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REVIEW ARTICLE OPEN

Progress and challenges in exploring aquatic microbial
communities using non-targeted metabolomics
Monica Thukral 1,2, Andrew E. Allen 1,2 and Daniel Petras 3,4✉

© The Author(s) 2023, corrected publication 2023

Advances in bioanalytical technologies are constantly expanding our insights into complex ecosystems. Here, we highlight
strategies and applications that make use of non-targeted metabolomics methods in aquatic chemical ecology research and discuss
opportunities and remaining challenges of mass spectrometry-based methods to broaden our understanding of environmental
systems.

The ISME Journal (2023) 17:2147–2159; https://doi.org/10.1038/s41396-023-01532-8

INTRODUCTION
The field of aquatic microbiology has been very successfull in
implementing and using molecular biological techniques such as
nucleic acid sequencing and cloning/conjugation to study
individual microorganisms and ecosystem function [1, 2]. In the
last decades, tools used in the field of molecular biology have
constantly evolved and expanded, including emerging omics tools
such as transcriptomics, genomics, and proteomics [3]. While there
are conflicting viewpoints on whether molecular biology is
defined by the level of life at which biology is studied, omics
tools have been revolutionary to studying biology on the
molecular level and are now widely used in many molecular
biology studies [4–6].
Mass spectrometry (MS)-based metabolomics methods, both

targeted and non-targeted, are becoming widely used tools to
study aquatic ecosystems [7–9]. Targeted metabolomics typically
refers to detecting and quantifying a specific metabolite or set of
metabolites [10, 11]. Non-targeted metabolomics on the other
hand, aims to detect all metabolites within a sample, typically
used as a discovery approach to generate hypotheses about the
identity, origin, function and effects of small molecules in
biological systems. The study design, including whether to use
targeted or non-targeted metabolomics depends on whether the
driving question and nature of the study is to investigate already
known molecules or pathways, or whether it is to characterize
the total chemical diversity of a biological system. Natural product
chemistry studies on the other hand have a long-standing
tradition of isolating organic compounds from isolated organisms
or biomass and elucidating their structures with multi-modal
approaches such as MS and nuclear magnetic resonance (NMR)
spectroscopy and assess their biological activity, mainly in the
context of pharmaceutical properties [12, 13]. While these
methods inform organismal presence/absence as well as mole-
cular insights and functionalities, the field has only scratched the
surface of understanding chemical exchange in complex microbial

community dynamics [14, 15]. Although there has been great
progress in microbial and chemical ecology studies, with many
new molecular insights into different ecosystems, we are far from
fully capturing and understanding how microorganisms affect
each other through the multitude of other metabolites they
produce (Fig. 1).
Non-targeted metabolomics promises to provide information of

which molecules are present, exchanged, and modified in a given
(eco)system, which may illuminate the black box of organismal
and community metabolomes. The field of lipidomics is often
considered to be a specialized sub-field of metabolomics, and
both targeted and non-targeted lipidomics methods have
contributed significantly to our understanding of aquatic meta-
bolomes [16, 17]. Over the past 30 years, significant advances have
been made in the fields of non-targeted metabolomics as well as
nucleotide sequencing. Within the last years, long-read-
sequencing has emerged as new sequencing strategy, which are
particularly useful for the assembly of metagenomes [18], that
include repetitive gene sequences in mega-synthetases of
specialized metabolites, such as non-ribosomal peptide synthe-
tases (NRPS, e.g. Microcystins) or polyketide synthetases (PKS, e.g.
Brevetoxin) [19, 20].
Technological advances in nucleic acid sequencing and in mass

spectrometry have occurred concurrently and are both key to
enabling chemical ecological discoveries (Fig. 2A). Gas Chromato-
graphy- Mass Spectrometry (GC-MS) was developed in the late
50 s and has been widely used to identify and quantify
metabolites [21–24]. LC- and GC-MS-based metabolomics, high-
resolution MS-based metabolomics, peak detection and alignment
software, and ultra-performance liquid chromatography became
widely accessible in the early 2000s [25–28]. In the mid 2000s, the
orbitrap mass spectrometer entered the market and the first
tandem mass spectrometry databases were developed, concur-
rent with the introduction of next generation sequencing [29–33].
These advances were followed by RNA-seq and ion mobility mass
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spectrometry by 2009 [34, 35]. Over the last decade, sensitivity,
resolution, and scan speed of both orbitrap and Q-ToF-based
platforms have significantly increased [36]. Other recent advances
include molecular networking and long read sequencing, and
finally the contemporary revolution of machine learning tools and
artificial intelligence [37–42].
In parallel to the decreasing cost of nucleic acid sequencing, the

cost of acquiring an equivalent amount of MS data has
significantly decreased as well (Fig. 2B). However, despite the
technological advances, decreasing costs, and wider accessibility
of metabolomics tools, major bottlenecks remain. For example,
currently only 5–10% of spectra in most non-targeted metabo-
lomics experiments can be annotated as known molecules: the
remaining 90–95% of spectra are unknown and considered as
“dark matter” which contains vast unknown knowledge space [14].
In addition to providing examples of the successful use of
metabolomics tools to study aquatic ecosystems, we will discuss
key bottle necks and emerging solutions in this article.

