
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
A Learning-Based Approach to Safety for Uncertain Robotic Systems

Permalink
https://escholarship.org/uc/item/7319h9gd

Author
Akametalu, Anayo Kenechukwu

Publication Date
2018

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7319h9gd
https://escholarship.org
http://www.cdlib.org/

A Learning-Based Approach to Safety for Uncertain Robotic Systems

by

Anayo K. Akametalu

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering - Electrical Engineering and Computer Sciences

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Claire J. Tomlin, Chair
Professor Pieter Abbeel

Professor Lawrence C. Evans

Spring 2018

A Learning-Based Approach to Safety for Uncertain Robotic Systems

Copyright c© 2018

by

Anayo K. Akametalu

1

Abstract

A Learning-Based Approach to Safety for Uncertain Robotic Systems

by

Anayo K. Akametalu
Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley
Professor Claire J. Tomlin, Chair

Robotic systems are becoming more pervasive, and have the potential to significantly
improve human lives. However, for these benefits to be realized it is critical that
the safe operation of these systems be guaranteed. Reachability analysis has proven
to be an effective tool for providing safety certificates for dynamical systems, given
a model of the system. A major challenge in assuring safety, is that systems often
have uncertainty due to the hard-to-model complex physical interactions, or lack of
knowledge of the behavior of external agents, on which safety may depend.

This thesis uses Hamilton-Jacobi (HJ) reachability analysis to robustly guarantee
safety for systems with uncertainty. In the presence of uncertainty there must be
a balance between conservativeness as it pertains to safety and performance as it
pertains to other system objectives, and we also account for this through reachability
analysis. In addition, this thesis also explores methods for modifying the analysis as
more data is collected from the robotics system, which ultimately allows for improved
performance. This is referred to here as learning-based reachability analysis. The
thesis concludes with a new HJ reachability formulation that enhances the learning-
based analysis. The myriad of ideas presented throughout the thesis are demonstrated
on various examples.

Contents

Contents i

1 Introduction 1
1.1 Reachability for Safety under Uncertainty 2
1.2 Learning about Safety . 3
1.3 Outline . 3

2 Background 5
2.1 System Model . 6
2.2 Safety via Hamilton-Jacobi Reachability Analysis 7

3 Safe Learning 14
3.1 Related Work . 15
3.2 System Model Revisited . 16
3.3 Reachability-based Safe Learning . 16
3.4 Integrating Safety Cost . 20
3.5 Model Validation . 24

4 Learning-Based Reachability 29
4.1 Gaussian Processes for Modeling Additive Disturbances 30
4.2 Local-updates via Temporal Differencing 44

5 Reachability Analysis with Discounting 58
5.1 On Hamilton-Hacobi Reachability and Contraction Mappings 58
5.2 On Sum of Discounted Rewards and Contraction Mappings 60
5.3 Minimum of Discounted Rewards Hamilton-Jacobi Reachability Anal-

ysis . 61
5.4 Improving Convergence . 67
5.5 Learning Reachable (Safe) Sets Revisited 69
5.6 Experiments . 71

6 Conclusion 79

ii

Acknowledgments

Just a week away from graduation, and it’s surreal to know that I am almost
at the finish line. I would be remiss if I did not take time to acknowledge the people
that have helped and encouraged me along the way.

First, I would like to express my appreciation and gratitude to my committee
members Professor Claire Tomlin, Professor Pieter Abbeel, and Professor Craig Evans
for the technical guidance given to me along the way. Their expertise in optimal
control, PDEs, and reinforcement learning have no doubt contributed to this thesis.
I would like to especially acknowledge my advisor, Claire Tomlin, for always being a
present, calm, kind, and patient force during my PhD journey. Many times I would
go into our weekly one on one meetings ready to implode, and just as many times
I would leave feeling strengthened and ready to attack my challenges, instead of
attacking myself.

In addition to Claire, I want to thank the following individuals for conversations
that got me through some rough patches: Chukwuebuka Nweke, Somil Bansal, Daniel
Calderone, Oscar Dubon, and Christine Zhou.1 2 Thank you for being present when
I felt at my lowest.

In spite of the lows, I still had many wonderful moments along this journey.
Perhaps, the most meaningful was publishing my first paper, which would not have
been possible without the help, guidance, and mentorship of the Safe Learning Team:
Jaime Fisac, Melanie Zeilinger, Shahab Kaynama, Jeremy Gillula, and Claire. I
would also like to acknowledge the other collaborators that I had the great pleasure
of working with: Jerome Thai, Mo Chen, Shromona Ghosh, Forrest Laine, Frank
Jiang, and Somil.

The special people that I met were not only limited to research. I have been
privileged to be a part of many amazing groups during my time at Berkeley including:
the Hybrid Systems Lab, semi-autonomous, 2013 linear systems prelim study group,
BGESS (Black Graduate Engineering and Science Students), GSIs for inaugural of-
fering of EE16A, OSMO (Oakland Science Math Outreach), 1715 (formerly 1943)3,
and my IM basketball team. I met many awesome people through these groups, some
which I now consider good friends.

Next, I want to thank the wonderful staff at UC Berkeley that make it possible for
us to (mostly) just focus on research and learning. In particular I want to recognize:
Jessica Gamble, Shirley Salanio, Diana Lizarraga, Sheila Humphreys, Susanne Kauer,

1Fortunately, I met Oscar before he became the Vice Chancellor of Equity and Inclusion, a role
that he is extremely deserving of, when he still had the time to meet and reply to my text messages.
Now he is big time!

2Christine Zhou is a university student health services counselor for engineering students. Our
conversations were very therapeutic, and I would like to encourage grad students to take advantage
of such services if the journey gets too overwhelming. Self-care is important.

3This is a special shout out to my roommates Onye Okafor, Tayo Olukoya, and Casey Mackin
for our countless adventures and making sure that I always had work life balance.

iii

Meltem Erol, Tiffany Reardon, Mary Stewart, and Myra Rose. They made sure I
was taken care of when it came to managing funding, scheduling classes, organizing
conference travel, making reservations for important events, and so much more. Most
importantly they just checked in on me.

Lastly, I want to express my greatest gratitude to my parents Anayo and Josephine
Akametalu. It’s been 24 years since we left Nigeria to settle in Los Angeles, and ev-
erything that they have done for my siblings and I was to make achievements like
this possible. Over the past six years I have had the privilege to struggle for a PhD,
which was only possible because of their twenty plus years struggling to succeed in
a foreign land. I still remember my dad working night shifts for FedEx, where he
loaded boxes.4 During the day he would take classes at a trade school with aspira-
tions of better employment. I also remember my mom juggling school with her job at
a group home in a far away city. She had just learned to drive when we came to the
states, and the long commute combined with LA traffic was stressful to say the least.
Fortunately, those days are far behind us and we are in a much better place now.
Watching these two immigrants build a good life for themselves and their children is
the single most influential experience of my life, and I wish to build upon this legacy.
This dissertation is a brick.

4I am not sure if he still has the navy blue jumpsuit.

1

Chapter 1

Introduction

From unmanned aerial vehicles (UAVs) to self-driving cars, robotic systems are
becoming ever more pervasive in civilian lives. The benefits of these technologies
are limitless, and have the potential to drastically change the world. In developing
countries with poor road networks, there is the possibility for medicine delivery by
UAVs. In more developed countries self-driving technology can lead to efficiency gains
in the workforce by reducing traffic, and allow for more effective uses of real estate
by eliminating the need for nearby parking.

In light of these benefits, there are also many challenges that come with inte-
grating robots into everyday life. One particular challenge central to this thesis, is
that of ensuring the safe operation of these systems. Safety here is best thought of
as constraint satisfaction, e.g. avoiding collisions with obstacles and other agents or
having an aircraft operate within its flight envelope to prevent damage. Analyzing
safety typically requires a model of that system to aid in understanding how the sys-
tem can potentially violate its constraints, and how to prevent such incidents from
happening. Unfortunately, developing exact models can be difficult due to complex
physical interactions, e.g. drag forces and friction, and unobservable states, e.g. if
you do not know what a human driver wants to do, how can you ensure collision
avoidance?

The things that are not modeled can be lumped together as uncertainty, which
we assume here is bounded, e.g. we know upper and lower bounds for the drag force.
The focus of this thesis is to ensure safety of robotic systems with uncertainty, and a
few key insights that will be developed throughout are:

• Uncertainty leads to a trade-off between conservativeness and performance.

• A model and its uncertainty can be obtained by learning from observations of
the system.

• The trade-off that we choose between conservativeness and performance should
most accurately (and quickly) reflect the current model and uncertainty we have

CHAPTER 1. INTRODUCTION 2

of the system.

1.1 Reachability for Safety under Uncertainty

The main theoretical tool used and expanded upon in this thesis is reachability
analysis. Reachability is extremely powerful for the formal verification of the safety
of dynamical systems. The idea is quite simple: Imagine we have a vehicle that is
constrained to drive along a straight line, and is approaching a yellow traffic light.
Obviously, we do not want the vehicle caught in the intersection during a red light. We
need to either accelerate at full throttle or slam on the brake. However, depending on
the vehicle speed, distance to the intersection, and time the traffic violation might be
inevitable. Reachability helps us determine the scenarios, or more technically states,
from which we can remain safe, and it also provides us with the action that should
be taken to do so. The more accurate the model of our vehicle, then the more precise
the results obtained from reachability analysis. However, there might be things that
are hard to model like the speed dependent drag forces or the friction forces, which
depend on the road surface material.

We can choose to not model these effects explicitly and treat them as uncertain-
ties. If the uncertainty is bounded, reachability can still be used to do a worst-case
safety analysis in which it returns the states from which safety can be maintained in
spite of any possible realization of the vehicle dynamics.

We focus primarily on Hamilton-Jacobi (HJ) reachability analysis, which is the
most general formulation. It can handle a wide variety of constraint-satisfaction
problems, and can also be applied to general controlled nonlinear systems with dis-
turbances or adversarial behavior. In fact the worst-case analysis for systems with
bounded uncertainty is accomplished by treating the uncertainty as an adversarial
disturbance that aims to have the system violate the constraints. This approach re-
turns a control law that is guaranteed to ensure safety as long as the true system is
captured by the model and the disturbances being considered. Accounting for more
disturbances leads to a more conservative control law that is more likely to ensure
safety, however conservative behavior can degrade the system’s performance with re-
spect to other objectives. Sticking with the previous example, if we considered drag
forces that were significantly greater than those experienced by the vehicle this might
cause us to apply the brake even when it is not absolutely necessary, and thus increase
the time it takes to get to the end destination. One of the challenges that we address
in this thesis is managing this trade-off between conservativeness and performance in
the face of uncertainty.

Before continuing, it would be important to mention the major limitation of HJ
reachability, which is that the approach can become quickly prohibitive since the com-
putational and storage complexity scale exponentially with the state space dimension.
Addressing this problem is still an active research topic, and we refer the interested

CHAPTER 1. INTRODUCTION 3

reader to [21] for some of the most recent approaches. Here, we will not address this
problem and we will restrict our examples to systems with low dimensionality (two
to four).

1.2 Learning about Safety

As we stated earlier uncertainty forces us to strike a balance between conserva-
tiveness and performance. However, as uncertainty (and the model) change so must
our point of equilibrium. For example, think of what happens when someone is just
learning to drive. In the beginning when the person is less certain of her abilities and
what other drivers will do they drive more conservatively, opting for lower speeds and
hitting the brake regularly. The focus is more on safety and less on other objectives
like passenger comfort or minimizing time to reach the destination. However, over
time as the person learns a better model of other drivers and her own abilities, she can
ensure safety without behaving as conservatively thus making it possible to improve
her performance with respect to other objectives.

Observations from the system can be used to constantly improve the model and
reassess uncertainty. To get the most out of our robotic systems it’s imperative that
any safety analysis that is performed can quickly be updated to reflect the current
system model and uncertainty. This is a major focus of this thesis. Furthermore,
we will conclude this thesis with a novel formulation for reachability analysis that is
more amenable to changes in the system model and uncertainty.

1.3 Outline

Our aim in this thesis is to ensure safety for uncertain robotic systems, while
minimally degrading performance on other objectives. The thesis will be laid out as
such:

• Chapter 2 contains the theoretical and implementation details for HJ reacha-
bility analysis as it pertains to constraint-satisfaction problems. Here we show
that the problem can be solved by finding a solution to a related HJ equation,
which is ultimately solved using dynamic programming.

• Chapter 3 introduces and focuses on the safe learning problem, which is learning-
based control (e.g. adaptive control, reinforcement learning, etc.) with safety
critical constraints. This particular problem is interesting because we are con-
sidering systems with uncertainty. In the presence of uncertainty, the system
can asymptotically learn a control policy that achieves better performance than
a handcrafted policy from the designer. In general this learning occurs through
trial and error. We show how HJ reachability can be used in this setting to
ensure safety throughout the learning process.

CHAPTER 1. INTRODUCTION 4

• Chapter 4 focuses on different learning-based (or data-driven) approaches to
reachability analysis. As we alluded to earlier, as more observations are obtained
from the system, the model and uncertainty will change, and it’s important that
these changes are reflected in the reachability analysis.

• Chapter 5 presents a new formulation of reachability analysis. In general the
chapter focuses on developing the formulation and explaining its properties.
We also show how the formulation can improve the learning-based reachability
methods presented in Chapter 4.

This thesis is the compilation of results and examples of papers, both published
[2], [4], [35] and submitted, from many co-authors. These will be cited as appropriate
at the start of each chapter.

5

Chapter 2

Background

This chapter is adapted from the material presented in [35].

A key theme of this work is on safety in dynamical systems with uncertainty,
which is studied here as a reachability problem. In a reachability problem, one is given
a dynamical system described by an ordinary differential equation (ODE), a target
set describing the final conditions under consideration, and a state constraint-set
describing the conditions under consideration throughout operation of the dynamical
system. Depending on the context one might be interested in a number of questions
including: Which initial states can reach the target? Which initial states can avoid the
target? Which initial states can reach the target while staying within the constraint
set?, etc. In the context being considered, safety is simply just constraint satisfaction
and the reachability problem we are interested in is finding the initial states from
which the system can always stay within the constraint set.

Hamilton-Jacobi (HJ) reachability analysis is a theoretical tool from optimal
control and differential games used to solve reachability problems. The main idea is to
define a functional that scores trajectories (and control signals) based on how well they
achieve a desired objective (reaching the target, staying within the constraint, etc.),
and then to evaluate the states based on the score of the optimal trajectories starting
from those states. In an optimal control problem the system under consideration has
one set of inputs, and it is through these inputs that the trajectories are optimized.
In a differential game we consider a system with two sets of inputs and a zero sum
outcome, thus one set of inputs is optimizing the trajectories to achieve the largest
payoff and the other is optimizing to minimize the payoff. The second set of inputs
can be used to represent bounded uncertainties or disturbances, in which case the
analysis boils down to a worst-case examination of the system.

HJ reachability analysis has proven to be extremely reliable in safety-critical
applications because of the correctness guarantees that it can make about the under-
lying system, without needing to explicitly simulate from controllers from an infinite

CHAPTER 2. BACKGROUND 6

number of states. The tool is also very flexible and can be applied to a wide range of
dynamical systems, and system constraints. Lastly, HJ reachability analysis produces
a control strategy that guarantees the system constraints are satisfied during system
operation. For these reasons the tool has been used in a number of safety-critical
applications including emergency landing of unmanned aerial vehicles (UAVs) [30],
vehicle platooning [24], safe learning [2], [42], collision-avoidance [46], [62], and many
others [29], [48]. The need for tools that can provide correctness guarantees will only
continue to increase, as we look towards a future that will see a greater integration
of autonomous systems in everyday life due to increased interest in UAVs for civilian
purposes [6], [10], [15], [37], [68], autonomous cars [19], [77], and domestic robots [88],
[89].

There are many numerical tools available for solving the reachability problem
under the HJ formulation, which boils down to solving an accompanying partial
differential equation (PDE) or variational inequality (VI) [63], [69], [79]. However,
these methods require approximating the solution to the PDE/VI on a grid, thus for a
fixed accuracy the computation and storage of the approximation scales exponentially
with the number of system states. Unfortunately, computational demands, in general,
make these techniques impractical for systems with many states (above six). In some
specific cases people have been able to leverage the structure of the dynamics to
decompose a high-dimensional problem into lower dimensions [22], [23], [51]–[53],
[61], [64]. There have also been more tractable techniques for solving the reachability
problem. However, these methods are typically not as general and place restrictions
on the dynamics model, e.g. linear systems. Some of the better known techniques
attempt to approximate the solution with ellipsoids or hyperplanes [38], [44], [58].

In this chapter we will formalize the concepts above, and present the HJ reacha-
bility formulation as a tool for safety in systems with bounded uncertainty/disturbances.

2.1 System Model

Consider a fully observable system whose underlying dynamics may be non-
deterministic, but bounded. We can formalize this as a dynamical system with state
x ∈ Rn, and two inputs, u ∈ U ⊂ Rnu , d ∈ D ⊂ Rnd (with U and D compact) which
we will refer to as the controller and the disturbance:

ẋ = f(x, u, d) . (2.1)

The flow field f : Rn × U × D → Rn is assumed to be Lipschitz continuous
and bounded. In the single-input case we drop the disturbance input, and just have
f(x, u) : Rn × U → Rn.

Letting U and D denote the collections of measurable1 functions u : [0,∞)→ U
and d : [0,∞)→ D respectively, and allowing the controller and disturbance to choose

1A function f : X → Y between two measurable spaces (X,ΣX) and (Y,ΣY) is said to be

CHAPTER 2. BACKGROUND 7

any such signals, the evolution of the system from any initial state x is determined
(see for example [28], Ch. 2, Theorems 1.1, 2.1) by the unique continuous trajectory
ξ : [0,∞)→ Rn solving

ξ̇(s) = f(ξ(s),u(s),d(s)), a.e. s ≥ 0 ,

ξ(0) = x .
(2.2)

Note that this is a solution in Carathéodory’s extended sense, that is, it satisfies the
differential equation almost everywhere (i.e. except on a subset of Lebesgue measure
zero).

Throughout our analysis, we will use the notation ξu,dx (·) to denote the state
trajectory t 7→ x corresponding to the initial condition x ∈ Rn, the control signal
u ∈ U and the disturbance signal d ∈ D.

2.2 Safety via Hamilton-Jacobi Reachability Anal-

ysis

Safety can be posed as a constraint satisfaction problem. There are certain
regions of the state space in which the system should only operate in, or equivalently
there are certain regions that it should avoid at all cost. Clearly, a system designer
should ensure that the system is never initialized in these undesirable states, but how
can she ensure that the system will satisfy these constraints indefinitely? Is it even
possible to do so? HJ reachability answers these questions and related questions.

2.2.1 State-Constraint

A central element in our problem is the state-constraint set, which defines a
region K ⊆ Rn of the state space, typically resulting from safety considerations, where
the system is required to remain at all times. For technical purposes detailed below, we
assume that this set is closed; no further assumptions (boundedness, connectedness,
convexity, etc.) are made in the analysis. Our problem can thus be stated as finding
the safe set Ω(K), the set of states x from which our system can start and we can
guarantee that a control signal exists to keep the state trajectory within K irrespective
of the disturbance signal. This is also referred to as the discriminating kernel of K
[9].

2.2.2 Minimum distance to target

Next we introduce the target set T , which can in general represent a set of states
that we want to drive the system to or that we want the system to avoid. In general

measurable if the preimage of a measurable set in Y is a measurable set in X, that is: ∀V ∈
ΣY , f

−1(V) ∈ ΣX , with ΣX ,ΣY σ-algebras on X,Y .

CHAPTER 2. BACKGROUND 8

the reachability problem is defined in terms of T , and the task is to find the reachable
set R(T), which is the set of states that will eventually enter T . Note that we are
considering this problem in the infinite-horizon setting, since we only care if a state
can eventually reach the target.

Reachability analysis can be employed for constraint-satisfaction by selecting
complement of the state-constraint set as the target T = K, thus the safe set would
be the complement of the reachable set Ω(K) = R(T). In the context of constraint
satisfaction the target set may also be referred to as the keep-out set or avoid set.

The target set T can be implicitly characterized as the sub-zero level set of a
Lipschitz surface function l : Rn → R:

x ∈ T ⇐⇒ l(x) < 0 . (2.3)

This function always exists, since we can simply choose the signed distance func-
tion to T , sT (x), which is Lipschitz continuous by construction.2 We use a clipped
signed distance since the problem is solved over a fixed domain in practice, l(x) =
min(max(sT (x),−L), L) with L > 0, where L is usually taken to be the largest value
(in magnitude) on the domain.

To express whether a given trajectory ever violates the constraints, let the func-
tional V : Rn × U× D→ R assign to each initial state x and input signals u(·), d(·)
the lowest value of l(·) achieved by trajectory ξu,dx (·) over all times t ≥ 0:

V
(
x,u(·),d(·)

)
:= inf

t≥0
l
(
ξu,dx (t)

)
. (2.4)

This outcome V will be strictly smaller than zero if there exists any t ∈ [0,∞) at
which the trajectory leaves the constraint set, and will be nonnegative if the system
remains in the constraint set for all of t ≥ 0. Denoting Vu,d(x) = V

(
x,u(·),d(·)

)
, the

following statement follows from (2.3) and (2.4) by construction.

Proposition 1 The set of points x from which the system trajectory ξu,dx (·) under
given inputs u(·) ∈ U,d(·) ∈ D will remain in the constraint set K at all times t ≥ 0
is equal to the zero superlevel set of Vu,d(·):

{x ∈ Rn : ∀t ≥ 0, ξu,dx (t) ∈ K} = {x ∈ Rn : Vu,d(·) ≥ 0}.

Guaranteeing safe evolution from a given point x ∈ Rn requires determining
whether there exists a control input u(·) ∈ U such that, for all disturbance inputs
d(·) ∈ D satisfying d(t) ∈ D, the evolution of the system remains in K, or equivalently
Vu,d(x) ≥ 0.

