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Abstract

We present a computationally efficient galaxy archetype-based redshift estimation and spectral classification
method for the Dark Energy Survey Instrument (DESI) survey. The DESI survey currently relies on a redshift fitter
and spectral classifier using a linear combination of principal component analysis–derived templates, which is very
efficient in processing large volumes of DESI spectra within a short time frame. However, this method occasionally
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yields unphysical model fits for galaxies and fails to adequately absorb calibration errors that may still be
occasionally visible in the reduced spectra. Our proposed approach improves upon this existing method by refitting
the spectra with carefully generated physical galaxy archetypes combined with additional terms designed to absorb
data reduction defects and provide more physical models to the DESI spectra. We test our method on an extensive
data set derived from the survey validation (SV) and Year 1 (Y1) data of DESI. Our findings indicate that the new
method delivers marginally better redshift success for SV tiles while reducing catastrophic redshift failure by 10%–

30%. At the same time, results from millions of targets from the main survey show that our model has relatively
higher redshift success and purity rates (0.5%–0.8% higher) for galaxy targets while having similar success for
QSOs. These improvements also demonstrate that the main DESI redshift pipeline is generally robust.
Additionally, it reduces the false-positive redshift estimation by 5%−40% for sky fibers. We also discuss the
generic nature of our method and how it can be extended to other large spectroscopic surveys, along with possible
future improvements.

Unified Astronomy Thesaurus concepts: Galaxy spectroscopy (2171); Astronomical methods (1043); Redshift
surveys (1378); Astronomy software (1855); Astronomy data analysis (1858)

1. Introduction

The Dark Energy Survey Instrument (DESI) is a Stage-IV large
spectroscopic survey (Levi et al. 2013; DESI Collaboration et al.
2016) that will observe more than∼40million spectra of galaxies,
stars, and quasars in the wavelength range 3600–9800Åwith an
average spectral resolution (R= λ/Δλ) of 2000 at the shortest
wavelengths to 5500 at the longest wavelengths (DESI
Collaboration et al. 2022; Miller et al. 2024; Silber et al. 2023).
The main survey started in 2021 May and will continue for 5 yr,
resulting in the largest 3D map of the Universe ever. The early
spectroscopic data of more than ∼1million galaxies, quasars, and
stars was released in early 2023 June (DESI Collaboration et al.
2024a). The DESI early data release45 (EDR) consists of raw
images, reduced spectra, spectral classifications, and redshifts
of each target observed with DESI during the survey validation
(SV) phase. This requires a large number of software
developments to process such large data sets efficiently and
has motivated the development of classical machine-learning-
and neural-network-based approaches to analyze the data.

One of the principal aims of these surveys is to construct an
accurate 3D map of the large-scale structure of the Universe
with these tracer galaxies and quasars. These maps allow us to
measure baryon acoustic oscillations and the redshift-space
distortions that help us understand the expansion history and
growth of structure(s) in the Universe. This requires precise
redshift measurements for galaxies and quasars, as under-
standing the systematics in redshift efficiency is crucial for
accurately modeling the number density of tracers that
contribute to these signals. These systematics also impact the
total error budget of the best-fit cosmological parameters (see
Krolewski et al. 2024; Yu et al. 2024, for DESI systematics).

At the same time, precise redshift measurements are also
important for noncosmological scientific analyzes. For example,
stacking observed spectra to detect the radio H I line from radio
surveys (Anand et al. 2019) or other weak emission lines
(Maddox et al. 2013) that are typically undetectable in individual
spectra relies on accurate redshift information. Similarly, robust
redshift estimates help reduce the misidentification of galaxy
groups, which usually have similar redshifts that differ only by
their peculiar velocities (Wang et al. 2020). Furthermore, very
precise redshifts are necessary to model and understand the gas
kinematics in the halos of galaxies using quasar absorption lines
(Tumlinson et al. 2017). Owing to the importance of precise
redshifts in astronomy, it is imperative to develop fast, optimal,

and robust redshift measurement pipelines for the large ongoing
and upcoming spectroscopic surveys.
Given its straightforward and simple mathematics, principal

component analysis (PCA) has demonstrated remarkable
success in astronomy. The method’s popularity stems from
its deterministic and quickly convergent nature when solving
for linear coefficients. Recent progress has allowed us to
improve PCA-based spectral fitting algorithms, incorporating
astronomical data uncertainties while constructing PCA
templates (Bailey 2012; Tsalmantza & Hogg 2012). These
templates have been used to model astronomical spectra of
galaxies, stars, and quasars and measure their redshifts. An
example of such a method is the Sloan Digital Sky Survey
(SDSS) redshift pipeline (Bolton et al. 2012), employed for
modeling SDSS BOSS/eBOSS spectra and measuring their
redshifts. It has worked extremely well on millions of spectra,
which helped the SDSS collaboration construct one of the
largest 3D sky maps at the time (Ahumada et al. 2020). At the
same time, PCA templates have been combined with stellar
population synthesis models to measure galactic properties
from their spectra (see Chen et al. 2012, for details).
However, one issue with PCA-based templates is their

inability to present the physical properties of galaxy spectra in
their eigenvectors alone. One commonly encountered problem in
PCA fits involves fitting noise as negative and unphysical fluxes,
particularly in low signal-to-noise ratio (SNR) spectra that yield
inaccuracies in measuring their redshifts and associated physical
properties. This drawback is important to tackle in light of the
ongoing large spectroscopic surveys that are poised to
accumulate millions of spectra in the coming years.
To tackle these issues, several other modeling techniques

have been used in recent years. One such method is
nonnegative matrix factorization (NMF), which is also a
dimension reduction technique akin to PCA. It factorizes a
large input matrix (typically the fluxes as a function of
wavelength) into two smaller nonnegative matrices,46 namely
eigenspectra, and coefficients, which can reproduce the input
matrix fairly well. Furthermore, these eigenspectra exhibit a
greater resemblance to the physical characteristics, like
emission or absorption features in astronomical spectra. Lee
& Seung (1999) presented a simple iterative update rule to
derive these smaller matrices while ensuring a non-increasing
nature for the associated cost function. While NMF presents

45 EDR is publicly available at https://data.desi.lbl.gov/doc/releases/edr/.

46 V ≈ WH, where W � 0 and H � 0 are found by minimizing the Frobenius
norm ||V − WH||F.

2

The Astronomical Journal, 168:124 (28pp), 2024 September Anand et al.

http://astrothesaurus.org/uat/2171
http://astrothesaurus.org/uat/1043
http://astrothesaurus.org/uat/1378
http://astrothesaurus.org/uat/1378
http://astrothesaurus.org/uat/1855
http://astrothesaurus.org/uat/1858
https://data.desi.lbl.gov/doc/releases/edr/


inherent complexity as there is no optimal algorithm for finding
the global minimum for the cost function associated with these
two matrices, it is still extremely useful for astronomical
spectra where the fluxes are always positive. Consequently,
NMF has emerged as an alternative tool for modeling galaxy
and quasar continua (see Zhu & Ménard 2013; Anand et al.
2021; Napolitano et al. 2023), especially to search for metal
absorbers in quasar spectra in the context of circumgalactic/
intergalactic media or intracluster medium studies (Anand et al.
2021, 2022).

However, very few NMF algorithms exist that may work
well with low-SNR data. Recently, Green & Bailey (2023)
have extended the NMF algorithm to construct eigenspectra
and coefficients for astronomical data with negative fluxes.
This is an important result for low-SNR spectra coming from
low-resolution large spectroscopic surveys, where even care-
fully calibrated sky subtraction may result in negative fluxes in
reduced spectra.

An alternative method that has been previously employed
involves utilizing correlation peaks in the cross-correlation
function of the high-pass-filtered input spectrum with a series
of templates. This technique was initially developed for the
Galaxy And Mass Assembly (GAMA) survey galaxies, as
described in Baldry et al. (2014). However, it is readily
adaptable to forthcoming surveys such as DEVILS (Davies
et al. 2021) on Anglo-Australian Telescope and WAVES47 on
the Vista telescope with 4MOST (Driver et al. 2016). This
approach offers two advantages over traditional PCA-based
redshift determination methods. First, it provides highly
reliable redshifts with uncertainties as low as <50 km s−1.
The DESI’s PCA-based redshift fitter also achieves an
uncertainty of <40 km s−1 in redshift measurements, similar
to the correlation peak approach. Second, it facilitates the
identification of multiple peaks in the cross-correlation
function, which helps identify overlapping galaxies (such as
those in clusters or groups, e.g., Holwerda et al. 2015, 2022) or
strongly lensed systems (e.g., the SLACS program initiated by
Bolton et al. 2008).

The recent progress in neural networks and machine learning
methods have also played a crucial role in analyzing
astronomical data sets, encompassing tasks from image and
spectral classification to the prediction of cosmological
parameters (see Baron 2019, for a review). An example of
such an approach is QuasarNET, a convolutional neural
network (CNN)−based method developed for the classification
and redshift measurement of quasars (Busca & Balland 2018)
observed with surveys such as eBOSS and DESI. Conse-
quently, the astronomical community relies on these
approaches to analyze large numbers of spectra.

To address the problem of unphysical line fitting in PCA
approach, some studies have explored redshift fitting (using a
minimum χ2 approach) of galaxy spectra using physical galaxy
models (also known as the archetypes) and polynomials (Cool
et al. 2013). An example of such automated software is
redmonster (Hutchinson et al. 2016), which was developed
for the eBOSS program of the SDSS. The software yielded a
high-redshift success rate (∼90.5%) for luminous red galaxies
(LRGs). However, this model had the freedom to take negative
coefficients in order to achieve the optimal solution, which
made it susceptible to unphysical modeling of negative features

as real absorption features. Though it worked fine for early
SDSS data sets, it was not computationally efficient and,
therefore, not suited for a survey as large as DESI, which aims
to observe 10 times more spectra than SDSS.
In this paper, our objective is to improve the existing method

for classifying and measuring redshifts of the DESI spectra. We
aim to integrate the existing DESI redshift fitter with a suite of
physically motivated archetypes, combined with a set of
polynomials to construct spectral fits that are more physical.
This also allows us to maintain the efficiency intrinsic to PCA.
We introduce several new features in our model, such as a new
state-of-the-art set of archetypes, Legendre polynomials,
Gaussian priors on polynomial coefficients, and enforcing
positive coefficients to the archetypes to avoid any unphysical
fittings of the spectra.
The structure of our paper is as follows: we describe the

spectral data and DESI-specific methods and techniques in
Section 2. In Section 3, we state the problem and illustrate our
methodology and implementation. Section 4 presents extensive
tests and the performance evaluation of our method using
existing DESI data. Finally, in Section 5, we discuss the
implications of our method and potential future avenues of
exploration.

2. DESI Data and Classification Procedure

2.1. DESI Spectra

The DESI focal plane is segmented into 10 wedges or petals,
each connected to a dedicated spectrograph. These spectrographs
consist of three cameras denoted as b (3600–5800Å), r
(5760–7620Å), and z (7520–9824Å), each exhibiting a resol-
ving power ranging from 2000−5000. Each petal is equipped
with 500 fibers, each directed toward unique sky positions.
Consequently, DESI can simultaneously observe spectra from
5000 targets. The fiber assignment48 algorithm is run throughout
the night on the fly, and specific targets (along with their R.A.
and decl.) are assigned to each of the 5000 fibers, constituting a
single observing “tile.” Furthermore, a subset of the 5000 fibers
(usually ∼20) is specifically allocated for observing blank sky
regions to measure the sky emission model for spectral
reduction. These designated fibers are referred to as “sky
fibers.” These are pre-selected to target specific regions of the
sky that are empty. The sky fibers are the same for each tile,
though they can point in different directions for each tile. These
tiles are designed for specific observation programs, the two
main ones being the dark and bright. As their name indicates,
they are optimized for different observation conditions, and the
observations switch from one to the other depending on a
combination of moon brightness, r-band sky magnitude, sky
transparency, and seeing (see Myers et al. 2023; Schlafly et al.
2023, for more details). Moreover, certain targets are observed
multiple times, and their spectra are combined across exposures
to construct very high-SNR spectra.
The instrumental design of DESI allows it to observe many

galaxies and quasar targets with broad physical properties, such
as stellar populations, emission lines, and dust content over a
wide range of redshifts. DESI targets three broad classes of

47 Wide Area Vista Extragalactic Survey.

48 The fiber assignment algorithm basically selects which fibers are to be
assigned to the targets, blank sky location, and calibration stars for each tile.
The priority of targets means they will be assigned first or last while assigning
the fibers. E.g., QSO targets will always be assigned first on dark tiles followed
by luminous red galaxy (LRG) and emission-line galaxy (ELG) targets (DESI
Collaboration et al. 2022).
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galaxies: bright galaxy sample (BGS; Hahn et al. 2023),
luminous red galaxies (LRGs; Zhou et al. 2023), and emission-
line galaxies (ELGs; Raichoor et al. 2023). Galaxies in the
DESI BGS sample are low redshift, and they span from
massive and quenched galaxies with evolved stellar popula-
tions to low-mass and star-forming galaxies with young stellar
populations. They are further classified as BGS_BRIGHT and
BGS_FAINT depending on their brightness and magnitudes
(Myers et al. 2023). Galaxies in the DESI BGS sample are
observed in bright conditions on bright tiles. Next, the LRGs
are targeted based on their grzW1 photometry and 4000Å
break (see Zhou et al. 2023, for detailed selection cuts) and are
dominated by a metal-rich stellar population and low star
formation rates. They are also more massive than BGSs and
targeted in the redshift range of 0.4< z< 1.

