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ABSTRACT OF THE DISSERATION

Determining the Mechanisms
by which Exercise

Exerts its Effect on Cancer

by

Brandon Liang Tsai
Doctor of Philosophy in Human Genetics
University of California, Los Angeles, 2024

Professor Paul Christopher Boutros, Chair

Exercise is broadly beneficial for human health and is one of the most potent modifiable lifestyle
risk factors for many diseases, including cancer. Cancer is a highly prevalent disease and is one of
the leading causes of death worldwide. While cancer incidence is a stochastic process, many
factors influence the probability that an individual will develop cancer, including genetics,
environmental exposures and lifestyle factors. An estimated two-thirds of cancer deaths in the U.S.
can be attributed to modifiable risk factors such as smoking, diet and exercise. Exercise is the
strongest positive modifiable risk factor and has been linked to almost all cancer types and stages
of disease progression. Individuals who exercise more have reduced risk of developing cancer and
improved clinical outcomes. However, even within a specific cancer type, tumors appear to

respond differently to exercise. Indeed, the molecular mechanisms by which exercise exerts its



effect on cancer outcomes are almost entirely unclear. My dissertation aims to fill this fundamental
gap in our understanding of cancer etiology, uncovering how exercise affects diverse host and
tumor molecular landscapes, as well as clinical outcomes. To enhance our molecular
understanding of exercise oncology, | have separated my research into three chapters. These
chapters cover a variety of study designs, including large cross-sectional patient cohorts,
prospective longitudinal clinical trials, and experimental mouse studies. Each study design
provides its own unigque advantages, complementing each other and coming together to reveal
novel insights into exercise oncology.

In Chapter 1, | present the study of a large cross-sectional cohort of 5,150 patients with linked
tumor genomic sequencing from 38 different cancer types and clinical annotation of post-diagnosis
exercise dose and other important covariate lifestyle behaviors such as smoking, alcohol, and diet.
Leveraging the large sample size and diversity of cancer types, we investigated both pan-cancer
and cancer type-specific exercise-associated modulation of the cancer genome. Tumors differed
in mutation burden, mutational signatures, and specific driver mutations in an exercise dose-
dependent manner. The direction and magnitude of these associations varied across cancer types,
yet exercisers had reduced hazard of all-cause mortality for all cancers combined and for multiple
individual cancer types. Our data show exercise promotes genome maintenance, which may have
broad implications for understanding how exercise suppresses tumor pathogenesis and potentially
other common age and lifestyle-related diseases. To our knowledge, this study is the first to
characterize the link between exercise and human tumor genomic profiling.

In Chapter 2, | present the study of a decentralized, digital prospective longitudinal clinical trial of
13 patients with prescribed exercise therapy. The prescribed exercise regimen between cancer

diagnosis and surgical resection allows for the control of exercise dose in humans linked to high-



quality clinical data. We performed longitudinal multiparametric profiling of host physiology,
plasma, gut microbial composition, and tumor tissue before, during, and after exercise therapy
intervention. Time-series analyses revealed hundreds of host molecular changes in the plasma
proteome and metabolome and gut microbiome involved in a diverse-array of biological processes.
System-wide changes were paralleled by modulation of core tumor gene expression pathways
notably tumor cell cycle regulation, stress response, and metabolism. Integrative network analyses
revealed the complexity of the host-tumor interaction under exercise therapy regulation,
elucidating novel mechanistic insights. Variability at baseline and in response to treatment
emphasized highly personalized responses to uniform exercise therapy. Our study provides an
example of the application of a digital approach to generate a longitudinal high-definition dataset
providing a framework of the integrative effects of exercise therapy with considerable translational
and discovery potential. To our knowledge, this study is the first deep longitudinal host-tissue
molecular characterization of patient response to exercise therapy.

In Chapter 3, | present a mouse study of tumor xenografts from seven human breast cancer cell
lines and syngeneic grafts from one mouse breast cancer cell line, with the cell lines representing
a range of breast cancer subtypes. Tumors derived from different cell lines displayed differential
growth phenotypes, with some tumors growing faster and others growing slower in response to
exercise treatment. The tumors also had distinct genomic, transcriptomic, and proteomic changes
with exercise. These molecular changes pointed to perturbations in common biological pathways,
including DNA repair. The integration of exercise-associated molecular alterations and growth
phenotypes across multiple breast cancer subtypes provides further evidence that, indeed, the
effect of exercise on cancer is context dependent, not only varying by cancer type, but also by

subtype, adding another layer of complexity to the field of exercise oncology.
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CHAPTER 1:

Exercise-associated modulation of the cancer genome



Abstract

Exercise influences the primary incidence of several types of human cancer, but the underlying
molecular mechanisms remain enigmatic. We linked the genomic landscapes of 5,150 patient
tumors from 38 different cancer types with clinical annotation of post-diagnosis exercise dose.
Tumors differed in mutation burden, mutational signatures and specific driver mutations in an
exercise dose-dependent manner. The direction and magnitude of these associations varied across
cancer types, yet exercisers had reduced hazard of all-cause mortality for all cancers combined and
for multiple individual cancer types. Our data show exercise promotes genome maintenance,
which may have broad implications for understanding how exercise suppresses tumor pathogenesis

and potentially other common age and lifestyle-related diseases.

An individual’s lifetime risk of cancer is influenced by both intrinsic and extrinsic factors. Intrinsic
processes include stochastic errors in DNA replication, while extrinsic ones relate to
environmental exposures, including lifestyle behaviors (1-5). Genotoxic lifestyle factors such as
smoking, alcohol consumption and ultraviolet (UV) radiation exposure are well-characterized to
elevate lifetime cancer risk (6). Correlative and mechanistic studies show that most genotoxic
exposures, including certain unhealthy lifestyle factors, (7-9) influence cancer risk by promoting

specific mutational processes, thus shaping mutational architecture and tumor evolution.

To date, molecular epidemiology studies have focused exclusively on factors that elevate cancer
risk. By contrast, our understanding of how lifestyle factors that lower cancer risk influence tumor
genomic landscapes is nascent. One of the most important lifestyle factors in this context is
exercise. Adults reporting regular exercise have lower risk of non-communicable diseases (10),

2



including reduced primary incidence of multiple cancers (11, 12). Paradoxically, exercise is
associated with elevated incidence of melanoma and prostate cancer (12). Despite a wealth of
studies linking exercise to cancer incidence, we do not understand how exercise influences

mutational processes and shapes tumor evolution (13).

To fill this gap, we linked DNA sequencing of 5,150 human cancers to detailed clinical
quantification of exercise (Figure 1A, Supplemental Table 1). Self-reported, post-diagnosis
exercise was evaluated using validated surveys and quantified as moderate to vigorous metabolic
equivalents of task hours per week (MET-hours/week), consistent with international guidelines
(14). This proxy for long-term exercise status (15, 16) enabled interrogation of the dose-dependent
impact of exercise on the cancer genome. Patients represented a broad range of clinico-
epidemiologic characteristics (Figures 1B-C, Supplemental Figure 1). Tumor and matched normal
DNA were sequenced to identify somatic single nucleotide variants (SNVs), copy number
alterations (CNAs) and structural variants (SVs) (17, 18) across a total of 38 cancer types,

including 11 individual cancer types with at least 75 patients (Figure 1D).

We first examined the impact of exercise dose on genome instability. Three complementary
metrics were assessed: fraction genome altered (FGA, fraction of genome affected by gains or
losses), microsatellite instability (MSI; percentage of somatic microsatellite sites) and tumor
mutational burden (TMB; SNVs per Mbp) (19, 20). Exercise was associated with lower FGA for
all cancers combined (p = 0.035, adjusted linear regression; ALR) as well as for three individual
cancer types: breast cancer, melanoma and ovarian cancer (Figure 1E). These and subsequent
analyses adjusted for clinico-epidemiologic features appropriate to the specific cancer type being
studied (e.g., age, sex, smoking; Supplemental Figure 2, Supplemental Table 2). Similarly,

exercise was also associated with lower rates of MSI in the same three cancer types. By contrast,
3



exercise was marginally linked to higher TMB for all cancers combined (p = 0.10, ALR), although
no individual cancer type reached statistical significance. Sensitivity analyses (Supplementary
Methods) showed exercise associations were directionally consistent across clinico-epidemiologic
features (Supplemental Figure 3). Thus, higher exercise lowers genome instability in some cancer

types, including several without prior epidemiologic support (i.e. melanoma, ovarian), but not all.

Different mutagens and defects in DNA damage repair genes can induce specific patterns of
genome instability (8). To determine whether the associations of exercise with genome instability
were rooted in specific mutational processes, we modeled the relationship between exercise dose
and trinucleotide mutational signatures (8). Of the mutational signatures detected across all cancers
combined (Supplementary Methods), none were associated with exercise (Figure 1F). However,
several individual cancer types showed strong associations between exercise dose and mutational
signatures. For example, the clock-like SBS1 signature was more frequently detected in breast
cancers and sarcomas arising in patients reporting higher exercise (pbreast=0.016,
psarcoma=0.041, adjusted Firth’s logistic regression; AFLR). By contrast, the SBS3 signature of
defective homologous recombination DNA damage repair was less common in renal cell

carcinomas arising in patients with higher exercise (p = 0.026, AFLR; Figure 1F).

To assess whether differences in genome instability and mutational processes might represent
individual driver events, we tested whether exercise dose influenced gene-specific alterations in
tumor mutational architecture. Across all cancers combined, exercise was linked to fewer somatic
mutations in cell cycle regulators CCND1 and CDKN2A (p < 0.08 for each gene, AFLR)
(Supplemental Figure 4). Across the 11 individual cancer types studied, mutations in 18 genes

were statistically significantly associated with exercise dose (p < 0.05; Figure 1G).



Most cancer types studied were limited in statistical power due to small sample size, however
detailed analyses were possible in breast cancer (n=1,018; Supplemental Table 3) and non-small
cell lung cancer (NSCLC; n=811, Supplemental Table 4). Higher exercise dose was associated
with fewer mutations in the cell division regulating kinase AURKA in breast cancer (p = 0.0057,
AFLR; Figure 2A). In NSCLC, higher exercise dose was associated with fewer mutations in cell
cycle regulator CDKN2B (p = 0.026, AFLR) and tumor suppressor ARID1A (p = 0.044, AFLR)
but more mutations in oncogene MET (p = 0.036, AFLR; Figure 2B). These results were adjusted
for potential confounders (Supplemental Table 2). Stratification analyses further confirmed these
results, for example showing that AURKA in breast cancer (Figure 2C) and ARID1A in NSCLC

are associated with exercise dose but not age or body mass index (BMI) (Figure 2D).

