified in different ways,
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including the energy associated with the measurements [24, 25], the novelty of the output

signal [26], the number of necessary sensor nodes [27, 28], and the robustness to removal of

interconnection edges [29]. A quantitative notion of observability is preferable over a binary

one, as it allows to compare different observable networks, select optimal sensor nodes, and

identify topological features favoring observability.

Our notion of robustness is motivated by the fact that observability is a generic

property [81] and network weights are rarely known without uncertainty. For these reasons

numerical tests to assess observability may be unreliable and in fact fail to recognize un-

observable systems: instead, our measure of observability robustness can be more reliably

evaluated [82]. Among our contributions, we highlight connections between the robustness

of a network and its structure, and we propose an algorithmic procedure to construct op-

timal perturbations. Our work finds applicability in network control problems where the

network weights are subject to perturbations, in security applications where an attacker

gains control of some network edges, and in network science for the classification of edges

and the design of robust topologies.

Our study is inspired by classic works on the observability radius of dynamical sys-

tems [83, 84, 85], defined as the norm of the smallest perturbation yielding unobservability

or, equivalently, the distance to the nearest unobservable realization. For a linear system
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described by the pair (A,C), the radius of observability has been classically defined as

µ(A,C) = min
∆A,∆C

∥∥∥∥∥∥∥∥
∆A

∆C


∥∥∥∥∥∥∥∥
2

,

s.t. (A+∆A, C +∆C) is unobservable.

As a known result [84], the observability radius satisfies

µ(A,C) = min
s
σn


sI −A

C


 ,

where σn denotes the smallest singular value, and s ∈ R (s ∈ C if complex perturbations are

allowed). The optimal perturbations ∆A and ∆C are typically full matrices and, to the best

of our knowledge, all existing results and procedures are not applicable to the case where the

perturbations must satisfy a desired sparsity constraint (e.g., see [86]). This scenario is in

fact the relevant one for network systems, where the nonzero entries of the network matrices

A and C correspond to existing network edges, and it would be undesirable or unrealistic for

a perturbation to modify the interaction of disconnected nodes. An exception is the recent

paper [29], where structured perturbations are considered in a controllability problem, yet

the discussion is limited to the removal of edges.

We depart from the literature by requiring the perturbation to be real, with a

desired sparsity pattern, and confined to the network matrix (∆C = 0). Our approach

builds on the theory of total least squares [87]. With respect to existing results on this topic,
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our work proposes procedures tailored to networks, fundamental bounds, and insights into

the robustness of different network topologies.

The contribution of this chapter is fourfold. First, we define a metric of network

robustness that captures the resilience of a network system to structural, possibly malicious,

perturbations. Our metric evaluates the distance of a network from the set of unobservable

networks with the same interconnection structure, and it extends existing works on the

observability radius of linear systems.

Second, we formulate a problem to determine optimal perturbations (with smallest

Frobenius norm) preventing observability. We show that the problem is not convex, derive

optimality conditions, and prove that any optimal solution solves a nonlinear generalized

eigenvalue problem. Additionally, we propose a numerical procedure based on the power

iteration method to determine (sub)optimal solutions.

Third, we derive a fundamental bound on the expected observability radius for

networks with random weights. In particular, we present a class of networks for which

the expected observability radius decays to zero as the network cardinality increases. Fur-

thermore, we characterize the robustness of line and star networks. In accordance with

recent findings on the role of symmetries for the observability and controllability of net-

works [88, 89], we demonstrate that line networks are inherently more robust than star

networks to perturbations of the edge weights. This analysis shows that our measure of

robustness can in fact be used to compare different network topologies and guide the design

of robust complex systems.
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Because the networks we consider are in fact systems with linear dynamics, our

results are generally applicable to linear dynamical systems. Yet, our setup allows for

perturbations with a fixed sparsity pattern, which may arise from the organization of a

network system.

Fourth, we discuss several generalizations of our basic framework, including its

extension to continuous-time descriptor dynamics. This extension allows us to study a

novel class of attacks in power systems, where an attacker tampers with generators and

network parameters. Finally, although our presentation focuses on perturbations preventing

observability only, the extension to controllability is straightforward.

The rest of the chapter is organized as follows. Section 6.2 contains our network

model, the definition of the network observability radius, and some preliminary consider-

ations. Section 6.3 describes our method to compute network perturbations with smallest

Frobenius norm, our optimization algorithm, and an illustrative example. Our bounds on

the observability radius of random networks are in Section 6.4.

6.2 The Observability Radius of Network Systems

Consider a directed graph G := (V, E), where V := {1, . . . , n} and E ⊆ V × V are

the vertex and edge sets, respectively. Let A = [aij ] be the weighted adjacency matrix of G,

where aij ∈ R denotes the weight associated with the edge (i, j) ∈ E (representing flow of

information from node j to node i), and aij = 0 whenever (i, j) 6∈ E . Let ei denote the i-th

canonical vector of dimension n. Let O = {o1, . . . , op} ⊆ V be the set of sensor nodes, and

define the network output matrix as CO =

[
eo1 · · · eop

]T
. Let xi(t) ∈ R denote the state
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of node i at time t, and let x : N≥0 → Rn be the map describing the evolution over time of

the network state. The network dynamics are described by the linear discrete-time system

x(t+ 1) = Ax(t), and y(t) = CO x(t), (6.1)

where y : N≥0 → Rp is the output of the sensor nodes O.

In this work we characterize structured network perturbations that prevent ob-

servability from the sensor nodes. To this aim, let H = (VH, EH) be the constraint graph,

and define the set of matrices compatible with H as

AH = {M : M ∈ R|V|×|V|,Mij = 0 if (i, j) 6∈ EH}.

Recall from the eigenvector observability test that the network (6.1) is observable if and

only if there is no right eigenvector of A that lies in the kernel of CO, that is, COx 6= 0

whenever x 6= 0, Ax = λx, and λ ∈ C [30]. In this work we consider and study the following

optimization problem:

min ‖∆‖2F,

s.t. (A+∆)x = λx, (eigenvalue constraint),

‖x‖2 = 1, (eigenvector constraint),

COx = 0, (unobservability),

∆ ∈ AH, (structural constraint),

(6.2)
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where the minimization is carried out over the eigenvector x ∈ Cn, the unobservable eigen-

value λ ∈ C, and the network perturbation ∆ ∈ Rn×n. The function ‖ · ‖F : Rn×n → R≥0

is the Frobenius norm, and AH expresses the desired sparsity pattern of the perturbation.

It should be observed that (i) the minimization problem (6.2) is not convex because the

variables ∆ and x are multiplied each other in the eigenvector constraint (A +∆)x = λx,

(ii) if A ∈ AH, then the minimization problem is feasible if and only if there exists a network

matrix A + ∆ = Ã ∈ AH satisfying the eigenvalue and eigenvector constraint, and (iii) if

H = G, then the perturbation modifies the weights of the existing edges only. We make the

following assumption:

(A1) The pair (A,CO) is observable.

Assumption (A1) implies that the perturbation ∆ must be nonzero to satisfy the constraints

in (6.2).

For the pair (A,CO), the network observability radius is the solution to the opti-

mization problem (6.2), which quantifies the total edge perturbation to achieve unobserv-

ability. Different cost functions may be of interest and are left as the subject of future

research.

The minimization problem (6.2) can be solved by two subsequent steps. First, we

fix the eigenvalue λ, and compute an optimal perturbation that solves the minimization

problem for that λ. This computation is the topic of the next section. Second, we search

the complex plane for the optimal λ yielding the perturbation with minimum cost. We

observe that (i) the exhaustive search of the optimal λ is an inherent feature of this class of

problems, as also highlighted in prior work [85]; (ii) in some cases and for certain network
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topologies the optimal λ can be found analytically, as we do in Section 6.4 for line and star

networks; and (iii) in certain applications the choice of λ is guided by the objective of the

network perturbation, such as inducing unobservability of unstable modes.

6.3 Optimality Conditions and Algorithms to Compute the

Observability Radius

In this section we consider problem (6.2) with fixed λ. Specifically, we address the

following minimization problem: given a constraint graphH, the network matrix A ∈ AG , an

output matrix CO, and a desired unobservable eigenvalue λ ∈ C, determine a perturbation

∆∗ ∈ Rn×n satisfying

‖∆∗‖2F = min
x∈Cn,∆∈Rn×n

‖∆‖2F,

s.t. (A+∆)x = λx,

‖x‖2 = 1,

COx = 0,

∆ ∈ AH.

(6.3)

From (6.3), the value ‖∆∗‖2F equals the observability radius of the network A with sensor

nodes O, constraint graph H, and fixed unobservable eigenvalue λ.
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6.3.1 Optimal network perturbation

We now shape minimization problem (6.3) to facilitate its solution. Without af-

fecting generality, relabel the network nodes such that the sensor nodes set satisfy

O = {1, . . . , p}, so that CO =

[
Ip 0

]
. (6.4)

Accordingly,

A =

A11 A12

A21 A22

 , and ∆ =

∆11 ∆12

∆21 ∆22

 , (6.5)

where A11 ∈ Rp×p, A12 ∈ Rp×n−p, A21 ∈ Rn−p×p, and A22 ∈ Rn−p×n−p. Let V = [vij ] be

the unweighted adjacency matrix of H, where vij = 1 if (i, j) ∈ EH, and vij = 0 otherwise.

Following the partitioning of A in (6.5), let

V =

V11 V12

V21 V22

 .

We perform the following three simplifying steps.

(1–Rewriting the structural constraints) Let B = A + ∆, and notice that ‖∆‖2F =∑n
i=1

∑n
j=1 (bij−aij)2. Then, the minimization problem (6.3) can equivalently be rewritten

restating the constraint ∆ ∈ AH, as in the following:

‖∆‖2F = ‖B −A‖2F =
n∑

i=1

n∑
j=1

(bij − aij)2v−1
ij .
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Notice that ‖∆‖2F =∞ whenever ∆ does not satisfy the structural constraint, that is, when

vij = 0 and bij 6= aij .

(2–Minimization with real variables) Let λ = λℜ+ iλℑ, where i denotes the imaginary unit.

Let

xℜ =

x1ℜ
x2ℜ

 , and xℑ =

x1ℑ
x2ℑ

 ,

denote the real and imaginary parts of the eigenvector x, with x1ℜ ∈ Rp, x1ℑ ∈ Rp, x2ℜ ∈ Rn−p,

and x2ℑ ∈ Rn−p.

Lemma 6.1. (Minimization with real eigenvector constraint) The constraint (A+

∆)x = λx can equivalently be written as

(A+∆− λℜI)xℜ = −λℑxℑ,

(A+∆− λℜI)xℑ = λℑxℜ.