2For any nonempty set M ⊂ Rm, the signed distance function sM : Rm → R is defined as
infy∈M |z − y| for points outside of M and − infy∈Rm\M |z − y| for points inside M, where | · |
denotes a norm on Rm.

CHAPTER 2. BACKGROUND 9

Our safe set can then be obtained by solving a differential game (or optimal
control problem in the case where there is no disturbance). The game is played
between the control and disturbance signal with the restriction that the distur-
bance signal can only use nonanticipative strategies. The set of nonanticipative
strategies for the disturbance is B = {β : U → D | ∀t ≥ 0, ∀u(·), û(·) ∈ U,(
u(τ)= û(τ) a.e.τ ≥ 0

)
⇒
(
β[u](τ)=β[û](τ) a.e.τ ≥ 0

)
}. The idea here is that dis-

turbance can only make decisions based on the actions of the control up to present
time. In this sense the disturbance has a slight advantage. See [62] for a detailed
discussion on information pattern. The outcome of the game starting from state x is
represented by the value function V (x),

V (x) := inf
β[u](·)∈B

sup
u∈U
V
(
x,u(·),d(·)

)
. (2.5)

We can now formally introduce the safe set Ω(K).

Definition 1 We say that a point x is in the safe set Ω(K) of constraints K if and
only if the system trajectory ξu,dx starting at x, with both players acting optimally,
remains in K for all time t ≥ 0:

Ω(K) := {x ∈ Rn : ∀β(·) ∈ B,∃u(·) ∈ U,
∀t ≥ 0, ξu,β[u]

x (t) ∈ K},

The following classical result follows from Proposition 1.

Proposition 2 The safe set of the constraint set K is the zero superlevel set of the
value function V :

Ω(K) = {x ∈ Rn : V (x) ≥ 0}.

From the above proposition it follows that the reachable set can also be obtained
from the value function

R(T) = {x ∈ Rn : V (x) < 0}.

It has been shown that the value function for games with outcome given by
equation (2.4) can be characterized as the unique viscosity solution to a variational
inequality [13], [14] as shown in [36]. An alternative formulation involves a modified
PDE[62]. In a finite-horizon setting when the game is played over a finite interval
the [0, T], the finite-horizon value function V (x, t) can be computed by solving the
following HJ equation:

0 = min

{
l(x)− V (x, t),

∂V

∂t
(x, t) + max

u∈U
min
d∈D

∂V

∂x
(x, t)f(x, u, d)

}
(2.6a)

V (x, T) = l(x). (2.6b)

CHAPTER 2. BACKGROUND 10

As T → ∞, V (x, t) becomes independent of t. We accordingly drop the depen-
dence on t and recover V (x) as defined in (2.5), which we sometimes refer to as the
safety function. Note that V (x, t) can be used to characterize the safe set over a fixed
horizon, but our focus is on safety in the infinite horizon setting.

For conciseness we introduce control policies π(·) : Rn → U and disturbance
policies ρ(·) : Rn → D, which map from state to control and disturbance, respectively.
The optimal minimax action for both the control and disturbance is given by a state
feedback policy.

Definition 2 The optimal safe policy π∗(·) is the solution to the optimization3:

π∗(x) = arg max
u∈U

min
d∈D

∂V

∂x
(x)f(x, u, d).

Policy π∗(·) attempts to drive the system to the safest possible state.

2.2.3 Computing the Value Function

Several approximation schemes have been proposed for solving (2.6) and similar
PDEs and variational equalities on a fixed grid G. The schemes can be broken
into two approaches, Eulerian schemes [62], [69], [79] and semi-Lagrangian schemes
[12], [34]. Both schemes approximate the PDE by characterizing the behavior of
the PDE/VI at specific grid points in the state space. In the Eulerian framework
the PDE is approximated directly, using finite-differences to approximate the partial
derivatives. In the semi-Lagrangian framework the dynamics are discretized and the
value function is characterized by how it changes along trajectories. Since all points
along the trajectory are not on the grid, an interpolation scheme is also required to
approximate those values.

Here we will use a semi-Lagrangian approximation based on a discrete time
dynamic programming (DP) principle:

V k+1
∆t (x) = min{l(x),max

u∈U
min
d∈D

V k
∆t(x+ ∆tf(x, u, d))} , (2.7a)

V 0
∆t(x) = l(x) , (2.7b)

V∆t = lim
k→∞

V k
∆t , (2.7c)

where V∆t(x) converges to V (x) as the discrete time step ∆t → 0. With the semi-
Lagrangian approximation, the value function is solved on a discrete grid. Represent-
ing the approximation in vectorized form, ~V ∈ RnG , the semi-Lagrangian approach

3Typically the optimal solution will be a singleton, although in general the arg max need not be
unique, which leads to π∗ : Rn → 2U . However, since we can always choose one element of the set
arbitrarily, we will assume for simplicity a policy π∗ : Rn → U , that is, a unique mapping from
states to control inputs.

CHAPTER 2. BACKGROUND 11

yields

~V 0
i = l(xi) , (2.8a)

~V k+1
i = min{l(xi),max

u∈U
min
d∈D

I[~V k](xi + ∆tf(xi, u, d))} , (2.8b)

~V = lim
k→∞

~V k , (2.8c)

for i = 1, ..., nG, where {xi}nGi=1 are the grid nodes, nG is the number of grid nodes, ~V k
i

is the approximate value for V (xi, k∆t) and I[~A] : Rn → R represents an interpolation
operator defining, for every point x, the polynomial reconstruction based on the values
~A. Unless stated otherwise G is taken to be a regular equidistant array of points with
mesh spacing ∆xj along the jth axis, j = 1, ..., n.4 We use a multilinear interpolator

for the interpolation scheme, thus the interpolation function I[~A](·) is given by a

convex combination over the elements of ~A,

I[~A](x) = φ(x) · ~A , (2.9)

where φ(·) : Rn → RnG , and ∀x ∈ Rn the elements of φ(x) are nonnegative and sum
to 1.

The individual minimax games being played at each grid point can be collectively
thought of as a game over policies π(·) and ρ(·). We also introduce the backup operator
B[·] : RnG → RnG , which maps vectorized value functions onto themselves. Define the
backup operator as

B[~A] := min{~l,max
π

min
ρ

Φπ,ρ
~A} , (2.10)

where ~l ∈ RnG with ~li = l(xi) for i = 1, ..., nG, Φπ,ρ ∈ RnG×nG is a policy-dependent
stochastic matrix5, and row i of Φπ,ρ is φ(xi+∆tf(x, π(xi), ρ(xi))). For the one player
setting this matrix becomes Φπ. We can now express (2.8) more concisely as

~V 0 = ~l , (2.11a)

~V k+1
i = B[V k] , (2.11b)

~V = lim
k→∞

~V k . (2.11c)

This recursive procedure (2.11) is a dynamic programming algorithm referred

to as value iteration, and here ~V is the vectorized value function, which is used to
approximate the value function V (x) as I[~V](x). As we increase the fineness of the
grid on a fixed domain, i.e. use more grid points, the accuracy of the approximation

4In the most general case the control and disturbance sets are also discretized, U = {ui}nU
i=1 and

D = {di}nD
i=1, and the minimax game is approximated.

5Φπ,ρ is effectively the probability transition matrix for a Markov Decision Process (MDP) over
a finite state space given by the grid nodes {xi}nGi=1.

CHAPTER 2. BACKGROUND 12

improves. However, the computational effort also increases. Furthermore, for a de-
sired level of accuracy the number of grid points, and thus computation, increases
exponentially with the dimension of the system state, which is the well known curse
of dimensionality.

The value iteration algorithm in (2.11) can be used to solve other optimal con-

trol problems, albeit with a different backup operator and initialization ~V 0 [5], [12],
[34]. Later, as we introduce other optimal control problems, including a novel formu-
lation for reachability analysis, we will redefine the backup operator and specify the
initialization required for the value iteration procedure.

2.2.4 Invariance Properties of Level Sets

Traditionally, the implicit hypothesis made to guarantee safety using a least-
restrictive law in the form of (3.1) has been correctness of the disturbance bound D
everywhere in the state space, (i.e. d(x) ∈ D ∀x ∈ Rn), or at least everywhere in the
constraint set K [62], [43]. We will show that the necessary hypothesis for safety is
in fact much less stringent, by proving an important result that we will use later to
retain safety guarantees under partially incorrect models.

Proposition 3 Any nonnegative superlevel set of V (x) is a robust controlled invari-
ant set with respect to d ∈ D.

Proof 1 By Lipschitz continuity of f and l, we have that V is Lipschitz continu-
ous [33] and hence, by Rademacher’s theorem, almost everywhere differentiable. The
convergence of V (x, t) to V (x) as T → ∞ implies that at the limit ∂V

∂t
(x, t) = 0.

Therefore, given any α ≥ 0, for any point x ∈ {x | V (x) ≥ α} there must exist a con-
trol action u∗ such that ∀d ∈ D, ∂V

∂x
(x)f(x, u∗, d) ≥ 0; otherwise the right hand side

of (2.6a) would be strictly negative for T →∞, contradicting convergence. Then, the
value of V from any such state x can always be kept from decreasing, so {x|V (x) ≥ α}
is a robust controlled invariant set with respect to d ∈ D.

Proposition 4 Consider two disturbance sets D1 and D2, and a closed set M⊂ Rn

that is robustly controlled invariant under D1. If D2 ⊆ D1 ∀x ∈ ∂M, then M is
robustly controlled invariant also under D2.

Proof 2 Consider an arbitrary trajectory ξu,dx0
under the disturbance set D2, starting

at x0 ∈ M, such that for some τ < ∞, ξ(τ) 6∈ M. Since the trajectories are
continuous, there must then exist s ∈ [t0, τ] such that ξu,dx0

(s) ∈ ∂M. On the other
hand, becauseM is robustly controlled invariant under D1, we know that ∃π : Rn → U
such that no possible disturbance d ∈ D1 can drive the system out of M. Since
D2 ⊆ D1 ∀x ∈ ∂M, the same control policy π∗(x) on the boundary guarantees that no
disturbance d ∈ D2 ⊆ D1 can drive the system out of M. Hence, for ξu,dx0

, switching
to policy π at time s guarantees that the system will remain in M. Therefore M is
a robust controlled invariant set under D2.

CHAPTER 2. BACKGROUND 13

Corollary 1 Let Qα = {x ∈ Rn : V (x) = α} with α ≥ 0 be any nonnegative level set
of the safety function V , computed for some disturbance set D̂. If d(x) ∈ D ∀x ∈ Qα,
then the superlevel set {x ∈ Rn : V (x) ≥ α} is an invariant set under the computed
safe control policy π∗(x).

14

Chapter 3

Safe Learning

This chapter is adapted from the material presented in [2], [35].

Learning-based methods in control have been around since at least the 1950s and
60s with the advent of adaptive control for the design of autopilots in high performance
aircraft (see [32] for references). In the last decade, learning-based methods have
seen a huge resurgence in interest and popularity due in particular to promising
results of deep reinforcement learning schemes in virtual environments such as arcade
videogames [66] and physics simulators [78]. These techniques show great promise
for robotic applications, in which complex dynamics (e.g. contact forces) and hard-
to-model environments (e.g. friction) limit the effectiveness of purely model-based
approaches. Unfortunately, the inner-workings of many machine learning algorithms
are difficult to interpret (notably in the case of deep neural networks), which makes it
challenging to reach meaningful conclusions about the behavior of the system during
the learning process, especially prior to convergence of the policy. This may not
be a significant issue in simulation, but it poses real challenges when applying such
techniques to physical systems in the real world. Lack of guarantees on the behavior
of the underlying system may lead to failures, such as collisions or lack of stability,
which in the best case hinder the learning process, and in the worst-case may result in
material loss or injury. An example of such a failure occurred in 1967 with the NASA
flight test X-15 Flight 191; an adaptive control scheme running on the aircraft began
a limit-cycle oscillation, which resulted in high pitch gains and made it impossible for
the pilot to pitch the aircraft out of a dive [50]. As the aircraft experienced rapidly
increasing dynamic pressures it broke apart ending in the death of the pilot [50]. We
refer to systems in which certain failure states are unacceptable as safety-critical, and
it is on these systems that our work will focus.

In the last decade, learning-based control schemes have been successfully demon-
strated in robotics applications in which the safety-critical aspects were effectively re-
moved or mitigated, typically by providing a manual fallback mechanism or retrofitting

CHAPTER 3. SAFE LEARNING 15

the environment to allow safe failure. In [1], [27] a trained pilot was able to remotely
take over control of the autonomous helicopter at any time; the power slide car ma-
neuvers in [55] were performed on an empty test track; and the aerobatic quadrotor in
[59] was enclosed in a safety net. While mostly effective, these ad hoc methods tend
to come with their own issues (pilot handoffs, for instance, are notoriously prone to
result in accidents [45]) and do not generalize well beyond the context of the particular
demonstration. It is therefore necessary to develop principled and provably correct
approaches to safety, attuned to the exploration-intense needs of learning-based algo-
rithms, that can be built into the autonomous operation of learning robotic systems.

Current efforts in policy transfer learning propose training an initial control
policy in simulation and then carrying it over to the physical system [26]. While
progress in this direction is likely to reduce overall training time, it does not elim-
inate the risk of catastrophic system misbehavior. State-of-the art neural network
policies have been shown to be vulnerable to small changes between training and
testing conditions [49], which inevitably arise between simulated and real systems.
Guaranteeing correct behavior of simulation-trained schemes in the real world thus
remains an important unsolved problem.

Providing guarantees about a system’s evolution inevitably requires some form
of knowledge about the causal mechanisms that govern it. Fortunately, in practice it
is never the case that the designer of a robotic system has no knowledge whatsoever of
its dynamics: making use of approximate knowledge is both possible and, we argue,
advantageous for safety.

3.1 Related Work

Early proposals of safe learning date back to the turn of the century. Lyapunov-
based reinforcement learning [70] allowed a learning agent to switch between a num-
ber of pre-computed “base-level” controllers with desirable safety and performance
properties; this enabled solid theoretical guarantees at the expense of substantially
constraining the agent’s behavior; in a similar spirit, later work has considered con-
straining policy search to the space of stabilizing controllers [74].

In risk-sensitive reinforcement learning [40], the expected return was heuristically
weighted with the probability (risk) of reaching an “error state”; while this allowed
for more general learning strategies, no guarantees could be derived from the heuristic
effort. Nonetheless, the ideal problem formulation proposed in the paper, to maximize
performance subject to some maximum allowable risk, inspired later work (see [39]
for a survey) and is very much aligned with our own goals.

More recently, [67] proposed an ergodicity-based safe exploration policy for
Markov decision processes (MDPs) with uncertain transition measures, which im-
posed a constraint on the probability, under the current belief, of being able to return
to the starting state. While practical online methods for updating the system’s belief

CHAPTER 3. SAFE LEARNING 16

on the transition dynamics are not discussed, and the toy grid-world demonstrations
fall short of capturing the criticality of dynamics in many real-world safety problems,
the probabilistic safety analysis is extremely powerful. Later safe exploration meth-
ods have assumed fully known deterministic dynamics with uncertain safety features
[87], or allowed for uncertain dynamics but restricted the class of constraints to local
stability (i.e. region of attraction) [17].

The robust model-predictive control approach in [8] learns about system dy-
namics for performance only, while enforcing constraints based on a robust nominal
model. The method was successfully demonstrated on problems with nontrivial dy-
namics, including quadrotor flight. However, using an a priori model for safety at
best constrains the system’s ability to explore, and at worst may fail to keep the real
system safe.

The model uncertainty can be treated explicitly as a disturbance, and the safety
problem can be studied as a differential game, in which the controller must keep the
system within the specified state constraints (i.e. away from failure states) in spite
of the actions of an adversarial disturbance. Thus reachability analysis provides a
suitable framework for learning in safety-critical systems. This robust, worst-case
analysis determines a safe region in the state space and a control policy to remain
inside it; a related approach involves ensuring invariance through “barrier functions”
[7], [71], [81]. A key advantage is that in the interior of the safe region one can
execute any desired action, as long as the safe control is applied at the boundary: in
this sense, the technique yields a least-restrictive control law, which naturally lends
itself to minimally constrained learning-based control. Initial work exploring this was
presented in [42], [43], and this is the approach most similar to our own.

3.2 System Model Revisited

Moving forward the system dynamics are considered to be deterministic yet not
completely modeled, though the unmodeled components are bounded. This consti-
tutes the simplest class of systems for which learning is necessary. In this setting d
is a deterministic state-dependent disturbance capturing unmodeled dynamics, given
by an unknown Lipschitz function d : Rn → D. That is, we could in principle write
the unknown dynamics as F (x, u) = f

(
x, u, d(x)

)
. Unlike F , f is a known function,

with all uncertainty captured by d(·).

3.3 Reachability-based Safe Learning

Learning-based control aims to achieve desirable system behavior by autonomously
improving a policy πl : Rn → U , typically seeking to optimize an objective function.
Safe learning additionally requires that certain constraints K remain satisfied while

CHAPTER 3. SAFE LEARNING 17

searching for such a policy. The main insight behind reachability-based safe learn-
ing is to separate the task of safety from the task of learning. Let us introduce an
important notion from robust control theory.

Definition 3 A subset M⊂ Rn is a robust controlled invariant set under uncertain
dynamics ẋ = f(x, u, d), d ∈ D, if for every point x ∈ M there exists a feedback
control policy π : Rn → U such that, for all possible realizations, the closed-loop
system trajectory satisfies ξ(t) ∈M for all time t ≥ 0.

If we can find such a set and policy, then the safety problem is solved, and this
is precisely what we get with the safe set Ω(K) and the optimal safe policy π∗(·).

Now to address the learning. Given that trajectories are continuous, the system
state can only leave a controlled invariant setM by crossing its boundary ∂M. Hence
if M is closed, applying the feedback policy π∗(x) for x ∈ ∂M is enough to render
M robust controlled invariant, allowing an arbitrary control action to be applied
in the interior of M, which includes learning-based control actions. This leads to
a least-restrictive control law that is guaranteed to satisfy the state constraints K
while allowing for any action to be applied on the interior of the safe set. This least-
restrictive control law can be used in conjunction with an arbitrary learning-based
control policy πl (which may be repeatedly updated by the corresponding learning
algorithm), to produce a safe learning policy :

π(x) =

{
πl(x), if V (x) > 0,

π∗(x), otherwise.
(3.1)

3.3.1 Quadrotor Testbed

Throughout this thesis we will demonstrate various methods with an autonomous
quadrotor helicopter learning a flight controller in different scenarios. To avoid re-
dundancy all experiments utilizing this testbed will refer back to this section.

These methods are tested on the Stanford-Berkeley Testbed of Autonomous Ro-
torcraft for Multi-Agent Control (STARMAC), using Ascending Technologies Pelican
(Fig. 3.1) and Hummingbird quadrotors (Fig. 4.4). The system receives full state
feedback from a VICON motion capture system. The vehicle’s dynamics are approx-
imately decoupled through an on-board controller responsible for providing lateral
stability around hover and vertical flight; our framework is then used to learn the
feedback gains for a hybrid vertical flight controller. The learning and safety con-
trollers were implemented and executed in MATLAB, on a Lenovo Thinkpad with an
Intel i7 processor that communicated wirelessly with the vehicle’s 1.99 GHz Quad-
core Intel Atom processor. This was all done using the Indigo version of the Robot
Operating System (ROS) framework.

CHAPTER 3. SAFE LEARNING 18

Figure 3.1: A STARMAC quadrotor (Pelican) during the flight test.

Reachability computations are executed using the Level Set Toolbox [63], em-
ploying the Lax-Friedrich approximation for the numerical Hamiltonian; a weighted
essentially nonoscillatory scheme for spatial derivatives; and a third-order total vari-
ation diminishing Runge-Kutta scheme for the time derivative [69], [80].

The purpose of the results presented on this testbed is not to advance the state
of the art of quadrotor flight control or reinforcement learning techniques, but to
illustrate how the proposed method can allow safe execution of an arbitrary learning-
based controller without requiring any particular convergence rate guarantees.

We use an affine dynamical model of quadrotor vertical flight, with state equa-
tions:

ẋ1 = x2

ẋ2 = kTu+ g + k0 + d(x)
(3.2)

where x1 is the vehicle’s altitude, x2 is its vertical velocity, and u ∈ [0, 1] is the
normalized motor thrust command. The gravitational acceleration is g = −9.8 m/s2.
The parameters of the affine model kT and k0 are determined for the Pelican and the
Hummingbird vehicles through a simple on-the-ground experimental procedure—a
scale is used to measure the normal force reduction for different values of u. Finally,
d is an unknown, state-dependent scalar disturbance term representing unmodeled
forces in the system. The state constraint K = {x : 0 m ≤ x1 ≤ 2.8 m} encodes the
position of the floor and the ceiling, which must be avoided.

As the learning-based controller, we choose an easily implementable policy gra-
dient reinforcement learning algorithm [56], which learns the weights for a linear

CHAPTER 3. SAFE LEARNING 19

Time (s)
0 20 40 60 80 100 120 140

A
lt
it
u
d
e
 (

m
)

0

0.5

1

1.5

2

2.5

Al
tit

ud
e

(m
)

0

1

2

0 20 60 8040 100 120 140
Time (s)

Reference Learning Override: max

Figure 3.2: Vehicle altitude and reference trajectory over time. Initial feedback gains
are set to zero. When the learning controller (green) lets the vehicle drop, the safety
control (red) takes over preventing a collision. Within a few seconds, the learned
feedback gains allow rough trajectory tracking and are subsequently tuned as the
vehicle attempts to minimize error.

mapping from state features to control commands. Following [43], we define different
features for positive and negative velocities and position errors, since the (unmod-
eled) rotor dynamics may be different in ascending and descending flight. This can
be seen as the policy gradient algorithm learning the feedback gains for a hybrid
proportional-integral-derivative (PID) controller.

3.3.2 Experiment: Learning to Fly from “Scratch”

This experiment uses the quadrotor testbed described in Section 3.3.1.

