UC San Diego UC San Diego Previously Published Works

Title

Search for heavy neutrinos and [Formula: see text] bosons with right-handed couplings in proton-proton collisions at [Formula: see text].

Permalink

<https://escholarship.org/uc/item/7310x996>

Journal

The European physical journal. C, Particles and fields, 74(11)

ISSN

1434-6044

Authors

CMS Collaboration Khachatryan, V Sirunyan, AM [et al.](https://escholarship.org/uc/item/7310x996#author)

Publication Date

2014

DOI

10.1140/epjc/s10052-014-3149-z

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, available at<https://creativecommons.org/licenses/by/4.0/>

Peer reviewed

Regular Article - Experimental Physics

THE EUROPEAN PHYSICAL JOURNAL C

Search for heavy neutrinos and W bosons with right-handed couplings in proton–proton collisions at $\sqrt{s} = 8 \text{ TeV}$

CMS Collaboration[-](#page-1-0)

CERN, 1211 Geneva 23, Switzerland

Received: 14 July 2014 / Accepted: 22 October 2014 / Published online: 26 November 2014 © CERN for the benefit of the CMS collaboration 2014. This article is published with open access at Springerlink.com

Abstract A search for heavy, right-handed neutrinos, N_ℓ $(\ell = e, \mu)$, and right-handed W_R bosons, which arise in the left-right symmetric extensions of the standard model, has been performed by the CMS experiment. The search was based on a sample of two lepton plus two jet events collected in proton–proton collisions at a center-of-mass energy of 8 TeV corresponding to an integrated luminosity of 19.7 fb⁻¹. For models with strict left-right symmetry, and assuming only one N_ℓ flavor contributes significantly to the W_R decay width, the region in the two-dimensional (M_{W_R}, M_{N_ℓ}) mass plane excluded at a 95 % confidence level extends to approximately $M_{\text{W}_R} = 3.0 \text{ TeV}$ and covers a large range of neutrino masses below the W_R boson mass, depending on the value of M_{W_R} . This search significantly extends the (M_{W_R}, M_{N_ℓ}) exclusion region beyond previous results.

1 Introduction

The standard model (SM) $[1-3]$ $[1-3]$ explicitly incorporates the parity violation observed in weak interactions through the use of a left-handed chiral $SU_L(2)$ gauge group which includes the left-handed gauge bosons W_L^{\pm} and Z_L . One of the attractive features of left-right (LR) symmetric extensions [\[4](#page-10-2)[–7\]](#page-10-3) to the standard model is that these models explain parity violation in the SM as the consequence of spontaneous symmetry breaking of a larger gauge group to $SU_L(2) \times SU_R(2)$ at a multi-TeV mass scale. The LR extensions introduce an additional right-handed $SU_R(2)$ symmetry group to the SM, which includes heavy charged (W_R^{\pm}) and neutral (Z_R) gauge bosons that could be produced at LHC energies.

In addition to addressing parity non-conservation in weak interactions, LR theories also provide an explanation for the

mass of SM neutrinos. The observation of neutrino oscillations [\[8](#page-10-4),[9\]](#page-10-5) requires that neutrinos have mass, and the fact that the neutrino mass scale $[10]$ $[10]$ is far below that of quarks and charged leptons suggests that the origin of neutrino mass may be distinct from the origin of mass for the other SM fermions. Heavy right-handed Majorana neutrinos (N_e , N_{μ} , and N_{τ}), which are naturally present in LR models, provide a possible explanation for the mass of SM neutrinos through the see-saw mechanism $[11, 12]$ $[11, 12]$.

We search for W_R bosons produced in a sample of proton– proton collisions at a center-of-mass energy \sqrt{s} = 8 TeV and collected by the CMS detector at the CERN LHC. This search, which expands upon a previous search using \sqrt{s} = 7 TeV data [\[13\]](#page-10-9), assumes the production of a W_R boson that decays to a charged lepton (we consider $\ell = e, \mu$) and to a right-handed neutrino N_ℓ . The decay of the righthanded neutrino produces a second charged lepton of the same flavor together with a virtual right-handed charged boson W_R^* . When the W_R^* decays to a pair of quarks, we arrive at the decay chain:

$$
W_R \to \ell_1 N_\ell \to \ell_1 \ell_2 W_R^* \to \ell_1 \ell_2 q \overline{q}.
$$

The quarks hadronize into jets (*j*), resulting in an observable final state containing two same-flavor charged leptons and two jets. Although the potential Majorana nature of the right-handed neutrinos implies the final-state charged leptons can have the same sign, we do not impose any charge requirements on the final-state electrons or muons in this analysis.

This search is characterized by the masses of the W_R boson (M_{W_R}) and the right-handed neutrino N_l (M_{N_ℓ}) , which are allowed to vary independently. Although $M_{N_\ell} > M_{W_R}$ is allowed in the LR symmetric model, it is not considered in this analysis in favor of the dominant $q\bar{q}' \rightarrow W_R$ production mechanism. As the branching fraction for $W_R \to \ell N_\ell$ depends on the number of heavy-neutrino flavors accessible at LHC energies, results are first interpreted assuming that only one neutrino flavor, namely N_e or N_μ , is light enough to contribute significantly to the W_R boson decay width. Results

Electronic supplementary material The online version of this article (doi[:10.1007/s10052-014-3149-z\)](http://dx.doi.org/10.1007/s10052-014-3149-z) contains supplementary material, which is available to authorized users.

⁻ e-mail: cms-publication-committee-chair@cern.ch

are then interpreted assuming degenerate N_e , N_μ , and N_τ masses.

For given W_R boson and N_ℓ mass assumptions, the signal cross section can be predicted from the value of the coupling constant g_R , which denotes the strength of the gauge interactions of W_R bosons. We assume strict LR symmetry, such that g_R is equal to the (left-handed) weak interaction coupling strength g_L at M_{W_R} , and we also assume identical quark and neutrino mixing matrices for the left- and righthanded interactions. The W_R boson production cross section can then be calculated by the fewz program [\[14](#page-10-10)] using the left-handed W' model [\[15\]](#page-10-11). Finally, the left-right boson and lepton mixing angles are assumed to be small [\[16](#page-10-12)].

The theoretical lower limit on W_R mass of $M_{W_R} \gtrsim$ 2.5 TeV [\[17,](#page-10-13)[18\]](#page-10-14) is estimated from the measured size of the K_L–K_S mass difference. Searches for $W_R \rightarrow t\overline{b}$ decays at the LHC using \sqrt{s} = 7 and 8 TeV data [\[19](#page-10-15)[–21](#page-10-16)] have excluded W_R boson masses below 2.05 TeV at 95 % confidence level (CL), and previous searches for $W_R \to \ell N_\ell$ at the LHC excluded at 95 % CL a region in the two-dimensional parameter space (M_{W_R}, M_{N_ℓ}) extending to nearly M_{W_R} = 2.5 TeV [\[13](#page-10-9),[22\]](#page-10-17). This paper describes the first direct search that is sensitive to $M_{\text{W}_{\text{R}}}$ values beyond the theoretical lower mass limit.

2 The CMS detector

The central feature of the CMS apparatus is a superconducting solenoid, of 6 m internal diameter, providing a field of 3.8 T. Within the field volume are the silicon pixel and strip tracker, the PbWO₄ crystal electromagnetic calorimeter (ECAL) and the brass and scintillator hadron calorimeter (HCAL). Muons are measured in gas-ionization detectors embedded in the steel flux-return yoke. The ECAL has an energy resolution of better than 0.5 % for unconverted photons with transverse energies $E_T = E/\cosh \eta > 100 \,\text{GeV}$. The muons are measured in the pseudorapidity window $|\eta|$ < 2.4, where $\eta = -\ln[\tan(\theta/2)]$ and θ is the polar angle with respect to the counterclockwise-beam direction. The muon system detection planes are made of three technologies: drift tubes, cathode strip chambers, and resistive-plate chambers. Matching the muons to the tracks measured in the silicon tracker results in a transverse momentum ($p_T \equiv |p|/\cosh \eta$) resolution between 1 and 10 % for $p_T < 1$ TeV. The inner tracker measures charged particles within the range $|\eta| < 2.5$ and provides an impact parameter resolution of ∼15 µm and a p_T resolution of about 1.5 % for 100 GeV particles. The first level of the CMS trigger system, composed of custom hardware processors, uses information from the calorimeters and muon detectors to select up to 100 kHz of events of interest. The high-level trigger (HLT) processor farm uses information from all CMS subdetectors to further decrease the event rate to about 400 Hz before data storage. A more detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found elsewhere [\[23](#page-10-18)].

The particle-flow event reconstruction technique [\[24,](#page-10-19)[25\]](#page-10-20) used to reconstruct jets in this analysis consists in reconstructing and identifying each single particle with an optimized combination of all subdetector information. The energy of photons is directly obtained from the ECAL measurement, corrected for zero-suppression effects. The energy of electrons is determined from a combination of the track momentum at the main interaction vertex, the corresponding ECAL cluster energy, and the energy sum of all bremsstrahlung photons attached to the track. The energy of muons is obtained from the corresponding track momentum. The energy of charged hadrons is determined from a combination of the track momentum and the corresponding ECAL and HCAL energy, corrected for zero-suppression effects and for the response function of the calorimeters to hadronic showers. Finally, the energy of neutral hadrons is obtained from the corresponding corrected ECAL and HCAL energy.

3 Data and Monte Carlo samples

The search for W_R boson production described in this paper is performed using pp collision data collected with the CMS detector at \sqrt{s} = 8 TeV in 2012. The data sample corresponds to an integrated luminosity of 19.7 fb⁻¹. Candidate $W_R \rightarrow eN_e$ events are collected using a double-electron trigger that requires two clusters in ECAL with $E_T > 33$ GeV each. These ECAL clusters are loosely matched at the HLT stage to tracks formed from hits in the pixel detector. To reject hadronic backgrounds, only a small amount of energy in the HCAL may be associated with the HLT electron candidates. Muon channel events are selected with a single-muon trigger that requires at least one candidate muon with $p_T > 40$ GeV and $|\eta| < 2.1$, as reconstructed by the HLT.

Simulated $W_R \rightarrow \ell N_\ell$ signal samples are generated assuming $M_{\text{N}_{\ell}} = \frac{1}{2} M_{\text{W}_{\text{R}}}$ using PYTHIA 6.4.26 [\[26\]](#page-10-21), a treelevel Monte Carlo (MC) generator, with CTEQ6L1 parton distribution functions (PDF) [\[27\]](#page-10-22) and underlying event tune Z2* [\[28\]](#page-11-0). The MC generator includes the LR symmetric model with the assumptions previously mentioned. The final state leptons and jets in these signal events are sufficiently energetic to allow reconstruction effects to be addressed apart from the kinematic requirements discussed below. With this separation, the extension from $M_{N_\ell} = \frac{1}{2} M_{W_R}$ to the full two-dimensional $(M_{W_R}, M_{N_{\ell}})$ mass plane for signal events is straight-forward, as is discussed in Sect. [7.](#page-7-0) The dominant backgrounds to WR boson production include SM processes with at least two charged leptons with large transverse momentum, namely tt \rightarrow bW⁺bW[−] and Drell–Yan

(DY)+jets processes. All remaining SM background events, which collectively contribute less than 10 % to the total background level, are dominated by diboson and single top quark processes. The tt background is estimated using control samples in data and a simulated sample of fully leptonic tt decays, which are generated using the tree-level matrix ele-ment MC generator MADGRAPH 5.1.4.8 [\[29\]](#page-11-1). The DY+jets background is estimated using exclusive DY+n jets $(n = 0,$ 1, 2, 3, 4) simulated samples generated with MADGRAPH 5.1.3.30. For the above MADGRAPH samples, parton showering, fragmentation, and the underlying event are handled by pythia. A statistically comparable sample of DY+jets events generated with the tree-level MC event generator sherpa 1.4.2 [\[30\]](#page-11-2), which incorporates parton showering and other effects in addition to the hard process, is used to help quantify the systematic uncertainty in the DY+jets background estimation. Simulated diboson (WW, WZ, and ZZ) events are generated using PYTHIA 6.4.26, with the additional small contributions from diboson scattering processes generated with MADGRAPH 5.1.3.30. The simulated single top quark (namely, tW) background sample is generated via the nextto-leading-order MC generator powheg 1.0 [\[31](#page-11-3)[–34](#page-11-4)]. Parton showering and other effects are handled by PYTHIA for the diboson and single top quark background samples.

The generated signal and SM background events pass through a full CMS detector simulation based on GEANT4 [\[35](#page-11-5)], and are reconstructed with the same software used to reconstruct collision data, unless otherwise noted. The simulation is compared to data using various control samples, and when necessary the simulation is adjusted to account for slight deviations seen with respect to data. Additional pp collisions in the same beam crossing (pileup) are also included for each simulated event to realistically describe the $\sqrt{s} = 8$ TeV collision environment.

4 Event selection and object reconstruction

We assemble W_R boson candidates from the two highest- p_T (leading) jets and two highest- p_T same-flavor leptons (electrons or muons) reconstructed in collision data or simulation events. Candidate events are first selected by the CMS trigger system using the lepton triggers described previously. The electron and muon trigger efficiencies are determined using the "tag and probe" techniques applied to $Z \rightarrow \ell \ell$ candidates [\[36](#page-11-6)[–38\]](#page-11-7). Simple triggers, requiring a single ECAL cluster with $E_T > 300$ GeV, collected events with high- p_T electrons to help evaluate the trigger efficiency for electron channel events with high dielectron mass [\[39\]](#page-11-8). Following the application of object and event selection requirements mentioned below, the trigger efficiency for $W_R \rightarrow \ell N_\ell$ candidate events is greater than 99 % (98 %) in the electron (muon) channel.

Because of the large expected mass of the W_R boson, electron and muon reconstruction and identification are performed using algorithms optimized for objects with large transverse momentum [\[36,](#page-11-6)[39\]](#page-11-8). Non-isolated muon backgrounds are suppressed by computing the transverse momentum sum of all additional tracks within a cone of $\Delta R < 0.3$ about the muon direction, where $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$ (azimuthal angle ϕ in radians), and requiring the p_T sum to be less than 10 % of the muon transverse momentum. This isolation requirement is only weakly dependent on the number of pileup collisions in the event, as tracks with a large Δz separation from the muon, i.e., tracks from other pp collisions, are not included in the isolation sum. Electrons are expected to have minimal associated HCAL energy and also to appear isolated in both calorimeters and in the tracker. To minimize the effects of pileup, electrons must be associated with the primary vertex, which is the collision vertex with the highest $\sum p_{\rm T}^2$ of all associated tracks. As pileup collisions also produce extra energy in the calorimeters and can make the electron appear non-isolated, calorimeter isolation for electron candidates is corrected for the average energy density in the event [\[40](#page-11-9)].