Next, the ELG sample includes primarily star-forming
galaxies, and their spectra show several high equivalent width
emission lines. The principal emission line that is aimed to
resolve for ELGs in the DESI survey is the [O II] λλ3727, 29
doublet. They are targeted in the redshift range of 0.6< z< 1.6
with three main selections: ELG_LOP, ELG_HIP, and
ELG_VLO. The main difference between ELG_LOP and
ELG_VLO is based on g− r and r− z cuts such that these
two sets are disjoint and target different redshift bins.
ELG_LOP has higher priority in fiber assignment and covers
galaxies in 1.1< z< 1.6, where other DESI tracers are less
dense, while ELG_VLO has lower priority and targets in
0.6< z< 1.1 (see Raichoor et al. 2023, for more details).
ELG_HIP is a 10% random subsample of ELG_LOP and
ELG_VLO and has the same fiber assignment priority as LRGs.
DESI has also been designed to observe millions of quasars in
the redshift range z> 1.6 to understand the large-scale structure
and constrain the cosmological parameters. The QSOs are
targeted with optical and optical+IR color cuts in g− z versus
grz−W1 color space (see Chaussidon et al. 2023, for more
details). QSOs have the highest fiber assignment priority
followed by LRGs, ELG_LOP, and ELG_VLO. These targets
are observed in dark times on dark tiles only.

The apparent magnitudes and redshift range of the main
DESI targets are compiled in Table 1. We also present the
typical DESI spectra in their observed frame corresponding to
each target class in Figure 1. The top panel shows the spectrum
of a representative low-redshift BGS galaxy featuring multiple
emission lines. The second panel displays the spectrum of an
LRG, showing the clear Ca H and K absorption features and
4000Å break (redshifted at ∼6000Å). An example spectrum
of ELG is presented in the third panel, highlighting the clearly

visible [O II] doublet line redshifted at ∼8600Å. Finally, in the
last panel, we present a typical DESI quasar spectrum, where
broad emission lines (hydrogen and metal lines) are distinctly
visible on the top of the quasar power-law continuum.
DESI observations are divided into two categories: survey

validation (SV) phase and main survey (MS). The SV phase ran
between 2020 December and 2021 May, during which several
tiles were observed, details of which are fully described in
Myers et al. (2023). The SV tiles were designed to observe
distinct target classes (e.g., LRG, BGS, ELG, QSO) on several
nights encompassing different exposure times (hence varying
SNR), weather, and observation conditions. This comprehen-
sive data set provides a unique opportunity to thoroughly assess
and quantify the performance of the DESI instruments and the
spectral reduction and redshift estimation pipeline. The SV
phase full data sets were publicly released as part of DESI
EDR. Additional details regarding these observations can be
found in DESI Collaboration et al. (2024b). The main survey
started in 2021 May and will continue for 5 yr until 2026 May.
The data set will be publicly released by the DESI collabora-
tion. The Year 1 (Y1) data of the main survey that encompasses
observations spanning approximately ∼1 yr, from 2021 May to
2022 June, will be released first.
In this manuscript, we use targets observed during the SV

phase and Y1 to assess the efficacy of our archetype-based
method for redshift fitting specifically for galaxy spectra. To
achieve this, we carefully constructed a set of “galaxy
archetypes” (described in Section 3.4) and applied our
approach (described in Section 3) to DESI targets. We
quantitatively evaluate the performance of our algorithm and
provide and shed light on its effectiveness and potential impact,
as detailed in the subsequent Sections.

2.2. Current DESI Redshift Fitter

Redrock49 (S. J. Bailey et al. 2024, in preparation) is the
principal spectral fitter and redshift estimator software for the
DESI spectra. It is very computationally efficient and can be
run on both CPUs and GPUs. Though Redrock is run
specifically on DESI spectra, the methods and implementation
are quite generic. The underlying algorithm selects the least χ2

from PCA-based templates fit over a range of redshifts for three
main spectral types: galaxy, stars, and QSOs. The QSO and
stellar templates are further divided into different subtypes to
cover their diversity. The redshift and spectral class solution
corresponding to the lowest χ2 is the final redshift and spectral
type of the input spectrum. The templates were generated from
a combination of real and synthetic spectra of astronomical
targets using an iterative principal component generator, empca
(Bailey 2012), which also takes uncertainties of the data into
account.
S. J. Bailey et al. (2024, in preparation) provides the details

of each template and its performance. The principal compo-
nents for galaxies were generated using a set of 20,000
synthetic spectra (described in Section 3.3). In contrast, the
QSO templates were constructed using quasars observed with
the eBOSS program of SDSS (Brodzeller et al. 2023). On the
other hand, for stars, the PCA templates were generated using
synthetic stellar spectra in six different Teff (corresponding to
stellar subtypes: B, A, F, G, K, and M ) bins to account for the
broad diversity among stars (Allende Prieto et al. 2018; Cooper

Table 1
DESI Target Selection, where grz Are Magnitudes from the Legacy

Survey (LS)

Target Class Magnitudes Redshift References

BGS_BRIGHT r < 19.5 <0.4 (a)
BGS_FAINT 19.5 < r < 20.175 <0.4 (a)
ELG_LOP gfiber < 24.1 ä(1.1, 1.6) (b)
ELG_VLO gfiber < 24.1 ä(0.6, 1.1) (b)
LRG zfiber < 21.6 ä(0.4, 1) (c)
QSO r < 23 >1.6 (d)

Note. gfiber and zfiber are the g- and z-band fiber magnitudes, i.e., the magnitude
corresponding to the expected flux within a DESI fiber.
References. (a) Hahn et al. (2023), (b) Raichoor et al. (2023), (c) Zhou et al.
(2023), (d) Chaussidon et al. (2023).

49 https://github.com/desihub/redrock/
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Figure 1. DESI example spectra of BGS, LRG, ELG, and QSO targets. The colored lines show the three DESI cameras. The uncertainties in fluxes are shown in gray
in each panel. We also label the expected location of absorption and emission lines in each spectrum.
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et al. 2023). In addition, separate PCA templates were
generated for cataclysmic variables (CVs) and white dwarfs
(WDs) as their physical properties differ significantly from
main-sequence stars. The CV and WD templates were
generated using the same archetype technique described in
Bolton et al. (2012).

Redrock is very efficient and has performed well on SV and
Y1 data sets. However, it occasionally yields negative flux
models for some low-SNR spectra, where it fits noise or poorly
subtracted sky signals as negative features (see Section 4.1).
Currently, if the method identifies negative flux at the location
of a forbidden line, such as [O II] , it implements an ad hoc
method to correct these unphysical fits. It adds a prior to the χ2

based on the model flux50 around the [O II] line. This correction
forces the final χ2 to be higher and modifies the ranking of
other models. However, this lacks a solid mathematical basis
and does not work for other emission lines in the current
version (0.19.0).51

Redrock also lacks algorithmic features capable of accurately
absorbing the calibration errors that may occasionally show up
in the reduced spectra. It is difficult to quantify the occurrence
of such spectral artifacts (described below) as Redrock does not
raise any warning bits for such issues. However, they still need
attention, as even a relatively small failure rate can be large in
absolute numbers, given the survey size.

There are two primary calibration issues (see Guy et al.
2023, for more detailed discussion) considered in this work.
First, the slightly different bias or zero level in the CCD
quadrants causes discontinuity at the boundaries, from where
the electrons are read by the amplifiers present at all four
corners (see Figures 2 and 55, and Appendix E of Guy et al.
2023). Similar discontinuities can arise from fluctuations of
dark current for some CCD columns. This causes the entire
spectrum to shift up or down in one or more DESI cameras
(more precisely, at half of the camera), corresponding to one of
the amplifiers for some of the fibers). These discontinuities can
still show up even after the flux calibration, as these effects are
additive, and the flux calibration is multiplicative. The flux
calibration is obtained with bright standard stars, so the relative
effect of an offset is barely visible.

Second, the flux calibration corrects for the difference in
throughput from one camera to another. However, as described
in Guy et al. (2023), there remain wavelength and focal plane
position-dependent calibration errors caused by the chromatic
distortions of the corrector (see also Figure 39 of Guy et al.
2023). Fibers are positioned to get the best throughput in the r
band at the cost of higher losses at other wavelengths. For this
reason, we consider additional corrections beyond a pure offset
for redshift fitting. In general, this correction is less significant
than the first one.

To address these issues in the current DESI redshift fitting
pipeline, we propose a different approach. Our proposed
method combines PCA-based redshift scanning with physically
motivated galaxy spectra (archetypes; more details in
Section 3.4) to model the DESI spectra and measure the
redshifts. Additionally, we introduce polynomial modeling in
each camera to accurately model these calibration errors and
absorb them in the best-fit redshift model. We provide the

mathematical description of our model in the next section,
followed by an extensive demonstration of how it naturally
resolves these issues and performs on the DESI survey
validation phase and Y1 data sets.

3. Method

3.1. Modeling Galaxy Spectra

As elaborated in Section 2.2, Redrock suffers from certain
challenges. There are three main issues we are trying to resolve
with our new approach, as detailed in Section 2.2. (1)
Unphysical fitting of negative fluxes in DESI spectra, (2)
discontinuities in the spectrum due to CCD bias and zero
issues, and (3) gradient-like throughput offsets caused by
chromatic distortions of the corrector. In the current formula-
tion, we use Legendre polynomials to model these two spectral
defects and archetypes to yield more physical models for the
spectrum. Given that our archetypes span the parent galaxy
sample fairly well (more discussion in Section 3.4), we model
the input spectrum with a single archetype. This is mathema-
tically less complex and also computationally easier to
implement. Finally, our model can be written as follows:


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where λ is observed wavelength, TG,k(λ) are kth galaxy
archetype, Pi(x) are Legendre polynomials with degree i, l¢ is
reduced wavelength,52 and αk, ai,j are linear coefficients for
archetypes and Legendre polynomials, respectively, and R is the
resolution matrix,53 which is used to decorrelate the data and
accounts for the resolution of the spectrographs (see Guy et al.
2023, for more details). Applying the R matrix on templates is a
relatively slower step in Redrock as it involves a large number of
matrix operations. Note that αk> 0 is fit over entire spectra, so
for each spectrum, there is just one archetype coefficient. At the
same time, there are 3(d+ 1) coefficients (“3” is for three
cameras in DESI) for polynomial terms where d is the highest
degree of polynomial used in modeling. This fitting approach is
applied to all of the cameras simultaneously, ensuring accurate
modeling of spectra in each of the wavelength bands. In total,
our model has 1+ 3(d+ 1) coefficients.
Moreover, we also want to leverage the efficiency and

computational speed of PCA and fit the spectra; therefore, after
scanning for redshifts using PCA templates, we select the N-
best redshifts (or Nzbest, corresponding to the N-least χ2 (see
Figure 2 for the method schematic) regardless of redrock
spectral classifications and refine the model fit for each redshift
with a linear combination of physical spectra (to model the
shape and features of spectra) and Legendre polynomials (to
model pipeline errors), which can result in different ranking in
terms of best-fit χ2. Here, it is important to understand that our
model is not independent of current redrock as we run our
method on a list of redshifts (Nbest) obtained with the initial
PCA-based method. Therefore, if the true redshift does not fall

50 [O II]model flux = |∑kakTk(λi)|, 3724 < λi < 3733, where λi is rest-frame
wavelength (around [O II] line) in Å and Tk and ak are PCA templates and
coefficients.
51 https://github.com/desihub/redrock/releases/tag/0.19.0

52 2 1 1, 1min

max min
· [ ]

( )
l¢ = - Î -l l

l l
-
-

, where minl and maxl are minimum
and maximum observed wavelengths in each band.
53 It is used to convert the correlated fluxes into uncorrelated ones: F RF¢ = ,
F¢ is final flux that is used in calculating χ2.
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within this list, our method will also fail. Therefore, the choice
of Nzbest is also a free parameter in our method, and we
explored this space (see Section 4.5) to achieve an optimal
value. We also emphasize that the statistical precision of the
redshifts in the archetype method will be the same as that of the
Redrock. Our focus in the paper is more on improving
catastrophic failures than redshift accuracy. We aim to perform
an independent test of the archetype procedure as a redshift
classifier in the future.

