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ABSTRACT OF THE DISSERTATION 
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Professor Neil Kamal Garg, Chair 

 

 

 This dissertation describes the development of reaction methodologies that utilize 

unconventional building blocks in chemical synthesis. One major effort involves the nickel-

catalyzed net hydrolysis of traditionally inert amide C–N bonds to give carboxylic acids. 

Additionally, the development of synthetic routes to afford structurally complex bioactive 

compounds are reported. Specifically, these include the synthesis of a small library of 

furanoindoline compounds for structure-activity relationship studies related to the treatment of 

Alzheimer’s disease and an alternative synthesis of the nucleobase found in the FDA-approved 
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COVID-19 antiviral remdesivir. Finally, investigations into strained heterocyclic allenes are 

described. These studies have allowed for highly reactive cyclic allene intermediates to be utilized 

strategically in the regioselective and enantiospecific synthesis of a diverse array of densely 

functionalized heterocycles. Furthermore, a synthetic approach toward the synthesis of 

alstilobanine A is reported, where the key step hinges on a cycloaddition of an azacyclic allene 

intermediate. Each of the new strategies presented are expected to expand the synthetic toolbox by 

leveraging unique reactivity.  

 Chapter one describes the development of a nickel-catalyzed net hydrolysis of amides. The 

methodology strategically employs a nickel-catalyzed esterification using 2-(trimethylsilyl)-

ethanol, followed by a fluoride-mediated deprotection in a single-pot operation. The selectivity 

and mildness of this transformation are demonstrated through competition experiments and the 

net-hydrolysis of a complex valine-derived substrate. This strategy addresses a limitation in the 

field with regard to functional groups accessible from amides using transition metal-catalyzed C–

N bond activation.  

 Chapters two and three detail the synthesis of bioactive compounds. Chapter two 

specifically describes the synthesis of a small library of furanoindoline analogs for structure-

activity relationship studies on the inhibition of neutral sphingomyelinase-2 and 

acetylcholinesterase, enzymes implicated in Alzheimer’s disease. The syntheses employ a key 

interrupted Fischer indolization reaction where the furanoindoline product is elaborated to generate 

a number of analogs. Identification of the dual inhibitors represents a promising new therapeutic 

approach to Alzheimer’s disease. Chapter three describes an alternative approach to the unnatural 

nucleobase fragment found in remdesivir (Veklury®), an FDA-approved antiviral for the treatment 

of COVID-19. The route relies on the formation of a cyanoamidine intermediate, which undergoes 
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a Lewis acid-mediated cyclization to yield the desired nucleobase. The approach is strategically 

distinct from prior routes and could further enable the synthesis of remdesivir and other small-

molecule therapeutics.  

 Chapters four and five are concerned with the investigation of cyclic allene intermediates. 

Chapter four describes an experimental and computational study of azacyclic allenes, including 

the synthesis of several substituted azacyclic allene precursors, subsequent allene generation, and 

trapping in cycloadditions. Additionally, the computational studies performed provide insight into 

the underlying reasons for the observed regioselectivities and enantiospecificities. Chapter five 

details experimental studies of oxacyclic. Specifically, the development of a precursor to 3,4-

oxacyclohexadiene and subsequent allene trapping in (4+2), (3+2), and (2+2) cycloadditions is 

disclosed. Additionally, the first asymmetric synthesis of a silyl triflate cyclic allene precursor was 

achieved, as well as enantiospecific trapping of the allene. These studies highlighted the potential 

for cyclic allenes to be valuable building blocks the asymmetric synthesis of heterocycles.  

 Chapter six illustrates the development of an alternative precursor toward strained cyclic 

allenes and alkynes. Our studies of strained cyclic allenes revealed that, in some cases, silyl triflate 

precursors were inaccessible. This study shows that silyl tosylates can serve as alternative 

precursors to strained cyclic allenes and alkynes.  

 Chapter seven details a strategy for the total synthesis of alstilobanine A, a monoterpene 

indole alkaloid. Our approach hinges on a key (4+2) Diels–Alder reaction between an acetoxy-

substituted azacyclic allene intermediate and a pyrone. This cycloaddition forms two key C–C 

bonds and sets three of the four stereocenters found in the natural product. Current efforts to 

synthesize the natural product are detailed. If successful, these studies should provide efficient 
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access to alstilobanine A and demonstrate the utility of cyclic allenes in complex molecule 

synthesis.  

 Finally, chapter eight is a contribution to chemical education.  The chapter outlines a new 

course centered around transition-metal catalysis in modern drug discovery. The course was 

designed to illustrate the central role of organic chemistry in driving small-molecule drug 

development and was taught by graduate students with mentorship from a faculty member. 

Additionally, experts in the fields of catalysis and drug discovery served as guest lecturers 

throughout the duration of the course. This chapter reflects on the experience of creating and 

developing the course, and aims to motivate the creation of future courses that unify fundamental 

concepts with applications and career outcomes. 
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Postdoctoral scholars occupy a unique niche in our laboratory environment. With their PhD 

shaped from another group culture, they bring a new way of thinking to the Garg lab and provide 

new perspectives. In my five years, I have had the opportunity to overlap with and learn from a 

number of strong postdoctoral scholars. When I first joined the group, Drs. Sophie Racine and 

Maude Giroud were examples of strong women in chemistry. It was inspirational to see them 
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towards the end of their time in academia and move onto prestigious positions, truly a reflection 

of all of their hard work throughout the years. There was of course another postdoc in the group at 

the time, Dr. Evan Darzi. Darzi and I worked side-by-side in lab and this gave me daily exposure 

to his “lab hacks.” I learned a great deal from him throughout the years, not only in lab techniques, 

but also with personal problems. I’ll always remember our Friday afternoon (aka philosophical 

Friday) carpool where we discussed anything from the week’s seminar speaker to how to be the 

best labmate. It is also exciting to see his career path following academia. Evan has always set an 

example of prioritizing family as well as career and this is an attribute I hope to have through my 

next chapter.  

Later in my graduate school career, Drs. Logan Bachman and Veronica Tona arrived. 

Shortly after their arrival, the campus shut down due to the pandemic; however, I was lucky to 

work closely with each of them through a collaboration with the Sarpong lab and the Gates 

Foundation. We bonded over hours of Zoom calls and worked to solve many challenging problems 

with real world applications. With all of the pressure behind this project, I admired their work ethic 

and extensive chemistry knowledge. In my final year, I overlapped with Drs. Nathan Adamson 

and Daniel Nasrallah. I’ve had the opportunity to work on a total synthesis project with Nathan, 

where I am thankful to bounce many ideas off him and always received encouragement when 

solving challenging chemistry. Both Nathan and Dan have demonstrated their strong synthetic 

chemistry skills were readily apparent but more so, was their ability to serve as teachers for the 

group.  

This now brings me to the Garg lab graduate students. I remember vividly my first day in 

lab and meeting everyone. The room-by-room introductions where a bit overwhelming but I was 

met with a sense of eagerness to be part of this group. I knew immediately the culture was special 
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and there was undeniable support for each other’s success. We uphold our “work hard play hard 

mentality” and are exceptional, well-rounded individuals.  

My first year in the Garg lab was in part characterized by the especially strong graduating 

class of Emma Baker-Tripp, Junyong Kim, and Elias Picazo. They were all powerhouses in lab 

and excellent role models on how to navigate graduate school. Fortunately, I was able to work 

directly next to Elias Picazo and continually felt his unbreakable optimism. During our year of 

overlap, I was continually the subject of many hazing activities, but always knew Eli had my back 

(aside from conceiving the nickname ‘Freshman’ for me my first year).  

I am grateful to have overlapped with the Class of ’19, Lucas Morrill, Joyann Barber, and 

Bryan Simmons. I think this class exhibited the widest range of personalities and it was fun to see 

how they all traversed the experiences of graduate school. Lucas is by far the wittiest person I have 

come across and provided endless entertainment in lab. He also held himself (and others) to an 

extremely high standard and had the experience to back this standard up. Joyann was one of the 

most positive people to overlap with in the Garg lab and emphasized the importance of a work-life 

balance. And finally, Bryan falls into my frenemy category. With our desks and hoods being next 

to each other, I spent more time with him in those two years than with anyone else in my life at 

the time. Through this time, we learned a lot about each other and our conversations ranged from 

Italian food favorites to hockey stats. While our conversations were mostly friendly, we had plenty 

of “no talking periods” when he was too sassy. Bryan can come off a little too harsh at times, but 

I’m grateful that he has always had an eye out for me. Whether he was helping me figure out 

housing, guiding me in writing a detailed SI, or helping me with job interviews, Bryan has been a 

huge support throughout my time here. I know I can call him with any problem, and he will answer.  
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The next class had the largest role in shaping the Garg lab culture and was comprised of 

Jordan Dotson, Rob Susick, Jacob Dander, and Michael Yamano. Jordan was a pillar of support 

with me throughout my candidacy exam and is an example of how an individual can be 

exceptionally intelligent without having an ego. I’m immensely grateful for him being such a great 

teacher and for having patience with me. After my first year, I was moved into the same room as 

Jacob, and this was also the start of a blossoming friendship. Jacob and I joke that our supreme 

personalities stem from our down-to-earth Mid-Western upbringing, but I also believe as friends, 

we balance each other – the yin to my yang. Whether Jacob was validating my emotions, or I was 

trying to make sense of his fifth-year uncertainty through astrology readings, there was never a 

time where we were both unhinged (okay maybe onetime in the glovebox room). Jacob pushed me 

to be the best version of myself and I am forever grateful for all of our thought-provoking 

conversions. Finally, Michael has had one of the largest influences on my success in graduate 

school. He was my mentor when I first joined the group and played an immense role in my 

development as a chemist. I always found it unfair to compete with his photographic memory but 

found this pushed me to work harder to even have a chance to compete. Outside of chemistry, I 

consider Michael one of my good friends. While on paper we might not be that similar, I think our 

competitive nature and joy of being correct bonds us. Although we don’t work together anymore, 

I know Michael will continue to be a mentor to me.  

I was fortunate to have an outstanding class above me. Their willingness to provide advice 

throughout the years and help with navigating graduate school was incredibly valuable. Melissa 

Ramirez was example of a person with incredible work ethic. To see her balance working in two 

groups while always being available to help with any question I may have had and be a pilar of 

positivity was truly inspirational. Sarah Anthony was the go-to for any kind of operational question 
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in the group. As a long time Garg lab resident, she knew the ins and outs and also had a great 

relationship with Neil – Sarah was the master of “reading Neil’s mind,” a very-sought after skill. 

No matter the circumstance, she would take time out of her day to help you; this included helping 

me to secure my future job where I am excited to continue to be colleagues. Tim Boit is one of the 

most talented scientists I have come across. He is truly an expert on an unbelievable number of 

subjects and was a great resource for me to bounce ideas off. Besides being a personal library, Tim 

is a great friend. We got to know each other very well when working together in 5234 and sharing 

our lab shifts during the shutdown. He has a constant supply of conversational topics that 

consumed the hours of time we spent in lab together and created many inside jokes – by the way, 

I know it was him on the LL Bean website. I’m excited to see how his future unfolds back on the 

East Coast.  

Now I can say without a doubt, I went through graduate school with two of the best possible 

individuals, Jason Chari and Francesca Ippoliti. Jason has one of the sweetest, positive souls and 

has always been a pillar of support for me. I remember going through candidacy in the same office 

together where we would poke our heads out from our desks every few hours to check on one 

another. Besides having an incredible passion for chemistry, Jason also is an amazing athlete. It is 

inspirational to see the way Jason lives his life and I strive to emulate these attributes. Francesca 

has not only been one of the most positive people I have met, but has also provided an amazing 

sense of comfort for me over the past five years. Having a fellow Minnesotan in the group has 

offered a little slice of home. Also, her general stability and composure in life has helped through 

some of my own hectic periods. No matter the problem, whether it be regarding chemistry or 

personal, she has always approached everything with an aspirational sense of composure. While 

she is usually one of the most put-together people I know, she knows how to have a heck of a good 



 

 xliv 

time. From bachelorette parties to holiday parties, Fran is the life of the party and lights up any 

room.  

Over the years the group has taken on many forms, and I am so happy to see where the 

group is today. While conducting experimental research is crucial for any group, I have found 

there has been a major shift to personal development as well. The past two years have been filled 

with extreme cultural uncertainty and major current events. Through all of this, the younger classes 

have persisted and succeed in what is an already extremely challenging environment. They are 

both amazing scientists and amazing people.  

The class directly under me brought me two of my best friends, Katie Spence and Milauni 

Mehta. There is no possible way to put our relationship into a paragraph, but I’ll try my best. Over 

the past four years, we have seen each other grow and have supported one another across all facets 

of life. The foundation to our friendship is truly unique, as they understand me on a level many 

other people don’t.  I have always felt I can always be myself around Katie and Milauni and they 

are my loudest cheerleaders (really Milauni is the loudest). We have made so many wonderful 

memories from our morning hood catchups, trips to San Jose and Minneapolis, nights on Katie’s 

roof, and many more. It is hard for me to imagine a life where I don’t see Katie and Milauni every 

day, but I know they are off on amazing paths, and I can’t wait to see all their success.  

The third member of the ’23 class includes Andrew Kelleghan. Andrew is a modern-day 

renaissance man. Everyone knows him for his strong synthetic chemistry skillset, but he also has 

knack for crafting (displayed by his wooden computer stand), cooking (specifically meal 

prepping), and witty podcasts. Despite his expertise, Andrew is one of the most approachable 

people I know and his help over the last four years has been invaluable.  
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The current third-year class comprises of Matt McVeigh, Laura Wonilowicz, and Ana 

Bulger. Matt’s kindhearted personality brings a calming nature to the group. His calmness is met 

with a strong curiosity for chemistry, and I see Matt sparking a number of new projects for the 

group and being a role model for creative thinking. Luckily, Laura and I have been able to work 

in the same room for the past year where we have become great friends. Laura has an incredible 

sense of humor (like mine of course) and has made my last year in the lab full of funny memes, 

gory podcasts, and a beacon of support. Over the past year, I have seen Laura tackle candidacy 

and work through challenging chemistry, especially when working with lithium. Through this she 

has transitioned into becoming a leader and I’m excited to see all of her future accomplishments. 

Finally, I had the honor of working closely with Ana Bulger. Ana is an exceptional chemist and 

an even more exceptional friend. She is incredibly thoughtful and puts reasoning behind every 

decision she makes, a quality I am working on myself. I am lucky to have had the chance to mentor 

her and see her grow into the leader she is today.  

 Dominick Witkowski, Arismel Tena-Meza, and Luca McDermott comprise the current 

second years in the group. Dominick has set the bar high by not only developing a challenging 

project but taking on computational chemistry. Luca is one of the most enthusiastic students I have 

come across, and this positivity is contagious– it is hard to ever be in a bad mood when Luca is 

around. Finally, Arismel is a passionate chemist with an unmatched work ethic. Her appreciation 

for the applications of chemistry is infectious and I know she will make a remarkably successful 

medicinal chemist after graduate school.  

 The first years of our group, Georgia Scherer and Jordan Gonzalez possess all of the 

attributes necessary to succeed in the Garg lab: optimism, hard work, and a willingness to be a 

team-player. I look forward to seeing their future successes. 
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 Outside of the Garg lab, I have been fortunate to have an unbelievable amount of support. 

My closest friends, Shelby, Maureen, Tayva, Waverly, and Alexandra, have not completely 

understood what I am working on, but have blindly supported every decision I have made. I am 

grateful they take me for who I am and empower me to be myself.   

My partner, Gregg, entered my life at an interesting point – I had completed the majority 

of the hurdles of my PhD and was in the process of applying to jobs. Throughout this period, he 

offered nothing but support and was a source of logic. His approach to life continues to be an 

inspiration for me and he brings out all the best sides of me. I’m excited to see what our next 

chapter holds.  

 Finally, I would like to thank my parents, Teri and Rick. Without their support and 

encouragement there is no way I could possibly be where I am today. They both always say they 

have no idea where the side of me to pursue a PhD came from, but to me it is very clear. My mom, 

from the day I was born, has always been a strong leader. Growing up, she managed to balance an 

exceptional career, while being an amazing mother. She is a model of genuine authenticity and has 

one of the hardest work ethics I know. I am fortunate to have such an incredible, strong person as 

my mom and I aspire to be just like her every day. My dad has always been an example of limitless 

positivity. He has an outlook on life that inspires me to not only be myself but also to create good 

in the world. His warm persona is felt by all of those around him and I strive to resemble his nature. 

Over the past five years, there have been many ups and downs, phone calls of me sharing success 

and also moments of panic, but through it all my parents have always answered and been my rock. 

Thank you for letting me follow my dreams.  
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CHAPTER ONE 

 

Nickel-Catalyzed Conversion of Amides to Carboxylic Acids 

Rachel R. Knapp, Ana S. Bulger, and Neil K. Garg. 

Org. Lett. 2020, 22, 2833–2837.  

 

1.1 Abstract 

We report the conversion of amides to carboxylic acids using non-precious metal catalysis. 

The methodology strategically employs a nickel-catalyzed esterification using 2-

(trimethylsilyl)ethanol, followed by a fluoride-mediated deprotection in a single-pot operation. 

This approach circumvents catalyst poisoning observed in attempts to directly hydrolyze amides 

using nickel catalysis. The selectivity and mildness of this transformation is shown through 

competition experiments and the net-hydrolysis of a complex valine-derived substrate. This 

strategy addresses a limitation in the field with regard to functional groups accessible from amides 

using transition-metal catalysis and should prove useful in synthetic applications. 

1.2 Introduction 

Despite being well known for their pronounced stability, amides have recently become 

valuable synthetic building blocks in transition-metal-catalyzed reactions.1 An array of carbon–

carbon and carbon–heteroatom bond-forming reactions using amides have now been disclosed 

using palladium,2 rhodium,3 or nickel4 catalysis. Figure 1.1 highlights several functional group 

conversions beginning from amides that can now be achieved using non-precious metal 

catalysis.4a–c,4g,4l,4n,4s Although several methodologies have been reported in recent years, one of 

the most fundamental transformations, namely the conversion of amides to carboxylic acids,5 has 
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not yet been disclosed using transition-metal catalysis. We report a means to achieve this 

transformation using nickel catalysis. 

 

Figure 1.1. Select examples of recent advances in the nickel-catalyzed activation of amides. 

1.3 Reaction Discovery and Optimization 

Our studies commenced with attempts to modify our previously established protocol for 

the conversion of amides to esters.4a,4l Specifically, we evaluated the activation of amide 1.1 using 

Ni(cod)2 and the N-heterocyclic carbene ligand SIPr, with water as a nucleophile (Figure 1.2). 

Unfortunately, we did not observe formation of the desired product, benzoic acid (1.2). This was 

surprising, given that many oxygen nucleophiles have been used in nickel-catalyzed amide 

esterification reactions. To further assess if the direct conversion to the carboxylic acid was 

possible, additional experiments were performed involving the nickel-catalyzed esterification of 

amide 1.1 using MeOH as the nucleophile. In the absence of any additive, the reaction proceeded 

as expected to give ester 1.3 in 85% yield. However, when the reaction was carried out with 0.5 

equivalents of benzoic acid (1.2) as an additive, the esterification failed, indicative of catalyst 

poisoning. Recognizing the incompatibility of the carboxylic acid functional group with the 

catalyst system, we sought to develop an alternative strategy to effect the conversion of amides to 

carboxylic acids using nickel catalysis.   
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Figure 1.2. Initial studies and control experiments for the nickel-catalyzed hydrolysis of amides. 
Conditions: amide 1.1 (1.0 equiv), Ni(cod)2 (10 mol%), SIPr (10 mol%), methanol or water (1.2 
equiv), and toluene (1.0 M) heated at 80 °C for 12 or 16 h in a sealed vial under an atmosphere 

of N2. aYields were determined by 1H NMR analysis using 1,3,5-trimethoxybenzene as an 
external standard. 

 
An alternative one-pot approach to achieve the amide to carboxylic acid conversion was 

conceived, as depicted using amide substrate 1.4 (Table 1.1). Strategically, this was designed to 

proceed by nickel-catalyzed esterification to give protected carboxylic acid 1.5 which would then 

be deprotected in the same reaction vessel through the addition of a mild fluoride source. Table 

1.1 shows select key results using two types of nucleophiles, each bearing a silyl group. Although 

the use of trimethylsilanol (TMS–OH) as a nucleophile failed to generate the desired ester 

intermediate 1.5 (entry 1), the use of 2-(trimethylsilyl)ethanol (TMS-ethanol, 1.7) proved more 

fruitful (entries 2 and 3). For example, using standard reaction conditions at a temperature of 80 

°C, the conversion of amide 1.4 to carboxylic acid 1.6 could be achieved in 83% yield using a 

straightforward esterification / TBAF-mediated deprotection protocol (entry 2).6 Increasing the 

temperature to 110 °C gave naphthyl carboxylic acid 1.6 in a slightly improved yield of 87% (entry 

3). 
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Table 1.1. Optimization of Reaction Conditions 

 

entry alcohol temp. (°C) yield of 
1.5a 

yield of 
1.6a 

1 TMS-OH 80 0% – 
2 TMS-ethanol (1.7) 80 0% 83% 
3 TMS-ethanol (1.7) 110 0% 87% 

 
Conditions: amide 1.4 (1.0 equiv), Ni(cod)2 (10 mol%), SIPr (10 mol%), alcohol (1.25 equiv), and 
toluene (1.0 M) heated at 80–110 °C for 24 h in a sealed vial under an atmosphere of N2; TBAF 
(2.5 equiv) at 23 °C for 2 h. aYields were determined by 1H NMR analysis using 1,3,5-
trimethoxybenzene as an external standard.  
 
1.4 Scope of Methodology  

Having identified an operationally-simple means to achieve the nickel-catalyzed 

conversion of amides to carboxylic acids, we evaluated several benzamide derivatives7 in the 

methodology (Figure 1.3). The use of the parent naphthyl substrate 1.4 (Table 1.1) furnished 2-

naphthoic acid (1.6) in 90% isolated yield.  Benzoic acids 1.28 and 1.10–1.12 could also be 

accessed through this transformation. The formation of carboxylic acids 1.11 and 1.12, in 84% and 

79% yield, respectively, highlights the tolerance of electron-withdrawing and electron-donating 

groups. Additionally, use of a quinoline substrate gave rise to 1.13 in 60% yield, thus 

demonstrating the tolerance of the methodology toward an important nitrogen-containing 

heterocycle. 
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Figure 1.3. Scope of the amide substrate. Conditions: amide 1.8 (1.0 equiv), Ni(cod)2 (10 
mol%), SIPr (10 mol%), 1.7 (1.25 equiv), and toluene (1.0 M) heated at 110 °C for 24 h in a 
sealed vial under an atmosphere of N2; TBAF (2.5 equiv) at 23 °C for 2 h. Yields reflect the 

average of two isolation experiments. aYield was determined by 1H NMR analysis using 1,3,5-
trimethoxybenzene as an external standard. 

 

As shown in Table 1.2, variation of the amide N-substituents was also possible. The use of 

benzamide 1.14a, bearing an n-butyl group in place of a methyl group, afforded benzoic acid (1.2) 

in 77% yield (entry 1). Additionally, the more sterically encumbered N-isopropyl benzamide seen 

in 1.14b (entry 2) and the indoline present in 1.14c (entry 3) were tolerated. Moreover, tosyl 

derivative 1.14d could be employed in the methodology to provide 1.2 in 71% yield (entry 4).  
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84% yield
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79% yield
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60% yielda
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+

1.8 1.7 1.9
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ii. TBAF, 23 °C



 

 6 

Table 1.2. Variation of the N-Substituents. 

 

entry substrate yield 

1 

 

77% 

2 

 

60% 

3 

 

56% 

4 

 

71% 

Conditions: amide 1.14a–d (1.0 equiv), Ni(cod)2 (10 mol%), SIPr (10 mol%), 1.7 (1.25 equiv), 
and toluene (1.0 M) heated at 110 °C for 24 h in a sealed vial under an atmosphere of N2; TBAF 
(2.5 equiv) at 23 °C for 2 h. Yields reflect the average of two isolation experiments. 
 
1.5 Selectivity Studies  

Competition experiments were performed to gauge substrate-based selectivity for the 

nickel-catalyzed conversion of amides to carboxylic acids (Figure 1.4). The first involved 

benzamide 1.1 and cyclohexyl amide 1.15, which gave selective reaction of 1.1 to furnish net-

hydrolyzed product 1.2 in 86% yield. Aliphatic amide 1.15 was recovered in quantitative yield. 

We also performed a competition experiment using tertiary amide 1.1 and secondary amide 1.16. 

N

O

R'

R
OH

O
HO

SiMe3
+

1.14a–d 1.7 1.2

i.  Ni(cod)2, SIPr
    toluene, 110 °C

ii. TBAF, 23 °C
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Ph
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1.14a

N

O

Ph

Me

Me

1.14b

N

O

1.14c

N

O

Ts

Me

1.14d
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This led to selective reaction of 1.1 to give benzoic acid (1.2), with quantitative recovery of 

secondary amide 1.16. The ability to preferentially manipulate subclasses of amides through 

selective conversion to carboxylic acids should prove useful in synthetic applications.  

 

Figure 1.4. Competition experiments demonstrate substrate selectivity. Conditions: amide 1.1 
(1.0 equiv), 1.15 or 1.16 (1.0 equiv), Ni(cod)2 (10 mol%), SIPr (10 mol%), 1.7 (1.25 equiv), and 
toluene (1.0 M) heated at 110 °C for 24 h in a sealed vial under an atmosphere of N2; TBAF (2.5 

equiv) at 23 °C for 2 h. Yields reflect the average of two isolation experiments. 
 

One further evaluation of the methodology to assess mildness and selectivity is shown in 

Figure 1.5. Substrate 1.17 (derived from L-valine)4a bearing an amide, an ester, and an 

epimerizable stereocenter, was subjected to our typical reaction protocol. This gave benzoic acid 

(1.2) and amine 1.18 in 67% and 72% yield, respectively. Of note, amine 1.18 was recovered in 

99% ee and the ester functional group remained intact. As classical hydrolysis conditions are often 
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HO
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incompatible with esters and epimerizable stereocenters,5 this result underscores the mild nature 

of our strategy for the conversion of amides to carboxylic acids. 

 

Figure 1.5. Cleavage of a valine-derived amide in the presence of an ester. Conditions: amide 
1.17 (1.0 equiv), Ni(cod)2 (20 mol%), SIPr (20 mol%), 1.7 (1.25 equiv), and toluene (1.0 M) 

heated at 110 °C for 24 h in a sealed vial under an atmosphere of N2; TBAF (2.5 equiv) at 23 °C 
for 2 h. Yields reflect the average of two isolation experiments. 