(6.6)

Proof. By considering separately the real and imaginary part of the eigenvalue constraint,

we have (A+∆)x = λℜx+iλℑx and (A+∆)x̄ = λℜx̄− iλℑx̄, where x̄ denotes the complex

conjugate of x. Notice that

(A+∆)(x+ x̄)︸ ︷︷ ︸
(A+∆)2xℜ

= (λℜ + iλℑ)x+ (λℜ − iλℑ)x̄︸ ︷︷ ︸
2λℜxℜ−2λℑxℑ

,
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and, analogously,

(A+∆)(x− x̄)︸ ︷︷ ︸
(A+∆)2ixℑ

= (λℜ + iλℑ)x− (λℜ − iλℑ)x̄︸ ︷︷ ︸
2iλℜxℑ+2iλℑxℜ

,

which concludes the proof. ■

Thus, the problem (6.3) can be solved over real variables only.

(3–Reduction of dimensionality) The constraint COx = 0 and equation (6.4) imply that

x1ℜ = x1ℑ = 0. Thus, in the minimization problem (6.5) we set ∆11 = 0, ∆21 = 0, and

consider the minimization variables x2ℜ, x2ℑ, ∆12, and ∆22.

These simplifications lead to the following result.

Lemma 6.2. (Equivalent minimization problem) Let

Ā =

A12

A22

 , ∆̄ =

∆12

∆22

 , M̄ =

0p×n−p

λℑIn−p

 ,

N̄ =

0p×n−p

λℜIn−p

 , V̄ =

V12
V22

 , and B̄ = Ā+ ∆̄.

(6.7)

The following minimization problem is equivalent to (6.3):
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‖∆̄∗‖2F = min
B̄,x2

ℜ,x2
ℑ

n∑
i=1

n−p∑
j=1

(b̄ij − āij)2v−1
ij ,

s.t.

B̄ − N̄ M̄

−M̄ B̄ − N̄


x2ℜ
x2ℑ

 = 0,

∥∥∥∥∥∥∥∥
x2ℜ
x2ℑ


∥∥∥∥∥∥∥∥
2

= 1.

(6.8)

The minimization problem (6.8) belongs to the class of (structured) total least

squares problems, which arise in several estimation and identification problems in control

theory and signal processing. Our approach is inspired by [87], with the difference that we

focus on real perturbations ∆ and complex eigenvalue λ: this constraint leads to different

optimality conditions and algorithms. Let A⊗B denote the Kronecker product between the

matrices A and B, and diag(d1, . . . , dn) the diagonal matrix with scalar entries d1, . . . , dn.

We now derive the optimality conditions for the problem (6.8).

Theorem 6.3. (Optimality conditions) Let x∗ℜ, and x∗ℑ be a solution to the minimization

problem (6.8). Then,

Ā− N̄ M̄

−M̄ Ā− N̄


︸ ︷︷ ︸

Ã

x∗ℜ
x∗ℑ


︸ ︷︷ ︸

x∗

= σ

Sx Tx

Tx Qx


︸ ︷︷ ︸

Dx

y1
y2


︸ ︷︷ ︸
y∗

,

Ā− N̄ M̄

−M̄ Ā− N̄


T

︸ ︷︷ ︸
ÃT

y1
y2


︸ ︷︷ ︸
y∗

= σ

Sy Ty

Ty Qy


︸ ︷︷ ︸

Dy

x∗ℜ
x∗ℑ


︸ ︷︷ ︸

x∗

,

(6.9)
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for some σ > 0 and y∗ ∈ R2n with ‖y∗‖ = 1, and where

D1 = diag(v11, . . . , v1n, v21, . . . , v2n, . . . , vn1, . . . , vnn),

D2 = diag(v11, . . . , vn1, v12, . . . , vn2, . . . , v1n, . . . , vnn),

Sx = (I ⊗ x∗ℜ)TD1(I ⊗ x∗ℜ), Tx = (I ⊗ x∗ℜ)TD1(I ⊗ x∗ℑ),

Qx = (I ⊗ x∗ℑ)TD1(I ⊗ x∗ℑ), Sy = (I ⊗ y1)TD2(I ⊗ y1),

Ty = (I ⊗ y1)TD2(I ⊗ y2), Qy = (I ⊗ y2)TD2(I ⊗ y2).

(6.10)

Proof. We adopt the method of Lagrange multipliers to derive optimality conditions for the

problem (6.8). The Lagrangian is

L(B̄, x2ℜ, x2ℑ, ℓ1, ℓ2, ρ) =
∑
i

∑
j

(b̄ij − āij)2v−1
ij

+ ℓT1 ((B̄ − N̄)x2ℜ + M̄x2ℑ) + ℓT2 ((B̄ − N̄)x2ℑ − M̄x2ℜ)

+ ρ(1− x2Tℜ x2ℜ − x2Tℑ x2ℑ), (6.11)
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where ℓ1 ∈ Rn, ℓ2 ∈ Rn, and ρ ∈ R are Lagrange multipliers. By equating the partial

derivatives of L to zero we obtain

∂L
∂bij

= 0⇒ −2(āij − b̄ij)v−1
ij + ℓ1ix

2
ℜj + ℓ2ix

2
ℑj = 0, (6.12)

∂L
∂x2ℜ

= 0⇒ ℓT1 (B̄ − N̄)− ℓT2 M̄ − 2ρx2Tℜ = 0, (6.13)

∂L
∂x2ℑ

= 0⇒ ℓT1 M̄ + ℓT2 (B̄ − N̄)− 2ρx2Tℑ = 0, (6.14)

∂L
∂ℓ1

= 0⇒ (B̄ − N̄)x2ℜ + M̄x2ℑ = 0, (6.15)

∂L
∂ℓ2

= 0⇒ (B̄ − N̄)x2ℑ − M̄x2ℜ = 0, (6.16)

∂L
∂ρ

= 0⇒ x2Tℜ x2ℜ + x2Tℑ x2ℑ = 1. (6.17)

Let L1 = diag(ℓ1), L2 = diag(ℓ2), Xℜ = diag(x2ℜ), Xℑ = diag(x2ℑ). After including

the factor 2 into the multipliers, equation (6.12) can be written in matrix form as

Ā− B̄ = L1V̄ Xℜ + L2V̄ Xℑ. (6.18)

Analogously, equations (6.13) and (6.14) can be written as

[
ℓT1 ℓT2

]B̄ − N̄ M̄

−M̄ B̄ − N̄

− 2ρ

[
x2Tℜ x2Tℑ

]
= 0, (6.19)
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From equation (6.19) we have

[
ℓT1 ℓT2

]B̄ − N̄ M̄

−M̄ B̄ − N̄


x2ℜ
x2ℑ


︸ ︷︷ ︸
=0 due to (6.15) and (6.16)

−2ρ = 0,

from which we conclude ρ = 0. By combining (6.15) and (6.18) (respectively, (6.16)

and (6.18)) we obtain

(Ā− N̄)x2ℜ + M̄x2ℑ =
(
L1V̄ Xℜ + L2V̄ Xℑ

)
x2ℜ,

(Ā− N̄)x2ℑ − M̄x2ℜ =
(
L1V̄ Xℜ + L2V̄ Xℑ

)
x2ℑ.

Analogously, by combining (6.13) and (6.18), (6.14) and (6.18), we obtain

ℓT1 (Ā− N̄)− ℓT2 M̄ = ℓT1
(
L1V̄ Xℜ + L2V̄ Xℑ

)
,

ℓT2 (Ā− N̄) + ℓT1 M̄ = ℓT2
(
L1V̄ Xℜ + L2V̄ Xℑ

)
.

Let σ =
√
ℓT1 ℓ1 + ℓT2 ℓ2 and observe that σ cannot be zero. Indeed, due to Assumption (A1),

the optimal perturbation can not be zero; thus, the first constraint in (6.8) must be active

and the corresponding multiplier must be nonzero. Then, we can define y1 = ℓ1/σ and

y2 = ℓ2/σ and we can verify that

(
L1V̄ Xℜ + L2V̄ Xℑ

)
x2ℜ = σ (Sxy1 + Txy2) ,(

L1V̄ Xℜ + L2V̄ Xℑ
)
x2ℑ = σ (Txy1 +Qxy2) ,
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and

σ
(
yT1 (Ā− N̄)− yT2 M̄

)
= ℓT1

(
L1V̄ Xℜ + L2V̄ Xℑ

)
= σ2

(
Syx

2
ℜ + Tyx

2
ℑ
)T
,

σ
(
yT2 (Ā− N̄) + yT1 M̄

)
= ℓT2

(
L1V̄ Xℜ + L2V̄ Xℑ

)
= σ2

(
Tyx

2
ℜ +Qyx

2
ℑ
)T
,

which conclude the proof. ■

Note that equations (6.9) may admit multiple solutions, and that every solution

to (6.9) yields a network perturbation that satisfies the constraints in the minimization

problem (6.8). We now present the following result to compute perturbations.

Corollary 6.4. (Minimum norm perturbation) Let ∆∗ be a solution to (6.3). Then,

∆∗ = [0n×p ∆̄∗], where

∆̄∗ = −σ
(
diag(y1)V̄ diag(x∗ℜ)− diag(y2)V̄ diag(x∗ℑ)

)
,

and x∗ℜ, x∗ℑ, y1, y2, σ satisfy the equations (6.9). Moreover,

‖∆‖2F = σ2x∗TDyx
∗ = σx∗TÃTy∗ ≤ σ‖Ã‖F.
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Proof. The expression for the perturbation ∆∗ comes from Lemma 6.2 and (6.18), and the

fact that L1 = σ diag(y1), L2 = σ diag(y2). To show the second part notice that

‖∆‖2F = ‖A−B‖2F = ‖L1V̄ Xℜ + L2V̄ Xℑ‖2F

= σ2
∑
i

∑
j

(
y21ix

2
ℜj + y22ix

2
ℑj

)
vij

= σ2x∗TDyx
∗ = σx∗TÃTy∗,

where the last equalities follow from (6.9). Finally, the inequality follows from ‖x∗‖2 =

‖x∗‖F = ‖y∗‖2 = ‖y∗‖F = 1. ■

To compute a triple (σ, x∗, y∗) satisfying the condition in Theorem 6.3, observe

that (6.9) can be written in matrix form as

0 ÃT

Ã 0


︸ ︷︷ ︸

H

x
y


︸︷︷︸

z

= σ̄

Dy 0

0 Dx


︸ ︷︷ ︸

D

x
y


︸︷︷︸

z

. (6.20)

Lemma 6.5. (Equivalence between Theorem 6.3 and (6.20)) Let (σ, x, y), with x 6= 0,

solve (6.20). Then, σ 6= 0 and y 6= 0, and the triple ((αβ)−1σ, αx, βy), with α = sgn(σ)‖x‖−1

and β = ‖y‖−1, satisfies the conditions in Theorem 6.3.

Proof. Because x 6= 0 and Ã has full column rank due to Assumption (A1), it follows σ 6= 0

and y 6= 0. Let Dx and Dy be as in (6.9). Notice that Dαx = α2Dx and Dβy = β2Dy.
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Notice that (αβ)−1σ > 0. We have

Ãαx =
σ

αβ
α2Dxβy = ασDxy,

ÃTβy =
σ

αβ
β2Dyαx = βσDyx,

which concludes the proof. ■

Lemma 6.5 shows that a (sub)optimal network perturbation can in fact be con-

structed by solving equations (6.20). It should be observed that, if the matrices Sx, Tx, Qx,

Sy, Ty, and Qy were constant, then (6.20) would describe a generalized eigenvalue problem,

thus a solution (σ̄, z) would be a pair of generalized eigenvalue and eigenvector. These

facts will be exploited in the next section to develop a heuristic algorithm to compute a

(sub)optimal network perturbation.