Next, to model the CCD discontinuities and throughput
offsets in the spectra, we use only the first two Legendre
polynomials, i.e., a constant and slope term (aj,0, aj,1).
However, the code can accommodate several Legendre terms,
and we could explore this possibility in the future. These per-
camera coefficients are also fit simultaneously. Finally, we
have seven coefficients (a principal archetype and one pair of
Legendre coefficients for each of the three cameras). We then
solve for the coefficients with scipy’s optimize.
lsq_linear54 module. To summarize, this algorithm solves
for the coefficients subject to the specified bounds (described in
Equation (1)) through an iterative least-square solving method
known as bounded-value least-squares (BVLS), initially
proposed by Stark & Parker (1995). BVLS has been shown
to converge to a solution in a similar way the nonnegative least-
squares (NNLS) converge, as it is modeled on the NNLS
iterative approach as developed by Lawson & Hanson (1995).
We use this method described above and choose the final
redshift that corresponds to the least χ2 (see Figure 2 for
detailed schematic). For a spectrum given its flux, F(λi) and
variance σ2(λi), the χ

2 from its best-fit model (SG) is calculated

as

⎜ ⎟
⎛
⎝

⎞
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Finally, if a spectrum is typical of galaxies and there are
pipeline defects in any of the cameras, the new model should
have a lower χ2 than the best PCA fit (i.e., without archetypes
and Legendre polynomial), as we allow Legendre polynomials
to absorb these discontinuities. Hence, the final redshift should
correspond to the archetype model rather than the PCA-based
fit. In contrast, if the spectrum is vastly different from a typical
galaxy spectrum, our method should yield a larger χ2 than the
PCA-only (without archetypes) model.
The model χ2 is calculated for each archetype at each

redshift (from best Nzbest redshifts) in a loop, so there are
Narchetype× Nzbest loops in total. Then, we select the final
redshift of the input spectra corresponding to the least χ2 and
also store the corresponding archetype subtype (ELG, BGS, or
LRG) as the best-fit model for the input spectrum, in case the
archetype χ2 is smaller than PCA-only (without archetypes)
model. The final output redshift file also includes a Δχ2, the
difference between the best-fit χ2 and second best-fit χ2. This
difference in χ2 is a key indicator of a good redshift, as it
indicates if the second best-fit model is significantly far from
the best solution.
Using this Δχ2 parameter, good redshift criteria (Qo) is

derived from an extensive analysis of DESI targets observed
during the SV phase (see DESI Collaboration et al. 2024b, for
more details). The conditions to define a reliable redshift are
detailed in Table 2. Note that COADD_FIBERSTATUS==0
represents the spectra that are free from any hardware issue,
while the ZWARN==0 condition implies that redrock fits are

Figure 2. A schematic of our archetype based per-camera polynomial fitting. The coadded or single-exposure spectra are input to the redrock that uses previously
estimated PCA-based templates of several spectral types to perform the redshift scan. We retain the Nzbest redshifts corresponding to the least N χ2 values after the
preliminary scan. Subsequently, we model the input spectra using Equation (1) at each of these Nzbest redshift (in a loop), employing each archetype (in another loop)
to determine the final best z associated with the least χ2. The final output is the best-fit redshift, along with the spectral type and index of the best-fit archetype.

54 https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.lsq_
linear.html
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good (see DESI Collaboration et al. 2024a, for more details).
We use the same criteria to assess the performance of our
archetype-based redshift fitter.

3.2. Priors on Polynomial Coefficients

This Section discusses the rationale for using priors on
polynomial coefficients in the context of our current archetype-
based redshift fitting method. The reason that we want to use
priors is to avoid the correction for “multiplicative” broadband
variations due to an incorrect broadband color of the model
spectra, for instance, for QSOs. The challenge here arises from
the fact that quasar spectra are often described by a power-law
continuum, i.e., Fc∝ λ−β, with β> 0, leading to a spectral
slope. Unfortunately, this spectral slope can sometimes be
incorrectly attributed to calibration issues within our proposed
model. As a result, quasars can be misclassified as galaxies due
to extreme freedom to our Legendre coefficients, which
impacts spectral classification. We will highlight this more in
Section 4.4.2 when we calculate redshift success rates for all
target classes. The use of priors aids in reducing the
misclassification of genuine quasars as galaxies.

We want polynomial correction to only correct for the
“additive” terms caused by the CCD bias issue, which we can
understand better with sky fibers. By providing a user-defined
prior (σa), the algorithm adds a prior to the χ2 of Equation 3,
but only to the polynomial terms, before solving for their
coefficients (see Figure 2 for the method schematic). This is
similar to the Gaussian regularization that quantifies the prior
by which the coefficients should be close to zero. With the
prior on polynomial terms, the modified new

2c takes the
following form:
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It is important to note that the unit of prior is the same as the
coefficients, which is proportional to the calibrated flux.

Another key observation is that the default PCA galaxy
templates result in artificially high Δχ2 values when fitting to
sky spectra. While the priors avoid correcting quasar
continuum variations (which are physical), they also help
reduce plausible redshift estimates for sky fibers. These fibers,
typically targeted to observe blank regions of the sky, should
ideally yield negligible signal and thus low Δχ2. A small value
of σa adds a larger correction to the final χ2.
For this study, we set σa= 0.1, a value determined

empirically based on our analysis of a subset of 339,712 sky
spectra from the Y1 data set of DESI. We discuss this choice in
more detail in Appendix B, where we present the distribution of
Legendre coefficients for sky fibers for both dark and bright
tiles. Notably, the spread of the coefficient distribution varies
between 0.1 and 0.5. Our choice of σa= 0.1 closely aligns with
this spread, ensuring that the application of priors also
constrains the false-positive redshift estimates for sky fibers.
In summary, the priors on the Legendre coefficient are a
valuable tool for reducing the misclassification of quasars as
galaxies and for not yielding reliable redshift estimates for sky
fibers. We show the results for both with and without priors in
all Tables and Figures in Section 4 and quantify the
performance of our new method compared with Redrock
(without archetypes). Finally, we show a detailed flowchart of
all of the steps of our method in Figure 2.

3.3. Synthetic Galaxy Spectra

Prior to constructing a set of galaxy archetypes, it is
important to carefully generate a set of synthetic galaxy spectra
that closely align with DESI spectra in terms of wavelength
coverage, resolution, and physical properties. The method to
generate synthetic spectra is based on a combination of
observation and simulation, which is described in detail in S.
J. Bailey et al. (2024, in preparation). However, we provide a
short summary of the approach below. We compile an
extensive sample of galaxies at redshifts 0< z< 2 observed
in different photometric and spectroscopic surveys. Then, we
use physically motivated emission-line fluxes and stellar
population synthesis models to generate synthetic spectra free
of any instrumental effects of those surveys. Using these
models, we generate very high-resolution spectra of galaxies in
a rest-frame wavelength range so that the important emission
and absorption lines fall within the DESI wavelength range.
We describe the basic properties of these synthetic spectra
below.
To generate synthetic spectra for ELGs, we select galaxies

(at z∼ 1) from the Deep Extragalactic Evolutionary Probe 2
(DEEP2) Galaxy Redshift Survey (Newman et al. 2013) Data
Release 4 (DR4; Matthews et al. (2013)). The DEEP2 DR4
consists of ∼50,000 high-resolution spectra of emission-line
galaxies that have measured [O II] λλ3727, 29 doublet lines
(Newman et al. 2013) at an observed wavelength of
6500–9300Å (typical [O II] doublet region in DESI spectra
for ELGs). ELGs are typically star-forming galaxies and appear
blue in the image. The interaction of stellar activity
(particularly the UV radiation from hot young stars) with the
neighboring gas clouds can photoionize metals, which, in turn,
can produce narrow forbidden metal lines that are visible on the
top of the intrinsic stellar continuum in the galaxy spectra (see
Conroy 2013; Kewley et al. 2019, for review). The emission
lines were generated based on theoretical models as described
in Stasińska & Izotov (2003) that can reproduce the observed

Table 2
Redshift Success Rate Criteria (Qo) for Spectra Having Nominal Exposure
Time (i.e., for Bright Tiles, Teff > 180 s and for Dark Tiles, Teff > 1000 s)

Target Redshift Selection Criteria References
Common Condition: COADD_FIBERSTATUS=0

BGS ZWARN=0, Δχ2 > 40 (a)
LRG ZWARN=0, Δχ2 > 15, z < 1.5 (b)
ELG ZWARN=0, log O II10 SNR( ) > f (Δχ2) (c)
QSOa SPECTYPE=QSO (d)

Notes. O IISNR is the signal-to-noise ratio of [O II] flux, which also requires that
[O II]flux > 0 and corresponding 0O II flux[ ]s > , and f 0.92( )cD = -
0.2 log10

2· ( )cD . ZWARN=0 is the bit warning for a redshift without any
obvious issue.
a SPECTYPE is from Redrock. This is a very preliminary selection criterion to
define the redshift success rate for QSOs to compare with our archetype results.
Our goal here is to just understand if the archetype recovers the QSO targets as
QSOs. For cosmology purposes, the good redshift for QSOs is defined based
on a combination of redshifts obtained with afterburners that use redrock
outputs as priors to estimate refined redshifts using a CNN and emission-line
modeling. More details on this can be found in Chaussidon et al. (2023).
References. (a) Hahn et al. (2023), (b) Zhou et al. (2023), (c) Raichoor et al.
(2023), (d) Chaussidon et al. (2023).
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trends in synthetic spectra. One caveat is that our emission-line
galaxy templates do not include any active galactic nuclei
(AGNs), as they can show a combination of narrow and broad
emission lines produced by complex physical processes due to
central black holes and ongoing star formation. We will look
into such subtypes in the future.

The BGS galaxy synthetic spectra were produced by using a
flux-limited spectrophotometric sample of 11,000 galaxies
(0.1< z< 0.8) observed in AGN and Galaxy Evolution Survey
(AGES; Kochanek et al. (2012). The spectral resolution and
wavelength coverage are similar to DESI spectrographs.

Finally, we use a parent sample of 111,114 LRGs observed
with DECaLS/DR7 grzW1W2 photometry for the LRGs. At
the same time, the redshifts were compiled from previous large
spectroscopic surveys such as BOSS, AGES, and DEEP2
(Zhou et al. 2023). We aimed to simulate a physically
motivated representative set of LRGs for targeting purposes
and other DESI-related galaxy science. With this selected
sample of LRGs, we generated synthetic spectra LRGs using
iSEDfit package as described in Moustakas et al. (2013) and
Moustakas (2017). The method can fairly reproduce the
observed SEDs of the LRGs. Note that our LRG modeling
does not include emission lines,55 which may be important for
a small fraction of DESI LRGs. A small fraction of the LRG
targets can be AGNs that exhibit narrow metal lines in their
spectra.

Finally, with the public DESI code,56 we can generate
synthetic galaxy spectra whenever necessary. Using this
package, we generated a sample of 1000 (approximately 333
each) rest-frame (λ= 1228–11000Å, Δλ= 0.1Å) synthetic
spectra of LRGs, BGS, and ELGs. We present certain physical
properties, specifically g− r (color) versus stellar mass, in the

top-left panel of Figure 3. The colors blue, orange, and red
correspond to ELGs, BGS, and LRGs, respectively. The galaxy
population dichotomy (Kauffmann et al. 2003) is clearly visible
where ELGs predominantly exhibit star-forming characteristics
with a typical stellar mass of ∼1010.5Me, while LRGs are
primarily passive and exhibit higher stellar masses (∼1011.5Me).
At the same time, the BGS sample occupies an intermediate
position between ELGs and LRGs.