To demonstrate the strength of Hamilton-Jacobi-based guarantees for safely per-
forming learning-based control on a physical system, we first require a Pelican quadro-
tor to learn an effective vertical trajectory tracking controller with an arbitrarily poor
initialization. To do this, the policy gradient algorithm is initialized with all feature
weights set to 0. The pre-computed safety controller (numerically obtained using
[63]) is based on a conservative uncertainty bound of ±1.5 m/s2 everywhere in the
state space. The reference trajectory requires the quadrotor to aggressively alternate
between hovering at two altitudes, one of them (1.5 m) near the center of the room,
the other (0.1 m) close to the floor. This experiment illustrates the interplay between
the learning controller and the safety policy, using the least-restrictive safe policy
given by equation (3.1).

The experiment, shown in Fig. 3.2, is initialized with the vehicle in mid-air.
Since all feature weights are initially set to zero, the vehicle’s initial action is to enter
free fall. However, as the quadrotor is accelerated by gravity towards the floor, the
boundary of the computed safe set is reached, triggering the intervention of the safety

CHAPTER 3. SAFE LEARNING 20

controller, which automatically overrides the learning controller and commands the
maximum available thrust to the motors (u = 1), causing the vehicle to decelerate
and hover at a small distance from the ground. For the next few seconds, there is
some chattering near the boundary of the safe set, and the policy gradient algorithm
has some occasions to attempt to control the vehicle when it is momentarily pushed
into the interior of the safe set. Initially it has little success, which leads the safety
controller to continually intervene to prevent the quadrotor from colliding with the
floor; this has the undesirable effect of slowing down the learning process, since ob-
servations under this interference are uninformative about the behavior of the vehicle
when actually executing the commands produced by the learning controller (which
is an “on-policy” algorithm). However, at approximately t = 40 s, the learning con-
troller is able to make the vehicle ascend towards its tracking reference, retaining
control of the vehicle for a longer span of time and accelerating the learning pro-
cess. By t = 60 s, the quadrotor is approximately tracking the reference, with the
safety controller only intervening during the aggressive descent phase of the repeated
trajectory, to ensure (under its conservative model) that there is no risk of a ground
collision. The controller continues to learn in subsequent iterations, overall improving
its tracking accuracy.

The remarkable result in this experiment is not in the quality of the learned
tracking controller after only a few seconds of active exploration (a merit that corre-
sponds to the reinforcement learning method [56]), but the system’s ability to achieve
competent performance at its task from an extremely poor initial policy while remain-
ing safe at all times.

3.4 Integrating Safety Cost

From the control law given by (3.1), the action applied in the interior of the safe
set is specified by a learning algorithm that has some performance objective, which
typically does include safety [42], [43]. This causes the reachability analysis and the
learning algorithm to be disjoint with respect to one another, thus switching control
from the learning algorithm can cause the system to chatter or stall (which is seen in
the experiment from Section 3.3.2).

Furthermore, RL algorithms use the feedback obtained from the environment to
specify the next action that should be taken, which seeks to converge to or execute
an optimal policy [54]. This is particularly critical for on-policy algorithms, which
require that the specified learning control be the one executed by the system [65],
[75], [84]. Therefore, failing to incorporate safety metrics in the learning algorithm
can degrade the convergence and performance. The objective here is to unify learning
and safety by incorporating safety metrics in the learning.

One way to unify the two objectives is to create an algorithm that switches less
frequently between the safe control and learning control, or equivalently minimize the

CHAPTER 3. SAFE LEARNING 21

number of times the system reaches the boundary of the safe set. On the interior of
the safe set, the safety function V (x) can be viewed as a measure of how far a state is
from reaching the boundary of the set. The safety function can thus be used as a cost
in the learning algorithm to discourage the system from reaching the boundary. This
idea will be exemplified with the learning algorithm Policy Gradient via the Signed
Derivative (PGSD) from [56].

3.4.1 PGSD with Safety Cost

PGSD is a model-free policy search algorithm. We present the algorithm here
briefly and refer the reader to [56] for a more detailed description. In policy gradient
learning algorithms, a parametrized control policy is updated in order to optimize a
given cost function over the state-action pair, C(x, u). As an example, we consider a
quadratic cost and a control that is linear in the state features

C(x, u) =
1

2
(x− x∗)>Q(x− x∗) +

1

2
u>Ru, u = Θφ(x). (3.3)

where x∗ is the desired state, Q and R are diagonal positive semidefinite matrices
penalizing deviation from x∗ and control input respectively, φ(x) ∈ Rk is a vector of
features, each of which maps the state to a scalar value, and Θ ∈ Rm×k is a matrix
of weights that linearly map these features into controls. The controller’s objective
is to minimize the cost incurred over a horizon H starting at x0 while applying Θ:

J(x0,Θ) =
H∑
t=1

C(xt, ut), ut = Θφ(x). (3.4)

For simplicity of notation we omit the arguments of the cost in the following. PGSD
updates the parameters as:

Θ← Θ− α∇ΘJ (3.5a)

∇ΘJ =
1

H

H−1∑
t=0

(∇utJ)φ(xt)
> (3.5b)

∇utJ ≈
H∑

t′=t+1

S>Q(xt′ − x∗t′) +Rut′ , (3.5c)

where α > 0 is the step size, and Si,j is the sign of
∂(xt′)i
∂(ut)j

with the additional restriction

that only one element in each row of S is nonzero corresponding to the control that
has the largest effect on that given state. The safety metric can be included as follows:

CS(x, u) = C(x, u)− χlog(V (x)), (3.6)

CHAPTER 3. SAFE LEARNING 22

where χ is a weighting factor. The log barrier function goes to infinity at the boundary
of the critical level set, and is approximately constant in the interior. Equation (3.5c)
then becomes

∇utJ =
H∑

t′=t+1

S>Q(xt′ − x∗t′)−
χS>∇xV (xt′)

V (xt′)
+Rut′ . (3.7)

The gradient ∇xV (x) is calculated from (2.6) during the reachability computations.

3.4.2 Experiment: Cart-Pole Swing Up with Safety Metric
Intgration

In this simulation we highlight the benefits of including a safety metric in the
learning algorithm. We implemented the PGSD algorithm with and without the safety
metric on a simulated cart-pole system with one actuator controlling the thrust of

the cart. The states of the system are x =
[
p ṗ θ θ̇

]>
; position, velocity, clockwise

angle (pendulum up is the origin), and angular velocity. The dynamics are

p̈ =
(u− d) + h1cos(θ)sin(θ) + h2sin(θ)(θ̇)2

h3 + h4cos2(θ)
, (3.8)

θ̈ =
g1cos(θ)(u− d) + g2cos(θ)sin(θ)(θ̇)2 + g3sin(θ)

g4 + g5cos2(θ)
, (3.9)

where h1, . . . , h4 and g1, . . . , g5 are physical constants, U = [−25 N, 25 N] is the set
of valid thrust controls, and D(x) is uniformly bounded over the entire state space
by [−5 N, 5 N].

The task is for the pendulum to swing itself up and stabilize at a fixed point
p∗ = 0.25 meters, while never leaving the track, defined by K = {x : −0.5 m ≤ p ≤
0.5 m}. The goal is to track the reference x∗ =

[
p∗ 0 0 0

]>
, starting at the initial

condition x0 =
[
0 0 π 0

]>
.

The feature vector, φ(x), now contains two sets of features. One set of features
is made inactive (set equal to zero) when the pole is above the horizon (π

2
< |θ|), and

the other set becomes inactive when the pendulum is below the horizon. The first
set of features includes the error in each state, as well as the absolute position (five
features in total). The second set of features contains the error in the position and
velocity, the absolute position, and two disjoint features for the angle error that are
inactivated depending on whether the sign of the angular velocity is the same as the
sign of the angle error (five features in total). The absolute position acts as a safety
feature that moves the cart away from the ends of the tracks. As for the cost function
R = 0, Q1,1 = 1, Q3,3 = 2, and Q2,2 = Q4,4 = 0. For PGSD with safety χ = 0.002.

PGSD was run with and without the proposed safety metric in equation (3.6)
for 100 seconds. The result can be seen in Fig. 3.3. Without the safety metric the
controller switches more often, and it takes a longer time for the task to be completed.

CHAPTER 3. SAFE LEARNING 23

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

140

Q
ua

dr
at

ic
 C

os
t

Moving Average (10 second window) Quadratic Cost

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

Time (s)

Fr
ac

tio
n

Fraction of Time Safe Control is Applied

PGSD
PGSD w/ V(x)

Figure 3.3: Top: The pendulum learns the swing-up task faster when the safety
metric is included in the learning. Bottom: Incorporating the safety metric reduces
the intervention of the safety controller.

CHAPTER 3. SAFE LEARNING 24

3.5 Model Validation

The paradigm in reachability analysis is to assume that the system dynamics is
captured by the model used in the differential game, in other words the assumption
is that the unknown portion of the dynamics d(x) belongs to D for all x. Under this
assumption all the safety guarantees presented thus far hold true, and D is typically
designed such that the assumption holds. However, once the least-restrictive control
law is deployed on the system practitioners do not typically check to see whether
the assumption does in fact hold. Given that we are merging model-based techniques
(reachability) with data-driven methods (learning) two ideas come to mind. First, can
the data being collected online be used to modify the model and ultimately the safe
set and control law used to ensure safety. Second, can the data be used to validate
whether the current model is sufficient to guarantee safety. In Chapter 4 we will
consider the first idea. In this section we consider the second, and provide a modified
control strategy to handle cases when the model may potentially be invalid.

Since the unknown part of the dynamics is represented by d(x), D can effectively
be thought of as representing the uncertainty that we have about the system. This
uncertainty can vary across the state space, in which case it would be better to
consider state dependent disturbance sets D(x), where D̂ : Rn → 2D is a set-valued
map. As one might expect, in this setting safety is guaranteed if d(x) ∈ D(x) for all x.
However, the reachability formulation must be tweaked slightly and the disturbance
sets D(x) must satisfy certain regularity conditions. If D(x)is compact and Lipschitz
continuous in the Hausdorff metric1 then the differential game is still well-defined and
all of the propositions and corollaries in Section 2 hold true (replacing D with D(x))
[35].

3.5.1 Model Reliability Margin

We further restrict our system dynamics to only have additive unknowns, which
also includes the quadrotor model in Section 3.3.1.

f(x, u, d(x)) = g(x, u) + d(x), (3.10)

where g : Rn × Rnu → Rn is a locally Lipschitz continuous function representing the
known part of the dynamics, and d : Rn → Rn is an unknown, but deterministic,
state dependent disturbance capturing unmodeled dynamics.

Since the disturbance is additive, we can construct d(x) for any state-input pair
that has been visited as the residual between the observed dynamics and the model’s
prediction:

d̂(x) = f̂(x, u)− g(x, u), (3.11)

1The Hausdorff metric (or Hausdorff distance) between any two sets A and B in a metric space
(M,dM) is defined as dH(A,B) = max{ supa∈A infb∈B dM (a, b), supb∈B infa∈A dM (a, b) }.

CHAPTER 3. SAFE LEARNING 25

where f̂(x, u) is an approximation of the state derivative (for example through nu-
merical differentiation). These online measurements of the system’s evolution can be
used to monitor the local value of the disturbance d(x) in real time using (3.11). We
define the model reliability margin λ(x) as:

λ(x) =
sD(x)

(
d(x)

)
min
δ∈D(x)

sD(x)

(
δ
) , (3.12)

The model reliability margin is therefore a normalized signed distance function,
with range [0,1] on the inside of D(x) and negative outside, which provides a metric
for confidence in the model along the system’s trajectory. Obtaining a measurement
with small λ(x) > 0 indicates that the model is performing poorly, but its bound on
the disturbance (on which reachability guarantees are based) is still correct locally.
Conversely, if λ(x) < 0, then all theoretical safety guarantees are lost (the disturbance
is playing an unexpected value for which the control action is not guaranteed to win
the differential game).

We propose a new control strategy that takes into account the model reliability:

VL =

{
max(V (x), VL) if λ(x) ≤ λL

VL, otherwise
(3.13a)

π(x) =

{
πl(x) if V (x)− VL > 0

π∗(x), otherwise
, (3.13b)

where the critical safety level VL is initialized to 0, and λL ∈ (0, 1) is a predefined
threshold; the criteria to select its value will be discussed later in this section. We
refer to the compact set {x : V (x)−VL > 0} as the critical level set ; note that this set
is initialized to Ω(K), and updated by the control strategy when the model reliability
margin reaches λL. The purpose of the above control strategy is to keep the system
within the critical level set. Effectively, the algorithm shrinks the allowed region of
operation by pruning away those states potentially admitting disturbances that are
not captured by the model. The principle by which the new allowed operating region
is chosen to be the critical level set is based on the following result.

Proposition 5 If a state z is reached such that λL ≥ λ(z) > 0 and ∃VS ∈ [0, V (z)]
such that d(x) ∈ D(x) ∀x ∈ {x : V (x) = VS }, then the strategy given by (4.11) is
guaranteed to keep the system safe.

Proof 3 Since ∀x ∈ {x : V (x) = VS }, d(x) ∈ D(x), by Corollary 1 the level set
associated with VS is indeed a controlled invariant set of the true system under control
policy u∗(x). Since the control strategy given by (3.13) will apply the control u∗(x) for
all x such that V (x) ≤ VL, then the system cannot leave the level set {x : V (x) ≥ VS},
and therefore safety is guaranteed.

CHAPTER 3. SAFE LEARNING 26

Note that the conditions for guaranteeing safety under the control strategy in
(3.13) are much less stringent than those required by current reachability-based safety
algorithms. In order to preserve safety, these frameworks require that the estimated
disturbance set capture the true disturbance at least on the boundary of the computed
discriminating kernel. Conversely, our algorithm guarantees safety as long as there
exists some super-zero level set {x : V (x) = VS}, 0 ≤ VS ≤ VL of the computed safety
function V (x) such that the disturbance is captured by the computed disturbance
set on the boundary of the said set. In a continuous state space, there is an infinite
number of candidate level set boundaries and it suffices that one of them satisfies the
condition for safety guarantees to hold.

It is important to note that the choice of λL determines the conservativeness of
the control strategy: a larger value of λL leads the algorithm to start applying the safe
control policy u∗(x) for smaller deviations in the measured disturbance with respect to
its expected value as predicted by the GP. The likelihood of there existing a candidate
level set boundary where the disturbance lies within the specified bounds is therefore
larger for larger values of λL, but the algorithm will also be more sensitive to modeling
error and become more restrictive for smaller inconsistencies with observations.

Moreover, Proposition 5 provides a sufficient condition for safety when imple-
menting this proposed control strategy. Safety may still be provided even when its
premises do not hold.

3.5.2 Experiment: Online Model Validation for Safety

This experiment uses the quadrotor testbed described in Section 3.3.1.

To illustrate the strength of the new control strategy (3.13), we consider an ex-
periment, in which we compare its behavior to that of the standard reachability-based
safety framework with no online validation when presented with an initial model that
fails to account for the true disturbance. The model reliability threshold λL is set to
0.1. For the sake of fairness, we define a trajectory that does not explicitly attempt
to drive the system out of the state constraints (which in this case are re-defined to
be K = {x : 0.2 m ≤ x1 ≤ 2.8 m}, 0.2 m corresponding to the actual position of
the body-frame origin when the base of the vehicle comes to physical contact with
the ground). The initial model in this case assumes a prior bound on d(x) which is
10 times smaller than in the previous experiment. Both algorithms begin with the
same initial safe set Ω0. Once the test begins, the standard algorithm breaches the
computed safe set on several occasions and violates the constraints incurring two con-
secutive ground collisions, marked in Fig. 3.4. Conversely, the proposed framework
immediately detects a persistent unmodeled disturbance (in this case, λ(x) < 0) and
consequently reduces the safe set to the current safety value, immediately applying
the control action π∗: this constitutes the system’s best effort for safety given its cur-
rent knowledge of the system, even when the sufficient conditions from Proposition

CHAPTER 3. SAFE LEARNING 27

0

0.5

1

1.5

2

2.5

3

A
lt
it
u
d
e
 (

m
)

No Online Validation

0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3

A
lt
it
u
d
e
 (

m
)

Online Disturbance Validation

Time (s)

Safety: increased thrust command

Safety: decreased thrust command

Physical Collision

Figure 3.4: Altitude trajectory of the quadrotor with an incorrect disturbance model.
The standard reachability-based safety algorithm attempts to follow the trajectory,
incurring several safety breaches and two physical collisions. The proposed algorithm
rapidly detects the inconsistency between model and observations and retracts to the
region with the highest computed safety value.

CHAPTER 3. SAFE LEARNING 28

5 do not hold (since the model reliability margin λ(x) is already negative to begin
with). Since the measured disturbance keeps breaking the model’s assumptions the
system keeps contracting its safe set to higher level curves until it reaches what is,
to the best of its knowledge, the safest grid cell in the state space. While the results
in Fig. 3.4 may look quite restrictive, it should be noted that this is an extreme
case where the model of the system is wrong everywhere. Under these conditions,
temporarily restricting the vehicle’s motion is generally preferable to a crash.

29

Chapter 4

Learning-Based Reachability

This chapter is adapted from the material presented in [4], [35].

So far we have proposed a framework for robustly guaranteeing safety for systems
with state-dependent bounded uncertainty. A critical requirement for guaranteeing
safety is the correctness of the disturbance bounds D̂(x). These bounds are typically
chosen conservatively resulting in smaller safe sets. Given the least restrictive control
law (3.1) this can greatly reduce the performance of the system with respect to other
objectives, e.g. learning a control law for tracking, since the system has less of the
state space at its disposal.

In order to avoid excessive conservativeness and keep theoretical guarantees, it
is essential to have a principled method to refine the system model based on acquired
measurements, and a reliable mechanism to detect and react to model discrepancies
with the real systems behavior; both of these components are inherently data-driven.
We thus arrive at a very important insight: the relation between safety and learning is
reciprocal. Not only is safety a key requirement for learning in autonomous systems,
but learning about the real systems behavior is itself indispensable to provide practical
safety guarantees. In particular, we are interested in how the system’s behavior
impacts the safe set.

The objective of this chapter is to develop data-driven methods for computing
the safe set, or more accurately for computing the value function. There are two
ways to do this: model-based and model-free.1 Model-based techniques first fit a
model using the data, and then compute the value function using the model; this is
the approach taken by [2], [35], [43]. Model-free techniques modify the value function
directly using the data, without explicitly computing a model, which is the approach
taken by [4].

We present a model-based technique using Gaussian Processes[73] in Section 4.1,

1This distinction between model-based and model-free is taken from Reinforcement Learning,
which also attempts to compute the value function (for a different optimal control problem) using
data from the system.

CHAPTER 4. LEARNING-BASED REACHABILITY 30

and a model-free technique using temporal differencing[83] in Section 4.2.

4.1 Gaussian Processes for Modeling Additive Dis-

turbances

This section is an adaptation of Section IV.B of [35].
Similar to Section 3.5.1 this section assumes a system with additive disturbance,

so the dynamics are given by (3.10). Recall, the disturbance is used to capture the
uncertainty in the system due to the fact that d(x) is unknown. It is reasonable then
to construct an approximation of the state-dependent disturbance set D̂(x) so that it
reflects this uncertainty. Here we do so using a Gaussian Process.

4.1.1 Gaussian Process

To estimate the disturbance function d(x) over the state space, we model it as be-
ing drawn from a Gaussian process (GP). GPs are a powerful abstraction that extends
multivariate Gaussian regression to the infinite-dimensional space of functions, allow-
ing Bayesian inference based on (possibly noisy) observations of a function’s value at
finitely many points. We give here an overview of Gaussian process regression and
direct the interested reader to [73] for a more comprehensive introduction.

A GP is a random process or field defined by a mean function µ : Rn → R and a
positive semidefinite covariance kernel function k : Rn × Rn → R. Each component,
dj, j ∈ {1, ..., nd}, of the disturbance function is treated as an independent GP:

dj(x) ∼ GP(µj(x), kj(x, x′)). (4.1)

A defining characteristic of a GP is that the marginal probability distribution of the
function value at any finite number of points is a multivariate Gaussian. This will
allow us to obtain the disturbance bound D̂(x) as a Cartesian product of confidence
intervals for the components of d(x) at each state x, choosing the bound to capture
a desired degree of confidence.2

GPs allow incorporating new observations in a nonparametric Bayesian setting.
First, assume a prior GP distribution over the j-th component of d(·), with mean µj(·)
and covariance kernel kj(·, ·). The class of the prior mean function and covariance
kernel function is chosen to capture the characteristics of the model (linearity, peri-
odicity, etc), and is associated to a set of hyperparameters θp. These are typically set
to maximize the marginal likelihood of an available set of training data, or possibly
to reflect some prior belief about the system.

2By assuming independence of disturbance components we are effectively over-approximating the
confidence ellipsoid in Rnd by its minimal containing box; a less conservative analysis could compute
D̂(x) using a vector-valued GP model, at the expense of heavier computation.

CHAPTER 4. LEARNING-BASED REACHABILITY 31

Next, consider N measurements d̂j = [d̂j1, . . . , d̂
j
N], observed with independent

Gaussian noise εji ∼ N (0, (σjn)2) at the points X = [x1, . . . , xN], i.e. d̂ji = dj(xi) + εji .
Combined with the prior distribution (4.1), this new evidence induces a GP posterior;
in particular, the value of dj at finitely many points X∗ is distributed as a multivariate
normal:

E[dj(X∗) | d̂j, X] = (4.2a)

µj(X∗) +Kj(X∗, X)(Kj(X,X) + (σjn)2I)−1(d̂j − µj(X)),

cov[dj(X∗) | X] = (4.2b)

Kj(X∗, X∗)−Kj(X∗, X)(Kj(X,X) + (σjn)2I)−1Kj(X,X∗),

where dji (X) = dj(xi), µ
j
i (X) = µj(xi), and for any X,X ′ the matrix Kj(X,X ′)

is defined component-wise as Kj
ik(X,X

′) = kj(xi, x
′
k). The hyperparameters of the

kernel function are refitted whenever a new batch of data X is obtained, so the
variance implicitly depends on the measurements dj.