We next evaluated whether the impact of exercise might vary across cancer subtypes. We focused
on breast cancer, stratifying patients by receptor status (Supplemental Table 3). Sensitivity
analyses showed that exercise dose influenced the cancer genome similarly in all subtypes (Figure
2E). Similarly in NSCLC, the histological subtypes of squamous cell carcinoma and
adenocarcinoma showed directional consistency for all exercise-associated gene mutations (Figure
2F). Intriguingly, not all exercise associations were subtype-independent. Higher exercise dose
was strongly associated with more PAK1 mutations only in HR-negative disease (p = 0.031), but
not in any other subgroups (Figure 2E). Thus, exercise appears to primarily shape tumor evolution

in a site-specific manner, with modest subtype-specific effects.

Increased genome instability is associated with more aggressive tumor biology and poorer patient
survival (21, 22). Given the associations between exercise and genome instability, we reasoned
exercise dose might influence clinical outcome. Patients were classified as exercisers (>0 MET-

hours/week; n=3,365; 65%) and non-exercisers (0 MET-hours/week; n=1,785; 35%), and overall
5



survival was compared between these groups. Median 3.9-year follow-up was available.
Exercisers had better overall survival for all cancers combined (hazard ratio (HR) = 0.64, 95%
confidence interval (Cl), 0.55-0.74, adjusted Cox proportional hazards regression; ACPHR), and
for breast cancer (HR=0.60, 95% CI, 0.42-0.88, ACPHR), NSCLC (HR=0.59, 95% CI, 0.42-0.83,
ACPHR) and soft tissue sarcoma (HR=0.31, 95% CI, 0.12-0.78, ACPHR) compared with non-

exercisers and controlling for stage (Figure 2G).

Exercise is posited to influence cancer risk and progression in a complex, type-dependent manner
(112, 12). Our results suggest that exercise may influence tumor evolution, or the rate at which
different tumor molecular features evolve from pre-malignant states. However, our analyses relied
on self-report of exercise post-diagnosis, which is standard in epidemiological studies, but prone
to misclassification and reverse-causation bias. To minimize the latter, we employed both
multivariable analyses and stratified analyses. Several of our findings are consistent with a large
body of previous literature, further supporting the validity and reliability of our exercise data. For
example, we observed exercise-associated genomic features preferentially in cancer types with
strong epidemiological evidence that exercise lowers risk (e.g., breast, NSCLC), but not in those
where exercise appears to have little impact (e.g., pancreas) or may even increase risk (e.g.,
prostate cancer) (11, 12). Melanoma provides a particularly illustrative example of this
consistency. It has been widely hypothesized that the higher incidence of melanoma in exercisers
is caused by their increased incidental sun exposure (23). Consistent with this hypothesis,
melanoma patients with higher exercise had tumors that tended to have increased detection of

SBS7a and SBS7b (UV light exposure).

It is unclear how exercise influences mutational processes, independent of age, BMI and other

lifestyle factors, but two broad non-mutually exclusive explanations appear plausible. First,
6



exercise may directly impact cell-intrinsic mutagenesis. Exercise lowers both circulating and tissue
bioavailability of effectors that either directly induce DNA damage (reactive oxygen species) or
promote mutagenic processes like cell division. Thus, DNA damage and/or chances of acquiring
oncogenic mutations might be lower in exercisers, decreasing genome instability either directly or
via epigenetic mechanisms (24). Second, exercise may influence cancer evolution via the tumor
microenvironment by enhanced tumor immunity (25, 26) or modulation of growth factor, oxygen
and nutrient availability (so called “public goods™) (27). These effects might alter cell-environment
fitness dynamics, selecting for clones better adapted to the level of exercise-conditioning in an
individual patient’s tissue. While the mechanism remains uncertain, it is clear that exercise
modulates tumor evolution, with broad potential implications for clinical and public health
guidelines. Understanding the mechanism by which exercise suppresses tumor pathogenesis may
provide insight into the many other common age and lifestyle-related diseases for which exercise

is the strongest known protective factor.
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Supplemental Figure 1
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Supplemental Figure 3
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Supplemental Figure 4
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Supplemental Table 1

Cancer — no. (%)

Breast Cancer 1,018 (20)
Non-Small Cell Lung Cancer 811 (16)
Mature B-Cell Neoplasms 453 (9)
Endometrial Cancer 450 (9)
Prostate Cancer 272 (5)
Colorectal Cancer 265 (5)
Leukemia 186 (4)
Ovarian Cancer 160 (3)
Renal Cell Carcinoma 133 (3)
Other 121 (2)
Pancreatic Cancer 115 (2)
Soft Tissue Sarcoma 86 (2)
Myelodysplastic Workup 84 (2)
Melanoma 83 (2)
Myelodysplastic Syndromes 82 (2)
Bladder Cancer 77 (1)
Mature T and NK Neoplasms 77 (1)
Esophagogastric Cancer 71 (1)
Cancer of Unknown Primary 67 (1)
Myeloproliferative Neoplasms 56 (1)
B-Lymphoblastic Leukemia/Lymphoma 49 (1)
Myeloproliferative Workup 40 (1)
Head and Neck Cancer 33 (1)
Hepatobiliary Cancer 33 (1)
Thyroid Cancer 32 (1)
Appendiceal Cancer 31 (1)
Gastrointestinal Stromal Tumor 27 (1)
Glioma 26 (1)
Hodgkin Lymphoma 26 (1)
Cervical Cancer 25 (0)
Myelodysplastic/Myeloproliferative Neoplasms 23 (0)
Uterine Sarcoma 20 (0)
Salivary Gland Cancer 19 (0)
Skin Cancer, Non-Melanoma 19 (0)
Germ Cell Tumor 17 (0)
Blood Cancer, NOS 16 (0)
Small Cell Lung Cancer 13 (0)
Small Bowel Cancer 12 (0)
Bone Cancer 11 (0)
Mesothelioma 11 (0)
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Site of tumor sample — no. (%)

Primary 3,497 (68)

Metastasis 1,140 (22)
Body mass index — mean (SD) 27.6 (£ 6.02)
Smoking history — no. (%) 2,217 (43)
Alcohol consumption — no. (%) 2,251 (44)

. metabolic equivalent of task (hours per week)
2; standard deviation
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Supplemental Table 2

All adjusted models | Survival Cancer type-specific covariates
Tumor

Age Survey Site Sex Smoking Alcohol Cancer Type
Pan-cancer + + + + + + +
Bladder + + + + + - -
Breast + + + - - + -
Colorectal + + + + + + -
Endometrial + + + - - - -
Melanoma + + + + - - -
Non-Small Cell
Lung + + + + + - -
Ovarian + + + - - - -
Pancreatic + + + + + - -
Prostate + + + - - - -
Renal Cell
Carcinoma + + + + + - -
Soft Tissue
Sarcoma + + + + - - -
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Supplemental Table 3

Characteristic n=1,018
MET-h/week! — mean (SD?) 15.3 (£ 17.5)
Age — mean (SD) 55.9 (£ 12.4)
ER Status — no. (%)

Negative 121 (12)

Positive 704 (69)
PR Status — no. (%)

Negative 201 (20)

Positive 623 (61)
HER2 Status — no. (%)

Negative 614 (60)

Positive 104 (10)
Site of tumor sample — no. (%)

Primary 684 (67)

Metastasis 325 (32)
Body mass index — mean (SD) 27.2 (+ 6.16)
Smoking history — no. (%) 340 (33)
Alcohol consumption — no. (%) 2,251 (44)

1. metabolic equivalent of task (hours per week)

2: standard deviation
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Supplemental Table 4

Characteristic n=811
MET-h/week! — mean (SD?) 13.2 (= 15.8)
Age — mean (SD) 67.0 (£ 9.59)
Female — no. (%) 549 (68)
Subtype — no. (%)

Adenocarcinoma 661 (82)

Squamous Cell Carcinoma 70 (9)
Site of tumor sample — no. (%)

Primary 699 (86)
Metastasis 102 (13)
Body mass index — mean (SD) 26.9 (+ 5.39)
Smoking history — no. (%) 587 (72)
Alcohol consumption — no. (%) 444 (55)

1. metabolic equivalent of task (hours per week)
2: standard deviation
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Figure Captions

Figure 1. Study overview and tumor genomic landscapes by exercise dose

(A) Schematic of study. (B) Heatmap of pairwise Pearson’s X2 test of independence p-values
between categorical clinico-epidemiologic features. (C) Epidemiologic distribution of cohort. (D)
Distribution of cancer type and exercise dose. (E) Dotmap of associations between
TMB/FGA/MSI and exercise dose, evaluated by adjusted linear regression. Dot size indicates the
magnitude of the exercise B coefficient. B coefficients were scaled from -1 to 1. Dot color indicates
the direction of association. Background shading indicates statistical significance of association.
(F) Dotmap of associations between mutational signatures and exercise dose, evaluated by adjusted
Firth’s logistic regression. Dot size indicates the magnitude of the exercise log10(odds) coefficient.
Dot color indicates the direction of association. Background shading indicates statistical
significance of association. (G) Volcano plot of associations between gene mutations and exercise
dose, evaluated by adjusted Firth’s logistic regression. Significant genes (p < 0.05) are labeled and

colored by the cancer type they were associated in.

Abbreviations: MET — metabolic equivalents of task; FGA — fraction of genome altered; MSI —
microsatellite instability; TMB — tumor mutation burden; Q — quartile; SBS — single base

substitution

Figure 2. Exercise dose and tumor genomic landscapes in breast and non-small cell lung cancer

(A) Tumor genomic landscape in breast cancer. (B) Tumor genomic landscape in non-small cell
lung cancer (NSCLC). From top to bottom: exercise dose, exercise status, markers of genome
instability, mutational signatures, gene mutation status and clinico-epidemiologic features.