 
1.6 Conclusion 

We have developed an operationally-simple procedure to convert amides to carboxylic 

acids using non-precious metal catalysis. The methodology strategically circumvents catalyst 

poisoning through the use of a nickel-catalyzed esterification, followed by a fluoride-mediated 

deprotection in a single-pot operation. We have demonstrated that a variety of amides with aryl 

groups and N-substituents can be employed in this transformation. Additionally, we have shown 

the process can be utilized to cleave amides in a mild and selective manner. This strategy offers a 

practical means to convert subclasses of amides to carboxylic acids while addressing a limitation 

with regard to functional groups accessible using transition-metal-catalyzed reactions of amides. 
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1.7 Experimental Section 

1.7.1 Materials and Methods 

Unless stated otherwise, reactions were conducted in flame-dried glassware under an atmosphere 

of nitrogen and commercially obtained reagents were used as received. (Trimethylsilyl)ethanol 

(1.7) was obtained from Combi-Blocks and distilled and sparged with N2 for ≥10 min prior to use. 

Tetrabutylammonium fluoride was obtained from Sigma Aldrich. Ni(cod)2 and SIPr were obtained 

from Strem Chemicals and degassed by sparging with N2 for ≥10 min prior to use. Toluene was 

obtained from Fisher Scientific and purified by distillation over CaH2 then taken through five 

freeze-pump-thaw cycles prior to use. 1,3,5-Trimethoxybenzene was obtained from Alfa Aesar 

and used as received. Reaction temperatures were controlled using an IKAmag temperature 

modulator, and unless stated otherwise, reactions were performed at room temperature 

(approximately 23 °C). Thin-layer chromatography (TLC) was conducted with EMD gel 60 F254 

pre-coated plates (0.25 mm for analytical chromatography and 0.50 mm for preparative 

chromatography) and visualized using a combination of UV light, anisaldehyde, iodine, and 

potassium permanganate staining techniques. Silicycle Siliaflash P60 (particle size 0.040–0.063 

mm) was used for flash column chromatography. 1H NMR spectra were recorded on Bruker 

spectrometers (400, 500, and 600 MHz) and are reported relative to residual solvent signals. Data 

for 1H NMR spectra are reported as follows: chemical shift (δ ppm), multiplicity, coupling constant 

(Hz), integration. Determination of enantiopurity was carried out on a Mettler Toledo SFC 

(supercritical fluid chromatography) using a Daicel ChiralPak IA-3 column. Optical rotations were 

measured with a Rudolph Autopol III Automatic Polarimeter. 
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Note: Supporting information for the syntheses of amides 1.1, 1.4, 1.14a–d, 1.17, and 1.21–24 

have been published and spectral data match those previously reported. 

 

1.7.2 Experimental Procedures 

1.7.2.1 Initial Experiments for Amide Hydrolysis 

 

Representative Procedure for Figure 1.2. A 2-dram vial containing amide 1.1 (40.9 mg, 0.194 

mmol, 1.00 equiv) and a magnetic stir bar was charged with Ni(cod)2 (5.33 mg, 0.019 mmol, 10.0 

mol%) and SIPr (7.56 mg, 0.019 mmol, 10.0 mol%) in a glove box. Subsequently, toluene (0.19 

mL, 1.0 M) and then methanol (9.40 µL, 0.232 mmol, 1.20 equiv) were added. The vial was sealed 

with a Teflon-lined screw cap, removed from the glove box, and stirred at 80 °C in a preheated 

aluminum block for 16 h. After cooling to 23 °C, the mixture was diluted with hexanes (0.5 mL) 

and filtered over a plug of silica gel (10 mL of EtOAc eluent). The volatiles were removed under 

reduced pressure and the yield was determined by 1H NMR analysis with 1,3,5-trimethoxybenzene 

as an external standard. 

 

Any modifications of the conditions shown in the representative procedure 

above are specified in Figure 1.2. 

 

 

 

N

O

Ph

Me
OMe

O
methanol (1.20 equiv)

 Ni(cod)2 (10 mol%) 
SIPr (10 mol%)

 toluene (1.0 M), 80 °C
 16 h

(85% 1H NMR yield)
1.1 1.3
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1.7.2.2 Optimization and Relevant Control Experiments 

 

Representative Procedure for the net hydrolysis of amides from Table 1.1. (Entry 3 is used 

as an example). A 2-dram vial containing amide 1.4 (40.0 mg, 0.153 mmol, 1.00 equiv) and a 

magnetic stir bar was charged with Ni(cod)2 (4.21 mg, 0.015 mmol, 10 mol%) and SIPr (3.00 mg, 

0.015 mmol, 10 mol%) in a glove box. Subsequently, toluene (0.15 mL, 1.0 M) and TMS-ethanol 

(1.7) (27.4 µL, 0.191 mmol, 1.25 equiv) were added. The vial was sealed with a Teflon-lined screw 

cap, removed from the glove box, and stirred at 110 °C in a preheated aluminum block for 24 h. 

After cooling to 23 °C, TBAF (0.383 mmol, 2.50 equiv) was added to the reaction mixture. The 

resulting mixture was stirred for 2 h. The mixture was quenched with 1.0 M HCl (2.0 mL) and 

diluted with water (5 mL). The layers were then separated and the aqueous layer was extracted 

with EtOAc (3 x 6 mL). The combined organic layers were then dried over Na2SO4, filtered, and 

concentrated under reduced pressure. The yield was determined by 1H NMR analysis with 1,3,5-

trimethoxybenzene as an external standard. 

 

Any modifications of the conditions shown in the representative procedure 

above are specified in Table 1.2. 

 

Using the representative procedure, albeit without the addition of TBAF, a series of control 

experiments were performed to optimize the nickel-catalyzed esterification using TMS-ethanol 

HO
SiMe3

(1.25 equiv)

+

i.  Ni(cod)2 (10 mol%)
    SIPr (10 mol%)
    toluene (1.0 M), 110 °C, 24 h

ii. TBAF (2.5 equiv), 23 °C, 2 h
N

O
Me

Ph
OH

O

1.4 1.7 1.6(87% 1H NMR yield)
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(1.7).  Key results are shown in Table 1.3.  The control experiments indicate the desired 

transformation is nickel-catalyzed, as no desired ester product was generated.  

 

Table 1.3. Relevant Control Experiments 

 

 

 

 

 

 

 

 

 

 

 

 

conditions

Reaction Conditions
Experimental Results

TMS-ethanol (1.25 equiv), Ni(cod)2
toluene (1.0 M), 110 °C

TMS-ethanol (1.25 equiv), SIPr (10 mol%) 
toluene (1.0 M), 110 °C

N

O

Ph

Me
O

O

TMS-ethanol (1.25 equiv)
toluene (1.0 M), 110 °C

SiMe3

100%

100%

100%

0%

0%

0%

1.4 1.5

1.4 1.5

Yields were determined by 1H NMR analysis using 
1,3,5-trimethoxybenzene as an external standard.
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1.7.2.3 Scope of Methodology 

 

Representative Procedure (net-hydrolysis of amide 1.4 is used as an example). 

Carboxylic Acid 1.6 (Figure 1.3). A 2-dram vial containing amide 1.4 (50.6 mg, 0.194 mmol, 1.0 

equiv) and a magnetic stir bar was charged with Ni(cod)2 (5.33 mg, 0.0194 mmol, 10 mol%) and 

SIPr (7.56 mg, 0.0194 mmol, 10 mol%) in a glove box. Subsequently, toluene (0.20 mL, 1.0 M) 

and then TMS-ethanol (34.7 µL, 0.242 mmol, 1.25 equiv) were added. The vial was sealed with a 

Teflon-lined screw cap, removed from the glove box, and stirred at 110 °C in a preheated 

aluminum block for 24 h. After cooling to 23 °C, TBAF (0.485 mmol, 2.50 equiv) was added to 

the reaction mixture. The resulting mixture was stirred for 2 h. Once the reaction was complete, 

the mixture was quenched with 1.0 M HCl (3.0 mL) and diluted with water (5 mL). The layers 

were separated and the aqueous layer was extracted with EtOAc (3 x 10 mL). The combined 

organic layers were then dried over Na2SO4, filtered, and concentrated under reduced pressure. 

The crude residue was purified by flash chromatography (5:1 hexanes:EtOAc + 1% acetic acid) to 

yield carboxylic acid product 1.6 (30.0 mg, 90% yield, average of two experiments) as a white 

solid. Carboxylic acid 1.6 Rf 0.55 (5:1 hexanes:EtOAc + 1% acetic acid). 1H NMR (500 MHz, 

DMSO-d6): d 8.59 (s, 1H), 8.08 (dd, J = 7.2, 1.4, 1H), 8.02–7.97 (m, 1H), 7.95–7.87 (m, 2H), 

7.66–7.60 (m, 1H), 7.60–7.54 (m, 1H). Spectral data match those previously reported.9  

 

HO
SiMe3

(1.25 equiv)

+

i.  Ni(cod)2 (10 mol%)
    SIPr (10 mol%)
    toluene (1.0 M), 110 °C, 24 h

ii. TBAF (2.5 equiv), 23 °C, 2 h
N

O
Me

Ph
OH

O

1.4 1.7 1.6
(90% yield)



 

 14 

 

Carboxylic Acid 1.2 (Figure 1.3). Purification by flash chromatography (5:1 hexanes:EtOAc + 

1% acetic acid) generated carboxylic acid 1.2 (21.4 mg, 73% yield, average of two experiments) 

as a white solid. Carboxylic acid 1.2: Rf 0.22 (2:1 hexanes:EtOAc + 1% acetic acid). 1H NMR (300 

MHz, CDCl3): d 8.15 (dd, J = 8.3, 1.3, 2H), 7.65–7.61 (m, 1H), 7.49–7.45 (m, 2H). Spectral data 

match those previously reported.9 

 

Carboxylic Acid 1.10 (Figure 1.3). Purification by flash chromatography (5:1 hexanes:EtOAc + 

1% acetic acid) generated carboxylic acid 1.10 (24.4 mg, 77% yield, average of two experiments) 

as a white solid. Carboxylic acid 1.10: Rf 0.54 (5:1 hexanes:EtOAc + 1% acetic acid). 1H NMR 

(600 MHz, CDCl3): d 7.96–7.90 (m, 2H), 7.45–7.41 (m, 1H), 7.39–7.35 (m, 1H), 2.43 (s, 3H). 

Spectral data match those previously reported.10 

 

Carboxylic Acid 1.11 (Figure 1.3). Purification by flash chromatography (5:1 hexanes:EtOAc + 

1% acetic acid) generated carboxylic acid 1.11 (28.7 mg, 84% yield, average of two experiments) 

as a white solid. Carboxylic acid 1.11: Rf 0.33 (5:1 hexanes:EtOAc+ 1% acetic acid). 1H NMR 

HO
SiMe3

(1.25 equiv)

+
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    toluene (1.0 M), 110 °C, 24 h

ii. TBAF (2.5 equiv), 23 °C, 2 h
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1.1 1.7 1.2(73% yield)

HO
SiMe3
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+

i.  Ni(cod)2 (10 mol%)
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    toluene (1.0 M), 110 °C, 24 h

ii. TBAF (2.5 equiv), 23 °C, 2 h
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Me Me

(77% yield)

HO
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(1.25 equiv)

+

i.  Ni(cod)2 (10 mol%)
    SIPr (10 mol%)
    toluene (1.0 M), 110 °C, 24 h

ii. TBAF (2.5 equiv), 23 °C, 2 h
N

O
Me

Ph
OH

O

1.22 1.7 1.11
MeO MeO

(84% yield)
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(500 MHz, DMSO-d6): d 7.85 (d, J = 8.5, 2H), 6.97 (d, J = 8.5, 2H), 3.78 (s, 3H). Spectral data 

match those previously reported.9 

 

Carboxylic Acid 1.12 (Figure 1.3). Purification by flash chromatography (5:1 hexanes:EtOAc + 

1% acetic acid) generated carboxylic acid 1.12 (26.9 mg, 79% yield, average of two experiments) 

as a white solid. Carboxylic acid 1.12: Rf 0.31 (2:1 hexanes:EtOAc + 1% acetic acid). 1H NMR 

(600 MHz, DMSO-d6): d 8.10 (d, J = 8.1, 2H), 7.84 (d, J = 8.6, 2H). Spectral data match those 

previously reported.9 

 

Carboxylic Acid 1.13 (Figure 1.3). 1H NMR (600 MHz, DMSO-d6) of crude reaction mixture: d 

8.13 (d, J = 8.25, 1H), 7.93 (d, J = 8.25, 1H), 7.85 (d, J = 7.66, 1H), 7.81 (d, J = 8.25, 1H), 7.67–

7.63 (m, 1H), 7.75–7.46 (m, 1H). Spectral data of the crude mixture of carboxylic acid 1.13 match 

those previously reported.11 

 

Carboxylic Acid 1.2 (Table 1.2). Purification by preparative thin-layer chromatography (5:1 

benzene:EtOAc + 0.1% acetic acid) generated carboxylic acid 1.2 (21.1 mg, 77% yield, average 

of two experiments) as a white solid. Carboxylic acid 1.2: Rf 0.22 (2:1 hexanes:EtOAc + 1% acetic 

HO
SiMe3

(1.25 equiv)

+

i.  Ni(cod)2 (10 mol%)
    SIPr (10 mol%)
    toluene (1.0 M), 110 °C, 24 h
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O
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F3C F3C

(79% yield)
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+
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1.24 1.7 1.13(60% 1H NMR yield)
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(1.25 equiv)

+
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ii. TBAF (2.5 equiv), 23 °C, 2 h
N
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1.14a 1.7 1.2
(77% yield)
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acid).  1H NMR (300 MHz, CDCl3): d 8.15 (dd, J = 8.3, 1.3, 2H), 7.65–7.61 (m, 1H), 7.49–7.45 

(m, 2H). Spectral data match those previously reported.9 

 

Carboxylic Acid 1.2 (Table 1.2). Purification by preparative thin-layer chromatography (5:1 

benzene:EtOAc + 0.1% acetic acid) generated carboxylic acid 1.2 (16.6 mg, 60% yield, average 

of two experiments) as a white solid. Carboxylic acid 1.2: Rf 0.22 (2:1 hexanes:EtOAc + 1% acetic 

acid). 1H NMR (300 MHz, CDCl3): d 8.15 (dd, J = 8.3, 1.3, 2H), 7.65–7.61 (m, 1H), 7.49–7.45 

(m, 2H). Spectral data match those previously reported.9 

 

Carboxylic Acid 1.2 (Table 1.2). Purification by preparative thin-layer chromatography (1:1:3  

benzene:EtOAc:DCM) generated carboxylic acid 1.2 (17.2 mg, 56% yield, average of two 

experiments) as a white solid. Carboxylic acid 1.2: Rf 0.22 (2:1 hexanes:EtOAc + 1% acetic acid). 

1H NMR (300 MHz, CDCl3): d 8.15 (dd, J = 8.3, 1.3, 2H), 7.65–7.61 (m, 1H), 7.49–7.45 (m, 2H). 

Spectral data match those previously reported.9 
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Carboxylic Acid 1.2 (Table 1.2). Purification by preparative thin-layer chromatography (1:1:2 

benzene:EtOAc:DCM) generated carboxylic acid 1.2 (16.9 mg, 71% yield, average of two 

experiments) as a white solid. Carboxylic acid 1.2: Rf 0.22 (2:1 hexanes:EtOAc + 1% acetic acid).  

1H NMR (300 MHz, CDCl3): d 8.15 (dd, J = 8.3, 1.3, 2H), 7.65–7.61 (m, 1H), 7.49–7.45 (m, 2H).  

Spectral data match those previously reported.9 

 

1.7.2.4 1.0 mmol-Scale Reaction 

 

Carboxylic Acid 1.2 (Table 1.2). A 2-dram vial containing amide 1.1 (220 mg, 1.0 mmol, 1.0 

equiv) and a magnetic stir bar was charged with Ni(cod)2 (28.6 mg, 0.10 mmol, 10 mol%) and 

SIPr (40.7 mg, 0.10 mmol, 10 mol%) in a glove box. Subsequently, toluene (1.0 mL, 1.0 M) and 

then TMS-ethanol (187 µL, 1.25 mmol, 1.25 equiv) were added. The vial was sealed with a Teflon-

lined screw cap, removed from the glove box, and stirred at 110 °C in a preheated aluminum block 

for 24 h. After cooling to 23 °C, TBAF (2.50 mmol, 2.50 equiv) was added to the reaction mixture. 

The resulting mixture was stirred for 2 h. Once the reaction was complete, the mixture was 

quenched with 1.0 M HCl (5.0 mL) and diluted with water (10 mL). The layers were separated 

and the aqueous layer was extracted with EtOAc (3 x 15 mL). The combined organic layers were 

then dried over Na2SO4, filtered, and concentrated under reduced pressure. The crude residue was 

HO
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(1.25 equiv)

+
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    toluene (1.0 M), 110 °C, 24 h
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(71% yield)
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(1.25 equiv)

+
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ii. TBAF (2.5 equiv), 23 °C, 2 h
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purified by flash chromatography (20:1 hexanes:EtOAc + 1% acetic acid) to yield carboxylic acid 

product 1.2 (91.0 mg, 72% yield, average of two experiments) as a white solid. Spectral data match 

those previously reported for carboxylic acid 1.2 (see page 14).  

 

1.7.2.5 Competition Experiments 

 

Selectivity for Aromatic over Aliphatic Amides (Figure 1.4). A 2-dram vial containing amide 

1.1 (52.4 mg, 0.248 mmol, 1.0 equiv), amide 1.15 (53.9 mg, 0.248 mmol, 1.0 equiv) and a magnetic 

stir bar was charged with Ni(cod)2 (6.82 mg, 0.025 mmol, 10 mol%) and SIPr (9.69 mg, 0.025 

mmol, 10 mol%) in a glove box. Subsequently, toluene (0.25 mL, 1.0 M) and then TMS-ethanol 

(44.4 µL, 0.310 mmol, 1.25 equiv) were added. The vial was sealed with a Teflon-lined screw cap, 

removed from the glove box, and stirred at 110 °C in a preheated aluminum block for 24 h. After 

cooling to 23 °C, TBAF (0.620 mmol, 2.5 equiv) was added to the reaction mixture. The resulting 

mixture was stirred for 2 h. The mixture was quenched with 1.0 M HCl (3.0 mL) and diluted with 

water (5 mL). The layers were separated and the aqueous layer was extracted with EtOAc (3 x 10 

mL). The combined organic layers were then dried over Na2SO4, filtered, and concentrated under 

reduced pressure. Spectral data match those previously reported for carboxylic acid 1.2 (see page 

14).  
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Selectivity for Tertiary over Secondary Amides (Figure 1.4). A 2-dram vial containing amide 

1.1 (54.0 mg, 0.256 mmol, 1.0 equiv), amide 1.16 (34.2 mg, 0.253 mmol, 0.99 equiv) and a 

magnetic stir bar was charged with Ni(cod)2 (7.03 mg, 0.026 mmol, 10 mol%) and SIPr (9.98 mg, 

0.026 mmol, 10 mol%) in a glove box. Subsequently, toluene (0.26 mL, 1.0 M) and then TMS-

ethanol (45.8 µL, 0.320 mmol, 1.25 equiv) were added. The vial was sealed with a Teflon-lined 

screw cap, removed from the glove box, and stirred at 110 °C in a preheated aluminum block for 

24 h. After cooling to 23 °C, TBAF (0.64 mL, 0.639 mmol, 2.50 equiv) was added to the reaction 

mixture via syringe. The resulting mixture was stirred at 23 °C for 2 h. Then, the mixture was 

quenched with 1.0 M HCl (4.0 mL) and diluted with water (3 mL). The layers were separated and 

the aqueous layer was extracted with EtOAc (3 x 10 mL). The combined organic layers were then 

washed with saturated NaCl (15 mL), dried over Na2SO4, filtered, and concentrated under reduced 

pressure. Spectral data match those previously reported for carboxylic acid 1.2 (see page 14). 
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1.7.2.6 Selective Cleavage of Aryl Amide in the Presence of an Ester 

 
Carboxylic Acid 1.2 and Amine 1.18 (Figure 1.5). A 2-dram vial containing amide 1.17 (50.9 

mg, 0.144 mmol, 1.0 equiv) and a magnetic stir bar was charged with Ni(cod)2 (7.92 mg, 0.029 

mmol, 20 mol%) and SIPr (11.3 mg, 0.029 mmol, 20 mol%) in a glove box. Subsequently, toluene 

(0.14 mL, 1.0 M) and then TMS-ethanol (25.8 µL, 0.180 mmol, 1.25 equiv) were added. The vial 

was sealed with a Teflon-lined screw cap, removed from the glove box, and stirred at 110 °C in a 

preheated aluminum block for 24 h. After cooling to 23 °C, TBAF (0.360 mmol, 2.5 equiv) was 

added to the reaction mixture. The resulting mixture was stirred for 2 h. Then, the mixture was 

quenched with water (6.0 mL) and diluted further with water (5 mL). The layers were separated 

and the aqueous layer was extracted with EtOAc (3 x 10 mL). The combined organic layers were 

then dried over Na2SO4, filtered, and concentrated under reduced pressure. The crude residue was 

purified by preparative thin-layer chromatography (5:1 hexanes:EtOAc + 1% acetic acid) to yield 

carboxylic acid product 1.2 (11.8 mg, 67% yield, average of two experiments) as a white solid and 

amine 1.18 (25.7 mg, 72% yield, 99% ee, average of two experiments) as a clear oil. Spectral data 

matched those previously reported.4a Carboxylic acid 1.2: Rf 0.22 (2:1 hexanes:EtOAc + 1% acetic 

acid). Amine 1.18: Rf 0.24 (9:1 hexanes:EtOAc). 1H NMR (300 MHz, CDCl3): d 7.16 (m, 2H), 

6.71 (m, 1H), 6.63 (m, 2H), 4.14 (br s, 1H), 3.75 (m, 1H), 2.09 (o, J = 5.6, 1.1, 1H), 1.43 (s, 9H), 

1.03 (dd, J = 6.7, 4.3, 6H). Spectral data match those previously reported.4a  
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1.8 Spectra Relevant to Chapter One: 

 

Nickel-Catalyzed Conversion of Amides to Carboxylic Acids 

  

Rachel R. Knapp, Ana S. Bulger, and Neil K. Garg. 

Org. Lett. 2020, 22, 2833–2837. 
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Figure 1.6. 1H NMR (500 MHz, CDCl3) of compound 1.6. 

 
Figure 1.7. 1H NMR (500 MHz, CDCl3) of compound 1.2. 
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Figure 1.8. 1H NMR (500 MHz, CDCl3) of compound 1.10. 

 
Figure 1.9. 1H NMR (500 MHz, CDCl3) of compound 1.11. 
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Figure 1.10. 1H NMR (500 MHz, CDCl3) of compound 1.12. 

 
Figure 1.11. 1H NMR (500 MHz, CDCl3) of compound 1.13. 
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Figure 1.12. 1H NMR (500 MHz, CDCl3) of compound 1.18. 
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Figure 1.13. SFC trace of rac-1.8. 

 

 
 
 
 

 

 

Figure 1.14. SFC trace of 1.18. 
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2.1 Abstract 

We report the discovery of a novel class of compounds that function as dual inhibitors of 

the enzymes neutral sphingomyelinase 2 (nSMase2) and acetylcholinesterase (AChE). Inhibition 

of these enzymes provides a unique strategy to suppress the propagation of tau pathology in 

treatment of Alzheimer’s disease (AD). We describe the key SAR elements that affect relative 

nSMase2 and/or AChE inhibitor effects and potency, in addition to the identification of two 

analogs that suppress the release of tau-bearing exosomes in vitro and in vivo. Identification of 

these novel dual nSMase2/AChE inhibitors represents a new therapeutic approach to AD and has 

the potential to lead to the development of truly disease-modifying therapeutics. 

2.2 Introduction 

Alzheimer’s disease (AD) is the most prevalent age-related neurodegenerative disorder 

and, currently, there are no effective disease-modifying therapies available for the treatment of 

AD. The number of AD cases in the US is ~5.8 million patients and this number is expected to rise 

to 50 million by 2050. The estimated global socioeconomic costs of AD and related dementias are 

predicted to reach $2 trillion by the year 2030.1   
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AD brain tissue is characterized by the presence of senile plaques composed mainly of 

aggregated amyloid-β peptide (Aβ), neurofibrillary tangles (NFTs) composed of pathological 

forms of the microtubule-stabilizing protein tau, chronic neuroinflammation, and loss of neurons.2  

Clinically, it is thought that the underlying mechanisms of disease are initiated as early as 20 years 

before the onset of signs and symptoms. During this asymptomatic period, proteopathic proteins 

are believed to accumulate, leading to structural alterations and the neuronal dysfunction and loss 

that leads frequently to Mild Cognitive impairment (MCI). MCI then progresses to full-blown AD-

related memory deficits, decline of other cognitive skills, and in advanced AD, the inability to 

participate in activities of daily living.3  

While the exact mechanisms of disease progression have not been fully elucidated, it is 

thought that increased Aβ production at the synapse and/or impaired clearance, results in synaptic 

loss. Contemporaneously and in conjunction with Aβ accumulation, there is hyperphosphorylation 

and oligomerization of tau that eventually leads to neuronal toxicity, NFT formation, and neuronal 

cell death. Diseased neurons can release these toxic phosphorylated forms of tau (p-tau) in 

proteopathic seeds, which can then be taken up by surrounding or interconnected neurons, leading 

to templating and propagation of the pathological aggregates in prion-like fashion. The 

propagation of the disease follows a spatiotemporal pattern with Aβ plaques first appearing in the 

basal forebrain, then the frontal, temporal and occipital lobes of the cortex.  NFTs form in the locus 

coeruleus and in the allocortex of the medial temporal lobe.4 Both Aβ and tau pathologies spread 

through the brain during disease progression.2  

Given the importance of tau, significant attention is now being paid to the mechanisms of 

pathological tau spread in AD with the goal of identifying targets for novel therapies to prevent 

disease progression.5 Historically, Aβ pathology has been thought to be causative in AD,6,7 but 
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multiple clinicopathological evaluations, as well as recent in vivo imaging studies, suggest that the 

cognitive status of AD patients correlates most closely with region-specific brain atrophy and 

distribution of the hyper-phosphorylated and aggregated pathological forms of tau that lead to the 

formation of NFTs.8,9,10,11 Longitudinal studies have confirmed that propagation of tau pathology 

correlates significantly with cognitive decline.12,13 These data suggest that suppression of 

propagation of tau pathology in AD may have a disease-modifying effect.  

Prompted by the findings described above, we undertook a screening effort to identify 

inhibitors of tau propagation. As will be discussed further below, this led to the discovery of dual 

inhibitors of two important enzymes:  neutral sphingomyelinase 2 (nSMase2) and acetylcholine 

esterase (AChE), a key enzyme implicated in AD. In our in vitro studies, the identified dual 

inhibitors prevented the spreading of tau in cell culture systems using assays we have previously 

reported.14 

NSMase2 is an enzyme responsible for hydrolysis of sphingomyelin to 

ceramide/phosphatidylcholine and has been implicated in the spread of AD pathology. 