Remark 6.6. (Smallest network perturbation with respect to the unobservable

eigenvalue) In the minimization problem (6.3) the size of the perturbation ∆∗ depends on

the desired eigenvalue λ, and it may be of interest to characterize the unobservable eigenvalue

λ∗ = λ∗ℜ + iλ∗ℑ yielding the smallest network perturbation that prevents observability. To this

aim, we equate to zero the derivatives of the Lagrangian (6.11) with respect to λℜ and λℑ

161



to obtain

∂L
∂λℜ

= 0⇒ ℓT1

0p
x2ℜ

+ ℓT2

0p
x2ℑ

 = 0,

∂L
∂λℑ

= 0⇒ ℓT1

0p
x2ℑ

− ℓT2
0p
x2ℜ

 = 0.

The above conditions clarify that, for the perturbation ∆ to be of the smallest size with

respect to λ, the Lagrange multipliers ℓ1 and ℓ2, and the vectors x2ℜ and x2ℑ must verify an

orthogonality condition. □

Remark 6.7. (Real unobservable eigenvalue) When the unobservable eigenvalue λ

in (6.3) is real, the optimality conditions in Theorem 6.3 can be simplified to

(Ā− N̄)xℜ = σSxy1, and (Ā− N̄)y1 = σSyxℜ.

The generalized eigenvalue equation (6.20) becomes

 0 ĀT − N̄T

Ā− N̄ 0


y1
xℜ

 = σ

Sx 0

0 Sy


y1
xℜ

 ,

and the optimality conditions with respect to the unobservable eigenvalue λ (see Remark 6.6)

simplify to ℓT1

0p
x2ℜ

 = 0. □

162



6.3.2 A heuristic procedure to compute structural perturbations

In this section we propose an algorithm to find a solution to the set of nonlinear

equations (6.20), and thus to find a (sub)optimal solution to the minimization problem (6.3).

Our procedure is motivated by (6.20) and Corollary 6.4, and it consists of fixing a vector

z, computing the matrix D, and approximating an eigenvector associated with the smallest

generalized eigenvalue of the pair (H,D). Because the size of the perturbation is bounded

by the generalized eigenvalue σ as in Corollary 6.4, we adopt an iterative procedure based on

the inverse iteration method for the computation of the smallest eigenvalue of a matrix [90].

We remark that our procedure is heuristic, because (6.20) is in fact a nonlinear generalized

eigenvalue problem due to the dependency of the matrix D on the eigenvector z. To the

best of our knowledge, no complete algorithm is known for the solution of (6.20). We start

by characterizing certain properties of the matrices H and D, which will be used to derive

our algorithm. Let

spec(H,D) = {λ ∈ C : det(H − λD) = 0},

and recall that the pencil (H,D) is regular if the determinant det(H − λD) does not vanish

for some value of λ, see [91]. Notice that, if (H,D) is not regular, then spec(H,D) = C.

Lemma 6.8. (Generalized eigenvalues of (H,D)) Given a vector z ∈ R4n−2p, define

the matrices H and D as in (6.20). Then,

1. 0 ∈ spec(H,D);

2. if λ ∈ spec(H,D), then −λ ∈ spec(H,D); and
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3. if (H,D) is regular, then spec(H,D) ⊂ R.

Proof. Statement (i) is equivalent to Ãx = 0 and ÃTy = 0, for some vectors x and y.

Because ÃT ∈ R(2n−2p)×2n with p ≥ 1, the matrix ÃT features a nontrivial null space.

Thus, the two equations are satisfied with x = 0 and y ∈ Ker(ÃT), and the statement

follows.

To prove statement (ii) notice that, due to the block structure of H and D, if the

triple (λ, x̄, ȳ) satisfies the generalized eigenvalue equations ÃTȳ = λDyx̄ and Ãx̄ = λDxȳ,

so does (−λ, x̄,−ȳ).

To show statement (iii), let Rank(D) = k ≤ n, and notice that the regularity of

the pencil (H,D) implies Hz̄ 6= 0 whenever Dz̄ = 0 and z̄ 6= 0. Notice that (H,D) has n−k

infinite eigenvalues [91] because Hz̄ = λDz̄ = λ ·0 for every nontrivial z̄ ∈ Ker(D). Because

D is symmetric, it admits an orthonormal basis of eigenvectors. Let V1 ∈ Rn×k contain

the orthonormal eigenvectors of D associated with its nonzero eigenvalues, let ΛD be the

corresponding diagonal matrix of the eigenvalues, and let T1 = V1Λ
−1/2
D . Then, TT

1 DT1 = I.

Let H̃ = TT
1 HT1, and notice that H̃ is symmetric. Let T2 ∈ Rk×k be an orthonormal matrix

of the eigenvectors of H̃. Let T = T1T2 and note that TTHT = Λ and TTDT = I, where Λ

is a diagonal matrix. To conclude, consider the generalized eigenvalue problem Hz̄ = λDz̄.

Let z̄ = T z̃. Because T has full column rank k, we have TTHTz̃ = Λz̃ = λTTDTz̃ = λz̃,

from which we conclude that (H,D) has k real eigenvalues. ■

Lemma 6.8 implies that the inverse iteration method is not directly applicable

to (6.20). In fact, the zero eigenvalue of (H,D) leads the inverse iteration to instability,

while the presence of eigenvalues of (H,D) with equal magnitude may induce non-decaying
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oscillations in the solution vector. To overcome these issues, we employ a shifting mechanism

as detailed in Algorithm 2, where the eigenvector z is iteratively updated by solving the

equation (H − µD)zk+1 = Dzk until a convergence criteria is met. Notice that (i) the

eigenvalues of (H − µD,D) are shifted with respect to the eigenvalues of (H,D), that is,

if σ ∈ spec(H,D), then σ − µ ∈ spec(H − µD,D),1 (ii) the pairs (H − µD,D) and (H,D)

share the same eigenvectors, and (iii) by selecting µ = ψ ·min{σ ∈ spec(H,D) : σ > 0},

the pair (H − µD,D) has nonzero eigenvalues with distinct magnitude. Thus, Algorithm 2

estimates the eigenvector z associated with the smallest nonzero eigenvalue σ of (H,D),

and converges when z and σ also satisfy equations (6.20). The parameter ψ determines a

compromise between numerical stability and convergence speed; larger values of ψ improve

the convergence speed.2

Algorithm 2: Heuristic solution to (6.20)
Input: Matrix H; max iterations maxiter; ψ ∈ (0.5, 1).
Output: (σ, z) satisfying (6.20), or fail.

1 repeat
2 z ← (H − µD)−1Dz;
3 ϕ← ‖z‖;
4 z ← z/ϕ;
5 µ = ψ ·min{ϕ ∈ spec(H,D) : ϕ > 0};
6 update D according to (6.10);
7 i← i+ 1

8 until convergence or i > maxiter;
9 return (ϕ+ µ, z) or fail if i = maxiter;

When convergent, Algorithm 2 finds a solution to (6.20) and, consequently, the

algorithm could stop at a local minimum and return a (sub)optimal network perturbation
1 To see this, let σ be an eigenvalue of (H,D), that is, Hx = σDx. Then, (H − µD)x = Hx − µDx =

σDx− µDx = (σ − µ)Dx. That is (H − µD)x = (σ − µ)Dx thus σ − µ is an eigenvalue of (H − µD,D).
2In Algorithm 2 the range for ψ has been empirically determined during our numerical studies.
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preventing observability of a desired eigenvalue. All information about the network ma-

trix, the sensor nodes, the constraint graph, and the unobservable eigenvalue is encoded

in the matrix H as in (6.7), (6.9) and (6.20). Although convergence of Algorithm 2 is

not guaranteed, numerical studies show that it performs well in practice; see Sections 6.3.3

and 6.4.

6.3.3 Optimal perturbations and algorithm validation

In this section we validate Algorithm 2 on a small network. We start with the

following result.

Theorem 6.9. (Optimal perturbations of 3-dimensional line networks with fixed

λ ∈ C) Consider a network with graph G = (V, E), where |V| = 3, weighted adjacency matrix

A =


a11 a12 0

a21 a22 a23

0 a32 a33

 ,

and sensor node O = {1}. Let B = [bij ] = A + ∆∗, where ∆∗ solves the minimization

problem (6.3) with constraint graph H = G and unobservable eigenvalue λ = λℜ + iλℑ ∈ C,

λℑ 6= 0. Then:

b11 = a11, b21 = a21, b12 = 0,
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and b22, b23, b32, and b33 satisfy:

(b22 − a22)− (b33 − a33) +
b33 − b22
b32

(b23 − a23) = 0,

(b32 − a32)−
b23
b32

(b23 − a23) = 0,

b22 + b33 − 2λℜ = 0,

b22b33 − b23b32 − λ2ℜ − λ2ℑ = 0.

(6.21)

Proof. Let Bx = λx and notice that, because λ is unobservable, COx = [1 0 0]x = 0. Then,

x = [x1 x2 x3]
T, x1 = 0, b11 = a11, and b21 = a21. By contradiction, let x2 = 0. Notice that

Bx = λx implies b33 = λ, which contradicts the assumption that λℑ 6= 0 and b33 ∈ R. Thus,

x2 6= 0. Because x2 6= 0, the relation Bx = λx and x1 = 0 imply b12 = 0. Additionally, λ is

an eigenvalue of

B2 =

b22 b23

b32 b33

 .

The characteristic polynomial of B2 is

PB2(s) = s2 − (b22 + b33)s+ b22b33 − b23b32.

For λ ∈ spec(B2), we must have PB2(s) = (s− λ)(s− λ̄), where λ̄ is the complex conjugate

of λ. Thus,

PB2(s) = (s− λℜ − iλℑ)(s− λℜ + iλℑ) = s2 − 2λℜs+ λ2ℜ + λ2ℑ,
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which leads to

b22 + b33 − 2λℜ = 0, and b22b33 − b23b32 − λ2ℜ − λ2ℑ = 0. (6.22)

The Lagrange function of the minimization problem with cost function ‖∆∗‖2F =∑3
i=2

∑3
j=2(bij − aij)2 and constraints (6.22) is

L(b22, b23, b32, b33, p1, p2) = d222 + d223 + d232 + d233

+ p1(2λℜ + b22 + b33) + p2(b22b33 − b23b32 − (λ2ℜ + λ2ℑ)),

where p1, p2 ∈ R are Lagrange multipliers, and dij = bij − aij . By equating the partial

derivatives of L to zero we obtain

∂L
∂b22

= 0⇒ 2d22 + p1 + p2b33 = 0, (6.23)

∂L
∂b33

= 0⇒ 2d33 + p1 + p2b22 = 0, (6.24)

∂L
∂b23

= 0⇒ 2d23 − p2b32 = 0, (6.25)

∂L
∂b32

= 0⇒ 2d32 − p2b23 = 0, (6.26)

together with (6.22). The statement follows by substituting the Lagrange multipliers p1

and p2 into (6.23) and (6.26). ■

To validate Algorithm 2, in Fig. 6.1 we compute optimal perturbations for 3-

dimensional line networks based on Theorem 6.9, and compare them with the perturbation

obtained at with Algorithm 2.
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Figure 6.1: This figure validates the effectiveness of Algorithm 2 to compute optimal
perturbations for the line network in Section 6.3.3. The plot shows the mean and standard
deviation over 100 networks of the difference between ∆∗, obtained via the optimality
conditions (6.21), and ∆(i), computed at the i-th iteration of Algorithm 2. The unobservable
eigenvalue is λ = i and the values aij are chosen independently and uniformly distributed
in [0, 1].