Columns represent patients sorted by decreasing exercise. Markers of genome instability heatmap
19



shows TMB/FGA/MSI values. Mutational signatures heatmap shows fraction of single base
substitutions attributed to the mutational signature. Gene mutation status heatmap shows type of
mutation present. Barplots to the right show p-values and are colored in the direction of significant
(p < 0.05) associations. Orange bars indicate the feature was significantly associated with
decreasing exercise, and green bars indicate the feature was significantly associated with
increasing exercise. (C) Distribution of exercise dose, age and BMI by AURKA mutation status
in breast cancer. (D) Distribution of exercise dose, age and BMI by ARID1A mutation status in
NSCLC. (E) Sensitivity analysis by receptor status in breast cancer. (F) Sensitivity analysis by
histology in NSCLC. Dot size indicates the magnitude of the exercise coefficient. Coefficients
were scaled from -1 to 1. Dot color indicates the direction of association. Background shading
indicates statistical significance of association. (G) Forest plot of hazard ratios of all-cause
mortality and 95% confidence intervals between exercisers and non-exercisers by cancer type,

evaluated by adjusted Cox proportional hazards regression.

Abbreviations: MET-h/wk — metabolic equivalents of task hours per week; TMB — tumor mutation
burden; FGA — fraction of genome altered; MSI — microsatellite instability; SBS — single base
substitution; HER2 — human epidermal growth factor receptor 2; PR — progesterone receptor; ER
— estrogen receptor; WT — wildtype; SNV — single nucleotide variant; CNA — copy number
alteration; SV — structural variant; Q — quartile; SCC — squamous cell carcinoma; AdenoCA —

adenocarcinoma; MUT — mutant; BMI — body mass index; HR — hormone receptor

Supplementary Figure Captions
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Supplemental Figure 1: Pan-cancer univariate analyses of clinico-epidemiologic features

association with exercise dose in 5,150 tumors

(A) Heatmap of pairwise Spearman’s correlation p between continuous clinico-epidemiologic
features. (B) Hexbin plot of exercise dose vs. age. Shading of hexbin indicates density. (C)
Contingency table of exercise dose and BMI quartiles. P-value calculated by Pearson’s X2 test of

independence.

Abbreviations: MET — metabolic equivalents of task hours per week; BMI — body mass index;
TMB — tumor mutation burden; FGA — fraction of genome altered; MSI —microsatellite instability;

MET-hours/week — metabolic equivalents of task hours per week; Q — quartile

Supplemental Figure 2: Per-cancer type univariate analyses of clinico-epidemiologic feature

associations

(A) Dotmaps of Spearman’s correlation p between continuous clinico-epidemiologic features. Dot
size indicates the magnitude of correlation. Dot color indicates the direction of correlation.
Background shading indicates statistical significance of correlation. (B) Heatmaps of Welch’s two-
sided t-test p-values between continuous and categorical clinico-epidemiologic features. (C)
Heatmaps of Pearson’s X2 test of independence p-values between categorical clinico-

epidemiologic features.

Abbreviations: MET-h/week — metabolic equivalents of task hours per week; BMI — body mass
index; TMB — tumor mutation burden; FGA — fraction of genome altered; MSI — microsatellite

instability
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Supplemental Figure 3: Sensitivity analyses of association between exercise dose and markers of

genome instability by clinico-epidemiologic features

(A) Dotmaps of associations between TMB (top), FGA (middle) and MSI (bottom) and exercise
dose, evaluated by adjusted linear regression. Each cohort is dichotomized into two groups for
each clinico-epidemiologic feature. Un-dichotomized overall associations are on the right. Dot size
indicates the magnitude of the exercise B coefficient. B coefficients were scaled from -1 to 1. Dot
color indicates the direction of association. Background shading indicates statistical significance
of association. (B) Scatterplots of association between TMB/FGA/MSI and exercise dose,
evaluated by adjusted linear regression. Each dot represents the association for a dichotomized
clinico-epidemiologic feature. B1 represents the exercise B coefficient for the first strata in each
dichotomy (i.e. age<50, female, BMI<25, primary, no smoking, no alcohol, GLTEQ), and 2
represents the coefficient for the second strata (i.e. age >50, male, BMI >25, metastasis, smoking,
alcohol, IPAQ). B coefficients were scaled from -1 to 1. Larger dots indicate the un-stratified
overall association was significant (p < 0.05). Large dots are primarily in quadrants | and IV,
showing significant exercise-associations demonstrate directional consistency when stratified by

clinico-epidemiologic features.

Abbreviations: TMB — tumor mutation burden; FGA — fraction of genome altered; MSI —
microsatellite instability; BMI — body mass index; GLTEQ - Godin Leisure-Time Exercise

Questionnaire; IPAQ —International Physical Activity Questionnaire

Supplemental Figure 4: Pan-cancer genomic landscape and exercise dose

From top to bottom: exercise dose, exercise status, markers of genome instability, mutational
signatures, gene mutation status and clinico-epidemiologic features. Columns represent patients
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sorted by decreasing exercise dose. Markers of genome instability heatmap shows TMB/FGA/MSI
values. Mutational signatures heatmap shows fraction of single base substitutions attributed to the
mutational signature. Gene mutation status heatmap shows type of mutation present. Barplots to
the right show p-values and are colored in the direction of significant (p < 0.05) associations.
Orange bars indicate the feature was significantly associated with decreasing exercise, and green

bars indicate the feature was significantly associated with increasing exercise.

Abbreviations: MET-h/week — metabolic equivalents of task hours per week; TMB — tumor
mutation burden; FGA — fraction of genome altered; MSI — microsatellite instability; SBS — single
base substitution; WT —wildtype; SNV —single nucleotide variant; CNA — copy number alteration;

SV - structural variant; Q — quartile

Supplementary Table Legends

Supplemental Table 1 — Cohort characteristics

Supplemental Table 2 — Covariates included in adjusted models by cancer type
Supplemental Table 3 — Breast cancer cohort characteristics

Supplemental Table 4 — NSCLC cohort characteristics

Supplemental Table 5 — Statistical tables
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Supplementary Methods

Patients and clinical data extraction

A total of 5,150 patients with 38 different cancer types sequenced at Memorial Sloan Kettering
Cancer Center from March 2001 to May 2023 were included in this study. All tumors were profiled
using the Memorial Sloan Kettering Integrated Molecular Profiling of Actionable Cancer Targets
(MSK-IMPACT) clinical sequencing assay, a hybridization capture-based, next-generation
sequencing platform (28). This set included samples sequenced with the IMPACT-HEME-400
(n=875), IMPACT-HEME-468 (n=218), IMPACT341 (n=41), IMPACT410 (n=659),
IMPACT468 (n=2748) and IMPACT505 (n=606) panels. While some patients may have multiple
cancer diagnoses (i.e. recurrence or metastasis), only the samples profiled by the MSK-IMPACT
were considered for this study. Clinical data were retrieved from the institutional electronic health
records (EHR) database. Metastatic events were extracted from the pathology report of the
sequenced samples and patients’ electronic health records. The EHR includes International
Classification of Diseases billing codes which classify a comprehensive list of diseases, disorders,
injuries and other health conditions. Fraction genome altered (FGA) was calculated by taking the
fraction of the genome affected by gains or losses identified by GATK DepthOfCoverage (29).
Microsatellite instability (MSI) was calculated by taking the percentage of unstable somatic
microsatellite sites from the total number of microsatellite sites identified by MSlsensor (18).
Tumor mutation burden (TMB) was calculated by dividing the number of mutations by the total
bases sequenced by the panel used, per Mbp. These annotations have been widely used on MSK-

IMPACT data previously (17, 18).

Exercise dose
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Patients reported post-diagnosis exercise as weekly minutes of moderate and vigorous activity
using the Godin Leisure-Time Exercise Questionnaire (GLTEQ) (30) or International Physical
Activity Questionnaire (IPAQ) (31). Both surveys are extensively validated. In scenarios in which
patients completed more than one survey, we used the survey closest to the date of pathology
(median=399 days from pathology). The date of diagnosis is equivalent to the date of pathology
for the sample profiled by the MSK-IMPACT. Self-reported exercise is stable from several years
prior diagnosis to several years post diagnosis and treatment. Therefore, assessment of post-
diagnosis exercise is a good proxy of pre-diagnosis exercise, the period of cancer development.
Minutes of weekly moderate and vigorous activity were capped at 240 minutes (4 hours) per week
each. Exercise intensity was then weighted by an estimate of the 5 metabolic equivalent of task
(MET) for moderate exercise and 9 MET for vigorous exercise (32). The weighted estimates were

summed to yield a maximum total of 56 MET hours per week (MET-hours/week).
Data processing and filtering

Only patients in the MSK-IMPACT dataset with exercise annotation were included in our cohort
(n=5,150). Tumor-type-specific analyses were only performed on solid cancer types with at least
75 patients. Hypermutated (TMB>100) samples were excluded from analyses not involving TMB.
The only model in which hypermutated samples were included was the adjusted linear regression
of TMB as a function of exercise dose. Similarly, MSI unstable (MSI1>10) samples were excluded
from analyses involving not involving MSI. The only model in which MSI unstable samples were
included was the adjusted linear regression of MSI as a function of exercise dose. TMB, FGA and
MSI were treated as continuous variables. Mutational signature calls were treated as a categorical
variable (detected/undetected). Gene mutation status was treated as a categorical variable

(mutant/wildtype). Exercise dose was treated as a continuous variable (MET-hours/week) for all
25



analyses except for survival analyses, for which exercise dose was modeled as a categorical
variable (exercisers: >0 MET-hours/week, non-exercisers: 0 MET-hours/week). Modeling of the
association between gene mutations and exercise dose was only performed for genes mutated in at
least 5% of the samples. Gene-level SNV, CNA and SV calls were obtained directly through the
cBioPortal for Cancer Genomics. Genes were considered to have a compound mutation if they had

any combination of two or more mutation types (SNV, CNA, SV).
Univariate analysis

Correlations between continuous variables were evaluated using Spearman’s correlation.
Comparisons between continuous and categorical variables were evaluated using Welch’s two-
sided t-tests. Cancer type was the only categorical variable with more than two categories, thus we
used analysis of variance to evaluate comparisons between continuous variables and cancer type.
Independence between categorical variables was evaluated using Pearson’s X2 test of

independence.
Multiple variable analysis

Models of the association between exercise and tumor genomic features were adjusted for age,
survey and cancer type-specific covariates (Supplemental Table 2). For pan-cancer analyses, we

also adjusted for cancer type, aggregating any cancer types with n<10 as “Other”.

