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Soil organic matter (SOM) is comprised of a diverse array of reactive carbon molecules, 
including hydrophilic and hydrophobic compounds, that impact rates of SOM forma-
tion and persistence. Despite clear importance to ecosystem science, little is known 
about broad-scale controls on SOM diversity and variability in soil. Here, we show that 
microbial decomposition drives significant variability in the molecular richness and 
diversity of SOM between soil horizons and across a continental-scale gradient in climate 
and ecosystem type (arid shrubs, coniferous, deciduous, and mixed forests, grasslands, 
and tundra sedges). The molecular dissimilarity of SOM was strongly influenced by 
ecosystem type (hydrophilic compounds: 17%, P < 0.001; hydrophobic compounds: 
10% P < 0.001) and soil horizon (hydrophilic compounds: 17%, P < 0.001; hydrophobic 
compounds: 21%, P < 0.001), as assessed using metabolomic analysis of hydrophilic 
and hydrophobic metabolites. While the proportion of shared molecular features was 
significantly higher in the litter layer than subsoil C horizons across ecosystems (12 times 
and 4 times higher for hydrophilic and hydrophobic compounds, respectively), the 
proportion of site-specific molecular features nearly doubled from the litter layer to 
the subsoil horizon, suggesting greater differentiation of compounds after microbial 
decomposition within each ecosystem. Together, these results suggest that microbial 
decomposition of plant litter leads to a decrease in SOM α-molecular diversity, yet an 
increase in β-molecular diversity across ecosystems. The degree of microbial degradation, 
determined by the position in the soil profile, exerts a greater control on SOM molecular 
diversity than environmental factors, such as soil texture, moisture, and ecosystem type.

soil organic matter | molecular diversity | functional diversity

The molecular diversity of soil organic matter (SOM) has emerged as a potentially critical 
control on soil organic carbon (SOC) persistence (1). The residence time of SOC influences 
the relative balance of organic carbon (C) stored in the soil or released to the atmosphere 
as carbon dioxide (CO2) and methane (CH4) (2). The need to fully understand the fun-
damental controls on SOC decomposition is undeniable. However, the ways and extent 
to which microbial decomposition may influence organic matter molecular diversity and 
unique chemical forms of SOM at broad spatial scales have not been studied in any detail.

The fate of SOC is predominantly controlled by soil microbial activity (3), which 
transforms the composition of plant litter inputs into an array of low-molecular-weight 
organic compounds (4). Plants contribute organic carbon to the ecosystem via litter dep-
osition on the soil surface (stems, leaves) and belowground (roots and exudates). Root 
exudates include a suite of primary (e.g., sugars, organic acids, amino acids) (5) and sec-
ondary (e.g., alkaloids, phenolics, terpenes) (6) metabolites that directly influence the 
molecular diversity of SOM. However, a large portion of plant-derived SOM first passes 
through the microbial “funnel” (7), which fuels microbial metabolism and biomass pro-
duction. This microbial funnel may directly contribute to molecular diversity by breaking 
down plant tissue into low-molecular-weight molecules, and indirectly, by releasing a wide 
variety of exoenzymes, metabolites, extracellular polysaccharides, and lysed microbial cells 
to the SOM pool. Environmental and chemical pressures may further influence molecular 
diversity by selecting for microorganisms with the appropriate transporters and metabolic 
pathways to use a given organic substrate (4). Because plant inputs decrease with depth, 
SOM is increasingly decomposed as it passes through the soil profile (8–10). Thus, SOM 
composition directly effects its consumption by microorganisms and vice versa. While 
some evidence suggests that microbial decomposition increases dissolved organic matter 
molecular diversity in aquatic ecosystems (11–13), little direct evidence exists for soils (14).

SOC cycles are largely controlled by temperature and moisture, both of which affect 
microbial and plant community composition (15). The dominant vegetation type in an 
ecosystem strongly influences the chemical composition (e.g., C:N ratio) of organic matter 
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inputs to the soil system. Litter with higher N contents generally 
exhibits greater mineralization rates compared to those with lower 
N content (16). Despite more rapid initial decomposition, plant 
litter with higher N content is theorized to increase C storage in 
mineral–organic associations by increasing microbial carbon use 
efficiencies (16–19). Plant community composition is also pre-
dicted to influence how C is cycled belowground as root architec-
ture and distribution within the soil profile varies among species, 
influences soil aggregation, and alters microbial community struc-
ture and function in rhizosphere versus bulk soils (20–22). What 
remains largely unexplored is whether the molecular diversity of 
SOM is more strongly driven by climate conditions, plant litter 
type, litter decomposition, or soil properties. Specifically, it is not 
known whether type of plant input or microbial decomposition 
processes exert a stronger control on molecular diversity.

In environmental sciences, the concept of diversity is primarily 
used to describe organisms. The advent of high-resolution mass spec-
trometry has dramatically improved our ability to apply the same 
diversity tools to assess the molecular diversity of natural organic 
matter. The mathematical equations used to quantify and describe 
molecular diversity are largely guided by theory developed from plant, 
animal, or microbial community ecology (23–25). Various mathe-
matical functions span a wide range of uses and frequently incorporate 
the abundance and evenness of counted individuals (e.g., species or 
molecules) in a given population (organismal or SOM pool) (Table 1) 
(23, 25, 26). However, it is not clear that ecological diversity indices 
are useful descriptors of organic molecules in soil. With the exception 
of some studies in aquatic ecosystems (9, 12, 13, 27–29), little work 
has been done to examine the utility of various mathematical 
approaches to capture the diversity of molecules in soil (30, 31).