6.4 Observability Radius of Random Networks: Line and

Star Topologies

In this section we study the observability radius of networks with fixed structure

and random weights, when the desired unobservable eigenvalue is an optimization parameter

as in (6.2). First, we give a general upper bound on the size of an optimal perturbation.

Next, we explicitly compute optimal perturbations for line and star networks, showing that

their robustness is essentially different.

We start with some necessary definitions. Given a directed graph G = (V, E), a cut

is a subset of edges Ē ⊆ E . Given two disjoint sets of vertices S1,S2 ⊂ V, we say that a cut

Ē disconnects S2 from S1 if there exists no path from any vertex in S2 to any vertex in S1
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in the subgraph (V, E \ Ē). Two cuts E1 and E2 are disjoint if they have no edge in common,

that is, if E1 ∩ E2 = ∅. Finally, the Gamma function is defined as Γ(z) =
∫∞
0 xz−1e−x dx.

With this notation in place, we are in the position to prove a general upper bound on the

(expected) norm of the smallest perturbation that prevents observability. The proof is based

on the following intuition: a perturbation that disconnects the graph prevents observability.

Theorem 6.10. (Bound on expected network observability radius) Consider a net-

work with graph G = (V, E), weighted adjacency matrix A = [aij ], and sensor nodes O ⊆ V.

Let the weights aij be independent random variables uniformly distributed in the interval

[0, 1]. Define the minimal observability-preventing perturbation as

δ = min
λ∈C,x∈Cn,∆∈Rn×n

‖∆‖F, (6.27)

s.t. (A+∆)x = λx,

‖x‖2 = 1,

COx = 0,

∆ ∈ AG .

Let Ωk(O) be a collection of disjoint cuts of cardinality k, where each cut disconnects a

non-empty subset of nodes from O. Let ω = |Ωk(O)| be the cardinality of Ωk(O). Then,

E[δ] ≤ Γ(1/k) Γ(ω + 1)√
k Γ(ω + 1 + 1/k)

.
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Proof. Let Ē ∈ Ωk(O). Notice that, after removing the edges Ē , the nodes are partitioned

as V = V1 ∪ V2, where V1 ∩ V2 = ∅, O ⊆ V1, and V2 is disconnected from V1. Reorder the

network nodes so that V1 = {1, . . . , |V1|} and V2 = {|V1| + 1, . . . , |V|}. Accordingly, the

modified network matrix is reducible and reads as

Ā =

A11 0

A21 A22

 .

Let x2 be an eigenvector of A22 with corresponding eigenvalue λ. Notice that λ is an

eigenvalue of Ā with eigenvector x = [0 xT2 ]
T. Since O ⊆ V1, COx = 0, so that the

eigenvalue λ is unobservable.

From the above discussion we conclude that, for each Ē ∈ Ωk(O), there exists

a perturbation ∆ = [δij ] that is compatible with G and ensures that one eigenvalue is

unobservable. Moreover, the perturbation ∆ is defined as δij = −aij if (i, j) ∈ Ē , and

δij = 0 otherwise. We thus have

E[δ] ≤ E

 min
Ē∈Ωk(O)

√ ∑
(i,j)∈Ē

a2ij

 .
Because any two elements of Ωk(O) have empty intersection and all edge weights are inde-

pendent, we have

Pr

 min
Ē∈Ωk(O)

√ ∑
(i,j)∈Ē

a2ij ≥ x

 = Pr

√ ∑
(i,j)∈Ē

a2ij ≥ x

ω

= Pr

 ∑
(i,j)∈Ē

a2ij ≥ x2
ω

=

1− Pr

 ∑
(i,j)∈Ē

a2ij ≤ x2
ω

.
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In order to obtain a more explicit expression for this probability, we resort to using a lower

bound. Let a denote the vector of aij with (i, j) ∈ Ē . The condition
∑

(i,j)∈Ē a
2
ij ≤ x2

implies that a belongs to the k-dimensional sphere of radius x (centered at the origin). In

fact, since a is sampled in [0, 1]k, it belongs to the intersection between the sphere and the

first orthant. By computing the volume of the k-dimensional cube inscribed in the sphere,

we obtain

Pr

 ∑
(i,j)∈Ē

a2ij ≤ x2
 ≥


(2x/

√
k)

k

2k
=
(

x√
k

)k
, x ≤

√
k,

1, otherwise.

Since δ takes on nonnegative values only, its expectation can be computed by integrating

the survival function

E[δ] =
∫ ∞

0
Pr (δ ≥ t) dt,

which leads us to obtain, by suitable changes of variables,

E[δ] ≤
∫ √

k

0

(
1−

(
x√
k

)k
)ω

dx =
√
k

∫ 1

0

(
1− tk

)ω
dt

=
1√
k

∫ 1

0
(1− z)ω z

1
k
−1dz =

1√
k

Γ(1/k)Γ(ω + 1)

Γ(ω + 1/k + 1)
,

where the last equality follows from the definition of the Beta function, B(x, y) =
∫ 1
0 t

x−1(1−

t)y−1dt for Real(x) > 0, Real(y) > 0, and its relation with the Gamma function, B(x, y) =

Γ(x) Γ(y)
Γ(x+y) . ■
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We now use Theorem 6.10 to investigate the asymptotic behavior of the expected

observability radius on sequences of networks of increasing cardinality n. In order to em-

phasize the dependence on n, we shall write E[δ(n)] from now on. As a first step, we can

apply Wendel’s inequalities [92] to find

1

(ω + 1)1/k
≤ Γ(ω + 1)

Γ(ω + 1 + 1/k)
≤ (ω + 1 + 1/k)1−1/k

(ω + 1)
.

If in a sequence of networks ω grows to infinity and k remains constant, then the ratio

between the lower and the upper bounds goes to one, yielding the asymptotic equivalence

E[δ(n)] ≤ Γ(1/k) Γ(ω + 1)√
k Γ(ω + 1 + 1/k)

∼ Γ(1/k)√
k

1

(ω + 1)1/k
.

This relation implies that a network becomes less robust to perturbations as the size of the

network increases, with a rate determined by k. In the rest of this section we study two

network topologies with different robustness properties. In particular, we show that line

networks achieve the bound in Theorem 6.10, proving its tightness, whereas star networks

have on average a smaller observability radius.
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(a) Line network (b) Star network

Figure 6.2: Line and star networks. Sensor nodes are marked in black.

(Line network) Let G be a line network with n nodes and one sensor node as in Fig. 6.2.

The adjacency and output matrices read as

A =



a11 a12 0 · · · 0

a21 a22 a23 · · · 0

... . . . . . . . . . ...

0 · · · an−1,n−2 an−1,n−1 an−1,n

0 · · · 0 an,n−1 ann


,

CO =

[
1 0 0 · · · 0

]
.

(6.28)

We obtain the following result.

Theorem 6.11. (Structured perturbation of line networks) Consider a line network

with matrices as in (6.28), where the weights aij are independent random variables uniformly
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distributed in the interval [0, 1]. Let δ(n) be the minimal cost defined as in (6.27). Then,

δ(n) = min{a12, . . . , an−1,n}, and E[δ(n)] =
1

n
.

Proof. It is known that line networks, when observed from one of their extremes, are strongly

structurally observable, that is, they are observable for every nonzero choice of the edge

weights [93]. Consequently, for the perturbed system to feature an unobservable eigenvalue,

the perturbation ∆ must be such that δi,i+1 = −ai,i+1 for some i ∈ {2, . . . , n − 1}. Thus,

a minimum norm perturbation is obtained by selecting the smallest entry ai,i+1. Since the

ai,i+1 are independent and identically distributed, δ(n) = min ai,i+1 is a random variable

with survival function Pr(δ(n) ≥ x) = (1 − x)n−1 for 0 ≤ x ≤ 1, and Pr(δ(n) ≥ x) = 0

otherwise. Thus,

E[δ(n)] =
∫ 1

0
Pr(δ(n) ≥ x)dx =

1

n
.

■

Theorem 6.11 characterizes the resilience of line networks to structured perturba-

tions. We remark that, because line networks are strongly structurally observable, struc-

tured perturbations preventing observability necessarily disconnect the network by zeroing

some network weights. Consistently with this remark, line networks achieve the upper

bound in Theorem 6.10, being therefore maximally robust to structured perturbations. In

fact, for O = {1} and a cut size k = 1 we have Ω1(O) = {a12, . . . , an−1,n} and ω = n − 1.
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Thus,

E[δ(n)] ≤ Γ(1)Γ(n)√
1Γ(n+ 1)

=
(n− 1)!

n!
=

1

n
,

which equals the behavior identified in Theorem 6.11. Further, Theorem 6.11 also

identifies an unobservable eigenvalue yielding a perturbation with minimum norm. In

fact, if ai∗−1,i∗ = min{a12, . . . , an−1,n}, then all eigenvalues of the submatrix of A with

rows/columns in the set {i∗, . . . , n} are unobservable, and thus minimizers in (6.27).

Both Theorems 6.10 and 6.11 are based on constructing perturbations by discon-

necting the graph. This strategy, however, suffers from performance limitations and may

not be optimal in general. The next example shows that different kinds of perturbations,

when applicable, may yield a lower cost.

(Star network) Let G be a star network with n nodes and one sensor node as in Fig. 6.2.

The adjacency and output matrices read as

A =



a11 a12 a13 · · · a1n

a21 a22 0 · · · 0

a31 0
. . . . . . ...

...
... 0 an−1,n−1 0

an1 0 0 0 ann


,

CO =

[
1 0 0 · · · 0

]
.

(6.29)
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Differently from the case of line networks, star networks are not strongly structurally ob-

servable, so that different perturbations may result in unobservability of some modes.

Theorem 6.12. (Structured perturbation of star networks) Consider a star network

with matrices as in (6.29), where the weights aij are independent random variables uniformly

distributed in the interval [0, 1]. Let δ(n) be the minimal cost defined as in (6.27). Let

γ = min
i,j∈{2,...,n},i ̸=j

|aii − ajj |√
2

.

Then,

δ(n) = min{a12, a13, . . . , a1n, γ}, and

1√
2n(n− 1)

≤ E[δ(n)] ≤ 1√
2n(n− 2)

.