Pharmacological inhibition or genetic depletion of nSMase2 has been shown to suppress 

progression of both Aβ and tau pathology in animal models.15,16,17  nSMase2 activity plays an 

important role for normal brain function, but its activity increases with age leading to dysregulation 

in sphingomyelin turnover.18,19,20,21,22 There is over-activation of nSMase2 in AD, and brain 

ceramide levels have been found to be elevated in AD patient cerebrospinal fluid (CSF), compared 

to age-matched control subjects.23  The ceramide/sphingomyelin imbalance is greater in 

individuals that express apolipoprotein E4 (ApoE4), the major genetic risk factor for sporadic, late 

onset AD.24   NSMase2 is a key enzyme involved in biogenesis of brain exosomes through the 

Endosomal Sorting Complex Required for Transportation (ESCRT)-independent pathway.25  
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Brain exosomes are a type of extracellular vesicle (EV), that are 40-150 nm in diameter and are 

released by brain cells when multivesicular endosomes fuse with the plasma membrane.25,26  They 

are involved in normal brain function, but a subset produced by the ESCRT-independent pathway 

involving nSMase2 have been shown to carry disease-propagating proteopathic seeds, such as tau 

oligomers, in AD.14,15,17,27 Tau oligomers have been found to be associated with neuronal 

exosomes in both cell culture medium and transgenic AD/tauopathy model brain tissue, as well as 

in AD patient plasma and CSF.15,28,29,30,31,32,33  

Despite recent progress, the current armamentarium of nSMase2 inhibitors have poor drug-

like properties and oral brain permeability.34,35  Thus, our initial goal was to identify nSMase2 

inhibitors that overcome these limitations for the development of preclinical candidates for AD. 

Using an nSMase2 inhibitor screening assay, we identified a novel furoindoline compound 

‘validated hit’. Further structural alterations of this initial hit generated compounds that resulted 

in the identification of novel dual inhibitor analogs that not only inhibit nSMase2 activity, but also 

inhibit acetylcholinesterase (AChE) enzyme activity and suppress p-tau propagation. 

AChE inhibitors (AChEIs) are currently one of only two classes of FDA-approved AD 

therapeutics; they have demonstrated amelioration of symptoms in AD, being most effective in 

mild and moderate AD.36  Inhibition of AChE leads to increased levels of acetylcholine (ACh) at 

the synapse and in brain parenchyma, and provides support for cholinergic synaptic plasticity even 

during progressive loss of cholinergic innervation from the basal forebrain.37 However, AChEI’s 

treatment only provides short term benefits in AD and does not block the progression of the 

disease. 

The dual nSMase2/AChE inhibitors we describe herein represent a new therapeutic 

paradigm and could be a game changer for the treatment of AD.  These agents have the potential 
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to be disease-modifying by suppressing disease progression through exosome-mediated tau 

propagation, while also providing symptomatic relief through support of ACh-mediated cognitive 

enhancement. Interestingly, in mild to moderate AD, there is significantly decreased cholinergic 

activity and high levels of p-tau in CSF-derived exosomes, thus treating patients in these stages of 

the disease with dual nSMase2/AChE inhibitors could be highly beneficial.33  We propose a 

mechanism of action for these dual inhibitors involving nSMase2 mediated suppression of tau 

oligomer release in brain exosomes by presynaptic neurons,38 increased ACh levels at the synapse 

through AChE inhibition, along with the suppression of tau oligomer uptake through ACh 

receptors by postsynaptic neurons.39  

2.3 Screening for and Optimization of Selective nSMase2 and Dual nSMase2/AChE 

Inhibitors 

We initiated the present study by screening a compound library for their effect on nSMase2 

activity.  Using an Amplex Red neutral sphingomyelinase enzyme activity assay several hits were 

identified that inhibited >60% nSMase2 activity at a concentration of 50 µM, as shown in the 

scatterplot (Figure 2.1a). The known nSMase2 inhibitor cambinol14 was used as a positive control 

for the screening assay. After retesting, one hit (Figure 2.1a) was validated and selected for further 

hit-to-lead optimization. 
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Figure 2.1. Screening and identification of novel dual nSMase2/AChE inhibitors: a) nSMase2 

inhibitor screening using Amplex Red-coupled assay revealed several hits that inhibited activity 

≥60%; b) hit-to-lead optimization of the validated hit shows removal of the nitrogen group from 

the furoindoline aryl ring (red arrow) and addition of nitrogen to the carbamate phenyl ring at 

either the 3 or 4 positions (blue arrow) results in enhanced potency for nSMase2 inhibition and 

varied AChE inhibition; c) Dose-response analysis for compounds 2.1, 2.8, and 2.11 in the 

nSMase2 assay; and d) Dose-response analysis for compounds 2.1, 2.8, and 2.11 in the AChE 

assay. 

 

Optimization efforts led to the synthesis and evaluation of analogs.  Our synthetic approach 

to the validated hit and analogs will be described subsequently, but a summary of our optimization 

effort leading to key dual inhibitor analogs 2.8 and 2.11 is shown in Figure 2.1b. Given the 

structural similarity between the validated hit and known AChE inhibitor phensvenine (2.1) we 

initially prepared this analog to check if it was also an nSMase2 inhibitor. Dose-response analysis 

revealed that phensvenine (2.1) indeed has nSMase2 inhibitory activity (Figure 2.1c) but is a more 

potent inhibitor of AChE with an IC50 = 0.5 µM (Figure 2.1d). In contrast, the dual inhibitors 2.8 

and 2.11 were more potent nSMase2 inhibitors (IC50 = 0.5 µM) with varying AChE inhibitory 

activity (Figure 2.1c & 2.1d). Interestingly, replacement of the oxygen in the furoindoline ring of 
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phensvenine (O à N-CH3), as seen in phenserine, results in the loss of any detectable nSMase2 

inhibitory activity (IC50 >50 μM).  

The synthesis of the validated hit and analogs were made possible by using the interrupted 

Fischer indolization reaction and variants thereof.40 As an example, the interrupted Fischer 

indolization route to (–)-phensvenine (2.1) is shown in Scheme 2.1.  Treatment of aryl hydrazine 

2.17 and lactol 2.18 with acetic acid furnished furoindoline 2.19 in 67% yield.  Subsequent N-

methylation provided 2.23.  At this stage, the enantiomers could be resolved using chiral SFC. As 

depicted for the (–)-enantiomer, O-deprotection was achieved using BBr3, thus furnishing (–)-2.26. 

Lastly, treatment with NaH and phenylisocyanate furnished (–)-phensvenine (2.1). It should be 

noted that (–)-enantiomers were specifically targeted given the known stereospecificity of 

phenserine for AChE inhibition.41 

 

Scheme 2.1. Synthesis of (–)-Phensvenine (2.1).  

The synthetic route was readily amenable to the synthesis of analogs, particularly by 

exploiting intermediate (–)-2.26 as a means to access different carbamate substitution patterns. 
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aminopyradine (2.32), (–)-2.8 was obtained in 61% yield. The syntheses of other carbamate 

analogs are provided in Section 2.9. 

 

Scheme 2.2. Synthesis of Furoindoline Analog (–)-2.8. 

Scheme 2.3 shows the routes used to prepare two analogs bearing substitution on the 

furoindoline ring. Interrupted Fischer indolization using hydrazine 2.20 and lactol 2.21 proceeded 

smoothly to give 2.22 as a mixture of diasteromers in racemic form. Upon methylation, 

diastereomers 2.24 and 2.25 were accessed and could be separated by silica gel chromatography.  

Each diastereomer was then elaborated through a sequence involve separation by chiral SFC, 
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biological evaluation.  

pyridine

CH3CN, 23 °C

(99% yield)

O

Me

H

(–)-2.26

HO
O

Me

H

(–)-2.30

OO

ON
Me N

Me
2.29

O

O

O
NN

O

O

O

O

N

O

O

+

CH2Cl2, 23 °C

(61% yield)

O

Me

H

(–)-2.8

O
H
N

O N
Me

N

N

NH2

2.32



 

 41 

 

Scheme 2.3. Synthesis of Furoindoline Analogs (–)-2.9 and (–)-2.10.  
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potency.  Importantly, replacement of the phenyl ring with a pyridyl ring in the carbamate moiety 

generally decreased potency of AChE inhibition and markedly enhanced potency for nSMase2 

inhibition (e.g. 2.8, 2.11, 2.12). Most of the analogs (except 2.4) showed high predicted brain 

permeability by in silico StarDrop analysis and in a parallel artificial membrane permeability assay 

(PAMPA). A low degree of binding to human serum albumin (HSA) measured for most of the 

compounds, especially 2.8, 2.11, 2.12, and 2.13.  
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Table 2.1. Structure and Characteristics of Carbamate Furoindoline Analogs. 
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A summary of the dual nSMase2/AChE inhibition SAR from our optimization efforts is 

summarized in Figure 2.2. Key points are as follows: (1) replacement of nitrogen in the 

furoindoline ring of the validated hit yields 2.1 (phensvenine), which is a dual inhibitor showing 

weak nSMase2 inhibition (IC50 > 10 µM) but potent AChE (IC50=0.5 µM) inhibition;42 (2) 

phenserine, a commercially available potent AChE inhibitor, displays loss of nSMase2 inhibitory 

activity (IC50 >50 μM; not depicted); (3) the 4-pyridyl ring in the carbamate group leads to 2.8, a 

dual inhibitor with ∼14-fold increased selectivity for nSMase2 inhibition (IC50 =  0.5 μM) over 
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AChE inhibition (IC50 = 7 μM); and (4) the 3-pyridyl carbamate compound 2.11 was a dual 

inhibitor with ∼3-fold increased selectivity for nSMase2 (IC50 = 0.5 μM) and AChE (IC50 = 1.7 

μM) inhibition. The mode of inhibition by the dual inhibitors (shown below) of both enzymes 

allows for comparison of dual activity using IC50 values.39,41 Based on the SAR, the two dual 

inhibitors, 2.8 and 2.11, with 10- and 3-fold selectivity for nSMase2 inhibition over AChE, 

respectively, were further evaluated in in vitro and in vivo assays for exosomal tau release. 

 

Figure 2.2. Key structure–activity relationships (SAR) control elements for inhibition of 

nSMase2 (blue highlight) and AChE (green or yellow highlight) activity are indicated. 
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2.4 Mechanism of nSMase2 Inhibition by the Novel Furoindoline Compounds  

To determine the type of nSMase2 inhibition by compounds 2.8 and 2.11, kinetics assays 

were performed. As shown in Figures 2.3a and 2.3b, increasing concentrations of compounds 2.8 

and 2.11 resulted in decreasing Km (the Michaelis constant) values as well as concomitant 

decreases in Vmax (the maximum rate) indicative of a non-competitive mechanism of inhibition of 

nSMase2. Thus, it can be concluded that both compounds bind to the enzyme distal from the active 

site and can inhibit enzyme-substrate cleavage. 

Molecular docking analysis (see the Section 2.12 for details) was performed using a 

recently published crystal structure of the nSMase2 catalytic domain (pdb: 5UVG).43 We found 

that both 2.8 and 2.11 could bind to nSMase2 at the distal DK-switch (Asp-Lys) site away from 

the substrate sphingomyelin site, and thus in concordance with the kinetic analysis, could non-

competitively inhibit the enzyme activity through modulation of the DK-switch. This is similar to 

what we have previously published with the known nSMase2 inhibitor cambinol, which was also 

shown by molecular docking and simulation to bind the nSMase2 catalytic domain in the DK-

switch region and prevent enzyme activation by likely keeping the switch in the ‘off’ position.14  

Molecular Dynamics (MD) simulation was performed to determine the binding free energy of 

compound 2.8 binding to nSMase2.  Compound 2.8 stays at the DK-switch site of nSMase2 

through the 50 ns simulation with an estimated binding energy of -14.3 kcal/mol.  An AMBER16 

package was used to perform the MD simulation. 
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Figure 2.3. Mechanism of nSMase2 inhibition by compounds 2.8 and 2.11. Kinetics of enzyme 

inhibition by compounds 2.8 (a) and 2.11 (b) are shown. The rate of the reaction is plotted 

against substrate concentration at four different concentrations of the inhibitors; corresponding 

values for Vmax and Km are presented in the tables below the graphs. c) Modeling of 2.8 and 2.11 

(green) binding to the catalytic domain of nSMase2 predicts compound binding preferably near 

the DK-switch site than the substrate binding site. d) Molecular surface representation of the 

nSMase2 catalytic domain with 2.8 and 2.11 (green) bound near the DK-switch; the color 

representations are blue for positive charge, red for negative charge, and white for neutral 

charge. e) The nSMase2 residues (yellow) within a 5 Å radius surrounding inhibitors 2.8 and 

2.11 (green); H-bonding between the inhibitor and nSMase2 is shown by dashed lines (black). 

 

 

2.5 In vitro Inhibition of Tau Seed Propagation by Dual nSMase2/AChE Inhibitors 

We previously developed a cell culture system based on a well-known tau RD biosensor 

cell line (tau biosensors) for testing inhibitors of tau propagation.14  Using known nSMase2 

inhibitors cambinol and GW4869, we had demonstrated the role of the nSMase2-dependent 

pathway of EV biogenesis in tau transmission from donor to recipient cells in this non-neuronal 
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cell model using two different in vitro assays – the Donor plus Recipient (D+R) assay and the EV-

mediated transfer (EMT) assay. 14  

The principles of the D+R and EMT assays are presented in schematic form in Figures 2.4a 

and 2.4b, respectively.  Our data demonstrates that treatment with 2.8 or 2.11 at a concentration of 

20 µM significantly suppresses tau seed transfer from donor to recipient cells in the D+R and EMT 

assays (Figures 2.4a, 2.4b and Section 2.12).  Shuttling by tau-bearing EVs is not the only pathway 

of tau seed transfer between cells in vivo or when donor and recipient cells are growing together 

in vitro, as in the D+R assay. In contrast, the EMT assay lets us isolate the effect of the inhibitors 

on EV-mediated tau seed transmission, which can explain the profound difference in the 

magnitude of FRET fluorescence density by dual nSMase2/AChE inhibitor 2.11 between the 

assays - 19.5% decrease from dimethyl sulfoxide (DMSO) treated cells in D+R assay and 41.3% 

decrease in EMT assay.  

We characterized EVs purified from the seeded donor cells growing in the presence of our 

dual inhibitor compounds, 2.8 and 2.11, or DMSO control. Successful purification of EVs was 

confirmed by tunable resistive pulse sensing (TRPS) (Figures 2.4c), transmission electron 

microscopy (TEM) (Figures 2.4d), and western blotting analysis with known exosomal markers 

(Figures 2.4e). Treatment with dual nSMase2/AChE inhibitor 2.8 or 2.11 did not affect EV size 

distribution, but decreased the concentrations of exosomal-type small EVs (Figures 2.4c). Levels 

of exosomal markers CD63, CD81, and syntenin-1 were reduced in EVs purified from 2.8 - and 

2.11 - treated cells in comparison with the DMSO treated donors (Figures 2.4e).  Relatively high 

suppression of tau transfer by 2.11 compared to 2.8 in the EMT assay may be related to the greater 

AChE inhibitory activity of 2.11 in conjunction with its nSMase2 inhibition and the role of dual 

inhibitory activity in exosome-mediated transfer of tau seeds. 
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Figure 2.4. Dual nSMase2/AChE inhibitors 2.8 and 2.11 suppress tau propagation from donor to 

recipient cells in vitro. The assay scheme for each assay is presented at the top of the figure. a) 

Donor plus recipient (D+R) assay results are shown. Compounds 2.8 and 2.11 at a concentration 

of 20 µM or a corresponding volume of DMSO were added to the D+R cultures for 48 hrs. 

Levels of FRET signal were analyzed in recipient cells using flow cytometry. Combined data 

from three independent experiments are presented. b) EV-mediated tau seed transfer (EMT) 

assay results are shown.  Compounds 2.8 and 2.11 at 20 µM concentration or DMSO were added 

to donor cell culture medium and then donor cell-derived EVs were purified and transfected to 

recipient cells. Levels of FRET signal were analyzed in recipient cells using flow cytometry. 

Four technical replicates were used for each experimental condition. Combined data from three 

independent experiments is presented. The histograms represent integrated FRET density per 

each treatment group (mean ± SEM). c) Size distribution and concentrations of the donor-derived 

EV samples were analyzed by Tunable Resistive Pulse Sensing (TRPS). d) Donor-derived EVs 

were imaged using transmission electron microscopy (TEM). e) Western blot representative 

images for exosomal markers are shown. The same volume of EV fractions derived from a 

similar number of donor cells or control tau biosensor cells treated with Lipofectamine 2000 

(Control) were loaded per well and probed against exosomal markers CD63, CD81, and 

Syntenin-1. Statistics were performed using One-way ANOVA with post hoc Bonferroni and 

Holm multiple comparison test was used for statistical analysis: * p<0.05, **<0.01. 
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 Cell viability and/or rate of proliferation may have an effect on tau seed transfer from 

donor to recipient cells through different mechanisms. Thus, we evaluated effects of tau seeding 

and treatment with nSMase2/AChE inhibitors on donor cell number and viability. Twenty-four 

hour exposure to AD human brain synaptosomal extracts decreased the rate of the donor cell 

survival in the next passage compared to cells treated with lipofectamine 2000 (see Section 2.12). 

We have not determined the specific mechanisms of cell death in tau-seeded donor cultures. It is 

possible that a subset of tau-bearing EVs affected by nSMase2 inhibitors are apoptotic exosome-

like vesicles (AEVs) that - in contrast to apoptotic bodies - represent a subtype of exosomes 

originating from multivesicular endosomes (MVE) at the early apoptotic phase. AEV biogenesis 

is controlled by the ESCRT-independent sphingosine1-phosphate (S1P)/S1PRs signaling pathway, 

and can be partially inhibited by nSMase2 inhibitor GW4869.44 Interestingly, AChE inhibitors are 

known to protect different cell types, including HEK293T, from apoptosis,45 and thus dual 

inhibitor 2.11 with greater AChE inhibition could potentially indirectly suppress AEV production. 

However, treatment of donor cells with 2.11 for 48 hours didn’t affect donor cell numbers or 

survival compared to DMSO or to compound 2.8 treated donor cells (see Section 2.12).  We also 

hypothesize that other factors may contribute to the greater effect of 2.11 on tau seed transfer in 

the EMT assay. A recent report suggests that intracellular uptake of tau can be mediated by the 

muscarinic acetylcholine receptors (mAChR) M1 and M3.39 Thus, accumulation of tau oligomers 

in the synapse may exacerbate the cholinergic deficit in AD through suppression of ACh uptake 

via mAChR M1/M3 receptors on postsynaptic terminals.  Based on similar reasoning, inhibition 

of AChE could have a direct effect on tau seed uptake through the increased levels of ACh in the 

synapse and postsynaptic M1/M3 receptor occupancy.  
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Our preliminary experiments using rivastigmine, a potent AChE (but not a nSMase2) 

inhibitor, reveals that inhibition of AChE may partially suppress EV-mediated transfer from donor 

to recipient cells (Section 2.12) providing further support to our hypothesis. Thus, the dual 

nSMase2/AChE inhibitors 2.8 and 2.11 may simultaneously effect both tau seed release and 

uptake.  

2.6 Brain Pharmacokinetics for Lead Compounds 

Our goal was to identify a brain permeable dual nSMase2/AChE inhibitor analog for 

further testing. We therefore performed pharmacokinetic (PK) analysis on the leads 2.8 and 2.11 

to determine brain permeability using wild type mice. The compounds were subcutaneously (SQ) 

injected at a dose of 20 mg per kg of body weight (mpk).  Brain and plasma samples were collected 

1, 2, and 4 hours after dosing. Our PK analysis revealed that 2.8 and 2.11 reached peak brain levels 

(Cmax) around one hour after SQ dosing and brain levels were detectable for both compounds 4 

hours after injection (Figure 2.5a).  

To carefully evaluate brain compound levels at the Cmax (1 hour) time point, 20 mpk SQ 

dosing of compounds 2.8 and 2.11 was performed again using 6 mice per group. Average brain 

level of the compounds at the peak was equal to 61 ng/g (~0.2 μM) and 262 ng/g (~0.8 μM ) for 

compounds 2.8 and 2.11, respectively (Figure 2.5b). This data confirmed good brain permeability 

of the lead compounds as was predicted by in silico and PAMPA analysis described earlier (Table 

2.1). Compound 2.11 showed higher average brain levels compared to 2.8, and the brain levels 

corresponded to ~ 2-fold IC50 for nSMase2 and ~0.5-fold for AChE.  
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Figure 2.5. Pharmacokinetic analysis for lead compounds 2.8 and 2.11.  a) Mice were 

subcutaneously (SQ) injected with 20 mg/kg of compound 2.8 or 2.11; animals were sacrificed 1, 

2, and 4 hours after dosing (n=1 animal per time point). b) Mice were dosed as in (a), but n = 6 

per compound and sacrificed 1 hour after dosing. Compound levels in brain tissue were analyzed 

using an LC-MS/MS method. 

 

2.7 Inhibition of Brain EV Release by the Dual nSMase2/AChE Inhibitors in a Rapid In vivo 

Assay 

The chronic inflammation that is reported in AD and tauopathy models is characterized by 

elevated levels of pro-inflammatory cytokines in brain parenchyma, including interleukin 1β 

(IL1β), known to induce nSMase2 activity through the IL1-Receptor 1 (IL1-R1).46 

Neuroinflammation and upregulation of IL1b signaling is linked with an early stage of tauopathy 

development; blocking of IL1b signaling in the 3xTg mouse AD model attenuates tau pathology 

and rescues cognition.47,48,49 It was demonstrated that striatal injection of IL1b to wildtype mice 

induced release of astrocyte-derived EVs into the blood, resulting in peripheral acute cytokine 

responses50 which can be suppressed by pre-treatment with nSMase2 inhibitors.33,34,35  

In order to rapidly test our dual nSMase2 inhibitors in vivo, we used the Tau P301S (PS19 

line) tauopathy mouse model.47 For our in vivo assay there were 4 groups: group I (control) 

received SQ injection of vehicle (DMSO) and intracerebroventricular (ICV) injection of another 
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2.11 

2.8 2.11 
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vehicle (0.0006% BSA in PBS, pH 7.4) an hour after SQ treatment; group II (IL1b) received SQ 

injection of vehicle and unilateral ICV injection of 0.2 ng of IL1b an hour later; group III (8/IL1b) 

– SQ treatment with 20 mg/kg of 2.8 and ICV injection of 0.2 ng of IL1b; group IV - SQ treatment 

with 20 mg/kg of 2.11 and ICV injection of 0.2 ng of IL1b. The one-hour interval between 

treatment with the inhibitors and IL1b ICV injection was chosen based on the brain PK analysis 

presented above.  All animals were sacrificed at 3 hours after compound or vehicle treatment and 

2 hours after ICV injection of IL1b. Brain EVs were purified as previously described.51  

Size distribution and concentration of brain EVs were analyzed using the TRPS method. 

There were no significant differences in EV size distribution between experimental groups (Figure 

2.6a). As previously reported,51 the collected fraction (F2) consists mostly of small exosome-size 

EVs with a mode equal to 80±5 nm based on TRPS analysis. A high abundance of exosome-sized 

EVs was confirmed by TEM analysis (Figure 2.6c). As expected we found that ICV injection of 

IL1b significantly increased the concentration of small EVs (size 50-150 nm) purified from the 

brain, more than 2 times that of the control (Figure 2.6b). Dual nSMase2/AChE inhibitors 2.11 

suppressed IL1b-induced exosomal release to the control level (Figure 2.6b), while the less brain-

permeable dual inhibitor 2.8 did not induce the same level of suppression.  
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Figure 2.6. Dual nSMase2/AChE inhibitor 2.11 diminished IL1β-induced brain EV release in 

the rapid in vivo assay. Tau P301S (line PS19) mice were treated with compound 2.8 or 2.11 

subcutaneously (SQ) at 20 mg/kg one hour before IL1β injection (unilateral ICV injection of 0.2 

ng). Two hours after IL1β injection, brain tissue was collected and used for brain EV isolation. a) 

Size distribution and concentrations of the brain EV samples were analyzed by Tunable Resistive 

Pulse Sensing (TRPS). b) Average concentrations of 50-150 nm size EVs from each treatment 

condition were compared. c) A representative transmission electron microscopy (TEM) image of 

the brain EV fraction is shown. d) Representative images of western blot (WB) analysis of EV 

fractions from individual animals is shown; membranes were probed against exosomal markers 

(CD63 and syntenin-1), tau protein, and cell-type specific markers (astrocytic glutamate-

aspartate transporter GLAST1, microglia marker CD11b, and neuronal isoform of Bridging 

Integrator 1, BIN1). e) Densitometry analysis of the WB images is shown. Histograms represent 

average relative signal intensity per each treatment group (mean ± SEM). Statistical analysis was 

performed using one-way ANOVA with post hoc Bonferroni and Holm multiple comparison 

tests: #-P < 0.05 and ## - P < 0.01 compared to control group, treated with vehicles for SQ and 

ICV injections, * - P < 0.05 and ** - P < 0.01 compared to IL1β group. 

 

Biochemical analysis of brain-derived EVs (Figures 2.6d & 2.6e) confirmed that 

pretreatment with lead compound 2.11 led to a significant reduction of exosomal marker CD63 in 

exosome-enriched F2 fractions compared to the group treated only with IL1b. In contrast to 
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significant changes in common exosomal marker CD63, levels of syntenin-1, a marker of a specific 

exosomal subpopulation generated through the Syndecan-Syntenin-ALIX pathway52 were not 

different between the groups (Figures 2.6d & 2.6e). These results confirm that IL1β stimulation 

and nSMase2 inhibition have effects on specific populations of exosomes.  

Our data suggest that the nSMase2-dependent pathway of exosome biogenesis is involved 

in tau-bearing exosome production in PS19 mice. Tau levels in the F2 fraction showed a strong 

trend of being elevated in animals treated with IL1β, with the average tau level being around 6 

times higher in the IL1β-treated group compared to the control group (Figures 2.6d & 2.6e). 

Pretreatment with 2.11 significantly reduced IL1β-induced tau release by exosomes. The lead 

compound 2.8 was less effective in this study. The known variability of tau load between PS19 

mice likely accounts for the lack of statistical significance despite the high magnitude of tau 

changes.   