3.4. Galaxy Archetypes

After generating these synthetic spectra, we use the
classification technique, SetCoverPy57 (Zhu 2016) to identify
a subsample of spectra (i.e., archetypes) that can sufficiently
span the physical parameters of the parent sample. In a nutshell,
it solves the Set Cover Problem (SCP), i.e., finding an optimal
subsample that can represent the given parent sample using
similarity (or distance metric) between the input spectra. A
detailed description of both SetCoverPy and SCP is beyond the
scope of this paper; however, we encourage readers to refer to
Zhu (2016) for a detailed discussion. It uses the Lagrangian
relaxation algorithm (Held & Karp 1971; Geoffrion 1974;
Caprara et al. 1999; Fisher 2004) to find the minimum number
of archetypes that span the parent sample. One example of such
use of generating archetypes using SetCoverPy is Brodzeller &
Dawson (2022), where it was used to identify quasar
archetypes for the purpose of creating physical models of
quasar spectra.
This method has two free parameters: the s2 threshold (below

which two instances or objects will be considered similar) on
distance metric and the choice of weights as a function of
wavelength. Once these two parameters are defined, SetCov-
erPy finds the minimum number of archetypes. We follow the
same approach as described in Bolton et al. (2012) to measure

Figure 3. g − r vs. stellar mass for parent galaxy sample (left) and archetypes (right). In both panels, we show the properties of ELGs (blue), LRGs (red), and BGS
(orange). We see that galaxies lie in different regions on this plane, and archetypes also span a similar range in the color space. In the right panel, the open circles
denote the archetype that we selected randomly to show their spectra in Figure 14 in Appendix A.

55 LRGs are usually passive and have no or very low star formation activity;
therefore, they lack many emission lines.
56 https://github.com/desihub/desisim 57 https://github.com/guangtunbenzhu/SetCoverPy
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the similarity matrix of input spectra. We first calculate the
distance metric, sij

2, which measures the similarity between
spectra fi and its model amj, where a is some scaling factor

s f am . 4ij
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fi corresponds to the normalized flux of ith spectra. We
normalize the flux in such a way that f Nl
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that we have used a constant uniform weight for all
wavelengths (i.e., weights= 1); therefore, they do not appear
in the equation. As described in Bolton et al. (2012), we can
perform a least-squares minimization on sij

2 (differentiating w.r.t
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The rest-frame wavelength range we use in our sij
2
min

calculation is 1228Å to 11000Å with Δλ= 0.1Å, which
gives us a total of Npix= 97,720 wavelength pixels.58

A key point to note is that there is no optimal way to decide
the best threshold (sij

2
min
) one should choose; it has to be decided

empirically (see Zhu 2016, for more discussion). However, it
can be understood from Equation (5) that a large threshold will
only generate a small number of archetypes, which may not be
a fair representation of the parent sample. In contrast, a small
threshold will include similar archetypes and overrepresent the
parent sample. It is important to run SetCoverPy on all galaxies
simultaneously without employing distinct thresholds for each
galaxy type. Galaxy spectra occupy a large dimensional space
lacking sharp boundaries in properties. Consequently, employ-
ing different thresholds for different types may not generate a
set of diverse archetypes that span the galaxy properties
space well.

Hence, we employ an empirical approach to determine our
optimal selection. For our purpose, we used the sred

2 value to
decide the optimal threshold. We varied the sred

2 threshold from
0.001 to 0.1 and observed the number of archetypes associated
with each galaxy subtype (ELGs, LRGs, and BGS) and the
computational time. For a small sred

2 , the algorithm selects many
similar archetypes as expected. We identify the optimal
threshold parameter by noting when the number of archetypes
for any subtype significantly changes to a very small number.
In our methodology, we optimize the sred

2 value with respect to
the number of LRG archetypes. This is a choice informed by
the predominantly passive nature of LRGs, which results in
fewer distinct spectral features compared to ELGs or BGS. We
observe a significant reduction in the number of LRG
archetypes, decreasing from 14 to 2, as the sred

2 increases from
approximately 0.003 to s 0.005red

2 » . Moreover, the number of
LRG archetypes is reduced to 0 if we increase sred

2 to 0.1. We
also note that the 1 or 2 archetypes cannot effectively model
DESI LRG’s observed features. We show the variation of the
number of archetypes for each galaxy class as a function of sred

2

in Figure 4. Finally, we select the s 0.003red
2 » (somewhere

between a very low to very high number of LRG archetypes)
and generate our final set of galaxy archetypes.
After running the SetCoverPy with this choice, we get 385

(14 LRGs, 104 BGS, and 267 ELGs) archetypes from an input
set of 1000 spectra. Note that there are more archetypes for
ELGs than other subtypes. This is due to the substantial
variations in the emission-line properties of ELGs, which are
usually associated with their color and stellar properties. In the
top-right panel of Figure 3, we show the color (g− r) versus
stellar mass for our final set of archetypes. One can see the
archetypes represent the parent sample (left panel) distribution
well in this plane, which shows that SetCoverPy performs fairly
well in solving the set covering problem for our purpose.
Additionally, we also present representative spectra of ELGs
(in blue), BGS (in orange), and LRGs (in red) in the bottom
panel, showing distinctive spectral features characteristic of
each galaxy subclass. We also observe that there are few LRGs
with g− r> 2 in the parent galaxy sample while there are none
in the archetype sample. The reason is possibly due to very
limited distinct features intrinsic to LRGs that slightly differ
only in their continuum amplitudes rather than shape. In fact,
we see that a few (∼4) LRG archetypes can actually model the
majority of the parent LRG sample. We show those LRGs in
Appendix A.
Finally, we also compare some more parent and archetype

galaxy properties in Appendix A to understand how well our
archetypes span parent galaxies in those dimensions. We plan
to explore ways to construct optimal samples of archetypes
using a combination of galaxy properties and clustering
methods (also see Section 5.2).

3.5. Code Implementation

Redrock is written in python and updated and maintained
as a part of the DESI public GitHub repository.59 It is a high-
performance parallel code that uses MPIs and multiprocessing
to run on CPUs and GPUs. The code can fit thousands of
spectra, classify their spectral type, and measure redshifts
within a few minutes. This is crucial to analyzing the ongoing

Figure 4. Empirical determination of optimal threshold for archetype
generation using the SetCoverPy method. We show the sred

2 as a function of
the number of galaxy archetypes for each galaxy subtype. Our optimal value
for s 0.003red

2 » lies where the number of LRG archetypes significantly
decreases (as shown in the inset). Beyond this threshold, the number of
archetypes begins to saturate at higher sred

2 values.

58 This is another dimension to explore in future. We chose this resolution in
the paper as we want archetypes to have the same resolution as Redrock’s PCA
templates. However, this increases the file size. 59 https://github.com/desihub/redrock
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DESI survey as it will observe more than 40 million objects in
the next 5 yr. Our updated algorithm is now part of that
repository, where we describe the newly added functional
arguments in detail. The galaxy archetypes can be downloaded
by following the instructions in the Redrock repository.

The archetype code can also run on both CPUs and GPUs;
however, the only remaining step that is not GPU accelerated
yet is the scipy’s BVLS method, which we plan to explore in
the future. GPUs significantly improve the runtime for our
archetype method, which we illustrate below. These spectral
data sets are processed on NERSC’s60 Perlmutter super-
computer GPU nodes, each equipped with four GPU cores
(each with 40 GB memory) and 64 CPU cores (with a total of
256 GB memory). For each of the tiles we analyzed, there were
10 coadded spectra files (one for each DESI spectrograph),
each containing 500 targets (including real and sky fibers). Our
archetype processing (including modeling in each camera)
exhibited an average processing time of approximately ∼70 s
for 500 spectra when utilizing GPU and CPU resources on
NERSC’s GPU nodes. We also note that BVLS step (described
in Section 3.1) is one of the slowest steps, as it is an iterative
method to estimate coefficients. In contrast, processing the
same spectral files solely on CPU nodes (each having 64 cores
with a total of 512 GB memory) required an average of ∼90 s
(∼30% slower than CPU+GPU runtime). For reference, when
employing the current version (0.19.0) of Redrock (without
archetypes), the processing time is 40 s (∼2 times faster than
archetype) to analyze 500 spectra on NERSC’s CPU-only
nodes, while the computation time reduces to ∼30 s (∼3 times
faster) on NERSC’s CPU+GPU nodes. This is expected, given
that the Redrock (without archetypes) employs numpyʼs (or
cupyʼs) linear algebra solvers to solve for PCA coefficients,
which is significantly faster compared to the iterative BVLS
method.

We emphasize that the new approach is significantly slower
(by a factor of ∼2−3) than the Redrock (without archetypes)
implementation. However, it is still practical for analyzing
large data sets containing millions of spectra. This trade-off in
processing time allows for improved physical modeling of
spectra and better redshift measurement, and spectral classifi-
cation and holds significant promise for extending it to other
large spectroscopic surveys in the future.

4. Tests and Performance

In this Section, we illustrate the comprehensive tests
conducted to assess the performance and efficiency of our
archetype method applied to the DESI data set. The analysis
involved measuring the method’s performance across various
data sets characterized by distinct observing conditions,
exposure times, SNR, and visual inspection criteria. We
compare our test results against the existing DESI redshifts
from PCA-only redrock, i.e., without archetypes (version
0.19.0). To provide a comprehensive comparative study,
we run our archetype method on three distinct data sets: (a) SV
tiles that were observed on several nights to quantify product
reproducibility of the pipeline, (b) SV deep coadded spectra
that were also visually inspected, and (c) an extensive test run
encompassing millions of targets selected from main survey
data of Y1. For all of the tests in the subsequent Sections, we
use the nine best redshifts (Nzbest= 9, refer Figure 2) of PCA-

template-based redshift scan. We performed some tests
exploring Nzbest (see Section 4.5) where we changed it between
3 and 15, and found 9 to be the optimal value. We find that this
value is neither very small (which might miss the true redshift)
nor very large (computationally expensive). We show all of the
comparison statistics for our archetype method with (σa= 0.1,
Equation (3)) and without prior with redrock (without
archetypes) in the sections that follow.

4.1. Archetype Fitting of DESI Spectra

As described in Section 3, our model is more physical than
the PCA-based approach and can absorb the pipeline defects
more accurately. In Figures 5 and 6, we present two example
spectra to illustrate this comparison between the redrock
without archetypes and the archetype-based model. Figure 5
shows a spectrum where the CCD discontinuity is clearly
visible, and the spectrum has shifted vertically in z-camera
(λ> 7500Å). The spectrum was visually inspected and
assigned a redshift of 1.4678. However, the current PCA
model (redrock without archetypes, first panel) fails to find the
correct redshift. In fact, it misidentifies the [O III] doublet as
[O II] (see λ∼ 9200Å). At the same time, our archetype
approach (third panel) finds the correct redshift (see the nice
[O II] doublet at λ∼ 9200Å), fits the data better, and absorbs
the vertical CCD discontinuities in the spectrum more
accurately. This is evident not only by eye but also in the final
χ2 values, where the archetype χ2= 12104 is notably lower
than the PCA-only (without archetypes) fit (χ2= 15360).
Next, in Figure 6, we demonstrate another example spectrum

where redrock fails to find the correct redshift due to an
unphysical negative emission-line model of [O II] at
λ∼ 6200Å and Hβ model at λ∼ 8080Å (top panel). At the
same time, our archetype model (third panel) shows improved
physical modeling of the spectrum, yielding a more accurate
redshift estimate. This is evidenced by the location of the [O II]
(λ∼ 8320Å) line corresponding to the newly determined
redshift, where we can see the emission features (also
confirmed by small noise in the wavelength region). This
spectrum was also visually inspected by DESI collaborators,
who assigned a redshift of 1.2317, and our archetype redshift
estimate matches that. Notably, the χ2 is smaller while Δχ2 is
larger in our archetype model than that of the PCA-only
(without archetypes) run. The higher Δχ2 indicates that the
next best-fit model is far less probable. The wrong redshift
estimate in the PCA-only (without archetypes) model is likely
due to the flexibility of PCA to fit the negative feature as [O II]
line, which possibly drives the χ2 to be smaller than the model
at the right redshift. To test this hypothesis in Figure 7, we
show the redrock model (without archetypes) at the right
redshift (z= 1.2317) and the archetype model at the wrong
redshift (z= 0.6615).
The top panel shows the PCA model for the spectrum

estimated at the “right” redshift (z= 1.2317). It is clear that
despite the fact that the PCA model well fits the physical
features of the spectrum (see zoomed version), the estimated
χ2= 11038 is larger than the best-fit redshift (χ2= 11003;
compare top panel of Figure 6). This confirms our hypothesis
that the PCA model is driven by fitting the unphysical negative
dip at λ∼ 6200Å. In the bottom panel, we show the archetype
model estimated at the “wrong” redshift (z= 0.6615). As
expected, we find that χ2= 10911 is larger than the best-fit
χ2= 10833 (bottom panel of Figure 6). Furthermore, this60 National Energy Research Scientific Computing Center, www.nersc.gov.
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model does not fit the unphysical negative dip (see zoomed
version around λ∼ 6200Å), even at the wrong redshift. This is
because our archetypes are physical galaxy models, and their
coefficients are always positive in our model, which naturally
prohibits any such unphysical fitting.