SUCCESS STORIES OF DECIPHERING CHEMICAL MEDIATORS IN
AQUATIC CHEMICAL ECOLOGY
Metabolomics tools enable the study of community dynamics
of bloom-forming organisms
Metabolomics techniques have rapidly enhanced the study of
cosmopolitan bloom-forming organisms: cyanobacteria, diatoms,
dinoflagellates and haptophytes (Table 1, Fig. 1, Fig. 3). Targeted
metabolomics has been used to determine how commonly used

algaecides affect toxin production of cyanobacteria Microcystis
aeruginosa microcystins [43]. Here, targeted metabolomics led to
the discovery of how algaecides alter the total metabolome. For
example, exogenous addition of copper sulfate decreased
metabolites associated with oxidative stress, whereas hydrogen
peroxide and sodium carbonate peroxidase increased those
oxidative stress metabolites. This work established fundamental
data that can be leveraged by policy-makers in deciding how to
treat Microcystis blooms while managing toxin production. In
addition to benefiting policymakers addressing cyanobacterial
blooms through targeted metabolomics, non-targeted metabo-
lomics has been used in cyanobacterial research to discover new
compounds.
For example, when the cyanobacterial genus Trichodesmium, an

open-ocean bloom-forming organism that fixes nitrogen gas into
organic nitrogen was interrogated with non-targeted metabolo-
mics using MS/MS-based molecular networking, three cytotoxic
compounds were discovered in the bloom: smenamide A,
smenamide B, and smenothiazole A [44]. The discovery of these
novel cytotoxic compounds by using non-targeted metabolomics
allows for further probing of the ecological roles of these
molecules in blooms in addition to a wealth of novel data of
secondary metabolites of understudied yet globally abundant
organisms such as Trichodesmium.
Diatom microbial ecology studies too have benefited from

metabolomics methods. The genes and enzymes involved in
domoic acid’s biosynthetic pathway were identified using
methods including transcriptomics, MS, and NMR (Fig. 3a) [45].

Fig. 1 Small molecules mediate microbial community function. Depicted includes photosynthetic microalgae producing dimethyl sulfide
inducing both cloud formation and grazing by zooplankton, and on the other hand Pseudo-nitzschia’s production of domoic acid as a grazing
deterrent. In addition, Sulfitobacter’s production of indole-3-acetic acid increases planktonic toxins like domoic acid from Pseudo-nitzschia.
Furthermore, when an E. huxleyi bloom ages, it produces p-coumaric acid, with response to which P. gallaeciensis begins to produce algaecide
roseobacticide. In freshwater nearby, Aetokthonos cyanobacteria colonizes a freshwater invasive plant Hydrilla and produces aetokthonotoxin
which bioaccumulates up the food web to top predator bald eagles, causing neurological disease. On a road nearby, cars’ rubber tires contain
6PPD which runs off into freshwater creeks and is transformed to 6PPD-quinone, causing salmon mortality.
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The Pseudo-nitzschia genus is well studied due to its capability to
produce the domoic acid neurotoxin which can cause mass
mortality to mammals and fish in addition to significant economic
downturns in coastal regions dependent on fisheries. This genus
only exhibits haploid gametes during the understudied sexual
phase when it encounters another cell of the opposite mating
type [46]. Non-targeted metabolomics on each of the two mating
types of Pseudo-nitzschia multistriata in addition to mixed mating
types revealed characteristic metabolites of mating types: higher
levels of the fatty acid oleamide in the mixed culture and higher
levels of the bacterial osmoregulation-compound ectoine in the
MT- mating type culture. Recent work discovered distinct
metabolomes and microbiomes among species of Pseudo-
nitzschia [47]. These conclusions are bases for future work
studying the economically and ecologically relevant diatom genus
Pseudo-nitzschia, and can support ongoing work of sexual
reproduction of Pseudo-nitzschia in the laboratory.
Allelopathy, or production of small molecules that disrupt

growth or kill competing species is a common competitive
regulatory mechanism within aquatic microbial communities.
Karenia brevis is a dinoflagellate that exhibits allelopathy,
disrupting competing phytoplankton such as the diatoms
Asterionellopsis glacialis and Thalassiosira pseudonana [48]. MS
was used to elucidate the metabolic pathways involved in the

dinoflagellate’s allelopathy and in the resistance of the affected
phytoplankton using metabolomics and proteomics. Exposure to
allelopathic molecules impacts the evolution of resistance: A.
glacialis was more metabolically robust and exhibited higher
resistance to exposure than T. pseudonana did, likely because of
regular exposure to K. brevis blooms. In the sensitive, less
“immune” T. pseudonana, exposure affected several metabolic
pathways, leading to decreased photosynthetic capacity, reduced
ability to osmoregulate, suppression of lipid synthesis, and
increased cellular oxidative stress [48, 49]. Supplementing this
conclusion, the allelopathic capacity of the exudates of five strains
of K. brevis on A. glacialis were interrogated, determining that
higher concentrations of uncharacterized fatty acid-derived lipids
and aromatic/polyunsaturated compounds led to higher allelo-
pathy of a strain [50]. These studies reveal the utility of
metabolomics to gain a snapshot of the effects of chemical
allelopathic effects of one microorganism on another, revealing
dynamics and predictions of microbial community structure.
Predicting how microorganisms will interact chemically is
especially important as global change leads to encounters of
species not historically exposed to one another.
In addition to characterizing dynamics of ecologically-relevant

organisms, metabolomics has recently been utilized to typify
dissolved organic matter (DOM) in the environment that the