Multiple brain cell types express IL1-R1, including subpopulations of neurons, astrocytes, 

choroid plexus cells and ependymal cells;53 thus, the nSMase2-mediated exosomal release by 

different types of brain cells can be affected differently in response to acute increases in 

intracerebral IL1b concentration. We used a couple of cell-type specific markers to assess the 

origin of the IL1β/nSMase2 sensitive exosomal population. We found that levels of astrocytic 

glutamate-aspartate transporter (GLAST) and microglial marker CD11b were significantly 

elevated in F2 fractions isolated from IL1β-treated animals. GLAST is known to be sensitive to 

papain, the enzyme we used for gentle brain tissue dissociation.  Therefore, we used a 30 kDa 

fragment of GLAST instead of full-length protein for the analysis.54 Pretreatment with the dual 

nSMase2/AChE inhibitor 2.11 significantly reduced the level of astrocyte-derived exosomes and 

showed the same trend for microglia-derived exosomes, but the difference in CD11b levels 
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between IL1β and 11/IL1β groups was not significant (Figures 2.6d & 2.6e). This finding 

correlates with previously demonstrated IL1β-induced nSMase2-mediated production of 

astrocyte-derived exosomes in wild type mice.34,35 Microglia play an important role in tau 

spread,15,55 and inhibition of microglial nSMase2-dependent exosome release suppresses tau 

propagation in mouse models.15 The low levels of microglia response in our rapid in vivo assay 

may be attributed to saturation of microglia responses in 5-6 month old PS19 mice. Microglia 

activation is already detectable in 3 mo old PS19 mice and precedes astrogliosis.47  

Recently, Bridging Integrator 1 (BIN1), a known genetic risk factor for AD, was connected 

to tau seed release through exosomes in human AD and male PS19 mice.56 We analyzed levels of 

BIN1 in our F2 samples. Neuronal BIN1 isoform 1, but not microglia specific isoform 2, were 

highly enriched in the F2 fractions (Figure 2.6d).  As in the case of exosomal tau, we found a high 

magnitude increase in exosome-associated BIN1 upon IL1β stimulation that was lower in the 

compound 2.11 treated group, but no statistically significant changes were found due to the high 

variability of individual levels of BIN1 within each group (Figure 2.6d). This data suggests that 

nSMase2 and BIN1 could be a part of the same exosomal pathway responsible for tau release and 

spread in AD. 

Overall, our rapid in vivo assay results demonstrate the effectiveness of novel dual 

AChE/nSMase2 inhibitor 2.11 in suppression of IL1β-induced release of tau-bearing exosomes in 

tauopathy model. 
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Figure 2.7. A putative mechanism for dual nSMase2/AChE inhibition and suppression of 

EV/exosome-mediated propagation of tau pathology wherein nSMase2 inhibition suppresses 

exosome biogenesis while AChE inhibition reduces exosome uptake and cholinergic support. 

 

 

2.8 Conclusions 

Our discovery of a novel class of potent nSMase2/AChE dual inhibitors presents an 

opportunity for further development of these agents as a new therapeutic approach to the treatment 

of Alzheimer’s disease. Our data supports the ability of the dual inhibitors to suppress tau 

propagation in vitro and release of tau carrying exosomes in vivo in an AD model.  These dual 

nSMase2/AChE inhibitors would enhance cholinergic synaptic plasticity, reduce 

neuroinflammation,37 and most importantly suppress exosome-mediated tau propagation and tau 

uptake mediated through the M1/M3 muscarinic ACh receptors.39  This combination of effects is 

unique, has not been evaluated  previously in the disease and clearly differentiate these agents from 

currently available AChE inhibitors for the treatment of AD. In concert, these mechanisms of 

action have the potential to not only address symptoms of AD by enhancing cholinergic activity 
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but also to suppress cell-to-cell tau propagation, (Figure 2.7), significantly altering an underlying 

cause of AD and thus be truly disease-modifying. 
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2.9 Experimental Section 

2.9.1 Materials and Methods 

Unless stated otherwise, reactions were conducted in flame-dried glassware under an atmosphere 

of N2 and commercially obtained reagents were used as received. Sodium hydride, boron 

tribromide, boron trichloride, phenyl isocyanate, N,N’-disuccinimidyl carbonate (2.29), 

cyclohexyl isocyanate, 3,5-dimethylphenyl isocyanate, 3,5-dimethoxyphenyl isocyanate, 3-

aminopyridine (2.33), 4-aminopyridine (2.32), and 4-(trifluoromethyl)aniline (2.37) were obtained 

from Sigma-Aldrich. Hydrazine (2.17), 4-methoxyphenyl isocyanate, 3-methoxyphenyl 

isocyanate, and N-ethylmethylamine (2.37) were obtained from Oakwood Products, Inc. 4-

(trifluoromethyl)phenyl isocyanate and 3-amino-5-fluoropyridine (2.35) were obtained from 

Combi-Blocks. Methyl iodide was obtained from Alfa Aesar. Reaction temperatures were 

controlled using an IKAmag temperature modulator, and unless stated otherwise, reactions were 

performed at room temperature (approximately 23 °C). Thin-layer chromatography (TLC) was 

conducted with EMD gel 60 F254 pre-coated plates (0.25 mm for analytical chromatography and 

0.50 mm for preparative chromatography) and visualized using a combination of UV, 

anisaldehyde, iodine, and potassium permanganate staining techniques. Silicycle Siliaflash P60 

(particle size 0.040–0.063 mm) was used for flash column chromatography. 1H NMR spectra were 

recorded on Bruker spectrometers (500 MHz) and are reported relative to residual solvent signals. 

Data for 1H NMR spectra are reported as follows: chemical shift (δ ppm), multiplicity, coupling 

constant (Hz), integration. Data for 13C NMR are reported in terms of chemical shift (125 MHz). 

19F NMR spectra were recorded on Bruker spectrometers (at 376 MHz) and reported in terms of 

chemical shifts (δ ppm). Data for IR spectra were recorded on a Perkin-Elmer UATR Two FT-IR 

spectrometer and are reported in terms of frequency absorption (cm-1). DART-MS spectra were 
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collected on a Thermo Exactive Plus MSD (Thermo Scientific) equipped with an ID-CUBE ion 

source and a Vapur Interface (IonSense Inc.). Both the source and MSD were controlled by 

Excalibur software v. 3.0.  The analyte was spotted onto OpenSpot sampling cards (IonSense Inc.) 

using volatile solvents (e.g. chloroform, dichloromethane). Ionization was accomplished using 

UHP He (Airgas Inc.) plasma with no additional ionization agents.  The mass calibration was 

carried out using Pierce LTQ Velos ESI (+) and (–) Ion calibration solutions (Thermo Fisher 

Scientific). Optical rotations were measured with a Rudolph Autopol III Automatic Polarimeter. 

Any modification of the conditions shown in the representative procedures are specified in the 

corresponding schemes. 

Note: Supporting information for the syntheses of lactol 2.1857 and ethyl lactol 2.2158 used in 

Table 2.1 have been previously reported. 

 

2.9.2 Experimental Procedures 

2.9.2.1 Syntheses of Indoline Substrates  

Representative Procedure for the synthesis of indoline substrates from Table 2.1. 

 ((±)-2.19 is used as an example). 

 

Indoline (±)-2.19. A 250 mL round-bottom flask containing a magnetic stir bar was charged with 

lactol 2.18 (3.37 g, 33.1 mmol, 1.00 equiv) followed by a solution of AcOH:H2O (1:1, 170 mL, 

0.200 M). Hydrazine 2.17 (5.78 g, 33.1 mmol, 1.00 equiv) was added and an air condenser attached 

to the flask. The reaction mixture was then placed into a pre-heated oil bath at 60 °C and stirred 
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for 5 h. After the allotted time, the reaction mixture was taken out of the oil bath and allowed to 

cool to 23 °C over 20 min. The reaction mixture was then diluted with EtOAc (20 mL) and 

transferred to a separatory funnel. EtOAc (50 mL) and deionized water (50 mL) were then added, 

followed by a solution of saturated aqueous NaHCO3 (450 mL). The layers were separated and the 

aqueous layer extracted with EtOAc (3 x 50 mL). The combined organics were washed with 

saturated aqueous NaCl (50 mL) and dried over MgSO4. The volatiles were then removed under 

reduced pressure, and the crude residue was purified by flash column chromatography (3:1 

Hexanes:EtOAc) to yield indoline (±)-2.19 (67% yield) as a red solid. Spectral data match those 

previously reported.57 

 

Indoline (±)-2.22. Purification by flash column chromatography (4:1 Hexanes:EtOAc) yielded 

indoline (±)-2.22 (62% yield) as an amorphous solid in a 1.5:1 ratio of diastereomers. 
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2.9.2.2 Methylation of Indoline Substrates  

Representative Procedure for the methylation of indoline substrates from Table 2.1.  

((±)-2.23 is used as an example). 

 

Indoline (±)-2.23. A 100 mL round-bottom flask containing a magnetic stir bar was charged with 

indoline (±)-2.19 (4.52 g, 22.0 mmol, 1.00 equiv) and the flask was flushed with N2 for 5 min. 

DMF (22.0 mL, 1.00 M) was added and the reaction mixture cooled to 0 °C over 10 min under an 

N2 atmosphere. NaH (60% dispersion in mineral oil, 1.90 g, 48.5 mmol, 2.20 equiv) was added in 

one portion and the reaction was left to stir for 30 min at 0 °C. MeI (3.30 mL, 52.9 mmol, 2.40 

equiv) was then added dropwise over 3 min. After stirring for 30 min at 0 °C, the reaction mixture 

was warmed to 23 °C and allowed to stir for 5 h. The reaction mixture was then transferred to a 

separatory funnel with deionized H2O (30 mL) and CH2Cl2 (30 mL), sequentially. The layers were 

separated and the aqueous layer was extracted with CH2Cl2 (3 x 50 mL). The combined organic 

layers were washed with deionized H2O (3 x 50 mL), saturated aqueous NaCl (50 mL), and dried 

over Na2SO4. The volatiles were removed under reduced pressure, and the crude residue was 

purified by flash chromatography (5:1 Hexanes:EtOAc) to yield indoline (±)-2.23 (3.92 g, 81% 

yield) as a colorless oil. Spectral data match those previously reported.57 Chiral Preparative SFC: 

21.2 x 250 mm Chiral Technologies AD-H SFC column, 7% i-PrOH, 40.0 mL/min, λ = 210 nm, 

40 °C, nozzle pressure  = 100 bar CO2, tR1 = 3.2 min, [a]26.5 D +58.67° (c = 0.10, CH2Cl2); tR2 = 

5.1 min, [a]27.8 D –40.00° (c = 0.10, CH2Cl2). 
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Indolines (±)-2.24 and (±)-2.25. Purification by preparative thin-layer chromatography (15:1 

Hexanes:EtOAc) yielded indolines (±)-2.24 and (±)-2.25 (67% yield) in a 1.5:1 ratio of 

diastereomers as amorphous solids. Indoline (±)-2.24 (major): Rf 0.50 (5:1 Hexanes:EtOAc); 1H 

NMR (500 MHz, CDCl3): d 6.84–6.66 (m, 2H), 6.31 (d, J = 8.3, 1H), 4.95 (s, 1H), 3.99 (app. p, J 

= 6.74, 1H), 3.75 (s, 3H), 2.90 (s, 3H), 2.16 (dd, J = 6.5, 12.3, 1H), 1.87 (dd, J = 6.5, 12.3, 1H), 

1.43–1.35 (m, 4H), 1.27–1.18 (m, 1H), 0.82 (t, J = 7.3, 3H); 13C NMR (125 MHz, CDCl3): d 152.9, 

143.7, 138.0, 112.1, 110.4, 107.0, 106.5, 80.3, 56.2, 52.4, 45.6, 32.5, 28.8, 24.4, 10.7; IR (film): 

2958, 2935, 1596, 1497, 1280 cm–1; HRMS-APCI (m/z) [M + H]+ calcd for C15H22NO2, 

248.16451; found 248.16371. Chiral Preparative SFC: 21.2 x 250 mm Chiral Technologies AD-H 

SFC column, 4% i-PrOH, 40.0 mL/min, λ = 210 nm, 40 °C, nozzle pressure  = 100 bar CO2, tR1 = 

2.4 min, [a]25.3D +62.00° (c = 0.10, CH2Cl2); tR2 = 3.4 min. [a]26.7D –96.00° (c = 0.10, CH2Cl2). 

Indoline (±)-2.25 (minor): Rf 0.55 (5:1 Hexanes:EtOAc); 1H NMR (500 MHz, CDCl3): d 6.68–

6.65 (m, 2H), 6.28 (d, J = 8.4, 1H), 5.05 (s, 1H), 3.76 (s, 3H), 3.59 (m, 1H), 2.88 (s, 3H), 2.19 (dd, 

J = 4.4, 11.9, 1H), 1.70–1.58 (m, 2H), 1.50–1.43 (m, 4H), 0.86 (t, J = 7.5, 3H); 13C NMR (125 

MHz, CDCl3): d 152.7, 145.3, 136.7, 112.1, 110.6, 105.3, 105.2, 80.4, 56.2, 53.0, 47.1, 31.7, 27.8, 

25.1, 10.4; IR (film): 2958, 2923, 1596, 1498, 1279 cm–1; HRMS-APCI (m/z) [M + H]+ calcd for 

C15H22NO2, 248.16451; found 248.16385. Chiral Preparative SFC: 21.2 x 250 mm Chiral 

Technologies AD-H SFC column, 4% i-PrOH, 40.0 mL/min, λ = 210 nm, 40 °C, nozzle pressure  
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= 100 bar CO2, tR1 = 2.1 min, [a]27.5D +105.33° (c = 0.10, CH2Cl2); tR2 = 2.9 min. [a]28.0D –91.33° 

(c = 0.10, CH2Cl2). 

The configuration of (±)-2.24 and (±)-2.25 was verified by 2D-NOESY (500 MHz, CDCl3), as 

the following correlations were observed: 

 

2.9.2.3 Removal of Protecting Groups 

Representative Procedure for the deprotection of substrates (–)-2.26, (–)-2.27, and (–)-2.28 

from Table 1. ((–)-2.26 is used as an example). 

 

Indoline (–)-2.26. A 1-dram vial containing a magnetic stir bar was charged with indoline (–)-2.23 

(15.0 mg, 0.0680 mmol, 1.00 equiv) and the vial was flushed with N2 for 5 min. CH2Cl2 (860 uL, 

0.080 M) was added and the reaction mixture was left to run at 23 °C. BBr3 (1.00 M in CH2Cl2, 

340 uL, 0.340 mmol, 5.00 equiv) was added dropwise over 1 min and the reaction was stirred at 

23 °C for 1 h. After the allotted time, the volatiles were removed under N2. MeOH (2.00 mL) was 

then added to the vial and the reaction mixture was allowed to stir for 5 min. The reaction was then 

concentrated under reduced pressure and the resulting residue was suspended in deionized water 

(3 mL). The suspension was then transferred to a separatory funnel with EtOAc (2 mL). A saturated 

aqueous solution of NaHCO3 (5 mL) was added and the layers were separated. The aqueous layer 

O

Me

H

MeO

Me

O

Me

H

MeO

Me

Major
2.24

Minor
2.25

N
Me

N
Me

H H

BBr3

CH2Cl2, 23 °C, 1 h
O

Me

H

(–)-2.23

MeO
O

Me

H

(–)-2.26

HO

N
Me

N
Me



 

 65 

was then extracted with EtOAc (3 x 5 mL). The combined organic layers were washed with 

saturated aqueous NaCl (5 mL) and dried over Na2SO4. The volatiles were then removed under 

reduced pressure, and the crude residue was used in the subsequent step without further 

purification. 

 

Indoline (–)-2.27. Following the representative yielded indoline (–)-2.27. The crude residue was 

used in the subsequent step without further purification.  

 

Indoline (–)-2.28. Following the representative procedure yielded indoline (–)-2.28. The crude 

residue was used in the subsequent step without further purification.  
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2.9.2.4 Carbamoylation 

Representative Procedure A for the synthesis of carbamates from Tables 2.1. ((–)-2.1 is used 

as an example). 

 

Carbamate (–)-2.1. A 1-dram vial containing a magnetic stir bar was charged with indoline (–)-

2.26 (10.0 mg, 0.0490 mmol, 1.00 equiv) was added and the vial was flushed with N2 for 5 min. 

The material was then dissolved in THF (244 uL, 0.200 M) followed by the addition of NaH (60% 

dispersion in mineral oil, 1.0 mg, 0.024 mmol, 0.50 equiv) in one portion under a constant flow of 

N2. PhNCO (6.9 mg, 6.4 uL, 0.058 mmol, 1.2 equiv) was then added dropwise over 1 min and the 

reaction was stirred at 23 °C for 16 h. After the allotted time, the reaction was quenched by addition 

of a saturated aqueous solution of NaHCO3 (5 mL) and transferred to a separatory funnel with 

EtOAc (5 mL). The layers were separated and the aqueous layer was then extracted with EtOAc 

(3 x 5 mL). The combined organic layers were washed with saturated aqueous NaCl (5 mL) and 

dried over Na2SO4. The volatiles were then removed under reduced pressure, and the crude residue 

was purified by preparative thin-layer chromatography (1:1 Hexanes:EtOAc, 2% Et3N) to yield 

carbamate (–)-2.1 (9.2 mg, 30% yield) as a brown solid. Carbamate (–)-2.1: Rf 0.45 (1:1 

Hexanes:EtOAc); [a]31.0D –39.34° (c = 0.10, CH2Cl2). Spectral data match those previously 

reported.59 
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Representative Procedure B for the synthesis of carbamates from Table 1. ((–)-2.30 is used 

as an example). 

 

Carbonate (–)-2.30. A 1-dram vial containing a magnetic stir bar was charged with indoline (–)-

2.26 (75.0 mg, 0.370 mmol, 1.00 equiv) and the vial was flushed with N2 for 5 min. The material 

was then dissolved in CH3CN (730.0 uL, 0.500 M) and stirring began at 23 °C. Pyridine (59.0 uL, 

0.730 mmol, 2.00 equiv) was added in one portion under a constant flow of N2 followed by 

carbonate 2.29 (230.0 mg, 0.910 mmol, 2.50 equiv) in one portion. The reaction was then left 

stirred at 23 °C for 18 h. After the allotted time, the reaction was diluted with CH2Cl2 (1.0 mL) 

and the solid that precipitated was collected by vacuum filtration over filter paper. The solid 

precipitate was then rinsed with CH2Cl2 (3 mL). The filtrate was concentrated under reduced 

pressure and the residue was then suspended in EtOAc (5 mL) and transferred to a separatory 

funnel. The organic layer was washed sequentially with 5% aqueous citric acid (2 x 3 mL) and 

saturated aqueous NaCl (5 mL), and then dried over Na2SO4. The volatiles were then removed 

under reduced pressure to yield carbonate (–)-2.30 (125.3 mg, 99% yield) as a white foam. 

Carbonate (–)-2.30: mp: 46–49 °C; Rf 0.38 (1:1 Hexanes:EtOAc); 1H NMR (500 MHz, CDCl3): d 

6.96 (dd, J = 2.3, 8.3, 1H), 6.94 (d, J = 2.3, 1H), 6.28 (d, J = 8.3, 1H), 5.09 (s, 1H), 3.96 (ddd, J = 

1.6, 7.2, 8.7, 1H), 3.46 (ddd, J = 5.2, 8.7, 11.1, 1H), 2.90 (s, 3H), 2.86 (s, 4H), 2.11 (ddd, J = 1.6, 

5.2, 12.1, 1H), 2.04 (ddd, J = 7.2, 11.1, 12.1, 1H), 1.45 (s, 3H); 13C NMR (125 MHz, CDCl3): d 

168.7, 151.0, 149.2, 142.9, 135.9, 119.8, 115.3, 105.3, 104.5, 67.4, 52.5, 41.7, 31.1, 25.6, 24.7; IR 
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(film): 2942, 2868, 1818, 1741, 1215 cm–1; HRMS-APCI (m/z) [M + H]+ calcd for C17H19N2O6, 

347.12376; found 347.12356; [a]31.0 D –52.01° (c = 0.10, CH2Cl2). 

 

Carbamate (–)-2.12. A 1-dram vial containing a magnetic stir bar was charged with carbonate(–

)-2.30 (10.0 mg, 0.029 mmol, 1.00 equiv) was added and the vial was flushed with N2 for 5 min. 

The material was then dissolved in CH2Cl2 (600 uL, 0.0500 M) and stirring began at 23 °C. Amine 

2.31 (5.4 mg, 0.057 mmol, 2.0 equiv) was then added in one portion under a constant flow of N2. 

The reaction was then stirred at 23 °C for 18 h. After the allotted time, the volatiles were removed 

under reduced pressure and the crude residue was purified by preparative thin-layer 

chromatography (1:1 Hexanes:EtOAc) to yield carbamate (–)-2.12 (6.0 mg, 64% yield) as an 

amorphous solid. Carbamate (–)-2.12: Rf 0.63 (1:5 Hexanes:EtOAc); 1H NMR (500 MHz, CDCl3): 

δ 8.33–8.32 (m, 1H), 8.30 (br. S, 1H), 8.00 (d, J = 8.4, 1H), 7.72–7.68 (m, 1H), 7.02 (ddd, J = 1.0, 

4.9, 7.4, 1H), 6.92–6.89 (m, 2H), 6.32 (d, J = 8.3, 1H), 5.09 (s, 1H), 3.96 (ddd, J = 1.6, 7.3, 8.8, 

1H), 3.50 (ddd, J = 5.3, 8.8, 11.2, 1H), 2.92 (s, 3H), 2.14 (ddd, J = 1.3, 5.3, 11.9, 1H), 2.08–2.02 

(m, 1H), 1.47 (s, 3H); 13C NMR (125 MHz, CDCl3): δ 152.6, 151.6, 148.6, 148.1, 142.2, 138.6, 

135.6, 121.0, 119.3, 116.7, 112.6, 105.6, 104.8, 67.5, 52.5, 41.8, 31.3, 24.8; IR (film): 3180, 2955, 

2925, 1746, 1588 cm–1; HRMS-APCI (m/z) [M + H]+ calcd for C18H20N3O3, 326.14992; found 

326.15099; [a]26.8 D –102.7° (c = 0.10, CH2Cl2). 
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Carbamate (–)-2.2. Following representative procedure A yielded carbamate (–)-2.2 (13.4 mg, 

52% yield) as a white solid. Carbamate (–)-2.2: mp: 140–143 °C;  

Rf  0.56 (1:1 Hexanes:EtOAc); 1H NMR (500 MHz, CDCl3): δ 7.38–7.31 (m, 2H), 6.90–6.86 (m, 

4H), 6.86–6.83 (m, 1H), 6.32–6.27 (d, 1H), 5.08 (s, 1H), 3.95 (ddd, J = 1.5, 7.3, 8.7, 1H), 3.79 (s, 

3H), 3.45 (ddd, J = 5.2, 8.7, 11.1, 1H), 2.90 (s, 3H), 2.13 (ddd, J = 1.4, 5.2, 11.9, 1H), 2.02 (ddd, 

J = 7.2, 11.3, 11.3, 1H), 1.45 (s, 3H); 13C NMR (125 MHz, CDCl3): δ 156.3, 153.0, 148.3, 142.5, 

135.5, 130.8, 121.0, 120.7, 116.7, 114.4, 105.6, 104.8, 67.5, 55.6, 52.5, 41.8, 31.3, 24.7; IR 

(film): 3311, 2958, 1717, 1512, 1196 cm–1; HRMS–APCI (m/z) [M + H]+ calcd for 

C20H23N2O4+, 355.16523; found, 355.16422; [a]30.7 D –62.65° (c = 0.10, CH2Cl2).  

 

Carbamate (–)-2.3. Following representative procedure A yielded carbamate (–)-2.3 (12.0 mg, 

23% yield) as a colorless oil. Carbamate (–)-2.3: Rf  0.65 (1:1 Hexanes:EtOAc); 1H 

NMR (500 MHz, CDCl3): δ 7.21 (app. T, J = 8.2, 2H), 6.92–6.85 (m, 4H), 6.67–6.63 (m, 1H), 

6.31 (d, J = 4.2, 1H), 5.09 (s, 1H), 3.96 (ddd, J = 1.5, 7.3, 8.7, 1H), 3.80 (s, 3H), 3.50 (ddd, J = 

5.2, 8.7, 11.1, 1H), 2.90 (s, 3H), 2.14 (ddd, J = 1.4, 5.2, 11.9, 1H), 2.03 (ddd, J = 7.2, 11.3, 11.3, 

1H), 1.46 (s, 3H); 13C NMR (125 MHz, CDCl3): δ 160.4, 152.5, 148.3, 142.2, 138.9, 135.4, 129.8, 

120.9, 116.5, 110.8, 109.7, 105.4, 104.7, 104.2, 67.3, 55.3, 52.3, 41.6, 31.2, 24.6; IR (film): 3301, 
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2928, 1746, 1611, 1494, 1196 cm–1; HRMS–APCI (m/z) [M + H]+ calcd for 

C20H23N2O4+, 355.16523; found, 355.16429; [a]25.2 D –32.00° (c = 0.10, CH2Cl2).   

 

Carbamate (–)-2.4. Following representative procedure A yielded carbamate (–)-2.4 (3.2 mg, 

11% yield) as a white solid. Carbamate (–)-2.4: mp: 138–140 °C; 

Rf  0.69 (1:1 Hexanes:EtOAc); 1H NMR (500 MHz, CDCl3): δ 7.47 (d, J = 4.2, 2H), 7.19 (d, J = 

4.0, 2H), 6.90–6.85 (m, 2H), 6.31 (d, J = 4.3, 1H), 5.09 (s, 1H), 3.96 (ddd, J =1.5, 7.3, 8.7, 1H), 

3.50 (ddd, J = 5.2, 8.7, 11.1, 1H), 2.91 (s, 3H), 2.13 (ddd, J = 1.4, 5.2, 11.9, 1H), 2.04 (ddd, J = 

7.2, 11.3, 11.3, 1H), 1.46 (s, 3H); 13C NMR (125 MHz, CDCl3): δ 152.5, 145.0, 142.1, 136.3, 

135.5, 123.56, 121.4, 121.5, 120.8, 120.5 (q, J = 293), 119.7, 117.4, 105.4, 104.6, 67.3, 52.3, 41.6, 

31.1, 24.6; 19F-NMR (376 Hz, CDCl3): δ      –58.2; IR (film): 3322, 2929, 1719, 1549, 1497 cm–

1; HRMS–APCI (m/z) [M + H]+ calcd for C20H20F3N2O4+, 409.13697; found, 409.13604; [a]30.2 D 

–35.35° (c = 0.10, CH2Cl2). 

 

Carbamate (–)-2.5. Following representative procedure A yielded carbamate (–)-2.5 (5.6 mg, 

19% yield) as a white solid. Carbamate (–)-2.5: mp: 130–133 °C;  

Rf  0.61 (1:1 Hexanes:EtOAc); 1H NMR (500 MHz, CDCl3): δ 6.83–6.80 (m, 2H), 6.27 (d, J = 4.0, 

1H), 5.06 (s, 1H), 4.83–4.82 (m, 1H), 3.94 (ddd, J = 1.5, 7.3, 8.7, 1H), 3.57–3.54 (m, 1H), 3.48 

(ddd, J = 5.2, 8.7, 11.1, 1H), 2.89 (s, 3H), 2.12 (ddd, J = 1.4, 5.2, 11.9, 1H), 2.05–1.99 (m, 3H), 
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1.74–1.71 (m, 2H), 1.64–1.60 (m, 1H), 1.44 (s, 3H), 1.41–1.32 (m, 2H), 1.25–1.17 (m, 3H); 13C 

NMR (125 MHz, CDCl3): δ 154.7, 148.0, 143.0, 135.3, 120.9, 116.8, 105.6, 104.8, 67.5, 52.5, 

50.2, 41.7, 33.5, 31.4, 25.6, 24.9, 24.7; IR (film): 3314, 2928, 1712, 1493, 1198 cm–1; HRMS–

APCI (m/z) [M + H]+ calcd for C19H27N2O3+, 331.20162; found, 331.20025; [a]28.7 D –130.69° (c = 

0.10, CH2Cl2). 