4.2. Survey Validation Repeat Observations

A total of six unique “tiles” were specifically designed to
target distinct galaxy target classes in the SV phase. Three of
these tiles were designed to observe ELGs (TILEIDs 80606,
80608, and 80610; see Raichoor et al. 2023 for more details).
As discussed earlier, ELGs were divided into ELG_HIP,

ELG_LOP, and ELG_VLO. Two additional tiles (TILEIDs
80605 and 80609; see Zhou et al. 2023) were designed to target
LRGs, and one tile (TILEID 80613; see Hahn et al. 2023) was
designed for BGS. As described in Section 2.1, the BGS targets
were further subdivided into BGS_BRIGHT and BGS_FAINT.
These tiles were systematically observed in the SV phase on

different nights between 2020 December and 2021 May. The
nominal exposure times (same for the main survey) varied
depending on the target class, ranging from approximately
∼180 s for BGS targets to around ∼1000 s for LRG and ELG
targets. In total, 8910 unique galaxy targets were observed on
these tiles, with 1153 spectra attributed to BGS_BRIGHT, 792
to BGS_FAINT, 2522 to ELG_LOP, 644 to ELG_VLO, 300 to

Figure 5. First: PCA-template-based best-fit model (shown in colored solid lines) of a galaxy spectrum. We can see the flux discontinuity in the z camera
(λ ∼ 7550 Å). Second: zoomed version of PCA model of the same spectrum, showing the expected location of emission lines. The continuum is not well-fitted with
PCA at the camera boundary. [O III] doublet is also not well fitted. Third: archetype-based per-camera best-fit model of the same spectrum. The fit looks better visually
and absorbs the flux discontinuity in the z camera more accurately, also evident by smaller χ2. Fourth: zoomed version of archetype-based per-camera model of the
same spectrum, showing the expected location of emission lines. [O II] emission line (λ ∼ 9200 Å) is more accurately modeled. The black curve is the observed flux,
the purple curve shows the error spectra in all panels, and the fitted model is shown in solid color lines.

12

The Astronomical Journal, 168:124 (28pp), 2024 September Anand et al.



ELG_HIP, and 3499 to LRGs. The individual exposures of
these targets were observed multiple times, ranging from four
to ten nights per target class spread across several nights. We
ran the redshift fitter for these targets and compared their
redshift estimates with those obtained from their deep coadded
spectra (discussed in Section 4.3) using redrock (without
archetypes) and archetype-based per-camera approach and
compared their performance.

This test is crucial to quantify the performance of redshift
fitter software, as it shows its ability to analyze the spectra with
varying observing conditions and SNR; therefore, under-
standing the software performance on single-epoch spectra is
important. In addition, the test also allows us to empirically
define “good redshift” criteria (defined in Table 2) for different
target classes based on a combination of the rate of

“catastrophic failure” and Δχ2 of the best-fit model. The
catastrophic redshift failure is defined as the difference between
redshift (zepoch) measured with low-SNR single-epoch
spectrum and redshift (zcoadd) measured with deep coadded
high-SNR spectrum of the same target. If v∣ ∣D =

c 1000 km s
z z

z1
1epoch coadd

coadd
· >-

+
- , then the measurement is

termed a “catastrophic failure” (DESI Collaboration et al.
2024b).
The detailed comparison statistics of redshift success and

catastrophic failure can be found in Table 3. We present the
redshift differences (expressed as Δv) between single-epoch
observations and the deep coadds for the same DESI targets, as
a function of the Δχ2 values obtained from single-epoch
observations for BGS_FAINT, BGS_BRIGHT, ELG_LOP,
ELG_VLO, and LRGs for PCA-only (without archetypes)

Figure 6. First: PCA-template-based best-fit model (shown in colored solid lines) of a galaxy spectrum. Second: zoomed version of PCA model of the same spectrum.
We can see the unphysical negative absorption line fitting for [O II] (λ ∼ 6200 Å) and Hβ (λ ∼ 8080 Å) lines. In fact, Redrock (without archetypes) misidentifies
[O II] doublet as [O III] . Third: archetype-based best-fit model of the same spectrum. Fourth: zoomed version of archetype-based per-camera model of the same
spectrum. The new model is more physical, and the redshift is more accurate, as confirmed by visual inspection of [O II] doublet. The black curve is the observed flux,
the purple curve shows the error spectra in both panels, and the model is shown in solid color lines.
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model (left panels) and our archetype model (right panels) in
Figures 8, 9, and 10, respectively. To guide the readers, we
define the meaning of each quadrant for these Figures: bottom
right is good, meaning individual nights agree with the deep
coadd, and they have a highly confident quality metric; bottom
left are missed opportunities: they agreed with deep coadd but
were not flagged as confident, upper left are failures, but at least
they were not flagged as confident, upper right are the worst:
catastrophic failures with redshift discrepancies but flagged as
confident. In all Figures, the blue dots refer to the accepted
redshifts (Na), while red crosses refer to the rejected redshifts
(Nr). Note that the sum of blue and red points in all samples is
equal to the number of targets shown in Table 3, except for
ELG targets, where the sum of plotted points is smaller than the
total number of targets in the Table. This is because we select

spectra having positive [O II] flux and their errors before we
calculate [O II] SNR, which is plotted in Figure 9.
Next, we define additional statistics for these data sets.

Utilizing the truth tables for redshifts (i.e., the visual redshifts)
of these targets, we calculate the precision, recall, and F1 scores
for both methods. The results are presented in Table 7 in
Appendix C. Overall, these metrics are very high for both
methods, indicating their excellent performance on the DESI
data sets. However, the metrics are marginally higher for the
archetype method (with σa= 0.1). Here, we also point out that
we cannot perform such analysis for main survey targets, as
there are no truth tables for them. However, we expect very
similar metrics for them as well, as many of these targets were
also selected for the main survey and have comparable
exposure times.

Figure 7. First: PCA-template-based model of the same galaxy spectrum (shown in Figure 6) at right redshift. Second: zoomed version of the model. We can see that
χ2 is higher than the best-fit model (see Figure 6). Third: archetype-based fit of the same spectrum at wrong redshift. Fourth: zoomed version of the archetype model.
We see that our archetype model does not fit any unphysical feature, and χ2 is higher than the best-fit model (see third panel of Figure 6). The black curve is the
observed flux, the purple curve shows the error spectra in both panels, and the model is shown in solid color lines.
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We observe that both redrock (without archetypes) and
archetype models (with prior σa= 0.1) perform equally well for
almost all target classes. We find that the overall catastrophic
redshift failure rate is relatively very small (0.5%−1% of the
full sample) in both models. This shows that the current PCA-
based Redrock is already very efficient. For the BGS_BRIGHT
targets (Figure 8), our archetype-based approach (with
σa= 0.1) yields 3187 accurate redshifts (Δχ2> 40) compared
to 3178 in the Redrock (without archetypes) run, while similar
success is seen for BGS_FAINT target classes (2178 versus
2184 in redrock (without archetypes) versus archetype with
σa= 0.1), though slightly fewer catastrophic failures in
archetype mode (eight versus nine in Redrock (without
archetypes)). For ELG_LOP, ELG_VLO and LRGs, we see that
in the archetype-based method, the relative improvement is
∼10%−40% in reducing catastrophic redshift failure
(|Δv|> 1000 km s−1; compare the blue dots in the upper-right
quadrant in each panel). For ELG_LOP targets, the archetype-
based approach (with σa= 0.1) yields 19 catastrophic failures
(25 without prior case), a ∼40% improvement compared to the
31 failures in the Redrock (without archetypes) run (see Table 3
and the top panel of Figure 9, for detailed comparison). Next,
for ELG_VLO, there are three catastrophic failures in the
archetype approach (with σa= 0.1) as opposed to six in
Redrock (without archetypes), showing a significant improve-
ment (see bottom panel of Figure 9). The performance is
similar for both approaches for ELG_HIP. Similarly, for LRGs,
the archetype method delivers ∼25% (62 compared to 80 in
Redrock (without archetypes)) fewer catastrophic redshift
failures than redrock (see Figure 10). Also, the redshift success
is slightly lower in Redrock (without archetype) mode (9556
versus 9625). Furthermore, our archetype-based modeling
approach consistently delivers marginally higher redshift
purity, i.e., the fraction of accurate redshifts that satisfy redshift
success criteria, N Q v

N Q

, 1000 kmso
1

o

( ∣ ∣ )
( )

D < -

. Qo is the good redshift
criteria in terms of Δχ2 and [O II]SNR for the corresponding
target classes as described in Tables 2 and 3. The redshift purity
for our archetype method is slightly higher (0.1%–0.2%) than
the current Redrock. The relatively higher purity and lower
catastrophic failures in the archetype approach underscore its
improved performance in achieving precise redshift measure-
ments. However, seeing more significant changes in these
statistics would be our goal in the future.

It is important to emphasize that the overall performance of
both Redrock (without archetypes) and archetype approach on
DESI data well exceeds the quality thresholds necessary for
cosmological analysis. For instance, the rates of catastrophic
failure are significantly lower (<1%) than the acceptable limit
of <5% (DESI Collaboration et al. 2024b). Furthermore, the
typical redshift errors achieved with the DESI pipeline meet the
precision requirements for large-scale structure analysis.
Specifically, the typical redshift errors for the BGS, ELGs,
and LRGs are approximately 10, 20, and 40 km s−1, respec-
tively, which are well below the required redshift precision of
approximately 200 km s−1 (DESI Collaboration et al. 2024b;
Lan et al. 2023).

4.3. Survey Validation Visually Inspected Deep Tiles

In this Section, we describe the efficiency of the archetype
method in measuring the redshifts for targets that DESI
collaborators visually inspected during the SV phase. As
described earlier, the single-epoch observations of these tiles
were combined across exposures to construct higher-SNR
coadded spectra. The cumulative effective exposure times vary
from ∼1500 s to around ∼5000 s. These spectra were visually
inspected by at least two DESI collaborators, following a well-
defined, uniform approach, which is detailed in Lan et al.
(2023). In summary, visual inspectors look for the most
prominent emission lines (e.g., Hα, Hβ, [O II], [O III]),
4000Å break, and the shape of the continuum to verify the
redshift and spectral class of DESI spectra estimated by redshift
fitter. A set of predefined metrics, as described in Lan et al.
(2023), is employed to maintain consistency in the inspection
process. These metrics aid in assigning quality labels
(QA_VI)61 to each coadded spectrum based on spectral
features to ascertain the reliability of the redshift estimates
and spectral classes. We ran our archetype method on these
targets and then compared our redshifts obtained from the
pipeline and those determined through visual inspection.
The comparison results are presented in Table 4, where we

compare our results (with and without priors on Legendre
terms) with redrock (without archetypes) measurements. Our
approach shows a 10%–30% improvement in reducing

Table 3
Survey Validation Repeat Tiles Redshift Success Comparison—Redrock (without Archetypes) vs. Archetype Method

Target Ntarget
N (selected by Quality Cut, Qo) N(Qo, |Δv| > 1000 km s−1) Redshift Purity (%)

Class Catastrophic Failure (Defined in the Text)

Redrock Archetype Archetype Redrock Archetype Archetype Redrock Archetype Archetype
(no prior) (σa = 0.1) (no prior) (σa = 0.1) (no prior) (σa = 0.1)

BGS_FAINT 2267 2178 2183 2184 9 8 8 99.58 99.63 99.63
BGS_BRIGHT 3256 3178 3184 3187 11 13 11 99.65 99.60 99.66
LRG 9981 9556 9625 9633 80 62 62 99.16 99.36 99.36
ELG_LOP 9806 7647 7658 7647 31 25 19 99.59 99.67 99.75
ELG_VLO 2417 2327 2326 2332 6 2 3 99.74 99.91 99.88
ELG_HIP 1136 944 953 951 1 1 2 99.89 99.89 99.81

Note. X and Xo are the good redshift criteria parameters for the corresponding target classes with nominal effective exposure time as described in Table 2. The
catastrophic failure and redshift purity are defined in the text. We also apply the following quality cuts (Qo) on single-epoch data. (a) BGS: ZWARN = 0, X > Xo, (b)
LRG: ZWARN = 0, zpernight < 1.5, X > Xo, (c) ELG: X > Xo and O II , 0flux O II flux[ ] [ ]s > , i.e., valid measurements of single-epoch [O II] fluxes and their errors.
zpernight and ZWARN denote the redshift and its warning bits obtained for single-epoch spectra.