Association between TMB/FGA/MSI and exercise dose were evaluated using adjusted linear

regression (ALR) based on the model:

TMB/FGA/MSI ~ exercise dose + age + survey + cancer type-specific covariates
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Association between mutational signatures and exercise dose were evaluated using adjusted Firth’s

logistic regression (AFLR) based on the model:
Detection of mutational signature ~ exercise dose + age + survey + cancer type-specific covariates

Association between gene mutations and exercise dose were evaluated using adjusted Firth’s

logistic regression (AFLR) based on the model:
Gene mutation status ~ exercise dose + age + survey + cancer type-specific covariates

ALR exercise dose coefficient estimates were scaled from -1 to 1 independently for each outcome
for visualization. AFLR exercise dose coefficients were transformed to logl0(odds) for

visualization.
Mutational signature calling

Data for calling mutational signatures was processed using SigProfilerMatrixGeneratorR (v1.2.13)
(33). Mutational signatures were then called using SigProfilerExtractor (v1.1.20) using the
following parameters: reference_genome="GRCh37’, maximum_signatures=10,
nmf_replicates=100, min_nmf _iterations=1000, max_nmf _iterations=200000,
nmf_test_conv=1000, nmf_tolerance=1e-8 (34). Only a subset of 9 mutational signatures called in
more than one cancer type or significantly affected by exercise dose were visualized. Statistical

results for all other mutational signature calls are provided in Supplemental Table 5.
Sensitivity analysis

Although our regression models were already adjusted for clinico-epidemiologic features, we
wanted to evaluate the consistency of our overall results between clinico-epidemiologic strata.

Analyses of genomic features were followed up with sensitivity analyses. Each cancer type cohort
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was dichotomized into two groups for each clinico-epidemiologic feature. Age was dichotomized
at age 50, sex was dichotomized into female and male, BMI was dichotomized at BMI 25, tumor
site was dichotomized into primary and metastatic, smoking was dichotomized into no smoking
history and smoking history, alcohol was dichotomized into no alcohol use and alcohol use and
survey was dichotomized into GLTEQ and IPAQ. For evaluating cancer subtypes, the breast
cancer cohort was stratified by hormone receptor (HR) status and human epidermal growth factor
receptor 2 (HER2) receptor status. HR-positive tumors were defined as tumors positive for either
estrogen receptor (ER) or progesterone receptor (PR). The NSCLC cohort was stratified by
adenocarcinoma (AdenoCA) and squamous cell carcinoma (SCC). Adjusted regression was
performed on each strata following the multiple variable analysis framework aforementioned.
Whenever the feature being stratified was also included in the overall multiple variable model, we
removed the covariate from the model to avoid perfect multicollinearity. For example, the overall
model for evaluating the association between FGA and exercise dose in breast cancer was: FGA
~ MET-hours/week + age + survey + alcohol history. When performing sensitivity analysis by
stratifying the breast cancer cohort by age, the age covariate was removed, and the model was:
FGA ~ MET-hours/week + survey + alcohol history. When performing sensitivity analysis by
stratifying the breast cancer cohort by receptor status, the model remained unchanged. Exercise

dose coefficient estimates were scaled from -1 to 1 for visualization.

Survival analysis

Difference in overall survival between exercisers and non-exercisers was evaluated using both
univariate and adjusted Cox proportional hazards regression. Overall survival was defined as time
from date of pathology to date of death or last follow up. Exercisers were defined as >0 MET-

hours/week, and non-exercisers as 0 MET-hours/week. The univariate model was:
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Survival ~ exercise classification

The adjusted regression was fit as:

Survival ~ exercise classification + age + survey + tumor site + cancer type-specific covariates

Hazard ratios were transformed to log2(HR) for visualization.

Statistical analysis and data visualization software

All statistical analyses were performed using R (v4.1.1). Linear regression was performed using
stats (v4.1.1). Firth’s logistic regression was performed using logistf (v1.24.1). Survival analysis
was performed using survival (v3.2.11). Data visualization was performed using BPG (v5.3.4)

(35).

Data availability

The MSK-IMPACT Clinical Sequencing Cohort dataset can be accessed through the cBioPortal
for Cancer Genomics (https://www.cbioportal.org/study/summary?id=msk_impact_2017). All

statistical results are provided in Supplemental Table 5.

Source data are provided with this paper.
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Abstract

Regular exercise confers significant health benefit but full characterization of the system-wide and
tissue-specific responses in humans have not been performed. We leveraged a decentralized,
digital platform approach to perform longitudinal, multiparametric profiling of host physiology
(exercise capacity, body composition, continuous glucose), plasma (metabolome, proteome), gut
microbial composition (metagenomics), and tumor tissue (transcriptome) in 13 patients with solid
tumors, before, during, and after high-controlled exercise therapy in a preoperative “window”
study. Time-series analyses revealed hundreds of host molecular changes in the plasma proteome
and metabolome and gut microbiome involved in a diverse array of biological processes. System-
wide changes were paralleled by modulation of core tumor gene expression pathways notably
tumor cell cycle regulation, stress response, and metabolism. Integrative network analyses
revealed the complexity of the host-tumor interaction under exercise therapy regulation,
elucidating novel mechanistic insights. Variability at baseline and in response to treatment
emphasized highly personalized responses to uniform exercise therapy. Our study provides an
example of the application of a digital approach to generate a longitudinal high-definition dataset
providing a framework of the integrative effects of exercise therapy with considerable translational

and discovery potential.

Introduction

Exercise is a holistic strategy that influences multiple processes at the organismal (host), tissue
and cellular levels (1). It is postulated that exercise-induced cumulative host-level adaptations, the
product of highly integrated cellular and tissue-specific alterations, establish a higher homeostatic
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“set point,” enhancing performance (healthspan), tolerance to system perturbation (resilience), and
longevity (2). Consequently, regular exercise associates with reduced risk of a wide variety of non-

communicable diseases, and improves clinical outcomes after diagnosis of such conditions (3).

Over the past decade, preclinical studies have increased our understanding of the molecular and
cellular mechanisms underpinning the beneficial effects of exercise in health and aging,4-6 and in
the context of disease states such as cancer (7, 8), depression (9), Alzheimer’s (10), and
cardiovascular disease (11). Comparable investigation in humans is limited. Most “mechanistic”
investigation of exercise in humans is confined to host-level analysis via peripheral blood,
typically with measurement of a limited number of factors within an isolated molecular process,
such as metabolism or inflammation (12-14). Analysis is also conducted at low sampling
frequency, typically two timepoints (e.g. pre- and post-intervention). Tissue-level interrogation is
almost exclusively confined to skeletal muscle (2, 14). Whether and how host-level alterations link
with regulation of distal tissues not centrally involved in the acute cardiovascular response to
exercise, like the breast, prostate and lung remains enigmatic (2, 14). Overall, we have limited
understanding of host, tissue, and cellular alterations, and their interaction, that occur in response

to chronic exercise therapy in humans.

We performed time-series, multiparametric profiling of host-tissue (tumor) molecular response to

short-term exercise therapy in patients with cancer.

Results

Study design, patients, and exercise therapy
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Thirteen inactive (<90 minutes of moderate or vigorous exercise per week) patients with treatment-
naive breast, endometrial, or prostate cancer scheduled for surgical resection were enrolled into a
pre-operative “window of opportunity” single-arm (non-randomized), prospective study (Table
S1). The pre-operative setting permits longitudinal interrogation of exercise therapy on tumor

tissue in the absence of any other form of concurrent anticancer therapy (15).

A detailed description of the study methods has been reported previously and provided in the
Supplemental Materials (16). In brief, this was a fully decentralized clinical study: all study
procedures were conducted remotely in patients’ homes. All patients were shipped a study “kit”
containing an etablet, treadmill and several Bluetooth-enabled health devices. Health devices
included a smartwatch (mobility and heart rate measurement every 10 minutes, 24/7), a blood
pressure monitor (daily measurement), a body composition scale (daily measurement), and
continuous glucose monitoring (CGM) (interstitial glucose measurement every 15 minutes, 24/7).
CGM was paired with oral glucose tolerance testing at pre- and post-intervention. Dietary intake
was evaluated for 1-3 days at the beginning and end of the intervention using real-time monitoring
via a dietary mobile application. Finally, a remotely-administered exercise tolerance test was
performed in patients’ homes with real-time monitoring at pre- and post-intervention (Figure 1A-
B). The final dataset contained a total of 69,606 lifestyle state measures and 100,447 physiologic

measures, or an average of 342 measures per day per patient.

Exercise therapy comprised of treadmill walking sessions five times weekly for 3 to 12 consecutive
weeks, depending on the available pre-surgical window (16). All sessions were conducted at ~<70%
of the individual patient’s measured submaximal exercise capacity for <30 minutes per session to

yield the recommended 150 minutes per week dose (17). Mean length of exercise therapy was 5.5
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weeks (range: 3 to 12 weeks) or mean of 23 (range: 14 to 48) unique exercise therapy sessions per

patient. Mean compliance was 87% (293 sessions attended of 336 planned).

All sessions were performed in the patients’ primary residence with remote, real-time, one-on-one
supervision and monitoring by study exercise physiologists using two-way video conferencing.
Serial plasma collection was performed weekly via a mobile phlebotomy solution. Stool was also
sampled weekly and returned via a pre-paid courier service. Finally, we acquired cancer tissues
before (from the diagnostic biopsy) and after (from surgical resection) exercise therapy for tumor

molecular characterization (Figure 1A-B).
Lifestyle and physiological changes

We first evaluated alterations in lifestyle and physiological outcomes during a representative 24-
hour period in patient 010 on day 3 of study participation. Study devices profiled diurnal and
nocturnal patterns as well as accurately captured physiological changes in response to daily
activities or perturbations over a 24-hr period (Figure 1C). For example, in Figure 1C, CGM
showed higher interstitial glucose during a glucose challenge (mean 140 mg/dL, peak 180 mg/dL;
vertical green shaded area, hours =7 to 10) and heart rate during an exercise therapy session (mean
96 bpm, max 114 bpm; vertical red shaded area, hour ~15), compared to rest (mean 95 mg/dL and
mean 67 bpm). Evaluation of daily lifestyle states enabled time-series profiling across the entire
study period for all patients. Representative lifestyle “heatmap” for patient 010 is presented in

Figure 1D.