Considering a single query point, i.e. X∗ = {x∗}, the marginalized GP posterior
becomes a univariate normal distribution quantifying both the expected value of the

disturbance function, d̄j(x∗), and the uncertainty of this estimate,
(
σj(x∗)

)2
,

d̄j(x∗) = E[dj(x∗)|d̂j, X] (4.3a)(
σj(x∗)

)2
= cov[dj(x∗)|X] . (4.3b)

We can use the Bayesian machinery of GP regression to compute a likely bound
D̂(x) on the disturbance function d(x) based on the history of commanded inputs ui
and state measurements xi, i ∈ {1, ..., N}. Using (3.11), we can obtain measurements
of d(xi) from the residuals between the observed dynamics and the model’s prediction.

The residuals d̂ = [d̂(x1), . . . , d̂(xN)] are processed through (4.2) to infer the
marginal distribution of d(x∗) for an arbitrary point x∗, specified by the expected
value d̄j(x∗) and the standard deviation σj(x∗) of each component of the disturbance.
This distribution can be used to construct a disturbance set D̂(x∗) ⊆ D at any point
x∗; in practice, this will be done at finitely many points xi on a grid, and used in the
numerical reachability computation to obtain the safety function and the safe control
policy.

We now introduce the design parameter p as the desired marginal probability
that the disturbance function d(x) will belong to the bound D̂(x) at each point x;
typically, p should be chosen to be close to 1. The set D̂(x) is then chosen for each x as
follows. Let z =

√
2 erf−1(p1/nd), where erf(·) denotes the Gauss error function; that

is, define z so that the probability that a sample from a standard normal distribution
N (0, 1) lies within [−z, z] is p1/nd . We construct D̂(x) by taking a Cartesian product
of confidence intervals:

D̂(x) =

nd∏
j=1

[d̄j(x)− zσj(x), d̄j(x) + zσj(x)]. (4.4)

CHAPTER 4. LEARNING-BASED REACHABILITY 32

Since each component dj(x) is given by an independent Gaussian N
(
d̄j(x), σj(x)

)
,

the probability of d(x) lying within the above hyperrectangle is by construction(
p1/nd

)nd = p.

Remark 1 It is commonplace to use Gaussian distributions to capture beliefs on
variables that are otherwise known to be bounded. While one might object that the
unbounded support of (4.3) contradicts our problem formulation (in which the dis-
turbance d took values from some compact set D ⊂ Rnd), the hyperrectangle D̂(x) in
(4.4) is always a compact set. Note that the theoretical input set D is never needed
in practice, so it can always be assumed to contain D̂(x) for all x.

Under Lipschitz continuous prior means µj and covariance kernels kj, the dis-
turbance bound (4.4) varies (Hausdorff) Lipschitz-continuously in x [35]. The safety
analysis described in Section 2.2 can be carried out by solving the Hamilton-Jacobi
equation (2.6) replacing D with D̂(x) given by (4.4), which will be a correct dis-
turbance bound at any single state x with probability p based on the information
available at the time of computation. As the system gathers new information, the
posterior probability of d(x) ∈ D̂(x) will change for each x (and will typically no
longer equal p). More generally, we have the following result.

Proposition 6 Let q be the probability that d(x) ∈ D̂(x) for some state x with V (x) ≥
0. Then the probability that L∗fV (x) := DxV (x) · f (x, π∗(x), d(x)) ≥ 0 is at least q.

Proof 4 Omitting x for conciseness, we have: P (L∗fV ≥ 0) = P
(
L∗fV ≥ 0|d ∈

D̂
)
P
(
d ∈ D̂

)
+ P

(
L∗fV ≥0|d 6∈ D̂

)
P
(
d 6∈ D̂

)
.

By Corollary 1, the first term evaluates to 1 · q; the second term is nonnegative
(and will typically be positive, since not all values of d 6∈ D̂ will be unfavorable for
safety, and there may be some for which the input π∗(x) leads the system to locally
increase V).

Based on this result, we can begin to reason about the guarantees of the reach-
ability analysis applied to the real system in a Bayesian framework, inherited from
the GP model. We examine this next.

4.1.2 Model Validation with Gaussian Processes

This section is an adaptation of Section IV.C of [35].
So far we have used the disturbance measurements for two purposes, in the

previous subsection we use them in batches to construct the model, and in Section
3.5.1 individual measurements are used to validate the model. Let us consider how
construction and validation come together in the larger context of the safe learning
algorithm. Given a batch of data, e.g. N measurements, a model can be constructed
to perform the safety analysis. After the system is deployed the incoming stream

CHAPTER 4. LEARNING-BASED REACHABILITY 33

of data is used to validate the current model. Once we have enough data to make
up another batch (another N measurements in this example), then a new model is
constructed, and the process is repeated.

With the GP we can unify the model construction and model validation under
a Bayesian framework. First, we describe the process at a high level. The GP
uses a batch of data to create a posterior distribution on the disturbance function
d(x). The disturbance set D̂(x) is then constructed to ensure that with probability
p it contains the disturbance function. Due to the Bayesian framework provided
by the GP, as new measurements are acquired they can be incorporated into the
posterior (which at this point can be thought of as the new prior) to produce a new
posterior. This will also change the probability that D̂(x) contains d(x), and this new
probability can be used to validate the model. In the remainder of this section, we
will discuss how to update the belief on the disturbance function, and then provide
two different theoretical criteria for safety intervention. The first criterion provides
global probabilistic guarantees, but has computational challenges associated to its
practical implementation. The alternative method only provides a local guarantee,
but can more easily be applied in real time.

Let us denote Xold and d̂j
old as the evidence used in computing the disturbance

set D̂(x), and Xnew and d̂j
new as the evidence acquired online after the disturbance

set is computed. Conditioned on the old evidence, the function dj(x) is normally
distributed with mean and variance given by (4.2) with X = Xold and d̂j = d̂j

old,
and the disturbance set is given by (4.4). If we also condition on the new evidence
and keep the hyperparameters fixed, then the mean and variance are updated by
modifying (4.2) with X = [Xold, Xnew] and d̂j = [d̂j

old, d̂
j
new].

Remark 2 Performing the update requires inverting Kj([Xold, Xnew], [Xold, Xnew]).
This can be done efficiently employing standard techniques: since Kj(Xold, Xold) has
already been inverted (in order to compute the disturbance bound D̂), all that is needed
is inverting the Schur Complement of Kj(Xold, Xold) in Kj([Xold, Xnew], [Xold, Xnew]),
which has the same size as Kj(Xnew, Xnew).

Ideally we would incorporate Xnew and d̂j
new to relearn the GP hyperparameters

as quickly as new measurements come in: otherwise new measured disturbance values
d̂j

new will only affect the posterior mean, with the variance depending exclusively on
where the measurements were made (Xnew). However, performing this update online
is computationally prohibitive. Instead, we update the hyperparameters every time
a new estimated bound D̂ is produced for safety analysis, keeping them fixed in
between. In practice the set Xold will be much larger than Xnew, so the estimated
hyperparameters would not be expected to change significantly.

Remark 3 In settings where conditions are slowly time-varying, it may be desirable
to give recently observed data more weight than older observations. This can naturally

CHAPTER 4. LEARNING-BASED REACHABILITY 34

be encoded by the Gaussian process by appending time as an additional dimension in
X: points that are distant in time would then be more weakly correlated, analogous to
space.

Based on the new Gaussian distribution, we can reason about the posterior
confidence in the safety guarantees produced by our original safety analysis, which
relied on the prior Gaussian distribution resulting from measurements d̂j

old at states
Xold.

4.1.2.1 Global Bayesian safety analysis

The strongest result available for guaranteeing safety under the present frame-
work is Corollary 1, which allows the system to exploit any superzero level set Qα
(α ≥ 0) of the safety function V throughout which the model is locally correct; all
that is needed is for such a Qα to exist for α ∈ [0, V (x)] given the current state x.

It is possible to devise a safety policy to fully exploit the sufficient condition
in Corollary 1 in a Bayesian setting: if the posterior probability that the corollary’s
hypotheses will hold drops to some arbitrary global confidence threshold γ0, the safe
controller can override the learning agent. With probability γ0, the corollary will
still apply, in which case the system is guaranteed to remain safe for all time; even if
Corollary 1 does not apply at this time (which could happen with probability 1−γ0),
it is still possible that the disturbance d(x) will not consistently take adversarial
values that force the computed safety function V (x) to decrease, in which case the
system may still evolve safely. Therefore, this policy guarantees a lower bound on the
probability of maintaining safety for all time.

In order to apply this safety criterion, the system needs to maintain a Bayesian
posterior of the sufficient condition in Corollary 1. We refer to this posterior proba-
bility as the global safety confidence γ(x;X, d̂j), or γ(x) for conciseness:

γ(x;X, d̂j) := P
(
∃α ∈ [0, V (x)],∀x ∈ Qα : d(x) ∈ D̂(x)|X, d̂j

)
. (4.5)

Based on this, we propose the following least-restrictive control law:

π(x) =

{
πl(x), if

(
γ(x) > γ0

)
∧
(
V (x) > 0

)
,

π∗(x), otherwise,
(4.6)

so the system applies any action it desires if the global safety confidence is above the
threshold, but applies the safe controller once this is no longer the case.

Note that if confidence in the safety guarantees is restored after applying the
safety action the learning algorithm will be allowed to resume control of the system.
This can happen by multiple mechanisms: moving to a region with higher V (x) will
tend to increase the probability that some lower level set may satisfy the hypotheses
of Corollary 1; moving to a region with less inconsistency between expected and

CHAPTER 4. LEARNING-BASED REACHABILITY 35

observed dynamics will typically lead to higher posterior belief that nearby level sets
will satisfy the hypotheses of Corollary 1; and generally acquiring new data may, in
some cases, increase the posterior confidence that Corollary 1 may apply.

Computing the joint probability that the bound D̂(x) captures the Gaussian
process d(x) everywhere on a level set Qα is not possible, since the set of functions
d(x) satisfying this condition is bounded on uncountably many dimensions, and thus
not measurable in function space. Similarly, evaluating the joint probability for a
continuum of level sets Qα for α ∈ [0, V (x)] is not feasible. Instead, exploiting the
Lipschitz assumption on d(x), we can obtain the sought probability γ(x) from a
marginal distribution over a sufficiently dense set of sample points on each Qα and a
sufficiently dense collection of level sets between 0 and V (x).

We can then use numerical methods [41] to compute the multivariate normal cu-
mulative distribution function and estimate the marginal probability (using compact
logic notation):

γ(x) ≈ P

(S∨
s=1

I∧
i=1

d(xs,i) ∈ D̂(xs,i)

)
, (4.7)

over S level sets 0 = α0 < ... < αS = V (x) and I sample points from each level
set Qαs . As the density of samples increases with larger S and I, the marginal
probability (4.7) asymptotically approaches the Gaussian process probability (4.5).
Unfortunately, however, current numerical methods can only efficiently approximate
these probabilities for multivariate Gaussians of about 25 dimensions [41], which dras-
tically limits the number of sample points (S× I ≈ 25) that the marginal probability
can be evaluated over, making it difficult to obtain a useful estimate. In view of this,
a viable approach may be to bound (4.5) below as follows:

γ(x) ≥ γ(x) := max
α∈[0,V (x)]

P
(
∀x ∈ Qα : d(x) ∈ D̂(x)

)
, (4.8)

and approximately compute this as

γ(x) ≈ max
s∈{1,...,S}

P

(I∧
i=1

d(xs,i) ∈ D̂(xs,i)

)
, (4.9)

with the advantage that a separate multivariate Gaussian evaluation can be done now
for each level set (I ≈ 25). Computing this approximate probability as the system
explores its state space provides a decision mechanism to guarantee safe operation of
the system with a desired degree of confidence, which the system designer or operator
can adjust through the γ0 parameter.

4.1.2.2 Local Bayesian safety analysis

Evaluating the expression in (4.9) is still computationally intensive, which can
limit the practicality of this method for real-time validation of safety guarantees

CHAPTER 4. LEARNING-BASED REACHABILITY 36

in some applications, such as mobile robots relying on on-board processing. An
alternative is to replace the global safety analysis with a local criterion that offers
much faster computation traded off with a weaker safety guarantee.

Instead of relying on Corollary 1, this lighter method exploits Proposition 6 and
the fact that the disturbance model is locally correct, which we formalize now.

Proposition 7 If d(x) ∈ int D̂(x), then there exists ∆t > 0 such that all possible
trajectories followed by the system starting at x will satisfy d

(
ξ(τ)

)
∈ D̂

(
ξ(τ)

)
for all

τ ∈ [t, t+ ∆t].

Proof 5 Let LD̂ be the Lipschitz (Hausdorff) constant of D̂, Ld the Lipschitz constant
of d, and Cf a norm bound on the dynamics f . We then have that over an arbitrary
time interval [t, t + ∆t], regardless of the control and disturbance signals u(·), d(·),
any system trajectory starting at ξ(t) = x satisfies |ξ(τ)− x| ≤ Cf∆t,∀τ ∈ [t, t+ ∆t].

This implies both |d(ξ(τ))− d(x)| ≤ LdCf∆t and dH
(
D̂(ξ(τ)), D̂(x)

)
≤ LD̂Cf∆t. Re-

quiring that the open ball B
(
d(x), (Ld + LD̂)Cf∆t

)
be contained in D̂(x) ensures

d(ξ(τ)) ∈ D̂(ξ(τ)). Since d(x) ∈ int D̂(x), there must exist a small enough ∆t > 0
for which this condition is met.

The system is allowed to explore the computed safe set freely as long as the
probability of the estimated model D̂ being locally reliable remains above a certain
threshold λ0; if this threshold is reached, the safe controller intervenes, and the sys-
tem is guaranteed to locally maintain or increase the computed safety value V (x)
with probability no less than λ0. While this local guarantee does not ensure safety
globally, it does constitute a useful heuristic effort to prevent the system from enter-
ing unexplored and potentially unsafe regions of the state space. Further, although
the method is not explicitly tracking the hypotheses of Corollary 1, the local result
becomes a global guarantee if these hypotheses do indeed hold.

We define the local safety confidence λ(x;X, d̂j), more concisely λ(x)3 , as the
posterior probability that d(x) will be contained in D̂(x) at the current state x, given
all observations made until now:

λ(x;X, d̂j) := P
(
d(x) ∈ D̂(x) | X, d̂j

)
. (4.10)

We then have the following local safety certificate.

Proposition 8 Let the disturbance d(·) be distributed component-wise as nd inde-
pendent Gaussian processes (4.1). The safety policy π∗(·) is guaranteed to locally
maintain or increase the system’s computed safety V (·) with probability greater than
or equal to the local safety confidence λ(x).

3Note that λ was also used in Section 3.5.1 to represent the model reliability margin. We choose
to reuse the variable here because it still serves as a measure of the local correctness of the model.
Moving forward λ will refer to the local safety confidence unless stated otherwise.

CHAPTER 4. LEARNING-BASED REACHABILITY 37

Proof 6 The proof follows directly from Propositions 7 and 6, and the definition of
λ(x), noting that the boundary of D̂(x) has zero Lebesgue measure and thus under
any Gaussian distribution P (d ∈ int D̂(x)|d ∈ D̂(x)) = 1.

A local confidence threshold λ0 ∈ (0, p) can be established such that whenever
λ(x) < λ0 the model is considered insufficiently reliable (reachability guarantees may
fail locally with probability greater than 1 − λ0), and the safety control is applied.
The proposed safety control strategy is therefore as follows:

π(x) =

{
πl(x), if

(
V (x) > 0

)
∧
(
λ(x) > λ0

)
,

π∗(x), otherwise
. (4.11)

Similarly to (4.6), under this control law, if confidence on the local reliability of the
model is restored after applying the safe action and making new observations, the
system will be allowed to resume its learning process, as long as it is in the interior
of the computed safe set.

After generating a new GP model and defining D̂(x) as described in Section
4.1.1, the prior probability with which the disturbance function d(x) belongs to the
set D̂(x) is by design p everywhere in the state space. As the system evolves, more ev-
idence is gathered in the form of measurements of the disturbance along the system
trajectory, so that the belief that d(x) ∈ D̂(x) is updated for each x. In particu-
lar, in the Gaussian process model, this additional evidence amounts to augmenting
the covariance matrix Kj in (4.2) with additional data points and reevaluating the
mean and variance of the posterior distribution of d(x). Based on the new Gaussian
distribution, λ(x;X, d̂j) can readily be evaluated for each x as

λ(x) =

nd∏
j=1

1

2

[
erf

(
dj+(x)−mj(x)

sj(x)
√

2

)
− erf

(
dj−(x)−mj(x)

sj(x)
√

2

)]
, (4.12)

with dj+(x) = d̄j(x) + zσj(x), dj−(x) = d̄j(x)− zσj(x), mj(x) = E[dj(x)|X, d̂j], sj(x) =√
var(dj(x)|X); recall that z was defined to yield the desired probability mass p in

D̂(x) at the time of safety computation, as per (4.4). Also recall that d̄j(x) and σj(x)
are determined from the previous batch of data and used to define the boundaries of
D̂(x). Thus (4.12) is integrating the new Gaussian distribution (which incorporates
the new data points) over the set D̂(x).

Parameters p and λ0 (or, in its case, γ0) allow the system designer to choose the
degree of conservativeness in the system: while p regulates the amount of uncertainty
accounted for by the robust model-based safety computation, λ0 (γ0) determines
the acceptable degradation in the resulting certificate’s posterior confidence before
a safety intervention is initiated. A value of p close to 1 will lead to a large, high-
confidence D̂(x) throughout the state space, but this analysis may result in a small
or even empty safe set; on the other hand, if p is low, D̂(x) will be smaller and

CHAPTER 4. LEARNING-BASED REACHABILITY 38

Figure 4.1: Evolution of the probability distribution of the disturbance d(x) at a
particular state x. The prior distribution is used to compute the bound D̂(x) using
confidence intervals, such that it contains a specified probability mass p. As more data
are obtained, the distribution may shift, leading to a different posterior probability
mass contained within D̂(x).

the computed safe set will be larger, but guarantees are more likely to be deemed
unreliable (as per λ0 or γ0) in light of later observations.

In the case of local safety analysis, immediately after computing a new model
D̂, λ(x) is by construction equal to p everywhere in the state space. As more mea-
surements are obtained, the posterior distribution over the disturbance changes, as
illustrated in Fig. 4.1, which can result in λ(x) locally increasing or decreasing. If λ0

is chosen to be close to p, it is likely that the safety override will take place under mi-
nor deviations with respect to the model’s prediction; as λ0 becomes lower, however,
the probability that the disturbance will violate the modeling assumptions before
the safety controller intervenes increases. This reflects the fundamental tradeoff be-
tween risk and conservativeness in safety-critical decision making under uncertainty.
The proposed framework therefore allows the system designer to adjust the degree of
conservativeness according to the needs and characteristics of the system at hand.

4.1.3 Experiment: Safe Learning with GP

This experiment uses the quadrotor testbed described in Section 3.3.1.

In this experiment, we demonstrate the iterative updating of the safe set and
safety policy using observations of the system dynamics gathered over time, as well

CHAPTER 4. LEARNING-BASED REACHABILITY 39

as the online validation of the resulting guarantees. All components of the framework
are active during the test, namely learning controller, safety policy, iterative safety
re-computation, and Bayesian guarantee validation, with the main focus being on the
latter two.

Here, the Pelican quadrotor attempts to safely track the same reference trajec-
tory, while using the gathered information about the system’s evolution to refine its
notion of safety. In this case, the policy gradient learning algorithm is initialized to
a hand-tuned set of parameter values. The initial dynamic model available to the
safety algorithm is identical to the one used in the previous experiment, with a uni-
form uncertainty bound of ±1.5m/s2. However, the system is now allowed to update
this bound, throughout the state space, based on the disturbance posterior computed
by a Gaussian process model.

To learn the disturbance function, the system starts with a Gaussian process
prior over d(·) defined by a zero mean function and a squared exponential covariance
function:

k(x, x′) = σ2
f exp

(
(x− x′)TL−1(x− x′)

2

)
, (4.13)

where L is a diagonal matrix, with Li as the ith diagonal element, and θp =
[
σ2
f , σ

2
n,L1,L2

]
are the hyperparameters, σ2

f being the signal variance, σ2
n the measurement noise

variance, and the Li the squared exponential’s characteristic length for position and
velocity respectively. The hyperparameters are chosen to maximize the marginal like-
lihood of the training data set, and are recomputed for each new batch of data when
a new disturbance model D̂(x) is generated for safety analysis. Finally, the chosen
prior mean and covariance kernel classes are both Lipschitz continuous, ensuring that
all required technical conditions for the theoretical results hold.

The expressions (4.2), (4.3) give the marginal Gaussian process posterior on
d(x∗) for a query point x∗. To numerically compute the safe set, the system first
evaluates (4.4) to obtain the disturbance bound D̂(xi) at every point xi on a state-
space grid, as the 95% confidence interval (p = 0.95) of the Gaussian process posterior
over d(x); next, it performs the robust safety analysis by numerically solving the HJI
equation (2.6) on this grid (using [63]) and obtaining the safety function V (x).

The trajectory followed by the quadrotor in this experiment is shown in Fig.
4.2. The vehicle starts off with an a priori conservative global bound on d(x) and
computes an initial conservative safe set Ω1 (Fig. 4.3). It then attempts to track the
reference trajectory avoiding the unsafe regions by transitioning to the safe control
u∗(x) on ∂Ω1. The disturbance is measured and monitored online during this test,
under the local safety confidence criterion, and found to be locally consistent with
the initial conservative bound. After collecting 10 s of data, a new disturbance bound
D̂(x) is constructed using the corresponding Gaussian process posterior, from which
a second safety function V2(x) and safe set Ω2 are computed via Hamilton-Jacobi
reachability analysis. This process takes roughly 2 seconds, and at approximately

CHAPTER 4. LEARNING-BASED REACHABILITY 40

t = 12 s the new safety guarantees and policy are substituted in.
The Pelican continues its flight under the results of this new safety analysis: how-

ever, shortly after, the vehicle measures values of d that consistently approach the
boundary of D̂(x), and reacts by applying the safe control policy and locally climbing
the computed safety function. This confidence-based intervention takes place several
times during the test run, as the vehicle measures disturbances that lower its confi-
dence in the local model bounds, effectively preventing the vehicle from approaching
the ground.