61 The members assign a quality index between 0 (not a robust redshift) and 4
(most robust redshift) depending upon the spectral features visible in the
spectra.
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catastrophic redshift failure for all target classes. For example,
in the case of BGS_BRIGHT, the number of catastrophic
redshift failures is nine in redrock (without archetypes)
compared to six in archetype (with prior σa= 0.1) case.
Similarly, ELG_LOP targets have 21 catastrophic failure in the
archetype (with prior σa= 0.1) mode, compared to 25 in
redrock (without archetype) mode. Finally, for LRG, there are
only 26 redshift failures as opposed to 39 in redrock (without
archetype). Next, we also compare the redshift estimates, color-
coded by the χ2 difference between the PCA-only model (i.e.,
Redrock without archetypes) versus archetype model (with
σa= 0.1) in Figure 11. We see a spurious clustering at
zredrock∼ 1, 1.6 in the redrock method (left), which goes away
in the archetype method (right). The archetype method
consistently yields lower χ2, indicating better model fits for
the input spectra. These results clearly show that our method

performs better than the existing method on deep coadded
spectra.

4.4. Large Test Runs on the Y1 data set

As described above, our archetype approach has improved
overall redshift estimates for targets observed with SV tiles.
However, these are very small data sets (a few thousand only)
relative to what DESI will provide in the coming years.
Subsequently, a comprehensive large-scale test run was
conducted on a large suite of tiles extracted from the Y1 data
set of DESI. Our test data set included observations from 36
nights spread across 2021 May to 2022 June, averaging three
nights per month, encompassing a diverse range of observing
and instrumental conditions. Within this data set, 553 tiles were
selected, comprising 233 dark and 320 bright tiles. This subset
of data encompassed a total of 2,281,969 target spectra and
339,712 sky spectra selected from fibers pointing to targets and

Figure 8. The redshift difference between single-exposure and deep coadded spectra of same BGS_FAINT (top) and BGS_BRIGHT (bottom) targets. The Δχ2 values
are taken from single-epoch observations. The vertical dashed line (Δχ2 > 40) shows the boundary to define confident redshift, and the horizontal dashed line defines
the catastrophic redshift failure, i.e., |Δv| > 1000 km s−1. The left panel shows the results for Redrock (without archetype), and the right panel shows the results for
our archetype approach (with a prior of σa = 0.1 on polynomial coefficients). In both panels, the blue dots show the accepted redshifts (Na) while the red crosses show
the rejected redshifts (Nr). To guide the readers, the bottom-right quadrant in each subpanel represents good performance, showing that individual night redshifts
match with deep coadded redshifts of the same spectrum, while the upper right shows the redshifts that differ from the deep coadded spectrum and also are flagged as
very robust redshift in the pipeline.
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blank sky region,62 respectively. We used the archetype-based
per-camera spectral fitting method and compared redshifts
obtained with redrock (without archetypes).

4.4.1. Performance on Sky Fibers

If the pipeline was perfect and the subtracted sky spectra
were pure zero-mean uncorrelated noise, all templates would
have the best solution of coefficients= 0 and Δχ2= 0. In this
run, we first demonstrate our analysis by focusing exclusively
on sky fibers to evaluate the efficacy of our methodology in the
context of objects specifically targeted toward the blank sky.
Note that the sky fibers are excluded from the final target
redshift catalog. However, this is an important exercise to
mitigate the false-positive cases in our archetype method, as

these spectra should not yield robust redshift. It also helps
reduce false redshifts of real targets in sky-dominated
wavelength regions. We also emphasize that some confident
sky redshifts may be real serendipitous objects falling into sky
fibers, though such occurrence is rare, and we do not focus on
that here.
For this purpose, we use the same good redshift criteria

(defined in Table 2) to understand the statistics of plausible
redshift measurements for these sky fibers. Our expectation is
to reduce the number of false positives for these fibers.
We show the best-fit redshifts for these sky spectra as a

function of fiber number in Figure 12. These best-fit redshifts
point to the “attractor solutions” due to upstream pipeline
imperfections, which risk pulling Redrock toward incorrect fits
on very-low-SNR data. As elucidated in Table 5 and illustrated
in Figure 12, our archetype approach yields a notably lower
number of sky fibers with confident redshifts than the default
PCA-only (without archetypes) run. This outcome aligns with

Figure 9. The redshift difference between single-epoch observation and deep coadded spectra of same ELG_LOP targets. The good redshift selection criteria are
defined in terms of [O II] SNR and Δχ2 where both quantities are taken from single-epoch observations (see Table 2). We only include spectra that have valid [O II]
line strength (i.e., [O II]flux>0 and 0O II flux[ ]s > ). The vertical dashed line (X > 0, see Table 2) shows the boundary to define good redshift, and the horizontal dashed
line defines the catastrophic redshift failure, i.e., |Δv| > 1000 km s−1. The left panel shows the results for Redrock (without archetypes), and the right panel shows the
results for our archetype approach (with a prior of σa = 0.1 on polynomial coefficients). In both panels, the blue dots show the accepted redshifts (Na) while the red
crosses show the rejected redshifts (Nr). To guide the readers, the bottom-right quadrant in each subpanel represents good performance, showing that individual night
redshifts match with deep coadded redshifts of the same spectrum, while the upper right shows the redshifts that differ from the deep coadded spectrum and also are
flagged as very robust redshift in the pipeline. Archetype performs ∼50% better in reducing catastrophic redshift failure.

62 Each DESI coadded fits file includes a header storing OBJTYPE of observed
TARGETIDs. A reader can apply the conditions of OBJTYPE==TGT and
OBJTYPE==SKY to select target and sky fibers.
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expectations, as our method relies on physical galaxy models,
and sky fibers typically do not correspond to any physical
galaxy, being spectra of blank sky. In contrast, PCA templates
exhibit a high degree of flexibility, allowing them to
confidently fit such spectra, as evident by the data (see the
“Redrock (without archetypes)” column) in Table 5 and left
panel of Figure 12. In the daily quality assessment, dedicated
DESI collaborators look at these plots to understand the
redshift performance.

In summary, our archetype method demonstrates a 6%–40%
improvement in mitigating erroneous redshift fits for sky fibers.
This is a substantial improvement over the current redrock. For
instance, when applying redshift success criteria akin to LRG
on sky fibers (bottom panel of Figure 10), the Redrock (without
archetypes) run identifies 5808 objects with robust redshifts. In
contrast, our archetype method identifies only 4498 without
priors and 4275 (∼27 percent improvement) with σa= 0.1 on

polynomial coefficients. This improvement in reducing false-
positive redshifts is consistently observed in our archetype
approach (see Table 5 and the right panel of Figure 12) with
redshift selection akin to BGS (top-right panel, 3184 in
archetype versus 1902 in Redrock (without archetypes)) and
ELG (middle right panel, 1969 in archetype versus 2075 in
Redrock (without archetypes)) target classes. This outcome
aligns with our rationale for utilizing priors to reduce such
misidentifications in the first place.
Another improvement we observe with our archetype

approach is that it reduces the accumulation of spurious
redshifts around any particular redshift as a function of fiber
number. In the bottom panel of Figure 12, we show results for
sky fibers selected with redshift selection criteria akin to LRGs
(see Table 2). We find that the Redrock (without archetypes)
redshifts (bottom-left panel) show spurious redshift accumula-
tion between fibers 1400 and 2000. However, the archetype
case has no such accumulation (Figure 12, bottom-right panel).
This can be attributed to the fact that archetypes represent
physical galaxy spectra; consequently, they do not cluster
around any fibers as the final fit can be any redshift with small
Δχ2.

4.4.2. Redshift Success Rate

Next, we estimate the redshift success rate for all DESI
targets using the same redshift criterion defined in Table 2 and
compare our archetype results with success rates from the
Redrock (without archetypes) run. We also note that we do not
need to define a new criterion63 to define the redshift success
rate in our archetype approach while also improving the overall
performance of the spectral fitting and redshift estimation
pipeline. We present the comparison in Table 6. We find that
our archetype approach (with σa= 0.1) consistently yields a

Figure 10. The redshift difference between single-epoch and deep coadded spectra of the same LRG targets. The Δχ2 values are taken from single-epoch
observations. The vertical dashed line (Δχ2 > 15) shows the boundary to define good redshift, and the horizontal dashed line defines the catastrophic redshift failure,
i.e., |Δv| > 1000 km s−1. The left panel shows the results for Redrock (without archetypes), and the right panel shows the results for our archetype approach (with a
prior of σa = 0.1 on polynomial coefficients). In both panels, the blue dots show the accepted redshifts (Na) while the red crosses show the rejected redshifts (Nr). To
guide the readers, the bottom-right quadrant in each subpanel represents good performance, showing that individual night redshifts match with deep coadded redshifts
of the same spectrum, while the upper right shows the redshifts that differ from the deep coadded spectrum and also are flagged as very robust redshift in the pipeline.
There are some rejected redshifts in the bottom-right quadrant. That is because we also reject LRGs with z > 1.5. Archetype performs ∼20% better in reducing
catastrophic redshift failure.

Table 4
Visually Inspected Deep Coadded Tiles Redshift Comparison for Redrock vs.

Archetype

Target Ntarget
|Δv| > 1000 km s−1

class (QA_VI � 2.5) (Catastrophic failure)

Redrock Archetype Archetype
(no prior) (σa = 0.1)

BGS_FAINT 754 9 6 6
BGS_BRIGHT 1091 5 3 3
ELG_LOP 2132 25 21 21
ELG_VLO 639 2 1 1
ELG_HIP 263 2 2 2
LRG 3440 39 26 26

Note. Catastrophic redshift failure is defined as, v cz z

z1
ref visual

visual
∣ ∣ ·∣ ∣D = -

+
, where

zref and zvisual are pipeline and visual redshifts, respectively. We select spectra
that are visually classified as “good”; i.e., QA_VI � 2.5 (see Lan et al. 2023,
for details).

63 Although this can be explored in the future when we run the archetype mode
for all spectral types and redshifts.
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higher (by 0.1%−0.8%) redshift success rate for almost all
galaxy target classes. For example, the redshift success rate for
ELG_LOP is 70.90% in the Redrock (without archetypes) run
while it increases to 71.56% in our archetype (with prior,
σa= 0.1) approach (∼0.7% improvement). The lower success
rate in the PCA-only model can, in part, be attributed to the
misclassification of strong emission lines (e.g., see Figure 6).
However, since the archetypes are derived from actual galaxy
spectra, which include all of the expected emission lines, they
can help find the correct redshift corresponding to their location
in observed spectra. A similar relatively higher-redshift success
rate is seen for ELG_VLO and ELG_HIP; compare the redrock
versus archetype columns in Table 6. Similarly, the success rate
for LRGs is 98.81% in the archetype method compared to
98.79% in Redrock (without archetypes). Finally, for the QSO
targets, Redrock (without archetypes) delivers a 67.15%
redshift success rate, while it reduces to 66.84% in archetype
mode without prior. However, when we use prior σa= 0.1, the
success rate increases to 67.11%. This justifies our proposition
that adding priors on Legendre polynomials in our model
reduces quasar misclassification and does improve the overall
performance for them (see Section 3.2).