Patient diurnal and nocturnal patterns were characterized by substantial day-to-day and between-
patient variability. VVariance analysis indicated that between-patient variability accounted for 30%,
46%, 23% of the total variance for daily active, sedentary, and sleep time, respectively. There was
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no significant within-patient temporal variability; no cohort-level trend was detected for any state
as a function of exercise therapy length (p < 0.05; Figure 2A). No significant changes in total
caloric intake or macronutrient intake was observed at the cohort level during the intervention
(Figure 2B). Dynamic, time series analyses revealed patient physiological response was
characterized by day-to-day variability, with cohort-level linear decreases for fat mass (p < 0.001,
daily effect size = —0.015 standard deviations), total mass (p < 0.001, daily effect size -0.012
standard deviations), and linear increases for muscle mass (p = 0.028, daily effect size = 0.007)
and resting heart rate (p = 0.002, daily effect size = 0.009 standard deviations) (Figure 2C).
Exercise capacity increased from pre- to post-intervention (Figure 2D). No cohort-level changes
were observed for OGTT (Figure 2E). Overall, alterations in covariate lifestyle states during
exercise therapy were minimal but physiological improvements were observed in several
outcomes; this study therefore provides an appropriate context to interrogate host and tissue

molecular response to exercise therapy.

Time-series plasma molecular alterations during exercise therapy

To evaluate longitudinal molecular changes in circulating plasma analytes, we performed
proteomic and metabolomic profiling on weekly plasma samples. After filtering and data
processing, the final dataset contained a total of 5,811 circulating analytes (5,667 proteins and 144
metabolites) per timepoint per patient (Supplemental Figure 1). The total number of data points
measured was 383,526; the mean total data points per patient was 31,960.5 (mean of 5.5 timepoints
per patient). We evaluated longitudinal alterations during exercise therapy using linear modeling
to determine whether circulating analyte trajectories differed from baseline. Cohort-level modeling
identified 132 proteins (2.33%; Figure 3A, Supplemental Figure 2A) and 5 metabolites (3.47%;

Figure 3B, Supplemental Figure 2B) with significantly altered trajectories. Overall, cohort-level
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alterations were modest in comparison with weekly variability of analyte abundance and between-
patient heterogeneity (Supplemental Figures 3-4). We therefore used Fisher’s method of
combining p-values to prioritize patient-level proteins (Figure 3D) and metabolites (Figure 3E)
significantly altered in at least one patient (Fisher’s p-value < 0.05). Top-hit proteins were involved
in regulation of numerous biological processes including iron storage and metabolism, DNA
recognition and regulation of apoptosis, neuronal migration, interleukin-6 cytokine signaling, and
muscle contraction. Top-hit metabolites were involved in neurotransmission and thymine
breakdown. Of note, several proteins shared similar trajectory patterns across all patients. For
instance, UNC-45A, CDKS5, OSM, and TPM2 decreased during exercise therapy, whereas HLA,
in general, increased. Similar response trajectories were generally not observed for any top-hit
metabolites. As a consequence of between-patient heterogeneity, the number of significantly

altered analytes varied, ranging from 74 to 308 proteins and 5 to 22 metabolites.

We next evaluated longitudinal trajectory clusters to evaluate cross-talk between the plasma
proteome and metabolome using fuzzy c-means clustering. Proteins and metabolites co-clustered,
distributing across five clusters with distinct trajectory patterns. As expected, cohort-level
clustering revealed modest (static) directional trajectories relative to patient-level clustering
(Figures 3E-F, Supplemental Figure 5). We then performed pathway enrichment analysis on each
cluster. Major pathways perturbed in response to exercise therapy included immune response,
metabolism, and signal transduction (Supplemental Figure 6). Again, considerable between-
patient heterogeneity was apparent. Several patients had multiple clusters enriched with the same
pathway; for instance, patient 012 had three clusters enriched for adaptive immunity; cluster 1 was
static, cluster 2 had a positive trajectory, and cluster 3 had a negative trajectory. Single clusters

were also enriched for multiple pathways, such as the inverted U-shaped cluster 4 in patient 018.
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While multiple clusters, both within and between patients, may have been enriched for a shared
pathway, the clusters did not necessarily have similar trajectory patterns, demonstrated by the
various patterns in clusters enriched for post-translational modification. Taken together, our high-
resolution, longitudinal sampling revealed highly personalized system-wide host molecular

responses to short-term exercise therapy.

Gastrointestinal microbiome changes during exercise therapy

Eight patients consented to conduct optional weekly stool collection, with a median four
timepoints per patient (range: 3 to 9). We performed stool microbiome profiling via 16S-
sequencing, with a median of 29,936 informative reads per sample (range: 10,984 to 361,007;
Supplemental Figure 7A). We observed 684 Amplicon Sequence Variants, a median of 133 per
sample (range: 60 to 313), after agglomerating to the rank of Species (Figure 4A). Considerable
variability between patients at baseline was observed, with 55% of Species being shared in no
more than two patients (Supplemental Figure 7B). Alpha-diversity, or within-sample diversity, as
measured by the Shannon index varied across samples with a mean of 3.62 (standard deviation
0.37), with no significant linear change as a function of exercise therapy at the cohort level
(Supplemental Figure 8A). Beta-diversity, or between-sample diversity, as reflected by double
principal coordinates analysis showed within-patient microbial composition remained stable
across different timepoints during the exercise therapy intervention (Supplemental Figure 8B),
and differences between patients were stable due to taxa from the Phyla Firmicutes and
Bacteroidetes (Supplemental Figure 8C). As a consequence of between-patient variability, no taxa
were significantly altered by exercise therapy at the cohort level. Conversely, patient-specific
linear abundance changes in microbial taxa were observed, with a median of 1 taxa (range: 0 to

11) altered per patient (Figure 4B-C). Multiple patients shared significant hits from the Families
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Lachnospiraceae and Ruminococcaceae, including increases in known commensal gut microbes
such as Blautia faecis (18) (006), Monoglobus pectinilyticus (19) (008), and Faecalibacterium
prausnitzii (20) (017), as well as Roseburia intestinalis (21) (Fisher’s FDR < 0.05) (Figure 4B-C).
Overall, short-term exercise therapy induces highly individualized alterations in the gut microbiota

among patients with cancer.

Tumor and microenvironmental evolution during exercise therapy

To identify changes indicative of a “pharmacodynamic response” to exercise therapy, we
performed transcriptomics on pre- and post-intervention tumor tissue, identifying 743
differentially abundant genes (296 upregulated, 447 downregulated) (FDR < 0.05) (Figure 5A).
Gene ontology revealed downregulated genes were not enriched for any pathways; upregulated
genes were preferentially involved in GTPase activity, transcription factor AP-1 complex and
regulation of cell growth (FDR < 0.05). Gene set enrichment analysis revealed upregulated genes
were also involved in cell growth and energy metabolism: oxidative phosphorylation, adipogenesis
and myogenesis, as well as epithelial mesenchymal transition (EMT) (FDR < 0.25, Figure 5B).
Interestingly, tumors from both patients with endometrial cancer exhibited lower hypoxia in
response to exercise therapy, but this was not observed in prostate cancer (Figure 5C). Taken
together, our data highlights the highly personalized, multi-faceted response of cancer to exercise

therapy, which could be influenced by tumor location and cancer cell histology.

Integrative (systems) network analysis

We applied information-theory-based mutual information network analysis, a systems-based
approach, to our high-sampling frequency, integrated dataset to characterize exercise therapy-
dependent regulation of the host-tumor interaction. Highly connected, conserved co-regulation
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patterns were identified across patients (Figure 6A). As expected, the plasma proteome and
metabolome displayed highly correlated patterns (FDR < 0.01). Pyruvic acid, a metabolite
established to increase after exercise therapy, (22) was among the most interconnected plasma
metabolites in our cohort-level network. The detection of cytosine as another highly connected
metabolite suggests epigenetics, specifically DNA methylation, may be an important coordinator
of exercise therapy response (23). The most interconnected plasma proteins were myosin-binding
protein C2, a protein highly expressed in cardiac muscle, (24) and proenkephalin, peptides active
in the endocrine and nervous systems (25). Gut microbial Amplicon Sequence Variants abundance
was highly correlated with the host plasma metabolome and proteome (FDR < 0.01). Intriguingly,
patterns involving Akkermansia muciniphila, a common gut microbial species demonstrated to
potentiate the antitumor efficacy of chemotherapy and immunotherapy, (26, 27) was prominent,
as was Phascolarctobacterium faecium, another species implicated in immunotherapy response
(28). The tumor molecular feature most highly inter-connected was epithelial-to-mesenchymal
transition (EMT) (FDR < 0.01). Patient-specific network analysis revealed highly personalized
interplay between host and tumor features (Figure 6B). A pronounced interconnected network was
apparent for 008. Changes in plasma levels of SERPINAL12, acetylcholine, and tumor EMT were
associated with exercise therapy dose (compliance) and alterations in sedentary time, resting heart
rate, and, most predominantly, fat mass. This highlights a scenario in which fat mass alterations
appear a patient-specific “central hub” of host-tumor regulation during exercise therapy. Our
findings reveal the complex, reveal highly-integrated and personalized cross-talk between
physiology, lifestyle states, host molecular alterations and tumor cell phenotypes in response to

short-term exercise therapy.

43



Discussion

Cancer evolution is regulated by interplay between tumor cell-intrinsic, cell-extrinsic (TME), and
systemic (host) features. These components, and their interactions, are in turn regulated by host-
level perturbations such as aging, age-related comorbidities, and lifestyle (29-31). In essence,
cancer is an ecosystem. Hence, understanding how a whole-body (holistic) strategy such as
exercise therapy regulates the cancer ecosystem requires a broad integrative approach to samples
longitudinally collected before, during, and after treatment intervention at the host, TME, and

tumor cell intrinsic levels.