 

Carbamate (–)-2.6. Following representative procedure A yielded carbamate (–)-2.6 (10.2 mg, 

20% yield) as an amorphous solid. Carbamate (–)-2.6: Rf  0.68 (1:1 Hexanes:EtOAc); 1H 

NMR (500 MHz, CDCl3): δ 7.07 (s, 2H), 6.90–6.85 (m, 2H), 6.73 (s, 1H), 6.33–6.29 (m, 1H), 5.09 

(s, 1H), 3.96 (ddd, J = 1.5, 7.3, 8.7, 1H), 3.50 (ddd, J = 5.2, 8.7, 11.1, 1H), 2.91 (s, 3H), 2.29 (s, 

6H), 2.14 (ddd, J = 1.4, 5.2, 11.9, 1H), 2.04 (ddd, J = 7.2, 11.3, 11.3, 1H), 1.46 (s, 3H); 13C 

NMR (125 MHz, CDCl3): δ 152.6, 148.2, 142.4, 138.9, 137.4, 135.4, 125.5, 120.9, 116.6, 116.4, 

105.4, 104.7, 67.4, 52.3, 41.6, 31.2, 24.6, 21.4; IR (film): 3308, 2923, 1748, 1497, 1195 cm–

1; HRMS–APCI (m/z) [M + H]+ calcd for C21H25N2O3+, 353.18597; found, 353.18496; [a]29.4 D –

39.34° (c = 0.10, CH2Cl2).  

 

Carbamate (–)-2.7. Following representative procedure A yielded carbamate (–)-2.7 (14.0 mg, 

37% yield) as a white solid. Carbamate (–)-2.7: mp: 67–69 °C; Rf  0.56 (1:1 Hexanes:EtOAc); 1H 

NMR (500 MHz, CDCl3): δ 6.90–6.83 (m, 3H), 6.72–6.65 (m, 2H), 6.30 (d, J = 4.2, 1H), 6.21 (t, 
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J = 2.2, 1H),  5.08 (s, 1H), 3.96 (ddd, J = 1.5, 7.4, 8.8, 1H), 3.77 (s, 6H), 3.50 (ddd, J = 5.2, 8.7, 

11.1, 1H), 2.91 (s, 3H), 2.13 (ddd, J = 1.4, 5.2, 11.9, 1H), 2.04 (ddd, J = 7.2, 11.3, 11.3, 1H), 1.45 

(s, 3H); 13C NMR (125 MHz, CDCl3): δ 161.2, 152.4, 148.3, 142.2, 139.4, 135.4, 120.9, 116.5, 

105.4, 104.7, 96.8, 96.2, 67.3, 55.4, 52.3, 41.6, 31.2, 24.6; IR (film): 3306, 2936, 1749, 1615, 1202 

cm–1; HRMS–APCI (m/z) [M + H]+ calcd for C21H25N2O5+, 385.17580; found, 385.17580; [α] 30.8 

D –56.00° (c = 0.10, CH2Cl2).  

 

Carbamate (–)-2.9. Following representative procedure A yielded carbamate (–)-2.9 (8.5 mg, 

16% yield) as a clear oil. Carbamate (–)-2.9: Rf 0.73 (1:1 Hexanes:EtOAc); 1H NMR (500 MHz, 

CDCl3 δ 7.45–7.40 (m, 2H), 7.36–7.30 (m, 2H), 7.13–7.07 (m, 1H), 6.90–6.84 (m, 3H), 6.34 (d, J 

= 8.4, 1H), 5.0 (s, 1H), 4.00 (ddd, J = 6.8, 6.8, 13.6, 1H), 2.93 (s, 3H), 2.16 (dd, J = 12.2, 6.6, 1H), 

1.87 (dd, J = 12.5, 6.9), 1.47–1.40 (m, 1H), 1.38 (s, 3H),  1.32–1.22 (m, 1H), 0.83 (t, J = 7.6, 3H); 

13C NMR (125 MHz, CDCl3): 152.5, 146.8, 142.4, 137.6, 137.2, 129.1, 123.7, 120.6, 118.7, 116.4, 

106.7, 105.7, 80.2, 52.1, 45.7, 31.8, 28.6, 24.2, 10.6; IR (film): 3313, 2961, 1722, 1496, 1198 cm–

1; HRMS-APCI (m/z) [M + H]+ calcd for C21H25N2O3, 353.18597; found 353.18462. [a]24.2 D –

49.33° (c = 0.10, CH2Cl2). 

 

Carbamate (–)-2.10. Following representative procedure A yielded carbamate (–)-2.10 (10.5 mg, 

17% yield) as a clear oil. Carbamate (–)-2.10: Rf 0.55 (5:1 Hexanes:EtOAc); 1H NMR (500 MHz, 
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CDCl3): d 7.47–7.40 (m, 2H), 7.37 (m, 2H), 7.13–7.06 (m, 1H), 6.93–6.83 (m, 3H), 6.30 (d, 1H), 

5.10 (s, 1H), 3.68–3.60 (m, 1H), 2.91 (s, 3H), 2.20 (dd, J = 4.4, 12.0, 1H), 1.72–1.54 (m, 3H), 

1.53–1.46 (m, 1H), 1.44 (s, 3H), 0.87 (t, 3H); 13C NMR (125 MHz, CDCl3): 152.5, 148.4, 142.1, 

137.6, 135.9, 129.2, 123.8, 120.7, 118.7, 116.4, 105.0, 104.5, 80.2, 52.7, 47.1, 31.1, 27.5, 25.1, 

10.3; IR (film): 3314, 2962, 1724, 1498, 1200 cm–1; HRMS-APCI (m/z) [M + H]+ calcd for 

C21H25N2O3, 353.18597; found 353.18482. [a]21.4 D –27.33° (c = 0.10, CH2Cl2). 

 

Carbamate (–)-2.8. Following representative procedure B yielded carbamate (–)-2.8 (108.3 mg, 

61% yield) as a white solid. Carbamate (–)-2.8: mp: 164.0–166.0 °C; Rf 0.18 (1:4 

Hexanes:EtOAc); 1H NMR (500 MHz, CDCl3): d 8.50 (dd, J = 1.6, 4.7, 2H), 7.39 (dd, J = 1.6, 4.7, 

2H), 7.22–7.20 (m, 1H), 6.89–6.86 (m, 2H), 6.31 (d, J = 8.1, 1H), 5.10 (s, 1H), 3.97 (ddd, J = 1.5, 

7.1, 8.7, 1H), 3.50 (ddd, J = 5.1, 8.7, 11.1, 1H), 2.91 (s, 3H), 2.13 (ddd, J = 1.5, 5.1, 12.1, 1H), 

2.04 (ddd, J = 7.1, 11.1, 12.1, 1H), 1.46 (s, 3H); 13C NMR (125 MHz, CDCl3): 152.1, 150.9, 148.7, 

145.1, 142.0, 135.7, 120.8, 116.4, 112.7, 105.5, 104.8, 67.5, 52.5, 41.8, 31.2, 24.8; IR (film): 3165, 

2960, 1749, 1594, 1494 cm–1; HRMS-APCI (m/z) [M + H]+ calcd for C18H20N3O3, 326.14992; 

found 326.14971. [a]24.8 D –50.00° (c = 0.10, CH2Cl2). 

 

Carbamate (–)-2.11. Following representative procedure B yielded carbamate (–)-2.11 (7.5 mg, 

67% yield) as a white solid. Carbamate (–)-2.11: mp: 131.0–133.6 °C; 

CH2Cl2, 23 °C

(61% yield)
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Rf  0.24 (1:5 Hexanes:EtOAc); 1H NMR (500 MHz, CDCl3): δ 8.56 (d, J = 8.6, 1H), 8.35 (dd, J = 

1.3, 4.8, 1H), 8.06 (br. d, J = 6.6, 1H), 7.28 (dd, J = 4.8, 8.6, 1H), 6.90–6.68 (m, 2H), 6.31 (d, J = 

8.1, 1H), 5.09 (s, 1H), 3.96 (ddd, J = 1.3, 7.2, 8.6, 1H), 3.50 (ddd, J = 5.1, 8.6, 11.0, 1H), 2.91 (s, 

3H), 2.13 (ddd, J = 1.3, 5.1, 12.0, 1H), 2.04 (ddd, J = 7.2, 11.0, 12.0, 1H), 1.46 (s, 3H); 13C 

NMR (125 MHz, CDCl3): δ 152.8, 148.6, 145.0, 142.2, 140.4, 135.7, 134.8, 126.0, 123.9, 120.9, 

116.5, 105.5, 104.8, 67.5, 52.5, 41.8, 31.3, 24.8; IR (film): 3187, 2931, 1745, 1497, 1197 cm–

1; HRMS–APCI (m/z) [M + H]+ calcd for C18H20N3O3+, 326.14992; found, 326.15073; [α]D24.3 –

52.70° (c = 0.10, CH2Cl2).  

 

Carbamate (–)-2.13. Following representative procedure B yielded carbamate (–)-2.13 (2.7 mg, 

23% yield) as an amorphous solid. Carbamate (–)-2.13: Rf  0.38 (1:5 Hexanes:EtOAc); 1H 

NMR (500 MHz, CDCl3): δ 8.43 (d, J = 2.4, 1H), 8.34 (d, J = 5.7, 1H), 8.14 (br. t, J = 6.3, 1H), 

7.34 (br. s, 1H), 6.91–6.87 (m, 2H), 6.32 (d, J = 8.2, 1H), 5.10 (s, 1H), 3.97 (ddd, J = 1.7, 7.3, 8.8, 

1H), 3.50 (ddd, J = 5.3, 8.8, 11.0, 1H), 2.92 (s, 3H), 2.13 (ddd, J = 1.3, 5.3, 12.0, 1H), 2.05 (ddd, 

J = 7.3, 11.0, 12.0, 1H), 1.47 (s, 3H); 13C NMR (125 MHz, CDCl3): δ 151.7, 150.2, 148.8, 148.2, 

147.14, 147.10, 141.8, 137.2 (J = 20.3), 135.8, 120.8, 116.3, 113.4, 105.5, 104.7, 67.4, 52.5, 41.8, 

31.2, 24.8; 19F NMR (376 Hz, CDCl3): δ –148.00; IR (film): 3238, 2926, 2870, 1753, 1620 cm–

1; HRMS–APCI (m/z) [M + H]+ calcd for C18H19N3O3F+, 344.14050; found, 344.14163; [α] 28.4 D –

62.70° (c = 0.10, CH2Cl2). 
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Carbamate (–)-2.14. Following representative procedure B yielded carbamate (–)-2.14 (6.0 mg, 

61% yield) as a colorless oil. Carbamate (–)-2.14: Rf  0.38 (1:1 Hexanes:EtOAc); 1H 

NMR (500 MHz, CDCl3): δ 8.29–8.22 (m, 1H), 8.21 (d, J = 2.5, 1H), 7.99 (br. d, J = 9.3, 1H), 

6.89–6.86 (m, 2H), 6.31 (d, J = 8.3, 1H), 5.10 (s, 1H), 3.97 (ddd, J = 1.6, 7.3, 8.7, 1H), 3.50 (ddd, 

J = 5.2, 8.7, 11.1, 1H), 2.91 (s, 3H), 2.13 (ddd, J = 1.3, 5.2, 12.1, 1H), 2.05 (ddd J = 7.2, 11.1, 

12.1, 1H), 1.47 (s, 3H); 13C NMR (125 MHz, CDCl3): δ 160.8, 158.7, 152.5, 148.7, 142.0, 135.9 

(J = 6.6), 135.7, 133.1, 132.9, 128.5, 120.8, 116.4, 113.4, 113.2, 105.5, 104.7, 67.4, 52.5, 41.8, 

31.2, 24.7; 19F NMR (376 Hz, CDCl3): δ –125.26 (d, J = 10.5); IR (film): 3243, 2959, 2925, 1748, 

1601, 1197 cm–1; HRMS–APCI (m/z) [M + H]+ calcd for  

C18H19N3O3F1+, 344.14050; found, 344.14028; [α] 31.0 D –57.33° (c = 0.10, CH2Cl2).  

 

Carbamate (–)-2.15. Following representative procedure B yielded carbamate (–)-2.15 (6.3 mg, 

56% yield) as a white solid. Carbamate (–)-2.15: mp: 193.0–195.0 °C; 

Rf  0.72 (1:1 Hexanes:EtOAc); 1H NMR (500 MHz, CDCl3): δ 7.59–7.54 (m, 4H), 7.07 (br. s, 1H), 

6.90–6.87 (m, 2H), 6.31 (d, J = 8.4, 1H), 5.10 (s, 1H), 3.96 (ddd, J = 1.5, 7.3, 8.8, 1H), 3.50 (ddd, 

J = 5.2, 8.8, 11.1, 1H), 2.91 (s, 3H), 2.13 (ddd, J = 1.5, 5.2, 12.0, 1H), 2.04 (ddd, J = 7.3, 11.1, 

12.0, 1H), 1.46 (s, 3H); 13C NMR (125 MHz, CDCl3): δ 152.4, 148.6, 142.1, 140.9, 135.7, 126.6 

(q, J = 3.7), 125.8, 125.6, 125.3, 123.2, 120.9, 118.3, 116.5, 105.5, 104.8, 67.5, 52.5, 41.8, 31.3, 

CH2Cl2, 23 °C

(61% yield)
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24.7; 19F NMR (376 Hz, CDCl3): δ –62.03; IR (film): 3352, 2885, 1719, 1615, 1117 cm–1; HRMS–

APCI (m/z) [M + H]+ calcd for  C20H20N2O3F3+, 393.14205; found, 393.14164; [α] 30.7 D –58.03° 

(c = 0.10, CH2Cl2).  

 

Carbamate (–)-2.16. Following representative procedure B yielded carbamate (–)-2.16 (6.0 mg, 

72% yield) as a colorless oil. Carbamate (–)-2.16: Rf  0.54 (1:1 Hexanes:EtOAc); 1H 

NMR (500 MHz, CDCl3): δ 6.81 (app. d, J = 8.3, 2H), 6.28 (d, J = 8.7, 1H), 5.06 (s, 1H), 3.94 

(ddd, J = 1.5. 7.3, 8.7, 1H), 3.50–3.39 (m, 3H), 3.04–2.97 (m, 3H), 2.89 (s, 3H), 2.13 (ddd, J = 1.5, 

5.1, 12.0, 1H), 2.01 (ddd, J = 7.3, 11.3, 12.0, 1H), 1.44 (s, 3H), 1.25–1.16 (m, 3H); 13C 

NMR (125 MHz, CDCl3): δ 155.6, 155.4, 148.0, 143.4, 135.3, 121.0, 116.78, 116.81, 105.6, 104.9, 

67.5, 52.5, 44.1, 41.7, 34.3, 33.8, 31.4, 24.7, 13.4, 12.7; IR (film): 2963, 2931, 1717, 1614, 1396 

cm–1; HRMS–APCI (m/z) [M + H]+ calcd for  C16H23N2O3+, 291.17032; found, 291.16895; [α] 30.9 

D –53.97° (c = 0.10, CH2Cl2).  

Note: (–)-2.16 was obtained as a mixture of rotamers. These data represent empirically observed 

chemical shifts from the 13C-NMR spectrum. 
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2.10 Spectra Relevant to Chapter Two: 

 

Dual Neutral Sphingomyelinase2/Acetylcholinesterase Inhibitors for the  

Treatment of Alzheimer’s Disease 

 

Tina Bilousova, Bryan J. Simmons, Rachel R. Knapp, Chris J. Elias, Jesus Campagna, Mikhail Melnik, Sujyoti 

Chandra, Samantha Focht, Chunni Zhu, Kanagasabai Vadivel, Barbara Jagodzinska, Whitaker Cohn, Patricia 

Spilman, Karen H. Gylys, Neil K. Garg*, and Varghese John.* 

ACS Chem. Biol. 2020, 15, 1671–1684.  
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Figure 2.8. 1H NMR (500 MHz, CDCl3) of compound 2.24. 

 
Figure 2.9. 13C NMR (125 MHz, CDCl3) of compound 2.24. 
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Figure 2.10. 1H NMR (500 MHz, CDCl3) of compound 2.25. 

 
Figure 2.11. 13C NMR (125 MHz, CDCl3) of compound 2.25. 
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Figure 2.12. 1H NMR (600 MHz, CDCl3) of compound (–)-2.1. 
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Figure 2.13. 1H NMR (500 MHz, CDCl3) of compound (–)-2.30. 

 
Figure 2.14. 13C NMR (125 MHz, CDCl3) of compound (–)-2.30. 
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Figure 2.15. 1H NMR (500 MHz, CDCl3) of compound (–)-2.12. 

 
Figure 2.16. 13C NMR (125 MHz, CDCl3) of compound (–)-2.12. 
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Figure 2.17. 1H NMR (500 MHz, CDCl3) of compound (–)-2.2. 

 
Figure 2.18. 13C NMR (125 MHz, CDCl3) of compound (–)-2.2. 
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Figure 2.19. 1H NMR (500 MHz, CDCl3) of compound (–)-2.3. 

 
Figure 2.20. 13C NMR (125 MHz, CDCl3) of compound (–)-2.3. 
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 Figure 2.21. 1H NMR (500 MHz, CDCl3) of compound (–)-2.4.  

 
Figure 2.22. 13C NMR (125 MHz, CDCl3) of compound (–)-2.4. 
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Figure 2.23. 1H NMR (500 MHz, CDCl3) of compound (–)-2.5. 

 
Figure 2.24. 13C NMR (125 MHz, CDCl3) of compound (–)-2.5. 
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Figure 2.25. 1H NMR (500 MHz, CDCl3) of compound (–)-2.6. 

 
Figure 2.26. 13C NMR (125 MHz, CDCl3) of compound (–)-2.6. 
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Figure 2.27. 1H NMR (500 MHz, CDCl3) of compound (–)-2.7. 

 
Figure 2.28. 13C NMR (125 MHz, CDCl3) of compound (–)-2.7. 

10 9 8 7 6 5 4 3 2 1 0 ppm

1.
45

9
2.

00
7

2.
02

1
2.

03
1

2.
04

6
2.

05
3

2.
06

8
2.

11
4

2.
11

6
2.

12
4

2.
12

6
2.

13
7

2.
14

0
2.

14
8

2.
15

0
2.

90
6

3.
47

1
3.

48
2

3.
48

9
3.

49
4

3.
49

9
3.

50
4

3.
51

1
3.

52
1

3.
77

4
3.

94
0

3.
94

3
3.

95
5

3.
95

7
3.

96
0

3.
97

2
3.

97
5

5.
08

7
6.

21
4

6.
21

8
6.

22
3

6.
30

3
6.

32
0

6.
68

0
6.

68
2

6.
85

7
6.

86
1

6.
86

8
6.

87
2

6.
88

4
6.

88
9

3.
00

4

0.
92

2
1.

00
2

3.
00

4

1.
00

0

6.
00

4
0.

99
7

1.
00

4

1.
00

0
1.

00
1

2.
00

8
3.

01
0

Current Data Parameters
NAME       RRK-2019-145
EXPNO                10
PROCNO                1

F2 - Acquisition Parameters
Date_          20190419
Time               9.11 h
INSTRUM           av500
PROBHD   Z119248_0002 (
PULPROG            zg30
TD                65536
SOLVENT           CDCl3
NS                    8
DS                    0
SWH           10000.000 Hz
FIDRES         0.305176 Hz
AQ            3.2767999 sec
RG                12.14
DW               50.000 usec
DE                10.00 usec
TE                298.0 K
D1           2.00000000 sec
TD0                   1
SFO1        500.1330008 MHz
NUC1                 1H
P1                10.00 usec
PLW1        13.50000000 W

F2 - Processing parameters
SI                65536
SF          500.1300121 MHz
WDW                  EM
SSB                   0
LB                 0.30 Hz
GB                    0
PC                 1.00

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

24
.6

3

31
.1

7

41
.6

4

52
.3

4
55

.4
0

67
.3

3

96
.1

7
96

.8
4

10
4.

68
10

5.
43

11
6.

50
12

0.
91

13
5.

44
13

9.
43

14
2.

16

14
8.

34
15

2.
45

16
1.

22

Current Data Parameters
NAME       RRK-2019-145
EXPNO                11
PROCNO                1

F2 - Acquisition Parameters
Date_          20190419
Time               9.25 h
INSTRUM           av500
PROBHD   Z119248_0002 (
PULPROG          zgpg30
TD                65536
SOLVENT           CDCl3
NS                  135
DS                    2
SWH           31250.000 Hz
FIDRES         0.953674 Hz
AQ            1.0485760 sec
RG               204.54
DW               16.000 usec
DE                28.00 usec
TE                298.0 K
D1           2.00000000 sec
D11          0.03000000 sec
TD0                   1
SFO1        125.7722511 MHz
NUC1                13C
P1                10.50 usec
PLW1        23.00000000 W
SFO2        500.1330008 MHz
NUC2                 1H
CPDPRG[2        waltz16
PCPD2             80.00 usec
PLW2        13.50000000 W
PLW12        0.21094000 W
PLW13        0.10610000 W

F2 - Processing parameters
SI               131072
SF          125.7577892 MHz
WDW                  EM
SSB                   0
LB                 1.00 Hz
GB                    0
PC                 1.40

O

Me

H

(–)-2.7

O
H
N

O N
Me

MeO

OMe



 

 89 

 
Figure 2.29. 1H NMR (600 MHz, CDCl3) of compound (–)-2.9. 

 
Figure 2.30. 13C NMR (125 MHz, CDCl3) of compound (–)-2.9. 
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Figure 2.31. 1H NMR (500 MHz, CDCl3) of compound (–)-2.10. 

 
Figure 2.32. 13C NMR (125 MHz, CDCl3) of compound (–)-2.10. 

10 9 8 7 6 5 4 3 2 1 0 ppm

0.
86

1
0.

87
6

0.
89

1
1.

44
4

1.
45

5
1.

46
9

1.
48

3
1.

49
6

1.
51

1
1.

56
8

1.
60

0
1.

62
2

1.
64

2
1.

64
6

1.
65

4
1.

66
9

1.
68

1
1.

68
4

1.
69

6
2.

17
9

2.
18

8
2.

20
3

2.
21

2
2.

90
8

3.
61

7
3.

62
0

3.
62

9
3.

64
2

3.
65

1
5.

09
6

6.
29

5
6.

31
1

6.
85

8
6.

86
2

6.
87

2
6.

87
7

6.
88

9
6.

89
4

7.
09

4
7.

10
8

7.
25

7
7.

31
3

7.
32

8
7.

32
9

7.
34

4
7.

43
1

7.
44

7

3.
00

9

2.
90

7
1.

18
2

3.
03

3

1.
01

0

2.
95

5

1.
00

0

0.
99

3

0.
98

4

2.
98

1

1.
03

3
2.

05
4

2.
00

6

Current Data Parameters
NAME       RRK-2019-172
EXPNO                10
PROCNO                1

F2 - Acquisition Parameters
Date_          20190529
Time              17.39 h
INSTRUM           av500
PROBHD   Z119248_0002 (
PULPROG            zg30
TD                65536
SOLVENT           CDCl3
NS                    8
DS                    0
SWH           10000.000 Hz
FIDRES         0.305176 Hz
AQ            3.2767999 sec
RG                26.59
DW               50.000 usec
DE                10.00 usec
TE                298.0 K
D1           2.00000000 sec
TD0                   1
SFO1        500.1330008 MHz
NUC1                 1H
P1                10.00 usec
PLW1        13.50000000 W

F2 - Processing parameters
SI                65536
SF          500.1300125 MHz
WDW                  EM
SSB                   0
LB                 0.30 Hz
GB                    0
PC                 1.00

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

10
.2

9

25
.0

5
27

.5
5

31
.1

0

47
.0

9

52
.6

8

80
.1

5

10
4.

46
10

4.
97

11
6.

45
11

8.
66

12
0.

73
12

3.
76

12
9.

15
13

5.
86

13
7.

59
14

2.
14

14
8.

43
15

2.
54

Current Data Parameters
NAME       RRK-2019-172
EXPNO                11
PROCNO                1

F2 - Acquisition Parameters
Date_          20190529
Time              17.54 h
INSTRUM           av500
PROBHD   Z119248_0002 (
PULPROG          zgpg30
TD                65536
SOLVENT           CDCl3
NS                  234
DS                    2
SWH           31250.000 Hz
FIDRES         0.953674 Hz
AQ            1.0485760 sec
RG               204.54
DW               16.000 usec
DE                28.00 usec
TE                298.0 K
D1           2.00000000 sec
D11          0.03000000 sec
TD0                   1
SFO1        125.7722511 MHz
NUC1                13C
P1                10.50 usec
PLW1        23.00000000 W
SFO2        500.1330008 MHz
NUC2                 1H
CPDPRG[2        waltz16
PCPD2             80.00 usec
PLW2        13.50000000 W
PLW12        0.21094000 W
PLW13        0.10610000 W

F2 - Processing parameters
SI               131072
SF          125.7577892 MHz
WDW                  EM
SSB                   0
LB                 1.00 Hz
GB                    0
PC                 1.40

O

Me

H

(–)-2.10

O
H
N

O N
Me

Me



 

 91 

 
Figure 2.33. 1H NMR (500 MHz, CDCl3) of compound (–)-2.8. 

 
Figure 2.34. 13C NMR (125 MHz, CDCl3) of compound (–)-2.8. 
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Figure 2.35. 1H NMR (500 MHz, CDCl3) of compound (–)-2.11. 

 
Figure 2.36. 13C NMR (125 MHz, CDCl3) of compound (–)-2.11. 
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Figure 2.37. 1H NMR (500 MHz, CDCl3) of compound (–)-2.13. 

 
Figure 2.38. 13C NMR (125 MHz, CDCl3) of compound (–)-2.13. 
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Figure 2.39. 1H NMR (500 MHz, CDCl3) of compound (–)-2.14. 

 
Figure 2.40. 13C NMR (125 MHz, CDCl3) of compound (–)-2.14. 
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Figure 2.41. 1H NMR (500 MHz, CDCl3) of compound (–)-2.15. 

 
Figure 2.42. 13C NMR (125 MHz, CDCl3) of compound (–)-2.15. 
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Figure 2.43. 1H NMR (500 MHz, CDCl3) of compound (–)-2.16. 

 
Figure 2.44. 13C NMR (125 MHz, CDCl3) of compound (–)-2.16. 
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2.11 SFC traces for indolines from Schemes 2.1 and 2.3 
 

Figure 2.45 SFC trace (±)-2.23. 
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Figure 2.46 SFC trace (–)-2.23. 
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Figure 2.47 SFC trace (+)-2.23. 
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Figure 2.48 SFC trace (±)-2.24. 
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Figure 2.49 SFC trace (–)-2.24. 
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Figure 2.50 SFC trace (+)-2.24. 
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Figure 2.51 SFC trace (±)-2.25. 
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Figure 2.52 SFC trace (–)-2.25. 
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Figure 2.53 SFC trace (+)-2.25. 