Fig. 2 Technological advances drive discoveries in Harmful algae bloom research. Panel (A) shows a timeline of, in our opinion, important
discoveries of metabolites and/or their roles in aquatic ecosystem function as well as technological advances that were made and will be
important for new molecular insights. Panel (B) shows the development of cost of MS and sequencing analysis in comparison to Moore’s law
shown as logarithmic decrease of transistor size (MOSFET scaling), updated from previous work [160] and assuming 25€/h instrument run time
according to Deutsche Forschungsgemeinschaft (DFG) Guidelines for Instrumentation Usage Costs and Core Facilities. Panels C through
F show examples of new metabolite data annotation and visualization methods through molecular networks and class level annotation of
metabolites [47, 109, 115]. Panel D shows an example of a GNPS molecular network of metabolomes from Pseudo-nitzschia cultures that
annotated domoic acid by spectral matches in addition to unknown features [47]. Panel E shows rivulariapeptolide [115], for which structures
were annotated using new tools like CANOPUS [109].
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microorganisms inhabit [51]. Building upon stoichiometric ratios
that are traditionally used to characterize organic matter in rivers
and streams, non-targeted metabolomics was utilized to identify
higher levels of flavonoids along a creek as it moved downstream.
Another study described patterns and differences in river surface
water metabolomes of various sizes and ecosystems using a
community-science approach to amalgamate global data [52]. This
data is important to understanding the sources and sinks of
carbon transport, and to characterizing spatial and temporal
dynamics of metabolites in the environment that microorganisms
and higher-trophic organisms experience, consume, and produce.

Metabolic “Hot Spots” reveal algae-bacteria interactions
To understand ecosystem dynamics, the phycosphere has been
explored in both fresh water and marine aquatic environments
through multiple-omics methods, revealing how bacterial con-
sortia interacts with bloom-forming microalgae. The physcophere
describes the region directly surrounding the algal cell in which
algal extracellular exudates support bacterial growth .
Dissolved organic molecules diffusing from the algal phyco-

sphere attract heterotrophic bacteria, and bacteria benefit from
these organic molecules in exchange for cofactors that the
microalgae depend on for their growth. Metabolites are
exchanged at the phycosphere, and act as signaling compounds
to communicate between phytoplankton and bacteria, whether in
a mutualistic, antagonistic, or parasitic manner [53]. Cirri and
Pohnert proposed the concept of “metabolic hotspots” around
algal cells, where resource exchange occurs, and which bacteria
have evolved to utilize for their metabolic needs [54]. In both
terrestrial and marine aquatic environments, bacteria that inhabit
algal phycospheres are not highly abundant outside that region,
reflecting their specialization to inhabit the phycosphere niche
[53, 55–57]. Non-targeted metabolomics breaks free from

examining single microorganism-molecule interactions, and rather
captures the broad chemical dynamics in the total community.
For example, heterotrophic bacteria that grow in the physco-

sphere of freshwater cyanobacteria Microcystis aeruginosa and on
its DOM drew down more dissolved organic carbon than non-
phycosphere-inhabiting-heterotrophs, particularly removing more
lipids, organic acids and organoheterocyclic molecules [58]. The
phycosphere-heterotrophs also had larger genome sizes, reflect-
ing the wider resource pool of DOM available in the phycosphere
to maintain larger genomes [59].
Diatoms have some control over their microbiome: they attract

beneficial bacteria and dispel the harmful ones through unknown
cellular mechanisms and metabolic signaling pathways [60]. They
change their transcriptional activity when they encounter certain
microbial communities, and as a result release central and
secondary metabolites. In response, bacteria that are attuned to
the diatom’s exudate respond transcriptionally to these metabo-
lites with varied speeds and intensities and may consume these
central metabolites. For example, azelaic acid and rosmarinic acid
produced by diatom Asterionellopsis glacialis were found to
modulate bacterial behavior and growth to simultaneously
promote diatom symbionts and demote diatom opportunists [60].
In addition to symbiosis, bacteria have been shown to act as

pathogens of microalgae. Roseobacter P. gallaeciensis blooms
along blooming haptophyte Emeliania huxleyi. When an E. huxleyi
bloom ages, it produces p-coumaric acid, with response to which
P. gallaeciensis begins to produce potent algaecides called
roseobacticides (Fig. 3b) [61, 62]. This dynamic interaction of the
algae and bacteria encompasses mutualism and parasitism as the
blooms boom and bust. P-coumaric acid and other phenolic acids,
are common plant metabolites that can be released in plant
exudates as well as through the breakdown of lignin. Hence, there
is the possibility that P. gallaeciensis could also respond

Table 1. Examples of chemical cue characterization over time.

Molecule or discovery Functional level (ecosystem,
lab mesocosm, organism, in
vitro)

Year of
characterization

Select techniques in
characterization

Smenamide A and B, and Smenthiazole A as
cytotoins in a Trichodesmium bloom [44]

Ecosystem 2018 LC-MS/MS, NMR.

Domoic Acid Biosynthesis [45] In Vitro 2018 Transcriptomics, MS, NMR.

Azelaic Acid and Rosmarinic Acid’s role in a
diatom modulating bacterial community
[60]

Lab mesocosm 2020 Transcriptomics, MS.

Roseobacticides [61] In Vitro, Lab Mesocosm 2011 NMR, LC-MS.

p-coumaric Acid’s role in bacterial-microalgal
interactions [62]

In Vitro, Lab Mesocosm 2011 NMR, LC-MS.

Indole-3-Acetic Acid’s role in symbiosis
between bacteria and diatoms [66]

Lab Mesocosm. 2015 Growth experiments, Genomics,
Transcriptomics, MS.

Vitamin B12’s metabolic effect on diatoms
[70]

Ecosystem, Lab mesocosm 2019 Growth Experiments, MS.

Vibrioferrin as a marine siderophore [73] In Vitro 2007 HPLC, NMR, MS.

Copepodamides [79] Ecosystem, Lab mesocosm 2015 Degradative chemical
experiments, NMR, MS.

DMS’s role in algae-zooplankton interactions
[84]

Ecosystem, Lab Mesocosm 2021 Genetic Transformation, GC-FPD,
Growth experiments.