Jets are reconstructed using the anti- k_T clustering algorithm [\[41\]](#page-11-10) with a distance parameter of 0.5. Charged and neutral hadrons, photons, and leptons reconstructed with the CMS particle-flow technique are used as input to the jet clustering algorithm. To reduce the contribution to jet energy from pileup collisions, charged hadrons that do not originate from the primary vertex in the event are not used in jet clustering. After jet clustering, the pileup calorimeter energy contribution from neutral particles is removed by applying a residual average area-based correction [\[40,](#page-11-9)[42\]](#page-11-11). Jet identification requirements [\[43\]](#page-11-12) suppress jets from calorimeter noise and beam halo, and the event is rejected if either of the two highest- p_T jet candidates fails the identification criteria. The jet four-momenta are corrected for zero-suppression effects and for the response function of the calorimeters to hadronic showers based on studies with simulation and data [\[44](#page-11-13)]. As the electrons and muons from W_R boson decay are likely to be spatially separated from jets in the detector, we reject any lepton found within a cone of radius ΔR < 0.5 from the jet axis for either of the two leading jets.

After selecting jets and isolated electrons or muons in the event, $W_R \rightarrow \ell N_\ell$ candidates are formed using the two leading same-flavor leptons and the two leading jets that satisfy the selection criteria. The leading (subleading) lepton is required to have $p_T > 60$ (40) GeV, while the p_T of each jet candidate must exceed 40 GeV. Electrons and jets are reconstructed within the tracker acceptance ($|\eta| < 2.5$). Muon acceptance extends to $|\eta| < 2.4$, although at least one muon is restricted to $|\eta| < 2.1$ in order to be selected by the trigger.

ground contribution from diboson and single top quark processes. The uncertainties in the background expectation are derived for the final stage of selection and more details are given in Sect. [6.](#page-5-0) The total experimental uncertainty is summarized in the first signal uncertainty, and the second signal uncertainty represents the PDF cross section uncertainty. The yields from earlier stages of the selection have greater relative uncertainty than that for the final $M_{\ell \ell i j} > 600 \text{ GeV}$ selection stage

We perform a shape-based analysis, searching for evidence of W_R boson production using the four-object mass distribution ($M_{\ell \ell j j}$), where we consider events with $M_{\ell \ell j j}$ > 600 GeV. To reduce the contribution from DY+jets and other SM backgrounds, we also impose a requirement of $M_{\ell\ell} > 200 \,\text{GeV}$ on the mass of the lepton pair associated with the W_R boson candidate.

The decay of a W_R boson tends to produce final-state objects that have high p_T and are separated in the detector. We define the signal acceptance to include the kinematic and detector acceptance requirements for the leptons and jets, lepton-jet separation, and the minimum $M_{\ell\ell}$ and $M_{\ell\ell ij}$ requirements. This signal acceptance, typically near 80 % at $M_{N_\ell} \sim M_{W_R}/2$, varies by less than 1 % between the electron and muon channels because of differences in detector acceptance for leptons. Provided that the W_R boson decay satisfies acceptance requirements, the ability to reconstruct all four final-state particles is near 75 $\%$ 2.8 (85 $\%$) for the electron (muon) channel, with some dependence on W_R boson and N_ℓ masses. However, if the mass of the W_R boson is sufficiently heavy compared to that of the right-handed neutrino, the $N_\ell \rightarrow \ell j j$ decay products tend to overlap and it becomes difficult to reconstruct two distinct jets or find leptons outside of the jet cone. As a result, the signal acceptance as a function of M_{N_ℓ} decreases rapidly as M_{N_ℓ} drops below about 10 % of the W_R boson mass.

5 Standard model backgrounds

The tt background contribution to the ee *j j* and $\mu \mu j j$ final states is estimated using a control sample of $e\mu i j$ events reconstructed in data. Studies of simulated $t\bar{t} \rightarrow eejj, \mu \mu jj$, and e $\mu j j$ decays confirm that the $M_{ee}j j$ and $M_{\mu\mu}j j$ distributions can be modeled by the $M_{e\mu j j}$ distribution, so we apply selection requirements to $e\mu j j$ events that parallel those

applied to electron and muon channel events. The $e\mu j j$ events are collected using the same HLT selection as $\mu \mu i j$ events, although in this case only one muon is available for selection by the trigger. This sample is dominated by $t\bar{t}$ events, and small contributions from other SM processes are subtracted using simulation. The relative fractions of $t\bar{t} \rightarrow eejj$, $\mu \mu jj$, and $e\mu j j$ events that pass the selection criteria are determined from simulation. Using this information, the $M_{e^{ij}}$ distribution for the $e\mu j j$ control sample from data is scaled to match the expected $t\bar{t}$ background contribution to the $M_{ee\bar{i}j}$ and $M_{\mu\mu i\bar{j}}$ distributions. The scale factor derived from simulation is determined after requiring $M_{e\mu} > 200 \,\text{GeV}$ and $M_{e\mu j j} > 600 \,\text{GeV}$, which is equivalent to the third and final selection stage in Table [1.](#page-4-0) The scale factors for the $t\bar{t}$ background sample are 0.524 ± 0.007 and 0.632 ± 0.008 in the electron and muon channels, respectively, where the uncertainty in the values reflects the number of simulated $t\bar{t}$ events that satisfy all object and event requirements. The trigger efficiency for e μ *j* events is over 90 % for events with central muons ($|\eta| < 0.9$) and decreases for events with more forward muons. Consequently, both the electron and muon scale factors are larger than the expected value of 0.5, given the relative branching fractions for $t\bar{t} \rightarrow e^{i j j}$, $\mu \mu j j$, and eμ*j j* decays.

The $t\bar{t}$ scale factors, determined from simulation, are checked using control regions in data. We first consider events in both simulation and data where one or both jets are identified as originating from a bottom quark. After all selection requirements are applied, reconstructed $t\bar{t}$ decays dominate the event samples. Accounting for contributions from other SM processes using simulation, we compute scale factors for e μ *j* j events in data with 60 < $M_{\text{e}\mu}$ < 200 GeV to estimate the $t\bar{t}$ contribution to the SM background when one or both jets are tagged as b jets using the medium working point of the combined secondary vertex tagging algorithm [\[45\]](#page-11-14). The M_{ee} and $M_{\mu\mu}$ distributions in b-tagged

data agree with expectations based on simulation and the $e\mu j j$ control sample, and the derived scale factors agree with those obtained from simulation within statistical precision. For another cross-check, we compute the scale factor based on the expectation that $t\bar{t} \rightarrow e\mu j j$ should be twice the rate of $t\bar{t} \rightarrow e e j j$ or $t\bar{t} \rightarrow \mu \mu j j$. Deviation from this expected ratio depends primarily on the differences in electron and muon reconstruction and identification efficiencies. The number of electron and muon channel events in data in the $120 < M_{\ell\ell} < 200$ GeV control region are thus used to derive the relative efficiency difference between electrons and muons and then extract the $t\bar{t}$ scale factors. The scale factors determined from this control region in data are consistent with those derived from simulation, and the larger statistical uncertainty (2%) of this cross-check is taken as the systematic uncertainty in the $t\bar{t}$ normalization.

The DY+jets background contribution is estimated from $Z/\gamma^* \to \ell \ell$ decays reconstructed in simulation and data. The simulated DY+jets background contribution is normalized to data using events in the dilepton mass region 60 $< M_{\ell\ell}$ 120 GeV after kinematic requirements are applied on the leptons and jets, which is the first selection stage indicated in Table [1.](#page-4-0) After removing the small contribution from other SM background processes, the simulated DY+jets distributions are normalized to data using scale factors of 1.000 ± 0.007 and 1.027 ± 0.006 for the electron and muon channels, respectively, relative to inclusive next-to-next-to-leadingorder cross section calculations. The uncertainty in this value reflects the number of events from data with $60 < M_{\ell\ell}$ 120 GeV. The shape of the $M_{\ell\ell}$ distribution in data is in agreement with SM expectations for $M_{\ell\ell} > 60 \,\text{GeV}$, as shown in Fig. [1.](#page-5-1)

The diboson and single top quark contributions to the total background are estimated from simulation, based on next-to-leading-order [\[46\]](#page-11-15) and approximate next-to-next-toleading-order [\[47\]](#page-11-16) production cross sections, respectively. The background from W+jets processes, also estimated from simulation, is negligible starting from the earliest selection stage. Finally, the background contribution from multijet processes is estimated using control samples in data and is also found to be negligible at every selection stage.

The observed and expected numbers of events surviving the selections are summarized in Table [1,](#page-4-0) which explicitly lists the contributions from $t\bar{t}$ and DY+jets processes while including all other SM background contributions in a single column. The yields reflect the numbers of background events surviving each selection stage, with normalization factors obtained from simulation and control sample studies or taken directly from simulation. The numbers of events observed at each selection stage agree with SM expectations in both channels.

Fig. 1 Distribution of the invariant mass M_{ee} (*top*) and $M_{\mu\mu}$ (*bottom*) for events in data (*points with error bars*) with $p_T > 60$ (40) GeV for the leading (subleading) lepton and at least two jets with $p_T > 40 \,\text{GeV}$, and for background contributions (*hatched stacked histograms*) from data control samples $(t\bar{t})$ and simulation. The numbers of events from each SM process are included in *parentheses in the legend*, where the contributions from diboson and single top quark processes have been collected in the "Other" background category

6 The M_{W_R} distribution and systematic uncertainties

Once all object and event selection criteria are applied, the $M_{\ell \ell i j}$ distributions in data and simulation are used to search for evidence of WR boson production, where the expected SM $M_{\ell\ell j j}$ distribution is computed as the sum of the individual background $M_{\ell \ell i j}$ distributions. The $M_{\ell \ell i j}$ distribution is measured in 200 GeV wide bins up to 1.8 TeV, as this bin width is comparable to the mass resolution of the W_R boson for $M_{\text{W}_{\text{R}}}$ < 2.5 TeV. Beyond 1.8 TeV, events are summed in two bins, $1.8 < M_{\ell \ell i j} < 2.2$ TeV and $M_{\ell \ell i j} > 2.2$ TeV,

to account for the small number of background events in the simulated and data control samples at high mass. The $M_{\ell\ell ij}$ distributions for DY+jets, diboson, and single top quark processes are taken from simulation, with the normalization of each distribution as discussed previously. The $M_{e\mu j j}$ distribution from data is used to model the $t\bar{t}$ background contribution in the electron and muon channels.

In our previous search for $W_R \rightarrow \mu N_\mu$ production using 7 TeV collision data [\[13](#page-10-9)], we modeled the shape of each background $M_{\mu\mu i\bar{j}}$ distribution using an exponential lineshape. For this search, we again find that an exponential function can be used to describe each background $M_{\ell \ell i j}$ distribution below 2 TeV, but these $M_{\ell \ell i j}$ distributions begin to deviate from the assumed exponential shape at high mass. As a result, in this updated search we use the $M_{\ell \ell i j}$ distributions from each background process directly instead of relying on exponential fits to model the shape of the SM backgrounds.

As the tt background shape is taken from a control sample of $e\mu j j$ events in data, we examine the shape of the tt background $M_{e\mu j j}$ distributions in both simulation and data. Based on the method to extract the background shape in our earlier search, we fit each $M_{e\mu ij}$ distribution to an exponential lineshape for events surviving all selection criteria for $e\mu j j$ events. The tt background distribution is again expected to decrease exponentially as $M_{\ell \ell j j}$ increases, although we allow for deviations at high mass (beyond 2 TeV) where the DY+jets background is more significant. The simulated $M_{\text{e} \mu i j}$ distribution agrees with the exponential lineshape for $M_{e\mu ij}$ < 2 TeV, as expected, while we find that the $M_{e\mu ij}$ distribution in the data control sample noticeably deviates from fit expectations for $1.0 < M_{e\mu ij} < 1.2$ TeV. While the fit expects 94 events, only 78 events are found in data in this region. As a result, we correct the $M_{e\mu j j}$ distribution from the data control sample to the expected number of events from the exponential fit for $1.0 < M_{\text{e} \mu i j} < 1.2 \text{ TeV}$, and this correction is reflected in Table [1.](#page-4-0) The size of the correction is taken as a systematic uncertainty in the shape of the \bar{t} $M_{\ell\ell j}$ distribution.

The $M_{\ell\ell ij}$ distributions for events satisfying all selection criteria appear in Fig. [2.](#page-6-0) A comparison of the observed data to SM expectations yields a normalized χ^2 of 1.4 (0.9) for electron (muon) channel events. We observe an excess in the electron channel in the region $1.8 < M_{ee}$ *j* $i < 2.2$ TeV, where 14 events are observed compared to 4 events expected from SM backgrounds. This excess has a local significance of 2.8 σ estimated using the method discussed in Sect. [7.](#page-7-0) This excess does not appear to be consistent with $W_R \rightarrow eN_e$ decay. We examined additional distributions for events with $1.8 < M_{eejj} < 2.2 \,\text{TeV}$, including the mass distributions M_{ejj} (for both the leading and subleading electrons), M_{ee} ,

Fig. 2 Distribution of the invariant mass M_{eejj} (*top*) and $M_{\mu\mu ij}$ (*bottom*) for events in data (*points with error bars*) with $M_{\ell\ell} > 200 \,\text{GeV}$ and for background contributions (*hatched stacked histograms*) from data control samples (tt) and simulation. The signal mass point M_{W_R} = 2.5 TeV, $M_{N_f} = 1.25$ TeV, is included for comparison (*open red histogram*, and also as a *dotted line* for the unbinned signal shape). The numbers of events from each background process (and the expected number of signal events) are included in *parentheses in the legend*, where the contributions from diboson and single top quark processes have been collected in the "Other" background category. The data are compared with SM expectations in the lower portion of the figure. The total background uncertainty (*light red band*) and the background uncertainty after neglecting the uncertainty due to background modeling (*dark blue band*) are included as a function of $M_{\ell \ell j j}$ for $M_{\ell\ell jj} > 600 \,\text{GeV}$ (*dashed line*)

and M_{ii} , as well as the p_T distributions for each of the final state particles. In this examination, we find no compelling evidence in favor of the signal hypothesis over the assumption of an excess of SM background events in this region. Examining the charge of the electrons used to build W_R boson candidates in data events with $1.8 < M_{eejj} < 2.2$ TeV, we find same-sign electrons in one of the 14 reconstructed events. In this region, the same-sign SM background is expected to be on the order of half an event due to SM diboson processes and charge misidentification in DY+jets events. No same-sign events are observed in the same mass region of the distribution for the muon channel. For comparison, making plausible assumptions for the properties of a signal contributing in this region, one would expect half of the additional events to have electrons with the same sign.