Therefore, our main objective was to identify how climatic vari-
ables, plant litter and ecosystem type, and soil properties influence 
the molecular diversity of SOM within depth profiles that capture 
gradients in SOM decomposition. We compared six distinct eco-
systems with different dominant vegetation classes, soil type, and 
climate characteristics across the United States, including arid shrub-
lands, coniferous forests, deciduous forests, grasslands, mixed forests, 
and tundra sedges (n = 3 for all ecosystems). We hypothesized that 
1) microbial transformations exert a greater control on SOM diver-
sity than plant litter type, and 2) microbial decomposition of SOM 
transforms its composition toward a pool of molecularly similar 
compounds, thus decreasing the diversity of compounds therein.

To identify differences in molecular diversity across ecosystems 
in the soil profile, we used tandem liquid chromatography mass 
spectrometry (LC–MS/MS) to analyze i) hydrophobic (nonpolar) 

metabolites, which were retained and separated using reverse-phase 
C18 chromatography and ii) hydrophilic (polar) metabolites using 
hydrophilic interaction liquid chromatography (HILIC). 
Hydrophobic and hydrophilic molecules represent those that are 
either immobile or mobile, respectively, via transport by water 
throughout the soil profile. LC–MS/MS data were used to define 
unique metabolite features based on exact mass and retention time. 
Diversity indices were calculated from these features by converting 
peak heights to relative abundances. We also used putatively iden-
tified molecules for each metabolite feature based on MS/MS sim-
ilarity [Global Natural Products Social Molecular Networking 
(GNPS) top-hit] as unique chemical “species” for functional diver-
sity analysis. With this information, we tested the suitability of 
three ecological indices describing either the molecular α-diversity 
or β-diversity of SOM: 1) molecular richness; 2) abundance-based 
molecular diversity, which accounts for the richness and evenness 
of molecules (Hill Numbers) (23, 25); and 3) trait-based functional 
molecular diversity (Rao’s quadratic equation) (34, 36) by deter-
mining the nominal oxidation state of carbon (NOSC) and molec-
ular weight for each of the putatively identified metabolites. NOSC 
and molecular weight indices have been used in an aquatic study 
to identify functional molecular diversity (27) as both metrics 
describe the ability of microorganisms to interact with or use SOM. 
Using these diversity indices, we identified how the molecular 
α-diversity, or number of distinct molecules, and their trait-based 
molecular dissimilarity varied with soil depth within individual 
ecosystems. We also tested how the molecular β-diversity varied 
across ecosystems using a functional diversity index and the Bray–
Curtis Dissimilarity Index. We examined common and unique 
molecular features across the six ecosystems and their horizons by 
summing positively identified features. We further assessed organic 
matter composition using complementary techniques: attenuated 
total reflectance-Fourier transform infrared (ATR-FTIR) spectros-
copy of SOM and1s C near-edge X-ray absorbance (NEXAFS) 
spectroscopy of bulk soil and litter chemistries.

Results

Molecular Diversity in Relation to Microbial Decomposition. 
SOM found deeper in the soil profile is typically older and more 
microbially transformed than SOM in the topsoil (8, 37–40). Here, 
we show that the number of common hydrophilic compounds (i.e., 
annotated molecular features identified in all ecosystems) was four 
times higher in the litter layer (471 compounds, 31%) than that of the 
subsoil C-horizon (118 compounds, 13%) (Fig. 1). Within the litter 

Table 1. Ecological and molecular usage of diversity indices
Diversity index Equation Ecological and molecular context

α-diversity index
Molecular richness (DR) D

R
= S Counts known species or molecules (32, 33). More easily 

identified for organisms, compared to molecular features 
identified in LC–MS/MS spectra.

Molecular diversity using Hill 
Numbers(DHN, q=2) q=2

D
H

(

p

)

=

(

S
∑

i=1

p
q

i

)1∕(1−q) Estimates effective number of species or molecules (23, 25).  
Molecular richness and abundance are considered; 
however, more weight is given to rare molecules.

β-diversity index
Functional molecular diversity using 

Rao’s quadratic entropy (FDRao) FD
Rao

=

s
∑

i,j=1

d
ij
p
i
p
j

Quantifies trait-based variability in a community of species 
or pool of molecules (27, 34, 35). Traits used for functional 
diversity of organisms are often specific genes. For SOM 
molecules, a specific property must be chosen, such as 
the oxidation state of carbon or molecular weight, which 
was used in the work.

S is the total number of molecules; pi is the relative abundance of the i-th molecule; pj is the relative abundance of the j-th molecule; dij is the dissimilarity of molecules i and j; q[0, ∞] is 
the order of diversity.
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layer, organic acids were the most represented class (56%) (Fig. 3) and 
included compounds such as gluconic acid, betaine, and di-peptide 
metabolites (e.g., Phe-Ala and Ile-Ala) (Dataset S2). The A-horizon 
had relatively fewer shared hydrophilic compounds than the litter 
horizon (−13%; Fig. 1). Hydrophilic compounds common to all A-, 
B-, and C-horizons were primarily oxygen-containing compounds, 
such as arabitol, glyceric acid, and N-acetyl-D-glucosamine (Fig. 3 
and Dataset S1). Hydrophilic “unique” compounds (i.e., annotated 
molecular features that occurred in a single ecosystem or horizon) 
exhibited the greatest decline in the arid shrublands from the litter 
to the C-horizon (−45%, Fig. 2); the C-horizon contained only 
two compounds (D-gluconic acid and chelidonic acid) that were 
not present in the other horizons (Dataset S1). Interestingly, across 
all the six ecosystems, the litter layers were more compositionally 
similar to each other than to the C-horizons (Fig. 5), suggesting 
hydrophilic compounds become increasingly dissimilar across 
different ecosystems.