6PPD’s role in salmon mortality [89] Ecosystem, Lab mesocosm 2021 LC-MS/MS, NMR.

Aetokthonotoxin’s role in eagle mortality
[90]

Ecosystem, In Vitro Gene/
Protein

2021 AP-MALDI-MSI, LC-MS/MS, NMR,
Crystallography, Imaging,

Rivulariapeptolides as serine protease
inhibitors [115]

In Vitro 2022 Native metabolomics, MS, NMR.

Thirteen discoveries, alongside the functional level of the molecule or discovery, the year of characterization, and selected techniques used in the
characterization.
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metabolically to p-coumaric acid that is not from an E. huxleyi
source, but rather derived from another non-haptophyte algae or
from runoff of plant-derived dissolved organic matter [63, 64].
Algae-bacteria interactions in the phycosphere are facilitated by

proximity between cells which often takes the form of bacterial
colonization of host algal cells. The flavobacterium Croceibacter
atlanticus inhibits diatom growth when it attaches to the diatom,

possibly in order to increase colonizable surface area of the
diatom [65]. This interaction exemplifies antagonism of bacteria
upon the microalgae. Here, microscopy, flow cytometry and
genomics work can be augmented by introducing MS-based
metabolomics work to characterize which molecules are
exchanged between the flavobacterium and the diatoms leading
to the growth inhibition.

Fig. 3 Success stories of deciphering chemical mediators in in aquatic chemical ecology. Domoic acid’s biosynthetic pathway was
characterized with transcriptomics, biochemistry and NMR (a), p-coumaric acid and roseobacticide are exchanged through a parasitic
interaction between a phytoplankton and a bacteria characterized through dose-response growth experiments and NMR (b), and
metabolomics and transcriptomics were used to characterize the exchange of indole-3-acetic acid and tryptophan between a diatom and
symbiotic bacteria (c). Many microorganisms have not retained the ability to biosynthesize cobalamin (Vitamin B12) and rely on other
microorganisms to produce it in exchange for other resources (d). Copepodamides were the first molecules discovered to mediate “chemical
warfare” between zooplankton and their prey (e), and DMS has been known to modulate cloud formation and climate and a new role has
been discovered to modulate algae-grazer interactions through GC-FPD (f), 6PPD from tire runoff into water sources and its ecological effect
was characterized UPLC-HRMS/MS and NMR (g), and AP-MALDI-MSI was used to study cyanobacteria colonies on plant leaves to detect
aetokthonotoxin (h).
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An example of the use of omics techniques to characterize
symbiosis is that Sulfitobacter’s production of indole-3-acetic acid
(IAA) increases Pseudo-nitzschia’s cell division rate (Fig. 3c) [66].
Metabolomics and transcriptomics were used to characterize this
signaling molecule’s role, linking two of the ocean’s microorgan-
isms. Furthermore, this Sulfitobacter responds with an increased
growth rate only when co-cultured with Pseudo-nitzschia, likely by
taking up tryptophan produced by the diatom, establishing a
symbiotic relationship promoting growth in both organisms
through the exchange of small signaling molecules. Environmen-
tal concentrations of IAA are sufficient to induce an ecologically
relevant response as observed in culture. The study identified
bacteria as the IAA producer by identifying transcripts of genes
involved in IAA biosynthesis in both the laboratory and the
environment, and through measurement of IAA in axenic culture
experiments. However, in the environment, it is possible that
some IAA sources from terrestrial runoff of plant-derived DOM
affects the aquatic microbial community as IAA is a common plant
hormone and bacterial natural product [67].
The small molecule cobalamin (Vitamin B12) is critical in

regulating microbial communities. For example, diatoms scavenge
cobalamin from the environment rather than make it themselves,
following principles of the “Black Queen Hypothesis” of gene-loss
reductive evolution in organisms, creating microbial dependences
(Fig. 3d) [68, 69]. The term is an analogy to the situation in the
game “Hearts”, when a player strategizes to not to take the queen
of spade cards [68]. Cobalamin availability controls which
phytoplankton can grow well where. It is needed as a cofactor
for enzymes, and some plankton have evolved enzymes (metE)
that function without a cobalamin cofactor, though less efficiently.
The model diatom Thalassiosira pseudonana was used to study
how diatoms respond metabolically to cobalamin limitation for
the first time through both targeted and non-targeted metabo-
lomic methods [70]. Cobalamin-limitation to diatom Thalassiosira
pseudonana, which does not contain the metE gene in its genome,
leading to a requisite cobalamin requirement (auxotrophy),
revealed a differential response in production of several metabo-
lites. Key findings include less dimethylsulfoniopropionate (DMSP)
and glycine betaine under cobalamin limitation which normally
are used to balance osmotic pressure, and that the diatoms
enzymatically transform hydroxy-cobalamin into ado-cobalamin
using an enzyme conserved among diatoms. These findings
demonstrate the value of applying metabolomics to ecologically
relevant processes like vitamin limitation to shed light on
physiological responses.
Bacterial presence can also help dinoflagellates with iron

acquisition through siderophore production: Marinobacter pro-
duces the weak siderophore vibrioferrin and co-occurs with
dinoflagellate Gymnodinium, which may benefit from iron-
chelating siderophore presence in iron-depleted environments
[71–73]. Vibrioferrin is one of only a few marine siderophores with
a characterized structure [74–77].