Proof. Partition the network matrix A in (6.29) as

A =

a11 A12

A21 A22

 ,

where A12 ∈ R1,n−1, A21 ∈ Rn−1,1, A22 ∈ Rn−1,n−1. Accordingly, let x = [x1 x
T
2 ]

T. The

condition COx = 0 implies x1 = 0. Consequently, for the condition (A + ∆)x = λx to be

satisfied, we must have (A12 +∆12)x2 = 0 and (A22 +∆22)x2 = λx2. Notice that, because

A22 is diagonal and ∆ ∈ AG , the condition (A22 +∆22)x2 = λx2 implies that λ = aii + δii
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for all indices i such that i ∈ Supp(x2), where Supp(x2) denotes the set of nonzero entries

of x2. Because ‖x‖ = 1, |Supp(x2)| > 0. We have two cases:

Case |Supp(x2)| = 1: Let Supp(x) = {i}, with i ∈ {2, . . . , n}. Then, the condition

(A12 +∆12)x2 = 0 implies δ1,i = −a1,i, and the condition (A22 +∆22)x2 = λx2 is satisfied

with ∆22 = 0, λ = aii, and x = ei, where ei is the i-th canonical vector of dimension n.

Thus, if |Supp(x2)| = 1, then δ(n) = mini∈{2,...,n} a1,i.

Case |Supp(x2)| > 1: Let S = Supp(x2). Then, δii = λ − aii. Notice that the

condition (A22 + ∆22)x2 = λx2 is satisfied for every x2 with support S and, particularly,

for x2 ∈ Ker(A12). Thus, we let ∆12 = 0. Notice that

δ(n) = min
λ,S

√∑
i∈S

(λ− aii)2,

and that δ(n) is obtained when S = {i, j}, for some i, j ∈ {2, . . . , n}, and λ = (aii + ajj)/2.

Specifically, for the indexes {i, j}, we have ‖∆‖F = |aii − ajj |/
√
2. Thus, if |Supp(x2)| > 1,

then δ(n) = γ, which concludes the proof of the first statement.

In order to estimate E[δ(n)], notice that δ(n) = min{α, γ}, where

α = min{a12, a13, . . . , a1n}, and that α and γ are independent random variables. Then,

from [94, Chapter 6.4] we have

Pr(δ(n) ≥ x) = Pr(α ≥ x)Pr(γ ≥ x)

= (1− x)n−1(1− (n− 2)
√
2x)n−1,

178



for x ≤ (
√
2(n− 2))−1, and Pr(δ(n) ≥ x) = 0 otherwise. Thus,

E[δ(n)] =
∫ 1√

2(n−2)

0
(1− x)n−1(1− (n− 2)

√
2x)n−1dx.

Next, for the upper bound observe that

∫ 1√
2(n−2)

0
(1− x)n−1(1− (n− 2)

√
2x)n−1dx

≤
∫ 1√

2(n−2)

0
(1− (n− 2)

√
2x)n−1dx =

1√
2n(n− 2)

,

and for the lower bound observe that

∫ 1√
2(n−2)

0
(1− x)n−1(1− (n− 2)

√
2x)n−1dx

=

∫ 1√
2(n−2)

0
(1− ((n− 2)

√
2 + 1)x+ ((n− 2)

√
2)x2)n−1dx

≥
∫ 1√

2(n−1)

0
(1− (n− 1)

√
2x)n−1dx =

1√
2n(n− 1)

.

■

Theorem 6.12 quantifies the resilience of star networks, and the unobservable

eigenvalues requiring minimum norm perturbations; see the proof for a characterization of

this eigenvalues.

The bounds in Theorem 6.12 are asymptotically tight and imply

E[δ(n)] ∼ 1√
2n2

, as n→∞.
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Figure 6.3: Expected values E[δ(n)] for the two network topologies in Fig. 6.2 as functions of
the network cardinality n. Dotted lines represent upper and lower bounds in Theorems 6.11
and 6.12. Solid lines show the mean over 100 networks of the Frobenius norm of the
perturbations obtained by Algorithm 2.

See Fig. 6.3 for a numerical validation of this result. This rate of decrease implies that

star networks are structurally less robust to perturbations than line networks. Crucially,

unobservability in star networks may be caused by two different phenomena: the deletion

of an edge disconnecting a node from the sensor node (deletion of the smallest among the

edges {a12, a13, . . . , a1n}), and the creation of a dynamical symmetry with respect to the

sensor node by perturbing two diagonal elements to make them equal in weight. It turns

out that, on average, creating symmetries is “cheaper” than disconnecting the network.

The role of network symmetries in preventing observability and controllability has been

observed in several independent works; see for instance [88, 89]. Finally, the comparison of

line and star networks shows that Algorithm 2 is a useful tool to systematically investigate

the robustness of different topologies.

180



6.5 Robustness of Power Systems Against Topology Attacks

In this section, we employ our methods to quantify the resilience of power networks

against attacks to the power lines. We begin by formalizing attacks against the topology

of the power networks, and then we extend the applicability of our analysis to linear,

continuous-time, descriptor systems.

We adopt the small-signal version of the classic structure-preserving power model

to describe the dynamics of a power network. The interested reader is referred to [95,

96] for a detailed derivation from the full nonlinear structure-preserving power network

model. Consider a connected power network with n generators {g1, . . . , gn} and m load

buses {bn+1, . . . , bn+m}. The interconnection structure of the power network is encoded by

a connected susceptance-weighted graph G. The vertices of G are the generators gi and the

buses bi. The edges of G are the transmission lines {bi, bj} and the connections {gi, bi},

weighted by their susceptance values. The Laplacian associated with the susceptance-

weighted graph is the symmetric susceptance matrix S ∈ R(n+m)×(n+m) defined by

S =

Sgg Sgl

Slg Sll

 , (6.30)

where generators and load buses have been labeled so that the first n rows of S are associated

with the generators and the last m rows of S correspond to the load buses. The dynamic
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model of the power network is


I 0 0

0 Mg 0

0 0 0


︸ ︷︷ ︸

E


δ̇

ω̇

θ̇

=−


0 −I 0

Sgg Dg Sgl

Slg 0 Sll


︸ ︷︷ ︸

A


δ

ω

θ

+


0

Pω

Pθ

, (6.31)

where δ : R → Rn and ω : R → Rn denote the generator rotor angles and frequencies, and

θ : R→ Rm are the voltage angles at the buses. The matrices Mg and Dg are the diagonal

matrices of the generator inertial and damping coefficients, and the inputs Pω : R→ Rn and

Pθ : R→ Rm are due to known changes in the mechanical input power to the generators or

real power demand at the loads.

Let O be the set of p sensors, and CO the measurement matrix. We consider topol-

ogy attacks yielding unobservability of the slow dynamics of the descriptor system (6.31).

We refer the interested reader to [97] for a detailed discussion of the observability of de-

scriptor systems. In particular, we look for a perturbation ∆ that is compatible with the

structure of the network matrix A, and satisfies (A +∆)x = λEx and COx = 0, for some

λ ∈ C with <(λ) > 0 and x 6= 0. It should be observed that the matrix A features structural

zeros due to the power network topology encoded in S, as well as zeros due to the second

order dynamical model of generators.

Following (6.5), let the matrix E of the descriptor system (6.31) be partitioned as

E =

E11 E12

E21 E22

 , (6.32)
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Figure 6.4: IEEE 14 power grid, with 5 generators and 14 load buses.

where E11 ∈ Rp×p, E12 ∈ Rp×n−p, E21 ∈ Rn−p×p, and E22 ∈ Rn−p×n−p. In order to apply

Theorem 6.3 and Algorithm 2 to (6.31), it is sufficient to let

M̄ =

 0p

λℑE22

 and N̄ =

 0p

λℜE22

 (6.33)

replace the corresponding expressions in (6.7).

We employ Algorithm 2 to study vulnerabilities of the IEEE 14 bus system shown

in Fig. 6.4 to structural perturbations. We model the IEEE 14 bus system as a descriptor

model of the form (6.31) and we let CO =

[
1 0 0 · · · 0

]
, that is, the generator rotor

angle connected to bus 1 is directly measured. For given generators inertia and damping
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Table 6.1: Network perturbations inducing unobservable modes.
Perturbation ‖∆‖F Unobservable mode
Disconnect load 1 ([Sll]1,2 = 0) 4, 60 10.92

Stop generator 1 (δ̇1 = 0) 2.59 10.92± 20.95j

Modify impedance (53 lines modified) 2.34 10.92± 104j

coefficients, the finite eigenvalues of the system are λ1,2 = −10.9234 ± 20.9469j, λ3,4 =

−1.6568 ± 18.2687i, λ5,6 = −1.4761 ± 15.2247i, λ7,8 = −0.2275 ± 8.3227i, λ9 = 0, and

λ10 = −2.1867. In Table 6.1 we report the results of our numerical study. In particular, we

compute three different network perturbations yielding (unstable) unobservable eigenvalues.

Table 6.1 shows that an attacker may induce unstable and unobservable modes by tampering

with different phenomena including (i) disconnecting load buses, (ii) stopping a generator,

and (iii) altering the impedance of certain lines. Consistently with the observations made in

Section 6.4, creating artificial dynamical symmetries seems to require smaller perturbations

than disconnecting certain lines.
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Chapter 7

Robustness Against Attacks:

Secure Navigation of Robots

In this chapter, we consider robustness in a mobile-robotic application, where

the objective is to navigate a robot despite unknown and arbitrary attack actions against

the localization signals utilized by the onboard navigation algorithms. We refer to the

previously-published works [2, 3] for a comprehensive discussion of the technical results.

7.1 Introduction

Autonomous robots rely on sensors to measure their states and use this information

to make decisions and to generate control commands to send to their actuators. Despite

the tremendous advances in the development of more reliable sensing and communication

devices, sensory data and communication channels can be accidentally and maliciously

compromised, thus undermining the effectiveness of autonomous operations in critical and
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adversarial applications. To the best of our knowledge, tools to study the effects of attacks

on the trajectories and to design controls that securely steer the robot to a desired final

configurations are still critically lacking.

This work focuses on robots with integrator dynamics,

ẋn = un, (7.1)

where xn : R≥0 → R2 denotes the robot position in a two-dimensional space, and un : R≥0 →

R2 denotes the nominal control input that actuates the robot velocity. The input un is a

design parameter that is used to plan the robot trajectory between two desired positions.

We assume that un is piecewise continuous and ‖un‖ ≤ umax at all times, with umax ∈ R>0.

We consider robots equipped with two noiseless sensors: a GNSS receiver that

provides an absolute measure of the position, and a RSSI sensor that provides a measure

of the relative distance between the robot and nb radio stations. Let bi ∈ R2 and ri ∈ R>0

denote the position of the i-th station with respect to an absolute reference frame and its

coverage range, respectively, with bi 6= bj if i 6= j. We assume that the robot can measure

its distance from the i-th station only when its position is within the communication range

defined by ri. The sensor readings are

yGNSS
n = xn, and yRSSI

n,i = ‖xn − bi‖2, (7.2)
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where i ∈ Ω and

Ω(xn) = {i : i ∈ {1, . . . , nb} and ‖xn − bi‖ ≤ ri}.

Although our results can be extended to include different classes of sensors, we focus on

GNSS and RSSI sensors because they are available in many practical applications [98].