We leveraged digitized clinical trial methodology to perform dense, personalized, longitudinal
phenotyping of the integrative response to high-fidelity exercise therapy in patients with cancer.
High-frequency sampling of the plasma proteome and metabolome together with parallel
sequencing of gut microbial composition revealed novel insights into the magnitude and nature of
host (system)-wide molecular alterations occurring during exercise therapy. We also showed
system-wide changes were paralleled by regulation of key tumor cell-intrinsic biological processes
including tumor cell cycle regulation, stress response, and metabolism. Integrative network
analyses revealed the complexity of the host-tumor interaction under chronic exercise therapy,
elucidating novel mechanistic insights. Finally, between-patient variability at baseline and in
response to treatment underscored that integrative response to a uniform exercise therapy regimen
is highly personalized. Our study provides an example of leveraging digital technology solutions
to conduct a fully decentralized trial integrating multiparametric passive data collection and remote
biospecimen collection at high resolution to generate a comprehensive, longitudinal, physiological
and molecular map of response to exercise therapy in a clinical population, providing a framework

for future studies. It is noteworthy, however, that we investigated the effects of short-term exercise
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therapy in a small, and likely biased, cohort of patients mostly diagnosed with localized prostate
cancer. Therefore, our findings should be considered exploratory/hypothesis-generating and must
be complemented by future work investigating exercise therapy over the longer-term in larger

patient cohorts.

Better understanding of the molecular mechanisms how exercise therapy influences disease
pathogenesis will ultimately require direct interrogation of effects at the tissue/organ site of disease
manifestation. This is a significant challenge. Certain oncology settings, however, enable
longitudinal sampling of tumor tissue and possibly non-malignant tissue via biopsy procedures
performed as part of standard of care. The neoadjuvant/pre-operative context is one such setting,
permitting investigation of exercise therapy as “single-agent” (i.e., without concurrent anticancer
therapy) but also presents its own challenges due to the short treatment window and high patient
burden (32). Indeed, to our knowledge, only one other trial has leveraged this setting to evaluate
exercise therapy regulation of tumor biology. Ligibel et al (33). reported that exercise therapy
(target dose of 220 minutes per week of resistance and endurance exercise) did not impact tumor
cell proliferation or apoptosis compared with control in primary breast cancer; whole-tumor
transcriptomics revealed exercise therapy enriched several gene expression pathways with many
being immune related (e.g., NF-kappa B signaling, natural killer cell mediated cytotoxicity, and T
cell receptor signaling). Secondary analysis using established deconvolution approaches
confirmed exercise increased intratumoral content of macrophages and B cells (34). Interestingly,
the proinflammatory-immune cell infiltration effect of exercise was recapitulated in animal models
of breast cancer; exercise-inhibition of breast cancer growth was CD8+ T-cell dependent and
sensitized immunotherapy-refractory breast cancers to treatment (8). These data are distinct to our

own findings showing exercise modulated pathways involved in diverse tumor biological
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processes, but limited effects on inflammation and immunity. Our findings, together with those of
Ligibel et al. (33), provide initial evidence that short-term exercise therapy confers marked
alterations in the biology of several common solid tumors, but effects may be influenced by tumor

location and histological cancer type.

Optimal harnessing of “ecological” strategies, such as exercise therapy, as cancer preventive or
treatment approaches will require, by definition, understanding of how such strategies modulate
the interconnection of cancer ecosystem components. Application systems network analytics to
our integrative sampling scheme aggregating longitudinal multi-parametric data at the host, tissue,
and molecular level was designed specifically to facilitate preliminary investigation of this critical
knowledge gap (2). Such approaches may identify the trajectory and hierarchy higher-level
“nodes” in the network (31) providing mechanistic insights as well as potentially identifying key
targets that can be therapeutically modulated by exercise, other therapies, or exercise-drug
combination approaches. Discovery of a connection between alterations in select plasma proteins
and metabolites with gut microbial species shown to mediate the antitumor efficacy of
chemotherapy and immunotherapy, (26, 27) and tumor features was particularly notable. These
initial findings support further testing of the hypothesis that tumor biological activity of exercise
therapy is dependent on alterations in host factors. A related discovery of interest was exercise-
induced alterations in host factors primarily converged on upregulation of tumor EMT. EMT is a
complex development program, and partial activation of EMT via EMT-transcription factors
(EMT-TFs) enhances cancer cell motility, promoting invasion and dissemination (35, 36).
Intriguingly, EMT-TFs maintain stemness properties and regulate related biological processes
enabling cancer cells to adapt to the selective pressures/stress conditions (e.g., physical constraints,

hypoxia, inflammation) encountered during development and progression (37). Elegant preclinical
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studies demonstrate exercise promotes stemness in multiple non-malignant cell types (e.g., skeletal
muscle, brain, bone marrow hematopoietic stem and progenitor cells) (5) as well as modulates
intratumoral vascularization and hypoxia in various solid tumors (8, 38, 39). We speculate that
exercise therapy as a whole-body perturbation simultaneously alters the strength and nature of
selective pressures on distal tissue niches harboring malignant and non-malignant cells, triggering
highly conserved stress-response programs in an attempt to maintain/restore homeostasis.
Aberrant reactivation of EMT programming generally promotes promalignant phenotypes, thus
understanding how exercise therapy-induced regulation of EMT and related phenotypes influences
cancer evolution will be instructive. Given the heterogeneity in the number, type, and nature of
host-tumor connections in response to highly uniform exercise therapy observed in the present
study, understanding the interaction between patient-specific baseline characteristics (e.g.,
demographics, host physiological and molecular status), exercise dose, and tumor response should

be an important objective of future work.

In conclusion, our study provides an in-depth, personalized mapping of the integrative response to
exercise therapy in patients with cancer. Such studies might facilitate personalized exercise
prescriptions, development of exercise-mimetic pharmacologic strategies, and rational exercise —
pharmacologic combination approaches to optimally harness the therapeutic potential of exercise

therapy in health and disease.
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Figure 2
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Figure 3
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Figure 4
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Figure 5
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Figure 6
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Figure Captions

Figure 1. Study overview.

(A) Schematic of study. (B) Types of data and collection timeline. (C) Continuous lifestyle and
physiologic tracking on day 3 in patient 010. Shaded green bar indicates glucose challenge and
shaded red bar indicates exercise therapy session. (D) Summary of states in patient 10 over the

course of the study. Relative hour 0 indicates when the patient awakes for the day.

Abbreviations: OGTT — oral glucose tolerance test; Comp — composition; Ex — exercise; bpm —

beats per minute

Figure 2. Longitudinal alterations in host lifestyle and physiology with exercise therapy.

(A) Lifestyle, (B) dietary, and (C) physiologic changes. Dot size indicates the magnitude of the
linear model coefficient, measuring the daily effect size in standard deviations from the mean. Dot
color indicates the direction of the model coefficient. Background shading indicates statistical
significance of the coefficient. (D) Changes in fitness, measured by time to submaximal exercise
capacity, from baseline to follow up. (E) Changes in glucose tolerance, measured by iAUC, from

baseline to follow up.

Abbreviations: Carb — carbohydrate; kcal — Calories; BP —blood pressure; HR — heart rate; submax

— submaximal exercise capacity; iIAUC — incremental area under the curve

Figure 3. Longitudinal alterations in host circulating analytes with exercise therapy.

(A) Proteins and (B) metabolites (Fisher’s p < 0.05, top 20 shown). Dot size indicates magnitude
of the linear model coefficient, measuring the daily effect size in standard deviations relative to

baseline. Dot color indicates direction of the model coefficient. Background shading indicates
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statistical significance of the coefficient. (C) Number of proteins and (D) metabolites significantly
altered from linear modeling (p < 0.05). Total number of analytes changed indicated by the
numbers below. Orange indicates analytes with increasing trajectories. Blue indicates analytes
with decreasing trajectories. (E) Cohort-level analyte distribution among five fuzzy c-means

clusters. (F) Median analyte trajectory relative to baseline over time for each cluster.

Figure 4. Longitudinal alterations in host gut microbiome with exercise therapy.

(A) Amplicon sequence variant abundance heatmap. (B). Significantly altered Species. Dot color
indicates which patient the Species was altered in. (C). Species abundance trajectories, showing

standard deviations relative to baseline over time.

Figure 5. Alterations in tumor transcriptome with exercise therapy.

(A) Differentially abundant mMRNA (FDR < 0.05). (B) Pathways enriched by differentially
abundant mRNA, separated by cancer type. Colored shading indicates statistical significance of

enrichment. (C) Changes in hypoxia, measured by Buffa score, from pre- to post-intervention.

Figure 6. Mutual information networks of all alterations with exercise therapy.

(A) Cohort-level and (B) patient-specific networks. Node color indicates the data type. Edge width
indicates number of significant connections. Edge shading indicates normalized mutual

information, measured as the proportion of shared information relative to total information.

Supplementary Figure Captions

Supplemental Figure 1. Host circulating analyte abundance heatmap. Protein and metabolite

abundance, measured in standard deviations relative to baseline.
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Supplemental Figure 2. Circulating analytes were longitudinally altered with exercise therapy. (A)
132 proteins and (B) 5 metabolites were significantly altered from the cohort-level linear modeling

(p < 0.05).

Upward trajectories in orange and downward trajectories in blue.

Abbreviations: SD — standard deviation

Supplemental Figure 3. Exercise therapy reduced variability in both protein and metabolite levels.
There was less variability in metabolite levels than protein levels. (A) Distribution of coefficient
of variation of circulating analytes at baseline and in response to exercise therapy across patients.
(B) Coefficient of variation of each protein and (C) metabolite at baseline and in response to

exercise therapy across patients.

Abbreviations: CV — coefficient of variation

Supplemental Figure 4. Metabolites were more susceptible to inter-patient variability than

proteins.

(A) Distribution of intra-class correlation of proteins and (B) metabolites across patients from
cohort-level linear modeling. (C) Spearman correlation matrix of analyte levels relative to baseline
between samples. Protein correlation in lower left triangle. Metabolite correlation in upper right

triangle.

Abbreviations: ICC — intra-class correlation

Supplemental Figure 5. Analyte distribution and median trajectory pattern per fuzzy c-means

cluster.

