
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
Assessing the Linguistic Productivity of Unsupervised Deep Neural Networks

Permalink
https://escholarship.org/uc/item/72z2w2nd

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 39(0)

Authors
Phillips, Lawrence
Hodas, Nathan

Publication Date
2017
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/72z2w2nd
https://escholarship.org
http://www.cdlib.org/


Assessing the Linguistic Productivity of Unsupervised Deep Neural Networks
Lawrence Phillips (Lawrence.Phillips@pnnl.gov)

Pacific Northwest National Laboratory

Nathan Hodas (Nathan.Hodas@pnnl.gov)
Pacific Northwest National Laboratory

Abstract

Increasingly, cognitive scientists have demonstrated interest in
applying tools from deep learning. One use for deep learning is
in language acquisition where it is useful to know if a linguistic
phenomenon can be learned through domain-general means.
To assess whether unsupervised deep learning is appropriate,
we first pose a smaller question: Can unsupervised neural net-
works apply linguistic rules productively, using them in novel
situations? We draw from the literature on determiner/noun
productivity by training an unsupervised, autoencoder network
measuring its ability to combine nouns with determiners. Our
simple autoencoder creates combinations it has not previously
encountered and produces a degree of overlap matching adults.
While this preliminary work does not provide conclusive evi-
dence for productivity, it warrants further investigation with
more complex models. Further, this work helps lay the foun-
dations for future collaboration between the deep learning and
cognitive science communities.

Keywords: Deep Learning; Language Acquisition; Linguistic
Productivity; Unsupervised Learning; Determiners

Introduction
Computational modeling has long played a significant role
within cognitive science, allowing researchers to explore
the implications of cognitive theories and to discover what
properties are necessary to account for particular phenom-
ena (J. L. McClelland, 2009). Over time, a variety of mod-
eling traditions have seen their usage rise and fall. While the
1980s saw the rise in popularity of connectionism (Thomas &
McClelland, 2008), more recently symbolic Bayesian mod-
els have risen to prominence (Chater & Oaksford, 2008; Lee,
2011). While the goals of cognitive modelers have largely
remained the same, increases in computational power and ar-
chitectures have played a role in these shifts (J. L. McClel-
land, 2009). Following this pattern, recent advances in the
area of deep learning (DL) have led to a rise in interest from
the cognitive science community as demonstrated by a num-
ber of recent workshops dedicated to DL (Saxe, 2014; J. Mc-
Clelland, Hansen, & Saxe, 2016; J. McClelland, Frank, &
Mirman, 2016).

As with any modeling technique, DL can be thought of
as a tool which is best suited to answering particular types
of questions. One such question is that of learnability,
whether an output behavior could ever be learned from the
types of input given to a learner. These types of ques-
tions play an integral role in the field of language acquisi-
tion where researchers have argued over whether particular
aspects of language could ever be learned by a child with-
out the use of innate, language-specific mechanisms (Smith,
1999; C. D. Yang, 2004; Chater & Christiansen, 2010; Pearl,

2014). The success of a domain general learner does not nec-
essarily imply that human learners acquire the phenomenon
in a similar fashion, but it does open the possibility that we
need not posit innate, domain-specific knowledge.

The crux of these learning problems typically lies in mak-
ing a particular generalization which goes beyond the input
data. One major type of generalization that DL models would
need to capture is known as linguistic productivity. A gram-
matical rule is considered productive when it can be applied
in novel situations. For example, as a speaker of English you
may never have encountered the phrase a gavagai before, but
you now know that gavagai must be a noun and can therefore
combine with other determiners to produce a phrase such as
the gavagai. Before DL might be applied to larger questions
within language acquisition, the issue of productivity must
first be addressed. If DL models are not capable of produc-
tivity, then they cannot possibly serve to model the cognitive
process of language acquisition. On the other hand, if DL
models demonstrate basic linguistic productivity, we must ex-
plore what aspects of the models allow for this productivity.

The Special Case of Determiners
For decades, debate has raged regarding the status of produc-
tive rules among children acquiring their native language. On
the one hand, some have argued that children seem hardwired
to apply rules productively and demonstrate this in their ear-
liest speech (Valian, Solt, & Stewart, 2009; C. Yang, 2011).
On the other, researchers have argued that productivity ap-
pears to be learned, with children’s early speech either lack-
ing productivity entirely or increasing with age (Pine & Mar-
tindale, 1996; Pine, Freudenthal, Krajewski, & Gobet, 2013;
Meylan, Frank, Roy, & Levy, 2017). Of particular interest
to this debate has been the special case of English determin-
ers. In question is whether or not English-learning children
have acquired the specific linguistic rule which allows them
to create a noun phrase (NP) from a determiner (DET) and
noun (N) or if they have simply memorized the combinations
that they have previously encountered. This linguistic rule,
NP→ DET N, is productive in two senses. First, it can be
applied to novel nouns, e.g. a gavagai. Second, consider the
determiners a and the. If a singular noun can combine with
one of these determiners, it may also combine with the other,
e.g. the wug.