Small molecules mediate microalgae-grazer interactions
Interactions between harmful algae and grazers are exemplified
by the interactions between dinoflagellate Alexandrium catenella
and copepod Acartia tonsa [78]. While copepods graze on toxic A.
catenella to gain energy, they suffer negative outcomes to their
reproductive abilities.
An important step in the discovery of chemical cues that

mediate the interaction between zooplankton and their prey was
the discovery of taurolipid “copepodamides” (Fig. 3e) [79].
Copepodamides are produced by copepods and induce a 20-
time increase in dinoflagellate Alexandrium’s saxitoxin toxin
production. Different species of copepods combine an amide
and a taurine to 8 unique isoprenoid fatty acids to form this set of
signaling molecule lipids that can be detected both in lab culture
experiments and in the environment [79]. These novel molecules

also induce bioluminescence in Lingulodinium dinoflagellates
which confers a competitive advantage in deterring predation [80].
In addition to affecting dinoflagellate toxin production, copepo-
damide presence affects diatoms as: increased domoic acid toxin
production from Pseudo-nitzschia and a decrease in colony size in
Skeletonema [81]. Environmental concentrations of these mole-
cules are relevant to cause restructuring of ecosystem dynamics
and mediate predator-prey interactions in nature. Ecological
warfare between copepods and diatoms were further underscored
by the discovery that copepods that feed on blooming diatoms
have a low hatching success rate due to a set of three 10-carbon
aldehyde molecules that stop embryonic development [82].
Dimethyl sulfide (DMS) is an important source of sulfur-

containing aerosol compounds (sulfate, methane sulfonate,
sulfuric acid) which cause water vapor condensation and thereby
promote cloud formation (Fig. 3f) [83]. DMS therefore holds a
critical role in the natural climate feedback loop. In addition to its
role in regulating climate, DMS, produced by some species of
blooming plankton, has been found to regulate algae-grazer
interactions [84]. The enzyme DMSP lyase was studied in bloom-
forming coccolithophore Emeliania huxleyi and diatom Thalassio-
sira pseudonana and surprisingly found that it enhances grazing
rates and promotes growth in grazers like Oxyrrhis marina,
revealing the key ecological impact of the “eat-me” signaling
molecule DMS.

Multi-omics empowers ecosystem-level systems biology
studies
Studies that integrate multiple ‘omics techniques may yield a
more complete systems biology level understanding of any
organism [85]. For example, the Ingalls group integrated
transcriptomics and metabolomics to show that taxonomy and
metabolomics can be linked. The results enabled them to link
organisms with different metabolites they produce and consume
with respect to light oscillations. One finding was that the
Crocosphaera cyanobacteria produced the osmolyte trehalose at
the end of the light period to store energy for the night.
Integrated metabarcoding and metabolome data was utilized for
the study of the effects of copepod feeding on planktonic
interactions in aquatic environments, allowing for the conclusion
that copepod feeding preferences are related to the metabolic
stage of the prey rather than prey abundance [86].

Capturing human impacts as a fundamental part of aquatic
ecosystems
While metabolomics tools enable us to capture a broad range of
metabolites, they are also well suited to detect and annotate a
wide range of anthropogenic molecules. For example, aquatic
ecosystems contain numerous xenobiotics that have become a
fundamental part of their chemotypes [87].
Human-caused pollution to urban rivers was studied by

combining bacterial metagenomic amplicon sequencing with
GC-MS to characterize differences between clean and contami-
nated parts of an urban river, to understand how the organisms’
metabolomes shift when exposed to pollution [88]. In polluted
waters that contained fecal bacteria, there were higher levels of
sugar alcohols and short-chain fatty acids, which can enhance
biofilm formation.
The chemical impact of humans on aquatic ecosystems is

exhibited by the recent characterization of a salmon-killing
xenobiotic, causing “urban runoff mortality syndrome” [89].
Although it is not a natural product or related to microbial
turnover, anthropogenic contaminants represent a paradigm shift
to the field of chemical ecology. The toxic molecule N-(1,3-
dimethylbutyl)-N′-phenyl-p-phenylenediamine (6PPD) from tire
tread rubber from roadway runoff is abundant in many freshwater
creeks that are the home of U.S. Pacific Northwest Coho Salmon.
Abiotic transformation processes are involved to produce 6PPD-

M. Thukral et al.

2152

The ISME Journal (2023) 17:2147 – 2159



quinone, found to be abundant in the aquatic ecosystem and
toxic to Coho Salmon. The structure of this compound was
characterized using UHPLC-MS/MS and NMR following extensive
bio-activity guided fractionation steps (Fig. 3g). This example of
humans unintentionally interfering with the salmon life cycle is
one of many stories of how human waste runoff into aquatic
ecosystems affects native organisms.
Another more indirect human impact on aquatic ecosystems is

the increased abundance of the compound aetokthonotoxin and
related die-offs of bald eagle populations in the south of the US
[90]. The discovery of “The Eagle Killer” molecule aetokthonotoxin
typifies how small molecules, facilitated through anthropogenic
impacts and produced at the base of the food web can affect the
whole food chain. The Aetokthonos cyanobacteria colonizes a
freshwater invasive plant Hydrilla and produces a molecule
aetokthonotoxin which bioaccumulates up the food web to top
predator bald eagles, causing neurological disease, and ultimately
the death of eagles (Fig. 3h). As aetokthonotoxin contains multiple
bromine atoms, it has been speculated that its biosynthesis
benefits from increased bromide salt concentrations related to
anthropogenic sources. The identification of aetokthonotoxin and
its linkage to the decline of bald eagle populations was a
milestone for ecotoxicologists, as the novel toxin can now be
monitored and better regulated. For example, monitoring of
bromide levels in reservoirs will aid in bald eagle conservation.
The discovery of this unprecedented natural product was
facilitated by atmospheric-pressure matrix assisted laser deso-
rption/ionization MS imaging (AP-MALDI-MSI) which was used to
study the cyanobacterial colonies on the plant’s leaves to detect
small molecules produced by the bacteria in situ, and to identify
the molecular formula of the novel molecule.
Finally, anthropogenic impacts significantly alter aquatic