Supplemental Figure 6. Pathway enrichment of analyte clusters.
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Supplemental Figure 7. Gut microbiome sequencing.

(A) 16S-sequencing read distribution. (B) Species distribution.

Supplemental Figure 8. Gut microbiome diversity.

(A) Alpha-diversity, measured by Shannon index. (B-C) Beta-diversity, measured by double

principal coordinate analysis
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Supplementary Methods

Exercise therapy clinical trial

Details for the clinical trial (NCT03813615) are discussed in the manuscript "A Digital,
Decentralized Trial of Exercise Therapy in Patients with Cancer: Rationale, Methods and
Feasibility Evaluation™, which is under review at npj Digital Medicine. Briefly, we leverage digital
methods enabling: (1) all study procedures to be digitized and conducted remotely in patients’
homes, and (2) longitudinal mapping of near-continuous physiological response (e.g., heart rate,
continuous glucose monitoring). Exercise therapy comprised of treadmill walking three sessions

weekly, ~30 minutes/session at 70% of measured exercise capacity for 3-11 weeks.

Patient state imputation

Sleep data was imputed using a linear mixed model predicting the sleep time and the sleep length.
A variety of covariates were included such as previous night’s sleep, time since last event and the
sleep weekday with a random effect per patient. We used a linear mixed effects model adjusted
for age across all patients for hidden state data (percentage of time in active, rest, sleep states) and
physiological data (resting heart rate, blood pressure, weight and body fat). Patient effects were
compared with individual linear models for each of the Z-score scaled physiological end points.
The coefficients for study day were compared across patients and results were DIANA clustered

by patient and end point by the p-values and effect sizes.

Plasma proteomics and metabolomics

Weekly plasma proteomic and metabolomic profiling were performed to measure and identify

circulating analytes that change over the course of the exercise regimen. Proteins were quantified
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by aptamer-based SomaScan. Metabolites were quantified using mass spectrometry approaches.
Circulating analyte abundances were standardized relative to baseline. Longitudinal trajectories
were measured using linear modeling. Trajectories were then clustered using fuzzy c-means
clustering with ¢ = 5 clusters, such that each patient had 5 clusters with distinct trajectory patterns.

We use gProfileR to perform pathway analysis on the analytes within each cluster.

Gut microbiome metagenomics

Weekly stool samples underwent 16S sequencing. Alpha-diversity was calculated using Shannon
index, and beta-diversity was calculated using double principal coordinate analysis. Differentially

abundant Species were identified using Phyloseq.

Tumor transcriptomics

RNA sequencing was performed on pre- and post-intervention tumor specimens. Differentially
abundant mRNAs were identified using DESeq. Pathway analysis was performed using gProfileR.

We performed immune deconvolution analysis using Cibersortx.

Mutual information networks

Mutual information network analysis was performed to integrate diverse data types. Networks

were visualized using iGraph.
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CHAPTER 3:

Differential Molecular Responses to Exercise Among Breast Cancer Subtypes in Mice
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Abstract

Exercise is broadly considered beneficial for many diseases, including cancer. However, cancer is
a heterogeneous disease with different tumor types and subtypes. To study the differential effect
of exercise on breast cancer subtypes, we examined tumor xenografts from seven human breast
cancer cell lines and syngeneic grafts from one mouse breast cancer cell line in mice, with the cell
lines representing a range of breast cancer subtypes. Tumors derived from different cell lines
displayed different growth phenotypes, with some tumors growing faster and others growing
slower with exercise treatment. The tumors also had distinct genomic, transcriptomic, and
proteomic changes in response to exercise. These molecular changes pointed to perturbations in
common biological pathways, including DNA repair. Together, we can link the molecular
alterations to the growth phenotypes across the different breast cancer subtypes to gain insight into
the mechanisms by which exercise exerts its effect on cancer, particularly in different subtype

contexts.

Introduction

While exercise has been linked to reduced risk and improved clinical outcomes of cancer, the effect
of these health benefits varies by cancer type (1, 2). To broadly claim that exercise is beneficial
for all cancers is incorrect and neglects the heterogeneity of the disease. Furthermore, specific
cancer types, like breast cancer, can be categorized into subtypes that display dramatically different
molecular and clinical profiles (3). Studies of exercise oncology comparing multiple breast cancer
subtypes have yet to be conducted, but would provide valuable insight into how definitive
molecular profiles may mediate the effect of exercise on tumors. In this study, we perform
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molecular profiling on tumors derived from eight different breast cancer cell lines representing
various breast cancer subtypes to investigate the relationships between exercise-associated

perturbations and cancer subtypes.

Results

Seven human breast cancer cell lines (HCC1937, MCF7, MDAMB468, HCC38, JIMT1, BT474,
KPL1) and one mouse breast cancer cell line (4T1) were subcutaneously injected into BALB/c
mice (4, 5). Given that tumors, even within a specific cancer type, appear to respond differently to
exercise, the cell lines were chosen to reflect a full range of breast cancer subtypes (Table 1). The
mice were separated into high dose exercise (120 minutes/day), low dose exercise (30
minutes/day) and sham control groups. These doses were chosen to mimic high and low dose
exercise levels in humans. At the end of 16 weeks of treatment, tumors were measured for size and
subjected to genomic, transcriptomic and proteomic profiling to quantify molecular differences
between tumors in exercise and control mice (Figure 1A-B). Tumors originating from different
cell lines of origin displayed differential growth patterns in response to exercise. Tumors from
HCC1937 had an accelerated growth phenotype, while tumors from MCF7, MDAMBA468, and
HCC38 showed no growth change. Tumors from JIMT1, BT474, KPL1, and 4T1 had a suppressed

growth phenotype (Figure 1C).

Tumors from four of the human cell lines of origin were selected for transcriptomic profiling,
representing the spectrum of growth responses: HCC1937 to represent tumors that grew with
exercise, MCF7 to represent no difference between treatment groups and JIMT1 and BT474 to
represent tumors that shrunk with exercise. Tumors from the 4T1 mouse cell line of origin also

75



underwent transcriptomic profiling. We performed tumor transcriptomic analysis to measure and
identify mMRNAs that responded to exercise. Among the tumors derived from the human cell lines,
we identified 12 differently abundant mRNAs (Fisher’s FDR < 0.1; Figure 2A). The mRNA
abundances of these hits were variably correlated to tumor volume across the cell lines. For
example, ORAI2, a gene downregulated in tumors from both BT474 and JIMTL1, was also
correlated with tumor volume in those tumors (Figure 2B). We next used the mRNA abundance
to calculate Hallmark signature (6, 7) scores for each sample, then correlated those scores with the
MRNA abundance (Figure 2C). The top two globally correlated signatures were DNA repair and
interferon alpha response, showing inverse correlations with tumor volume (Figures 2D-E). In
both the correlation of mMRNA abundance and Hallmark signature score with tumor volume, few
hits showed consistent directionality of correlation. The heterogeneity is consistent with the varied
tumor growth patterns in response to exercise and provides further evidence that breast cancer
subtypes respond differently to exercise. In the tumors derived from the 4T1, differentially
abundant mRNAs (FDR < 0.1) were enriched for DNA damage response, signal transduction by
p53 class mediator, amino acid biosynthesis and metabolism pathways (Figures 3A-B). Once
again, we observed perturbation of DNA damage related pathways among tumors that were

suppressed by exercise.

We performed proteomics analysis on tumors derived from all seven human and one mouse breast

cancer cell lines. Differentially abundant proteins were identified in every tumor type (Figure 4).

We performed whole-exome sequencing on the tumors derived from 4T1 to elucidate whether the
phenotypic and/or molecular differences observed in response to exercise are attributable to

changes in the tumor genome.
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Discussion

Exercise is linked with lower risk and better outcomes in breast cancer, but not in some other
cancers, showing a cancer type-specific effect (1, 2, 8). With some of our tumors demonstrating
an accelerated growth phenotype with exercise, we can determine that exercise may also exert a
subtype-specific effect and is not broadly beneficial in breast cancer. There were no immediately
obvious subtype similarities between the cell lines that shared growth phenotypes. However, the
cell types that had a suppressed growth phenotype tended to have larger tumors overall, regardless
of exercise treatment. There were very few differentially abundant mRNAs shared between each
tumor; in fact, the only shared hit was the downregulation of ORAI2 in BT474 and JIMT1, both
of which are cell lines with the suppressed growth phenotype. Interestingly, both of these cell lines
also had a positive correlation between tumor volume and the Hallmark DNA repair pathway,
suggesting that larger tumors may have activated additional DNA repair mechanisms. A similar
result can be found in the tumors derived from 4T1, which showed downregulation of genes
involved in DNA damage response. As above, 4T1 was another cell line that had a suppressed
growth phenotype with exercise. The commonalities between BT474, JIMT1, and 4T1 point to
possible shared mechanisms affected by exercise that suppress tumor growth despite them not
coming from the same canonical subtype classification. Overall, our study provides evidence for
investing additional attention toward the study of cancer subtypes in future exercise oncology

studies.
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Figure 2
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Figure 3
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Figure 4
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Table 1

Cell Line | Origin Metastatic ER PR HER2 Subtype p53 BRCALl
Potential Status Status Status Status | Status
HCC1937 | Primary Low Negative | Negative | Negative | Basal-like | Mutant | Mutant
MCF7 Primary Low Positive | Positive | Negative | Luminal Wild- Wild-
A type type
MDA- Primary Moderate Negative | Negative | Negative | Basal-like | Mutant | Wild-
MB-468 type
HCC38 Primary Moderate Negative | Negative | Negative | Basal-like | Mutant | Wild-
type
JIMT1 Metastatic | High Negative | Negative | Positive HER2- Mutant | Wild-
enriched type
BT-474 Primary Low Positive | Positive | Positive Luminal Wild- Wild-
B type type
KPL-1 Primary Low Positive | Positive | Positive Luminal Wild- Wild-
B type type
4T1 Primary High Negative | Negative | Negative | Basal-like | Mutant | Wild-
type
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Figure Captions
Figure 1. Study overview.