Hydrophobic molecular features displayed similar trends. Litter 
layers shared over 12 times the number of compounds across 

ecosystems as C-horizons (SI Appendix, Fig. S7) and were primar-
ily organic acids and derivatives (41%) and benzenoids (12%) in 
A-horizons, and organic acids and derivatives and nucleosides/
nucleotides/analogs in B- and C-horizons (Fig. 3 and Dataset S1). 
Relative to the hydrophilic compounds, hydrophobic compounds 
in the litter layer were more dissimilar than the C-horizon 
(SI Appendix, Fig. S9B), suggesting that this molecular suite of 
compounds becomes increasingly similar with depth across 
ecosystems.

Overall, SOM molecular richness (DR) and abundance-based 
diversity (DH, q=2)) decreased with depth (Fig. 4 and SI Appendix, 
Figs. S5 and S6 and Tables S3 and S4), but trends differed among 
the six ecosystems. Depth was a significant predictor for 
abundance-based molecular diversity (hydrophilic compounds: 
F1,5 = 9.17, P < 0.01; hydrophobic compounds: F1,5 = 13.11, 
P < 0.001) and molecular richness (hydrophilic compounds: F1,5 = 
11.79, P < 0.0001; hydrophobic compounds: F1,5 = 18.99, P < 0.001), 
but not for trait-based functional molecular diversity (FDRao(NOSC)) 
(SI Appendix, Figs. S5 and S6 and Tables S3 and S4). Across all 
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Fig. 1. Shared and unique hydrophilic compounds (HILIC LC–MS/MS) identified in each horizon. Both shared and unique compounds are displayed for the 
(A) litter layer, (B) A-horizon, (C) B-horizon, (D) C-horizon. Black dots under vertical bars indicate sets of ecosystems considered; either as individual ecosystems 
(single black dot) or all ecosystems (six black dots in the litter, A-, and C-horizons or five black dots in the B-horizon). The proportion of unique compounds, that 
occur only in a single ecosystem (single black dot), and shared compounds, those that are common across all ecosystems (all black dots shaded), is shown. The 
proportion of compounds that are either shared or unique is displayed above the vertical bars, with the number of compounds making up that proportion shown 
in parentheses below. The set sizes, or the total number of compounds identified for each ecosystem, are shown as horizontal bars. The identified compound 
classifications are reported by color within both the vertical and horizontal bars. Proportions and number of features common or unique of the sum of features 
in each horizon are displayed (proportions missing to 100% are features that are neither common nor unique; NA not available). Shared and unique features 
for hydrophobic compounds showed similar trends and are displayed in SI Appendix, Fig. S7.
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ecosystems, molecular richness and abundance-based molecular 
diversity of hydrophilic compounds declined from the litter layer to 
the topsoil A-horizon (Fig. 4 and SI Appendix, Fig. S4 and Tables S3 
and S4), with the greatest decline in deciduous forests (−79%, P-value 
< 0.05) and the smallest decline in arid shrublands (−48%, P-value 
< 0.05) (Fig. 4A and SI Appendix, Table S3). Although most of the 
ecosystems showed a decline in hydrophilic molecular richness 
throughout the soil profile, there were large increases in molecular 
richness from the B- to the C-horizon in the coniferous forests 
(+432%, P-value < 0.05) and the grasslands (364%, P-value <0.05) 
(Fig. 4A). The molecular richness of hydrophobic compounds 
declined from the litter to the A-horizon, with the greatest decline in 
arid shrublands (−84%, P-value < 0.05) and the smallest declines in 
mixed forest (−60%, P-value < 0.05) and tundra sedge ecosystems 
(−61%, P-value < 0.05) (SI Appendix, Fig. S5 and Table S4). Trends 
in abundance-based molecular diversity mimicked molecular richness 

(SI Appendix, Fig. S5 and Tables S3 and S4), but the changes across 
depth and ecosystems were less pronounced.

The decline in molecular diversity with depth coincided with 
an increase in absorbance of the aliphatic C–H bonding energy 
detected in ATR-FTIR spectra (SI Appendix, Fig. S2), indicating 
a greater abundance of microbial-derived compounds with increas-
ingly negative NOSC values (41). Similarly, the amide N–H and 
aromatic C=C bonds (−1,720 to −1,700 cm−1) shifted toward the 
amide C=O bonding region (−1,660 to −1,630 cm−1) with depth. 
ATR-FTIR data showed a greater shoulder at 1,710 cm−1 indica-
tive of carboxyl C–O which is consistent with NEXAFS spectra 
of bulk soils from selected locations exhibiting an increase in the 
ratio of carboxylic to aromatic C functional groups with depth 
(SI Appendix, Fig. S3). These complementary analytical approaches 
suggest that declines in molecular richness with depth are driven 
by increasing contributions of microbial-derived products.
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Molecular Diversity in Relation to Ecosystem Type. The 
molecular composition of plant litter inputs varied by ecosystem 
type. Plant litter C:N ratios were highest in coniferous forests 
(71.9 ± 9.3, P-value < 0.05) and lowest in grasslands (26.4 ± 3.0, 

P-value < 0.05) (SI Appendix, Table S2). Aromatic C functional 
groups were 6% lower in tundra sedges than that in coniferous 
forests or arid shrublands (NEXAFS spectra; SI Appendix, Fig. S3). 
Tundra sedges also had more pronounced peaks in the aliphatic 
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C–H bonding region than that of the other ecosystems (FTIR 
spectra; SI Appendix, Fig. S2). Grasslands had more pronounced 
amide N–H and aromatic C=C features than those of the other 
ecosystems (SI Appendix, Fig. S2). Despite initial differences in 
litter composition, models (including both ecosystem and horizon 
as fixed effects) did not significantly improve the null models 
(including only horizon as a fixed effect) predicting molecular 
richness, abundance-based molecular diversity, or trait-based 
functional diversity metrics (SI Appendix, Tables S7 and S8).