After a few seconds, a new Gaussian process posterior is computed based on the
first 20 s of flight data, resulting in an estimated safe set Ω3, an intermediate result
between the initial conservative Ω1 and the overly permissive Ω2 (Fig. 4.3). The
learning algorithm is then allowed to resume tracking under this new safety analysis,
and no further safety overrides take place due to loss of safety confidence.

This experiment demonstrates the algorithm’s ability to safely refine its notion
of safety as more data become available, without requiring the process to consist in
a series of strictly conservative under-approximations.

4.1.4 Experiment: Gone with the Wind

This experiment uses the quadrotor testbed described in Section 3.3.1.

In this experiment, we display the efficacy of online safety guarantee validation
in handling alterations in operating conditions unforeseen by the system designer. All
components of the framework are active, except for the iterative safety re-computation,
which is not used in this case.

This experiment is performed using the lighter Hummingbird quadrotor, which
is more agile than the Pelican but also more susceptible to wind. We initialize the
disturbance set to a conservative range of ±2 m/s2, which amply captures the error
in the double-integrator model for vertical flight. The vehicle tracks a slow sinu-
soidal trajectory using policy gradient [56] to improve upon the manually initialized
controller parameters. At approximately t = 45 s an unmodeled disturbance is intro-
duced by activating a fan aimed laterally at the quadrotor. The fan is positioned on
the ground and angled slightly upward, so that its effect increases as the quadrotor
flies closer to the ground. The presence of the airflow causes the attitude and lat-
eral position controllers to use additional control authority to stabilize the quadrotor,
which couples into the vertical dynamics as an unmodeled force.

The experiment is performed with and without the Bayesian guarantee valida-
tion component, with resulting trajectories shown in Fig. 4.5. Without validation,
the quadrotor violates the constraints, repeatedly striking the ground. With vali-
dation, the fan’s airflow is quickly detected as a discrepancy with the model near
the floor, and the safety controller override is triggered. The vehicle avoids entering
the affected region for the remainder of the flight. Although only the local confi-

CHAPTER 4. LEARNING-BASED REACHABILITY 41

Time (s)
0 5 10 15 20 25 30 35 40

A
lti

tu
de

 (
m

)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
Learning Safety: max Safety: min

0

1

0.2

0.4

0.6

0.8

1.2

1.4

1.6

1.8

0 5 10 15 25 30 35 40
Time (s)

20

Al
tit

ud
e

(m
)

Reference

Figure 4.2: Vehicle altitude and reference trajectory over time. After flying with an
initial conservative model, the vehicle computes a first Gaussian process model of the
disturbance with only a few data points, resulting in an insufficiently accurate bound.
The safety policy detects the low confidence and refuses to follow the reference to low
altitudes. Once a more accurate disturbance bound is computed, tracking is resumed,
with a less restrictive safe set than the original one.

CHAPTER 4. LEARNING-BASED REACHABILITY 42

Altitude (m)
-0.5 0 0.5 1 1.5 2 2.5 3

V
el

oc
ity

 (
m

/s
)

-3

-2

-1

0

1

2

3

4

1

2

3

4

⌦4

⌦3

⌦2

⌦1

Reference

Executed

Ve
lo

ci
ty

 (m
/s

)

4

Altitude (m)

3

2

1

0

-1

-2

-3
-0.5 0 0.5 1 1.5 2 2.5 3

Figure 4.3: Safe sets computed online by the safety algorithm as it gathers data and
successively updates its Gaussian process disturbance model. The vehicle’s trajectory
eventually leaves the initial, conservative Ω1, but remains in the converged safe set
(Ω4) at all times, even before this set is computed. While the intermediate set Ω2

would have been overly permissive, this is remedied by the intervention of the safety
controller as soon as the model is observed to behave poorly.

CHAPTER 4. LEARNING-BASED REACHABILITY 43

(a) With online guarantee validation (b) Without online guarantee validation

Figure 4.4: Hummingbird quadrotor learning a vertical flight policy under the re-
quirement of not colliding. When the fan is turned on, the system experiences an
unmodeled disturbance that it has not previously encountered. This can lead to a
ground collision even under robust safety policies (right). The proposed Bayesian
validation method detects the inconsistency and prevents the vehicle from entering
the uncertain region (left).

CHAPTER 4. LEARNING-BASED REACHABILITY 44

0 30 60 90 120
Time (s)

0

0.5

1

1.5

Al
tit

ud
e

(m
)

With model validation

0 30 60 90 120
Time (s)

0

0.5

1

1.5

Al
tit

ud
e

(m
)

Without model validation
Fan Off Fan On

Fan Off Fan On

Time (s)
0 60 12030 90

Time (s)
0 60 12030 90

Al
tit

ud
e

(m
)

0

1

1.5

0.5

Al
tit

ud
e

(m
)

0

1

1.5

0.5

Without online guarantee validation

With online guarantee validation

Figure 4.5: Vehicle altitude and reference trajectory over time, shown with and with-
out online model validation. After the fan is turned on, the vehicle checking local
model reliability detects the inconsistency and overrides the learning controller, avoid-
ing the region with unmodeled dynamics; the vehicle without model validation enters
this region and collides with the ground multiple times. The behavior is repeated
when the reference trajectory enters the perturbed region a second time.

dence method is used, providing a strictly local safety guarantee, the safe controller
succeeds in maintaining safety throughout the experiment. This provides strong evi-
dence suggesting that, beyond its theoretical guarantees, the local Bayesian analysis
also constitutes an effective best-effort approach to safety in more general conditions,
given limited computational resources and available knowledge about the system.

4.2 Local-updates via Temporal Differencing

We now present a model-free technique for learning the safe set, which as the
name implies, modifies the value function directly without constructing a model. In
particular, we will focus on temporal differencing (TD), which comes from the field of
Reinforcement Learning (RL), where goal is to solve a discrete time sum of rewards
optimal control problem for systems with unknown dynamics.

CHAPTER 4. LEARNING-BASED REACHABILITY 45

With TD the value function is represented with a function approximator4, and
experiences from the real system are used to directly update the parameters of the
function approximator. A key benefit of model-free techniques is that the experiences
(which amount to individual data points) can be quickly incorporated into the value
function, which allows these methods to be run online. For model-based approaches
one needs to run reachability analysis to update the value function, and this compu-
tation can be quite expensive. In the model-free setting, we give up global accuracy,
but the value function can be updated quickly in the regions of the state space that
the system actually visits.

We will briefly introduce the RL problem and the TD method for solving this
problem. We then show how TD can be used within the safe learning context to more
accurately approximate the value function (safe set) locally.

4.2.1 Reinforcement Learning and Temporal Differencing

Note that in this section we will solve a different type of optimal control prob-
lem, so we briefly redefine the terms value function and optimal policy for this section.

RL seeks to generate optimal policies for solving sequential decision-making
problems through observations of interactions between an agent and its environment.
These problems consider stochastic systems with discrete dynamics. In order to keep
the notation consistent we will consider a discrete time approximation of our dynam-
ical system xk+1=f∆t(xk, uk, d(xk)), where ∆t is the sample time, k is the time step,
and

f∆t(x, u, d(x)) = x+ f(x, u, d(x)) ·∆t. (4.14)

The RL problem is modeled as a Markov Decision Process (MDP): given an
initial state x0, reward R(x, u), a discount factor γ ∈ [0, 1], the system dynamics
f∆t(x, u, d(x)), the objective is to find a policy π : Rn → U that maximizes the
expected sum of future discounted rewards 5

max
π

Eπ,x0

[
∞∑
i=0

γiR(xi, π(xi))

]
. (4.15)

4A simple function approximator can be linear interpolation on a grid. In that sense the value
function is always represented through a function approximator since, in general, we can only ap-
proximate the solution to the HJ equation on a grid.

5An expectation is included because in general the system dynamics can be stochastic. In particu-
lar, this stochasticity can be captured in our model by considering d(x) as a state dependent random
variable with support D, which in turn makes f a random variable. For now we still maintain that
our system is deterministic.

CHAPTER 4. LEARNING-BASED REACHABILITY 46

For a policy π we can define the evaluation function V π(x) = Eπ,x [
∑∞

i=0 γ
iR(xi, π(xi))].

The optimal policy π∗, which maximizes (4.15), will yield the value function V , which
in turn satisfies Bellman’s Optimality Condition, namely:

V (x) = max
u∈U

R(x, u) + γEx[V (f∆t(x, u, d(x)))]. (4.16)

The evaluation function for a given policy must satisfy the following condition

V π(x) = R(x, π(x)) + γEx[V
π (f∆t(x, π(x), d(x)))], (4.17)

which for the optimal policy is equal to the value function, V π∗ = V .
Once V is known, determining the optimal policy is straightforward,

π∗(x) = arg max
u∈U

R(x, u) + γEx[V (f∆t(x, u, d(x)))]. (4.18)

Most RL methods iterate back and forth between approximating V and deter-
mining π∗ [16], [90]. As stated earlier one of the methods to solve this problem is
TD, which was famously applied to create TD Gammon, a program that learned to
play backgammon at an expert level [85]. TD is an online algorithm that obtains new
estimates of the value function at every time step by taking differences of current
estimates of the value function at successive states.

When the state space is discrete and finite the value function is given as a table,
and TD simply updates the values of the table. For a continuous state space, we
first approximate the value function with a parameterized function V (x) ≈ Vθ(x)
with parameter vector θ ∈ Rnθ , and then update the parameter vector. Similarly
the evaluation function can be parameterized V π(x) ≈ V π

θ (x). A common class of
approximators are linear parameterizations, Vθ(x) = v(x) · θ. This class also includes

interpolation over a grid, v(x) · θ = φ(x) · ~V , where φ is the interpolation function

and the parameter vector ~V contains the values at the grid nodes.
Given a policy, TD seeks to find the evaluation function by performing stochastic

gradient descent on the following loss function

L(θ) =
1

2

(
R(x, π(x)) + γV π

θk
(x+)− V π

θk
(x)
)2
, (4.19)

where x+ = f(x, π(x), d(x)). Note x+ can be obtained from the environment by
applying π(x) at state x, so f does not need to be known explicitly. Also note
that the loss function is defined such that it is minimized in expectation when the
evaluation function equation (4.17) is satisfied.

Stochastic gradient descent is run using the samples {(xk, π(xk), x
+
k)}k obtained

from the environment (physical system or simulation), and at every time step the
parameter vector is updated

θk+1 ← θk + α∇θV
π
θk

(xk)
(
R(xk, π(xk)) + γV π

θk
(x+

k)− V π
θk

(xk)
)
, (4.20)

CHAPTER 4. LEARNING-BASED REACHABILITY 47

where α ∈ [0, 1] is the learning rate. This is the simplest TD update rule, and we refer
the interested reader to [82] and [86] for more sophisticated variants of TD learning.

To get the value function, TD must be incorporated into a policy iteration
algorithm that iteratively improves the policy [5], [72]. If the policy converges to the
optimal policy then the TD algorithm (if successful) yields the value function, since
the evaluation function of π∗is precisely V .

4.2.2 Temporal Differencing for Reachability Analysis

We now show how temporal differencing can be used to learn safe sets. Under a
worst-case treatment of the system uncertainty the safe set is obtained as the solution
to (2.6). If the model were known perfectly equation (2.6) becomes

0 = min

{
l(x)− V (x, t),

∂V

∂t
(x, t) + max

u∈U

∂V

∂x
(x, t)f(x, u, d(x))

}
(4.21a)

V (x, T) = l(x)., (4.21b)

and, again, the value function V (x) could be obtained as T →∞.
The discrete time approximation of the value function satisfies

V (x) = min{l(x),max
u∈U

V (x+ ∆tf(x, u, d(x)))}, (4.22)

with the optimal policy given by

π∗(x) = arg max
u∈U

min{l(x), V (x+ ∆tf(x, u, d(x)))}, (4.23)

Given the optimal policy π∗, (4.22) can be written as

V (x) = min{l(x), V (x+ ∆tf(x, π∗(x), d(x)))}.6 (4.24)

In general (4.21) is solved on a grid, so the value function is represented by a

linear function approximator V (x) = Vθ(x) = φ(x) · ~V , where φ(x) is the interpolation

function over the grid and θ = ~V contains the grid node values.
Equation (4.25) allows us to characterize the value function, and it can be used

to define a loss function that is nonnegative, and only zero when (4.25) is satisfied

L(θ) =
(
min{l(x), Vθ(x

+)} − Vθ(x)
)
, (4.25)

6Note here a slight abuse of notation: following the convention of Section 2.2.3 the discrete time
approximation should be represented by V∆t, but to maintain consistency with Section 4.2.1 and to
minimize notation we use V for both the continuous and discrete time value function in this section.

CHAPTER 4. LEARNING-BASED REACHABILITY 48

where x+ = f(x, π∗(x), d(x)). Once again, the dynamics f need not be known explic-
itly. Using the samples {(xk, π(xk), x

+
k)}k, we perform the following TD update at

every time step:

θk+1 ← θk + α∇θVθk(xk)
(
min{l(xk), Vθk(x+

k)} − Vθk(xk)
)
, (4.26)

or in the specific case when the function approximation is a grid interpolation

~V k+1 ← ~V k + αφ(xk)
(

min{l(xk), φ(x+
k) · ~V k} − φ(xk) · ~V k

)
, (4.27)

The presentation thus far assumes that the optimal policy is known. We only
make this assumption for ease of presentation. In general we can define a policy
evaluation function and policy-dependent loss function like we did in the previous
section. The TD algorithm would not be any different, but it would need to be
combined with a policy iteration algorithm to ultimately yield the value function.

4.2.3 Safe Learning with Temporal Differencing

Leveraging TD in the context of safe learning presents some unique challenges
over the traditional RL setting. First, if we are dealing with a safety critical system,
safety should not be compromised while learning the safe set. Second, in RL the
priority is to learn the value function, so almost all the experiences that result from
the actions can be used for learning. On the other hand, in safe learning, learning
the safe set (value function) is an auxiliary task, so we need to determine which
experiences are actually eligible for learning since many of the actions are not taken
with this objective in mind.

To address the first challenge, we recall that the model is only partially unknown
and is in fact bounded in its uncertainty. By performing reachability analysis with
the dynamics f and disturbance set D we have a value function and optimal safe
policy (under the disturbance D) that ensures safe operation of the system as long as
d(x) ∈ D. In learning the value function for the perfectly known system we can use
the policy from the robust reachability analysis as the optimal policy. Even if the two
policies are different, this choice will only lead to a conservative under-approximation
of the value function and safe set. We can also use the value function from the robust
analysis to initialize the TD algorithm.

The robust reachability analysis also leads to a solution for the second challenge.
With the resulting value function and optimal policy a least-restrictive control law
can be applied. Since the least restrictive control law only takes the optimal safe
action on the boundary of the safe set, i.e. V (x) <= 0, the value function can
only be updated from experiences near the boundary. At first this may seem like a
shortcoming, but it has some practical benefits. First, it ensures that the safe set
can only be modified gradually, which is important in the context of a safety critical
system. Second, learning is concentrated in areas that the system is visiting due to

CHAPTER 4. LEARNING-BASED REACHABILITY 49

its other objectives (e.g. tracking a reference), thus the safe set is only modified in
areas that could potentially help the system have better overall performance.

The full TD reachability algorithm is given by Algorithm 1.

Algorithm 1: Online Reachability through TD

1 Input: f , U , D, K, l, α, ∆t, O, j

2 Initialization:

3 π∗, ~V 0 ← HJIReachability(f , U , D, K, l)
4 k = 0

5 Repeat:

if φ(xk) · ~V k ≤ 0 then
uk = π∗(xk)
~V k+1 ← ~V k + αφ(xk)

(
min{l(xk), φ(xk+1) · ~V k} − φ(xk) · ~V k

)
else
uk ∈ U
~V k+1 = ~V k

end if
k = k + 1

4.2.4 Model-based Temporal Differencing

A key benefit of TD with a grid interpolation function approximator is that
updates to the value function can be made quickly and cheaply, since only a few
parameters change at every iteration. However, model-free methods are not data-
efficient. Model-free methods essentially use one sample to make one update. Model-
based methods on the other hand aggregate all the data to make many updates since
ultimately reachability analysis modifies all the grid node values.

To get the best of both worlds, TD can be performed at multiple grid nodes
simultaneously at each iteration. Define the neighborhood of state x, Nj(x), as the j
nearest grid nodes (typically in the 1 norm), if the state x is visited we can perform
TD at each state in Nj(x). Since the points in the neighborhood are not actually
visited, we need to infer the dynamics at these points. We assume access to a time-
varying oracle Ok : Rn → Rn that takes a state x, and predicts the subsequent state
under the optimal policy. The oracle does not know the subsequent state but rather
estimates it given data from the system. Effectively, the oracle is a model, but a key
distinction is that it should be able to update quickly as new data is presented (e.g.
iterative least squares) since TD is run online. Once we have an oracle we can update
the value function over a neighborhood according to Algorithm 2.

CHAPTER 4. LEARNING-BASED REACHABILITY 50

Algorithm 2: Model-based Online Reachability through TD

1 Input: f , U , D, K, l, α, ∆t, O, j

2 Initialization:

3 π∗(x), ~V 0(x) ← HJIReachability(f , U , D, K, l)
4 k = 0

5 Repeat:

if φ(xk) · ~V k ≤ 0 then
uk = π∗(xk)
for y in Nj(xk) do
y+ = Ok(y)
~V k+1 ← ~V k + αφ(y)

(
min{l(y), φ(y+) · ~V k} − φ(y) · ~V k

)
end for

else
uk ∈ U
~V k+1 = ~V k

end if
k = k + 1

Assuming Lipschitz continuous dynamics and a fine grid, the vector field over
Nj(x) is well approximated by the vector field at x, thus we choose the following
oracle

Ok(y) = y + x+
k − xk, y ∈ Nj(xk), (4.28)

where (xk, x
+
k) is the transition experienced at time step k under policy π∗.

4.2.5 Experiment Setup

In the next two sections,4.2.6 and 4.2.7, we demonstrate this algorithm on some
simulations. In both experiments the system has some performance objective in
addition to a safety constraint, and TD is employed to help achieve the objective by
modifying the safe set. We choose learning rate α = 1 to make the safe set grow
at the fastest rate. We select the number of nearest neighbors j = 3n, where n is
the dimension of the state vector. We find the nearest grid point to the state where
we want to update the safe set, and take the smallest n−dimensional grid centered
around that grid point to be our neighborhood. The idea is to update the safe set
uniformly along all dimensions and to keep the inference region small since our oracle
will be more accurate locally.

CHAPTER 4. LEARNING-BASED REACHABILITY 51

4.2.6 Experiment: Learning to Track a Trajectory

Consider a simplified affine model for the vertical dynamics of a quadrotor with
an unknown payload

z̈ = g + du, (4.29)

where the state x = [ż z] is the vertical position and velocity, g = −9.8m/s2 is
the gravitational constant, the control u is the motor thrust, and the disturbance
d accounts for the scaling of the motor thrust, which depends on the mass of the
quadrotor (and its payload). For this example U = [0, g] and D = [1.1, 1.5]. These
values are chosen heuristically to represent a range of systems that have enough thrust
to overcome gravity.

The objective is to learn to track a trajectory, while staying in a bounded set
K = {x : 0m ≤ z ≤ 3m }. Our motivation comes from learning landing controllers
for delivery drones, where the mass of the package may vary and we want to avoid
collisions with the ground. For learning we use Policy Gradient via the Signed Deriva-
tive (PGSD) [55]. PGSD is an on-policy reinforcement learning technique that learns
better controllers by observing the outcomes of the current controller. We chose this
algorithm primarily for its ease of implementation. For brevity we omit the details of
the algorithm, and refer the interested reader to [55].

CHAPTER 4. LEARNING-BASED REACHABILITY 52

0 5 10 15 20 25

0

0.5

1

1.5

2

Time (sec)

A
lti

tu
de

 (
m

)

10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

Time (sec)W
in

do
w

ed
 A

ve
ra

ge
 S

qu
ar

ed
 P

os
iti

on
 E

rr
or

Reference

w/ Initial Safe Set
w/ Learned Safe Set
w/ Optimal Safe Set

Figure 4.6: The reference trajectory being tracked (top). The squared position track-
ing error averaged over a five second moving window (bottom).

In the simulation we choose the disturbance function d = 1.4, while the initial
safe set is computed with D (thus the initial control strategy will be conservative).
In all the trials, PGSD is active when the system is in the safe set, otherwise the
optimal safe action is applied. In the first simulation the safe set is not updated.
In the second simulation the safe set is updated according to Algorithm 1. A third
simulation is also done using the safe set for the perfectly known deterministic model.
The comparison between the simulations can be seen in Fig. 4.6.

Though the reference trajectory remains inside K, it exits the initial safe set as
seen in Fig. 4.7. It is actually impossible to follow this trajectory using the least
restrictive control strategy (3.1). However, the trajectory is completely contained in
the final learned safe set. The performance of the learning algorithm is enhanced
when the safe set is updated. With the updated safe set we are eventually able to
converge to the same tracking performance obtained using the optimal safe set. It is
also important to note that the safe set is mainly updated in regions that are relevant
to achieving the task (i.e. where the reference trajectory visits).

CHAPTER 4. LEARNING-BASED REACHABILITY 53

Altitiude (m)

V
el

oc
ity

 (
m

/s
ec

)

−0.5 0 0.5 1 1.5 2 2.5 3

−2

−1

0

1

2

3

4
Initial Safe Set
Optimal Safe Set
Learned Safe Set at 4.1 seconds
Learned Safe Set at 34.15 seconds
Learned Safe Set at 81 seconds
reference trajectory

Figure 4.7: Snapshots of the safe set at different times during the simulation. The
reference trajectory exits the initial safe set, but stays inside the learned safe set.