The uncertainties in modeling the shape of the background $M_{\ell \ell i j}$ distributions dominate the background system-atic uncertainty, as shown in Fig. [2.](#page-6-0) The background $M_{\ell \ell j j}$ uncertainty is determined in each mass bin based on the number of events surviving all selection criteria for each background sample. For the two dominant backgrounds, an additional shape uncertainty is included as part of the background shape uncertainty.

The additional $t\bar{t}$ shape uncertainty is included for the $1.0 < M_{\ell\ell j j} < 1.2 \,\text{TeV}$ mass region based on the previously discussed correction to the $M_{e\mu jj}$ distribution for $1.0 < M_{\text{e},\mu j j} < 1.2 \,\text{TeV}$. No additional tt shape uncertainty is applied at other $M_{\ell \ell j j}$ values as the $M_{e \mu j j}$ distributions in both data and simulation agree with the assumed exponential lineshape below 1.8 TeV, and the statistical uncertainty of the $e\mu j j$ control sample dominates at high mass. For the DY+jets background, the $M_{\ell \ell j j}$ shape uncertainty is determined using simulated samples from two different MC generators, MadGraph and sherpa. The difference between these two $M_{\ell \ell i j}$ distributions, computed as a function of mass, is taken as an additional systematic uncertainty in the DY+jets shape.

The uncertainty associated with the background normalization is taken as the quadratic sum of the uncertainty in the scale factors determined from the cross-check for tt background performed on a control region in data, the uncertainty estimated from the difference in the values obtained for DY+jets scale factors in the electron and muon channels, and the combined cross section and luminosity uncertainties for the remaining backgrounds. This overall background normalization uncertainty is small compared to the uncertainties determined for the background shape.

Lepton reconstruction and identification uncertainties, which also contribute to the total signal and background systematic uncertainty, are determined using $Z \rightarrow ee, \mu\mu$ events reconstructed in both data and simulation. Uncertainties in the jet and lepton energy scales and resolutions also contribute to the systematic uncertainty. These uncertainties dominate the signal efficiency uncertainty, resulting in a total systematic uncertainty of up to 10 % for the signal efficiency, depending on the W_R boson mass assumption. The combination of lepton and jet energy scale, resolution, and efficiency uncertainties is less than 5 % for the background estimates taken from simulation.

The systematic uncertainties related to pileup, uncertainties in the proton PDFs, and initial- or final-state radiation are computed for the simulated background samples and are found to be small when compared to the background shape uncertainty. Additional theoretical uncertainties for the SM background processes are covered by the shape uncertainty. The total uncertainty for signal and background is determined for the final selection stage and presented in Table [1.](#page-4-0) Figure [2](#page-6-0) summarizes the background uncertainty as a function of $M_{\ell \ell j j}$ and displays the dominant background shape uncertainty relative to the total background uncertainty.

7 Limits on WR boson production

We estimate limits on W_R boson production using a multibin CL_S limit setting technique [\[48](#page-11-17)[–50](#page-11-18)]. The $M_{\ell\ell jj}$ distributions obtained from signal MC, each of the SM backgrounds, and the observed data all serve as limit inputs. The systematic uncertainties mentioned previously are included as nuisance parameters in the limit calculations. We estimate the 95 % CL upper limit on the W_R boson cross section multiplied by the $W_R \rightarrow \ell \ell j j$ branching fraction as a function of M_{W_R} and M_{N_f} . These results [available in tabular form in the supplemental material] can be used for the evaluation of models other than those considered in this paper.

The limits are computed for a set of W_R boson and N_ℓ mass assumptions, where $M_{\text{W}_{\text{R}}}$ starts at 1 TeV and increases in 100 GeV steps and the N_{ℓ} mass is taken to be half the W_R boson mass. For these determinations, the W_R boson signal samples include the full CMS detector simulation.

The procedure to determine the limits on W_R boson production for a range of N_l mass assumptions ($M_{N_{\ell}} < M_{W_R}$) proceeds as follows. For a fixed value of M_{W_R} , the limits on $W_R \rightarrow \ell N_\ell \rightarrow \ell \ell j j$ are determined as a function of $M_{N_{\ell}}$ (up to M_{W_R}) based on differences in kinematic acceptance, lepton-jet overlap, and $M_{\ell \ell j j}$ shape relative to $M_{\rm N_{\ell}} = \frac{1}{2} M_{\rm W_{\rm R}}$. As mentioned previously, the combined reconstruction and identification efficiency for the W_R boson and N_l decay products varies by $\mathcal{O}(1 \%)$ as a function of M_{W_R} once acceptance requirements are satisfied. Consequently, for M_{N_ℓ} values other than $M_{N_\ell} = \frac{1}{2} M_{W_R}$, the W_R boson production cross section limits are computed using information from signal samples that do not include the simulated detector response.

The cross section limit calculation based on the kinematic acceptance is compared with the results for fully simulated samples using a spectrum of N_ℓ mass assumptions for $M_{W_R} = 1, 1.5, 2,$ and 3 TeV. The difference between the two methods is at the percent level or smaller for M_{N} masses greater than 10–20 % of the generated W_R boson mass. Differences grow to $\mathcal{O}(10)$ % for lighter right-handed neutrinos. The ratio of the products of efficiency and acceptance for the two approaches is computed as a function of $M_{\rm N}_{\ell}/M_{\rm W_R}$, and a global fit to this distribution is used to correct the cross section limits determined as a function of M_{N_ℓ} for all $M_{\rm W_R}$ values.

The uncertainty in this correction is computed using the maximum difference in the efficiency times acceptance ratio for the set of simulated samples as a function of M_{N}/M_{W_R} , unless the statistical uncertainty in the ratio calculation dominates. The impact of this uncertainty on signal acceptance is propagated to the cross section limit calculations. The overall effect on the limits from this uncertainty is negligible for most M_{N_ℓ} values, but can degrade the cross section limit by 5–10 % for N_{ℓ} masses below 10 % of $M_{\rm W_R}$.

Finally, we account for variations in the shape of the $M_{\ell \ell i j}$ distribution. As $M_{N_\ell} \to 0$, neutrino production via a virtual W_R boson becomes more significant. As a result, the shape of the signal $M_{\ell \ell j j}$ distribution is expected to vary as a function of both M_{W_R} and M_{N_ℓ} . This effect is included in the limit calculations.

The largest uncertainty related to the $W_R \rightarrow \ell N_\ell$ production estimation arises from the variation in the predicted signal production cross section as a result of the uncertainties in the proton PDFs, where we use the CTEQ6L1 PDF set for signal events. The cross section uncertainty, which is not considered in the limit calculations, ranges from 5 % for M_{W_R} = 1 TeV to 26 % for $M_{W_R} = 3$ TeV and is computed following the PDF4LHC prescriptions [\[51](#page-11-19),[52\]](#page-11-20) for the CT10 [\[53](#page-11-21)], MSTW2008 [\[54](#page-11-22)], and NNPDF2.1 [\[55\]](#page-11-23) PDF sets. The PDF uncertainties in the signal acceptance, which are small compared to the systematic uncertainties for signal events mentioned previously, are included in the limit calculations.

For the results presented in Fig. [3,](#page-8-0) we indicate a range of N_{ℓ} masses that are excluded as a function of M_{W_R} assuming that only one heavy neutrino flavor (electron or muon) is accessible from 8 TeV pp collisions, with the other $N_{\ell'}$ $(\ell' = e, \mu, \tau, \text{ with } \ell' \neq \ell)$ too heavy to be produced. These (M_{W_R}, M_{N_ℓ}) limits are obtained by comparing the observed and expected cross section upper limits with the expected cross section for each mass point. The limits extend to roughly $M_{\text{W}_R} = 3.0 \,\text{TeV}$ in each channel and exclude a wide range of heavy neutrino masses for W_R boson mass assumptions below this maximal value. The inclusion of the results from the previous iteration of this analysis [\[13](#page-10-9)], which searched for W_R boson production in the $\mu \mu j j$ final state using 7 TeV data, does not significantly affect the limit results. The excess in the electron channel at approximately 2 TeV has a local significance of 2.8 σ for a W_R boson can-

Fig. 3 The 95 % CL exclusion region (*hatched*) in the (M_{W_R}, M_{N_ℓ}) plane, assuming the model described in the text (see Sect. [1\)](#page-1-1), for the electron (*top*) and muon (*bottom*) channels. Neutrino masses greater than $M_{\text{W}_{\text{R}}}$ (*yellow shaded region*) are not considered in this search

didate with a mass of 2.1 TeV. Assuming contributions from SM backgrounds only, the p value for the local excess in the $M_{ee\,jj}$ distribution is 0.0050. We also present limits as a function of W_R boson mass for a right-handed neutrino with $M_{\rm N_{\ell}} = \frac{1}{2} M_{\rm W_R}$ in Fig. [4.](#page-9-0) For the electron (muon) channel, we exclude W_R bosons with M_{W_R} < 2.87 (3.00) TeV, with an expected exclusion of 2.99 (3.04) TeV.

We additionally consider the case where all N_ℓ masses are degenerate and can be produced via W_R boson production and decay in 8 TeV pp collisions. In this case, the electron and muon results can be combined as shown in Fig. [5.](#page-9-1) The (M_{W_R}, M_{N_ℓ}) exclusion for the combination extends slightly further than the single-channel exclusion limits, with an observed (expected) exclusion for the combined channel of $M_{\text{W}_{\text{R}}}$ < 3.01 (3.10) TeV for $M_{\text{N}_{\ell}} = \frac{1}{2} M_{\text{W}_{\text{R}}}$.

Fig. 4 The 95 % CL exclusion for WR boson production cross section times branching fraction, computed as a function of M_{W_R} assuming the right-handed neutrino has half the mass of the W_R boson, for the electron (*top*) and muon (*bottom*) channels. The signal cross section PDF uncertainties (*red band* surrounding the theoretical W_R-boson production cross section curve) are included for illustration purposes only

8 Summary

A search for right-handed bosons (W_R) and heavy righthanded neutrinos (N_ℓ) in the left-right symmetric extension of the standard model has been presented. The data sample is in agreement with expectations from standard model processes in the $\mu \mu j j$ final state. An excess is observed in the electron channel with a local significance of 2.8σ at $M_{ee\,jj} \approx 2.1$ TeV. The excess does not appear to be consistent with expectations from left-right symmetric theory. Considering $W_R \rightarrow eN_e$ and $W_R \rightarrow \mu N_\mu$ searches separately, regions in the (M_{W_R}, M_{N_ℓ}) mass space are excluded at 95 % confidence level that extend up to $M_{\text{W}_R} < 3.0 \,\text{TeV}$ for both channels. Assuming $W_R \rightarrow \ell N_\ell$ with degenerate

Fig. 5 The 95 % CL exclusion region in the (M_{W_R}, M_{N_ℓ}) plane (*top*), and as a function of W_R boson mass with $M_N = \frac{1}{2} M_{W_R}$ (*bottom*) obtained combining the electron and muon channels. The signal cross section PDF uncertainties (*red band* surrounding the theoretical WRboson production cross section curve) are included for illustration purposes only. Neutrino masses greater than M_{W_R} (*yellow shaded region in the top figure*) are not considered in this search

 N_ℓ mass for $\ell = e, \mu, W_R$ boson production is excluded at 95 % confidence level up to M_{W_R} < 3.0 TeV. This search has significantly extended the exclusion region in the two-dimensional (M_{W_R}, M_{N_ℓ}) mass plane compared to previous searches, and for the first time this search has excluded $M_{\rm W_R}$ values beyond the theoretical lower mass limit of $M_{\rm W_R} \gtrsim 2.5$ TeV.

Acknowledgments We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In

addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); MoER, ERC IUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (UL); DOE and NSF (USA). Individuals have received support from the Marie-Curie programme and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS programme of Foundation for Polish Science, cofinanced from European Union, Regional Development Fund; the Compagnia di San Paolo (Torino); the Consorzio per la Fisica (Trieste); MIUR project 20108T4XTM (Italy); the Thalis and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF; and the National Priorities Research Program by Qatar National Research Fund.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Funded by SCOAP³ / License Version CC BY 4.0.