The largest differences in molecular richness across ecosystems 
occurred in the litter layer (Fig. 4 and SI Appendix, Fig. S6 and 
Tables S3 and S4). For example, within the litter layer, the molec-
ular richness of hydrophilic compounds was lowest in deciduous 
forests (671 compounds ± 62) and highest in coniferous forests 
(818 ± 35) (Fig. 4 and SI Appendix, Table S3). The molecular 
richness of hydrophobic compounds was lowest in tundra sedges 
(263 ± 53, P-value < 0.05) and grasslands (277 ± 24, P-value < 
0.05) and highest in coniferous forests (485 ± 13) (SI Appendix, 
Fig. S5 and Table S4). Abundance-based and trait-based func-
tional molecular diversity indices of hydrophilic and hydrophobic 
compounds did not vary significantly across soil horizons in any 
ecosystem (Fig. 4 and SI Appendix, Fig. S6 and Tables S3 and S4).

The relative abundance of hydrophilic compounds present in 
all the four horizons of the soil profile ranged from 8 to 34% in 
the six ecosystems (Fig. 2). Tundra sedges shared the greatest num-
ber of hydrophilic compounds across the soil profile (34% shared 
across three soil horizons, Fig. 2), whereas hydrophilic SOM in 
arid shrublands, coniferous forests, and grasses shared the fewest 
number of molecular features (8, 9, and 10%, respectively, 

averaged across four soil horizons) (Fig. 2). Interestingly, SOM in 
the tundra sedges litter layer also contained the greatest number 
of unique hydrophilic compounds (40 compounds, or 3% of the 
molecular features), which were not present in the corresponding 
horizons of the other five ecosystems (Fig. 1A). Grasslands con-
tained more unique hydrophilic compounds in the C-horizon than 
those of the other ecosystems (55 compounds, 6%), while arid 
shrublands contained the fewest (3 compounds, 0.3%) (Fig. 1D).

Arid shrublands had the fewest number of shared hydrophobic 
compounds in all horizons (13 compounds, 2%), which were 
primarily di-peptide organic acids and nucleosides such as 
2′-Deoxyadenosine. The tundra sedges shared 21% of hydropho-
bic compounds (110 compounds) across the three soil horizons 
(SI Appendix, Fig. S8), which were also primarily di-peptide 
organic acids. In contrast, the greatest number of unique hydro-
phobic compounds were found in the litter layer of coniferous 
forests and arid shrublands (40 compounds, 5% each) and the 
C-horizon of mixed forests (49 compounds, 26%) (SI Appendix, 
Fig. S7).

Molecular Diversity in Relation to Environmental and Soil 
Properties. Molecular dissimilarity of SOM was largely driven 
by depth (Fig.  5 and SI  Appendix, Fig.  S9), and specifically 
by differences in litter-derived SOM, which clearly separated 
in ordination space from the other soil horizons [non-
metricdimensional scaling (NMDS) ordination of hydrophilic 
compounds based on Bray–Curtis dissimilarity; Fig.  5A]. The 
C:N ratio of the litter layer was the strongest predictor of 
molecular richness for hydrophilic (R2 = 0.14, P-value = 0.09) and 
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hydrophobic compounds (R2 = 0.26, P-value = 0.02) (SI Appendix, 
Tables S5 and S6); however, this relationship did not continue 
in the mineral soil horizons. The interaction of ecosystem and 
horizon explained 24% (P < 0.001; PERMANOVA) of the 
variance of hydrophilic compounds, with horizon and ecosystem 
accounting for 21% (P < 0.001; PERMANOVA) and 10% 
(P < 0.001; PERMANOVA) of the variance, respectively (Fig. 5A). 
NMDS ordination of hydrophobic compounds showed a similar 
clustering pattern to hydrophilic compounds, with ecosystem 
explaining 17% of the variance (P-value < 0.001; PERMANOVA) 
and horizon explaining an additional 17% of the variance (P-value 
< 0.001; PERMANOVA), and their interaction accounting for 
20% of the variance (P < 0.001; PERMANOVA) (SI Appendix, 
Fig. S9). None of the potential explanatory variables included 
in the NMDS ordination were significant (P-values > 0.05). 
These included climatic variables (mean annual temperature and 
precipitation), environmental location characteristics (latitude, 
longitude, elevation), soil depth, concentrations of SOC, total 
nitrogen, hydroxylamine-extractable iron, clay content, soil 
pH, and gravimetric water content. These results are supported 
by linear regressions, which showed that no environmental or 
soil variables were correlated with molecular diversity indices 
of hydrophilic or hydrophobic compounds in the mineral soil 
horizons (SI Appendix, Tables S5 and S6).