environments, for example through ocean warming and ocean
acidification, which decreases calcification and causes bleaching
events in corals [91, 92]. Nutrient loading in aquatic environments
has been shown to increase biomass and calcification and carbon
fixation rates of coral Acropora pulchra [93]. Multi-omics studies
using transcriptomics, proteomics, and metabolomics have been
used to characterize the metabolic exchange and regulation of the
coral-microalgal symbiotic relationships. Some of the key findings
include new insights into heat stress influencing protein folding,
antioxidant biosynthetic gene expression, and catabolism of lipid
stores in some symbioses [94–96]. As a result of detrimental
anthropogenic impacts on the natural environment, humans used
metabolomics as a method to aid in the conservation of
endangered freshwater mussels, critical in their role as ecosystem
engineers [97, 98]. To understand the higher mortality in mussels
relocated to alternative environments or to captivity for manage-
ment purposes, mussels were interrogated with non-targeted GC-
MS and LC-MS [97]. It was found that relocation of mussels from
the native environment changed amino acid and nucleotide
metabolism, likely reflecting a stress response due to the change
in habitat.

EMERGING METABOLOMICS TOOLS FOR AQUATIC CHEMICAL
ECOLOGY
New tools enable large-scale metabolomics data analysis and
compound annotation
With the constant improvement of mass spectrometers’ sensitiv-
ity, scan speed and accessibility, thousands to millions of
individual mass spectra are typically obtained per metabolomics
study. Similar to sequencing-based omics studies, data analysis
has thus become a major bottleneck and has reached a point that
is far beyond manual data interpretation. Hence, scalable software
solutions are indispensable to extract conclusions from data in
metabolomics experiments. Fortunately, both mass spectrometer
vendors and open-source developers have created numerous

software tools for raw file processing, feature extraction, feature
annotation, and downstream statistical analysis. Multiple software
platforms, with graphical user interface (GUI), web-based apps, or
scripting packages provide streamlined workflows that include
quantification and enhanced detection of chromatographic
features as well as annotation of MS data [99–106]. While each
platform has unique capabilities and serves different user
preferences, the interconnection of different platforms enables
the best customizable data analysis solution, especially at the
interface of feature detection, annotation and statistical analysis.
Feature-based Molecular Networking (FBMN) through the GNPS

environment, for example, allows for the seamless import of
processed raw mass spectrometry data, as well as export to further
annotation and statistical analysis from a wide range of vendor
and open source software tools [107–109]. FBMN builds upon
molecular networking, which connects related molecules by their
MS/MS spectral similarities [35]. FBMN can also make use of ion
mobility separation information in addition to its algorithm to
characterize chromatographic features and separate isomers with
similar MS/MS spectra. The FBMN concept and workflow allows for
improved annotation of mass spectra in combination with the
ability for semi-quantitative or relative quantitative analysis,
enhancing the user’s downstream research and potential for
new compound discovery and quantification from understudied
organisms such as from aquatic fungi and aquatic macroalgae
[110].
Since “unknown” features in a non-targeted experiment

typically represent the majority, additional tools are needed to
bridge this large gap of unidentified data. In addition to matching
experimental MS/MS spectra against spectral libraries, other tools
predict MS/MS fragments from structure data and match those
predicted MS/MS fragments against the experimental spectra.
Such approaches are typically called in silico spectrum annotation.
As structural databases are significantly larger than spectral
libraries (typically 10-100 fold), in silico annotation tolls have
much larger coverage, and allow for annotation of features at
varying confidence and information levels (e.g. molecular formula,
chemical class, or planar structures) [111, 112]. Recent advances
include the use of Network Annotation Propagation (NAP), which
was developed to improve the accuracy of existing in silico
spectrum annotation tools by adding molecular networking to re-
rank in silico annotations between connected nodes to generate
consensus annotations within the networks, which typically
improves the confidence in the annotations [111]. In recent years,
several tools have been developed to improve in silico spectrum
annotation further. SIRIUS is a computational tool that analyzes
isotope patterns and fragmentation trees, which are related to the
fragment peaks of a molecule to identify molecular formulas [113].
SIRIUS is often used in combination with CSI:Finger ID, which
allows the matching of fragmentation trees of experimental
spectra with fragmentation trees from structural databases.
ZODIAC, improves the prediction of molecular formulas from
SIRIUS by also taking into account similar fragments and losses
between from other derivatives from spectral networks [114].
CANOPUS (class assignment and ontology prediction using MS) is
another computational tool within the SIRIUS software suite, that
allows chemical class level prediction through fragmentation trees
[109]. An application of this tool on a crude extract of a
cyanobacteria Rivularia sp. demonstrated these predictions by
superclass, class and subclass: CANOPUS identified the major
compound to be a cyclic peptide that was not annotated or
identified by other computational methods. NMR was used to
confirm the structural predictions and characterize the group of
rivulariapeptolide, allowing for a greater understanding of aquatic
natural products from microorganisms [115]. The easy-to-use GUI
and integration of these tools improves the user experience for in
silico spectrum annotation. Another way to predict unknown
molecules is to improve the size of the library: “Suspect IDs” have
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been generated by using molecular networking and analog
searches, in which unknown MS/MS spectra are matched against
the GNPS MS/MS spectral library. Spectra that show high spectral
similarity, but different precursor masses with a delta matching
common modifications, were considered to be related com-
pounds, which were then included in a new “suspect library”
available on GNPS [116]. This generates new library spectra out of
known library spectra, making the library of standards more
comprehensive.