References

- 1. S.L. Glashow, Partial-symmetries of weak interactions. Nucl. Phys. **22**, 579 (1961). doi[:10.1016/0029-5582\(61\)90469-2](http://dx.doi.org/10.1016/0029-5582(61)90469-2)
- 2. S. Weinberg, A model of leptons. Phys. Rev. Lett. **19**, 1264 (1967). doi[:10.1103/PhysRevLett.19.1264](http://dx.doi.org/10.1103/PhysRevLett.19.1264)
- 3. A. Salam, in *Weak and Electromagnetic Interactions*, ed. by N. Svartholm. Elementary Particle Physics: Relativistic Groups and Analyticity (Almqvist & Wiskell, 1968), p. 367. Proceedings of the Eighth Nobel Symposium
- 4. J.C. Pati, A. Salam, Lepton number as the fourth 'color'. Phys. Rev. D **10**, 275 (1974). doi[:10.1103/PhysRevD.10.275](http://dx.doi.org/10.1103/PhysRevD.10.275)
- 5. R.N. Mohapatra, J.C. Pati, A natural left-right symmetry. Phys. Rev. D **11**, 2558 (1975). doi[:10.1103/PhysRevD.11.2558](http://dx.doi.org/10.1103/PhysRevD.11.2558)
- 6. G. Senjanović, R.N. Mohapatra, Exact left-right symmetry and spontaneous violation of parity. Phys. Rev. D **12**, 1502 (1975). doi[:10.1103/PhysRevD.12.1502](http://dx.doi.org/10.1103/PhysRevD.12.1502)
- 7. W.-Y. Keung, G. Senjanović, Majorana neutrinos and the production of the right-handed charged gauge boson. Phys. Rev. Lett. **50**, 1427 (1983). doi[:10.1103/PhysRevLett.50.1427](http://dx.doi.org/10.1103/PhysRevLett.50.1427)
- 8. W.M. Alberico, S.M. Bilenky, Neutrino oscillations, masses and mixing. Phys. Part. Nucl. **35**, 297 (2003). [arXiv:hep-ph/0306239](http://arxiv.org/abs/hep-ph/0306239)
- 9. C. Giunti, M. Laveder, in *Neutrino Mixing*, ed. by F. Columbus, V. Krasnoholovets. Developments in Quantum Physics-2004 (Nova Science Publishers Inc, 2003). [arXiv:hep-ph/0310238](http://arxiv.org/abs/hep-ph/0310238)
- 10. Particle Data Group,J. Beringer et al., Review of particle physics.Phys. Rev. D **86**, 010001 (2012). doi[:10.1103/PhysRevD.](http://dx.doi.org/10.1103/PhysRevD.86.010001) [86.010001](http://dx.doi.org/10.1103/PhysRevD.86.010001)
- 11. R.N. Mohapatra, G. Senjanović, Neutrino mass and spontaneous parity nonconservation. Phys. Rev. Lett. **44**, 912 (1980). doi[:10.](http://dx.doi.org/10.1103/PhysRevLett.44.912) [1103/PhysRevLett.44.912](http://dx.doi.org/10.1103/PhysRevLett.44.912)
- 12. M. Gell-Mann, P. Ramond, R. Slansky, in *Complex Spinors and Unified Theories*,ed. by P. van Nieuwenhuizen, D. Z. Freedman. Supergravity (North Holland Publishing Co., 1979). [arXiv:1306.4669](http://arxiv.org/abs/1306.4669)
- 13. CMS Collaboration, Search for heavy neutrinos and W_R bosons with right-handed couplings in a left-right symmetric model in pp collisions at $\sqrt{s} = 7$ TeV. Phys. Rev. Lett. **109**, 261802 (2012). doi[:10.1103/PhysRevLett.109.261802.](http://dx.doi.org/10.1103/PhysRevLett.109.261802) [arXiv:1210.2402](http://arxiv.org/abs/1210.2402)
- 14. R. Gavin, Y. Li, F. Petriello, S. Quackenbush, FEWZ 2.0: a code for hadronic Z production at next-to-next-to-leading order. Comput. Phys. Commun. **182**, 2388 (2011). doi[:10.1016/j.cpc.2011.06.008.](http://dx.doi.org/10.1016/j.cpc.2011.06.008) [arXiv:1011.3540](http://arxiv.org/abs/1011.3540)
- 15. R. Hamberg, W. van Neerven, T. Matsuura, A complete calculation of the order α_s^2 correction to the Drell–Yan K-factor. Nucl. Phys. B **359**, 343 (1991). doi[:10.1016/0550-3213\(91\)90064-5.](http://dx.doi.org/10.1016/0550-3213(91)90064-5) See also the erratum at doi[:10.1016/S0550-3213\(02\)00814-3](http://dx.doi.org/10.1016/S0550-3213(02)00814-3)
- 16. E. Nardi, E. Roulet, D. Tommasini, New neutral gauge bosons and new heavy fermions in the light of the new LEP data. Phys. Lett. B **344**, 225 (1995). doi[:10.1016/0370-2693\(95\)91542-M.](http://dx.doi.org/10.1016/0370-2693(95)91542-M) [arXiv:hep-ph/9409310](http://arxiv.org/abs/hep-ph/9409310)
- 17. G. Beall, M. Bander, A. Soni, Constraint on the mass scale of a leftright-symmetric electroweak theory from the $K_L - K_S$ mass difference. Phys. Rev. Lett. **48**, 848 (1982). doi[:10.1103/PhysRevLett.](http://dx.doi.org/10.1103/PhysRevLett.48.848) [48.848](http://dx.doi.org/10.1103/PhysRevLett.48.848)
- 18. A. Maiezza, M. Nemevšek, F. Nesti, G. Senjanović, Left-right symmetry at LHC. Phys. Rev. D **82**, 055022 (2010). doi[:10.1103/](http://dx.doi.org/10.1103/PhysRevD.82.055022) [PhysRevD.82.055022.](http://dx.doi.org/10.1103/PhysRevD.82.055022) [arXiv:1005.5160](http://arxiv.org/abs/1005.5160)
- 19. ATLAS Collaboration, Search for tb resonances in proton–proton collisions at \sqrt{s} = 7 TeV with the ATLAS detector, Phys. Rev. Lett. **109**, 081801 (2012). doi[:10.1103/PhysRevLett.109.081801.](http://dx.doi.org/10.1103/PhysRevLett.109.081801) [arXiv:1205.1016](http://arxiv.org/abs/1205.1016)
- 20. CMS Collaboration, Search for a W' boson decaying to a bottom quark and a top quark in pp collisions at \sqrt{s} = 7 TeV. Phys. Lett. B **718**, 1229 (2013). doi[:10.1016/j.physletb.2012.12.](http://dx.doi.org/10.1016/j.physletb.2012.12.008) [008.](http://dx.doi.org/10.1016/j.physletb.2012.12.008) [arXiv:1208.0956](http://arxiv.org/abs/1208.0956)
- 21. CMS Collaboration, Search for $W' \rightarrow$ tb decays in the lepton+jets final state at \sqrt{s} = 8 TeV. JHEP 1405, 108 (2014). doi[:10.1007/](http://dx.doi.org/10.1007/JHEP05(2014)108) [JHEP05\(2014\)108.](http://dx.doi.org/10.1007/JHEP05(2014)108) [arXiv:1402.2176](http://arxiv.org/abs/1402.2176)
- 22. ATLAS Collaboration, Search for heavy neutrinos and righthanded W bosons in events with two leptons and jets in pp collisions at \sqrt{s} = 7 TeV with the ATLAS detector, Eur. Phys. J. C 72, 2056 (2012). doi[:10.1140/epjc/s10052-012-2056-4.](http://dx.doi.org/10.1140/epjc/s10052-012-2056-4) [arXiv:1203.5420](http://arxiv.org/abs/1203.5420)
- 23. CMS Collaboration, The CMS experiment at the CERN LHC. JINST **03**, S08004 (2008). doi[:10.1088/1748-0221/3/08/S08004](http://dx.doi.org/10.1088/1748-0221/3/08/S08004)
- 24. CMS Collaboration, Commissioning of the particle-flow event reconstruction with the first LHC collisions recorded in the CMS detector. CMS Phys. Anal. Summ. CMS-PAS-PFT-10-001 (2010). <http://cds.cern.ch/record/1247373>
- 25. CMS Collaboration, Particle-flow event reconstruction in CMS and performance for jets, taus, and MET. CMS Phys. Anal. Summ. CMS-PAS-PFT-09-001 (2009). <http://cds.cern.ch/record/1194487>
- 26. T. Sjöstrand, S. Mrenna, P. Skands, PYTHIA 6.4 physics and manual, JHEP **05**, 026 (2006). doi[:10.1088/1126-6708/2006/05/026.](http://dx.doi.org/10.1088/1126-6708/2006/05/026) [arXiv:hep-ph/0603175](http://arxiv.org/abs/hep-ph/0603175)
- 27. J. Botts et al., CTEQ parton distributions and flavor dependence of sea quarks. Phys. Lett. B **304**, 159 (1993). doi[:10.1016/](http://dx.doi.org/10.1016/0370-2693(93)91416-K) [0370-2693\(93\)91416-K.](http://dx.doi.org/10.1016/0370-2693(93)91416-K) [arXiv:hep-ph/9303255](http://arxiv.org/abs/hep-ph/9303255)
- 28. R. Field, Early LHC underlying event data—findings and surprises (2010). [arXiv:1010.3558](http://arxiv.org/abs/1010.3558)
- 29. J. Alwall et al., The automated computation of tree-level and nextto-leading order differential cross sections, and their matching to parton shower simulations (2014). [arXiv:1405.0301](http://arxiv.org/abs/1405.0301)
- 30. T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP **02**, 007 (2009). doi[:10.1088/1126-6708/2009/02/007.](http://dx.doi.org/10.1088/1126-6708/2009/02/007) [arXiv:0811.4622](http://arxiv.org/abs/0811.4622)
- 31. P. Nason, A New method for combining NLO QCD with shower Monte Carlo algorithms. JHEP **11**, 040 (2004). doi[:10.1088/](http://dx.doi.org/10.1088/1126-6708/2004/11/040) [1126-6708/2004/11/040.](http://dx.doi.org/10.1088/1126-6708/2004/11/040) [arXiv:hep-ph/0409146](http://arxiv.org/abs/hep-ph/0409146)
- 32. S. Frixione, P. Nason, C. Oleari, Matching NLO QCD computations with Parton Shower simulations: the POWHEG method. JHEP **11**, 070 (2007). doi[:10.1088/1126-6708/2007/11/070.](http://dx.doi.org/10.1088/1126-6708/2007/11/070) [arXiv:0709.2092](http://arxiv.org/abs/0709.2092)
- 33. S. Alioli, P. Nason, C. Oleari, E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX. JHEP **06**, 043 (2010). doi[:10.1007/](http://dx.doi.org/10.1007/JHEP06(2010)043) [JHEP06\(2010\)043.](http://dx.doi.org/10.1007/JHEP06(2010)043) [arXiv:1002.2581](http://arxiv.org/abs/1002.2581)
- 34. E. Re, Single-top Wt-channel production matched with parton showers using the POWHEG method. Eur. Phys. J. C **71**, 1547 (2011). doi[:10.1140/epjc/s10052-011-1547-z.](http://dx.doi.org/10.1140/epjc/s10052-011-1547-z) [arXiv:1009.2450](http://arxiv.org/abs/1009.2450)
- 35. GEANT4 Collaboration, GEANT4-a simulation toolkit. Nucl. Instrum. Methods A **506**, 250 (2003). doi[:10.1016/](http://dx.doi.org/10.1016/S0168-9002(03)01368-8) [S0168-9002\(03\)01368-8](http://dx.doi.org/10.1016/S0168-9002(03)01368-8)
- 36. CMS Collaboration, Search for narrow resonances in dilepton mass spectra in pp collisions at \sqrt{s} = 7 TeV. Phys. Lett. B **714**, 158 (2012). doi[:10.1016/j.physletb.2012.06.051](http://dx.doi.org/10.1016/j.physletb.2012.06.051)
- 37. CMS Collaboration, Performance of CMS muon reconstruction in pp collision events at $\sqrt{s} = 7$ TeV. J. Instrum. 7, P10002 (2012). doi[:10.1088/1748-0221/7/10/P10002](http://dx.doi.org/10.1088/1748-0221/7/10/P10002)
- 38. CMS Collaboration, Electron reconstruction and identification at \sqrt{s} = 7 TeV. CMS Phys. Anal. Summ. CMS-PAS-EGM-10-004 (2010). <http://cds.cern.ch/record/1299116>
- 39. CMS Collaboration, Search for heavy narrow dilepton resonances in pp collisions at \sqrt{s} = 7 TeV and \sqrt{s} = 8 TeV. Phys. Lett. B **720**, 63 (2012). doi[:10.1016/j.physletb.2013.02.003](http://dx.doi.org/10.1016/j.physletb.2013.02.003)
- 40. M. Cacciari, G.P. Salam, Pileup subtraction using jet areas. Phys. Lett. B**659**, 119 (2008). doi[:10.1016/j.physletb.2007.09.077.](http://dx.doi.org/10.1016/j.physletb.2007.09.077) [arXiv:0707.1378](http://arxiv.org/abs/0707.1378)
- 41. M. Cacciari, G.P. Salam, G. Soyez, The anti-*kt* jet clustering algorithm. JHEP **04**, 063 (2008). doi[:10.1088/1126-6708/2008/04/063.](http://dx.doi.org/10.1088/1126-6708/2008/04/063) [arXiv:0802.1189](http://arxiv.org/abs/0802.1189)
- 42. M. Cacciari, G.P. Salam, G. Soyez, The catchment area of jets. JHEP **04**, 005 (2008). doi[:10.1088/1126-6708/2008/04/005.](http://dx.doi.org/10.1088/1126-6708/2008/04/005) [arXiv:0802.1188](http://arxiv.org/abs/0802.1188)
- 43. CMS Collaboration, Jet performance in pp collisions at $\sqrt{s} = 7$ TeV. CMS Phys. Anal. Summ. CMS-PAS-JME-10-003 (2010). <http://cds.cern.ch/record/1279362>
- 44. CMS Collaboration, Determination of jet energy calibration and transverse momentum resolution in CMS. J. Instrum. **6**, P11002 (2011). doi[:10.1088/1748-0221/6/11/P11002](http://dx.doi.org/10.1088/1748-0221/6/11/P11002)
- 45. CMS Collaboration, Performance of b tagging at $\sqrt{s} = 8$ TeV in multijet, tt and boosted topology events. CMS Phys. Anal. Summ. CMS-PAS-BTV-13-001 (2013). [http://cds.cern.ch/record/](http://cds.cern.ch/record/1581306) [1581306](http://cds.cern.ch/record/1581306)
- 46. J.M. Campbell, R.K. Ellis, C. Williams, Vector boson pair production at the LHC. JHEP **07**, 018 (2011). doi[:10.1007/](http://dx.doi.org/10.1007/JHEP07(2011)018) [JHEP07\(2011\)018.](http://dx.doi.org/10.1007/JHEP07(2011)018) [arXiv:1105.0020](http://arxiv.org/abs/1105.0020)
- 47. N. Kidonakis, Differential and total cross sections for top pair and single top production (2012). [arXiv:1205.3453](http://arxiv.org/abs/1205.3453)
- 48. A.L. Read, Presentation of search results: the *C Ls* technique. J. Phys. G **28**, 2693 (2002). doi[:10.1088/0954-3899/28/10/313](http://dx.doi.org/10.1088/0954-3899/28/10/313)
- 49. T. Junk, Confidence level computation for combining searches with small statistics. Nucl. Instrum. Methods A **434**, 435 (1999). doi[:10.](http://dx.doi.org/10.1016/S0168-9002(99)00498-2) [1016/S0168-9002\(99\)00498-2.](http://dx.doi.org/10.1016/S0168-9002(99)00498-2) [arXiv:hep-ex/9902006](http://arxiv.org/abs/hep-ex/9902006)
- 50. L. Moneta et al., *The RooStats Project, in 13th International Workshop on Advanced Computing and Analysis Techniques in Physics Research*. SISSA, 2010. [arXiv:1009.1003](http://arxiv.org/abs/1009.1003)
- 51. PDF4LHC Working Group, PDF4LHC recommendations (2011). [arXiv:1101.0536](http://arxiv.org/abs/1101.0536)
- 52. PDF4LHC Working Group, The PDF4LHC working group interim recommendations (2011). [arXiv:1101.0538](http://arxiv.org/abs/1101.0538)
- 53. H.-L. Lai et al., New parton distributions for collider physics. Phys. Rev. D **82**, 074024 (2010). doi[:10.1103/PhysRevD.82.074024.](http://dx.doi.org/10.1103/PhysRevD.82.074024) [arXiv:1007.2241](http://arxiv.org/abs/1007.2241)
- 54. A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Uncertainties on α_s in global PDF analyses and implications for predicted hadronic cross sections. Eur. Phys. J. C **64**, 653 (2009). doi[:10.1140/epjc/](http://dx.doi.org/10.1140/epjc/s10052-009-1164-2) [s10052-009-1164-2.](http://dx.doi.org/10.1140/epjc/s10052-009-1164-2) [arXiv:0905.3531](http://arxiv.org/abs/0905.3531)
- 55. NNPDF Collaboration, Unbiased global determination of parton distributions and their uncertainties at NNLO and at LO, Nucl. Phys. B **855**, 153 (2012). doi[:10.1016/j.nuclphysb.2011.09.024.](http://dx.doi.org/10.1016/j.nuclphysb.2011.09.024) [arXiv:1107.2652](http://arxiv.org/abs/1107.2652)

CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia

V. Khachatryan, A. M. Sirunyan, A. Tumasyan

Institut für Hochenergiephysik der OeAW, Vienna, Austria

W. Adam, T. Bergauer, M. Dragicevic, J. Erö, C. Fabjan¹, M. Friedl, R. Frühwirth¹, V. M. Ghete, C. Hartl, N. Hörmann, J. Hrubec, M. Jeitler¹, W. Kiesenhofer, V. Knünz, M. Krammer¹, I. Krätschmer, D. Liko, I. Mikulec, D. Rabady², B. Rahbaran, H. Rohringer, R. Schöfbeck, J. Strauss, A. Taurok, W. Treberer-Treberspurg, W. Waltenberger, C.-E. Wulz¹

National Centre for Particle and High Energy Physics, Minsk, Belarus

V. Mossolov, N. Shumeiko, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerp, Belgium

S. Alderweireldt, M. Bansal, S. Bansal, T. Cornelis, E. A. De Wolf, X. Janssen, A. Knutsson, S. Luyckx, S. Ochesanu, B. Roland, R. Rougny, M. Van De Klundert, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel, A. Van Spilbeeck

Vrije Universiteit Brussel, Brussels, Belgium

F. Blekman, S. Blyweert, J. D'Hondt, N. Daci, N. Heracleous, J. Keaveney, S. Lowette, M. Maes, A. Olbrechts, Q. Python, D. Strom, S. Tavernier, W. Van Doninck, P. Van Mulders, G. P. Van Onsem, I. Villella

Université Libre de Bruxelles, Brussels, Belgium

C. Caillol, B. Clerbaux, G. De Lentdecker, D. Dobur, L. Favart, A. P. R. Gay, A. Grebenyuk, A. Léonard, A. Mohammadi, L. Perni[è2,](#page-22-1) T. Reis, T. Seva, L. Thomas, C. Vander Velde, P. Vanlaer, J. Wang

Ghent University, Ghent, Belgium

V. Adler, K. Beernaert, L. Benucci, A. Cimmino, S. Costantini, S. Crucy, S. Dildick, A. Fagot, G. Garcia, J. Mccartin, A. A. Ocampo Rios, D. Ryckbosch, S. Salva Diblen, M. Sigamani, N. Strobbe, F. Thyssen, M. Tytgat, E. Yazgan, N. Zaganidis

Université Catholique de Louvain, Louvain-la-Neuve, Belgium

S. Basegmez, C. Beluffi³, G. Bruno, R. Castello, A. Caudron, L. Ceard, G. G. Da Silveira, C. Delaere, T. du Pree, D. Favart, L. Forthomme, A. Giammanco⁴, J. Hollar, P. Jez, M. Komm, V. Lemaitre, C. Nuttens, D. Pagano, L. Perrini, A. Pin, K. Piotrzkowski, A. Popov⁵, L. Quertenmont, M. Selvaggi, M. Vidal Marono, J. M. Vizan Garcia

Université de Mons, Mons, Belgium

N. Beliy, T. Caebergs, E. Daubie, G. H. Hammad

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil

W. L. Aldá Júnior, G. A. Alves, L. Brito, M. Correa Martins Junior, M. E. Pol

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

W. Carvalho, J. Chinellato⁶, A. Custódio, E. M. Da Costa, D. De Jesus Damiao, C. De Oliveira Martins,

S. Fonseca De Souza, H. Malbouisson, D. Matos Figueiredo, L. Mundim, H. Nogima, W. L. Prado Da Silva, J. Santaolalla, A. Santoro, A. Sznajder, E. J. Tonelli Manganote⁶, A. Vilela Pereira

Universidade Estadual Paulista*a***, Universidade Federal do ABC***b***, São Paulo, Brazil**

C. A. Bernardes*b*, T. R. Fernandez Perez Tomei*a*, E. M. Gregores*b*, P. G. Mercadante*b*, S. F. Novaes*a*, Sandra S. Padula*^a*

Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria

A. Aleksandrov, V. Genchev², P. Iaydjiev, A. Marinov, S. Piperov, M. Rodozov, G. Sultanov, M. Vutova

University of Sofia, Sofia, Bulgaria

A. Dimitrov, I. Glushkov, R. Hadjiiska, V. Kozhuharov, L. Litov, B. Pavlov, P. Petkov

Institute of High Energy Physics, Beijing, China

J. G. Bian, G. M. Chen, H. S. Chen, M. Chen, R. Du, C. H. Jiang, D. Liang, S. Liang, R. Plestina⁷, J. Tao, X. Wang, Z. Wang

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China

C. Asawatangtrakuldee, Y. Ban, Y. Guo, Q. Li, W. Li, S. Liu, Y. Mao, S. J. Qian, D. Wang, L. Zhang, W. Zou

Universidad de Los Andes, Bogotá, Colombia

C. Avila, L. F. Chaparro Sierra, C. Florez, J. P. Gomez, B. Gomez Moreno, J. C. Sanabria

Technical University of Split, Split, Croatia N. Godinovic, D. Lelas, D. Polic, I. Puljak

University of Split, Split, Croatia Z. Antunovic, M. Kovac

Institute Rudjer Boskovic, Zagreb, Croatia V. Brigljevic, K. Kadija, J. Luetic, D. Mekterovic, L. Sudic

University of Cyprus, Nicosia, Cyprus

A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P. A. Razis

Charles University, Prague, Czech Republic M. Bodlak, M. Finger, M. Finger Jr.⁸

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt

Y. Assran 9 , S. Elgammal¹⁰, M. A. Mahmoud¹¹, A. Radi^{10[,12](#page-22-11)}

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia

M. Kadastik, M. Murumaa, M. Raidal, A. Tiko

Department of Physics, University of Helsinki, Helsinki, Finland

P. Eerola, G. Fedi, M. Voutilainen

Helsinki Institute of Physics, Helsinki, Finland

J. Härkönen, V. Karimäki, R. Kinnunen, M. J. Kortelainen, T. Lampén, K. Lassila-Perini, S. Lehti, T. Lindén, P. Luukka, T. Mäenpää, T. Peltola, E. Tuominen, J. Tuominiemi, E. Tuovinen, L. Wendland

Lappeenranta University of Technology, Lappeenranta, Finland

T. Tuuva

DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France

M. Besancon, F. Couderc, M. Dejardin, D. Denegri, B. Fabbro, J. L. Faure, C. Favaro, F. Ferri, S. Ganjour, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, E. Locci, J. Malcles, J. Rander, A. Rosowsky, M. Titov

Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France

S. Baffioni, F. Beaudette, P. Busson, C. Charlot, T. Dahms, M. Dalchenko, L. Dobrzynski, N. Filipovic, A. Florent, R. Granier de Cassagnac, L. Mastrolorenzo, P. Miné, C. Mironov, I. N. Naranjo, M. Nguyen, C. Ochando, P. Paganini, R. Salerno, J. b. Sauvan, Y. Sirois, C. Veelken, Y. Yilmaz, A. Zabi

Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France

J.-L. Agram¹³, J. Andrea, A. Aubin, D. Bloch, J.-M. Brom, E. C. Chabert, C. Collard, E. Conte¹³, J.-C. Fontaine¹³, D. Gelé, U. Goerlach, C. Goetzmann, A.-C. Le Bihan, P. Van Hove

Centre de Calcul de l'Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France

S. Gadrat

Institut de Physique Nucléaire de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Villeurbanne, France

S. Beauceron, N. Beaupere, G. Boudoul², S. Brochet, C. A. Carrillo Montoya, J. Chasserat, R. Chierici, D. Contardo²,

P. Depasse, H. El Mamouni, J. Fan, J. Fay, S. Gascon, M. Gouzevitch, B. Ille, T. Kurca, M. Lethuillier, L. Mirabito,

S. Perries, J. D. Ruiz Alvarez, D. Sabes, L. Sgandurra, V. Sordini, M. Vander Donckt, P. Verdier, S. Viret, H. Xiao

Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia I. Bagaturia

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany

C. Autermann, S. Beranek, M. Bontenackels, M. Edelhoff, L. Feld, O. Hindrichs, K. Klein, A. Ostapchuk, A. Perieanu, F. Raupach, J. Sammet, S. Schael, H. Weber, B. Wittmer, V. Zhukov⁵

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany

M. Ata, E. Dietz-Laursonn, D. Duchardt, M. Erdmann, R. Fischer, A. Güth, T. Hebbeker, C. Heidemann, K. Hoepfner, D. Klingebiel, S. Knutzen, P. Kreuzer, M. Merschmeyer, A. Meyer, P. Millet, M. Olschewski, K. Padeken, P. Papacz, H. Reithler, S. A. Schmitz, L. Sonnenschein, D. Teyssier, S. Thüer, M. Weber

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

V. Cherepanov, Y. Erdogan, G. Flügge, H. Geenen, M. Geisler, W. Haj Ahmad, F. Hoehle, B. Kargoll, T. Kress, Y. Kuessel, J. Lingemann², A. Nowack, I. M. Nugent, L. Perchalla, O. Pooth, A. Stahl

Deutsches Elektronen-Synchrotron, Hamburg, Germany

I. Asin, N. Bartosik, J. Behr, W. Behrenhoff, U. Behrens, A. J. Bell, M. Bergholz¹⁴, A. Bethani, K. Borras, A. Burgmeier, A. Cakir, L. Calligaris, A. Campbell, S. Choudhury, F. Costanza, C. Diez Pardos, S. Dooling, T. Dorland, G. Eckerlin, D. Eckstein, T. Eichhorn, G. Flucke, J. Garay Garcia, A. Geiser, P. Gunnellini, J. Hauk, G. Hellwig, M. Hempel, D. Horton, H. Jung, A. Kalogeropoulos, M. Kasemann, P. Katsas, J. Kieseler, C. Kleinwort, D. Krücker, W. Lange, J. Leonard, K. Lipka, A. Lobanov, W. Lohmann¹⁴, B. Lutz, R. Mankel, I. Marfin, I.-A. Melzer-Pellmann, A. B. Meyer, J. Mnich, A. Mussgiller, S. Naumann-Emme, A. Nayak, O. Novgorodova, F. Nowak, E. Ntomari, H. Perrey, D. Pitzl, R. Placakyte, A. Raspereza, P. M. Ribeiro Cipriano, E. Ron, M. Ö. Sahin, J. Salfeld-Nebgen, P. Saxena, R. Schmidt¹⁴, T. Schoerner-Sadenius, M. Schröder, C. Seitz, S. Spannagel, A. D. R. Vargas Trevino, R. Walsh, C. Wissing

University of Hamburg, Hamburg, Germany

M. Aldaya Martin, V. Blobel, M. Centis Vignali, A. r. Draeger, J. Erfle, E. Garutti, K. Goebel, M. Görner, J. Haller, M. Hoffmann, R. S. Höing, H. Kirschenmann, R. Klanner, R. Kogler, J. Lange, T. Lapsien, T. Lenz, I. Marchesini, J. Ott, T. Peiffer, N. Pietsch, T. Pöhlsen, D. Rathjens, C. Sander, H. Schettler, P. Schleper, E. Schlieckau, A. Schmidt, M. Seidel, J. Sibille¹⁵, V. Sola, H. Stadie, G. Steinbrück, D. Troendle, E. Usai, L. Vanelderen

Institut für Experimentelle Kernphysik, Karlsruhe, Germany

C. Barth, C. Baus, J. Berger, C. Böser, E. Butz, T. Chwalek, W. De Boer, A. Descroix, A. Dierlamm, M. Feindt, F. Frensch, M. Giffels, F. Hartmann², T. Hauth², U. Husemann, I. Katkov⁵, A. Kornmayer², E. Kuznetsova, P. Lobelle Pardo, M. U. Mozer, Th. Müller, A. Nürnberg, G. Quast, K. Rabbertz, F. Ratnikov, S. Röcker, H. J. Simonis, F. M. Stober, R. Ulrich, J. Wagner-Kuhr, S. Wayand, T. Weiler, R. Wolf

Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece

G. Anagnostou, G. Daskalakis, T. Geralis, V. A. Giakoumopoulou, A. Kyriakis, D. Loukas, A. Markou, C. Markou, A. Psallidas, I. Topsis-Giotis

University of Athens, Athens, Greece

A. Panagiotou, N. Saoulidou, E. Stiliaris

University of Ioánnina, Ioannina, Greece X. Aslanoglou, I. Evangelou, G. Flouris, C. Foudas, P. Kokkas, N. Manthos, I. Papadopoulos, E. Paradas

Wigner Research Centre for Physics, Budapest, Hungary

G. Bencze, C. Hajdu, P. Hidas, D. Horvath¹⁶, F. Sikler, V. Veszpremi, G. Vesztergombi¹⁷, A. J. Zsigmond

Institute of Nuclear Research ATOMKI, Debrecen, Hungary

N. Beni, S. Czellar, J. Karancsi¹⁸, J. Molnar, J. Palinkas, Z. Szillasi

University of Debrecen, Debrecen, Hungary

P. Raics, Z. L. Trocsanyi, B. Ujvari

National Institute of Science Education and Research, Bhubaneswar, India S. K. Swain