We assume that the robot operates in an adversarial environment, where adver-

saries can simultaneously spoof the GNSS readings and override the nominal input un with

a compromised attack input. To distinguish between the nominal measurements and those

obtained in the presence of attacks, we denote the dynamics of the robot under attack as

ẋ = u, (7.3)

where x : R≥0 → R2 represents the attacked robot position and u : R≥0 → R2 denotes the

attacked control input, which also obeys the bound on maximum velocity ‖u‖ ≤ umax. The

sensor readings in the presence of attacks are

yGNSS = x+ uGNSS, and yRSSI
i = ‖x− bi‖2, (7.4)

where uGNSS : R≥0 → R2 denotes the GNSS spoofing signal, and i ∈ Ω(x). We assume that

the RSSI readings are not compromised by the attacker, and that the nominal and attacked

initial positions satisfy xn(0) = x(0).

In this work, we study the competing objectives of the attacker and of the trajec-

tory planner, summarized as follows:
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(i) The attacker aims to design the attack inputs (u, uGNSS) so that the deviation between

the robot nominal trajectory and the actual (attacked) trajectory is maximized, while

maintaining undetectability (as defined below).

(ii) The trajectory planner seeks for a nominal control input un to guarantee that, in

the absence of attacks, un allows the robot to reach a desired final state, and, in the

presence of attacks, the measurements yGNSS and yRSSI
i allow the robot to detect the

attack.

The actions of the attacker and of the trajectory planner can be interpreted in terms of two

sequential phases. In the first phase, the trajectory planner designs the nominal control

input un and the control horizon T to satisfy objective (ii). In the second phase, the

attacker designs the attacks (u, uGNSS) given the nominal input un and the nominal model

(7.1)-(7.2) to satisfy objective (i). We stress that in our settings the nominal control input

un is replaced with the input u by the attacker in the second phase, and thus the choice of

the trajectory planner is irreversible and cannot be changed in the second phase.

Despite their popularity, GNSS-based localization techniques are subject to a num-

ber of well-known vulnerabilities that are typically associated with the lack of appropriate

encryption [99]. Existing methods to detect and identify GNSS spoofing attacks are based

on filtering techniques to reveal compromised streams of sensory data [100, 101]. Differ-

ently, in this work we focus on characterizing the detectability of attacks modifying both the

measurements and the inputs to the system, and on the problem of designing nominal con-

trol inputs to restrict or prevent undetectable attacks against this class of cyber-physical

systems. Although the security of cyber-physical systems is an extensively-studied topic
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(see e.g. [102]), most of the available methods are applicable to static systems or systems

with linear dynamics [103, 104]. Few exceptions are [105, 106, 107, 108], which are however

restricted to particular classes of nonlinear dynamics, and to attacks modifying the system

measurements only. A secure trajectory planning problem has been studied also in our early

work [109]. Differently from [109], in this work we focus on single integrator dynamics that

allow us to derive more stringent conditions and explicit controls, and on the possibility of

having multiple radio stations.

The contribution of this chapter is threefold. First, we characterize the class of

undetectable attacks against robots with single integrator dynamics operating on a plane.

We show how to design undetectable attacks, and demonstrate that attacks can exist only

when the robot is located in certain regions of the plane. Second, we formulate and solve

an optimization problem that captures the attacker’s goal of maximally deviating the robot

trajectory from the nominal path. We characterize the form of optimal undetectable attacks,

we provide algorithms for their design, and we study the set of positions that are reachable

by the attacker. Third, we formalize the trajectory planner’s goal of designing secure control

inputs, that is, inputs that allow the detection of any attack action. We show that secure

control inputs exist only between certain subsets of states, and we illustrate through an

example how the trajectory planner can leverage the layout of the radio stations to plan

trajectories that are secure.

The remainder of this chapter is organized as follows. In Section 7.2 we tackle

the problem from the perspective of a potential attacker. To this aim, we formalize the

notion of undetectable attack, we give necessary conditions for their existence, and we solve
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the attacker trajectory planning problem. On the other hand, in Section 7.3 we tackle the

problem from the point of view of the system planner (or trajectory planner). To this aim,

we characterize the class of secure control inputs, we study the set of configurations that are

reachable under secure control policies, and we illustrate how a system planner can leverage

the existence of multiple radio stations to plan waypoints that yield secure trajectories.

7.2 Undetectable attacks

We start by formalizing the notion of undetectable attacks.

Definition 7.1. (Undetectable attack) The attack (u, uGNSS), with u 6= un, is unde-

tectable if Ω(x) = Ω(xn) at all times and

yGNSS = yGNSS
n , and yRSSI

i = yRSSI
n,i ,

for all i ∈ Ω(xn). Otherwise, the attack is detectable. □

Loosely speaking, an attack is undetectable if the measurements generated by the

attacked trajectory are compatible with their nominal counterparts and with the nominal

dynamics at all times. On the other hand, when Definition 7.1 is not satisfied, then the

attack is readily detected by comparison between the actual and nominal measurements.

In particular, an attack is detectable if the stations visited by the nominal and attacked

trajectories differ, that is, Ω(x(t)) 6= Ω(xn(t)) for some t.

Remark 7.2. (Undetectability with GNSS sensor only) In scenarios where GNSS

is the only sensor for detection, an adversary can deliberately alter the control input and
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remain undetected (under the constraint Ω(x) = Ω(xn)). To see this, we note that the effect

of any attack u can be canceled from the GNSS readings by selecting uGNSS = pn− p. Thus,

secure trajectories can exist only if the robot has redundant measurement in addition to the

GNSS readings. □

7.2.1 Characterization of undetectable attacks

Let ρn,i = xn− bi and ρi = x− bi denote the robot nominal and attacked positions

relative to the i-th station, and

R(xn) =

[
ρn,i1 · · · ρn,is

]
,

where Ω(xn) = {i1, . . . , is}. Let Rank(M) denote the rank of the matrix M . In the following

result we characterize the existence and general expression of undetectable attacks.

Theorem 7.3. (Undetectable attacks) There exist undetectable attacks (u, uGNSS) with

u 6= un only if

Rank(R(xn(t))) < 2, (7.5)

for some time t. Moreover, when Rank(R(xn(t))) 6= 0 at all times, every undetectable attack

satisfies

uGNSS = xn − x, and u = vr,iρi + w, (7.6)

for all i ∈ Ω(xn(t)), where vr,i = uTnρn,i/‖ρi‖2, wTρi = 0.
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Proof. We prove (7.5) by contrapositive, that is, we show that if Rank(R(xn(t))) ≥ 2 for all

t then every undetectable attack satisfies u = un at all times. Let u denote an undetectable

attack, and consider the time instant τ = 0. From the assumption xn(0) = x(0) we obtain

ρi(0) = ρn,i(0) and ρj(0) = ρn,j(0) for all i, j ∈ Ω(xn(τ)). Moreover, from undetectability

of u, we have yRSSI
i − yRSSI

n,i = 0 and therefore

ẏRSSI
i − ẏRSSI

n,i = uTρi − uTnρn,i = 0,

for all i ∈ Ω(xn) or, equivalently,

(u(τ)− un(τ))
T

[
ρi(τ) ρj(τ)

]
= 0,

Since Rank(R(xn(τ))) ≥ 2, ρi(τ) and ρj(τ) are linearly independent, and thus u(τ) = un(τ)

and x(τ+) = xn(τ+). To conclude, we iterate the above reasoning for all τ ≥ 0, which yields

u = un, and shows the implication.

(Expression of undetectable attacks) By substituting (7.2) and (7.4) into Definition 7.1 we

obtain x + uGNSS = xn, from which uGNSS = xn − x follows. Next, we take the time

derivative of yRSSI
i − yRSSI

n,i = 0 and substitute (7.1) and (7.3) to obtain

ẏRSSI
i − ẏRSSI

n,i = uTρi − uTnρn,i = 0, (7.7)

which implies that u can be decomposed as u = vr,iρi + w, with wTρi = 0 and vr,i =

uTnρn,i/‖ρi‖2, which shows the claimed result and concludes the proof. ■
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Theorem 7.3 suggests that the existence of undetectable attacks depends on Ω(xn),

and thus on the set of radio stations visited by the nominal trajectory. In particular, the

theorem implies that undetectable attacks can exist only under three circumstances. First,

|Ω(xn(t))| = 0 for some t ∈ R≥0 (in this case, any attack is undetectable as also discussed

in Remark 7.2). Second, |Ω(xn(t))| = 1 for some t ∈ R≥0 (i.e. there exists a time t

such that the nominal trajectory visits a single radio station). Third, |Ω(xn(t)| > 1 and

the robot position xn(t) is collinear with the coordinates of all available radio stations for

some t ∈ R≥0 (i.e., there exists a time t such that xn(t) and bi for all i ∈ Ω(xn(t)) are

collinear). Further, the theorem provides a systematic way to design undetectable attacks

when the attacker knows the nominal input. In particular, the signal w in equation (7.6)

can be arbitrarily selected by an attacker and it does not affect detectability. Finally, we

emphasize that the theorem characterizes the existence of undetectable attacks in relation

to the nominal path followed by the robot. As we will later demonstrate in this work (see

Section 7.3), the existence of undetectable attacks can be further refined by appropriately

designing the nominal control inputs. Fig. 7.1 illustrates the regions of the plane where

undetectable attacks can exist.

Remark 7.4. (Condition Rank(R(xn(t))) = 0) In the particular situation where

Rank(R(xn(t))) = 0 for some t, we necessarily have |Ω(xn(t))| = 1 and xn(t) = bi, that is,

the nominal position of the robot overlaps with the position of the (unique) radio station.

In fact, these circumstances and under the assumption of non-overlapping radio stations

(bi 6= bj, if i 6= j) we either have ρn,i(t) = 0 or ρn,j(t) = 0. In this case, undetectability
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Figure 7.1: Areas shaded in blue denote the regions where Rank(R(xn)) < 2, that is, the
regions of the plane that admit the existence of undetectable attacks.

imposes no constraints on the attack input. In fact, whenever xn(t)− bi = 0, any bounded

u(t) satisfies the notion of undetectability in Definition 7.1. □

7.2.2 Design of optimal undetectable attacks

We now illustrate how an attacker can design optimal undetectable attacks, that

is, attacks that maximize the deviation between the nominal and attacked trajectories while

maintaining undetectability. We focus on the case |Ω(xn)| = 1, and formalize the problem
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as follows:

δ∗ = max
w

‖x(T )− xn(T )‖,

subject to ẋ = u, (7.8a)

u = vr ρ+ w, (7.8b)

‖u‖ ≤ umax, (7.8c)

where T ∈ R≥0 denotes the control horizon of un, constraint (7.8b) ensures undetectability

of the attack, and the expression for vr and w are listed1 in Theorem 7.3. Let ei denote

the i-th canonical vector of appropriate dimension. The following result characterizes the

general expression of optimal attacks.