Discussion

Molecular Richness and Diversity Are Driven by Microbial 
Transformation Rather Than Initial Plant Litter Chemistry. 
Despite large differences in the molecular composition and 
C:N ratios of litter inputs, the absolute number of molecules 
and both abundance and trait-based diversity indices did not 
differ among ecosystems. Subsoil horizons had a stronger 
molecular signature of microbial-derived OM than that of 
topsoil horizons (based on FTIR and LC–MS/MS spectra), 
which coincided with lower molecular α-diversity in the subsoil 
(Fig. 4 and SI Appendix, Figs. S4–S6). The decrease in molecular 
α-diversity with depth coincides with a substantial decrease 
in molecularly unique compounds as litter-derived OM is 
incorporated into mineral horizons (Fig.  2 and SI Appendix, 
Fig.  S8). The few shared compounds in the subsoils across 
ecosystems were predominantly organic acids and derivatives, 
oxygen-containing compounds, and nucleosides/nucleotides/
analogs, most of which were indicative of microbial metabolism 
such as 2′-Deoxyadenosine (purine nucleoside component 
of DNA), N-acetyl-D-glucosamine (component of bacterial 
cell walls), and arabitol (a microbial metabolite) (42). These 
compounds indicate that increased microbial transformation 
of plant litter imparts a microbial signature in SOM profiles 
(43–47). Our findings are consistent with previous results, 
where microbial decomposition transforms molecularly diverse 
plant litter inputs to a pool of molecularly similar, microbially 
derived compounds (9, 48).

Molecular Diversity of SOM Changed by Microbial Transfor­
mation. Microbial decomposition reduced the number and 
diversity of molecules cycling downward through the soil profile 
(Fig. 4 and SI Appendix, Figs. S4–S6), although site-specific soil 
properties moderated these patterns. For example, the molecular 
richness and diversity of grassland and coniferous forest C-horizons 
was lower than that of the litter layer, but higher than that of the A- 
or B-horizons. This pattern could be due to higher root C inputs 
at depth, downward transport of SOM, or physical translocation 
due to burrowing animals such as insects or earthworms (49).

After accounting for the oxidation state and molecular weight 
of each compound, we found that functional molecular diversity 
was not influenced by microbial decomposition (SI Appendix, 
Figs. S4 and S5 and Tables S3 and S4). As microorganisms convert 
plant-derived molecules (with varying NOSC values) into 
microbial-derived products, they generate products that are sim-
ilarly oxidized throughout the soil profile. In contrast, marine 
SOM was composed of molecularly dissimilar compounds across 
an aquatic degradation gradient, despite the fragmented molecules 
displaying high similarity across sites (12). Using a laboratory 
incubation experiment, others showed that the trait-based func-
tional diversity, based on NOSC values, of marine SOM declined 
with increasing degradation time (27); both the abundance and 
molecular richness of marine SOM increased, but began to decline 
after 100 d of incubation, ultimately returning to starting values 
after 1,000 d (27). These patterns could result from a lack of new 
C inputs to the experiment. Our observational findings, based on 
natural soil and litter samples, demonstrate that continuous 
organic C inputs (i.e., from roots or downward translocation) led 
to functionally similar molecules with increased decomposition 
(SI Appendix, Figs. S4 and S5).

Microbial Transformation Results in Convergent α-Diversity and 
Divergent β-Diversity. The process of hydrolytic and oxidative 
enzymatic decomposition by microorganisms generates SOM that 
becomes increasingly similar relative to the molecular diversity of plant 
litter inputs (Figs. 1, 2, and 4 and SI Appendix, Figs. S4–S9). Through 
microbial consumption of plant-derived organic C, microbes sustain 
catabolic and anabolic metabolism, converting SOC to respired CO2 
(or CH4) or microbial biomass, which may contribute to the SOM 
pool (7). This decomposition process, referred to as the microbial 
funnel, suggests that the bulk of the SOM is composed of microbial 
metabolic by-products (1, 7, 50–52). These by-products include 
cellular waste, exudates, primary and secondary metabolites, and 
cell wall fragments (44, 47, 52, 53). Despite differing ecosystem 
conditions and plant litter inputs, the continued turnover and accrual 
of microbial by-products leads to a lower number of molecules that 
are composed of a similarly diverse array of molecules over time 
(SI Appendix, Figs. S4 and S5).

Even though shared compounds across sites were indicative of 
microbial decomposition, the total number of shared hydrophilic 
and hydrophilic compounds across ecosystems was much lower 
in the subsoil compared to the initial litter samples. The low num-
ber of shared hydrophilic compounds in the subsoils was associ-
ated with a higher degree of dissimilarity across sites (Fig. 5B), 
suggesting an overall increase in β-diversity and decrease in 
α-diversity with depth (Fig. 6). In comparison, hydrophobic com-
pounds had a higher β-diversity value (based on the Bray–Curtis 
Dissimilarity Index) with depth (SI Appendix, Fig. S9) despite 
sharing 10% fewer compounds across ecosystems than that of the 
hydrophilic compounds (Fig. 1 and SI Appendix, Fig. S7). The 
difference in Bray–Curtis β-diversity indices between the hydro-
philic and hydrophobic compounds could be due to their polar 
or nonpolar nature—which dictates how mobile the compounds 
are within the soil column and thus how similar the compounds 
are to one another within the differing soil horizons (8).

Together, these results suggest that microbial turnover of SOM 
reduces overall molecular diversity within each ecosystem, although 
the individual ecosystems yield site-specific compounds that often 
exhibit divergent chemistries with depth. Site-specific molecular 
dissimilarity could stem from differences in microbial community 
structure and function (54, 55) or mineralogy (56, 57). For exam-
ple, microbial communities that assemble in different ecosystems 
may produce unique metabolic profiles based on soil conditions, 
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such as pH and oxygen availability, while site-specific minerals 
may differentially adsorb molecules based on molecular weight, 
heteroatom compatibility, or degree of carbon saturation (58). We 
further speculate that resulting SOM pools with low α-diversity 
found in deeper soil horizons, regardless of ecosystem type, are less 
energetically favorable for continued microbial catabolism and thus 
would have a greater persistence in soils (1).