We also observe that the average redshift success rate is
significantly lower for the ELG_LOP class compared to other
target classes. This discrepancy arises from a combination of
the target selection algorithm and the redshift selection
criterion. First, ELG targets are selected using a combination
of grz colors, which serve as a proxy for the [O II] flux and star
formation. These targets extend nearly to the imaging depth,
and the color-based cuts are imperfect, leading to the inclusion
of many faint targets with undetectable [O II] flux for reliable
redshift estimation.

Additionally, the wavelength coverage of DESI targets poses
another issue. For any target with z> 1.62, the [O II] line falls
outside the spectrograph’s range, resulting in no emission line
being detected by DESI. Consequently, this results in redshift
failure, as redshift efficiency is also dependent on the SNR of
the detected [O II] flux.

It is important to point out that in terms of relative
percentage, these improvements are low; however, DESI will
collect more than ∼30 million galaxy spectra in 5 yr, and even
such a marginal increase will translate to very large numbers in

absolute terms. At the same time, the method also resolves the
inherent issues with the current PCA-based method we
discussed in Section 3.1. Furthermore, within our archetype
approach, the redshift success rate is consistently higher for
runs with prior (rightmost column of Table 6) than without
prior (middle column of Table 6) on polynomial coefficients.
This should not surprise us, as putting priors on the polynomial
coefficients allows us to restrict their freedom, which reduces
the unphysical modeling of input spectra.

4.5. Further Algorithmic Tests

We also explored various algorithmic adaptations by
changing the model parameters and including additional
complexities within our archetype-based galaxy redshift fitting
method. The first test involved varying the number of best
redshifts (Nzbest; see Figure 2) on which the archetype-based
model should be run. We varied the Nzbest redshifts from 3 to
15. We observe that the redshift performance got worse for
Nzbest� 6 compared to the Redrock (without archetypes). This
outcome is likely attributable to the possibility that a small
number of PCA-based best redshifts may not include the
correct redshifts, particularly if the initial fit was unphysical.
Next, increasing Nzbest to 9 significantly improved the
performance compared to Redrock (without archetypes) with-
out compromising (∼2 times higher than default run) much on
runtime, and we use this value for our final analysis. On the
other hand, increasing Nzbest to 12 and 15 did not improve the
χ2 values, and the best redshifts remained unchanged while
significantly (∼3 times more than default run) increasing the
runtime.
Next, we also explored including additional nearest

neighbors in our method to use multiple nearby archetypes in
superposition so as to achieve a “sub-grid” interpolation. For
that purpose, after getting the best archetype fit for a given
spectrum (i.e., the archetype corresponding to the minimum
χ2), we consider N-nearest archetype neighbors around that in
χ2 space. Then, we construct a model that is a linear
combination of these nearest archetypes and the Legendre
polynomials and estimate the new χ2. This is to test if
increasing the number of archetypes improves the overall
spectral fitting for galaxies further. However, we observe very

Figure 11. The redshift comparison between the PCA-based Redrock method (left) and the archetype method (right), color-coded by their χ2 difference for visually
inspected galaxy spectra, reveals notable differences. The archetype method demonstrates reduced spurious clustering of redshifts and fewer catastrophic failures
around z ∼ 1, 1.6. Furthermore, the archetype method generally yields lower χ2 values, indicating better model fits.
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Figure 12. Redshift vs. fibers for sky fibers (selected with OBJSTYPE=SKY criteria) for sky fibers from DESI Y1. In each panel, we also show the number of false
positives selected using good redshift criteria (see Table 2) like true galaxy targets. The top panel shows results for BGS-like selection; the middle panel shows results
for ELG-like selection, and the bottom panel presents the results for LRG-like redshift selection. The left panel (blue) shows the result for Redrock (without
archetypes), and the right panels show the results of our archetype method (with a prior σa = 0.1 on polynomial coefficients, shown in orange) in all panels. It is
evident that the archetype performs 6%–40% better in rejecting false-positive redshifts for sky fibers.
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slight improvements in χ2 in some cases, albeit at the expense
of significantly higher runtime (∼3 times higher than a single
archetype run), as it entails an extra computational step. The
slight reduction in χ2 is expected, as adding more nearest
neighbors introduces additional degrees of freedom into the
equation. Consequently, considering the insignificant gain in
best fit at the expense of increased runtime, we decided to run
the algorithm with just one archetype.

We also ran our method only with archetypes without
Legendre polynomials, which performed worse than the current
approach. This is expected, as archetypes alone can only model
the shape and features of the spectrum and not the pipeline
defects, because they do not have the same flexibility as the
Legendre polynomials in absorbing those defects accurately.

Another test was to include higher-order (quadratic and
above terms; see Equation (1) and Figure 2) polynomial terms
in the model. They do improve the χ2 in some cases, and thus,
the best redshifts also change. However, this also yields some
unphysical negative flux fittings, as the combination of
negative coefficients and higher degree polynomials can overfit
the data. This also comes from the fact that the linear
combination polynomial basis vectors can fit almost any curve.
We plan to explore this in more detail using the NNLS-like
method in the future.

5. Discussion

This is one of the first comprehensive modifications in the
redshift fitting algorithm of DESI spectral data and extensive
testing on DESI data to quantitatively assess its performance.
This effort is of particular significance in light of the substantial
scale of DESI observations anticipated over the next 3–4 yr,
addressing crucial issues inherent to the current algorithm.

5.1. Improved Galaxy Modeling and Redshift Estimation with
archetypes

In Section 3.1, we provide the details of our new archetype
model coupled with a per-camera polynomial fitting (see
Equation (1)) for modeling DESI spectra. Our method is
significantly different from previous studies (Cool et al. 2013;
Hutchinson et al. 2016) that have used archetypes to fit the low-
resolution spectra and estimate their redshifts. They allow the
archetype coefficients to take negative values, which are
susceptible to yielding unphysical fits occasionally. They also
do not include polynomial modeling of spectra in individual
cameras and fail to accurately absorb the CCD and throughput
offsets. Moreover, we also add priors (Section 3.2) on our
polynomial coefficients that help us reduce false positives in sky
fibers and the misclassification of quasar spectra. Since the
archetypes represent physical galaxy spectra with emission (such
as [O II] , [O III] , Hα, Hβ) and absorption feature (4000Å break,
Ca–K, H lines) characteristics to their physical properties, they
seem to be better at fitting those features in observed spectra and
provide less flexibility in fitting unphysical features (see Figure 6).
However, the reduced flexibility lacks the ability to capture some
peculiar galaxy spectra that might also be detected serendipi-
tously, which we will discuss in the next Section. We ran our
redshift fitter with the archetype-based approach on various small
and large data sets and compared its performance against Redrock
(without archetypes), as elucidated in Section 4.1.
To quantify the improvement in redshift estimates with our

archetype model, we performed a large test on DESI tiles across
diverse data sets. Notably, these enhancements are achieved
without changing the existing good redshift criteria, though this
can be further explored in the future. An extensive analysis of our
method on tiles observed on multiple nights during the survey
validation phase (see Section 4.2) shows that the new method
yields fewer catastrophic failures (10%–30%; see Table 6 and
Figures 8, 9, and 10) while simultaneously increasing the redshift
purity for all galaxy subclasses, as it can deliver better models for
the CCD discontinuities (see Figure 5). The other noteworthy
improvement is in sky emission-line regions. In cases where
PCA-only (without archetypes) templates might erroneously fit
the noise as an actual spectral feature, the archetype method
inherently does not find physical features and, therefore, reduces
false-positive redshifts. Next, we also find that the new method is
more effective (10%−20% in a relative sense) in reducing
catastrophic redshift failure for visually inspected galaxy spectra
(see Section 4.3 and Table 4).
Finally, when run on millions of DESI targets from the main

survey (Section 4.4), our method shows an increased redshift
success rate (see Table 6) by 0.5%–0.8% for all galaxy target
classes while yielding a similar success rate for QSOs as
compared to the Redrock (without archetypes). Although the

Table 5
Redshift Statistics of Sky Fibers from Y1 Data Set

Program N Selection N (False Positives)

(skyfibers) Criteria (Confident Redshifts)

Redrock Archetype Archetype
(no prior) (σa = 0.1)

dark 136, 134 ELG 2075 1980 1969
136, 134 LRG 5808 4498 4275

bright 203,578 BGS 3184 1936 1902

Table 6
Test Run on DESI Targets from Y1 Data Set

Target N Redshift Success Rate (%)

Redrock Archetype Archetype
(no prior) (σa = 0.1)

BGS_FAINT 227,784 98.78 98.34 98.78
BGS_BRIGHT 562,848 98.64 98.53 98.72
ELG_LOP 340,064 70.90 71.55 71.56
ELG_VLO 44,170 94.63 94.68 94.68
ELG_HIP 94,046 75.76 76.29 76.29
LRG 233,784 98.79 98.77 98.81
QSOa 238,775 67.15 66.84 67.11

Note.
a Also see the footnote for Table 2.
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relative changes are small, the numbers are much larger in the
absolute sense. The new method is relatively fast to process
such a large number of targets within acceptable time frames,
as described in Section 3.5. Furthermore, we find that adding a
prior while solving for polynomial coefficients in our model
further enhances the ability to reject false-positive redshift
measurements for sky fibers (i.e., the spectrum taken for blank
sky regions; see Table 5) while not reducing the redshift
success rate for any galaxy subclass (Sections 4.4.1 and 4.4.2).
Based on our extensive tests, we conclude that the new
archetype-based per-camera polynomial fitting method shows
significant improvement over Redrock (without archetypes).
Additionally, the method is generic enough that its function-
alities can be easily extended to other similar large spectro-
scopic surveys in the near future.

It is also important to compare the redshift success rate of the
DESI pipeline with that of previous large surveys. For example,
GAMA achieved approximately 97% correct redshifts down to
an apparent magnitude of 21 in the SDSS r band (Loveday
et al. 2012). Similarly, LRGs in the BOSS program had a
redshift success rate of approximately 93% for ifiber< 21.5
(Bolton et al. 2012), while the DEEP2 survey delivered an
overall success rate of �70% (Cooper et al. 2006). In
comparison, the DESI pipeline, Redrock, consistently achieves
higher success rates across all target classes. This improved
performance can be attributed to enhanced imaging, a refined
target selection algorithm, robust PCA templates, better sky
modeling, and also better resolution than BOSS.

5.2. Future Improvements and Extensions

It is also important to understand the shortcomings of our
method. An important step would be to test our method
independently of PCA-based template fitting. As described
earlier, due to the runtime complexity, we still rely on a list of
redshifts derived from the initial PCA-based redshift scan;
therefore, if the true redshift is not present in that list, our method
will fail. In the near future, we plan to optimize the BVLS
method and extend our method to all redshifts to perform an
independent comparison with current DESI redshifts. Another
important improvement can be brought to the synthetic spectra
data set (Section 3) that was generated using spectrophotometry
from the data sets that were in place before DESI (like DEEP2
and AGES). In the future, however, we will use DESI
observations themselves. This may impact the overall quality
and diversity of galaxies in these data sets, as they are all flux-
limited surveys and have restricted wavelength coverage and
theoretical modeling of SEDs. This is an important point to
remember while interpreting the current results.