Panjab University, Chandigarh, India

S. B. Beri, V. Bhatnagar, N. Dhingra, R. Gupta, U. Bhawandeep, A. K. Kalsi, M. Kaur, M. Mittal, N. Nishu, J. B. Singh

University of Delhi, Delhi, India

Ashok Kumar, Arun Kumar, S. Ahuja, A. Bhardwaj, B. C. Choudhary, A. Kumar, S. Malhotra, M. Naimuddin, K. Ranjan, V. Sharma

Saha Institute of Nuclear Physics, Kolkata, India

S. Banerjee, S. Bhattacharya, K. Chatterjee, S. Dutta, B. Gomber, Sa. Jain, Sh. Jain, R. Khurana, A. Modak, S. Mukherjee, D. Roy, S. Sarkar, M. Sharan

Bhabha Atomic Research Centre, Mumbai, India

A. Abdulsalam, D. Dutta, S. Kailas, V. Kumar, A. K. Mohanty², L. M. Pant, P. Shukla, A. Topkar

Tata Institute of Fundamental Research, Mumbai, India

T. Aziz, S. Banerjee, S. Bhowmik¹⁹, R. M. Chatterjee, R. K. Dewanjee, S. Dugad, S. Ganguly, S. Ghosh, M. Guchait, A. Gurtu²⁰, G. Kole, S. Kumar, M. Maity¹⁹, G. Majumder, K. Mazumdar, G.B. Mohanty, B. Parida, K. Sudhakar, N. Wickramage 21

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

H. Bakhshiansohi, H. Behnamian, S. M. Etesami²², A. Fahim²³, R. Goldouzian, A. Jafari, M. Khakzad, M. Mohammadi Najafabadi, M. Naseri, S. Paktinat Mehdiabadi, B. Safarzadeh²⁴, M. Zeinali

University College Dublin, Dublin, Ireland

M. Felcini, M. Grunewald

INFN Sezione di Bari*a***, Università di Bari***b***, Politecnico di Bari***c***, Bari, Italy**

M. Abbrescia*a*,*b*, L. Barbone*a*,*b*, C. Calabria*a*,*b*, S. S. Chhibra*a*,*b*, A. Colaleo*a*, D. Creanza*a*,*c*, N. De Filippis*a*,*c*, M. De Palma^{a,b}, L. Fiore^a, G. Iaselli^{a,c}, G. Maggi^{a,c}, M. Maggi^a, S. My^{a,c}, S. Nuzzo^{a,b}, A. Pompili^{a,b}, G. Pugliese^{a,c}, R. Radogna*a*,*b*,[2,](#page-22-1) G. Selvaggi*^a*,*b*, L. Silvestris*a*,[2,](#page-22-1) G. Singh*^a*,*b*, R. Venditti*a*,*b*, P. Verwilligen*a*, G. Zito*^a*

INFN Sezione di Bologna*a***, Università di Bologna***b***, Bologna, Italy**

G. Abbiendi*a*, A. C. Benvenuti*a*, D. Bonacorsi*a*,*b*, S. Braibant-Giacomelli*a*,*b*, L. Brigliadori*a*,*b*, R. Campanini*a*,*b*, P. Capiluppi*a*,*b*, A. Castro*a*,*b*, F. R. Cavallo*a*, G. Codispoti*a*,*b*, M. Cuffiani*a*,*b*, G. M. Dallavalle*a*, F. Fabbri*a*, A. Fanfani*a*,*b*, D. Fasanella*a*,*b*, P. Giacomelli*a*, C. Grandi*a*, L. Guiducci*a*,*b*, S. Marcellini*a*, G. Masetti*a*,[2,](#page-22-1) A. Montanari*^a*, F. L. Navarria*a*,*b*, A. Perrotta*a*, F. Primavera*a*,*b*, A. M. Rossi*a*,*b*, T. Rovelli*a*,*b*, G. P. Siroli*a*,*b*, N. Tosi*a*,*b*, R. Travaglini*a*,*^b*

INFN Sezione di Catania*a***, Università di Catania***b***, CSFNSM***c***, Catania, Italy**

S. Albergo*a*,*b*, G. Cappello*a*, M. Chiorboli*a*,*b*, S. Costa*a*,*b*, F. Giordano*a*,*c*,[2,](#page-22-1) R. Potenza*^a*,*b*, A. Tricomi*a*,*b*, C. Tuve*a*,*^b*

INFN Sezione di Firenze*a***, Università di Firenze***b***, Florence, Italy**

G. Barbagli^a, V. Ciulli^{a,b}, C. Civinini^a, R. D'Alessandro^{a,b}, E. Focardi^{a,b}, E. Gallo^a, S. Gonzi^{a,b}, V. Gori^{a,b,2}, P. Lenzi^{a,b}, M. Meschini*a*, S. Paoletti*a*, G. Sguazzoni*a*, A. Tropiano*a*,*^b*

INFN Laboratori Nazionali di Frascati, Frascati, Italy

L. Benussi, S. Bianco, F. Fabbri, D. Piccolo

INFN Sezione di Genova*a***, Università di Genova***b***, Genoa, Italy**

F. Ferro^{*a*}, M. Lo Vetere^{*a*,*b*}, E. Robutti^{*a*}, S. Tosi^{*a*,*b*}

INFN Sezione di Milano-Bicocca*a***, Università di Milano-Bicocca***b***, Milan, Italy**

M. E. Dinardo*a*,*b*, P. Dini*a*, S. Fiorendi*a*,*b*,[2,](#page-22-1) S. Gennai*^a*,[2,](#page-22-1) R. Geros[a2,](#page-22-1) A. Ghezzi*^a*,*b*, P. Govoni*a*,*b*, M. T. Lucchini*a*,*b*,[2,](#page-22-1) S. Malvezzi*a*, R. A. Manzoni*a*,*b*, A. Martelli*a*,*b*, B. Marzocchi, D. Menasce*a*, L. Moroni*a*, M. Paganoni*a*,*b*, S. Ragazzi*a*,*b*, N. Redaelli*a*, T. Tabarelli de Fatis*a*,*^b*

INFN Sezione di Napoli*a***, Università di Napoli 'Federico II'***b***, Università della Basilicata (Potenza)***c***, Università G. Marconi (Roma)***^d* **, Naples, Italy**

S. Buontempo*a*, N. Cavallo*a*,*c*, S. Di Guida*a*,*d*,[2,](#page-22-1) F. Fabozzi*^a*,*c*, A. O. M. Iorio*a*,*b*, L. Lista*a*, S. Meola*a*,*d*,[2,](#page-22-1) M. Merola*^a*, P. Paolucci*a*,[2](#page-22-1)

INFN Sezione di Padova*a***, Università di Padova***b***, Università di Trento (Trento)***c***, Padua, Italy**

P. Azzi*a*, N. Bacchetta*a*, D. Biselloa*a*,*b*, A. Branca*a*,*b*, R. Carlin*a*,*b*, P. Checchia*a*, M. Dall'Osso*a*,*b*, T. Dorigo*a*, M. Galanti*a*,*b*, , F. Gasparini*a*,*b*, U. Gasparini*a*,*b*, P. Giubilato, F. Gonella*a*, A. Gozzelino*a*, K. Kanishchev*a*,*c*, S. Lacaprara*a*, M. Margoni*a*,*b*, A. T. Meneguzzo*a*,*b*, F. Montecassiano*a*, J. Pazzini*a*,*b*, N. Pozzobon*a*,*b*, P. Ronchese*a*,*b*, F. Simonetto*a*,*b*, E. Torassa^{*a*}, M. Tosi^{*a*,*b*}, P. Zotto^{*a*,*b*}, A. Zucchetta^{*a*,*b*}

INFN Sezione di Pavia*a***, Università di Pavia***b***, Pavia, Italy**

M. Gabusi*a*,*b*, S. P. Ratti*a*,*b*, C. Riccardi*a*,*b*, P. Salvini*a*, P. Vitulo*a*,*^b*

INFN Sezione di Perugia*a***, Università di Perugia***b***, Perugia, Italy**

M. Biasini*a*,*b*, G. M. Bilei*a*, D. Ciangottini*a*,*b*, L. Fanò*a*,*b*, P. Lariccia*a*,*b*, G. Mantovani*a*,*b*, M. Menichelli*a*, F. Romeo*a*,*b*, A. Saha*a*, A. Santocchia*a*,*b*, A. Spiezia*a*,*b*,[2](#page-22-1)

INFN Sezione di Pisa*a***, Università di Pisa***b***, Scuola Normale Superiore di Pisa***c***, Pisa, Italy**

K. Androsov*a*,[25,](#page-23-13) P. Azzurri*^a*, G. Bagliesi*a*, J. Bernardini*a*, T. Boccali*a*, G. Broccolo*a*,*c*, R. Castaldi*a*, M. A. Ciocci*a*,[25,](#page-23-13) R. Dell'Orso*a*, S. Donato*a*,*c*, F. Fiori*a*,*c*, L. Foà*a*,*c*, A. Giassi*a*, M. T. Grippo*a*,[25,](#page-23-13) F. Ligabue*^a*,*c*, T. Lomtadze*a*, L. Martini*a*,*b*, A. Messineo*a*,*b*, C. S. Moon*a*,[26,](#page-23-14) F. Palla*^a*,[2,](#page-22-1) A. Rizzi*^a*,*b*, A. Savoy-Navarro*a*,[27,](#page-23-15) A. T. Serban*^a*, P. Spagnolo*a*, P. Squillacioti*a*,[25,](#page-23-13) R. Tenchini*^a*, G. Tonelli*a*,*b*, A. Venturi*a*, P. G. Verdini*a*, C. Vernieri*a*,*c*,[2](#page-22-1)

INFN Sezione di Roma*a***, Università di Rome***b***, Rome, Italy**

L. Barone*a*,*b*, F. Cavallari*a*, D. Del Re*a*,*b*, M. Diemoz*a*, M. Grassi*a*,*b*, C. Jorda*a*, E. Longo*a*,*b*, F. Margaroli*a*,*b*, P. Meridiani*a*, F. Micheli*a*,*b*,[2,](#page-22-1) S. Nourbakhsh*^a*,*b*, G. Organtini*a*,*b*, R. Paramatti*a*, S. Rahatlou*a*,*b*, C. Rovelli*a*, F. Santanastasio*a*,*b*, L. Soffi^{*a*,*b*,2}, P. Traczyk^{*a*,*b*}

INFN Sezione di Torino*a***, Università di Torino***b***, Università del Piemonte Orientale (Novara)***c***, Turin, Italy**

N. Amapane*a*,*b*, R. Arcidiacono*a*,*c*, S. Argiro*a*,*b*,[2,](#page-22-1) M. Arneodo*^a*,*c*, R. Bellan*a*,*b*, C. Biino*a*, N. Cartiglia*a*, S. Casasso*a*,*b*,[2,](#page-22-1) M. Costa*a*,*b*, A. Degano*a*,*b*, N. Demaria*a*, L. Finco*a*,*b*, C. Mariotti*a*, S. Maselli*a*, E. Migliore*a*,*b*, V. Monaco*a*,*b*, M. Musich*a*, M. M. Obertino*a*,*c*,[2,](#page-22-1) G. Ortona*^a*,*b*, L. Pacher*a*,*b*, N. Pastrone*a*, M. Pelliccioni*a*, G. L. Pinna Angioni*a*,*b*, A. Potenza*a*,*b*, A. Romero*a*,*b*, M. Ruspa*a*,*c*, R. Sacchi*a*,*b*, A. Solano*a*,*b*, A. Staiano*a*, U. Tamponi*^a*

INFN Sezione di Trieste*a***, Università di Trieste***b***, Trieste, Italy**

S. Belforte*a*, V. Candelise*a*,*b*, M. Casarsa*a*, F. Cossutti*a*, G. Della Ricca*a*,*b*, B. Gobbo*a*, C. La Licata*a*,*b*, M. Marone*a*,*b*, D. Montanino*a*,*b*, A. Schizzi*a*,*b*,[2,](#page-22-1) T. Umer*^a*,*b*, A. Zanetti*^a*

Chonbuk National University, Chonju, Korea T. J. Kim

Kangwon National University, Chunchon, Korea

S. Chang, T. A. Kropivnitskaya, S. K. Nam

Kyungpook National University, Daegu, Korea D. H. Kim, G. N. Kim, M. S. Kim, M. S. Kim, D. J. Kong, S. Lee, Y. D. Oh, H. Park, A. Sakharov, D. C. Son

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea J. Y. Kim, S. Song

Korea University, Seoul, Korea S. Choi, D. Gyun, B. Hong, M. Jo, H. Kim, Y. Kim, B. Lee, K. S. Lee, S. K. Park, Y. Roh

University of Seoul, Seoul, Korea M. Choi, J. H. Kim, I. C. Park, S. Park, G. Ryu, M. S. Ryu

Sungkyunkwan University, Suwon, Korea Y. Choi, Y. K. Choi, J. Goh, D. Kim, E. Kwon, J. Lee, H. Seo, I. Yu

Vilnius University, Vilnius, Lithuania

A. Juodagalvis

National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia

J. R. Komaragiri, M. A. B. Md Ali

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico

H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-de La Cruz²⁸, R. Lopez-Fernandez, A. Sanchez-Hernandez

Universidad Iberoamericana, Mexico City, Mexico

S. Carrillo Moreno, F. Vazquez Valencia

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico

I. Pedraza, H. A. Salazar Ibarguen

Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico

E. Casimiro Linares, A. Morelos Pineda

University of Auckland, Auckland, New Zealand D. Krofcheck

University of Canterbury, Christchurch, New Zealand P. H. Butler, S. Reucroft

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan

A. Ahmad, M. Ahmad, Q. Hassan, H. R. Hoorani, S. Khalid, W. A. Khan, T. Khurshid, M. A. Shah, M. Shoaib

National Centre for Nuclear Research, Swierk, Poland

H. Bialkowska, M. Bluj, B. Boimska, T. Frueboes, M. Górski, M. Kazana, K. Nawrocki, K. Romanowska-Rybinska, M. Szleper, P. Zalewski

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland

G. Brona, K. Bunkowski, M. Cwiok, W. Dominik, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Misiura, M. Olszewski, W. Wolszczak

Laboratório de Instrumentação e Física Experimental de Partículas, Lisbon, Portugal