Data sharing and computational advances allow the
reutilization of existing metabolomics data
The increasing willingness of researchers to share their data in
public repositories and the communities’ efforts to organize the
data and their meta-data allows for global repository-scale
analyses through new software tools such as the MS Search Tool
(MASST) [100, 117]. Akin to BLAST which is commonly used to
compare biological sequence information against public data-
bases, MASST allows querying a single MS/MS spectrum, for
example from a known compound, against all public MS/MS data.
The output will tell in which dataset the spectrum or in a broader
sense the compound of interest is present. This information can
then be used to hypothesize about the occurrence or origin of
certain compounds, even without the need for full identification.

MASST has been used for example for the repository scale
spectrum search of the potent neurotoxin domoic acid. Surpris-
ingly, the results of this analysis indicated that domoic acid was
present in data sets from coral reefs in Hawaii, an environment
that is typically not known for the presence of Pseudo-nitzschia,
the microalgae that produces domoic acid. In another study,
MASST was used for the contextualization of metabolites and
xenobiotics, detected in coastal environments [118].
Besides spectrum matching of single spectra against entire MS

repositories through MASST, there are more tools emerging to
perform multivariate analysis, such as Principal Coordinate
Analysis (PCoA) of whole repositories [107]. An important aspect
for repository scale analysis is the use and organization of
controlled metadata. Through the ReDu template in GNPS for
example, the user can provide a metadata sheet with controlled
vocabulary in addition to their raw metabolomics data, which
allows the seamless integration of their data into a global analysis,
such as PCoA [119]. With the rise of LC-MS/MS centric meta-
analysis tools and repositories, there has been significant effort
from the imaging MS (IMS) community to centralize data storage
which can then be leveraged for high-confidence annotation of
ion features [120]. With the rise of new instrument platforms such
as for single cell proteomics or µm-range lateral resolved MALDI
imaging platforms, new and effective strategies are needed for
the high demands of data analysis, clean-up and annotation
[121, 122]. Data from the METASPACE imaging mass spectrometry
repository has also been used to filter out background features
from single-cell MALDI imaging data with a software tool called
SpaceM [123]. Such tools further integrate other spatial data, such
as fluorescent microscopy images, or single cell transcriptomics/
genomics data. Such data integration approaches are fundamen-
tal to increase for example spatial resolution (through image
fusion) or compare transcriptional to translational regulation
[121, 122]. In the microbial ecology context, multi-omics data
layers, such as combined metabolomics and transcriptomics/
genomics data can further be used to identify biosynthesis genes
or the producing organisms [100, 124, 125]. Connecting molecules
to organisms is therefore not an easy to tackle problem, despite it
being of high interest to many scientific fields [15, 23].

Bioinformatic approaches to integrate metabolomes with
community composition
The CoNet tool can be used to detect associations between genes,
metabolites, and taxa and also hosts a command-line usage that

allows for interactions between these variables to be easily
visualized in Cytoscape [126]. This computational tool does co-
occurrence analysis and network interference analysis to predict
relationships between measurements of genes, metabolites, and
taxa. It also can take metadata as an input to look for associations
between environmental variables and other metadata variables
with these biological measurements. CoNet was applied to
determine which microorganisms (based on 16 S rRNA gene data)
in Arctic soil are co-correlated and anti-correlated with pH and
identify microorganisms that cross-feed in a complex environ-
mental microbiological sample [126]. Another recent tool to
connect metabolites with microorganisms is “mmvec” which uses
neural networks to determine how likely a metabolite is to be
linked with microorganisms [125]. In order to generate databases
of these associations and to verify computationally predicted
associations, characterizing metabolites of laboratory-cultured
phytoplankton species and natural phytoplankton communities
is paramount [127].

Advances in functional annotation of metabolites at scale
While the identity of most metabolites, especially in complex
environmental systems, are still unknown, even less information is
available about the biological function and activities that these
compounds might have. Thus, in addition to tackling the
bottleneck of metabolite annotation, novel experimental strate-
gies are needed to assign metabolite function at scale. The idea of
pairing functional assays with high-throughput metabolomics,
often referred to as functional metabolomics, is hence very
compelling [128, 129]. While bioactivity-guided assays have been
applied and refined in the natural product field for decades, the
pairing to high-throughput metabolomics approaches is not
straightforward [130–132]. Major bottlenecks are the scalability
of bio-assays related to the fraction number per metabolomics
sample, unambiguous assignment of activities to individual
compounds as well as their structural annotation. Recent advances
in the combination of bio-activity and non-targeted metabolomics
workflows include the integration of high-throughput phenotyp-
ing and metabolomics as well as molecular networking
approaches with bioactivity assays for the assignment of
antibacterial and antiviral assays [133–135], as well as molecular
interactions such as metabolite-metal and metabolite-protein
binding [115, 136, 137]. Similar, bioactivity-guided LC-MS
approaches are widely used in the environmental chemistry
community, often termed effect-directed analysis [138, 139]. For
example, connecting toxicity with non-targeted chemical profiling
and downstream de novo structure elucidation led to the above
mentioned discovery of a salmon mortality-inducing compound
from rubber wear-off from car tires that enter aquatic systems
through storm water run-off [89].