With the ongoing DESI survey, we have collected millions
of galaxy spectra with updated and more robust spectro-
photometry and SED modeling. Notably, these spectra
originate from the same instrument, facilitating the construction
of a more consistent synthetic galaxy spectral data set that
aligns more accurately with observations. Concerted efforts are
underway within the DESI collaboration to refine the galaxy
templates based on the wealth of data accumulated from DESI.
The initial value-added catalogs for these DESI galaxies,
incorporating new state-of-the-art spectrophotometry (i.e.,
fastspecfit64; Moustakas et al. 2023) and derived physical
properties, are set to be released in the near future

(J. Moustakas et al. 2024, in preparation). This will be an
important step in enhancing the accuracy and applicability of
galaxy archetypes in redshift fitting.
Another important issue is that our current ELG archetypes

lack the broad diversity in line ratios associated with different
metal transitions, which is usually associated with their stellar and
gas properties. This may be critical for identifying and modeling
different line ratios within the ELG subclass. Additionally, the
current set of archetypes also lacks AGNs and LINER-like
galaxies and high redshifts (z> 1.5) Lyman break galaxies or
Lyα emitters. It is important to understand that the intricate
theoretical modeling of such galaxies is extremely challenging;
however, they are found in DESI data sets. Addressing this
limitation represents another improvement that will be integrated
into upcoming archetypes based on fastspecfit galaxy
properties and line ratios in the future. Therefore, our archetypes
may not comprehensively cover the vast diversity of galaxy
spectra. Consequently, if we encounter galaxy spectra that are
fairly different from our archetypes, we might miss them.
However, running SetCoverPy with appropriate weights while
generating archetypes can be very useful for handling such
outliers. Even the default PCA-based templates were generated
from a galaxy sample that excluded these special cases. However,
the inherent flexibility of PCA allows adaptability in identifying
diverse objects; it is not inherently designed for such specialized
classification. Currently, a combination of visually inspecting the
spectral features and redshift measurements from previous
surveys is used to identify them.
However, as described in Section 4.4.2, the overall low

redshift success rate for ELGs is intrinsically related to their
selection algorithm and stringent redshift criterion. The redshift
criterion was developed to ensure a very low rate of
catastrophic failures, which is crucial for clustering analysis.
While relaxing this criterion might increase the success rate, it
would also lead to an increased rate of catastrophic failures
(Raichoor et al. 2023). To achieve significantly higher
efficiency, the target selection algorithm must be refined, and
the definition of reliable redshifts needs to be reconsidered.
Our future strategy involves incorporating rare galaxy

classes when generating PCA templates and galaxy archetypes.
This step is deemed crucial for enhancing the precision of our
redshift fitter, especially in light of upcoming surveys like
DESI-II, which are being designed to target these peculiar
galaxies (Ruhlmann-Kleider et al. 2024).
In the current analysis, we are using only galaxy archetypes,

though it is run on all redshifts regardless of spectral type. So,
there still can be unphysical fitting for QSOs and stars, which
have different spectral features than galaxy archetypes, and PCA-
based χ2 can still be smaller. The challenge lies in constructing a
set of archetypes that span the extensive diversity inherent to
quasars. Currently, their unified model is not well understood and
modeled (see Netzer 2015, for a recent review). On the other
hand, constructing archetypes for stars is also challenging, given
the diversity of spectra from young to old stars. Another
complexity is in modeling the spectra of CVs and WDs, which
show very distinct features from main-sequence stars.
In the immediate future, a potential avenue for future

enhancement would be redshift fitting in each amplifier within
the DESI camera. Notably, the pipeline occasionally presents
calibration challenges in amplifiers within the camera. This
manifests again as an offset or gradient-like polynomial feature
in regions within a given camera. This per-amplifier modeling64 https://fastspecfit.readthedocs.io/en/latest/
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is challenging due to wavelength overlap, and defining a
method to split the spectra in each amplifier is not straightfor-
ward. This refinement can show further improvement in error
absorption than what we have gained now. Ongoing efforts are
directed toward incorporating such intricacies in future releases
of Redrock.

Additionally, we can explore the possible algorithms to
construct archetypes from a given input set. Currently, we are
using a generic classification algorithm (SetCoverPy) for this,
which may not be very efficient sometimes, as the optimal
reduced χ2 value for the distance matrix is not well defined.
Therefore, developing an approach that includes clustering
based on physical properties rather than relying solely on
machine-learning-based techniques can be more useful. How-
ever, this is quite challenging, given the difficulty in defining
an N-dimensional parametric space that effectively splits
galaxies or quasars based on their properties in that hyperplane.
In any case, exploring this avenue is quite exciting and can
offer potential insights into a more detailed understanding of
galaxy and quasar classification. This also has implications for
measuring their redshifts while also offering useful information
on physical properties such as stellar mass or star forma-
tion rate.

Finally, as described earlier, our method is generic enough to
quickly extend to other large surveys similar to DESI, such as
WEAVE,65 WAVES (planned in the 4MOST survey), Prime
Focus Spectrograph on Subaru (Tamura et al. 2016), and
MOONS66 on Very Large Telescope (Cirasuolo et al. 2020).
For instance, the upcoming WEAVE instrument (Dalton et al.
2014; Jin et al. 2024) will have two cameras to obtain high-
resolution spectra of galaxies and quasars. Given that our
method can extract information on the number of cameras from
the input spectrum, it can automatically fit the WEAVE
spectrum in each of those two cameras and estimate the redshift
and spectral class. We aim to explore this avenue and test its
applicability to the WEAVE spectra in the near future.

6. Summary of Conclusions

In this paper, we have presented a modification to the
existing redshift estimation algorithm for DESI spectra. The
archetype-based per-camera polynomial fitting approach fits the
spectra of DESI galaxies and measures their redshifts and
spectral classes. Our comprehensive tests demonstrate the
efficacy of our method in mitigating unphysical model fits to
galaxies and adeptly addressing pipeline defects introduced
during the spectral reduction process. The main conclusions are
as follows:

1. The primary DESI redshift fitter Redrock occasionally
suffers from the issue of yielding unphysical fits and
inaccurate redshift and spectral type of galaxies. It also
struggles to account for pipeline defects that are visible in
the extracted spectra as vertical shifts or gradient-like
polynomial features in the spectrum within one of the
cameras due to CCD bias and camera throughput issues.

2. To develop a more physical galaxy model fit and improve
the redshift estimates, we employ an archetype-based
approach to model DESI galaxy targets. Furthermore, we
introduce a per-camera polynomial spectral fitting to
robustly absorb pipeline defects.

3. Our extensive tests show that the new method performs
10%–40% better (e.g., 31 versus 19 in redrock versus
archetype method for ELGs) in reducing catastrophic
redshift failure than redrock (without archetypes) on tiles
observed on several nights during the survey validation
phase. Additionally, the redshift purity is consistently
higher than the current redrock for these tiles in our
archetype method. Furthermore, our method shows a
notable ability to find precise redshifts for visually
inspected high-SNR coadded spectra of DESI targets.

4. We find that the archetype method performs marginally
better on survey validation targets, which also confirms
the overall robustness of the Redrock pipeline and, hence,
the downstream DESI science results.

5. Additionally, our method performs better on millions of
DESI targets selected from the Y1 data set. We observe
an increased redshift success rate (by 0.5%–0.8%) for all
galaxy target classes (compare 70.90% versus 71.55% for
ELGs in the redrock versus archetype method, respec-
tively) while maintaining similar success for QSO targets.
At the same time, we also find that our method reduces
the number of false-positive redshifts (by 5%−40%) for
sky fibers.

6. Finally, we explain the shortcomings and future improve-
ments to our method and discuss the generic nature of our
method and its applicability to other large upcoming
surveys.
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Appendix A
Archetypes versus Parent Galaxies Comparison in Color–

Color Space

To qualitatively assess the performance of SetCoverPy in
finding an optimal set of archetypes, we compared their
distribution with the parent sample in physical space. We
present one such comparison in Figure 13, where we show the
distribution of parent (left) and archetype (right) galaxies in
r− z versus g− r color–color space. The blue, orange, and red
colors represent the ELGs, BGS, and LRGs, respectively. In
the parent sample, we see that ELGs and LRGs occupy very
different regions in the color–color space. A similar distribution
is visible in archetypes, though we see far fewer LRGs in the
archetype, because (1) their spectra usually do not show
emission-line features, and (2) continuum shape does not vary

much. In fact, we see that there are no LRG archetypes with
g− r> 2; this is evident when we show below the spectra of a
few LRG archetypes that span most of the parent LRGs. At the
same time, the BGS sample lies somewhat in the intermediate
region in the color–color diagram. They are low-redshift, very
bright galaxies and can range from highly star-forming to
passive galaxies. This observation underscores the reliability of
SetCoverPy in finding an optimally representative subset of
galaxies. As pointed out in Zhu (2016), since the fluxes are
normalized, stellar mass versus star formation rate may likely
not be the most informative dimension to compare parent and
archetype galaxy samples. Subsequently, we select 33 random
galaxies from our archetypes (shown with open circles in
Figure 3) and show their spectra in Figure 14. One can see the
diverse spectral features in ELGs and BGS, while LRGs do not
show such diversity. Most of the LRGs are spanned by the
three archetypes (ID: 272, 278, and 267). In each subpanel, we
also show the number of spectra that the particular archetype
can represent in the parent sample. We can see that a few LRGs
can span almost all of the LRGs in the parent sample.

Figure 13. g − r vs. r − z color–color space comparison between parent (left) and archetype (right) galaxies. The archetypes obtained with SetCoverPy span the
properties of the parent sample well in this space. The colors are not corrected for interstellar extinction.
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Appendix B
Optimal Prior Value for Polynomial Coefficients in

Archetype Approach

In order to select an optimal value for prior on coefficients of
Legendre polynomials, we employ results of fibers targeting
the blank sky. These sky spectra are used to construct robust
sky models for the spectral reduction process. As illustrated in
Section 3.2, we ran our method on numerous tiles within the
DESI Y1 data set. This extensive analysis helped us understand
the distribution of Legendre polynomials on hundreds of

thousands of sky fibers. This comprehensive analysis enabled
us to select an optimal value of the prior value for these
polynomial coefficients.
The sky fibers are expected only to have sky emissions and

no emission lines associated with actual astronomical objects.
Consequently, modeling spectra using Legendre polynomials
and archetypes for these fibers should demonstrate minimal
variability compared to the diversity observed in the spectra of
galaxies. Therefore, the spread in the coefficient distribution
allows us to constrain the flexibility of coefficients of the

Figure 14. The rest-frame spectra of archetypes (shown as open circles in Figure 3) that can represent more sources than themselves in the parent galaxy sample. The
number N shows how many galaxies in the parent sample the individual archetype can represent, i.e., with distances shorter than the minimum distances defined by the
s2 threshold in the SetCoverPy method. We can see a larger diversity in ELGs than in LRGs.
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Legendre polynomial while fitting real spectra in the archetype
method. As demonstrated in Section 3.2, the physical slope of
the quasar continuum may occasionally be confused with slope
features associated with pipeline defects due to excessive
freedom in polynomial coefficients if no prior is used. The prior
determined based on sky fibers restricts such freedom, thereby
mitigating the misidentification of quasar spectra as galaxies or
vice versa within the archetype approach.

We present the distribution of fitted coefficients of Legendre
polynomials for these sky fibers in all three cameras in
Figure 15. The observed distributions look approximately
Gaussian, with a spread between 0.1 and 1. However, notable
asymmetry is observed, potentially due to other pipeline defects
introduced during the spectral reduction. Therefore, we have
opted for a prior smaller (σa= 0.1) than these variances. This
choice ensures that the Legendre coefficients take smaller
values for the sky fibers, as they are featureless spectra. In fact,
we checked the distribution of Legendre coefficients for sky

fibers after applying the priors, and we found that the average
value is close to zero while the spread reduces to 0.05. This is
evidence that our regularization method (see also Section 3.2)
has worked fairly well.

Appendix C
More Performance Metrics for SV Phase Data

The truth catalogs available for the spectra from the SV
phase provide us the opportunity to define additional
performance metrics such as precision, recall, and F1 scores
for the galaxy data sets. We utilize these tables to compare the
true redshifts with the redshifts measured by the pipeline. The
redshift difference is calculated as v c

z z

z1
visual pernight

visual
∣ ∣ ∣ ∣ ·D = -

+
,

where zvisual and zpernight are the visual and measured redshifts
of the targets observed on several nights during the SV phase
(see Section 4.2). The good redshift criteria is defined in
Table 2. We use these two definitions to calculate the precision,
recall, and F1 scores for all galaxy targets for both the Redrock

Figure 15. Distribution of Legendre polynomial coefficients (in each camera, the constant term is in the top panel, and the slope term is in bottom panel) for sky fibers
(for both dark and bright tiles) from the Y1 data set. The spread of distribution varies between 0.1 and 0.5 for dark tiles and between 0.2 and 1 for bright tiles. Based on
this, we choose a prior value of 0.1 (lowest) on polynomial coefficients for our current archetype method. More details are presented in Section 3.2.
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(without archetypes) and archetype methods. We define the
following quantities:

where X and Xo are defined in Table 2. We calculate these
quantities for both methods and compile the values in Table 7
for all galaxy targets. As one of our key objectives is to
minimize the number of catastrophic failures (i.e., false
positives), precision is more valuable than recall. Our results
indicate that the overall precision of both the Redrock method
(without archetypes) and the archetype method is quite high
and very similar across all galaxy target classes. This finding
again demonstrates that Redrock is already highly efficient,
while our archetype-based model also achieves comparable
high performance for DESI spectra, along with improved
modeling of spectral defects.
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