P. Bargassa, C. Beirão Da Cruz E Silva, P. Faccioli, P. G. Ferreira Parracho, M. Gallinaro, F. Nguyen, J. Rodrigues Antunes, J. Seixas, J. Varela, P. Vischia

Joint Institute for Nuclear Research, Dubna, Russia

P. Bunin, M. Gavrilenko, I. Golutvin, A. Kamenev, V. Karjavin, V. Konoplyanikov, A. Lanev, A. Malakhov, V. Matveev²⁹, P. Moisenz, V. Palichik, V. Perelygin, M. Savina, S. Shmatov, S. Shulha, N. Skatchkov, V. Smirnov, A. Zarubin

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia

V. Golovtsov, Y. Ivanov, V. Kim³⁰, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev, An. Vorobyev

Institute for Nuclear Research, Moscow, Russia

Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, M. Kirsanov, N. Krasnikov, A. Pashenkov, D. Tlisov, A. Toropin

Institute for Theoretical and Experimental Physics, Moscow, Russia

V. Epshteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, G. Safronov, S. Semenov, A. Spiridonov, V. Stolin, E. Vlasov, A. Zhokin

P. N. Lebedev Physical Institute, Moscow, Russia

V. Andreev, M. Azarkin, I. Dremin, M. Kirakosyan, A. Leonidov, G. Mesyats, S. V. Rusakov, A. Vinogradov

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia

A. Belyaev, E. Boos, V. Bunichev, M. Dubinin³¹, L. Dudko, A. Ershov, A. Gribushin, V. Klyukhin, O. Kodolova, I. Lokhtin, S. Obraztsov, S. Petrushanko, V. Savrin

State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia

I. Azhgirey, I. Bayshev, S. Bitioukov, V. Kachanov, A. Kalinin, D. Konstantinov, V. Krychkine, V. Petrov, R. Ryutin, A. Sobol, L. Tourtchanovitch, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia P. Adzic³², M. Ekmedzic, J. Milosevic, V. Rekovic

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain

J. Alcaraz Maestre, C. Battilana, E. Calvo, M. Cerrada, M. Chamizo Llatas, N. Colino, B. De La Cruz, A. Delgado Peris, D. Domínguez Vázquez, A. Escalante Del Valle, C. Fernandez Bedoya, J. P. Fernández Ramos, J. Flix, M. C. Fouz, P. Garcia-Abia, O. Gonzalez Lopez, S. Goy Lopez, J. M. Hernandez, M. I. Josa, G. Merino, E. Navarro De Martino, A. Pérez-Calero Yzquierdo, J. Puerta Pelayo, A. Quintario Olmeda, I. Redondo, L. Romero, M. S. Soares

Universidad Autónoma de Madrid, Madrid, Spain

C. Albajar, J. F. de Trocóniz, M. Missiroli, D. Moran

Universidad de Oviedo, Oviedo, Spain

H. Brun, J. Cuevas, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero, L. Lloret Iglesias

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain

J. A. Brochero Cifuentes, I. J. Cabrillo, A. Calderon, J. Duarte Campderros, M. Fernandez, G. Gomez, A. Graziano, A. Lopez Virto, J. Marco, R. Marco, C. Martinez Rivero, F. Matorras, F. J. Munoz Sanchez, J. Piedra Gomez, T. Rodrigo, A. Y. Rodríguez-Marrero, A. Ruiz-Jimeno, L. Scodellaro, I. Vila, R. Vilar Cortabitarte

CERN, European Organization for Nuclear Research, Geneva, Switzerland

D. Abbaneo, E. Auffray, G. Auzinger, M. Bachtis, P. Baillon, A. H. Ball, D. Barney, A. Benaglia, J. Bendavid, L. Benhabib, J. F. Benitez, C. Bernet⁷, G. Bianchi, P. Bloch, A. Bocci, A. Bonato, O. Bondu, C. Botta, H. Breuker, T. Camporesi, G. Cerminara, S. Colafranceschi[33,](#page-23-21) M. D'Alfonso, D. d'Enterria, A. Dabrowski, A. David, F. De Guio, A. De Roeck, S. De Visscher, M. Dobson, M. Dordevic, N. Dupont-Sagorin, A. Elliott-Peisert, J. Eugster, G. Franzoni, W. Funk, D. Gigi, K. Gill, D. Giordano, M. Girone, F. Glege, R. Guida, S. Gundacker, M. Guthoff, J. Hammer, M. Hansen, P. Harris, J. Hegeman, V. Innocente, P. Janot, K. Kousouris, K. Krajczar, P. Lecoq, C. Lourenço, N. Magini, L. Malgeri, M. Mannelli, J. Marrouche, L. Masetti, F. Meijers, S. Mersi, E. Meschi, F. Moortgat, S. Morovic, M. Mulders, P. Musella, L. Orsini, L. Pape, E. Perez, L. Perrozzi, A. Petrilli, G. Petrucciani, A. Pfeiffer, M. Pierini, M. Pimiä, D. Piparo, M. Plagge, A. Racz, G. Rolandi[34,](#page-23-22) M. Rovere, H. Sakulin, C. Schäfer, C. Schwick, A. Sharma, P. Siegrist, P. Silva, M. Simon, P. Sphicas³⁵, D. Spiga, J. Steggemann, B. Stieger, M. Stoye, D. Treille, A. Tsirou, G. I. Veres¹⁷, J. R. Vlimant, N. Wardle, H. K. Wöhri, H. Wollny, W. D. Zeuner

Paul Scherrer Institut, Villigen, Switzerland

W. Bertl, K. Deiters, W. Erdmann, R. Horisberger, Q. Ingram, H. C. Kaestli, S. König, D. Kotlinski, U. Langenegger, D. Renker, T. Rohe

Institute for Particle Physics, ETH Zurich, Zurich, Switzerland

F. Bachmair, L. Bäni, L. Bianchini, P. Bortignon, M. A. Buchmann, B. Casal, N. Chanon, A. Deisher, G. Dissertori, M. Dittmar, M. Donegà, M. Dünser, P. Eller, C. Grab, D. Hits, W. Lustermann, B. Mangano, A. C. Marini, P. Martinez Ruiz del Arbol, D. Meister, N. Mohr, C. Nägeli³⁶, F. Nessi-Tedaldi, F. Pandolfi, F. Pauss, M. Peruzzi, M. Quittnat, L. Rebane, M. Rossini, A. Starodumov³⁷, M. Takahashi, K. Theofilatos, R. Wallny, H. A. Weber

Universität Zürich, Zurich, Switzerland

C. Amsler³⁸, M. F. Canelli, V. Chiochia, A. De Cosa, A. Hinzmann, T. Hreus, B. Kilminster, B. Millan Mejias, J. Ngadiuba, P. Robmann, F. J. Ronga, S. Taroni, M. Verzetti, Y. Yang

National Central University, Chung-Li, Taiwan

M. Cardaci, K. H. Chen, C. Ferro, C. M. Kuo, W. Lin, Y. J. Lu, R. Volpe, S. S. Yu

National Taiwan University (NTU), Taipei, Taiwan

P. Chang, Y. H. Chang, Y. W. Chang, Y. Chao, K. F. Chen, P. H. Chen, C. Dietz, U. Grundler, W.-S. Hou, K. Y. Kao, Y. J. Lei, Y. F. Liu, R.-S. Lu, D. Majumder, E. Petrakou, Y. M. Tzeng, R. Wilken

Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand

B. Asavapibhop, N. Srimanobhas, N. Suwonjandee

Cukurova University, Adana, Turkey

A. Adiguzel, M. N. Bakirci³⁹, S. Cerci⁴⁰, C. Dozen, I. Dumanoglu, E. Eskut, S. Girgis, G. Gokbulut, E. Gurpinar, I. Hos, E. E. Kangal, A. Kayis Topaksu, G. Onengut⁴¹, K. Ozdemir, S. Ozturk³⁹, A. Polatoz, K. Sogut⁴², D. Sunar Cerci⁴⁰, B. Tali⁴⁰, H. Topakli³⁹, M. Vergili

Physics Department, Middle East Technical University, Ankara, Turkey

I. V. Akin, B. Bilin, S. Bilmis, H. Gamsizkan, G. Karapina[r43,](#page-23-31) K. Ocalan, S. Sekmen, U. E. Surat, M. Yalvac, M. Zeyrek

Bogazici University, Istanbul, Turkey

E. Gülmez, B. Isildak⁴⁴, M. Kaya⁴⁵, O. Kaya⁴⁵

Istanbul Technical University, Istanbul, Turkey H. Bahtiyar⁴⁶, E. Barlas, K. Cankocak, F. I. Vardarlı, M. Yücel

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine L. Levchuk, P. Sorokin

University of Bristol, Bristol, UK

J. J. Brooke, E. Clement, D. Cussans, H. Flacher, R. Frazier, J. Goldstein, M. Grimes, G. P. Heath, H. F. Heath, J. Jacob, L. Kreczko, C. Lucas, Z. Meng, D. M. Newbold[47,](#page-23-35) S. Paramesvaran, A. Poll, S. Senkin, V. J. Smith, T. Williams

Rutherford Appleton Laboratory, Didcot, UK

K. W. Bell, A. Belyaev⁴⁸, C. Brew, R. M. Brown, D. J. A. Cockerill, J. A. Coughlan, K. Harder, S. Harper, E. Olaiya, D. Petyt, C. H. Shepherd-Themistocleous, A. Thea, I. R. Tomalin, W. J. Womersley, S. D. Worm

Imperial College, London, UK

M. Baber, R. Bainbridge, O. Buchmuller, D. Burton, D. Colling, N. Cripps, M. Cutajar, P. Dauncey, G. Davies, M. Della Negra, P. Dunne, W. Ferguson, J. Fulcher, D. Futyan, A. Gilbert, G. Hall, G. Iles, M. Jarvis, G. Karapostoli, M. Kenzie, R. Lane, R. Lucas⁴⁷, L. Lyons, A.-M. Magnan, S. Malik, B. Mathias, J. Nash, A. Nikitenko³⁷, J. Pela, M. Pesaresi, K. Petridis, D. M. Raymond, S. Rogerson, A. Rose, C. Seez, P. Sharp†, A. Tapper, M. Vazquez Acosta, T. Virdee

Brunel University, Uxbridge, UK

J. E. Cole, P. R. Hobson, A. Khan, P. Kyberd, D. Leggat, D. Leslie, W. Martin, I. D. Reid, P. Symonds, L. Teodorescu, M. Turner

Baylor University, Waco, USA J. Dittmann, K. Hatakeyama, A. Kasmi, H. Liu, T. Scarborough

The University of Alabama, Tuscaloosa, USA O. Charaf, S. I. Cooper, C. Henderson, P. Rumerio

Boston University, Boston, USA A. Avetisyan, T. Bose, C. Fantasia, A. Heister, P. Lawson, C. Richardson, J. Rohlf, D. Sperka, J. St. John, L. Sulak

Brown University, Providence, USA

J. Alimena, E. Berry, S. Bhattacharya, G. Christopher, D. Cutts, Z. Demiragli, A. Ferapontov, A. Garabedian, U. Heintz, G. Kukartsev, E. Laird, G. Landsberg, M. Luk, M. Narain, M. Segala, T. Sinthuprasith, T. Speer, J. Swanson

University of California, Davis, USA

R. Breedon, G. Breto, M. Calderon De La Barca Sanchez, S. Chauhan, M. Chertok, J. Conway, R. Conway, P. T. Cox, R. Erbacher, M. Gardner, W. Ko, R. Lander, T. Miceli, M. Mulhearn, D. Pellett, J. Pilot, F. Ricci-Tam, M. Searle, S. Shalhout, J. Smith, M. Squires, D. Stolp, M. Tripathi, S. Wilbur, R. Yohay

University of California, Los Angeles, USA

R. Cousins, P. Everaerts, C. Farrell, J. Hauser, M. Ignatenko, G. Rakness, E. Takasugi, V. Valuev, M. Weber

University of California, Riverside, Riverside, USA

J. Babb, K. Burt, R. Clare, J. Ellison, J. W. Gary, G. Hanson, J. Heilman, M. Ivova Rikova, P. Jandir, E. Kennedy, F. Lacroix, H. Liu, O. R. Long, A. Luthra, M. Malberti, H. Nguyen, M. Olmedo Negrete, A. Shrinivas, S. Sumowidagdo, S. Wimpenny

University of California, San Diego, La Jolla, USA

W. Andrews, J. G. Branson, G. B. Cerati, S. Cittolin, R. T. D'Agnolo, D. Evans, A. Holzner, R. Kelley, D. Klein, M. Lebourgeois, J. Letts, I. Macneill, D. Olivito, S. Padhi, C. Palmer, M. Pieri, M. Sani, V. Sharma, S. Simon, E. Sudano, M. Tadel, Y. Tu, A. Vartak, C. Welke, F. Würthwein, A. Yagil, J. Yoo

University of California, Santa Barbara, Santa Barbara, USA

D. Barge, J. Bradmiller-Feld, C. Campagnari, T. Danielson, A. Dishaw, K. Flowers, M. Franco Sevilla, P. Geffert, C. George, F. Golf, L. Gouskos, J. Incandela, C. Justus, N. Mccoll, J. Richman, D. Stuart, W. To, C. West

California Institute of Technology, Pasadena, USA

A. Apresyan, A. Bornheim, J. Bunn, Y. Chen, E. Di Marco, J. Duarte, A. Mott, H. B. Newman, C. Pena, C. Rogan, M. Spiropulu, V. Timciuc, R. Wilkinson, S. Xie, R. Y. Zhu

Carnegie Mellon University, Pittsburg, USA

V. Azzolini, A. Calamba, T. Ferguson, Y. Iiyama, M. Paulini, J. Russ, H. Vogel, I. Vorobiev

University of Colorado at Boulder, Boulder, USA

J. P. Cumalat, W. T. Ford, A. Gaz, E. Luiggi Lopez, U. Nauenberg, J. G. Smith, K. Stenson, K. A. Ulmer, S. R. Wagner

Cornell University, Ithaca, USA

J. Alexander, A. Chatterjee, J. Chu, S. Dittmer, N. Eggert, N. Mirman, G. Nicolas Kaufman, J. R. Patterson, A. Ryd, E. Salvati, L. Skinnari,W. Sun, W. D. Teo, J. Thom, J. Thompson, J. Tucker, Y. Weng, L. Winstrom, P. Wittich