While plant diversity is commonly linked with SOC sequestra-
tion potential and microbial diversity (32, 59, 60), our data show 
that ecosystem type did not improve model predictions of molec-
ular α-diversity but did explain greater β-diversity with depth. In 
contrast, soil depth had a significantly stronger correlation with 
molecular α-diversity, than with molecular β-diversity. Thus, 
molecular α-diversity is likely governed by microbial degradation, 
and molecular β-diversity may be more influenced by site-specific 
characteristics, such as soil pH, microbial community, soil texture, 
and mineralogy. These site-specific soil properties could potentially 
increase β-diversity across ecosystems by dictating which com-
pounds are utilized by microorganisms, occluded within aggre-
gates, or adsorbed to mineral surfaces. Therefore, we conclude that 
microbial degradation is the single greatest factor controlling 
molecular α-diversity in a given soil, while molecular β-diversity 
is likely governed by numerous soil properties across ecosystems.

The observed convergence of molecular α-diversity in soil aligns 
with reductions in microbial community diversity generally 
reported with depth (61). Microbial and molecular α-diversity are 
strongly linked, yet molecular diversity has been shown to have a 
stronger effect on shaping the microbial community structure than 
vice versa (13). Thus, the convergence of molecular α-diversity 
along microbial degradation gradients may contribute to the 

general decline in microbial diversity. The observed divergence of 
molecular β-diversity of hydrophilic compounds suggests that 
site-specific compounds predominantly occur in the subsoils 
where organic matter has undergone more extensive decomposi-
tion (Fig. 6). In contrast, the apparent increase in molecular sim-
ilarity with depth of hydrophobic compounds suggests that more 
unique nonpolar compounds are more resistant to transport down 
the soil profile. Dissolved organic matter analysis from across the 
North Atlantic and Southern Ocean showed that molecular 
α-diversity increased while β-diversity decreased across a degrada-
tion gradient (12). This study defined their degradation gradient 
as a longitudinal gradient from a lake to the deep ocean, whereas 
our study used soil depth as degradation gradient for each indi-
vidual ecosystem. Our study therefore permitted the assessment 
of molecular diversity along degradation gradients both within 
individual ecosystems (α-diversity) and between contrasting eco-
systems (β-diversity).

Advancements in technology continue to improve our ability to 
explore the molecular complexity of SOM. Here, we show that the 
molecular identity of SOM is critical to predicting how molecular 
diversity drives soil carbon cycling. Overall, we suggest that molec-
ular α-diversity converges with depth during microbial decompo-
sition of plant litter, but molecular β-diversity diverges with 
microbial decomposition across ecosystems. In contrast to our 
expectations, molecular properties based on NOSC and molecular 
weight were not suitable metrics for characterizing functional 
molecular diversity as a result of microbial decomposition. While 
trait-based functional diversity metrics are commonly calculated 
using alternative analytical methods, such as Fourier-transform-ion 
cyclotron resonance-mass spectrometry (FT-ICR-MS) (27, 28), 
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these metrics may not be suitable using LC–MS/MS. Assessing 
molecular diversity using the number of molecules and identifying 
shared molecules across groups, while also incorporating molecular 
traits, may further improve our understanding of how SOM molec-
ular diversity shapes SOC mineralization rates and/or adsorption 
to mineral surfaces. Our work provides a framework for future 
insights into SOM molecular diversity and ecosystem function.

Materials and Methods

Soil Sampling. Soil and litter samples were collected in July of 2019 from loca-
tions across the United States from six distinctly different ecosystems (SI Appendix, 
Fig. S1). Soils sampled by horizon to the average depth of 1 m from each location 
were transported on ice to Cornell University where they were sieved at <2 mm 
and air-dried prior to analysis. Locations were grouped by region, ecosystem type, 
based on the predominant vegetation class, and soil order (SI Appendix, Table S1).

Soil Characterization. Particle size distribution was assessed by mechanical 
separation using the hydrometer method. Soil pH was measured in a 10-mM 
calcium chloride solution in a 1:2.5 (soil:solution, w/v) ratio. Poorly crystalline 
iron, aluminum, and manganese were determined using a hydroxylamine hydro-
chloric acid extraction (62); 0.33 g of soil and 10 mL of 0.25 M hydroxylamine HCl 
solution were shaken for 16 h and filtered at 0.20 µm. Elemental contents were 
quantified in the extracts using inductively coupled plasma mass spectrometry 
(Spectro Ametek). Dissolved organic carbon was analyzed using a Shimadzu TOC-L 
analyzer (Shimadzu Scientific Instruments, Inc.) after shaking 1 g of air-dried soil 
with 10 mL deionized water and then filtering at 0.20 µm. Total SOC and total 
nitrogen were measured with a Thermo Delta V isotope ratio mass spectrometer 
interfaced to an NC2500 elemental analyzer (Thermo Fisher Scientific Corp.). 
Mean annual temperature (°C), mean annual precipitation, and aridity were cal-
culated for the latitude/longitude coordinates for the sampled locations using 
values from the WorldClim 2.0 datatset (63).