  

 

 

 

2.12 Biological Assays, Modeling & Permeability  

Experimental details regarding biological assays, modeling and permeability studies were reported 

in the literature.60 
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CHAPTER THREE 

 

Cyanoamidine Cyclization Approach to Remdesivir’s Nucleobase 

Rachel R. Knapp,† Veronica Tona,† Taku Okada, Richmond Sarpong,* and Neil K. Garg* 

Org. Lett. 2020, 22, 8430–8435.  

 

3.1 Abstract 

We report an alternative approach to the unnatural nucleobase fragment seen in Remdesivir 

(Veklury®). Remdesivir displays broad-spectrum antiviral activity and is currently being evaluated 

in Phase III clinical trials to treat patients with COVID-19. Our route relies on the formation of a 

cyanoamidine intermediate, which undergoes Lewis acid-mediated cyclization to yield the desired 

nucleobase. The approach is strategically distinct from prior routes and could further enable the 

synthesis of Remdesivir and other small molecule therapeutics. 

3.2 Introduction 

The ongoing COVID-19 pandemic has prompted a remarkable response from the scientific 

community.1 In roughly six months, numerous breakthroughs have been disclosed in testing,2 

vaccinations,3 small molecule therapeutics,4,5 and other areas.6 With respect to small molecule 

therapeutic approaches to combat COVID-19, Remdesivir (3.1, Figure 3.1) has gained 

considerable attention from scientists and the general public.4,7 This unnatural nucleotide analog, 

discovered by Gilead Sciences, Inc. and now marketed as Veklury®, displays broad-spectrum 

antiviral activity and is currently being evaluated in Phase III clinical trials to treat patients with 

COVID-19.4h The U.S. Food and Drug Administration has granted emergency use authorization 

for Remdesivir, allowing hospitalized adult and pediatric COVID-19 patients to receive 

Remdesivir treatments.4a 



 

 116 

 

Figure 3.1. The antiviral drug Remdesivir (3.1) and nucleobase fragement 3.2. 

From a synthetic perspective, 3.1 (Figure 3.1) possesses several structural features that 

render it a challenging target.8 In addition to the presence of a tertiary anomeric center bearing a 

nitrile group, the molecule contains a phosphoramidate unit with a stereogenic phosphorus center. 

Moreover, the nucleobase present in 3.1 is the unnatural pyrrolo[2,1-f][1,2,4]-triazin-4-amine 

moiety (i.e., 3.2, Figure 3.1). This structural motif is present in a variety of other approved and 

experimental drugs, such as 3.3–3.6 (Figure 3.2).9,10,11,12   
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Figure 3.2. Select examples of experimental and approved drugs that possess fragment 3.2  

or a derivative thereof. 

With the overall aim of lowering the cost of manufacturing Remdesivir (3.1) or identifying 

alternative pathways for its synthesis, we considered the few known synthetic approaches to 3.2.13  

As summarized in Figure 3.3, 3.2 has been generally prepared from nitrile 3.7.14 In turn, 3.7 can 

be accessed from 2-formyl pyrrole (3.8)14a or aminopyrrole derivative 3.9.14b–f An exciting 

improvement to the synthesis of 3.2 via intermediate 3.7, which uses pyrrole as the starting 

material, has recently been reported by the Medicines for All Institute.8a We devised a distinct, 

complementary approach where 3.2 would be accessed from cyanoamidine 3.10 via electrophilic 

aromatic substitution. Amidine 3.10 would arise from condensation of cyanamide (3.11) with 
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formamide 3.12.15 To our knowledge, this alternate strategy has not been evaluated previously. 

The overall conversion of 3.11 + 3.12 to 3.2 could theoretically proceed with water as the only 

byproduct, thus rendering the approach highly attractive. 

 

Figure 3.3. Prior and current strategies for the synthesis of 3.2. 

3.3 Synthetic Routes to Formamide (3.12) 

We initiated our experimental efforts by preparing formamide 3.12 (Figure 3.4). Two 

distinct routes proved fruitful.16 In the first, 1-aminopyrrole (3.13), which can be prepared in two 

steps from 2,5-dimethoxyfuran (3.15),17 underwent formylation to provide 3.12.18 Alternatively, 

Boc-protected aminopyrrole 3.9 could be utilized, which is notable since it is easily accessible in 

a single high-yielding step from 3.15.14b,14f,19,20  Treatment of 3.9 with acetic anhydride in formic 

acid21 at room temperature gave formamide 3.12 in 70% yield.  
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Figure 3.4. Synthetic routes to formamide 3.12 stemming from 3.15. 
 
3.4 Optimization of Cyanoamidine 3.10 Formation 
 

Table 3.1 provides a sampling of conditions that were examined for the next step, which is 

conversion of formamide 3.12 to cyanoamidine 3.10. Although reaction of 3.12 with 2 equiv of 

cyanamide and substoichiometric amounts of sodium methoxide as base did not give the desired 

product (entry 1), the use of stoichiometric sodium methoxide led to complete conversion, thus 

furnishing two isomers of cyanoamidine 3.10 in a ratio of 1.8 to 1 (entry 2), presumably favoring 

the depicted (E)-isomer.22 We also found that only one equivalent of cyanamide was necessary. 

Thus, treatment of formamide 3.12 with 1 equiv of cyanamide and 1 equiv of sodium methoxide 

at 23 °C gave quantitative conversion to (E)-3.10 and an isomer (entry 3). Although the 

cyanoamidine products displayed sensitivity to water, they could be easily isolated by filtering the 

crude reaction mixture over celite and removing the volatiles under reduced pressure. 

 

 

 

 

 

 

H2N NHBoc
(3.16)

NaOAc 

formic acid
23 °C

(47% yield)

Ref 18
89% yield

3.12

N
N
H

O Ac2O

formic acid
23 °C

(70% yield)

H2N NPhth
(3.14)

O

MeO

OMe

3.15

N
NH2

3.13

N
NHBoc

3.9

Ref 15
79% yield



 

 120 

Table 3.1. Selected conditions for the conversion of formamide 3.12  

to cyanoamidine (E)-3.10. 

 

entry equiv H2NCN equiv NaOMe conversiona 

1 2.0 0.5 0% 

2 2.0 1.0 quantitative 

3 1.0 1.0 quantitative 

 

Conditions: formamide 3.12 (1.0 equiv), cyanamide (1.0–2.0 equiv), sodium methoxide (0.5–1.0 
equiv), and methanol (0.5 M) stirred at 23 °C for 1 h in a sealed vial under an atmosphere of N2. a 

Conversion to (E)-3.10 and its isomer was determined by 1H NMR analysis using 1,3,5-
trimethoxybenzene as an external standard; for entries 2–3, the ratio of (E)-3.10 to its isomer was 
observed as 1.8 to 1.  
 
3.5 Optimization of Final Cyclization to Access 3.2 

We then investigated the key cyclization.23 Given the aforementioned sensitivity of the 

cyanoamidine intermediates to water, 3.12 was converted to 3.10 (presumed to be (E)-3.10 and an 

unassigned isomer) using our optimized reaction conditions, which was carried directly into the 

next step without purification (see Table 3.2). The crude intermediate was subjected to a variety 

of acid sources with the hope of obtaining 3.2 through cyclization of the (Z)-isomer of 3.10. Table 

3.2 features a comparison of 1H NMR yields obtained using 1,2-dichloroethane as solvent at 90 

°C (see section 3.8.2.3 for additional results of variation of acid source, solvent, temperature, etc.). 

We were delighted to find that BF3•OEt2 could be employed as the Lewis acid (entries 1–3), with 

the highest yield of 22% of 3.2 being observed at a concentration of 0.1 M (entry 3). Protic acids, 

such as hydrochloric acid and acetic acid were ineffective (entries 4 and 5).  Whereas 
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chlorotrimethylsilane also failed to deliver 3.2 (or a silylated derivative thereof), trace amounts or 

low yields were obtained using zinc triflate, copper triflate, or titanium tetrachloride (entries 7–9). 

However, subjecting crude 3.10 to tin tetrachloride furnished the desired heterocycle, 3.2, in 28% 

yield (entry 10).24 

Table 3.2. Selected conditions for the synthesis of 3.2. 

 

entry acid conc. (M.) yield of 3.2 

1 BF3•OEt2 1.0 4% 

2 BF3•OEt2 0.5 3% 

3 BF3•OEt2 0.1 22% 

4 HCl 0.1 0% 

5 AcOH 0.1 0% 

6 TMSCl 0.1 0% 

7 Zn(OTf)2 0.1 trace 

8 Cu(OTf)2 0.1 trace 

9 TiCl4 0.1 7% 

10 SnCl4 0.1 28% 

Conditions for cyclization step: crude 3.10 (1.0 equiv, assuming quantitative conversion from 
3.12), acid (2.5 equiv), and 1,2-dichloroethane (0.1 M) heated at 90 °C for 16 h in a sealed vial 
under an atmosphere of N2; Yields were determined by 1H NMR analysis using 1,3,5-
trimethoxybenzene as an external standard. 
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3.6 1.0 mmol Scale Route to 3.2 

Given the urgency and importance of efforts to alleviate the COVID-19 pandemic, coupled 

with currently limited research capacity at our home institutions, we opted to limit further 

optimization studies and instead evaluate our current protocol on mmol scale. Figure 3.5 provides 

an overview of the synthetic sequence with isolated yields.25  2,5-Dimethoxyfuran (3.15) is 

converted to formamide 3.12 in two steps. Subsequent condensation with cyanamide furnishes 

intermediate 3.10, which, in turn, undergoes cyclization through its Z isomer to give 3.2. We are 

optimistic that further optimization efforts will lead to practical improvements and welcome the 

expertise of process chemists worldwide to help address this challenge. 

 
 

Figure 3.5. Synthesis of 3.2 on >1 mmol scale. 
 

3.7 Conclusion 

In summary, we have developed an alternative strategy to synthesize nucleobase 3.2, a key 

fragment in Remdesivir and other experimental or approved small molecule therapeutics.  The 

route relies on intermediate formamide 3.12, which is derived in two steps from 2,5-

dimethoxyfuran (3.15). Condensation of 3.12 with cyanamide yields an intermediate 

cyanoamidine (i.e., 3.10), which then undergoes Lewis acid-mediated cyclization to deliver 3.2. 

Our approach to 3.2 is atom-economical and strategically distinct from prior routes. Further 
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improvements to the final cyclization step can be expected in future studies. We anticipate that our 

synthetic route will further enable the synthesis of Remdesivir and other small molecule 

therapeutics that possess nucleobase 3.2. 
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3.8 Experimental Section 

3.8.1 Materials and Methods 

Unless stated otherwise, reactions were conducted in flame-dried glassware under an atmosphere 

of nitrogen. Commercially obtained reagents were used as received. Formic acid, sodium acetate, 

acetic anhydride, cyanamide, sodium methoxide, boron trifluoride diethyl etherate, tin 

tetrachloride, acetic acid, zinc triflate, titanium tetrachloride, aluminum trichloride, trimethyl 

aluminum, t-butyl magnesium chloride, n-butyl magnesium chloride, iron trichloride, magnesium 

chloride, boron tribromide, boron trichloride dimethyl sulfide, and anisole were obtained from 

Sigma Aldrich. 1-Aminopyrrole (3.13), trimethylsilyl chloride, and hydrogen chloride were 

obtained from Oakwood Chemicals. Titanocene dichloride was obtained from TCI chemicals. 

Copper triflate and the Schwartz reagent were obtained from Strem Chemicals. Toluene, 1,2-

dichloroethane and chlorobenzene were obtained from Fisher Scientific and purified by 

distillation. Nitrobenzene and nitroethane were obtained from Sigma Aldrich and were purified by 

distillation. 1,3,5-Trimethoxybenzene was obtained from Alfa Aesar and was used as received. A 

commercial sample of pyrrolo[2,1–f][1,2,3]-triazine-4-amine (3.2) was obtained from Ambeed. 

Reaction temperatures were controlled using an IKAmag temperature modulator, and unless stated 

otherwise, reactions were performed at room temperature (approximately 23 °C). Thin-layer 

chromatography (TLC) was conducted with EMD gel 60 F254 pre-coated plates (0.25 mm for 

analytical chromatography and 0.50 mm for preparative chromatography) and was visualized 

using a combination of UV and potassium permanganate staining techniques. Silicycle Siliaflash 

P60 (particle size 0.040–0.063 mm) was used for flash column chromatography. Uncorrected 

melting points were measured using a Digimelt MPA160 melting point apparatus. 1H NMR spectra 

were recorded on Bruker spectrometers (500 and 600 MHz) and are reported relative to residual 
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solvent signals. Data for 1H NMR spectra are reported as follows: chemical shift (δ ppm), 

multiplicity, coupling constant (Hz), integration. Data for 13C NMR are reported in terms of 

chemical shift (125 MHz). IR spectra were recorded on a Perkin-Elmer UATR Two FT-IR 

spectrometer and are reported in terms of frequency absorption (cm–1). DART-MS spectra were 

collected on a Thermo Exactive Plus MSD (Therm Scientific) equipped with an ID-CUBE ion 

source and a Vapur Interface (IonSense Inc.). Both the source and MSDwere controlled by 

Excalibur software version 3.0. The analyte was spotted onto OpenSpot sampling cards (IonSense 

Inc.) using CHCl3 as the solvent. Ionization was accomplished using UHP He (Airgas Inc.) plasma 

with no additional ionization agents. The mass calibration was carried out using Pierce LTQ Velos 

ESI (+) and (–) Ion calibration solutions (Thermo Fisher Scientific). 

 

3.8.2 Experimental Procedures 

3.8.2.1 Synthesis of Formamide 3.12.  

 

Procedure for Figure 3.4. A round bottom flask containing aminopyrrole 3.13 (2.0 g, 24.0 mmol, 

1.00 equiv) and a magnetic stir bar was charged with sodium acetate (2.2 g, 27.0 mmol, 1.10 equiv) 

and then formic acid (9.2 mL, 0.24 mol, 10.0 equiv). The solution was stirred for 5 h at 23 °C. The 

reaction mixture was then diluted with water (100 mL) and dichloromethane (100 mL). The layers 

were then separated and the aqueous layer was extracted with dichloromethane (3 x 50 mL). The 

combined organic layers were then concentrated under reduced pressure. The resulting crude solid 

was purified by flash chromatography (20:1 CHCl3:acetone then 10:1 CHCl3:acetone) to afford 

formamide 3.12 as a white powder (1.3 g, 47% yield). Formamide 3.12: m.p. 115–118 °C; Rf 0.46 

HO

O
N

NH2

NaOAc 
(1.1 equiv) 

23 °C, 5 h

(47% yield)

N
N
H

O

3.13 3.12

+

(10 equiv)
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(9:1 CHCl3:acetone). Spectroscopic data are reported for the mixture of isomers. 1H NMR (500 

MHz, MeOD): d 8.29 (s), 8.21 (s) (1H total), 6.79 (t, J = 2.4), 6.66 (t, J = 2.4)(2H total), 6.12 (t , 

J = 2.3), 6.10 (t , J = 2.3)(2H total) ;  13C NMR (100 MHz, CDCl3): d 164.4, 159.4, 122.5, 121.6, 

108.9, 108.4; IR (film): 3295, 2973, 1664, 1048, 1376 cm–1; HRMS–APCI (m/z) [M + H]+ calcd 

for C5H6N2O+, 111.0553; found, 111.0551.  

 

 

Procedure for Figure 3.4. A round bottom flask containing aminopyrrole derivative 3.920 (200 

mg, 1.10 mmol, 1.00 equiv) and a stir bar, was diluted with formic acid (7.3 mL, 1.92 mmol, 175.0 

equiv, 0.15 M). Acetic anhydride (5.19 mL, 5.50 mmol, 5.00 equiv) was then added dropwise over 

10 minutes. The solution was stirred for 30 minutes at 23 °C. The reaction mixture was then 

carefully basified by the addition of saturated aqueous sodium bicarbonate (50 mL over 15 

minutes) until it reached pH 8. The mixture was transferred to a separatory funnel and the aqueous 

layer was extracted with EtOAc (4 x 50 mL). The combined organic layers were dried with sodium 

sulfate, filtered, and concentrated under reduced pressure. The resulting crude solid was purified 

by flash chromatography (2:1 hexanes:EtOAc) to afford formamide 3.12 as a white powder (85 

mg, 70% yield). Spectral data match those previously reported for formamide 3.12.26 

 

 

 

 

 

N
NHBoc

Ac2O 
(5.0 equiv) 

formic acid
23 °C, 30 min

(70% yield)

N
N
H

O

3.9 3.12
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3.8.2.2 Optimization of Amidine Formation.27,28 

 

Representative Procedure for amidine formation from Table 3.1. (Entry 3.3 is used as an 

example). A 1-dram vial containing formamide 3.12 (40.0 mg, 0.36 mmol, 1.00 equiv) and a 

magnetic stir bar was charged with cyanamide (15.0 mg, 0.36 mmol, 1.00 equiv) and sodium 

methoxide (20.0 mg, 0.36 mmol, 1.00 equiv). Subsequently, methanol (0.73 mL, 0.50 M) was 

added and the reaction was stirred at 23 °C for 1 h. The mixture was filtered by passage over celite 

(3 cm of celite in a monster pipet), eluted with dry methanol (10 mL), and concentrated under 

reduced pressure to afford the crude cyanoamidine products as a white powder. The conversion 

(indicating full consumption of 3.12) was determined by 1H NMR analysis using 1,3,5-

trimethoxybenzene as an external standard. Amidines (E)-3.10 + isomer (see Figure 3.6 for 

possible structures). Spectroscopic data are reported for the mixture of isomers. 1H NMR (500 

MHz, MeOD): d 8.34 (s), 8.09 (s)(1H total), 6.74 (t, J = 2.2), 6.68 (t, J = 2.2)(2H total), 6.08–6.05 

(m)(2H total). 

Any modifications of the conditions shown in the representative procedure 

above are specified in Table 3.1.  

 

 

 

 

 

(1.0 equiv)

NaOMe (1.0 equiv)
MeOH (0.5 M), 23 °C

1 h

(100% conversion)

NC NH2

3.12

N
N
H

O

(E)-3.10

N
N
H

N
CN

+
isomer
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Figure 3.6. Possible isomer configurations of amidine 3.10.  

  

 

3.8.2.3 Optimization of Cyclization. 

 

Representative Procedure for the Synthesis of Nucleobase 3.2 (Table 3.2, Entry 10 used as 

an example). A 1-dram vial containing formamide 3.12 (15.0 mg, 0.14 mmol, 1.00 equiv) and a 

magnetic stir bar was charged with cyanamide (5.7 mg, 0.14 mmol, 1.00 equiv) and sodium 

methoxide (7.4 mg, 0.14 mmol, 1.00 equiv). Subsequently, methanol (0.27 mL, 0.5 M) was added 

and the reaction was stirred at 23 °C for 1 h. The mixture was filtered (2 cm of celite in a monster 

pipet), eluted with dry methanol (3 mL), and concentrated under reduced pressure. To the crude 

cyanoamidine intermediate was added dichloroethane (0.68 mL, 0.1 M) and a magnetic stir bar. 

The vial was then flushed with N2, and then SnCl4 (40.0 µL, 0.34 mmol, 2.50 equiv) was added to 

the reaction mixture in a single portion. The vial was sealed with a Teflon-lined screw cap, placed 

into a preheated aluminum block on a temperature-controlled hotplate, and stirred at 90 °C for 16 

h. Once the reaction was complete, the mixture was allowed to cool to 23 °C. The mixture was 

quenched with saturated aqueous sodium bicarbonate (5 mL) and diluted with water (5 mL) and 

N
N
H

N
NC

N
N
H

N
CN

N
N

HN
CN

N
N N

H
CN

(Z)-3.10(E)-3.10

(Z)-3.10 isomer(E)-3.10 isomer

N
N
H

O

CN
H2N

    NaOMe (1.0 equiv)
    MeOH (0.5 M)
    23 °C, 1 h

2. SnCl4 (2.5 equiv)
    DCE  (0.1 M)
    90 °C, 16 h

1.

N
N

N

NH2

3.12 3.2

(1.0 equiv)

(28% yield)
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EtOAc (5 mL). The layers were separated, and the aqueous layer was extracted with EtOAc (3 x 

8 mL). The combined organic layers were then dried over K2CO3, filtered, and concentrated under 

reduced pressure. The yield of 3.2 was determined by 1H NMR analysis with anisole as an external 

standard.29  

Any modifications of the conditions shown in the representative procedure  

above are specified in Table 3.2 or Table 3.3.  
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Table 3.3. Cyclization Optimization Efforts. 

 

 

 

 

 

 

N
N

N

NH2H2N–CN 
NaOMe 

MeOH, 1 h

Optimization

3.2(E)-3.10

N
N
H

N
NC

3.12

N
N
H

O

(Z)-3.10

BF3•Et2O 902.52 3%cdichloroethane

BF3•Et2O 902.51 4%bdichloroethane

4

3

5

0%

22%

0%AcOH

BF3•Et2O

HCl

90

90

90

2.5

2.5

2.5

Additional Lewis acids screened resulting in no product formation: 

AlCl3, AlMe3, Mgt-BuCl, Mgn-BuCl, FeCl3,  Schwartz’s reagent, 
MgCl2, BBr3, BCl3•DMS, Yb(OTf)3, Ti(NO3)2, Cp2TiCl2

dichloroethane

dichloroethane

dichloroethane

Reagent temp. (°C)equivEntry yield of 3.2asolvent

a Yields were determined by 1H NMR analysis using 1,3,5-trimethoxybenzene as an 
external standard b 1 M concentration c 0.5 M concentration d 6 h reaction time

Zn(OTf)2 902.57 tracedichloroethane

TMSCl 902.56 0%dichloroethane

9

8

11

0%

trace

28%SnCl4

Cu(OTf)2

TiCl4

90

90

90

2.5

2.5

0.5

dichloroethane

dichloroethane

dichloroethane

SnCl4 902.513 0%dmethanol

SnCl4 902.512 13%toluene

15

14

16

5%

13%

5%BF3•Et2O

SnCl4

BF3•Et2O

45

90

23

1.0

2.5

1.0

nitroethane

dichloroethane

dichloroethane

BF3•Et2O 1802.518 0%nitrobenzene

BF3•Et2O 1402.517 4%chlorobenzene

10 7%TiCl4 901.0 dichloroethane
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3.8.2.4 1.0 mmol-Scale Cyclization 

 

Nucleobase 3.2 (Figure 3.5). A 2-dram vial containing formamide 3.12 (110.0 mg, 1.0 mmol, 

1.00 equiv) and a magnetic stir bar was charged with cyanamide (42.0 mg, 1.0 mmol, 1.00 equiv) 

and sodium methoxide (54.0 mg, 0.14 mmol, 1.00 equiv). Subsequently, methanol (2.0 mL, 0.5 

M) was added and the reaction was stirred at 23 °C for 1 h. The mixture was filtered by passage 

over celite (3 cm of celite in a monster pipet) into a flame dried, round bottom flask, eluted with 

dry methanol (3 mL), and concentrated under reduced pressure. The flask containing the crude 

intermediate was charged with a stir bar and then diluted with dichloroethane (10.0 mL, 0.1 M). 

The reaction flask was then flushed with N2, and then SnCl4 (40.0 µL, 2.5 mmol, 2.50 equiv) was 

added dropwise over 1 min to the reaction mixture. The reaction flask was fitted with a reflux 

condenser under a positive flow of nitrogen. The mixture was then placed in a preheated oil bath 

and stirred at 90 °C for 16 h. Once the reaction was complete, the mixture was allowed to cool to 

room temperature. The mixture was quenched with saturated aqueous sodium bicarbonate (20 mL) 

and diluted with water (20 mL) and EtOAc (25 mL). The layers were separated, and the aqueous 

layer was extracted with EtOAc (3 x 30 mL). The combined organic layers were then dried over 

K2CO3, filtered, and concentrated under reduced pressure. The resulting crude solid was purified 

by flash chromatography (5:1 hexanes:EtOAc ® 3:1 hexanes:EtOAc ® 1:1 hexanes:EtOAc) to 

afford nucleobase 3.2 as a white powder (38 mg, 29% yield). Nucleobase 3.2: 1H NMR (500 MHz, 

N
N
H

O

CN
H2N

    NaOMe (1.0 equiv)
    MeOH (0.5 M)
    23 °C, 1 h

2. SnCl4 (2.5 equiv)
    DCE  (0.1 M)
    90 °C, 16 h

1.

N
N

N

NH2

3.12 3.2

(1.0 equiv)

(29% yield)
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MeOD): d 7.74 (s, 1H), 7.53 (dd, J = 2.6, 1.5, 1H), 6.86 (dd, J = 4.5, 1.5, 1H), 6.64 (dd, J = 4.3, 

2.6, 1H). Spectral data match those previously reported.30   

 

 

Commercial pyrrolo[2,1 –f][1,2,3]- 

triazine-4-amine (3.2) 

(Ambeed) 
1H NMR, 500 MHz, CD3OD 

Synthesized pyrrolo[2,1 –f][1,2,3]- 

triazine-4-amine (3.2) 
 

1H NMR, 500 MHz, CD3OD 

7.74 (s, 1H) 7.74 (s, 1H) 

7.53 (dd, J = 2.6, 1.5, 1H) 7.53 (dd, J = 2.6, 1.5, 1H) 

6.86 (dd, J = 4.5, 1.5, 1H) 6.86 (dd, J = 4.5, 1.5, 1H) 

6.64 (dd, J = 4.3, 2.6, 1 H) 6.64 (dd, J = 4.3, 2.6, 1 H) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 133 

3.8.2.5 Summary of the Known Routes to 3.2 

A. Klein, 199414a 

 
B. Bayer, 200714b,14c 

 
C. Medicines for All, 20208

 
 

 

NH

CHO

N
N

N

NH2

N
NH2

N
(12 equiv)

K2CO3 (14 equiv)

EtOH, 78 ℃

(66% yield)

NHH2NNH2OSO3H (3.5 equiv)
KOH (20 equiv)

H2O, 0 °C

(43% yield)

AcOH•

2 steps 
28% overall yield

3.8 3.7 3.2

N
N

N

NH2

N
NH2

N

HCl

(4.97 equiv)
K3PO4 (4.97 equiv)

EtOH, 78 ℃

  (81% yield)

(1.05 equiv)

MeCN/DMF

(77% yield)

N
NHBoc

NHBoc
H2N

O

OMe

MeO
N

C
O

(1.1 equiv)

2 N HCl
1,4-dioxane

(59% yield)

NHH2N AcOH•

••

ClO2S

4 steps
31% overall yield

4 N HCl/dioxane

1,4-dioxane

(85% yield)

N
NHBoc

N

3.16

3.15

3.9

3.7•HCl 3.2

NH

N
N

N

NH2

N
NH2

N (3.0 equiv)

DMF, 90 ℃

(>60% yield
over the 2 steps)

NHH2N

POCl3 (1.1 equiv)
 

DMF, 0 → 20 ℃

AcOH•
1) NaH, DMF

2) NH2Cl, MTBE

       in flow

NH

N

3 steps
>45% overall yield

NH2OH•HCl (1.1 equiv)
EtOH or H2O (3 equiv) 

Ac2O (1.1 equiv)
pyridine (5.0 equiv)

90 ℃

(76–94% yield)
(80–90% purity)

NH

N
Me

Me Cl

3.7 3.2

pyrrole
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3.8.2.6 Comparison of Routes to 3.2* 

Source Number of 
steps 

Overall 
Yield 

Estimated bulk pricing of key 
compounds 

Klein’s synthesis, 
199414a  2 steps 28% 2-formylpyrrole: $214/kg 

hydroxylamine-O-sulfonic acid: N/A 

Bayer, 200714b,c  4 steps 31% 
2,5-dimethoxytetrahydrofuran 

(3.15): $44/kg; 
tert-butyl carbazate: $40/kg; 

chlorosulfonyl isocyanate: N/A 

Medicines for All 
Institute, 20208a  3 steps >45% pyrrole: $17/kg 

hydroxylamine: $28/kg 

This route 4 steps 16% 
2,5-dimethoxytetrahydrofuran 

(3.15): $44/kg; 
tert-butyl carbazate: $40/kg; 

cyanamide: $3/kg 

 

* As some steps/routes shown above are the result of academic studies, whereas others are from 

manufacturing studies (i.e., with variable levels of process chemistry optimization), some caution 

should be taken when analyzing the comparison data. As noted in our manuscript, extensive 

optimization of our route was abbreviated for reasons pertaining to the COVID-19 pandemic and 

the current importance of Remdesivir. 
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3.9 Spectra Relevant to Chapter Three: 

 

Cyanoamidine Cyclization Approach to Remdesivir’s Nucleobase 

 

Rachel R. Knapp,† Veronica Tona,† Taku Okada, Richmond Sarpong,* and Neil K. Garg* 

Org. Lett. 2020, 22, 8430–8435.  
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Figure 3.7. 1H NMR (500 MHz, CDCl3) of compound 3.12.  