Theorem 7.5. (Optimal undetectable attacks) Let w∗ be an optimal solution to the

maximization problem (7.8). Then,

w∗ = γ
√
u2max − v2r ‖ρ‖2

w̃

‖w̃‖
, (7.9)

where γ : [0, T ]→ {−1, 0, 1}, and w̃ is any vector that satisfies w̃Tρ = 0. Moreover, let the

nominal input be decomposed as un = αρn + z, with ρTn z = 0 and α ∈ R. Then, the optimal

deviation δ∗ satisfies

δ∗ = 2‖xn(T )‖ sin(θT /2),

1In the remainder, we omit the subscript i when |Ω(xn)| = 1.
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where

θT =

∫ T

0

‖w∗‖ − ‖z‖
‖r‖

dt.

Proof. To show (7.9), we use the Pontryagin’s Maximum Principle [110] to derive optimality

conditions for the optimization problem (7.8). In particular, we rewrite w = σ w̃
∥w̃∥ , where

σ ∈ R and w̃Tρ = 0, and consider the Hamiltonian

H(t, x, w, λ) = λT(vr ρ+ σ
w̃

‖w̃‖
),

where λ : [0, T ]→ R2, with the additional constraint ‖u‖2 ≤ u2max or, equivalently, v2r ‖ρ‖2+

σ2 ≤ u2max. Notice that the Hamiltonian is a function of time because of the dependence on

vr. By application of the Maximum Principle [111], the optimal control input at all times

minimizes the Hamiltonian over the set of bounded attack inputs U(t) = {σ : v2r ‖ρ‖2+σ2 ≤

u2max}, that is, the optimal σ∗ satisfies

σ∗ = arg min
σ∈U(t)

H(t, x, w, λ) = arg min
σ∈U(t)

(
σ

‖w̃‖
λTw̃

)
= −

√
u2max − v2r ‖ρ‖2 sign(λTw̃),

where sign denotes the sign function, which proves (7.9).

To show the given expression for δ∗, we observe that the ratio ‖w‖/|ρ‖ is the

tangential velocity of the attacked trajectory; similarly, ‖z‖/‖r‖ is the tangential velocity

in the nominal trajectory. Thus, the angle between the vectors xn(T ) and x(T ) can be
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obtained by integrating the instantaneous difference between the two tangential velocities

as

θT =

∫ T

0

‖w∗‖
‖ρ‖

− ‖z‖
‖r‖

dt =

∫ T

0

‖w∗‖ − ‖z‖
‖r‖

dt, (7.10)

where we used ‖r‖ = ‖ρ‖ since the attack is undetectable. To conclude, we note that when

‖xn(T )‖ = ‖x(T )‖ the deviation in trajectory can be related to the angular deviation by

means of the following geometric relationship

‖xn(T )− x(T )‖ = 2‖xn(T )‖ sin(θT /2),

which shows the given expression for δ∗ and concludes the proof. ■

From Theorem 7.5, optimal attacks are of the form of a feedback controller (that

depends on the instantaneous values of un, xn, and x through w̃), which switches abruptly

between two (time-varying) expressions, and where the switching instants are determined

by the function γ. Next, we propose an algorithm to determine the optimal switching

times of the function γ. To this aim, we choose by convention the vector w̃ that minimizes

the counterclockwise angle between ρ and w̃. Our method is illustrated in Algorithm 3

and relies on the following rationale to identify the control input that leads to optimal

deviations: if the counterclockwise angle between ρ(t) and −ρn(T ) is smaller than π, then

γ(t) = 1; if such angle is larger than π, then γ(t) = −1; if such angle equals to zero, then

γ(t) = 0. Finally, we observe that when the angle between the vectors ρ(t) and −ρn(T )

equals to π, either choice γ(t) = 1 or γ(t) = −1 will result in an optimal solution of (7.8). In
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Algorithm 3, we let γ(t) = 1 in this situation. We formalize the optimality of Algorithm 3

in the following theorem.

Theorem 7.6. (Optimality of Algorithm 3) Let w be the output of Algorithm 3. Then,

w is a solution to (7.8).

Proof. Let w be the output of Algorithm 3, let γ denote the corresponding switching func-

tion, and let un be decomposed as in Theorem 7.5. Let

φT :=

∫ T

0

‖w‖ − ‖z‖
‖r‖

dt,

denote the angular deviation between nominal and attacked trajectories, obtained by inte-

grating the difference between the tangential velocities, and recall that every optimal attack

satisfies w∗ = γ
√
u2max − v2r ‖ρ‖2 w̃

∥w̃∥ , and δ∗ = 2‖xn(T )‖ sin(θT /2), where θT is defined in

(7.10). To show that w is a minimizer of (7.8), we equivalently show that φT = θT . We

prove this statement by contradiction, and distinguish among two cases.

(Case 1) |θT | > |φT |. By replacing the integral expressions, we obtain

∣∣∣∣∫ T

0

‖w∗‖ − ‖z‖
‖r‖

dt

∣∣∣∣ > ∣∣∣∣∫ T

0

‖w‖ − ‖z‖
‖r‖

dt

∣∣∣∣ ,
which implies that there must exist t such that ‖w∗(t)‖ > ‖w(t)‖. Since both w and w∗

satisfy (7.9) and |γ| = 1 at all times, the above relationship results in a contradiction.

(Case 2) |θT | < |φT |. We first observe that the scenario |θT | < |φT | < π immediately

results in a contradiction, since w∗ is, by assumption, an optimal solution to (7.8) and thus
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Algorithm 3: Optimal solutions to (7.8)
Input: xn(T ), umax
Output: w solution to (7.8)

1 repeat
2 Measure instantaneous values of x, xn, un;
3 ϕ← Angle between x(t) and −xn(T );
4 if ϕ = 0 then
5 γ ← 0;
6 else if 0 < ϕ ≤ π then
7 γ ← 1;
8 else
9 γ ← −1;

10 vr ← uTnρn/‖ρ‖2;
11 w ← γ

√
u2max − v2r ‖ρ‖2 w̃

∥w̃∥ ;
12 until xn = xn(T );
13 return w

a minimizer of |θT − π|. On the other hand, |φT | > π is also a contradiction since in the

algorithm w(t) = 0 whenever φt = π, which shows the result and concludes the proof. ■

Fig. 7.2 illustrates optimal trajectories resulting from Algorithm 3, and shows

a comparison between optimal attack trajectories and suboptimal attacks obtained when

γ = 1 at all times. It is worth noting that the control law described in Algorithm 3 is

of feedback type, that is, the instantaneous value of the control inputs vr, w, and u are

computed by using the current (measured) values of x, xn, and un. Thus, differently from

[109], optimal undetectable attacks can be cast by using instantaneous measurements of un

and xn, and without the full knowledge of the nominal open loop signals.

In the following remark, we discuss the set of positions that can be reached by a

robot under attack.
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Figure 7.2: (a) Suboptimal and optimal switching functions, and (b) corresponding trajec-
tories. The circle shows that ‖ρn(T )‖ = ‖ρA(T )‖ = ‖ρB(T )‖.

Remark 7.7. (Reachable positions under attacks) The set of positions that can be

reached by an (undetectable) attacker depend only on the choice of un performed by the

trajectory planner, and can be computed as follows. Let x1 and x−1 denote the trajectories

resulting from (7.3) with an undetectable attack input of the form (7.9) with γ = 1 and

γ = −1 at all times, respectively. Moreover, let arc(x1(T ), x−1(T )) be the arc of a circle

that is centered at the station position b with radius ‖ρn(T )‖, and containing xn(T ) (see

Fig. 7.3 for an illustration). For every x̄ ∈ arc(x1(T ), x−1(T )), there exists a control input

that steers the robot from x(0) to x(T ) = x̄. In fact, it can be shown that the output of

Algorithm 3 with xn(T ) = −x̄ reaches the desired final state x̄ (see Fig. 7.3). □

7.3 Secure navigation

This section is devoted to the characterization and design of secure trajectories.

We consider scenarios where undetectable attacks can exist (see Theorem 7.3) and focus on
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Figure 7.3: Positions reachable by attackers (left) and example of attack trajectory obtained
from Algorithm 3 (right).

the problem of designing nominal control inputs that ensure that every attack is detected.

We say that a trajectory xn is secure if, for all attacks u, one of the following mutually

exclusive conditions is satisfied:

(C1) x = xn at all times; or

(C2) if x 6= xn at some time, then the attack is detectable.

A control input is secure if the resulting trajectory is secure.

Theorem 7.8. (Secure control inputs) Let |Ω(xn)| = 1 at all times. The control input

un is secure if and only if the following conditions hold simultaneously:

(1) there exists a function κ : R≥0 → {−1, 1} satisfying

un = κ
ρn
‖ρn‖

umax, (7.11)

(2) the trajectory ρn satisfies ρn 6= 0 at all times.
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Proof. (Only if ) To prove that (C1)-(C2) imply (1)-(2), we equivalently show that if (1)-(2)

do not simultaneously hold, then there exists an undetectable attack that violates (C1)-(C2).

We distinguish among two cases.

(Case 1) There exists a time instant τ such that (7.11) does not hold, that is, uTn (τ)ρn(τ) <

umax. Consider the attack input u satisfying uTρ = uTnρn at all times, and ‖u(τ)‖ = umax.

By construction, u is undetectable (see Theorem 7.3) and satisfies u 6= un, which violates

(C1) and (C2).

(Case 2) There exists τ such that ρn(τ) = 0. Under this assumption, every u satisfying

uTρ = uTnρn at all times and u(τ) 6= un(τ) is undetectable. In fact, whenever ρn = 0

undetectability imposes no constraints on the attack input, and concludes the proof of the

implication.

(If ) Assume the two conditions (1)-(2) hold. If the attack input does not satisfy

uTρ = uTnρn, then the attack is detectable and (C2) is verified. On the other hand, assume

u is undetectable, that is, uTρ = uTnρn (and thus ‖ρ‖ = ‖ρn‖) at all times. Then,

umax‖ρn‖ = |uTnρn| = |uTρ| ≤ umax‖ρ‖,

where we substituted (7.11) and used the triangle inequality. Since ‖ρ‖ = ‖ρn‖, exact

equality must hold and the vectors u and ρ are linearly dependent with ‖u‖ = umax at

all times. To conclude, we note that u = −un results in a violation of the undetectability

assumption uTρ = uTnρn, therefore u = un at all times, which shows (C1) and concludes the

proof. ■
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Theorem 7.8 provides an explicit characterization of secure control inputs: it shows

that every secure input has maximum magnitude at all times, and its direction is paral-

lel to vector ρn. Two significant implications follow from Theorem 7.8. First, the result

shows that appropriate control design prevents the existence of undetectable attacks. Sec-

ond, it shows that whenever the nominal quantities do not satisfy conditions (1)-(2), then

undetectable attacks always exist. Further, we note that this result extends the conclu-

sions of Theorem 7.3 by showing that condition (7.5) is also sufficient for the existence of

undetectable attacks for general choices of un.