This type of rule seems to be acquired quite early in acqui-
sition, making it appropriate to questions of early productiv-
ity, and provides an easy benchmark for a DL model. Yet
answering such a simple question first requires addressing
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how one might measure productivity. Most attempts to mea-
sure productivity have relied on what is known as an overlap
score, intuitively what percentage of nouns occur with both a
and the (C. Yang, 2011). This simple measure has been the
source of some controversy. C. Yang (2011) argues that early
attempts failed to take into account the way in which word
frequencies affect the chance for a word to “overlap”. Be-
cause word frequency follows a Zipfian distribution, with a
long tail of many infrequent words, many nouns are unlikely
to ever appear with both determiners. He proposes a method
to calculate an expected level of overlap which takes into ac-
count these facts. Alternatively, Meylan et al. (2017) propose
a Bayesian measure of productivity which they claim takes
into account the fact that certain nouns tend to prefer one de-
terminer over another. For instance, while one is more likely
to hear a bath than the phrase the bath, the opposite is true of
the noun bathroom which shows a preference for the deter-
miner the (Meylan et al., 2017).

The literature is quite mixed regarding whether or not chil-
dren show early productivity. Differences in pre-processing
have lead researchers to draw opposite conclusions from sim-
ilar data, making interpretation quite difficult (C. Yang, 2011;
Pine et al., 2013). Indeed, most corpora involving individual
children are small enough that Meylan et al. (2017) argue it is
impossible to make a statistically significant claim as to child
productivity. For analyzing whether or not text generated by
a DL model is productive or not, we thankfully do not need
to fully address the problem of inferring child productivity.
Ideally, the model would demonstrate a similar level of over-
lap to the data it was exposed to. We make use of the overlap
statistic from Yang because it is more easily comparable to
other works and has been better studied than the more recent
Bayesian metric of Meylan et al. (2017).

Deep Learning for Language Acquisition
Deep learning, or deep neural networks, are an extension of
traditional artificial neural networks (ANN) used in connec-
tionist architectures. A “shallow” ANN is one that posits a
single hidden layer of neurons between the input and out-
put layers. Deep networks incorporate multiple hidden lay-
ers allowing these networks in practice to learn more com-
plex functions. The model parameters can be trained through
the use of the backpropogation algorithm. The addition of
multiple hidden layers opens up quite a number of possible
architectures, not all of which are necessarily applicable to
problems in cognitive science or language acquisition more
specifically.

While the most common neural networks are discrimina-
tive, i.e. categorizing data into specific classes, a variety of
techniques have been proposed to allow for truly generative
neural networks. These generative networks are able to take
in input data and generate complex outputs such as images or
text which makes them ideal for modeling human behavior.
We focus on one generative architecture in particular known
as a deep autoencoder (AE) (Hinton & Salakhutdinov, 2006).

While AEs have been used for a variety of input data types,

most prominently images, we describe their use here primar-
ily for text. The first half, the encoder, takes in sentences
and transforms them into a condensed representation. This
condensed representation is small enough that the neural net-
work cannot simply memorize each sentence and instead is
forced to encode only the aspects of the sentence it believes
to be most important. The second half, the decoder, learns to
take this condensed representation and transform it back into
the original sentence. Backpropogation is used to train model
weights to reduce the loss between the original input and the
reconstructed output. Although backpropagation is more typ-
ically applied to supervised learning problems, the process is
in fact unsupervised because the model is only given input
examples and is given no external feedback.

AEs have been shown to successfully capture text repre-
sentations in areas such as paragraph generation (Li, Luong,
& Jurafsky, 2015), part-of-speech induction (Vishnubhotla,
Fernandez, & Ramabhadran, 2010), bilingual word represen-
tations (Chandar et al., 2014), and sentiment analysis (Socher,
Pennington, Huang, Ng, & Manning, 2011), but have not
been applied to modeling language acquisition. While any
number of DL architectures could be used to model language
acquisition, the differences between ANNs and actual neu-
rons in the brain make any algorithmic claims difficult. In-
stead, DL models might be used to address computational-
level questions, for instance regarding whether or not a piece
of knowledge is learnable from the data encountered by chil-
dren. Before this can be done, however, it remains to be seen
whether DL models are even capable of creating productive
representations. If they cannot, then they do not represent
useful models of language acquisition. This work attempts to
address this not by creating a model of how children acquire
language, but by using methods from the psychological liter-
ature on productivity to assess the capability of DL to learn
productive rules.