NEXAFS. Carbon functional groups of bulk organic carbon in soil and litter 
samples were determined using C 1(s) near-edge X-ray absorption fine structure 
(NEXAFS) spectroscopy at the Canadian Light Source in Saskatoon, Canada. Soil 
and plant litter samples from full profiles from each grouping (e.g., grassland, 
coniferous forests, arid shrubland, deciduous forests, mixed forests, and tundra 
tussock sedges and forbes) were ball-milled, slurried in deionized water, and 
pipetted onto clean silicon foils. Upon drying, C NEXAFS spectra were obtained 
with the spherical grating monochromator beamline 11ID-1 (64). Step scan mode 
(0.25 eV steps from 270 to 320 eV) was used to minimize X-ray damage. A dwell 
time of 20 ms was used between scans. Individual spectra were collected at new 
locations on each sample for a total of 20 to 30 scans. The beamline exit slit was 
set at 25 mm, and the fluorescence yield data were collected using a two-stage 
microchannel plate detector. The resulting spectra were averaged for each sam-
ple and the averaged spectrum was then baseline normalized to zero and then 
normalized using the beamline photon flux (Io) from a separate Au reference foil. 
Each spectrum was calibrated to the carboxylic acid peak (288.5 eV) of a citric acid 
standard. Preedge (270 to 278 eV) and postedge (310 to 320 eV) and E0 (290 eV) 
values were used to perform an edge-step normalization. Peak deconvolution was 
conducted in Athena [Demeter version 0.9.25, 2006 to 2016; (65)] to determine 
the relative abundances of functional groups, namely carboxylic and amine C, 
aromatic C, and aliphatic C (66, 67). Gaussian peak positions, their full-width at 
half-maximum, and the arc tangent function were fixed. Peak magnitude was set 
to vary freely during the fitting process. Parameters were adjusted until optimal 
fits for each spectrum were achieved, and all spectra were fitted with these final 
parameters.

FTIR Spectroscopy. Fourier transform infrared (FTIR) spectra of water-extractable 
organic matter (<0.2 µm) from soil and plant litter samples were obtained using a 
Bruker Vertex 70 spectrometer (Bruker Optics Inc.) equipped with a Pike GladiATR 
accessory (Pike Technologies) and using a single-reflection diamond internal 
reflection element. The spectra were collected from 4,500 to 150 cm−1 with a 
resolution of 4 cm−1 and averaged from 60 scans per sample. OPUS 7.2 software 
(Bruker Optics Inc.) was used to conduct baseline correction and normalization 
before exporting spectra for interpretation.

Metabolite Extraction. Soil or litter material was weighed out at 2.6 to 5.8 mg of 
water-extractable C equivalent and then resuspended in 4 mL LCMS-grade water 
per gram of soil or 5 mL LCMS-grade water per gram of leaf litter. Samples were 
vortexed for 10 s, then bath sonicated in an ice water bath for 1 h. The samples 
were incubated for an additional hour in an ice water bath and then shaken 
overnight at 4 °C at 200 rpm on an orbital shaker. Slurries were centrifuged at 
3,000 × g for 10 min at 10 °C and the supernatants were dried in a new tube 
by lyophilization (Labconco FreeZone 12L). The soil pellets were resuspended in 
5 mL 2:1 v:v chloroform:methanol. The samples were vortexed for 10 s, sonicated 
for 30 min in an ice water bath, and then shaken at 4 °C for 1 h at 200 rpm on an 
orbital shaker. The samples were centrifuged (10,000 rcf, 10 min, 10 °C) and the 
supernatants were dried under vacuum centrifugation (Thermo Savant Speed 
Vac). Dried water and organic solvent extracts were both resuspended in 1 mL 
methanol, vortexed 10 s, bath sonicated 10 min in ice water, and then combined 
into one tube; vortexing and sonication was repeated, and then the samples were 
centrifuged at 10,000 rcf for 5 min at 10 °C. The supernatants of the combined 
extracts were dried by vacuum concentration (Thermo Speed-Vac) and then resus-
pended in 150 µL methanol containing internal standards (Dataset S2); the final 
extracts were vortexed 2 × 10 s, bath sonicated in ice water for 15 min, and then 
centrifuged (10,000 rcf, 5 min, 10C) and filtered (0.2 µM) to remove insoluble 
materials; the filtrates were collected for LC–MS/MS.

LC–MS/MS. Metabolites from extracts were separated using reverse phase on 
an Agilent 1290 LC stack connected to a Q Exactiv Hybrid Quadrupole-Orbitrap 
Mass Spectrometer (Thermo Fisher Scientific). Samples were injected twice, once 
on reverse-phase LC–MS/MS (Agilent ZORBAX RRHD Eclipse Plus C18, 95Å, 2.1 × 
50 mm, 1.8 µm column) and again on hydrophilic interaction LC–MS/MS (Agilent 
InfinityLab Poroshell 120 HILIC-Z, 2.1 × 150 mm, 2.7 µm column). LC–MS/MS 
parameters are described in Dataset S2. Briefly, after separation, the top two 
most intense precursor ions (not previously selected within 7 s) were selected for 
fragmentation at stepped collision energies of 10, 20, 40 eV. Sample injections 
were randomized and both internal and external standards were used for quality 
control purposes. Chromatographic features and MS/MS spectra were extracted 
using MZmine 2 prior to annotation via spectral matching using GNPS libraries 
(68, 69) and the Feature-Based Molecular Networking workflow (70, 71).  An 
MZmine workflow was used to generate a list of features (mzrt values obtained 
from extracted ion chromatograms containing chromatographic peaks within a 
narrow m/z range) and filtered to remove isotopes. For each feature, the most 
intense fragmentation spectrum was uploaded to GNPS. When a sample mass 
spectrum matches the one deposited within the GNPS database, a putative iden-
tification is made. Library hits were filtered based on accurate mass <15 ppm 
for negative mode and <5  ppm for positive mode, cosine score >0.70, and 
number of matching ions = 3. In addition, features were filtered to meet the 
following requirements: retention time greater than 1 min and intensities that 
were 50 times greater than the extraction controls. Only the top one hit from the 
GNPS networking library was selected to remain in the dataset. Features were also 
dropped when all peak heights across samples were less than 1,000,000 inten-
sity. For further statistical processing, feature table intensities were normalized 
by NPOC (total mg of C) in the soil/litter extracted.