Fairfield University, Fairfield, USA

D. Winn

Fermi National Accelerator Laboratory, Batavia, USA

S. Abdullin, M. Albrow, J. Anderson, G. Apollinari, L. A. T. Bauerdick, A. Beretvas, J. Berryhill, P. C. Bhat, K. Burkett, J. N. Butler, H. W. K. Cheung, F. Chlebana, S. Cihangir, V. D. Elvira, I. Fisk, J. Freeman, Y. Gao, E. Gottschalk, L. Gray, D. Green, S. Grünendahl, O. Gutsche, J. Hanlon, D. Hare, R. M. Harris, J. Hirschauer, B. Hooberman, S. Jindariani, M. Johnson, U. Joshi, K. Kaadze, B. Klima, B. Kreis, S. Kwan, J. Linacre, D. Lincoln, R. Lipton, T. Liu, J. Lykken, K. Maeshima, J. M. Marraffino, V. I. Martinez Outschoorn, S. Maruyama, D. Mason, P. McBride, K. Mishra, S. Mrenna, Y. Musienko²⁹, S. Nahn, C. Newman-Holmes, V. O'Dell, O. Prokofyev, E. Sexton-Kennedy, S. Sharma, A. Soha, W. J. Spalding, L. Spiegel, L. Taylor, S. Tkaczyk, N. V. Tran, L. Uplegger, E. W. Vaandering, R. Vidal, A. Whitbeck, J. Whitmore, F. Yang

University of Florida, Gainesville, USA

D. Acosta, P. Avery, D. Bourilkov, M. Carver, T. Cheng, D. Curry, S. Das, M. De Gruttola, G. P. Di Giovanni, R. D. Field, M. Fisher, I. K. Furic, J. Hugon, J. Konigsberg, A. Korytov, T. Kypreos, J. F. Low, K. Matchev, P. Milenovic⁴⁹, G. Mitselmakher, L. Muniz, A. Rinkevicius, L. Shchutska, N. Skhirtladze, M. Snowball, J. Yelton, M. Zakaria

Florida International University, Miami, USA

S. Hewamanage, S. Linn, P. Markowitz, G. Martinez, J. L. Rodriguez

Florida State University, Tallahassee, USA

T. Adams, A. Askew, J. Bochenek, B. Diamond, J. Haas, S. Hagopian, V. Hagopian, K. F. Johnson, H. Prosper, V. Veeraraghavan, M. Weinberg

Florida Institute of Technology, Melbourne, USA M. M. Baarmand, M. Hohlmann, H. Kalakhety, F. Yumiceva

University of Illinois at Chicago (UIC), Chicago, USA

M. R. Adams, L. Apanasevich, V. E. Bazterra, D. Berry, R. R. Betts, I. Bucinskaite, R. Cavanaugh, O. Evdokimov, L. Gauthier, C. E. Gerber, D. J. Hofman, S. Khalatyan, P. Kurt, D. H. Moon, C. O'Brien, C. Silkworth, P. Turner, N. Varelas

The University of Iowa, Iowa City, USA

E. A. Albayrak⁴⁶, B. Bilki⁵⁰, W. Clarida, K. Dilsiz, F. Duru, M. Haytmyradov, J.-P. Merlo, H. Mermerkaya⁵¹, A. Mestvirishvili, A. Moeller, J. Nachtman, H. Ogul, Y. Onel, F. Ozok⁴⁶, A. Penzo, R. Rahmat, S. Sen, P. Tan, E. Tiras, J. Wetzel, T. Yetkin⁵², K. Yi

Johns Hopkins University, Baltimore, USA

B. A. Barnett, B. Blumenfeld, S. Bolognesi, D. Fehling, A. V. Gritsan, P. Maksimovic, C. Martin, M. Swartz

The University of Kansas, Lawrence, USA

P. Baringer, A. Bean, G. Benelli, C. Bruner, J. Gray, R. P. Kenny III, M. Malek, M. Murray, D. Noonan, S. Sanders, J. Sekaric, R. Stringer, Q. Wang, J. S. Wood

Kansas State University, Manhattan, USA

A. F. Barfuss, I. Chakaberia, A. Ivanov, S. Khalil, M. Makouski, Y. Maravin, L. K. Saini, S. Shrestha, I. Svintradze

Lawrence Livermore National Laboratory, Livermore, USA

J. Gronberg, D. Lange, F. Rebassoo, D. Wright

University of Maryland, College Park, USA

A. Baden, A. Belloni, B. Calvert, S. C. Eno, J. A. Gomez, N. J. Hadley, R. G. Kellogg, T. Kolberg, Y. Lu, M. Marionneau, A. C. Mignerey, K. Pedro, A. Skuja, M. B. Tonjes, S. C. Tonwar

Massachusetts Institute of Technology, Cambridge, USA

A. Apyan, R. Barbieri, G. Bauer, W. Busza, I. A. Cali, M. Chan, L. Di Matteo, V. Dutta, G. Gomez Ceballos, M. Goncharov, D. Gulhan, M. Klute, Y. S. Lai, Y.-J. Lee, A. Levin, P. D. Luckey, T. Ma, C. Paus, D. Ralph, C. Roland, G. Roland, G. S. F. Stephans, F. Stöckli, K. Sumorok, D. Velicanu, J. Veverka, B. Wyslouch, M. Yang, M. Zanetti, V. Zhukova

University of Minnesota, Minneapolis, USA

B. Dahmes, A. Gude, S. C. Kao, K. Klapoetke, Y. Kubota, J. Mans, N. Pastika, R. Rusack, A. Singovsky, N. Tambe, J. Turkewitz

University of Mississippi, Oxford, USA

J. G. Acosta, S. Oliveros

University of Nebraska-Lincoln, Lincoln, USA

E. Avdeeva, K. Bloom, S. Bose, D. R. Claes, A. Dominguez, R. Gonzalez Suarez, J. Keller, D. Knowlton, I. Kravchenko, J. Lazo-Flores, S. Malik, F. Meier, G. R. Snow

State University of New York at Buffalo, Buffalo, USA

J. Dolen, A. Godshalk, I. Iashvili, A. Kharchilava, A. Kumar, S. Rappoccio

Northeastern University, Boston, USA

G. Alverson, E. Barberis, D. Baumgartel, M. Chasco, J. Haley, A. Massironi, D. M. Morse, D. Nash, T. Orimoto, D. Trocino, R. j. Wang, D. Wood, J. Zhang

Northwestern University, Evanston, USA

K. A. Hahn, A. Kubik, N. Mucia, N. Odell, B. Pollack, A. Pozdnyakov, M. Schmitt, S. Stoynev, K. Sung, M. Velasco, S. Won

University of Notre Dame, Notre Dame, USA

A. Brinkerhoff, K. M. Chan, A. Drozdetskiy, M. Hildreth, C. Jessop, D. J. Karmgard, N. Kellams, K. Lannon, W. Luo, S. Lynch, N. Marinelli, T. Pearson, M. Planer, R. Ruchti, N. Valls, M. Wayne, M. Wolf, A. Woodard

The Ohio State University, Columbus, USA

L. Antonelli, J. Brinson, B. Bylsma, L. S. Durkin, S. Flowers, C. Hill, R. Hughes, K. Kotov, T. Y. Ling, D. Puigh, M. Rodenburg, G. Smith, C. Vuosalo, B. L. Winer, H. Wolfe, H. W. Wulsin

Princeton University, Princeton, USA

O. Driga, P. Elmer, P. Hebda, A. Hunt, S. A. Koay, P. Lujan, D. Marlow, T. Medvedeva, M. Mooney, J. Olsen, P. Piroué, X. Quan, H. Saka, D. Stickland², C. Tully, J. S. Werner, S. C. Zenz, A. Zuranski

University of Puerto Rico, Mayagüez, USA

E. Brownson, H. Mendez, J. E. Ramirez Vargas

Purdue University, West Lafayette, USA

E. Alagoz, V. E. Barnes, D. Benedetti, G. Bolla, D. Bortoletto, M. De Mattia, Z. Hu, M. K. Jha, M. Jones, K. Jung, M. Kress, N. Leonardo, D. Lopes Pegna, V. Maroussov, P. Merkel, D. H. Miller, N. Neumeister, B. C. Radburn-Smith, X. Shi, I. Shipsey, D. Silvers, A. Svyatkovskiy, F. Wang, W. Xie, L. Xu, H. D. Yoo, J. Zablocki, Y. Zheng

Purdue University Calumet, Hammond, USA

N. Parashar, J. Stupak

Rice University, Houston, USA

A. Adair, B. Akgun, K. M. Ecklund, F. J. M. Geurts, W. Li, B. Michlin, B. P. Padley, R. Redjimi, J. Roberts, J. Zabel

University of Rochester, Rochester, USA

B. Betchart, A. Bodek, R. Covarelli, P. de Barbaro, R. Demina, Y. Eshaq, T. Ferbel, A. Garcia-Bellido, P. Goldenzweig, J. Han, A. Harel, A. Khukhunaishvili, G. Petrillo, D. Vishnevskiy

The Rockefeller University, New York, USA

R. Ciesielski, L. Demortier, K. Goulianos, G. Lungu, C. Mesropian

Rutgers, The State University of New Jersey, Piscataway, USA

S. Arora, A. Barker, J. P. Chou, C. Contreras-Campana, E. Contreras-Campana, D. Duggan, D. Ferencek, Y. Gershtein,

R. Gray, E. Halkiadakis, D. Hidas, A. Lath, S. Panwalkar, M. Park, R. Patel, S. Salur, S. Schnetzer, S. Somalwar, R. Stone, S. Thomas, P. Thomassen, M. Walker

University of Tennessee, Knoxville, USA

K. Rose, S. Spanier, A. York

Texas A&M University, College Station, USA

O. Bouhali⁵³, R. Eusebi, W. Flanagan, J. Gilmore, T. Kamon⁵⁴, V. Khotilovich, V. Krutelyov, R. Montalvo, I. Osipenkov, Y. Pakhotin, A. Perloff, J. Roe, A. Rose, A. Safonov, T. Sakuma, I. Suarez, A. Tatarinov

Texas Tech University, Lubbock, USA

N. Akchurin, C. Cowden, J. Damgov, C. Dragoiu, P. R. Dudero, J. Faulkner, K. Kovitanggoon, S. Kunori, S. W. Lee, T. Libeiro, I. Volobouev

Vanderbilt University, Nashville, USA

E. Appelt, A. G. Delannoy, S. Greene, A. Gurrola, W. Johns, C. Maguire, Y. Mao, A. Melo, M. Sharma, P. Sheldon, B. Snook, S. Tuo, J. Velkovska

University of Virginia, Charlottesville, USA

M. W. Arenton, S. Boutle, B. Cox, B. Francis, J. Goodell, R. Hirosky, A. Ledovskoy, H. Li, C. Lin, C. Neu, J. Wood

Wayne State University, Detroit, USA

R. Harr, P. E. Karchin, C. Kottachchi Kankanamge Don, P. Lamichhane, J. Sturdy

University of Wisconsin, Madison, USA

D. A. Belknap, D. Carlsmith, M. Cepeda, S. Dasu, S. Duric, E. Friis, R. Hall-Wilton, M. Herndon, A. Hervé, P. Klabbers, A. Lanaro, C. Lazaridis, A. Levine, R. Loveless, A. Mohapatra, I. Ojalvo, T. Perry, G. A. Pierro, G. Polese, I. Ross, T. Sarangi, A. Savin, W. H. Smith, N. Woods

† **Deceased**

- 1: Also at Vienna University of Technology, Vienna, Austria
- 2: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
- 3: Also at Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France
- 4: Also at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
- 5: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
- 6: Also at Universidade Estadual de Campinas, Campinas, Brazil
- 7: Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
- 8: Also at Joint Institute for Nuclear Research, Dubna, Russia
- 9: Also at Suez University, Suez, Egypt
- 10: Also at British University in Egypt, Cairo, Egypt
- 11: Also at Fayoum University, El Faiyûm, Egypt
- 12: Now at Ain Shams University, Cairo, Egypt
- 13: Also at Université de Haute Alsace, Mulhouse, France
- 14: Also at Brandenburg University of Technology, Cottbus, Germany
- 15: Also at The University of Kansas, Lawrence, USA
- 16: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
- 17: Also at Eötvös Loránd University, Budapest, Hungary
- 18: Also at University of Debrecen, Debrecen, Hungary
- 19: Also at University of Visva-Bharati, Santiniketan, India
- 20: Now at King Abdulaziz University, Jeddah, Saudi Arabia
- 21: Also at University of Ruhuna, Matara, Sri Lanka
- 22: Also at Isfahan University of Technology, Isfahan, Iran
- 23: Also at Sharif University of Technology, Tehran, Iran
- 24: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
- 25: Also at Università degli Studi di Siena, Siena, Italy
- 26: Also at Centre National de la Recherche Scientifique (CNRS)-IN2P3, Paris, France
- 27: Also at Purdue University, West Lafayette, USA
- 28: Also at Universidad Michoacana de San Nicolas de Hidalgo, Morelia, Mexico
- 29: Also at Institute for Nuclear Research, Moscow, Russia
- 30: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia
- 31: Also at California Institute of Technology, Pasadena, USA
- 32: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
- 33: Also at Facoltà Ingegneria, Università di Roma, Rome, Italy
- 34: Also at Scuola Normale e Sezione dell'INFN, Pisa, Italy
- 35: Also at University of Athens, Athens, Greece
- 36: Also at Paul Scherrer Institut, Villigen, Switzerland
- 37: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
- 38: Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland
- 39: Also at Gaziosmanpasa University, Tokat, Turkey
- 40: Also at Adiyaman University, Adiyaman, Turkey
- 41: Also at Cag University, Mersin, Turkey
- 42: Also at Mersin University, Mersin, Turkey
- 43: Also at Izmir Institute of Technology, Izmir, Turkey
- 44: Also at Ozyegin University, Istanbul, Turkey
- 45: Also at Kafkas University, Kars, Turkey
- 46: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
- 47: Also at Rutherford Appleton Laboratory, Didcot, UK
- 48: Also at School of Physics and Astronomy, University of Southampton, Southampton, UK
- 49: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
- 50: Also at Argonne National Laboratory, Argonne, USA
- 51: Also at Erzincan University, Erzincan, Turkey
- 52: Also at Yildiz Technical University, Istanbul, Turkey
- 53: Also at Texas A&M University at Qatar, Doha, Qatar
- 54: Also at Kyungpook National University, Daegu, Korea