Methods
Corpora
To train our neural network, we make use of child-directed
speech taken from multiple American-English corpora in
the CHILDES database (MacWhinney, 2000). In particu-
lar, we make use of the CDS utterances in the Bloom 1970,
Brent, Brown, Kuczaj, Providence, Sachs, and Suppes cor-
pora (Bloom, 1970; Brent & Siskind, 2001; Brown, 1973;
Kuczaj, 1977; Demuth & McCullough, 2009; Sachs, 1983;
Suppes, 1974). The combined corpora contain almost 1 mil-
lion utterances and span a wide age range, including speech
directed to children as young as 6 months and as old as 5
years. Relevant information about the used corpora can be
found in Table 1.

Because we are interested in seeing what the AE can learn
from data similar to that encountered by children, we train
the model only on child-directed utterances. These can be
produced by any adult in the dataset, including parents and
researchers. Although a comparison with child-produced text
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Figure 1: Visual representation of the autoencoder model.

holds great interest, it is not clear whether child-produced
speech is rich enough to support robust language learning on
its own. It therefore provides a poor basis upon which to train
the AE.

Text from the various corpora is processed as a single docu-
ment. Child-directed utterances are cleaned from the raw files
using the CHILDESCorpusReader function of the Python
Natural Language Toolkit (NLTK). Utterances from all non-
children speakers are included and not limited just to the pri-
mary caregiver. Each utterance is split into words according
to the available CHILDES transcription and then made low-
ercase. The model represents only the most frequent 3000
words, while the remainder are represented as a single out-
of-vocabulary (OOV) token. This step is taken both to re-
duce computational complexity but also to mimic the fact that
young children are unlikely to store detailed representations
of all vocabulary items encountered. Because the neural net-
works require each input to be of the same length, sentences
are padded to a maximum length of 10 words. Sentences that
are longer than this are truncated, while short sentences are
prepended with a special PAD token.

Corpora Age Range N. Utterances
Bloom 1970 1;9 - 3;2 62,756
Brent 0;6 - 1;0 142,639
Brown 1;6 - 5;1 176,856
Kuczaj 2;4 - 4;1 57,719
Providence 1;0 - 3;0 394,800
Sachs 1;1 - 5;1 28,200
Suppes 1;11 - 3;3 67,614
Overall 0;6 - 5;1 930,584

Table 1: Descriptive statistics of CHILDES corpora. Ages
are given in (year;month) format and indicate the age of the
child during corpus collection.

Neural Network Architecture
Our autoencoder model was implemented using Keras and
Tensorflow. The words in each sentence are input to the
model as a one-hot vector, a vector of 0s with a single 1 whose
placement indicates the presence of a particular word. This is

an inefficient representation because it assumes all words are
equally similar, e.g. that dog is equally similar to dogs as
it is to truck. To deal with this, the model passes the one-
hot vector to an embedding layer. Neural word embeddings,
as popularized by the word2vec algorithm (Mikolov, Chen,
Corrado, & Dean, 2013), are a way to represent words in
a low-dimensional space without requiring outside supervi-
sion. Words are placed within the space such that words that
are predictive of neighboring words are placed closer to one
another. Because our training data is relatively small, we keep
the embedding dimensionality low, at only 30. Standard em-
beddings trained on much larger NLP corpora tend to use 100
or 200 dimensions.

Once each word has been transformed into a 30-
dimensional embedding vector, the sequence of words is
passed into a gated-recurrent unit (GRU) layer (Cho et al.,
2014). The GRU is a type of recurrent (RNN) layer which
we choose because it can be more easily trained. RNN lay-
ers read in their inputs sequentially and make use of hidden
“memory” units that pass information about previous inputs
to later inputs, making them ideal for sequence tasks such as
language. As such, the model creates a representation of the
sentence which it passes from word to word. The final repre-
sentation is the output of the encoder, a latent representation
of the full sentence.

This 20-dimensional latent vector serves as the input to the
decoder unit. The first layer of the decoder is a GRU layer of
the same shape as in the encoder. For each timestep, we feed
into the GRU the latent vector, similar to the model proposed
in Cho et al. (2014). Rather than producing a single output,
as in the encoder, the decoder’s GRU layer outputs a vector at
each timestep. Each of these vectors is fed into a shared dense
softmax layer which produces a probability distribution over
vocabulary items. The model then outputs the most likely
word for each timestep.