Molecular Diversity Calculations. Molecular diversity of SOM extracted from 
soil and litter samples was calculated using a variety of classic and functional 
diversity indices. We used classic functional diversity indices as measures of 
molecular α-diversity, meaning the diversity of compounds within one sample 
or ecosystem. Functional diversity calculations and distant matrixes were used 
as measures of molecular β-diversity, or the similarity of compounds across sites 
sites/ecosystems. Selection of diversity indices was carefully considered, especially 
since mass spectrometry data are uniquely different from classic ecology datasets 
often used to calculate diversity (e.g., species count or operational taxonomic unit 
data); hence, a full discussion of diversity indices for mass spectrometry data can 
be found in supplemental information and brief descriptions are found in Table 1.

We calculated i) molecular richness (DR) using the sum of identified molecular 
features in each sample (SI Appendix, Tables S3 and S4), ii) abundance-based molec-
ular diversity using Hill Numbers (72) for an evenly weighted pool of molecules 
(DH, q=1) and for a pool of molecules that favors rare individuals (DH, q=2), and iii) 
trait-based functional molecular diversity using Rao’s quadratic entropy (27, 34) 
with either NOSC (DRao(NOSC)) or molecular weight (DRao(MW)) as the dissimilatory 

http://www.pnas.org/lookup/doi/10.1073/pnas.2303335120#supplementary-materials
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molecular property (Table 1). All indices are reported in SI Appendix, but in the main 
text, we limit our discussion to molecular richness (DR), molecular diversity when 
q= 2 (DH, q=2), and functional molecular diversity using NOSC (DRao(NOSC)).

Molecular richness and abundance-based molecular diversity were calculated 
using peak intensities as presence/absence and relative abundance, respectively, 
of unique annotated metabolite features. The subset of extracted LC–MS/MS 
features that were annotated to a chemical identifier and associated molecular 
formula based on GNPS spectral matching were used for richness or diversity 
measures. The molecular formula for the top GNPS match was used to calculate 
molecular properties based for functional molecular diversity including molecular 
weight (amu) and the NOSC (41).

Statistical Analysis. Soil biogeochemical variables were determined to be signif-
icantly different by testing the means using a mixed-effects model, where horizon 
(litter, A, B, C) and ecosystem type were calculated as fixed effects and the location 
as a random effect. Variables were log transformed when the model residuals 
were not normally distributed. Variable means were contrasted using estimated 
marginal means with a Bonferroni correction factor using the emmeans R package 
(73) and compact letter displays. Variables were contrasted to first test whether 
individual horizons differed across ecosystems (capital letters) or within individ-
ual ecosystems to test differences in horizons (lowercase letters). Groups that do 
not share the same letters are considered significantly different (SI Appendix, 
Tables  S2–S4). To identify predictors of molecular diversity, linear regressions 
were performed on horizon subsets of the data (SI Appendix, Tables S5 and S6). To 
determine if depth predicts molecular diversity, we used mixed-effects models for 
each diversity index which included depth (m) and ecosystem type as fixed effects 
and sample location as a random effect SI Appendix, Tables S7 and S8. Mixed-
effects models were also conducted to determine the effect of ecosystem type on 
molecular diversity indices, where null models included depth (m) as a fixed effect 
and sample location as a random effect and were compared with ANOVA analysis 
to models that added ecosystem type as a fixed effect (SI Appendix, Tables S9 
and S10). To identify dissimilarities of LC–MS/MS features across ecosystems, we 
performed a nonmetric dimensional scaling (NMDS) ordination using a Bray–
Curtis distance matrix for relative abundances of LC–MS/MS features. Vectors of 
environmental variables were determined using the vegan package in Rstudio. 
Variables included as vectors were mean annual temperature (°C), mean annual 
precipitation (mm), latitude, longitude, elevation (m), depth (m), SOC, total nitro-
gen, clay, hydroxylamine extractable iron (mg g soil−1), pH, gravimetric moisture 
content (GWC), NOSC, and molecular weight (MW). A PERMANOVA analysis was 

conducted to identify the extent to which ecosystem type explains the variance 
in the Bray–Curtis distance matrix with ecosystem type and horizon as factors 
and sample location as strata (74). Mean Bray–Curtis dissimilarity values for each 
ecosystem by horizon were also calculated using identified LC–MS/MS features 
for both the hydrophilic and hydrophobic compounds.

Data, Materials, and Software Availability. LC–MS/MS peak height tables 
and all associated metadata are available through the following GNPS job links:  
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=98e3c66affda45588ceb8d-
4b4534a4f9  (HILICZ positive mode), https://gnps.ucsd.edu/ProteoSAFe/status.
jsp?task=a360bd4d466948dd8929aa9bf803a18e  (HILICZ negative mode), 
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=7988718f02d94fd7a10b-
3039de2b9e37 (C18 positive mode),  https://gnps.ucsd.edu/ProteoSAFe/sta-
tus.jsp?task=cb8d264c7a5d4610a93682365a9323ae (C18 negative mode). 
All study data are included in the article and/or supporting information.
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