(A) Study design for human and (B) mouse breast cancer cell lines. (C) Volume of tumors derived

from each cell line.
Figure 2. Transcriptomic analysis of tumors derived from human breast cancer cell lines

(A) Differentially abundant mRNAs from tumors derived from four cell lines. (B) Spearman
correlation between sample-matched differential mRNA abundance (Fisher’s FDR < 0.1) and
tumor volume. (C) Spearman correlation between sample-matched Hallmark signature scores and
tumor volume. (D) DNA repair and (E) interferon alpha response signature scores vs. tumor

volume.
Figure 3. Transcriptomic analysis of tumors derived from the 4T1 mouse cell line

(A) Differentially abundant mRNAs (FDR < 0.1). (B) Pathways enriched for differentially

abundant genes.

Figure 4. Differentially abundant proteins

Table Legends

Table 1. Human breast cancer cell line characteristics
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Supplementary Methods

Mouse experiment

Description of procedures

Female athymic Nude-nu mice (~6-8 weeks of age). Rooms were maintained at 21°C with 35-40%
relative humidity and light (light-dark cycle 12:12h) controlled room. All animals were fed a
modified ‘western diet' (Research Diets, catalog number #D12079B) composed of 17% protein,
43% carbohydrates and 41% dairy-based fat. Experimental animals were purchased at ~6 weeks
of age and allowed to acclimatize for 10 days prior to the commencement of study procedures. At
7 weeks, cells were subcutaneously implanted into the right flank of recipient animals. One week
following implantation, animals were then stratified by tumor size (as appropriate) and randomly
allocated to one of two experimental groups: (1) exercise training or (2) sham control. Treatment
continued for 16 weeks, or until the mean tumor volume in the sham group of a particular cell line

reached 800 millimeters cubed, whichever came first.

Exercise training

Animals were trained on a treadmill with 6 chambers, allowing 6 animals to be trained each
session. The exercise groups were progressively trained to run to ~22 meters/minute at 0% grade
5 days/week for a maximum of 16 weeks. The animals were continuously monitored for the entire
duration of exercise. This training intensity corresponds to approximately 70-75% of maximal
exercise tolerance. Exercise training began at 10 meters/minute, 0% grade, for 10 minutes for 5
days in the week following xenograft implantation (to familiarize the animals with the treadmill).

Following randomization, the training dose was systematically increased until the desired training
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protocol is achieved. A puff of air was used to encourage animals to exercise. Electric shock was

not used as negative reinforcement.

To ensure that the physical and social environments are similar, a second treadmill was used as a
sham-exercise for the non-exercising groups, as previously described. Sham animals were placed
on a stationary treadmill for the same amount of time for 5 days/week at 0 m/min at 0% grade for
the length of the experiment. As such, each animal received the same handling and treadmill

containment as the experimental groups with the exception of exercise training.

Minimization of pain and distress

Euthanasia was performed in compliance with American Veterinary Medical Association

(AVMA) guidelines.

Transcriptomic data processing and analysis

FASTQ files were processed using UCLA-CDS pipelines to align and quantify RNA sequencing
data. Pipeline-align-RNA v6.2.2 performs quality control with FastQC, trims reads with FASTP
v0.21.0, aligns with STAR v2.7.6, marks duplicates with Picard tools MarkDuplicates Spark
v4.1.4.1, check duplication rate with dupRadar v1.24.0 and outputs sorted BAM files. Reads were
aligned to human genome GRCh38.p13. Pipeline-quantitate-RNA v2.0.0 performs isoform and
gene quantitation with RSEM v1.3.3. Pipeline-quantitate-Splicelsoform v2.0.5 quantitates the
relative usage of splice isoforms with rMATS v4.1.0. Pipeline-call-RNAEditingSite v5.6.0 calls
RNA editing events with REDItools2 v1.0.0. Pipeline-call-FusionTranscript calls gene fusion

events with FusionCatcher v1.33.
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Differential MRNA abundance analysis was performed using DESeq. We used Fisher’s method to
combine p-values and adjusted for multiple hypothesis testing using the false discovery rate (FDR)
method. Sample-matched mRNA abundance was correlated with tumor volume using Spearman’s
correlation. For each gene in the 50 Hallmarks gene sets from the Molecular Signatures Database
(MSigDB), we dichotomized the samples by the median mRNA abundance value. Samples with
MRNA abundance greater than the median were given a +1 score, while samples with mRNA
abundance less than the median were given a -1 score. A Hallmark score was calculated for each
sample by taking the sum of the scores for each gene in the gene set. Sample-match Hallmark
scores were correlated with tumor volume using Spearman’s correlation. Differentially abundant
MRNASs were separated into up- and down-regulated genes, and pathway analysis was performed

using gProfileR.

Proteomic data processing and analysis

Mass spectrometry RAW files were processed using UCLA-CDS pipelines. Pipeline-search-
ProteomicMSMS v1.0.0 performs library searching on tandem mass spectrometry data for
proteomic studies. We used Comet to map to a combined human-mouse proteome library from
UniProt. Pipeline-validate-ProteomicPSM takes the output of library search engines, performs
validation by calculating statistical confidence of FDR and PEP (posterior error probability), and
filters out PSMs with low confidence. Pipeline-quantitate-ProteomicTMT takes the mass
spectrometry data from isobaric labeled studies (TMT or iTraq), maps it with the library search
results, and quantitate peptide abundance. Pipeline-quantitate-ProteomicProtein multiple

consensusXML files with quantitated PSM and performs protein inference and identification.
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Peptides and proteins abundance levels were normalized across plexes using MAD normalization.
Only proteins mapping exclusively to human proteins were analyzed in tumors derived from
human cell lines, and only proteins mapping exclusive to mouse proteins were analyzed in tumors
derived from the mouse cell line. Differential protein abundance analysis was performed using

unpaired, two-sided t-test.

Statistical analyses and data visualization were performed in the R statistical environment (v4.0.2)

using the BPG (v6.0.1) package.
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CHAPTER 4:

Discussion
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Discussion

Exercise is the strongest positive modifiable risk factor for cancer and therefore belongs at the
forefront of cancer prevention and treatment (1). Exercise can be safe, tolerable, and accessible,
giving it immense public health potential (2). Oncologists are already routinely recommending
exercise as part of their clinical practice based on the evidence from many epidemiological and
observational studies (3, 4). However, how and why exercise exerts its anti-tumor effects remain
understudied. My dissertation tackles this question and revealed that the anti-tumor effects of
exercise are host-, dose-, and cancer-specific. In Chapter 1, the study of a large cross-sectional
cohort revealed that exercise dose plays a variable role exerting evolutionary pressures on the
tumor, thus shaping the tumor genome across different cancer types. Ultimately, exercise led to
improved overall survival for all cancers combined. This study design allowed us to study a large
enough sample size to power the first ever exploratory analysis linking human cancer genomes
with exercise. However, given the cross-sectional design of this study, we rely on the assumption
that post-diagnosis exercise is representative of long-term exercise habits. In Chapter 2, the study
of a prospective exercise clinical trial addresses this shortcoming by controlling the exercise
regimen. In addition to pre- and post-intervention tumor transcriptomic profiling, we also collected
near-continuous lifestyle, physiologic, plasma molecular, and stool microbiome data throughout
the duration of the trial, providing a rich dataset to interrogate the longitudinal effects of exercise
on not just the tumor, but the host as well. We observed many molecular changes within each
patient, but underlying patient variability made it difficult to find many cohort-level conclusions
despite a uniform exercise regimen. In Chapter 3, the study of breast cancer xenografts and
syngeneic grafts provided a highly controlled experimental design in which we could control host

variability, which was a point of emphasis in Xhapter 2. Furthermore, we also controlled for
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exercise dose and important environmental factors like diet. Only the tumors (grafted cell lines)
were variable, but even then, had well-characterized molecular features and were carefully selected
to represent the range of breast cancer subtypes. In this highly controlled context, we uncovered
common exercise-associated molecular signals shared across multiple subtypes. Overall, the
research presented in this dissertation has elucidated novel insights into the molecular
underpinnings of exercise oncology. While no single study perfectly captures the entirety of the
story, each provides advantages where others fall short, coming together to paint a more

comprehensive picture.

There is still much work to be done, which include the study of other large cohorts, larger and
more streamlined prospective clinical trials, and further comprehensive experiments, to continue
determining the mechanisms by which exercise exerts its effect on cancer. Other large cohorts that
can be studied include the Prostate, Lung, Colorectal and Ovarian (PLCO) screening trial and the
UK Biobank (5, 6). The PLCO cohort consists of over 150,000 healthy individuals with germline
genomic microarray data, some of whom developed cancer during or after the trial. The UK
Biobank (UKBB) cohort consists of 500,000 healthy individuals and cancer patients with germline
whole-genome sequencing. Much like the MSK-IMPACT dataset, both of these datasets
implement cross-sectional exercise surveys; the PLCO evaluated exercise in 63,000 patients and
the UKBB evaluated exercise in all participants at enrollment. The UKBB also features seven days
of wearable device exercise data for 100,000 participants as well. In the case of PLCO, all of these
exercise assessments were performed pre-diagnosis, and in the case of UKBB, healthy individuals
were assessed pre-diagnosis and cancer patients were assessed post-diagnosis. Regardless of
timing of exercise evaluation, exercise surveys are subject to recall bias. Post-diagnosis survey

analyses are especially subject to reverse causation when studying the effect of exercise on cancer.
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Resources permitting, the ideal cohort would have at least two exercise assessments: pre- and post-
diagnosis, and would be even better with wearable activity monitors instead of exercise surveys.
For future prospective exercise clinical trials, improvements can be made by increasing the sample
size to improve power, as well as decreasing patient variability to better identify cohort-level
effects. One approach to decreasing patient variability is to limit the inclusion criteria to a single
cancer type, such as prostate cancer, and doing so would also remove other covariates like sex. As
such, we’ve conducted a Phase 1 trial of 50 prostate cancer patients and are in the process of
analyzing the data. Our mouse studies can be improved by including additional breast cancer cell
lines and doing full genomic, transcriptomic, and proteomic analyses on every cell line to better
identify shared molecular patterns between cell lines. Furthermore, resources permitting, whole-
genome sequencing is preferred over whole-exome sequencing to allow better detection of
additional genomic events such as structural variation. While we were able to use TMT-
Integrator’s virtual reference method to compare protein levels across different plexes in the setting
of a missing control reference channel, future experiments should include a control reference

channel to avoid this work-around.
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