 
Figure 3.8. 13C NMR (125 MHz, CDCl3) of compound 3.12. 

3.12

N
N
H

O
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Figure 3.9. 1H NMR (500 MHz, CDCl3) of compound (E)-3.10 +isomer.  

 
Figure 3.10. 1H NMR (500 MHz, CDCl3) of compound 3.2.  
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Figure 3.11. 1H NMR (500 MHz, CDCl3) of compound 3.2.  
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Diels–Alder Cycloadditions of Strained Azacyclic Allenes 
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Nat. Chem. 2018, 10, 953–960. 

 

4.1 Abstract 

For over a century, the structures and reactivities of strained organic compounds have 

captivated the chemical community. Whereas triple-bond-containing strained intermediates have 

been well studied, cyclic allenes have received far less attention. Additionally, studies of cyclic 

allenes that bear heteroatoms in the ring are scarce. We report an experimental and computational 

study of azacyclic allenes, which features syntheses of stable allene precursors, the mild generation 

and Diels–Alder trapping of the desired cyclic allenes, and explanations of the observed regio- and 

diastereoselectivities. Furthermore, we show that stereochemical information can be transferred 

from an enantioenriched silyl triflate starting material to a Diels–Alder cycloadduct by way of a 

stereochemically-defined azacyclic allene intermediate. These studies demonstrate that 

heteroatom-containing cyclic allenes, despite previously being overlooked as valuable synthetic 

intermediates, may be harnessed for the construction of complex molecular scaffolds bearing 

multiple stereogenic centers. 

4.2 Introduction 

The chemistry of strained organic compounds has long fascinated the scientific 

community. Despite once being only scientific curiosities, small rings containing triple bonds can 

now be used in a host of applications. Breakthroughs in this area include the synthetic chemistry 
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of benzyne (4.1) and cyclohexyne (4.2) (Figure 4.1a), both of which were once controversial 

species.1 To date, both have been utilized in a variety of synthetic applications spanning ligand 

synthesis, natural product synthesis, agrochemistry, and materials science.2,3,4 

Whereas strained cyclic intermediates possessing triple bonds have gained tremendous 

popularity, the corresponding chemistry of cyclic allenes has remained relatively underdeveloped. 

The parent allene, 1,2-cyclohexadiene (4.3, Figure 4.1a), was first accessed by Wittig in 1966.5 

Over the subsequent five decades, the field of cyclic allene chemistry has been largely driven by 

theoretical studies of allene structure and chirality,6,7,8,9,10,11 in addition to studies of cycloaddition 

mechanisms.12 With regard to experiments, various methods to generate cyclic allenes have been 

developed,11,13,14 and subsequently used in cycloaddition methodologies of                                              

1,2-cyclohexadienes.15,16,17,18,19 Taken together, these studies suggest the potential synthetic utility 

of cyclic allene intermediates.  

A largely untapped branch of cyclic allene chemistry involves those species that contain a 

heteroatom. Such reactive intermediates, despite not being used commonly in synthetic chemistry 

today, were first studied in 1976 (Figure 4.1b). In a seminal discovery, Murata and co-workers 

proposed to have unintentionally accessed cyclic allene 4.4, an isomer of benzooxepine, using a 

Doering–Moore–Scattebøl (DMS) ring expansion of a dihalocyclopropane precursor.20 Despite 

the harsh conditions required for this rearrangement (i.e. organolithium reagents), a [2+2] 

cycloadduct was isolated in 33% yield, thus fueling their hypothesis for the intermediacy of a 

heterocyclic allene. Led by efforts from the Christl laboratory, the generation of several additional 

heterocyclic allenes were reported in the intervening years, such as six-membered cyclic allenes 

4.5–4.8. Oxacyclic allenes 4.5 and 4.6 were first reported by Christl, also using the DMS 

approach.21,22 Subsequently, the groups of Schlosser23 and Caubère,24 respectively, demonstrated 
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that cyclic allene 4.6 could also be obtained by the base-mediated dehydrohalogenation of a 

vinylhalide precursor. With regard to azacyclic allenes, which most closely resemble the chemistry 

described herein, the generation of 1-aza-3,4-cyclohexadiene (4.7) by Christl represents a key 

discovery in the field.25  Also generated by the methylithium-promoted DMS rearrangement, this 

azacyclic allene underwent Diels–Alder cycloadditions and [2+2] cycloadditions, albeit in modest 

synthetic efficiency. More recently, efforts were put forth toward the isomeric                                          

1-aza-2,3-cyclohexadiene.  Although this was found to be unstable, N-borylation permitted access 

to azacyclic allene 4.8.26  Additional discoveries in this field include the synthesis of a 

cephalosporin-derived cyclic allene formation by Elliot and coworkers27,28,29 and several studies 

pertaining to heterocyclic isoarenes.7,30,31,32,33,34,35,36  

With the aforementioned advances in mind, we sought to provide an advance that would 

enable the field of heterocyclic allene chemistry to enter mainstream synthesis.  Notably, all 

previous examples of heterocyclic allene generation require harsh, strongly basic reaction 

conditions and, as a consequence, often suffer from modest reaction yields. Additionally, no 

studies of functionalized heterocyclic allene precursors, either for the sake of synthetic utility or 

for the investigation of reactivity and selectivity, have been reported. As such, we sought to prepare 

compounds of the type 4.9 (Figure 4.1c). If intermediates 4.9 could be generated under mild 

conditions, they would provide a valuable tool to assemble stereochemically-complex derivatives 

of the medicinally-privileged piperidine scaffold. Functionalized piperidines are the most common 

heterocycle seen in medicines,37 so new strategies for their synthesis are highly sought after. 

Moreover, the study of substituted azacyclic allenes would provide opportunities to understand 

and modulate various aspects of regio- and stereoselectivities using a blend of computations and 

experiments. Computational studies of azacyclic allenes 4.9 have not been reported.  
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Figure 4.1. Survey of strained cyclic intermediates. 

We now report (a) the syntheses of several silyl triflate precursors to azacyclic allene 

intermediates, (b) the mild generation and Diels–Alder trapping of the desired cyclic allenes (4.9 

+ 4.10 ® 4.11 + 4.12, Figure 4.1c) to give decorated piperidine products, including some bearing 

quaternary stereocenters, (c) the first examples of [3+2] cycloadditions of any heterocyclic allene, 

and (d) computational studies, including the application of the distortion-interaction model, to 

explain experimentally observed selectivities. Moreover, we demonstrate that stereochemical 

information can be transferred from an enantioenriched silyl triflate starting material to            

Diels–Alder cycloadducts by way of a stereochemically-defined azacyclic allene intermediate.  
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4.3 Computational Analysis of Azacyclic Allene Structure 

Figure 4.2 provides a comparison of linear allene 4.13 and azacyclic allene 4.14. ωB97XD 

was deemed the most appropriate density functional theory (DFT) method for the cycloaddition 

studies (described below), and was used to optimize the ground state geometries of interest. The 

linear allene C=C bond length is 1.31 Å in 4.13. As expected, the allene p orbitals are orthogonal 

but degenerate. In comparison, the C=C bond length of azacyclic allene 4.14 is only slightly longer 

(1.32 Å), with the internal angle at the central allene carbon being 133°, rather than 180°, as a 

result of the ring constraint. The allene p orbitals are no longer perfectly orthogonal or degenerate 

and the allene CH bonds are twisted out-of-plane, by 42° and 37°, respectively. Azacyclic allene 

4.14 possesses 27.3 kcal/mol of strain energy (see Section 4.9.3.3) due to its distortion from 

linearity, an attribute that facilitates cycloaddition reactions. 

 

Figure 4.2. Comparison of geometry-optimized structures of allenes 4.13 and 4.14. 
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4.4 Syntheses of Azacyclic Allene Precursors  

With the ultimate aim of accessing azacyclic allenes 4.25–4.28, we developed a divergent 

synthetic route to silyl triflates 4.19, 4.20, 4.23, and 4.24, stemming from common intermediate 

4.16 (Figure 4.3). 4-Methoxypyridine (4.15) was elaborated to compound 4.16 using a 

straightforward sequence, analogous to that used to prepare the known trimethylsilyl derivative.38 

Subsequent 1,4-reduction proceeded smoothly using L-selectride to give an intermediate lithium 

enolate. Whereas acidic workup furnished silyl ketone 4.17, trapping with methyl iodide led to    

a-methylated ketone 4.18. Subsequent triflation of 4.17 and 4.18 delivered silyl triflates 4.19 and 

4.20, respectively. Alternatively, intermediates 4.17 and 4.18 could be elaborated to esters 4.21 

and 4.22, respectively, upon deprotonation and quenching with Mander’s reagent. Enols 4.21 and 

4.22 were readily triflated using sodium hydride and triflic anhydride, thus furnishing the 

corresponding silyl triflates 4.23 and 4.24. It should be noted that by preparing four silyl triflates, 

we hoped to probe substituent effects on regio- and diastereoselectivities. Silyl triflate 4.19 would 

serve as a precursor to the parent azacyclic allene 4.25. Allenes 4.26 and 4.27, optimistically 

accessible from silyl triflates 4.20 and 4.23, respectively, each bear one additional substituent 

relative to the parent allene 4.25, but with varying electronic properties (i.e., methyl versus ester). 

Lastly, fully substituted allene 4.28 would be derived from silyl triflate 4.24.  
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Figure 4.3. Syntheses of silyl triflates 4.19, 4.20, 4.23, and 4.24. 
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4.29a, 4.30, and 4.31 (entries 4–6, respectively). In each case, cycloaddition occurred 

regioselectively on the olefin positioned distal to the methyl group, again with notable levels of 

diastereoselectivity. By switching to allene 4.27, bearing an electron-withdrawing ester in place of 

the methyl group in 4.26, we observed a switch in regioselectivity. As shown by the formation of 

4.38–4.40, cycloaddition occurred on the olefin proximal to the ester substituent (entries 7–9, 

respectively). It should be noted that the trapping experiments of allene 4.27 allow for the 

formation of quaternary centers in a controlled manner. Lastly, we examined cycloadditions 

between fully substituted allene 4.28 and dienes 4.29a, 4.30, and 4.31. As seen in entries 10–12, 

the cycloadditions occurred smoothly, giving rise to cycloadducts 4.41–4.43 in 93–95% yield and 

>20:1 dr. Consistent with the regioselectivites seen in the cases of allenes 4.26 and 4.27, 

cycloadditions involving allene 4.28 occur proximal to the ester and distal to the methyl group. 

Moreover, the trapping of 4.28 in Diels–Alder cycloadditions allows for the efficient assembly of 

highly functionalized piperidine scaffolds bearing quaternary stereocenters.  
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Table 4.1. Scope of Diels–Alder cycloadditions of azacyclic allene intermediates 4.25–4.28. 

 
Conditions unless otherwise stated: Silyl triflate substrate (1.0 equiv.), diene (5.0–10.0 equiv.), 
CsF (5.0 equiv.), acetonitrile (0.1 M) at 23 °C. Yields shown reflect the average of two isolation 
experiments. a The regioisomer of 4.37 was also observed (ca. 20% yield), resulting from endo 
cycloaddition on the more substituted olefin of allene 4.26. b Pyrrole 4.29b was employed in place 
of pyrrole 4.29a, as the cycloaddition of 4.29a with 4.27 proceeded in low yield for reasons that 
are not presently understood. 
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Several features of the allene generation and trapping experiments should be emphasized. 

(a) In the absence of CsF, no reaction occurs, even at elevated temperature, which is suggestive of 

allene formation (as opposed to Diels–Alder cycloaddition, followed by silyl triflate elimination). 

(b) All reactions take place at room temperature, thus allowing for azacyclic allene generation 

under exceptionally mild reaction conditions. (c) For all reactions with the exception of the 

formation of 4.37, the opposite regioisomer was not observed. (d) This methodology provides a 

facile, metal-free means to access decorated piperidines, by formation of two new bonds and three 

stereocenters, with high levels of diastereoselectivity. (e) The substituents on the azacyclic allene 

have a profound effect on modulating regioselectivities in the cycloaddition reactions. 

Although not the focus of the current study, it should be noted that azacyclic allene 4.25 

could also be trapped in (3+2) and (2+2) cycloadditions (Table 4.2). For example, an assortment 

of nitrones can be employed as 1,3-dipoles. Whereas prior studies of 1,2-cyclohexadiene nitrone 

cycloadditions were performed optimally at elevated temperatures to accelerate reaction rates,18 in 

the case of azacyclic allene 4.25, reactions proceeded efficiently at ambient temperature (see 

Section 4.9.2.3 for reaction times). Moreover, comparable selectivities were seen in control 

experiments performed at 50 °C. Use of aldehyde-derived nitrone 4.45 provided isoxazolidine 4.46 

(entry 1), whereas trapping with ketone-derived nitrone 4.47 furnished 4.48, bearing a tertiary 

center and trifluoromethyl group (entry 2). When cyclic nitrones 4.49 and 4.51 were utilized, tri- 

and tetracyclic products 4.50 and 4.52 were obtained, respectively (entries 3 and 4). Additionally, 

trapping of the allene intermediate with azomethine imines19 4.53 and 4.55 gave the corresponding 

pyrazolidine products 4.54 and 4.56 (entries 5 and 6). Of note, 4.56 contains three distinct nitrogen-

containing heterocycles: a piperidine, a pyrazolidine, and a pyridine ring. Nitrile oxide19 4.57 was 

also employed as a trapping agent and gave rise to isoxazoline 4.58 in 81% yield. These reactions 
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(entries 1–7) represent the first (3+2) cycloadditions of heterocyclic allenes. Lastly, we attempted 

to utilize olefin 4.59 in a (2+2) cycloaddition. This reaction proceeded smoothly to deliver 

cyclobutane derivative 4.60 in 78% yield as a single isomer. Collectively, the trapping experiments 

of azacyclic allenes shown in Tables 4.1 and 4.2 demonstrate their utility in the rapid generation 

of stereochemically-rich heterocycles.  

Table 4.2. (3+2) and (2+2) cycloadditions of azacyclic allene intermediate 4.25. 
 

 
Conditions unless otherwise stated: Silyl triflate 4.19 (1.0 equiv.), trapping agent (1.2–5.0 equiv.), 
CsF (5.0 equiv.), acetonitrile (0.1 M) at 23 °C. Yields shown reflect the average of two isolation 
experiments.  
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4.6 DFT Calculations 

To learn about the nature of the mechanism (concerted or stepwise) and to understand how 

the methyl and ester groups guide selectivities, DFT calculations were performed for the Diels–

Alder reactions of allenes 4.61 and 4.62 (carbomethoxy was used as a surrogate for the larger 

carboxybenzyl (Cbz) group to simplify computations) reacting with furan (4.30) (Figure 4.4). We 

considered pathways leading to all regio- and stereoisomers via three possible scenarios: concerted 

cycloaddition, stepwise zwitterionic cycloaddition, and stepwise diradical cycloaddition. B3LYP 

was previously used to study the mechanism of Diels–Alder cycloadditions with 1,2-

cyclohexadiene. However, Brinck and coworkers have noted a tendency for B3LYP to 

overestimate the asynchronicity of highly asynchronous transition states and to ultimately favor 

stepwise pathways;39 their recent benchmark study demonstrates that ωB97XD performs better 

than B3LYP for highly asynchronous Diels–Alder cycloadditions and was shown to reproduce 

transition state geometries obtained using a high accuracy method, CCSD(T). A variety of methods 

and basis sets were evaluated for this study, and ωB97XD/6-311+G(d,p)/SMD(MeCN) was 

selected as the computational method of choice (see Section 4.9.3.2). 

Our computations reveal that pathways leading to endo products are most energetically 

favorable, consistent with experimental results, and proceed in an asynchronous concerted fashion. 

Key results are summarized in Figure 4.4a (see Section 4.9.3.4 & 4.9.3.5 for analyses of pathways 

leading to exo products). The DDG‡ for the two competing endo pathways for the Diels–Alder 

reaction of methyl-substituted allene 4.61 and furan (4.30) was calculated to be –1.5 kcal/mol, 

with the cycloaddition occurring on the olefin distal to the methyl group. This correlates well with 

the experimental result shown in Table 4.1 (see entry 5). To understand the origin of 

regioselectivity, we performed a distortion/interaction activation strain analysis.40 Thus, the DE‡ 
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was calculated for the endo pathways leading to the two possible regioisomers, and DE‡ was further 

broken down into its components, the distortion energy (DEdist‡, an energetic cost associated with 

the structural distortion of the reactants) and the interaction energy (DEint‡, an energetic benefit 

resulting from favorable orbital interactions). Whereas the DEdist‡ was found to be comparable for 

the transition states leading to the major and minor regioisomers (DDEdist‡ = –0.3 kcal/mol), DEint 

was more favorable in the transition state leading to the major regioisomer (DDEint‡ = –1.3 

kcal/mol). This more favorable DEint results from more stabilizing orbital interactions between the 

lowest unoccupied molecular orbital (LUMO) of allene 4.61 and highest occupied molecular 

orbital (HOMO) of furan (4.30) in TS 4.1 (Figure 4.4b), which leads to the major observed 

regioisomer. That is, the LUMO is more concentrated on the less substituted double bond of the 

allene. 

The corresponding analysis was performed for the competing endo pathways for the Diels–

Alder reaction of ester-substituted allene 4.62 and furan (4.30). The DDG‡ and DDE‡ were 

calculated to be –4.9 kcal/mol and –4.7 kcal/mol, respectively, with the cycloaddition occurring 

on the olefin proximal to the ester, consistent with experimental findings (see Table 4.1, entry 8). 

DEdist‡ was again found to be comparable for the transition states leading to the major and minor 

regioisomers (DDEdist‡ = 0.7 kcal/mol favoring the minor pathway), but DEint‡ was much more 

favorable in the transition state leading to the major regioisomer (DDEint‡ = –5.4 kcal/mol). More 

favorable orbital interactions in TS 4.2 (Figure 4.4b) occur upon interaction with the LUMO, now 

concentrated on the ester-substituted double bond. As shown in Figure 4.4b, the major pathway 

(TS 4.2) is highly asynchronous with initial bond formation occurring on the central allene carbon. 

To better understand the favorable electronic interactions that lead to the observed 

regioselectivities, Hartree-Fock molecular orbitals were calculated for allenes 4.61 and 4.62. The 
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aforementioned helical LUMOs of 4.61 and 4.62 are depicted (Figure 4.4c), along with the pz 

orbital coefficients for both termini of the allene, which project in the direction at which bond 

formation occurs. In the case of 4.61, the less substituted terminus possesses a larger coefficient 

in the LUMO, which correlates to the regioselectivity we observe in experiments involving Cbz-

derivative 4.26. On the other hand, for ester 4.62, the larger orbital coefficient resides on the more 

substituted allene terminus, which is also consistent with our experimental results involving allene 

4.27. The slight charge separation in the transition state also contributes to the better stabilization 

of those transition states leading to the observed products.  
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Figure 4.4. Computations provide insight into regio- and diastereoselectivities (all 
calculated energies are reported in kcal/mol). 
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to heterocyclic allenes could be utilized in enantioenriched form. To this end, we separated gram 

quantities of the enantiomers of ketones 4.17 and 4.18 and elaborated them to enantioenriched 

silyl triflates 4.23 and 4.20, respectively. The chiral separations were achieved using preparative 

chiral supercritical fluid chromatography (SFC), either by batch processing or direct purification 

of gram quantities, an approach also used for gram-scale purifications in industrial settings.42 As 

shown in Figure 4.5, we have found that the success of this strategy is highly dependent on the 

nature of the heterocyclic allene substituent. When employing optically enriched ester-containing 

silyl triflate (+)-4.23 in the Diels–Alder cycloaddition with pyrrole 4.29b or furans 4.30 or 4.31, 

adducts 4.38–4.40 were obtained as expected, but in racemic form (Figure 4.5a). In contrast, when 

enantioenriched methyl-substituted silyl triflate (+)-4.20 was utilized in the corresponding Diels–

Alder reactions, the expected cycloadducts (+)-4.35, (–)-4.36, and (+)-4.37 were obtained in 81–

98% enantiomeric excess (Figure 4.5b). As noted earlier in Table 4.1, cycloadduct 4.37 is obtained 

as a mixture of regioisomers in the cycloaddition between allene 4.32 and dimethylfuran (4.31). 

Interestingly, the formation of the minor regioisomer in this reaction also proceeded without 

significant stereochemical erosion to give the corresponding cycloadduct (+)-4.63 bearing vicinal 

tetrasubstituted stereocenters in 97% ee.  

Calculations were performed to assess the racemization barriers for allenes 4.62 and 4.61 

to determine whether the substituent affected the barrier for racemization of the chiral allenoate 

intermediate generated from the corresponding silyl triflate. Prior theoretical studies on the 

racemization of 1,2-cyclohexadiene (4.3) by Johnson and coworkers showed that the racemization 

of 1,2-cyclohexadiene (4.3) occurs via a diradical transition state.6 As shown in Figure 4.5c, the 

racemization barrier for ester-containing allene 4.62 was determined to be only 14.1 kcal/mol and 

occurs via a diaradical transition state. In the case of methyl-substituted allene 4.61, the barrier for 
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racemization was calculated to be 16.4 kcal/mol, which is consistent with faster racemization of 

4.62 than 4.61, a result of greater stabilization of the diradical transition state from 4.62. As such, 

we hypothesize that allene 4.62 undergoes racemization faster than cycloaddition, thus accounting 

for the formation of racemic 4.38–4.40 (see Figure 4.5a). With racemization being disfavorable, 

the Diels–Alder reactions to give 4.35–4.37 proceed with significant transfer of stereochemical 

information (see Figure 4.5b). At present, we cannot rule out the possibility of racemization 

occurring after desilylation, but prior to allene formation. Nonetheless, these results demonstrate 

that heterocyclic allenes may be employed as building blocks for enantioenriched products, while 

further showcasing the key role of substituents in governing selectivities in reactions of 

heterocyclic allenes.  
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Figure 4.5. Attempted transfer of stereochemical information from silyl triflates to cycloadducts 
via azacyclic allene intermediates. 
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4.8 Conclusion 

We have performed an experimental and computational study of unusual azacyclic allene 

intermediates. Our study includes syntheses of stable allene precursors, which in turn can be used 

to access the desired azacyclic allenes in situ under mild reaction conditions. Diels–Alder trapping 

of the allene intermediates provides an array of functionalized piperidines bearing multiple 

stereogenic centers, including quaternary centers in some cases. DFT studies show that 

computations correctly predict the observed diastereoselectivities, with cycloadditions occurring 

through concerted asynchronous endo transition states. A detailed distortion-interaction analysis 

explains the origins of the observed regiochemistry of the Diels–Alder cycloadditions. Lastly, by 

assessing enantioenriched silyl triflates, we found that stereochemical information can be 

transferred from a silyl triflate starting material to Diels–Alder cycloadducts, provided the allene 

is appropriately substituted. 

The structure and reactivity of strained organic compounds has intrigued the chemical 

community for over a century. However, cyclic allenes have received relatively little attention, 

especially in comparison to cyclic alkynes. Our present study demonstrates that strained azacyclic 

allenes, although largely neglected, serve as valuable building blocks for the construction of 

complex molecular scaffolds bearing multiple stereogenic centers. 
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4.9 Experimental Section 

4.9.1 Materials and Methods 

Unless stated otherwise, reactions were conducted in flame-dried glassware under an 

atmosphere of nitrogen using anhydrous solvents (freshly distilled or passed through activated 

alumina columns). All commercially obtained reagents were used as received unless otherwise 

specified. Cesium fluoride (CsF), was obtained from Strem Chemicals. Triethylsilyl chloride 

(TESCl) was obtained from Oakwood Products, Inc. Iodomethane (MeI) and furan (4.30) were 

obtained from Alfa Aesar. 1,1-Diethoxyethene (4.59) and sodium borohydride were obtained from 

Fluka. L-Selectride (1 M in THF), N-(5-chloro-2-pyridyl)bis(trifluoromethanesulfonimide) 

(Comins’ Reagent), potassium bis(trimethylsilyl)amide (KHMDS), hexamethylphosphoramide 

(HMPA), methyl cyanoformate (Mander’s Reagent), lithium diisopropylamide (LDA), N-Boc 

pyrrole (4.29b), sodium hydride, N-phenylpyrrole (4.29a), and 2,5-dimethylfuran (4.31) were 

obtained from Sigma Aldrich. Sodium hydride was washed with pentane prior to use and stored in 

an Argon-filled glovebox. Trifluoromethanesulfonic anhydride (Tf2O) was obtained from Combi-

Blocks. Benzyl chloroformate (CbzCl) was obtained from TCI America. 4.31, Tf2O, HMPA, and 

diisopropylamine were distilled over CaH2 prior to use. 4.30 and 4.29b were filtered over basic 

alumina prior to use. Reaction temperatures were controlled using an IKAmag temperature 

modulator and, unless stated otherwise, reactions were performed at room temperature 

(approximately 23 °C). Thin layer chromatography (TLC) was conducted with EMD gel 60 F254 

pre-coated plates (0.25 mm) and visualized using a combination of UV light, anisaldehyde, and 

potassium permanganate staining. Silicycle Siliaflash P60 (particle size 0.040–0.063 mm) was 

used for flash column chromatography. 1H-NMR and 2D-NOESY spectra were recorded on Bruker 

spectrometers (at 400, 500, and 600 MHz) and are reported relative to the residual solvent signal. 
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Data for 1H-NMR spectra are reported as follows: chemical shift (δ ppm), multiplicity, coupling 

constant (Hz) and integration. 13C-NMR spectra were recorded on Bruker spectrometers (at 100 

and 125 MHz) and are reported relative to the residual solvent signal. Data for 13C-NMR spectra 

are reported in terms of chemical shift and, when necessary, multiplicity, and coupling constant 

(Hz). 19F-NMR spectra were recorded on Bruker spectrometers (at 376 MHz) and reported in terms 

of chemical shift (δ ppm). IR spectra were obtained on a Perkin-Elmer UATR Two FT-IR 

spectrometer and are reported in terms of frequency of absorption (cm–1). Uncorrected melting 

points were measured using a Digimelt MPA160 melting point apparatus. DART-MS spectra were 

collected on a Thermo Exactive Plus MSD (Thermo Scientific) equipped with an ID-CUBE ion 

source and a Vapur Interface (IonSense Inc.). Both the source and MSD were controlled by 

Excalibur software v. 3.0.  The analyte was spotted onto OpenSpot sampling cards (IonSense Inc.) 

using CDCl3 as the solvent. Ionization was accomplished using UHP He (Airgas Inc.) plasma with 

no additional ionization agents.  The mass calibration was carried out using Pierce LTQ Velos ESI 

(+) and (–) Ion calibration solutions (Thermo Fisher Scientific). Chiral separations of compounds 

4.17 and 4.18 were performed by Lotus Separations, LLC. Determination of enantiopurity was 

carried out on a Mettler Toledo SFC (supercritical fluid chromatography) using a Daicel ChiralPak 

OJ-H column and a Daicel ChiralPak IA-3 column. Optical rotations were measured with a 

Rudolph Autopol III Automatic Polarimeter. 