The model loss is calculated based on the model’s ability to
reconstruct the original sentence through categorical crossen-
tropy. Model weights are trained using the Adam optimzer
over 10 epochs. During each epoch the model sees the entire
training corpus, updating its weights after seeing a batch of 64
utterances. While this process does not reflect that used by a
child learner, it is a necessary component of training the neu-
ral network on such a small amount of data. If the network
had access to the full set of speech that a child encounters
such a measure likely would not be necessary. Future work
might also investigate whether optimizing the dimensionality
of the network might lead to better text generation with higher
levels of productivity.

Baseline Models
Because the AE is learning to reproduce its input data, one
might wonder whether similar results might be achieved by a
simpler, distributional model. To assess this, we also mea-
sure the performance of an n-gram language model. We
train bigram and trigram language models using the modi-
fied Kneser-Ney smoothing (Heafield, Pouzyrevsky, Clark,
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& Koehn, 2013) implemented in the KenLM model toolkit
to estimate the distributional statistics of the training corpus.
Sentences are generated from the n-gram language model by
picking a seed word and then sampling a new word from the
set of possible n-grams. The smoothing process allows for
the model to generate previously unseen n-grams. Sampling
of new words continues for each utterance until the end-of-
sentence token is generated or a maximum of 10 tokens is
reached (the same maximum size as for the AE).

Since the AE is able to generate sentences from a latent
representation, it would be inappropriate to generate n-gram
sentences from random seed words. Instead, for every sen-
tence in the test set we begin the n-gram model with the first
word of the utterance. While this allows the model to always
generate its first token correctly, this does not directly impact
our measure of productivity as it relies on combinations of
tokens.

Productivity Measures
We measure the productivity of our autoencoders through the
overlap score described in C. Yang (2011). Words both in
the child-directed corpus and the autoencoder-generated out-
put are tagged using the default part-of-speech tagger from
NLTK. The empirical overlap scores are simply calculated
as a percentage of unique nouns that appear immediately af-
ter both the determiners a and the. The expected overlap
score is calculated based off of three numbers from the cor-
pus under consideration, the number of unique nouns N, the
number of unique determiners D, and the total number of
noun/determiner pairs S. The expected overlap is defined as
in Equation 1:

O(N,D,S) =
1
N

N

∑
r=1

O(r,N,D,S) (1)

where O(r,N,D,S) is the expected overlap of the noun at
frequency rank r:

O(r,N,D,S) = 1+(D−1)(1− pr)
S−

D

∑
i=1

[(di pr +1− pr)
S]

(2)
di represents the probability of encountering determiner i,

for which we use the relative frequencies of a and the cal-
culated from the training corpus (39.3% and 60.7%, respec-
tively). The probability pr represents the probability assigned
to a particular word rank. The Zipfian distribution takes
a shape parameter, a which C. Yang (2011) set equal to 1
and which we optimize over the training corpus using least
squares estimation and set at 1.06:

pr =
1/ra

∑
N
n=1(

1
na )

(3)

It should be noted that Zipfian distributions are not perfect
models of word frequencies (Piantadosi, 2014), but assigning
empirically-motivated values to the determiner probabilities

and Zipfian parameter a represents an improvement upon the
original measure.

Results
We analyze our overlap measures for the adult-generated (i.e.
child-directed) as well as the autoencoder and n-gram model-
generated text and present these results in Figure 2. We ana-
lyze overlap scores across 10 training epochs with three lev-
els of dropout, 10%, 20%, and 30%. Dropout is typically
included in neural models to encourage the model to better
generalize. We hypothesized that a certain level of dropout
would encourage the model to generate novel combinations
of words that might lead to higher overlap scores. We find
that with only two training epochs the AEs have already be-
gun to near their maximum overlap performance. The 30%
dropout AE achieves the highest level of performance, match-
ing the empirical overlap score of the original corpus. The
10% and 20% dropout models perform somewhat worse sug-
gesting that high levels of dropout may be necessary for good
text generation.

In Table 2, we present the results for the final epoch of
the AE models as well as for the adult-generated and n-
gram generated text. We note that the expected overlap mea-
sure consistently overestimates the productivity of all learn-
ers, including the adult-generated text. It is unclear why
this should be the case, but could be a result of capping the
model vocabularies, resulting in lower N values. In particu-
lar, the autoencoders tend to produce a relatively limited set
of nouns. Looking at empirical overlap measures, the worst-
performing models are the bigram and trigram models with
overlap scores below 30%. The AEs fair much better all pro-
ducing overlap scores over 50%. The 30% dropout AE is
actually able to match the overlap score of the original adult-
generated corpus (59.4% vs. 59.3%).