4.2.7 Experiment: Catch Me if You Can

HJI reachability has been extensively applied to zero-sum differential games,
particularly for solving reach-avoid [60] and pursuit-evasion games [62]. A reach-
avoid game involves two players. Player a attempts to reach a goal G, while player b
tries to prevent her from reaching G. In the pursuit-evasion setting, player b attempts
to capture player a, while player a tries to avoid capture. In both games, the two
players must also avoid obstacles Ψ. Each game can be solved using a modification
of (2.6) [36], [48].

CHAPTER 4. LEARNING-BASED REACHABILITY 54

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Target
Obstacle 1
Obstacle 2
Player a
Player b
Capture Radius
Heading
Player b Learned Safe Set
Player b Initial Safe Set
Player a Safe Set

Figure 4.8: The game is initialized so that both players are safe assuming equal
speeds. If player a is inside the player a safe set then she can always avoid capture.
If player a is inside the player b safe set then player b can defend the goal. Note that
the goal is referred to here as the target.

Take the state x =
[
xa ya xb yb

]T
as the joint position of both players in R2.

The dynamics are specified as

ẋ =


d1 cos(d2)
d1 sin(d2)
u1 cos(u2)
u1 sin(u2)

 , (4.30)

where d =
[
d1 d2

]
is the speed and heading angle of player a, and u =

[
u1 u2

]
is

the speed and heading angle of player b.
Define the sets Ψa and Ψb as the set of states for which player a is inside the

obstacle, and the set of states for which player b is inside the obstacle, respectively.
Player b captures player a if

√
(xa − xb)2 + (ya − yb)2 ≤ RC , where RC is the capture

radius. The capture set C is the set of states for which player a has been captured.
Lastly, define a bounded Lipschitz continuous function ωa : Rn → R, such that
C ∪ Ψa = {x | ωa(x) < 0}. A typical choice for ωa is the signed distance function
sC∪Ψa .

CHAPTER 4. LEARNING-BASED REACHABILITY 55

For the reach-avoid game player b has a safety specification, namely to defend
the goal, so the target set (which is the complement to the constraint set K) is given
by T = Ψb ∪ Ga, where Ga is the set of states corresponding to player a reaching the
goal. The solution for this game solves

max
{

min{l(x)− VRA(x, t),
∂VRA(x, t)

∂t
+ max

u∈U
min
d∈D

∂VRA(x, t)

∂x
· f(x, u, d)},

− ωa(x)− VRA(x, t)
}

= 0, ∀t ∈ [0, T]

(4.31)

with VRA(x, T) = l(x), where we recall l(x) is the signed distance to T . The safe set
for the reach avoid game ΩRA is the set of states for which player b can win the game,
i.e. player a does not reach the goal and player b does not hit the obstacle.

In the pursuit-evader game player a has the safety specification, namely to not
get captured or hit an obstacle. Therefore, the target set is T = C ∪ Ψa, and the
solution to the game solves

max
{

min{l(x)− VPE(x, t),
∂VPE(x, t)

∂t
+ max

d∈D
min
u∈U

∂VPE(x, t)

∂x
· f(x, u, d)},

− ωb(x)− VPE(x, t)
}

= 0, ∀t ∈ [0, T]

(4.32)

with VPE(x, T) = l(x), and where ωb : Rn → R is a Lipschitz continuous function
such that Ψb = {x | ωb(x) < 0}. A typical choice for ωb is the signed distance function
sΨb . Note that now the max is being taken over D since player a is trying to stay
in the constraint set K. The safe set for the pursuit-evader game ΩPE is the set of
initial states for which player a can avoid capture and not hit the obstacle.

Let us consider a mixed reach-avoid pursuit-evader game. Player a is allowed to
attack the goal, as long as she can avoid capture, while player b is allowed to pursue
player a, as long as she can guard the goal. For player a we have the following strategy

d =

{
d∗RA(x), if VPE(x) > 0,

d∗PE(x), otherwise,
(4.33)

where d∗PE(x) is the optimal evade action and d∗RA(x) is the optimal attack action
to the goal, which are both obtained as the maximizers to their respective games.
Similarly for player b

u =

{
u∗PE(x), if VRA(x) > 0,

u∗RA(x), otherwise,
(4.34)

where u∗PE(x) is the optimal pursuit action and u∗RA(x) is the optimal defend action,
which are both obtained as the maximizers to their respective games.

The setup of the game is shown in Fig. 4.8. We first solve (4.31) and (4.32)
with U = {u | 0 m/s ≤ u1 ≤ 2 m/s,−π ≤ u2 ≤ π} and D = {d | 0 m/s ≤ d1 ≤

CHAPTER 4. LEARNING-BASED REACHABILITY 56

2 m/s, ,−π ≤ d2 ≤ π}. In both games it is always optimal for the two players to
apply their maximum velocities. In our simulations the maximum velocity of player
a is capped to 1 m/s, therefore, player b has a conservative control law (4.34) since
the reachability analysis assumes player a has a maximum velocity of 2 m/s. In the
first simulation we allow the game to play out without modification to the safe set.
Within five seconds it is evident that the game will end in a draw (player a does
not reach the goal, nor is she captured). Though player a is relatively much slower,
player b still “believes” player a may be just as fast. Player a has a fixed feedback
strategy (4.33) since VPE is not changed. From the perspective of player b, player a
is a deterministic disturbance in the dynamics. However, this disturbance is not as
adversarial as the range of disturbances considered during the reachability analysis.
Thus VRA characterizes an under-approximation of the safe set for the deterministic
system. In the second simulation we employ our algorithm to come up with better
estimates of the optimal safety value function by updating VRA given the observations
from the game. The update rule (4.27) is slightly modified,

~V k+1
RA ← ~V k

RA + αφ(xk)
(

max
{

min{l(xk), φ(x+
k) · ~V k

RA},−ωa(xk)
}
− φ(xk) · ~V k

RA

)
,

(4.35)

where ~VRA contains the grid node values for the reach-avoid game.
The updates enlarge the safe set of player b during the simulation. In the second

column of Fig. 4.9 we can see that the orange curve (player b’s learned safe set) has
receded away from the cyan curve (player b’s initial safe set). The two curves are
different because of the updates that were done during prior visits to that region of
the state space. In the particular sequence shown in the second column player a is on
the boundary of the cyan curve, if the control law was determined by the initial safe
set player b would opt to defend the goal, just as what is shown in the first column.
However, by using the orange curve (learned safe set) player b has more freedom to
pursue. After visiting that region of the state space a few times and updating the
safe set, player b eventually captures player a. In total it takes about 3.4 seconds for
the capture.

It should be noted that the disturbance is not actually being learned. Rather,
we are learning the safety value of a given state directly from our observations. In the
unvisited regions of the state space player b still “believes” player a has a maximum
velocity of 2 m/s, thus the decision to capture player a is made only based on the
local information acquired from the data. One could also use the data to infer the
dynamics of both players and then recompute the safe set entirely. However, with 31
grid points in each dimension, computing the safe set using the Level Set Toolbox
takes 26 minutes on a MacBook Pro with a Core i7 processor. It takes about 0.17
seconds to do one local update (over a neighborhood) in Matlab. Note that relative
to these durations, player a is captured in seconds.

CHAPTER 4. LEARNING-BASED REACHABILITY 57

τ 1

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
τ 1 with Learning

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

τ 2

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
τ 2 with Learning

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

τ 3

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
τ 3 with Learning

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 4.9: These snapshots show player b’s sequence of actions in a similar scenario
with (2nd column) and without (1st column) updating its safe set. In the first column
player b chooses to defend the goal because player a is on the boundary of player b’s
initial safe set (given by the cyan curve). In the first two images of the 2nd column
player a is on the boundary of the cyan curve, which would have resulted in player
b defending the goal. However, player a has not reached the orange curve (player b’s
learned safe set), which has receded from the cyan curve due to the learning algorithm.
Thus player b continues to pursue and eventually captures player a.

58

Chapter 5

Reachability Analysis with
Discounting

This chapter is adapted from the material presented in [3].

Thus far we have focused on applying reachability analysis, first for computing
safe sets in the face of model uncertainty and then for learning safe sets from system
observations. In this section we will turn our attention to the actual analysis itself
and develop a novel formulation for conducting reachability analysis. The following
discussion will apply more broadly than the safe learning context considered thus far,
however some of the motivation comes from the work presented thus far, in particular
the work presented on learning safe sets. We will look at the connection between the
new formulation and learning safe sets in Section 5.5, but for now we begin with a
broad perspective. Instead of referring to the safe set, we will primarily make reference
to the more general reachable set. We also place emphasis here on the target set T
over the state-constraint set K.

It should be noted that this chapter is somewhat disjoint from the previous
chapters so some of the notation will be reused including: λ, γ, and µ.

5.1 On Hamilton-Hacobi Reachability and Con-

traction Mappings

As shown in Section 2.2.2, the standard reachability formulation solves for the
minimum distance to the target set T , by computing the viscosity solution to the
HJ equation in (2.6). This can be thought of more generally as a minimum reward
optimal control problem or differential game. Like most optimal control problems, the
solution is solved approximately on a grid via value iteration, which recursively applies
a backup operator until convergence. An example of this procedure was highlighted
in Section 2.2.3, and we encourage the reader to review that section before continuing

CHAPTER 5. REACHABILITY ANALYSIS WITH DISCOUNTING 59

to the next section.
One downside of MR optimal control problems is that the backup operator in this

setting is not a contraction mapping, thus a specific initialization of value iteration
is required for convergence to the correct solution. A contraction mapping allows for
arbitrary initialization, and with a good initialization convergence can be accelerated.
This would be particularly useful when computing reachable sets for multiple system
models with similar dynamics allowing for the solution of one problem to be used as
an initialization for the other. This is particularly the case when learning reachable
(safe) sets via model-based techniques, in which we generate a sequence of models
from system observations.

On the other hand, infinite horizon sum of discounted reward (SDR) optimal
control problems yield backup operators that are contraction mappings [18]. This
allows for more efficient solution methods, like policy iteration [47], [72] and multigrid
approaches [5], [25].

Drawing inspiration from SDR problems, we propose a minimum discounted
reward (MDR) formulation for computing tight over- and under-approximations of
infinite horizon reachable sets. This new formulation yields a contraction mapping,
making it possible to extend policy iteration and multigrid approaches to this setting.
In addition, it also provides a way forward for learning reachable sets when dynamics
are unknown or difficult to model, a topic that has garnered some attention recently
[4], [31]. This draws greatly from Reinforcement Learning (RL), which can be thought
of as solving the infinite horizon SDR problem when the system model is unknown.
Many RL algorithms boil down to finding the fixed-point of the backup operator
associated with SDR. The techniques developed in RL, like temporal differencing [83]
and Q-learning [90], can naturally be extended to do the same in the MDR setting,
thus facilitating research in learning reachable sets.

The rest of the chapter is organized as follows. In Section 5.2 we briefly go over
SDR problems. In Section 5.3 we describe the MDR formulation for HJ reachability,
and prove some relevant results. In Section 5.4 we explore policy iteration and multi-
grid approaches within the context of MDR problems. Section 5.5 draws inspiration
from RL and presents some preliminary ideas on how the formulation can be used
for learning reachable sets. Section 5.6 contains examples demonstrating the ideas
developed throughout the paper. Again, the reader is encouraged to revisit Section
2.2.3 to recap the MR HJ reachability formulation.

Here, both the one-input and adversarial two-input settings are considered, and
we opt to use the terminology from optimal control for consistency. For example
optimal control will be used to refer to both settings, and we use terms like reward
instead of payoff throughout.1

1Typically the terms optimal control and reward are reserved for the one player setting and zero
sum differential game and payoff are the analogous terms in the adversarial two-player setting.

CHAPTER 5. REACHABILITY ANALYSIS WITH DISCOUNTING 60

5.2 On Sum of Discounted Rewards and Contrac-

tion Mappings

Value iteration converges to a unique solution, independent of the initialization,
when the backup operator is a contraction mapping.

Definition 4 A mapping M(·) : RnG → RnG, is said to be a contraction mapping in
the norm || · || over the space RnG if there exists a Lipschitz constant 0 ≤ κ < 1 such

that for any ~A1, ~A2 ∈ RnG, ||M(~A1)−M(~A2)|| ≤ κ|| ~A1 − ~A2||.

Any contraction mapping has a unique fixed point. The operator given by (2.10)
is not a contraction mapping. To see this note that any vector α~1 ∈ RnG is a fixed
point for α < −L.

The SDR problem does yield a contraction mapping, and we explore it briefly for
the one player case. The objective is to maximize the integral (sum) of exponentially
discounted rewards. In an abuse of notation, the associated value function V (x) for
this problem is given by

V (x) := sup
u∈U

∫ ∞
0

r
(
ξux (t)

)
exp(−λt)dt, λ > 0, (5.1)

where r(·) : Rn → R is a state-dependent reward function, and λ is a discount rate.
It is known that this value function is the solution to the time-independent

Hamilton-Jacobi equation [11],

λV (x) = max
u∈U

∂V

∂x
(x)f(x, u) + g(x). (5.2)

Using the same semi-Lagrangian scheme as in the MR setting (see Section 2.2.3),
equation (5.2) can be approximated as

V∆t(x) = max
u∈U

γV∆t(x+ ∆t · f(x, u)) + ∆t · r(x), (5.3)

where γ = exp(−λ∆t) is the discount factor.
The approximation is solved for using value iteration with the following backup

operator:
B[~A] := ~r + max

π
γΦπ

~A, (5.4)

where ~ri = ∆t · r(xi). The initialization of the value iteration procedure is arbitrary
~V 0 ∈ RnG because the backup operator in (5.4) is a contraction mapping in the
infinity norm, || · ||∞ [18].

Discounting reduces the impact of future rewards on the outcome of the trajec-
tory, and ultimately yields a contraction mapping. In fact, the discount factor γ is
the Lipschitz constant of the contraction mapping.

CHAPTER 5. REACHABILITY ANALYSIS WITH DISCOUNTING 61

5.3 Minimum of Discounted Rewards Hamilton-

Jacobi Reachability Analysis

Inspired by the SDR setting, we now present the MDR optimal control problem.
Moving forward any mention of value function V (x) refers to the MR setting, and is
defined by (2.4), (2.5), and (2.6).

5.3.1 What to discount?

A natural proposal for the outcome of the MDR problem would be

inf
t≥0

l
(
ξu,dx (t)

)
exp(−λt). (5.5)

However, there is an issue with defining this outcome. Recall that discounting
makes rewards contribute less to the outcome the further they occur in the future.
Since we take an infimum, the discounted reward should become more positive the
further it occurs in the future making it less likely to be selected by the infimum.
This only works if the reward is nonpositive everywhere, which is not the case for l,
since it is a clipped signed distance. This is easily fixed with the following outcome
for the MDR problem

Z
(
x,u(·),d(·)

)
:= L+ inf

t≥0
(l
(
ξu,dx (t)

)
− L) exp(−λt). (5.6)

The quantity in the infimum is always nonpositive since L upperbounds l(x) by
construction. Note that if λ = 0, i.e. no discounting, then we have the minimum
reward outcome (2.4).

We define the MDR value function as

Z(x) := inf
β[u](·)∈B

sup
u∈U
Z
(
x,u(·), β[u](·)

)
. (5.7)

For convenience we define two functions U(x) := Z(x)− L and h(x) := l(x)− L.
We will show that U(x) is the viscosity solution to a particular time-independent HJ
equation

0 = min

{
h(x)− U(x),max

u∈U
min
d∈D

∂U

∂x
(x)f(x, u, d)− λU(x)

}
. (5.8)

We begin by presenting some Lemmas to facilitate the proof.

Lemma 1 The function U(x) is well defined.

Proof 7 Define the sequence {U(x, k)}k, where

U(x, k) = inf
β[u](·)∈B

sup
u∈U

inf
t∈[0,k∆t]

(h
(
ξu,β[u]
x (t)

)
) exp(−λt), (5.9)

CHAPTER 5. REACHABILITY ANALYSIS WITH DISCOUNTING 62

and ∆t > 0. The sequence is nonincreasing, since U(x, k+ 1) ≤ U(x, k), and is lower
bounded by −2L, so it converges. Clearly in the limit this sequence also equals U(x).

Lemma 2 Dynamic programming principle. For δ > 0,

U(x) = inf
β[u](·)∈B

sup
u∈Uδ

[
min{ inf

t∈[0,δ]
h
(
ξu,β[u]
x (t)

)
) exp(−λt),

exp(−λδ)U(ξu,β[u]
x (δ))}

] , (5.10)

where Uδ consists of measurable functions on the interval [0, δ].

Proof 8 Splitting the time interval of the infimum in (5.6) into [0, δ] and t > δ, U(x)
can be expressed as

U(x) = inf
β[u](·)∈B

sup
u∈U

[
min{ inf

t∈[0,δ]
h
(
ξu,β[u]
x (t)

)
) exp(−λt),

inf
t>δ

h
(
ξu,β[u]
x (t)

)
) exp(−λt)}

] . (5.11)

Due to time-invariance of the dynamics, if we define s = t− δ, uδ(s) = u(t+ δ) and

y = ξ
u,β[u]
x (δ),

U(x) = inf
β[u](·)∈B

sup
u∈U

[
min{ inf

t∈[0,δ]
h
(
ξu,β[u]
x (t)

)
) exp(−λt),

exp(−λδ) inf
s>0

h
(
ξuδ,β[uδ]
y (s)

)
) exp(−λs)}

]. (5.12)

The game over the second interval can be optimized independently of the first inter-
val once y = ξu,dx (δ) is specified thus it can be replaced with exp(−λδ)U(ξ

u,β[u]
x (δ)).

Furthermore U is replaced with Uδ since the game is only played explicitly on [0, δ].

Before presenting the proof of the viscosity solution, it will be necessary to
introduce the concepts of viscosity subsolution and viscosity supersolution. To simplify
notation, we first define the Hamiltonian H : Rn × Rn → R,

H(x, p) = max
u∈U

min
d∈D

f(x, u, d) · p. (5.13)

Definition 5 A function φ (in this case U) on Rn is a viscosity subsolution of (5.8),
if for all ψ ∈ C1(Rn) and x0 such that φ(x0) = ψ(x0) and x0 attains a local maximum
on φ− ψ, then

min

{
h(x0)− ψ(x0), H(x0,

∂ψ

∂x
)− λψ(x0)

}
≥ 0. (5.14)

Definition 6 A function φ (in this case U) on Rn is a supersolution of (5.8), if for
all ψ ∈ C1(Rn) and x0 such that φ(x0) = ψ(x0) and x0 attains a local minimum on
φ− ψ, then

min

{
h(x0)− ψ(x0), H(x0,

∂ψ

∂x
)− λψ(x0)

}
≤ 0. (5.15)

CHAPTER 5. REACHABILITY ANALYSIS WITH DISCOUNTING 63

Now we present the major theoretical result for this section.

Theorem 1 The function U(x) is the unique viscosity solution to the time-independent
HJ equation given by (5.8).

Proof 9 The structure of the proof follows the classical approach in [33], analogously
to [36], and draws from viscosity solution theory. We start by assuming that U is not
a viscosity solution and then derive a contradiction to Lemma 2.

A continuous function is a viscosity solution if it is both a subsolution and
supersolution. Note that U is uniformly continuous due to the continuity assumptions
on f and l. We first show U is a subsolution of (5.8).

From the local maximum condition in Definition 5 and continuity of system
trajectories, there exists a sufficiently small δ > 0, such that for τ ∈ [0, δ]

U(ξu,dx0
(τ)) ≤ ψ(ξu,dx0

(τ))

for all u(·) ∈ U and d(·) ∈ D.
For sake of contradiction, assume (5.14) is false, then one of the following must

be true

h(x0) = ψ(x0)− ε1 (5.16a)

H(x0,
∂ψ

∂x
)− λψ(x0) = −ε2, (5.16b)

for some ε1, ε2 > 0. If (5.16a) is true, then

h(ξu,dx0
(τ)) exp(−λτ) ≤ ψ(x0)− ε1

2
= U(x0)− ε1

2
(5.17)

Incorporating this into the dynamic programming principle (Lemma 2), we have

U(x0) ≤ inf
β[u](·)∈B

sup
u∈Uδ

{
inf
t∈[0,δ]

h
(
ξu,β[u]
x (t)

)
) exp(−λt)

}
≤ U(x0)− ε1

2
,

(5.18)

which is a contradiction since ε1 > 0. Similarly, if (5.16b), then for a small enough
δ > 0 and some nonanticipative strategy β[·],

H(ξu,β[u]
x0

(τ),
∂ψ

∂x
)− λψ(ξu,β[u]

x0
(τ)) ≤ ε2

2
(5.19)

for all τ ∈ [0, δ] and all inputs u(·) ∈ U. Due to the max in (5.13), for τ ∈ [0, δ]

f(ξu,β[u]
x0

(τ),u(τ), β[u](τ)) · ∂ψ
∂x
− λψ(ξu,β[u]

x0
(τ)) ≤

H(ξu,β[u]
x0

(τ),
∂ψ

∂x
)− λψ(ξu,β[u]

x0
(τ)).