Remark 7.9. (Game-theoretic interpretation of the results) The security problem

considered in this work can equivalently be studied in a game-theoretic framework, and,

specifically, as a Stackelberg game [112]. In fact, the secure trajectories in Theorem 7.8

can be viewed as the strategies that maximize the payoff of the trajectory planner, which

anticipates the fact that the attacker will adopt its best response. This strategy is open-loop

and independent of the attacker’s action, which takes place subsequently. The undetectable

attacks in Theorem 7.5, instead, can be viewed as the best response of the attacker given

the strategy of the trajectory planner and the attacker’s objectives. The attacker’s strategy

is of feedback form, because the best response of the attacker depends on the strategy of the

trajectory planner to maintain undetectability and maximize the payoff. We remark that

alternative formulations of the problem are also possible, where, for instance, the actions of

the trajectory planner and the attacker occur concurrently. □
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Next, we focus on characterizing the set of initial and final positions that can be

reached via secure trajectories. To this aim, we chose the coordinate system so that b = 0

and xn = ρn, and let sign() be the sign function, with sign(0) = 0.

Theorem 7.10. (Reachable positions via secure control inputs) Let |Ω(xn)| = 1 and

un be a secure control input. Then, for all T ∈ R≥0,

xn(T ) ∈ S(xn(0)),

where S(xn(0)) = {x : x = αxn(0), α ∈ R>0}. Moreover, for any x̄n ∈ S(xn(0)) the secure

control input (7.11) with

κ = sign(‖x̄n‖ − ‖xn(0)‖), (7.12)

steers the robot from xn(0) to xn(T ) = x̄n, with T = ∥x̄n∥2
4umax

.

Proof. (Reachable set) We first show that for every secure control input the quantity x1/x2

is time-invariant, that is, d
dt

x1
x2

= 0. By expanding the time derivative we obtain

ẋ1x
−1
2 − x1x

−2
2 ẋ2 = 0,

where we substituted (7.1) and (7.11). Next, we prove that α > 0. Assume, by contra-

diction, that x(T ) = αTxn(0), and αT < 0. By continuity of xn, there exists τ ∈ [0, T )

such that x(τ) = ατxn(0), with ατ = 0. But this violates the assumption that u is secure

(condition (2) in Theorem 7.8), which contradicts the assumption and proves the claim.
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Figure 7.4: (Left) Notation used in Example 7.11. (Right) Intermediate waypoints.

(Expression for secure control input) Let un be as in (7.11) and let n := ‖xn‖2.

Then, by substituting (7.11), we obtain

ṅ =
d

dt
xTnxn = 4ẋnxn = 4κumax,

Moreover,

n(T ) = ‖xn(T )‖2 =
∫ T

0
4κumaxdt

= sign(‖x̄n‖ − ‖x0n‖)umaxT = ‖x̄n‖2,

where we have substituted the expression for κ and T . To conclude, we note that since

xn(T ) ∈ S(xn(0)) and x̄n ∈ S(xn(0)), we necessarily have xn(T ) = x̄n, which shows the

claimed result and concludes the proof. ■
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Theorem 7.10 shows that the set of configurations that are reachable via secure

trajectories from x0 are described by the line passing through the points x0 and the origin

of the reference frame. We conclude this section by illustrating how the above results can

be combined when |Ω(xn)| ≥ 2.

Example 7.11. (Secure navigation) Consider the scenario illustrated in Fig. 7.4, con-

sisting of nb = 3 radio stations. For all i, j ∈ {1, 2, 3}, we let Iij = {x : ‖x − bi‖ =

ri and ‖x − bj‖ = rj} denote the intersection points between the circles that identify the

communication ranges of the radio stations. Further, let

P1 = {b1, I12, b2}, P2 = {b1, b2, b3},

P3 = {b2, I23, b3}, P4 = {b1, b3, I13},

denote the polygons that originate from the locations of the RSSI stations (i.e., bi) and the

intersection points (i.e., Iij), see Fig. 7.4(a) for an illustration. As an illustrative example,

consider any initial position xn(0) ∈ {x : x ∈ P3 and Ω(x) = {3}}, that is, any initial

position that is located in the polygon P3 and within the communication range of station 3.

Moreover, consider any final position x̄n ∈ {x : x ∈ P3 and Ω(x) = {2}}, that is, any final

position that is located in the polygon P3 and within the communication range of station 2

(see Fig. 7.4(b)). Moreover, define the sets

χA
n : = {x : x = αxn(0), α ∈ R>0, and Ω(x) = {2, 3}},

χB
n : = {x : x = αx̄n, α ∈ R>0, and Ω(x) = {2, 3}},
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which describe the positions that are reachable from xn(0) and x̄n, respectively, and that

belong to the intersection between the communication ranges of stations 2 and 3. Notice

that these sets are nonempty since the intersection between the communication ranges of

stations 2 and 3 is non-empty. Now, let xa
n ∈ χA

n and xb
n ∈ χB

n . Then, a secure control input

from x(0) to x̄ is as follows:

(i) Apply the secure control input given by (7.11) with κ = sign(‖xa
n‖ − ‖xn(0)‖) until

xn = xa
n;

(ii) Apply any control input un that satisfies Ω(xn) = {2, 3} until xn = xb
n;

(iii) Apply the secure control input given by (7.11) with κ = sign(‖x̄n‖−‖xb
n‖) until xn = x̄n;

We note that the geometry of the problem and Theorem 7.10 guarantee the existence of the

secure control input defined in steps (i)-(iii). An illustration of the trajectory resulting from

the above algorithm is presented in Fig. 7.4. □
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Chapter 8

Conclusions and Future Work

One fundamental challenge for modern network systems is to guarantee their ro-

bustness, namely their efficient operation in the face of failures of their components, changes

in the behavior of their users, or targeted malicious attacks. This dissertation contains a

collection of models and theoretical tools to study the robustness of network systems, with

two main application focuses: traffic control and cyber-physical security. With respect to

traffic control, we analyzed the impact of app-informed travelers in traffic congestion, and

we designed tractable control algorithms to control automated intersections. With respect

to security in cyber-physical systems, we studied the sensitivity of robustness with respect

to perturbations of the communication edges, and we designed control inputs to prevent the

action of malicious attackers against robotic navigation. We conclude this dissertation with

some final remarks on each of these topics, together with a discussion of possible extensions.
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8.1 Traffic Control in Transportation Systems: Summary

and Directions

In Chapter 3, we proposed a dynamical routing model for understanding the im-

pact of app-informed travelers in traffic networks. We studied the stability of such routing

model coupled with a dynamical traffic model, and we showed that the general adoption

of routing apps: (i) maximizes the throughput of flow across the traffic system, but (ii)

can deteriorate the stability of the equilibrium points. To ensure asymptotic stability, we

propose a control technique that relies on regulating the rate at which routing apps react

to changes in traffic congestion.

In Chapter 4, we developed a simplified traffic model to capture the behavior of

urban traffic networks controlled by automated traffic intersections. We casted an opti-

mization problem to minimize the overall congestion in the network, and we showed that

this problem is equivalent to the problem of optimizing the degree of controllability of the

dynamical system. Our results show that the availability of a global, although approximate,

model of the system interconnection can considerably improve the network efficiency, and

allows for a more efficient and tractable analysis as compared to traditional techniques.

In Chapter 5, we proposed a real-time optimization framework to design routing

suggestions for the drivers with the goal of optimizing the travel time experienced by all

users in dynamical traffic networks that operate at non-equilibrium points. Our results

reveal a tradeoff between efficiency and resilience in a transportation system, demonstrating

that controlling the routing often results in roads that operate close to their capacity, thus

deteriorating the resilience of the overall system.
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In the following, we discuss some of the aspects that require further investigation.

Presence of Noise. In this dissertation, we have focused on traffic models that

are deterministic. However, real-world traffic infrastructures are systematically subject to

stochastic fluctuations in the user behavior, noise in the sensor measurements, and models

are often inaccurate or approximate. We emphasize that the traffic models adopted in this

work are macroscopic, that is, they capture the aggregate behavior of the system in the

long run. Deterministic models are adopted in these settings thanks to their tractability,

and because they typically offer a baseline for the development of more-accurate stochastic

models. The development of stochastic traffic control techniques is an interesting research

problem, and preliminary works facing these challenges are [113, 114].

Needs for Communication and Actuation Infrastructure. In Chapters 4

and 5 we discussed the use of vehicles communication to adjust the operation of automated

intersections and of app-based routing in traffic networks. Unfortunately, the implementa-

tion of these real-time control policies requires the availability of an effective and reliable

communication infrastructure that will allow the system operator to communicate with the

automated vehicles. Although ongoing research efforts are currently tackling these chal-

lenges, the development and implementation of a reliable communication infrastructure is,

to date, still an ongoing research effort. To this aim, research is needed to develop effec-

tive and reliable communication protocols. Ongoing research in this area is [115] (see also

references therein).

Security of Transportation Systems. While the introduction of automation

and communication capabilities brings novel opportunities for control and optimization,
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these features also open a number of security concerns. In fact, lack of appropriate encryp-

tion in the transmitted signals or the opportunity to physically tamper with the road-side

units may enable malicious attackers to compromise the effective operation of a transporta-

tion infrastructure and of its components. To this aim, research is needed to develop tools

that can ensure the robust operation of modern transportation systems despite malicious

intrusions. These security concerns have been highlighted in recent works [116, 117].

8.2 Security in Linear Networks and Robotics: Summary and

Directions

In Chapter 6, we extended the classical notion of observability radius of dynamical

systems to networks, thus providing a measure of the ability to maintain observability of

the network modes against structured perturbations of the edge weights. We characterized

network perturbations preventing observability, and we described a heuristic algorithm to

compute perturbations with smallest Frobenius norm. Additionally, we studied the ob-

servability radius of networks with random weights, derived fundamental bounds relating

the observability radius to certain connectivity properties, and explicitly characterized the

observability radius of line and star networks. Our results show that different network

structures exhibit inherently different robustness properties, and thus provide guidelines

for the design of robust complex networks.

In Chapter 7, we considered the problem of designing the trajectories of a robot

when its localization signals are maliciously compromised by an attacker. We demonstrated

the existence of undetectable attacks in relation to the region of the plane where the robot is
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located, and we presented an efficient algorithm to design optimal undetectable trajectories.

Conversely, we showed how a trajectory planner can leverage the layout of the radio stations

to design control inputs that allow the detection of any attack. Our results demonstrate for

the first time that appropriate control design can enhance the security of systems operating

in adversarial environments.

Nonlinear Dynamics. In our analysis in Chapter 6, we focused on network

systems described by linear dynamics. However, common real-world components are char-

acterized by nonlinearities. Although our results still hold locally, i.e., in a neighborhood of

the point of operation where the nonlinear system is linearized, it is an exceedingly difficult

problem to characterize robustness for systems with nonlinear dynamics. We expect that

the theory developed in [118, 119] can be a useful starting point to develop general theories

that hold for systems with nonlinear dynamics.

Uncertainty and Noise in Sensory Data. In Chapter 7 we characterized un-

detectable attacks and secure trajectories for deterministic systems. When the dynamics or

the sensors are driven by noise, different and more relaxed notions of attack detectability

should be adopted, as done for instance in [120] for the case of linear dynamics. Loosely

speaking, undetectable attacks are easier to cast in stochastic systems, because an attacker

has the additional possibility of hiding its action within the noise limits. Thus, the condi-

tions derived in this work for deterministic systems serve as fundamental limitations also

for stochastic systems.
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