CONCLUSIONS AND FUTURE DIRECTIONS
Non-targeted metabolomics tools offer great potential to provide
molecular insights into complex ecosystems and expand biologi-
cal conclusions from multi-omics studies. The top four key
advantages and emerging solutions that we see for this field
are: (1) improved metabolite annotation and democratization of
spectral libraries and data, (2) improved functional metabolite
assignments (i.e. toxicity) (3) integration of multi-omics datasets,
and (4) contextualization and re-use of data. Yet, key challenges
that remain are: (1) Lack of medium-scope studies to bridge the
knowledge gap between quantitative targeted and non-targeted
qualitative environmental studies, (2) ultra-complexity of environ-
mental samples, (3) and annotation of remaining unknown
metabolites.
Inherent limitations of current metabolomics approaches are

that targeted studies lose the scope of the thousands of unstudied
molecules [140, 141], whereas, non-targeted studies face the
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challenge of limited library sizes that most often only allow the
annotation of less than ten percent of the total number of
features. The improvement of quantitative capabilities for non-
targeted studies will pave the way forward to bridging this
knowledge gap. While the challenge of spectral annotation
through spectral libraries remains, it is constantly improved by
the increase in spectral library coverage, in silico spectral
annotation tools and compound suspect identifications
[109, 113, 116].
Despite these potential advances, challenges that an unknown

proportion of these spectra are from abiotic backgrounds, and
another fraction are from the detection of isotopes that are not
unique compounds will remain. Other challenges arise from the
inherent ultra-complex nature of environmental samples: One
study aimed to separate isomers in DOM with high performance
liquid chromatography found that the ultra-complex nature of the
mixture was a central barrier and that the complexity is an order of
magnitude higher than what was previously expected [142].
Furthermore, highly hydrophilic biodegradable dissolved mole-
cules are not well detected with typical methods of solid phase
extraction to concentrate DOM prior to mass spectrometry, so
many of these species are likely overlooked during DOM analysis
[143]. New experimental methodology is still needed to improve
the chemical extraction and characterization of environmental
metabolomics samples, and to provide standardized and repro-
ducible computational frameworks for the community to share, re-
utilize, and contextualize data [144, 145]. In addition to limitations
in aquatic metabolomics, a recent review of machine learning
strategies for integrating multi-omic marine datasets identified
some challenges identified with data integration to be the
variability and noise of data, limited metadata, inaccessible
computational tools, and high cost [146].

Connecting chemotypes with genotypes
Along with advances in metagenomics and increased accessibility
of high-quality Metagenome-Assembled Genome (MAG), impor-
tant future developments in metabolomics tools for aquatic
microbial ecology may include the better integration of MAGs and
genome mining strategies with metabolomic data. New tools and
infrastructures like NPOmix and The Paired Omics Data Platform
pave the way to connect thereby molecules to their biosynthesis
genes [124–126, 147]. It is estimated that two-thirds of the work
on a multi-omic projects goes to data processing and integration,
highlighting how the current data analysis approaches are a time
and energy consuming processes, with much room for improve-
ment [148].

Metabolomics methods for global change assessment
We anticipate that metabolomics tools will play a central role in
assessing the impact of climate change on aquatic systems. It has
been predicted that climate change induced rising ocean
temperatures favor larger and more frequent harmful cyanobac-
terial blooms [149], and understanding and perhaps leveraging
chemical cues that influence harmful algal blooms [150], is of
great importance. Metabolomics tools may play an integral part to
identify such metabolites in multi-stressor experiments. An
important aspect hereby well be the scaling from single chemical
entities and interactions to chemotype-wide ecology of molecules.
A fully structurally resolved inventory of all metabolites / DOM
pool, would be the basis to build up models for DOM persistence
(intrinsic and emergent) along with ecological/environmental
parameters [15, 151, 152]. Multi-dimensional DOM fractionation
and LC-MS/MS analysis, combined with bioactivity screening
approaches, such as cytological profiling high content screening
methods or antimicrobial assays, could link DOM chemical
composition to biological functions. When done at high resolution
and scale, identifying new natural products and their biological
properties can be done directly from environmental samples

[153]. Such developments will not only drastically improve our
understanding of the DOM black box, but also unleash its
tremendous molecular complexity as a potential source of
structural and pharmaceutical/biotechnological novelty.

Waiting for the “AlphaFold-Moment” in metabolomics
Machine learning, and in particular, advanced deep learning tools
like AlphaFold, and large language models (LLMs), are transform-
ing the field of biological research [154]. AlphaFold, developed by
DeepMind, has made it possible to accurately predict the 3D
structures of proteins, which has historically been a fundamental
challenge in structural biology [155]. This breakthrough in
machine learning has the potential to accelerate the discovery
of new drugs and therapies, as well as help us better understand
the underlying mechanisms of many diseases. Meanwhile, LLMs,
like OpenAI’s GPT-4, are being used to analyze large amounts of
biomedical literature, making it possible to quickly identify new
hypotheses and connections between metabolites and organisms
[156]. This can lead to new insights into the relationships between
genes, proteins, metabolites and microbial community dynamics,
offering completely new scales to describe and understand
ecosystem function. A similar breakthrough in the field of
proteomics occurred when the SEQUEST software was developed
to match tandem mass spectra from peptides to database
sequences [157].
Besides advanced AI tools such as ChatGTP, many machine

learning approaches are already well established in the metabo-
lomics community. Especially in the realm of supervised multi-
variate statistics, machine learning classification tools such as
random forest and XG-Boost are commonly used [42, 158]. At the
same time, some of the above mentioned in silico spectrum
annotation tools make use of deep neural networks to learning
MS/MS fragmentation, compound class prediction, or de novo
structure elucidation and are rapidly improving [110, 114, 159].
However, high confidence compound annotation through the
prediction of MS/MS spectra from structure libraries is still an
unsolved problem, and the field is still waiting for an “AlphaFold
Moment” in mass spectrometry-based metabolomics.
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