(5.20)

CHAPTER 5. REACHABILITY ANALYSIS WITH DISCOUNTING 64

Combining the two previous inequalities and integrating over the interval [0, δ] we
have

exp(−λδ)ψ(ξu,β[u]
x0

(δ))− ψ(x0) ≤ ε2
2
δ (5.21)

Recalling that U(x0) = ψ(x0)

exp(−λδ)U(ξu,β[u]
x0

(δ)) ≤ ε2
2
δ + U(x0) (5.22)

Incorporating this into the dynamic programming principle, we have

U(x0) ≤ exp(−λδ)U(ξu,β[u]
x0

(δ)) ≤ ε2
2
δ + U(x0), (5.23)

which is a contradiction, thus we conclude that U is a subsolution.
Next we show that U is a supersolution. From the local minimum condition in

Definition 6 and continuity of system trajectories, there exists a sufficiently small
δ > 0, such that for τ ∈ [0, δ]

U(ξu,dx0
(τ)) ≥ ψ(ξu,dx0

(τ))

for all u(·) ∈ U and d(·) ∈ D.
If we suppose (5.15) is false, then both of the following must hold

h(x0) = ψ(x0) + ε1 (5.24a)

H(x0,
∂ψ

∂x
)− λψ(x0) = ε2, (5.24b)

for some small ε1, ε2 > 0. If (5.24a) is true, then

h(ξu,dx0
(τ)) exp(−λτ) ≥ ψ(x0) +

ε1
2

= U(x0) +
ε1
2

(5.25)

Similarly, if (5.16b), then for small enough δ > 0 and some input u(·) ∈ U

H(ξu,β[u]
x0

(τ),
∂ψ

∂x
)− λψ(ξu,β[u]

x0
(τ)) ≥ ε2

2
(5.26)

for all τ ∈ [0, δ] and all nonanticipative strategies β[·].
Due to the min in (5.13), for τ ∈ [0, δ]

f(ξu,β[u]
x0

(τ),u(τ), β[u](τ)) · ∂ψ
∂x
− λψ(ξu,β[u]

x0
(τ)) ≥

H(ξu,β[u]
x0

(τ),
∂ψ

∂x
)− λψ(ξu,β[u]

x0
(τ)).

(5.27)

CHAPTER 5. REACHABILITY ANALYSIS WITH DISCOUNTING 65

Combining the two previous inequalities and integrating over the interval [0, δ] we
have

exp(−λδ)ψ(ξu,β[u]
x0

(δ))− ψ(x0) ≥ ε2
2
δ (5.28)

Recalling that U(x0) = ψ(x0)

exp(−λδ)U(ξu,β[u]
x0

(δ)) ≥ ε2
2
δ + U(x0). (5.29)

Incorporating this into the dynamic programming principle, we have

U(x) = inf
β[u](·)∈B

sup
u∈Uδ

[
min{ inf

t∈[0,δ]
h
(
ξu,β[u]
x (t)

)
) exp(−λt),

exp(−λδ)U(ξu,β[u]
x (δ))}

]
≥ U(x) + min{ε1

2
,
ε2
2
δ},

(5.30)

which is a contradiction, thus U is also a supersolution.
Since we have shown that U is both a viscosity subsolution and viscosity super-

solution of the HJ equation, this completes the proof that U is a viscosity solution of
(5.8). Uniqueness follows from the classical comparison and uniqueness theorems for
viscosity solutions (see Theorem 4.2 in [14]).

5.3.2 Computing the Discounted Value Function

The discrete approximation of (5.8) is given by

U∆t(x) = min

{
h(x),max

u∈U
min
d∈D

γU∆t(x+ ∆tf(x, u, d))

}
, (5.31)

which can be solved on a grid G via value iteration

~U0 ∈ RnG , (5.32a)

~Uk+1 = B[Uk], (5.32b)

~U = lim
k→∞

~Uk, (5.32c)

with the backup operator defined as

B[~A] := min

{
~h,max

π
min
ρ
γΦπ,ρ

~A

}
, (5.33)

where ~hi = h(xi). The MDR value function Z(x) is then approximated by I[~U](x)+L,

where again I[~U](·) is the interpolation operator. We now prove that (5.33) is a
contraction.

CHAPTER 5. REACHABILITY ANALYSIS WITH DISCOUNTING 66

Lemma 3 For any two functions q, g : A×B → R,

|max
a

min
b
q(a, b)−max

a
min
b
g(a, b)| ≤ max

a
max
b
|q(a, b)− g(a, b)|. (5.34)

Proof 10 Define the minimax optimizers for q as the pair (aq, bq), and minimax opti-
mizers of g as the pair (ag, bg). Without loss of generality we assume that q(aq, bq) ≥ g(ag, bg).
We then have the following inequalities:

|max
a

min
b
q(a, b)−max

a
min
b
g(a, b)| ≤ |q(aq, bq)−min

b
g(aq, b)|

≤ |q(aq, bgg)− g(aq, bgg)| ≤ max
a

max
b
|q(a, b)− g(a, b)|,

with bgg := arg min
b
g(aq, b).

Theorem 2 The operator given by (5.33) is a contraction mapping in the infinity
norm || · ||∞ on the space RnG.

Proof 11 Defining B[·] as in (5.33), take A1, A2 ∈ RnG:

||B[~A1]−B[~A2]||∞ =

||min

{
~h,max

π
min
ρ
γΦπ,ρ

~A1

}
−min

{
~h,max

π
min
ρ
γΦπ,ρ

~A2

}
||∞.

Leveraging the identity min{a, b} = 1
2
((a + b) − |a − b|) and using the shorthand

Π[~A] = max
π

min
ρ
γΦπ,ρ

~A , the above is equal to

1

2
||(Π[~A1]− Π[~A2])− (|Π[~A1]− ~h| − |Π[~A2]− ~h|)||∞,

which by the triangle inequality, is upper bounded by

1

2
||(Π[~A1]− Π[~A2])||∞ +

1

2
||(|Π[~A1]− ~h| − |Π[~A2]− ~h|)||∞.

Given the inequality |a− b| > |(|a| − |b|)|, this has upper bound

||(Π[~A1]− Π[~A2])||∞ =

||max
π

min
ρ
γΦπ,ρ

~A1 −max
π

min
ρ
γΦπ,ρ

~A2||∞.

Finally from Lemma 3, the last upper bound is

max
π

max
ρ
||γΦπ,ρ(~A1 − ~A2)||∞ ≤ γ|| ~A1 − ~A2||∞,

where the last inequality comes from the fact that Φπ,ρ is a stochastic matrix for all
policies, thus ||Φπ,ρ||∞ = 1.

CHAPTER 5. REACHABILITY ANALYSIS WITH DISCOUNTING 67

5.3.3 Under- and Over-Approximating the Reachable Set

With MDR formulation there is no particular level curve of the value function
that characterizes the reachable set. However, it is possible to find level curves that
correspond to over and under approximations of the reachable set.

We have the inequality Z(x) ≥ V (x) because the terms being discounted in the
outcome are nonpositive. It immediately follows that

{x | Vλ(x) ≤ 0} ⊆ R(T), (5.35)

For an over-approximation we first need to characterize the error between Z(x)
and V (x). The difference between the two functions can be bounded. Define τ(x)
as the time when the minimum distance to the target is achieved for a trajectory
starting at state x under the optimal control and disturbance signals. Then we have
the following bound

Z(x)− V (x) ≤ (L− l(ξu,dx (τ(x))))(1− exp(−λτ(x))). (5.36)

Noting that V (x) = l(ξu,dx (τ(x))), we get the resulting inequality

Z(x)− V (x) exp(−λτ(x)) ≤ L(1− exp(−λτ(x))), (5.37)

Furthermore, outside the reachable set V (x) > 0 leading to

Z(x)− V (x) ≤ L(1− exp(−λτ(x))) ∀x 6∈ R(T). (5.38)

Assuming an upper bound τ̄ ≥ τ(x), we have the following over-approximation
for the reachable set

R(T) ⊆ {x | Z(x) ≤ L(1− exp(−λτ̄))}. (5.39)

It is clear from (5.37) that the tightness of the approximations can be tuned via
the discount rate λ.

5.4 Improving Convergence

In this section we present methods that may yield much faster convergence than
value iteration. These approaches have been extensively applied to the SDR setting,
and we now apply them to the MDR problem.

5.4.1 Policy Iteration

In the one player setting (control only), if the backup operator is a contraction
mapping the solution can also be obtained via policy iteration. First define the policy
backup operator Bπ[·] : RnG → RnG ,

Bπ[~A] = min
{
~h, γΦπ

~A
}
. (5.40)

CHAPTER 5. REACHABILITY ANALYSIS WITH DISCOUNTING 68

This operator is a contraction mapping. The policy iteration algorithm generates the
sequence {~Uπk}k according to

~Uπk = Bπk [~Uπk], (5.41a)

πk+1 = arg max
π
Bπ[~Uπk], (5.41b)

~U = lim
k→∞

~Uπk . (5.41c)

Note that ~Uπk , the fixed point of (5.41a), is obtained through value iteration with
the policy backup. Finding the fixed point of the policy backup is computationally less
intensive than the other backup operators presented thus far, since no optimization is
performed over policies. The policy iteration algorithm only optimizes over policies
when switching policies.

In practice policy iteration is typically recommended over value iteration because
policies can converge faster than values resulting in faster convergence of the algorithm
[76]. A more detailed analysis of policy iteration (as it pertains to SDR) can be found
in [20], [47], [72].

We now prove that policy iteration converges for the MDR problem.

Proposition 9 Assuming a finite control set U = {ui}nUi=1, the policy iteration al-
gorithm converges to the vectorized value function obtained from (5.32) without the
disturbance.

Proof 12 It’s sufficient to show that sequence {~Uπk}k is nondecreasing, i.e. ~Uπk+1 ≥
~Uπk ∀k. Since the number of policies is finite the nondecreasing criterion implies
that the sequence of vectors will converge. Also note that max

π
Bπ[·] = B[·] as defined

in (5.32) without the disturbance, so the sequence converges to the vectorized value
function.

Consider two sequences ~X i+1 = min
{
~Uπk , γΦπk+1

~X i
}

and ~Y i+1 = min
{
~h, γΦπk+1

~Y i
}

,

with ~X0 = ~Y 0 = ~Uπk . Since ~h ≥ ~Uπk , by (5.41a), we have ~Y i ≥ ~X i,∀i ≥ 0. Next,

we note that ~X1 = min
{
~Uπk , γΦπk+1

~Uπk
}

= min
{
~h, γΦπk

~Uπk , γΦπk+1
~Uπk
}

. Further-

more, the third term in the min{ } is greater than the second, so ~X1 = min
{
~h, γΦπk

~Uπk
}

=
~Uπk , thus ~X i = ~Uπk ,∀i ≥ 0. Lastly, limi→∞ ~Y i = ~Uπk+1

, which is the fixed-point of
the contraction mapping that generates the sequence. Bringing everything together we
have ~Uπk+1

= limi→∞ ~Y i ≥ limi→∞ ~X i = ~Uπk .

5.4.2 Multigrid Approach

The accuracy of the approximation scheme depends on the fineness of the dis-
cretization. Finer grids have lower approximation error, but at the cost of increased

CHAPTER 5. REACHABILITY ANALYSIS WITH DISCOUNTING 69

computational effort. For a desired level of accuracy the number of grid points (and
thus computation) necessary grows exponentially with the state space dimension.

One possible way to manage this trade-off between computation and accuracy
is a multigrid approach. The idea is to first solve for the approximation on a coarse
grid (e.g. grid spacing 2∆xj) and then use the final solution to initialize either value
iteration or policy iteration on a finer grid. The procedure can also be stacked, i.e.
given m grids of increasing fineness we can produce approximations of increasing
accuracy by using each as an initialization for the subsequent grid. This is only
possible because contraction mappings allow great flexibility in the initialization, and
yields faster convergence for good initializations. Due to the curse of dimensionality
obtaining a good approximation is exponentially cheaper on the coarse grid.

Multigrid approaches have been applied extensively for SDR problems, where
empirical and theoretical improvements have been shown [5], [25]. We compare multi-
grid approaches to value iteration in Section 5.6.

5.5 Learning Reachable (Safe) Sets Revisited

When the system model is unknown or complex, the reachable (safe) set must be
learned from data. We first introduced the topic of learning reachable sets in Section
4, where the set was learned based on the standard MR reachability formulation.
However, that formulation has its shortcomings since it does not yield a contraction
mapping. Traditionally reachability analysis was performed once for a single model
offline, and the value function was never modified once it was obtained. Learning the
set is a paradigm shift–the value function is constantly changing and it can be done so
online. In this context having a contraction mapping is beneficial for the model-based
learning approach because as the model changes (due to new observations) the value
function for the current model can be leveraged to compute the value function for the
next model. The standard formulation essentially throws away this information in the
current value function, even though the two might be quite similar, which is typically
the case when the model estimate starts to converge. The model-free TD approach
in Section 4.2.2 does better when it comes to leveraging old solutions, however the
convergence of the solution is dependent on the initialization of the value function,
which is a result of the backup operator having multiple fixed points.

In this section we will revisit the model-based and model-free approaches using
the MDR formulation, and highlight the advantages of contraction mappings.

5.5.1 Model-based

In the model-based approach the model is assumed to be parameterized by a
parameter vector µ. The data is first used to fit the parameters, and then the value
function is computed given the model. As more data is collected, the process can

CHAPTER 5. REACHABILITY ANALYSIS WITH DISCOUNTING 70

be repeated. This is the approach taken in [2], [43], and presented in Section 4.1.
Here we are intentionally vague about the data and the fitting process, which can be
done with a GP for example, and we focus our attention on how to obtain the value
function given the fitted model.

The data collection and fitting produce a sequence of parameters {µk}k, which in

turn corresponds to a sequence of models {fµk}k and vectorized value functions {~Vµk}k
for the MR setting and {~Uµk}k for the MDR setting. With the MR formulation the

value iteration algorithm must be initialized with ~l every time a new value function is
computed. However, with the MDR formulation ~Uµk can be used as the initialization

when computing ~Uµk+1
. Assuming regularity in the dynamics (with respect to µ),

if the parameters only deviate slightly between iterations then ~Uµkshould be a good

approximation of ~Uµk+1
, resulting in faster convergence. If this is not the case then ~l

can be used as the default initialization. Furthermore, the following classical result
on contraction mappings can provide insight on selecting the initialization:

Proposition 10 If M(·) : RnG → RnG is a contraction mapping in the norm || · ||
over the space RnG with Lipschitz constant 0 ≤ κ < 1 and fixed-point ~A∗, then for
any ~A ∈ RnG, || ~A∗ − ~A|| ≤ 1

1−κ ||M(~A)− ~A||.

Given Proposition 10, when computing ~Uµk+1
an upper bound can be computed

on its distance to ~Uµk+1
and ~l by applying the contraction mapping to each. The

initialization can then be selected to minimize this upper bound. In the worst case
only one additional backup operation is performed compared to the default case.

5.5.2 Model-free

This section is meant only to introduce some ideas for future work. The ideas pre-
sented here are not investigated any further throughout the thesis.

Another approach to handling an unknown model, is to compute the value func-
tion directly from the data. This is the approach taken in many RL algorithms that
attempt to approximate the value function for SDR problems with unknown models.

Temporal difference (TD) learning is at the heart of many of these methods,
which includes TD-lambda[83], Q-learning[90], Deep Q Networks[65], and actor-critic
methods[57]. The TD method was introduced in Section for the RL problem, and it
was extended in Section for learning reachable sets under the standard HJ reachability
formulation. We invite the reader to revisit those sections. We now extend TD to
the MDR setting.

For ease of presentation consider an autonomous system f(x) (which might be
due to a fixed policy), and a sequence of state transitions obtained from the system
{(xi, x+

i)}, where x+ = ξx(∆t) and ∆t is the time step. Taking the approximation

CHAPTER 5. REACHABILITY ANALYSIS WITH DISCOUNTING 71

Uθ(x) with parameter θ, the loss function and update rule for the MDR setting would
be

L(θ) =
1

2

(
Uθ(x)−min{h(x), γUθ(x

+)}
)2
,

θi+1 ← θi + α∇θUθi(xi)
(

min{h(xi), γUθi(x
+
i)} − Uθi(xi)

)
.

(5.42)

As before control actions can be accounted for by pairing TD with policy itera-
tion. A key thing to note the loss function here is less susceptible to local minimizers
since the backup operator has a unique fixed-point. In fact, in the tabular case for
discrete state spaces loss function has one global minimizer.

So far there has not been any analysis done on the convergence of TD for com-
puting reachable sets, neither with the MR or MDR formulation. At the very least we
can conclude that any convergence result that exists for the MR formulation will be
initialization dependent since the backup operator used to generate the loss function
has many fixed-points.

Producing convergence results for the MDR setting seems to be more promising
because of the similarities that it shares with the sum of discounted rewards problem
that shows up in RL. The two problem formulations ultimately produce contraction
mappings, which is key because there is a large body of work on the convergence of
TD for RL that relies primarily on the fact that the backup operator is a contrac-
tion mapping. These convergence proofs would be a good start for analyzing the
convergence of TD for MDR problems.

In addition to the convergence analysis, it is also likely that the TD-based RL
algorithms mentioned earlier, like Q-learning, Deep Q Networks, etc., can be used for
learning reachable sets under the MDR formulation.

5.6 Experiments

This section uses two benchmark models, double integrator and pursuit-evasion
game, to exemplify the numerical properties of the MDR formulation. The double in-
tegrator model will be used to display the over-/under-approximation of the reachable
set, as well as to compare policy iteration with value iteration. Both of the bench-
marks will be used to demonstrate the advantages of multigridding, and initializing
value iteration with pre-computed solutions to similar problems.

Unless stated otherwise all algorithms are initialized with ~h = ~l − L, and are
considered converged when the distance (in the infinity norm) between consecutive
iterates falls below ε = .001. All experiments were run on a 2016 MacBook Pro with
Core i7 processor and 16GB RAM.

CHAPTER 5. REACHABILITY ANALYSIS WITH DISCOUNTING 72

Table 5.1: Value Iteration vs Policy Iteration

actions VI Policy Iteration
Ttotal Ttotal Ttotal − TΦπu

2 1.468 78.197 0.102
50 8.753 302.456 1.007
250 36.973 308.565 4.318
500 65.305 326.280 9.760

5.6.1 Double Integrator

The doube integrator consists of two states (x1, x2) , and control u ∈ [−umax, umax]
with dynamics,

ẋ1 = x2

ẋ2 = u
(5.43)

The state space is discretized into a 161 × 161 grid on the domain [−1, 5] × [−5, 5],
and umax = 2.

The task is to keep the state trajectory inside the box K = [0, 4]× [−3, 3], thus
the target is taken to be its complement T = K̄. Given the application we refer to
the safe set in the following experiments.

We first show, in Fig. 5.1 that different level curves of Zover approximates (bold
line) and under approximates (dotted lines) the analytic safe set (shown in black) for
two values of λ = 0.1, 0.2, with τ̄ = 2. As expected smaller values of λ, yield tighter
approximations.

To verify the convergence properties of the MDR formulation we initialize value
iteration with the zero vector ~0 ∈ RNG with λ = 0.1. The error (in the infinity
norm) between the converged solution and the one visualized in Fig. 5.1 is 0.000299,
suggesting convergence to the same fixed point. Under the MR setting value iteration
fails to converge with this particular initialization.

We now compare value iteration and policy iteration with increasing number of
discrete actions in Table 5.1. In the table we see that the runtime of value iteration
increases linearly with the increase in the number of actions, and policy iteration
scales much better. In our particular implementation, our overall runtime favors
value iteration, but it is important to note that the majority of the time for policy
iteration is spent constructing Φπu , which is denoted by TΦπu .2 Excluding this cost,
policy iteration becomes more attractive.

Next, we look at a multigrid approach versus value iteration. For the multigrid
approach we also need to run value iteration on a coarse grid, which we construct to

2The data structure used to represent the interpolation is very efficient for sparse matrix multi-
plication, but is not ideal for indexing, which is necessary to create Φπu , and results in a relatively
large TΦπu

.

CHAPTER 5. REACHABILITY ANALYSIS WITH DISCOUNTING 73

Figure 5.1: The analytic safe set and target set T are shown in black (interior) and
red (exterior), respectively. The over and under approximated Z are shown in bold
green and dotted green for λ = 0.1; and bold blue and dotted blue line for λ = 0.2
(all interior).

CHAPTER 5. REACHABILITY ANALYSIS WITH DISCOUNTING 74

Table 5.2: Double Integrator: Value iteration (VI) with Multigrid

nodes Coarse grid Fine grid Fine grid with CS Multigrid
402 0.012 0.025 0.019 0.031
802 0.019 0.116 0.041 0.060
1602 0.153 1.110 0.084 0.237

Table 5.3: Double Integrator: Value Iteration (VI) with Warm Start (WS)

nodes Mn Ml Ml with WS Mh Mh with WS
402 0.029 0.044 0.041 0.022 0.014
802 0.205 .364 0.273 0.097 0.095
1602 1.444 2.727 2.304 1.257 1.116

have half the resolution per dimension of the nominal grid, e.g. if the nominal grid
has 412 nodes then the coarse grid has 212 nodes. The results are shown in Table 5.2.
We first run value iteration with the standard initialization on both the coarse and
fine grid. This produces the values in columns two and three. We then run value
iteration on the fine grid initialized with the coarse solution (CS), which makes up
column four. Column five (multigrid) is obtained by adding columns two and four.
From the table it is clear that the multigrid approach outperforms value iteration,
especially as the number of nodes increases.

Lastly, denoting the current model as the nominal model Mn, we construct two
different models: a heavy model Mh with umax = 1.0, and a light model Ml with
umax = 4.0. This can be interpreted as two systems that have different control
authorities due to their different masses. The Mn MDR value function will be less
than that of model Ml, but greater than that of Mh. We compute the value functions
for Ml and Mh both initialized with the default initialization, and with the solution
for model Mn, which we refer to as a warm start (WS). This experiment is motivated
by Section 5.5.1, where we discussed the computation of reachable sets as the system
model changes due to new observations from the system. Here we are not concerned
with how the model estimates are obtained, but rather how to produce the reachable
set for the latest model estimate as quickly as possible. Within this context Mn

can be viewed as an old model, and Ml and Mh can be thought of as two possible
new models that were inferred from observations. The results for the experiment are
shown in Table 5.3. In both cases (Ml and Mh) we see that leveraging the solution
for Mn improves the convergence time.