Looking at the number of unique nouns following a de-
terminer (N) and the total number of determiner-noun pairs
(S), it becomes clear there are large differences between the
n-gram and AE models. The n-gram models tend to pro-
duce very few determiner-noun pairs (low S) but are likely to
choose from any of the nouns in the corpus, leading to high
N. This fact accounts for the low overlap scores that they
achieve. In contrast, the AEs follow a pattern which mir-
rors the adult corpus with few unique nouns but a large num-
ber of noun-determiner pairs. In all cases, however, the AEs
produce both fewer unique nouns and fewer noun-determiner
pairs than the original corpus.

One possible problem for calculating the expected over-
laps comes from the difficulty of part-of-speech tagging text
generated by the neural network. Whereas adult-generated
speech follows set patterns that machine taggers are built to
recognize, the neural network does not necessarily generate
well-formed language. Examples of AE-generated text can
be found in Table 3. In some cases, the tagger treats items
that occur after a determiner as a noun regardless of its typ-
ical usage. For example, in the generated sentence let put

940



Figure 2: Empirical overlap scores. Adult-generated speech
is marked by the solid black line while autoencoder-generated
speech is marked by the dashed colored lines. Results are
presented for three levels of dropout, 10%, 20%, and 30%.
The x-axis represents the training epoch of the model.

N S Exp. Over. Emp. Over.
Adult 1,390 34,138 77.5% 59.3%
AE 10% 861 29,497 88.4% 53.3%
AE 20% 870 28,817 87.6% 53.4%
AE 30% 816 31,181 90.8% 59.4%
Bigram 1,780 5,177 17.6% 28.6%
Trigram 2,506 4,595 11.2% 22.1%

Table 2: Expected and empirical overlap scores for adult-
and autoencoder-generated language with varying levels of
dropout. Expected overlap scores were calculated as in Yang
(2011). Empirical overlap was calculated as the percent of
unique nouns that appeared immediately following both a and
the.

put the over over here, the phrase the over is tagged as a
DET+N pair. These type of errors are further evidenced by
the fact that the trigram language model produces a larger set
of words tagged as nouns than the original adult-generated
corpus (2,506 vs. 1,390).

Another explanation for the difference between expected
and empirical overlaps may come from deviation from a true
Zipfian distribution of word frequencies. If word frequencies
are Zipfian, we should expect a perfect correlation between
log ranks and log counts. C. Yang (2011) report a correla-
tion of 0.97, while our larger corpus deviates from this with
r2 = 0.86. Although we attempt to take this into account by
fitting the Zipfian distribution’s shape parameter, this diver-
gence clearly indicates that further work is needed.

The success of the AE model in generating productive
text serves as a confirmation that unsupervised neural models
might be used in future work to investigate other cognitive
phenomena. This work does not directly address the ques-
tion of how infants might learn to produce productive speech,
it does represent one possible approach. AEs can, for in-
stance, be thought of as information compression algorithms
which learn to represent high-dimensional data into a low-

dimensional latent space (Hinton & Salakhutdinov, 2006). If
the brain likewise attempts to find efficient representations of
the stimuli it encounters then it may prove fruitful to investi-
gate how these representations compare to one another.

Adult Autoencoder
falling down down down
you’re playing with you’re playing with
your bus the head
why did OOV say what’s what what you say say
wrong with these apples say with the dada

Table 3: Example adult and AE-generated language. The AE-
generated text is from the final epoch of the AE with 20%
dropout. In bold is a DET+N combination that does not ap-
pear in the AEs input.

Conclusion
While there is great interest regarding the inclusion of deep
learning methods into cognitive modeling, a number of ma-
jor hurdles remain. For the area of language acquisition,
deep learning is poised to help answer questions regarding
the learnability of complex linguistic phenomena without ac-
cess to innate, linguistic knowledge. Yet it remains unclear
whether unsupervised versions of deep learning models are
capable of capturing even simple linguistic phenomena. In
this preliminary study, we find that a simple autoencoder with
sufficient levels of dropout is able to mirror the productivity
of its training data, although it is unclear whether this proves
productivity in and of itself.

Future work will need to investigate whether more com-
plex models might be able to generate text with higher pro-
ductivity as well as further investigating how particular model
choices impact performance. It would also be worthwhile to
compare AEs against simpler models such as a basic LSTM
language model. While additional work needs to be done to
motivate the use of deep learning models as representations of
how children might learn, this preliminary work shows how
one might combine techniques from deep learning and devel-
opmental psychology.
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