5.6.2 Pursuit-Evasion Game

We now consider the pursuit-evasion game described in [62]. In the game player
I (the control) tries to avoid being captured by player II (the disturbance) on a two

CHAPTER 5. REACHABILITY ANALYSIS WITH DISCOUNTING 75

Table 5.4: Pursuit Evasion: Value iteration (VI) with Multigrid

nodes Coarse grid Fine grid Fine grid with WS Multigrid
403 2.068 29.684 24.320 26.388
803 33.166 352.099 317.444 350.610

dimensional plane. Each player is modeled as a simple kinematic point object with
planar position and heading, fixed linear velocity and controllable angular velocity.
Taking player I to be at the origin the states (x1, x2, x3) are the relative position and
heading of player II and the dynamics are

ẋ1 = −vu + vd cosx3 + ux2

ẋ2 = vd sinx3 − ux1

ẋ3 = d− u
(5.44)

The state space is over the domain [−6, 20] × [−10, 10] × [0, 2π[with U =
[−umax, umax] and D = [−dmax, dmax].

Player I is considered captured when the relative distance (in position) between
both players is less than R > 0, thus the target set is given by

T = {x|x2
1 + x2

2 < R2} (5.45)

We first compute the value functions for the MR and MDR on a 41×41×41 grid,
and setting the model parameters to vu = vd = 5, umax = dmax = 1, and R = 5. This
will be referred to as the nominal model Mn. A visualization of the zero sub-level set
for both V (x) and Z(x) for λ = 0.001 is shown in Fig. 5.2.

In the first experiment we compare a multigrid approach to value iteration. The
results are shown in Table 5.4. The experiment and table follows the same structure
used for the double integrator model. Similar to the double integrator model, the
multigrid approach outperforms value iteration for the pursuit-evasion game.

We now construct two other models by tweaking Mn: setting umax = 1.5, which
gives the evader an advantage, we get model Me, and setting dmax = 1.5, which gives
the pursuer an advantage, we get model Mp. In the final experiment we look at
the impact of initializing value iteration with a solution from a similar model. Just
like in the previous benchmark example, this experiment is motivated by Section
5.5.1, where now Me and Mp represent two possible models inferred from the system
observations. In this context we have just “learned” that the evader/pursuer is more
maneuverable (Me/Mp). We compute both value functions with and without setting
the initialization to the solution for Mn. Again, we refer to this initialization as a
warm start. The results are shown in Table 5.5.

CHAPTER 5. REACHABILITY ANALYSIS WITH DISCOUNTING 76

Table 5.5: Pursuit Evasion: Value iteration (VI) with Warm Start (WS)

nodes Mn Me Me with WS Mp Mp with WS
403 35.043 32.242 21.483 26.319 23.366
803 439.751 416.965 308.821 300.847 296.568

CHAPTER 5. REACHABILITY ANALYSIS WITH DISCOUNTING 77

CHAPTER 5. REACHABILITY ANALYSIS WITH DISCOUNTING 78

Figure 5.2: The target set T (blue cylinder), zero sub-level sets of V (red) and Z
(green) shown from three different perspectives. The discount rate for Z is λ = 0.01.
Note that the zero sub-level set of Z is a subset of the zero sub-level set of V .

79

Chapter 6

Conclusion

We gave an introduction to HJ reachability analysis, and showed how it can be
used as a robust analysis tool for ensuring safety in robotic systems with uncertainty.
In particular we focused on the application of safe learning. In the safe learning
problem our system attempts to learn a policy to optimize its performance for a
non-safety objective, while simultaneously satisfying a constraint (safety objective).

The reachability-based safe learning approach was exemplified on a quadrotor
learning to track an altitude trajectory without crashing into the floor or ceiling. In
this example the quadrotor ultimately learned a good tracking controller, and the
safety controller from reachability analysis prevented the quadrotor from crashing.

In the safe learning example we saw the trade-off between conservativeness and
performance. The first place we encounter this is in the cart-pole system example,
where we tried to learn a swing up controller, while keeping the position confined
to a certain interval. The learning control constantly pushes the cart-pole towards
the boundary of the safe set, which leads to chattering between the safe control and
learning control, ultimately resulting in the task not being accomplished. We showed
that this issue could be addressed by incorporating the value function for safety into
the objective of the learning algorithm.

We briefly talked about model-validation as a means for additional safety. The
basic idea was to compare the observations from the system against the model used
to generate the safe set. In the event that these observations deviated significantly
from the model, the safe set would be contracted, only allowing the system to operate
in regions for which the model was accurate.

In the next part of the thesis we looked at data-driven approaches to computing
the safe set. As stated earlier the robust safety analysis can potentially yield behavior
that is too conservative and hinders performance. By using observations modified the
safe set, so that it produces a level of conservativeness consistent with the uncertainty
that we have about the system. We discussed two approaches of leveraging data for
this purpose: model-based, and model-free.

As an example of a model-based method we consider systems with additive

CHAPTER 6. CONCLUSION 80

uncertainty, and modeled that uncertainty as a GP. The confidence intervals of the
GP provide a convenient way to bound the uncertainty. As more data was collected we
refit the GP, determined the uncertainty bounds, and updated the safe set globally via
reachability analysis. As a consequence of the GP, we also developed a probabilistic
model validation algorithm.

Following the model-based example, we demonstrated a model-free approach
based on temporal difference learning. A key advantage of TD is that it only makes
local updates to the value function, and thus is better suited for on-line usage. An-
other related benefit, is that it only focuses on updating the safe set in regions that
the system visits, so the safe set is modified as to aid in the system’s non-safety ob-
jectives. This approach was demonstrated on the double integrator and Catch Me if
You Can examples.

Finally, we finished by introducing a novel discounted formulation for comput-
ing reachable sets. The main benefit of this formulation is that the value iteration
algorithm used to solve the problem uses a contraction mapping as the backup op-
erator thus the algorithm is agnostic to its initialization. This ultimately leads to
improved solution methods for computing reachable sets, e.g. policy iteration and
multigrid approaches. It also enhances the model-based approach for learning-based
reachability by making it possible to use warm starts. These benefits were shown
on the double integrator and pursuit-evasion examples. We also hinted at how this
formulation could be combined with model-free techniques developed in RL.

In conclusion, we have developed a new formulation for computing reachable sets
that more easily allows us to modify the reachable sets based on observations from the
environment. Adapting the reachable set is critical to retaining strong performance
while ensuring safety for robotic systems with uncertainty.

81

Bibliography

[1] P. Abbeel, A. Coates, M. Quigley, and A. Y. Ng, “An application of reinforce-
ment learning to aerobatic helicopter flight,” Advances in Neural Information
Processing Systems, 2007.

[2] A. K. Akametalu, J. F. Fisac, J. H. Gillula, S. Kaynama, M. N. Zeilinger,
and C. J. Tomlin, “Reachability-based safe learning with gaussian processes,”
Proceedings of IEEE Conference on Decision and Control, 2014.

[3] A. K. Akametalu, S. Ghosh, J. F. Fisac, and C. J. Tomlin, “A minimum dis-
counted reward hamilton-jacobi formulation for computing reachable sets,” Sub-
mitted to IEEE Transactions on Automatic Control, 2018.

[4] A. K. Akametalu and C. J. Tomlin, “Temporal-difference learning for online
reachability analysis,” Proceedings of IEEE European Control Conference, 2015.

[5] A. Alla, M. Falcone, and D. Kalise, “An efficient policy iteration algorithm
for dynamic programming equations,” SIAM Journal on Scientific Computing,
2015.

[6] Amazon.com, Inc. (2016). Amazon prime air, [Online]. Available: http://www.
amazon.com/b?node=8037720011 (visited on 02/16/2016).

[7] A. Ames, J Grizzle, and P. Tabuada, “Control barrier function based quadratic
programs with application to adaptive cruise control,” Proceedings of Confer-
ence on Decision and Control, 2014.

[8] A. Aswani, H. Gonzalez, S. S. Sastry, and C. Tomlin, “Provably safe and robust
learning-based model predictive control,” Automatica, 2013.

[9] J.-P. Aubin, A. Bayen, and P. Saint-Pierre, Viability Theory: New Directions.
Springer, 2011.

[10] AUVSI News. (2016). Uas aid in south carolina tornado investigation, [Online].
Available: http://www.auvsi.org/blogs/auvsi-news/2016/01/29/tornado
(visited on 02/16/2016).

BIBLIOGRAPHY 82

[11] M. Bardi and I. Capuzzo-Dolcetta, Optimal control and viscosity solutions of
Hamilton-Jacobi-Bellman equations. Springer Science & Business Media, 2008.

[12] M. Bardi, M. Falcone, and P. Soravia, “Numerical methods for pursuit-evasion
games via viscosity solutions,” Stochastic and differential games, Springer, 1999.

[13] E. Barron, “Differential games with maximum cost,” Nonlinear analysis: The-
ory, methods & applications, 1990.

[14] E. Barron and H. Ishii, “The bellman equation for minimizing the maximum
cost,” Nonlinear Analysis: Theory, Methods & Applications, 1989.

[15] BBC Technology. (2016). Google plans drone delivery service for 2017, [Online].
Available: http://www.bbc.com/news/technology- 34704868 (visited on
02/16/2016).

[16] R. Bellman, “Dynamic programming,” 1957.

[17] F. Berkenkamp, R. Moriconi, A. P. Schoellig, and A. Krause, “Safe learning of
regions of attraction for uncertain, nonlinear systems with gaussian processes,”
Proceedings of Conference on Decision and Control, 2016.

[18] D. P. Bertsekas, Dynamic programming and optimal control. Athena scientific
Belmont, MA, 1995.

[19] K. Bimbraw, “Autonomous cars: past , present and future,” Thapar University,
2010.

[20] O. Bokanowski, S. Maroso, and H. Zidani, “Some convergence results for howard’s
algorithm,” SIAM Journal on Numerical Analysis, 2009.

[21] M. Chen, “High dimensional reachability analysis: Addressing the curse of di-
mensionality in formal verification,” PhD thesis, EECS Department, University
of California, Berkeley, 2017.

[22] M. Chen, S. Herbert, and C. J. Tomlin, “Fast reachable set approximations
via state decoupling disturbances,” Proceedings of Conference on Decision and
Control, 2016.

[23] ——, “Exact and efficient hamilton-jacobi-based guaranteed safety analysis via
system decomposition,” Proceedings of International Conference on Robotics
and Automation, 2017.

[24] M. Chen, Q. Hu, C. Mackin, J. F. Fisac, and C. J. Tomlin, “Safe platooning of
unmanned aerial vehicles via reachability,” Proceedings of IEEE Conference on
Decision and Control, 2015.

BIBLIOGRAPHY 83

[25] C Chow and J. N. Tsitsiklis, “An optimal one-way multigrid algorithm for
discrete-time stochastic control,” IEEE Transactions on Automatic Control,
1991.

[26] P. Christiano, Z. Shah, I. Mordatch, J. Schneider, T. Blackwell, J. Tobin, P.
Abbeel, and W. Zaremba, “Transfer from simulation to real world through
learning deep inverse dynamics model,” ArXiv preprint, 2016.

[27] A. Coates, P. Abbeel, and A. Y. Ng, “Learning for control from multiple demon-
strations,” International Conference on Machine Learning (ICML), 2008.

[28] E. A. Coddington and N. Levinson, Theory of ordinary differential equations.
Tata McGraw-Hill, 1955.

[29] J. Ding, E. Li, H. Huang, and C. J. Tomlin, “Reachability-based synthesis of
feedback policies for motion planning under bounded disturbances,” Proceedings
of International Conference on Robotics and Automation, 2011.

[30] J. Ding, C. J. Tomlin, L. R. Hook, and J. Fuller, “Initial designs for an automatic
forced landing system for safer inclusion of small unmanned air vehicles into the
national airspace,” Proceedings of the 2016 IEEE/AIAA 35th Digital Avionics
Systems Conference, IEEE, 2016.

[31] B. Djeridane and J. Lygeros, “Neural approximation of pde solutions: An ap-
plication to reachability computations,” Proceedings of Conference on Decision
and Control, IEEE, 2006.

[32] Z. T. Dydek, A. M. Annaswamy, and E. Lavretsky, “Adaptive control and the
nasa x-15-3 flight revisited,” IEEE Control Systems, 2010.

[33] L. C. Evans and P. E. Souganidis, “Differential games and representation formu-
las for solutions of hamilton-jacobi-isaacs equations,” Indiana University Math-
ematics Journal, 1984.

[34] M. Falcone and R. Ferretti, “Discrete time high-order schemes for viscosity so-
lutions of hamilton-jacobi-bellman equations,” Numerische Mathematik, 1994.

[35] J. F. Fisac, A. K. Akametalu, M. N. Zeilinger, S. Kaynama, J. Gillula, and C.
J. Tomlin, “A general safety framework for learning-based control in uncertain
robotic systems,” ArXiv preprint arXiv:1705.01292, 2017.

[36] J. F. Fisac, M. Chen, C. J. Tomlin, and S. S. Sastry, “Reach-avoid problems
with time-varying dynamics, targets and constraints,” Proceedings of the In-
ternational Conference on Hybrid systems: Computation and Control, ACM,
2015.

BIBLIOGRAPHY 84

[37] D. Fitzgerald, R. Walker, and D. Campbell, “A vision based forced landing site
selection system for an autonomous uav,” Proceedings of the 2005 International
Conference on Intelligent Sensors, Sensor Networks and Information Processing
Conference, IEEE, 2005.

[38] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel, R. Ripado,
A. Girard, T. Dang, and O. Maler, “Spaceex: Scalable verification of hybrid
systems,” International Conference on Computer Aided Verification, Springer,
2011.

[39] J. Garćıa and F. Fernández, “A comprehensive survey on safe reinforcement
learning,” Journal of Machine Learning Research, 2015.

[40] P. Geibel and F. Wysotzki, “Risk-sensitive reinforcement learning applied to
control under constraints,” Journal of Artificial Intelligence Research, 2005.

[41] A Genz, “Numerical computation of multivariate normal probabilities,” Journal
of computational and graphical statistics, 1992.

[42] J. H. Gillula and C. J. Tomlin, “Guaranteed safe online learning via reachabil-
ity: tracking a ground target using a quadrotor,” International Conference on
Robotics and Automation, 2012.

[43] J. H. Gillula and C. J. Tomlin, “Reducing conservativeness in safety guaran-
tees by learning disturbances online: iterated guaranteed safe online learning.,”
Robotics: Science and Systems, 2012.

[44] M. R. Greenstreet and I. Mitchell, “Integrating projections,” T. A. Henzinger
and S. Sastry, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 1998.

[45] A. Hobbs, “Unmanned aircraft systems,” Human factors in aviation, E. Salas
and D. Maurino, Eds., 2nd ed., Elsevier, 2010.

[46] G. M. Hoffmann and C. J. Tomlin, “Decentralized cooperative collision avoid-
ance for acceleration constrained vehicles,” Proceedings of IEEE Conference on
Decision and Control, 2008.

[47] R. A. Howard, Dynamic programming and Markov processes. Wiley for The
Massachusetts Institute of Technology, 1964.

[48] H. Huang, J. Ding, W. Zhang, and C. J. Tomlin, “A differential game approach
to planning in adversarial scenarios: a case study on capture-the-flag,” Interna-
tional Conference on Robotics and Automation, 2011.

BIBLIOGRAPHY 85

[49] S. Huang, N. Papernot, I. Goodfellow, Y. Duan, and P. Abbeel, “Adversarial
attacks on neural network policies,” ArXiv preprint, 2017.

[50] D. R. Jenkins, “Hypersonics before the shuttle: A concise history of the x-15
research airplane,” 2000.

[51] S. Kaynama and M. Oishi, “Schur-based decomposition for reachability analysis
of linear time-invariant systems,” Proceedings of Conference on Decision and
Control, 2009.

[52] ——, “Complexity reduction through a schur-based decomposition for reacha-
bility analysis of linear time-invariant systems,” International Journal of Con-
trol, 2011.

[53] ——, “A modified riccati transformation for decentralized computation of the
viability kernel under lti dynamics,” IEEE Transactions on Automatic Control,
2013.

[54] M. Kearns and S. Singh, “Near-optimal reinforcement learning in polynomial
time,” Machine learning, 2002.

[55] J. Z. Kolter, C. Plagemann, D. T. Jackson, A. Y. Ng, and S. Thrun, “A proba-
bilistic approach to mixed open-loop and closed-loop control, with application
to extreme autonomous driving,” Proceedings of International Conference on
Robotics and Automation, 2010.

[56] J. Z. Kolter and A. Y. Ng, “Policy search via the signed derivative.,” Proceedings
of Robotics: Science and Systems Conference, 2009.

[57] V. R. Konda and J. N. Tsitsiklis, “Actor-critic algorithms,” Advances in neural
information processing systems, 2000.

[58] A. B. Kurzhanski and P. Varaiya, “Ellipsoidal techniques for reachability anal-
ysis: Internal approximation,” Systems & Control Letters, 2000.

[59] S. Lupashin, A. Schöllig, M. Sherback, and R. D’Andrea, “A simple learning
strategy for high-speed quadrocopter multi-flips,” Proceedings of International
Conference on Robotics and Automation, 2010.

[60] K. Margellos and J. Lygeros, “Hamilton-jacobi formulation for reach-avoid dif-
ferential games,” IEEE Transactions on Automatic Control, 2011.

[61] I. M. Mitchell, “Scalable calculation of reach sets and tubes for nonlinear sys-
tems with terminal integrators: A mixed implicit explicit formulation,” 2011.

BIBLIOGRAPHY 86

[62] I. M. Mitchell, A. M. Bayen, and C. J. Tomlin, “A time-dependent hamilton-
jacobi formulation of reachable sets for continuous dynamic games,” IEEE
Transactions on Automatic Control, 2005.

[63] I. M. Mitchell and J. A. Templeton, “A toolbox of hamilton-jacobi solvers for
analysis of nondeterministic continuous and hybrid systems,” Proceedings of
the 8th International Workshop on Hybrid Systems: Computation and Control,
Berlin, Heidelberg: Springer, 2005.

[64] I. M. Mitchell and C. J. Tomlin, “Overapproximating reachable sets by hamilton-
jacobi projections,” Journal of Scientific Computing, 2003.

[65] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver,
and K. Kavukcuoglu, “Asynchronous methods for deep reinforcement learning,”
Proceedings of International Conference on Machine Learning, 2016.

[66] V. Mnih, K. Kavukcuoglu, D. Silver, A. a. Rusu, J. Veness, M. G. Bellemare, A.
Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie,
A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D.
Hassabis, “Human-level control through deep reinforcement learning,” Nature,
2015.

[67] T. M. Moldovan and P Abbeel, “Safe exploration in markov decision processes,”
Proceedings of International Conference on Machine Learning, 2012.

[68] National Aeronautics and Space Administration. (2016). Challenge is on to
design sky for all, [Online]. Available: http : / / www . nasa . gov / feature /

challenge-is-on-to-design-sky-for-all (visited on 02/12/2016).

[69] S. Osher and R. Fedkiw, Level set methods and dynamic implicit surfaces.
Springer Science & Business Media, 2003.

[70] T. J. Perkins and A. G. Barto, “Lyapunov design for safe reinforcement learn-
ing,” The Journal of Machine Learning Research, 2003.

[71] S. Prajna and A. Jadbabaie, “Safety verification of hybrid systems using bar-
rier certificates,” Proceedings of International Conference on Hybrid Systems:
Computation and Control, 2004.

[72] M. L. Puterman and S. L. Brumelle, “On the convergence of policy iteration in
stationary dynamic programming,” Mathematics of Operations Research, 1979.

[73] C. E. Rasmussen and C. K. I. Williams, Gaussian processes for machine learn-
ing. MIT Press, 2006.

BIBLIOGRAPHY 87

[74] J. W. Roberts, I. R. Manchester, and R. Tedrake, “Feedback controller pa-
rameterizations for reinforcement learning,” Symposium on Adaptive Dynamic
Programming and Reinforcement Learning, 2011.

[75] G. A. Rummery and M. Niranjan, On-line Q-learning using connectionist sys-
tems. University of Cambridge, Department of Engineering, 1994.

[76] S. J. Russell, P. Norvig, J. F. Canny, J. M. Malik, and D. D. Edwards, Artificial
intelligence: A modern approach. Prentice hall Upper Saddle River, 2003.

[77] D. Sadigh, S. Sastry, S. A. Seshia, and A. D. Dragan, “Planning for autonomous
cars that leverage effects on human actions,” Proceedings of Robotics: Science
and Systems Conference, 2016.

[78] J. Schulman, S. Levine, M. Jordan, and P. Abbeel, “Trust region policy opti-
mization,” International Conference on Machine Learning (ICML), 2015.

[79] J. Sethian, “A fast marching level set method for monotonically advancing
fronts.,” Proceedings of the National Academy of Sciences of the United States
of America, 1996.

[80] C.-W. Shu and S. Osher, “Efficient implementation of essentially non-oscillatory
shock-capturing schemes,” Journal of Computational Physics, 1988.

[81] C. Sloth, G. J. Pappas, and R. Wisniewski, “Compositional safety analysis us-
ing barrier certificates,” Proceedings of the International Conference on Hybrid
Systems: Computation and Control, 2012.

[82] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. MIT
Press, 1998.

[83] R. S. Sutton, “Learning to predict by the methods of temporal differences,”
Machine Learning, 1988.

[84] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy gradient
methods for reinforcement learning with function approximation,” Advances in
Neural Information Processing Systems, 2000.

[85] G. Tesauro, “Temporal difference learning and td-gammon,” Communications
of the ACM, 1995.

[86] J. N. Tsitsiklis and B. Van Roy, “An analysis of temporal-difference learning
with function approximation,” IEEE Transactions on Automatic Control, 1997.

BIBLIOGRAPHY 88

[87] M. Turchetta, F. Berkenkamp, and A. Krause, “Safe exploration in finite markov
decision processes with gaussian processes,” Advances in Neural Information
Processing Systems (NIPS), 2016.

[88] J. Van Den Berg, S. Miller, K. Goldberg, and P. Abbeel, “Gravity-based robotic
cloth folding,” Algorithmic Foundations of Robotics IX, Springer, 2010.

[89] P. C. Wang, S. Miller, M. Fritz, T. Darrell, and P. Abbeel, “Perception for the
manipulation of socks,” Proceedings of IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2011, IEEE, 2011.

[90] C. J. Watkins and P. Dayan, “Q-learning,” Machine Learning, 1992.