 

Nitrones 4.45,43 4.47,18 4.49,44 and 4.51,44 azomethine imines 4.5345 and 4.55,46 and nitrile oxide 

4.5747 are all known compounds. 1H-NMR spectral data matched those reported in the literature. 
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4.9.2 Experimental Procedures 

4.9.2.1 Syntheses of Silyl Triflate Precursors 

 

4-Methoxy-3-(triethylsilyl)pyridine (4.65). To a solution of diisopropylamine (13.9 mL, 99.0 

mmol, 1.2 equiv) in THF (165 mL) at –10 °C was added n-BuLi (2.52 M in hexanes, 34.0 mL, 

90.8 mmol, 1.1 equiv) dropwise over 1 h. The solution was stirred for 30 min at –10 °C, then 4-

methoxypyridine (4.15, 9.00 g, 82.5 mmol, 1.0 equiv) was added dropwise over 20 min and stirred 

for 1 h at –10 °C. Next, TESCl (18.9 mL, 107 mmol, 1.3 equiv) was added dropwise over 1 h and 

was allowed to stir at –10 °C for 1 h. The reaction was allowed to warm to 23 °C. After stirring 

for 2 h, deionized water (1.0 mL) was added to the reaction and THF was removed under reduced 

pressure. The reaction was diluted with deionized water (75 mL) and was extracted with diethyl 

ether (3 x 50 mL). The combined organic layers were washed with deionized water (3 x 100 mL) 

and brine (1 x 100 mL), dried over Na2SO4, filtered, and concentrated under reduced pressure. The 

resulting crude oil was dry loaded onto SiO2 (20.0 g) from a diethyl ether solution and was purified 

by flash chromatography (100% EtOAc) to afford silyl pyridine 4.65 (16.8 g, 91% yield) as a light 

yellow oil. Silyl pyridine 4.65: Rf  0.52 (100% EtOAc); 1H-NMR (400 MHz, CDCl3): δ 8.48 (d, J 

= 5.8, 1H), 8.37 (s, 1H), 6.74 (d, J = 5.8, 1H), 3.84 (s, 3H), 0.96–0.91 (m, 9H), 0.86–0.81 (m, 6H); 

13C-NMR (100 MHz, CDCl3): δ 170.5, 156.0, 152.4, 120.0, 105.4, 54.8, 7.5, 3.3; IR (film): 2952, 

2874, 1571, 1559, 1271 cm–1; HRMS–APCI (m/z) [M + H]+ calcd for C12H22NOSi+, 224.1465; 

found, 224.1464. 

  

 

i.   LDA (1.1 equiv)
     THF, –10 °C

ii.  TESCl (1.3 equiv)
     –10 → 23 °C

(91% yield)4.15 4.65

N

OMe

N

OMe

SiEt3
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Enone 4.16. To a solution of silyl pyridine 4.65 (10.0 g, 44.5 mmol, 1.0 equiv) in methanol (100 

mL) at –78 °C was added NaBH4 (1.85 g, 49.0 mmol, 1.1 equiv). After stirring for 1 h at –78 °C, 

CbzCl (6.97 mL, 49.0 mmol, 1.1 equiv) in diethyl ether (15 mL) was transferred to the reaction 

via cannulation over 5 min. After stirring for 1 h at –78 °C, deionized water (15 mL) was added 

and the cooling bath was removed, allowing the reaction to warm to 23 °C before diluting with 

deionized water (100 mL). The layers were separated and the aqueous layer was extracted with 

Et2O (3 x 50 mL). The combined organic layers were washed with deionized water (3 x 50 mL) 

and brine (1 x 50 mL), dried over Na2SO4, filtered, and concentrated under reduced pressure. The 

resulting crude oil was purified by flash chromatography (3:2 hexanes:Et2O) to give enone 4.16 

(12.9 g, 84% yield) as a colorless oil. Enone 4.16: Rf  0.43 (3:2 hexanes:Et2O); 1H-NMR (400 MHz, 

CDCl3): δ 7.82 (br s, 1H), 7.44–7.34 (m, 5H), 5.27 (s, 2H), 4.00 (t, J = 7.3, 2H), 2.53 (t, J = 7.4, 

2H), 0.90 (t, J = 8.0, 9H), 0.69 (q, J = 8.0, 6H); 13C-NMR (125 MHz, CDCl3, 9 of 13 observed): δ 

196.8, 135.3, 128.9, 128.5, 69.0, 42.7, 36.2, 7.6, 3.1; IR (film): 2953, 2874, 1728, 1658, 1577, 

1301 cm–1; HRMS–APCI (m/z) [M + H]+ calcd for C19H28NO3Si+, 346.1833; found, 346.1833.  

 

 

Ketone 4.17. To a solution of enone 4.16 (1.57 g, 4.55 mmol, 1.0 equiv) in THF (23 mL) at                 

–78 °C was added L-selectride (1.0 M solution in THF, 6.83 mL, 6.83 mmol, 1.5 equiv) dropwise 

over 13 min. The reaction was stirred at –78 °C for 2 h, then quenched by the addition of a saturated 

i.   NaBH4 (1.1 equiv)
     CH3OH, –78 °C
ii.  CbzCl (1.1 equiv)
     Et2O, –78 °C

iii. H2O, –78 → 23 °C

(84% yield)
4.65 4.16

N

OMe

CbzN

O

SiEt3SiEt3

CbzN
SiEt3

O
L-selectride (1.5 equiv)

    
THF, –78 °C

(89% yield)

CbzN
SiEt3

O

4.16 4.17
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aqueous solution of NH4Cl (9 mL) and allowed to warm to 23 °C. The layers were separated and 

the aqueous layer was extracted with Et2O (3 x 40 mL). The combined organic layers were dried 

over Na2SO4, filtered, and concentrated under reduced pressure to provide the crude product, 

which was purified by flash chromatography (9:1 hexanes:EtOAc) to afford ketone 4.17 as a 

colorless oil (1.41 g, 89% yield). Ketone 4.17: Rf  0.36 (1:1 hexanes:Et2O); 1H-NMR (500 MHz, 

CDCl3): δ 7.41–7.29 (m, 5H), 5.26–5.07 (m, 2H), 4.20–3.96 (m, 2H), 3.82–3.59 (m, 1H), 3.54–

3.33 (m, 1H), 2.58–2.31 (m, 3H), 1.03–0.81 (m, 9H), 0.72–0.51 (m, 6H); 13C-NMR (125 MHz, 

CDCl3): δ 209.2, 208.8, 155.2, 136.6, 136.4, 128.73, 128.67, 128.5, 128.4, 128.3, 128.2, 67.8, 67.6, 

42.9, 42.8, 42.5, 42.2, 40.2, 7.4, 3.0; IR (film): 2954, 2876, 1692, 1417, 1232 cm–1; HRMS–APCI 

(m/z) [M + H]+ calcd for C19H30O3Si+, 348.1989; found, 348.1981.   

Note: 4.17 was obtained as a mixture of rotamers. These data represent empirically observed 

chemical shifts from the 13C-NMR spectrum. 

 

 

Ketone 4.18. To a solution of enone 4.16 (1.00 g, 2.89 mmol, 1.0 equiv) in THF (15.0 mL) at         

–78 °C was added L-selectride (1.0 M solution in THF, 4.34 mL, 4.34 mmol, 1.5 equiv) dropwise 

over 10 min. After stirring for 1 h, iodomethane (0.900 mL, 14.5 mmol, 5.0 equiv) was added 

dropwise 3 min at –78 °C, then the cold bath was removed and the reaction was warmed to 23 °C. 

Aluminum foil was used to cover the reaction and exclude light. After stirring for 4 h, deionized 

water (50 mL) was added and the layers were separated. The aqueous layer was extracted with 

diethyl ether (3 x 20 mL). The combined organic layers were washed with deionized water (3 x 20 

mL) and brine (1 x 20 mL), dried over Na2SO4, filtered, and concentrated under reduced pressure. 

i.   L-selectride (1.5 equiv)
     THF, –78 °C

ii.  MeI (5.0 equiv)
     –78 → 23 °C

(76% yield)
4.18

CbzN

O

SiEt3

4.16

CbzN

O

SiEt3
Me



 176 

The resulting crude oil was purified via flash chromatography (3:1 hexanes:EtOAc) to give ketone 

4.18 (795 mg, 76% yield) as a colorless oil. Ketone 4.18: Rf  0.30 (1:1 hexanes:Et2O); 1H-NMR 

(500 MHz, CDCl3): δ 7.42–7.29 (m, 5H), 5.27–5.06 (m, 2H), 4.22–3.97 (m, 2H), 3.49–3.18 (m, 

2H), 2.67–2.35 (m, 2H), 1.25–1.11 (m, 3H), 1.04–0.85 (m, 9H), 0.75–0.56 (m, 6H); 13C-NMR 

(125 MHz, CDCl3): δ 212.2, 211.5, 155.6, 155.2, 136.7, 136.4, 128.7, 128.5, 128.3, 128.1, 67.7, 

67.5, 50.2, 49.9, 46.0, 45.6, 42.8, 42.4, 39.7, 39.6, 18.3, 7.9, 7.6, 2.4; IR (film): 2954, 2877, 1690, 

1418, 1231 cm–1; HRMS–APCI (m/z) [M + H]+ calcd for C20H32NO3Si+, 362.2146; found, 

362.2137. 

Note: 4.18 was obtained as a mixture of rotamers. These data represent empirically observed 

chemical shifts from the 13C-NMR spectrum.  

 

 

Silyl triflate 4.19. Solid LDA (142 mg, 1.33 mmol, 2.0 equiv) was added to a flame dried vial. 

The LDA was then suspended in diethyl ether (2.50 mL) and cooled to –78 °C for 20 min. In a 

separate flame-dried vial, ketone 4.17 (231 mg, 0.665 mmol, 1.0 equiv) was dissolved in diethyl 

ether (2.50 mL) and cooled to –78 °C for 20 min. The ketone solution was then transferred to the 

LDA pot via dropwise cannula transfer over 1 min and the reaction was stirred at –78 °C for 2 h. 

Then, Comins’ Reagent (365 mg, 0.931 mmol, 1.4 equiv) in diethyl ether (2.50 mL) at –78 °C was 

added to the reaction flask via dropwise cannula transfer over 1 min. The cooling bath was 

removed and the reaction was allowed to warm to 23 °C. After stirring for 12 h, the reaction was 

quenched by addition of an aqueous solution of 5% (w/w) NaHCO3 (5.0 mL). The layers were 

separated and the aqueous layer was extracted with diethyl ether (3 x 5 mL). The combined organic 

CbzN
SiEt3

O i.  LDA (2.0 equiv)
    Et2O, –78 °C
    
ii. Comins' Reagent (1.4 equiv)
    Et2O, –78  → 23 °C

(66% yield BRSM)

CbzN
SiEt3

OTf

4.17 4.19
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layers were washed with water (3 x 5 mL) and brine (1 x 5 mL), dried over Na2SO4, filtered, and 

concentrated under reduced pressure. The resulting crude yellow oil was purified by flash 

chromatography (13:7 Hexanes:EtOAc) to provide silyl triflate 4.19 as a clear oil (140 mg, 45% 

yield, 66% yield BRSM) and single regioisomer. Unreacted starting material (76.2 mg, 33% yield) 

was recovered as a yellow oil. Silyl triflate 4.19: Rf  0.71 (3:1 hexanes:EtOAc); 1H-NMR (500 

MHz, CDCl3): δ 7.45–7.29 (m, 5H), 5.68–5.55 (m, 1H), 5.27–5.08 (m, 2H), 4.29–4.16 (m, 1H), 

4.11–3.89 (m, 2H), 3.52 (dd, J = 13.1, 4.4, 1H), 2.15–2.00 (m, 1H), 1.02–0.86 (m, 9H), 0.72–0.53 

(m, 6H); 13C-NMR (125 MHz, CDCl3): δ 155.2, 154.9, 150.9, 150.4, 136.5, 136.2, 128.7, 128.5, 

128.4, 128.2, 118.6 (q, JC–F = 324.0), 111.3, 110.7, 67.8, 67.6, 42.6, 42.4, 42.1, 28.2, 28.0, 7.3, 2.9; 

19F NMR (376 MHz, CDCl3): δ –73.6; IR (film): 2957, 2878, 1707, 1417, 1208 cm–1; HRMS–

APCI (m/z) [M + H]+ calcd for C20H29F3NO5SSi+, 480.1482; found, 480.1492. 

Note: 4.19 was obtained as a mixture of rotamers. These data represent empirically observed 

chemical shifts from the 13C-NMR spectrum. While we were able to obtain only the desired 

regioisomer following this procedure, during reaction optimization we often encountered a 

mixture of olefin isomers. These isomers were inseparable by chromatography; however, by 

heating in DMSO at 100 °C for 15 min, the undesired isomer decomposes and after purification, 

4.19 can be obtained as a single regioisomer. 

 

 

Silyl triflate 4.20. To a solution of KHMDS (1.18 g, 5.93 mmol, 1.2 equiv) in THF (7.6 mL) at   

–78 °C was added a solution of ketone 4.18 (1.79 g, 4.94 mmol, 1.0 equiv) in THF (7.6 mL) 

dropwise over 20 min. After stirring for 15 min, a solution of Comins’ Reagent (2.72 g, 6.92 mmol, 

CbzN
SiEt3

O i.  KHMDS (1.2 equiv)
    THF, –78 °C
    
ii. Comins' Reagent (1.4 equiv)
    THF, –78 → 23 °C

(80% yield)

CbzN
SiEt3
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1.4 equiv) in THF (7.7 mL) was added dropwise over 15 min at –78 °C, then the cooling bath was 

removed and reaction was allowed to warm to 23 °C. After stirring for 22 h, the reaction was 

quenched by addition of an aqueous solution of 5% (w/w) NaHCO3 (10 mL). The layers were 

separated and the aqueous layer was extracted with Et2O (3 x 20 mL). The combined organic layers 

were dried over MgSO4, filtered, and concentrated under reduced pressure to provide the crude 

product, which was purified by flash chromatography (19:1 hexanes:EtOAc) to afford silyl triflate 

4.20 as a pale yellow oil (1.95 g, 80% yield). Silyl triflate 4.20: Rf  0.32 (9:1 hexanes:EtOAc); 1H-

NMR (500 MHz, CDCl3): δ 7.41–7.30 (m, 5H),  5.70–5.55 (m, 1H), 5.26–5.07 (m, 2H), 4.18 (d, J 

= 17.6, 1H), 4.00 (dd, J = 17.7, 3.0, 1H), 3.71 (d, J = 13.2, 1H), 3.52–3.39 (m, 1H), 1.24–1.11 (m, 

3H), 1.03–0.90 (m, 9H), 0.75–0.60 (m, 6H); 13C-NMR (125 MHz, CDCl3): δ 155.4, 155.0, 154.4, 

136.5, 136.4, 128.7, 128.4, 128.2, 118.5 (q, JC–F = 319.3), 110.1, 109.6, 67.7, 50.2, 42.6, 42.4, 

31.4, 18.6, 7.8, 2.5, 2.3; 19F NMR (376 MHz, CDCl3): δ –74.5; IR (film): 2958, 2879, 1706, 1415, 

1207 cm–1; HRMS–APCI (m/z) [M + H]+ calcd for C21H31F3NO5SSi+, 494.1639; found, 494.1624. 

Note: 4.20 was obtained as a mixture of rotamers. These data represent empirically observed 

chemical shifts from the 13C-NMR spectrum. 

 

 

Vinylogous acid 4.21. To a solution of diisopropylamine (582 µL, 4.16 mmol, 1.2 equiv) in Et2O 

(8.4 mL) at –78 °C was added n-BuLi (2.0 mL, 2.06 M in hexanes, 4.16 mmol, 1.2 equiv) dropwise 

over 4 min. The reaction was stirred at –78 °C for 25 min, then allowed to stir at 23 °C for 10 min. 

Then the reaction mixture was cooled to –78 °C and a solution of ketone 4.17 (1.3 g, 3.47 mmol, 

i.   LDA (1.2 equiv), Et2O, –78 °C

ii.  HMPA (1.0 equiv)
     Mander's Reagent (1.2 equiv)
     –78 °C

(63% yield)
4.21

CbzN
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SiEt3

MeO O
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1.0 equiv) in Et2O (3.6 mL) was added dropwise over 10 min and stirred at –78 °C for 2 h. Then 

HMPA (604 µL, 3.47 mmol, 1.0 equiv) and Mander’s Reagent (330 µL, 4.16 mmol, 1.2 equiv) 

were added dropwise sequentially over 3 min at –78 °C. The reaction was stirred at –78 °C for       

1 h, then quenched by the addition of cold deionized water (0 °C, 18 mL) and allowed to warm to 

23 °C. The layers were separated and the aqueous layer was extracted with Et2O (3 x 30 mL). The 

combined organic layers were dried over Na2SO4, filtered, and concentrated under reduced 

pressure to provide the crude product, which was purified by flash chromatography (19:1 

hexanes:EtOAc) to afford vinylogous acid 4.21 as a colorless oil (880 mg, 63% yield). Vinylogous 

acid 4.21: Rf  0.45 (5:1 hexanes:Et2O); 1H-NMR (500 MHz, CDCl3): δ 12.28 (s, 1H) 7.40–7.30 (m, 

5H), 5.30–5.07 (m, 2H), 4.19 (d, J = 15.4, 1H) 4.02 (dd, J = 15.7, 1.6, 1H) 3.97–3.81 (m, 1H), 3.76 

(s, 3H), 3.52–3.43 (m, 1H), 2.18–2.01 (m, 1H), 1.03–0.83 (m, 9H), 0.74–0.53 (m 6H); 13C-NMR 

(125 MHz, CDCl3): δ 175.4, 174.6, 171.1, 155.3, 154.9, 136.8, 136.4, 128.6, 128.5, 128.4, 128.3, 

128.1, 128.0, 93.0, 92.5, 67.7, 67.4, 67.2, 51.4, 41.6, 41.4, 41.0, 40.6, 29.0, 7.3, 3.1; IR (film): 

2953, 2876, 1701, 1654, 1610 cm–1; HRMS–APCI (m/z) [M + H]+ calcd for C21H31NO5Si+, 

406.2044; found, 406.2043.   

Note: 4.21 was obtained as a mixture of rotamers. These data represent empirically observed 

chemical shifts from the 13C-NMR spectrum. 

 

 

Vinylogous acid 4.22. To a solution of diisopropylamine (0.698 mL, 4.98 mmol, 1.2 equiv) in 

Et2O (15.0 mL) at –78 °C was added n-BuLi (2.49 M in hexanes, 2.00 mL, 49.8 mmol, 1.2 equiv) 

i.   LDA (1.2 equiv), Et2O, –78 °C

ii.  HMPA (1.0 equiv)
     Mander's Reagent (1.2 equiv)
     –78 °C

(57% yield)
4.22

CbzN
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MeO O
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O

SiEt3

Me Me



 180 

dropwise over 5 min. The reaction was stirred at –78 °C for 15 min, then allowed to stir at 23 °C 

for 30 min. Then the reaction mixture was cooled to –78 °C and a solution of ketone 4.18 (1.50 g, 

4.15 mmol, 1.0 equiv) in Et2O (15.0 mL) was added via cannula over 30 min. After stirring for      

2 h at –78 °C, HMPA (0.722 mL, 4.15 mmol, 1.0 equiv) and Mander’s Reagent (0.396 mL, 4.98 

mmol, 1.2 equiv) were added dropwise sequentially over 3 min at –78 °C. After stirring for 1 h, 

deionized water (50.0 mL) was added and the reaction was allowed to warm to 23 °C. The layers 

were separated and the aqueous layer was extracted with Et2O (3 x 50 mL). The combined organic 

layers were then washed with deionized water (3 x 50 mL) and brine (1 x 50 mL), dried over 

Na2SO4, filtered, and concentrated under reduced pressure. The resulting crude oil was dry loaded 

on SiO2 and purified via flash chromatography (17:3 hexanes:EtOAc) to give vinylogous acid 4.22 

(1.00 g, 57% yield) as a colorless oil. Vinylogous acid 4.22: Rf  0.51 (4:1 hexanes:EtOAc);             

1H-NMR (500 MHz, CDCl3): δ 12.41 (s, 1H), 7.42–7.28 (m, 5H), 5.26–5.08 (m, 2H), 4.22–4.03 

(m, 2H), 3.84–3.66 (m, 4H), 3.31–3.19 (m, 1H), 1.28–1.13 (m, 3H), 1.03–0.86 (m, 9H), 0.76–0.57 

(m, 6H); 13C-NMR (125 MHz, CDCl3): δ 178.5, 177.7, 171.6, 168.7, 155.6, 155.2, 136.9, 136.6, 

128.7, 128.61, 128.60, 128.4, 128.2, 93.1, 92.6, 67.4, 51.6, 49.2, 41.5, 41.3, 32.8, 18.7, 7.9, 2.8; 

IR (film): 2954, 2877, 1706, 1655, 1607, 1242 cm–1; HRMS–APCI (m/z) [M + H]+ calcd for 

C22H35NO5Si+, 420.2201; found, 420.2207.  

Note: 4.22 was obtained as a mixture of rotamers. These data represent empirically observed 

chemical shifts from the 13C-NMR spectrum. 
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Silyl triflate 4.23. To a solution of NaH (124 mg, 5.18 mmol, 2.1 equiv) in CH2Cl2 (16.4 mL) at 

0 °C was added a solution of vinylogous acid 4.21 (1.0 g, 2.47 mmol, 1.0 equiv) in CH2Cl2 (8.2 

mL) dropwise over 25 min and allowed to warm to 23 °C. After stirring for 1 h, the reaction was 

cooled to –78 °C and Tf2O (540 µL, 3.21 mmol, 1.3 equiv) was added dropwise over 1 min. After 

stirring for 15 min, the reaction was allowed to warm to 23 °C and stirred for 2 h. The reaction 

was cooled to 0 °C and was quenched by the addition of deionized water (50 mL). The layers were 

separated and the aqueous layer was extracted with CH2Cl2 (3 x 60 mL). The combined organic 

layers were dried over Na2SO4, filtered, and concentrated under reduced pressure to provide the 

crude product, which was purified by flash chromatography (19:1 hexanes:EtOAc) to afford silyl 

triflate 4.23 as a light yellow oil (1.0 g, 75% yield). Silyl triflate 4.23: Rf  0.23 (9:1 hexanes:EtOAc); 

1H-NMR (400 MHz, CDCl3): δ 7.41–7.29 (m, 5H), 5.29–5.07 (m, 2H), 4.53–4.34 (m, 1H),       

4.27–4.07 (m, 2H), 3.79 (s, 3H), 3.39 (dd, J = 13.1, 4.1, 1H), 2.17–2.03 (m, 1H), 0.98–0.83 (m, 

9H), 0.72–0.53 (m, 6H); 13C-NMR (100 MHz, CDCl3): δ 163.2, 155.3, 154.9, 136.2, 128.6, 128.3, 

118.3 (q, JC–F = 321.0), 115.3, 67.7, 52.2, 43.4, 42.0, 30.0, 29.7, 7.0, 2.7; 19F NMR (376 MHz, 

CDCl3): δ –74.1; IR (film): 2957, 2879, 1711, 1424, 1213 cm–1; HRMS–APCI (m/z) [M + H]+ 

calcd for C22H31F3NO7SSi+, 538.1537; found, 538.1550. 

Note: 4.23 was obtained as a mixture of rotamers. These data represent empirically observed 

chemical shifts from the 13C-NMR spectrum.  

 

i.   NaH (2.1 equiv)
     CH2Cl2, 0 → 23 °C

ii.  Tf2O (1.3 equiv)
     –78 → 23 °C

(75% yield) 4.23
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SiEt3
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Silyl triflate 4.24. To a solution of NaH (7.2 mg, 0.300 mmol, 2.1 equiv) in CH2Cl2 (1.2 mL) at  

0 °C was added a solution of vinylogous acid 4.22 (60.0 mg, 0.143 mmol, 1.0 equiv) in CH2Cl2 

(0.4 mL) dropwise over 2 min and allowed to warm to 23 °C. After stirring for 1 h, the reaction 

was cooled to –78 °C and Tf2O (31.3 µL, 0.186 mmol, 1.3 equiv) was added dropwise over 1 min. 

After stirring for 30 min, the cooling bath was removed and the reaction was stirred at 23 °C for  

2 h, then the reaction was quenched by the addition of deionized water (5 mL) at 0 °C. The layers 

were separated and the aqueous layer was extracted with CH2Cl2 (3 x 10 mL). The combined 

organic layers were dried over Na2SO4, filtered, and concentrated under reduced pressure to 

provide the crude product, which was purified by flash chromatography (19:1 hexanes:EtOAc) to 

afford silyl triflate 4.24 as a colorless oil (59.7 mg, 76% yield). Silyl triflate 4.24: Rf  0.41 (4:1 

hexanes:EtOAc); 1H-NMR (500 MHz, CDCl3): δ 7.40–7.30 (m, 5H), 5.30–5.04 (m, 2H), 4.81–

4.65 (m, 1H), 3.97–3.85 (m, 1H), 3.81–3.64 (m, 4H), 3.50–3.33 (m, 1H), 1.36–1.17 (m, 3H), 1.07–

0.91 (m, 9H), 0.79–0.61 (m, 6H); 13C-NMR (125 MHz, CDCl3): δ 164.2, 157.1, 155.4, 154.8, 

136.3, 128.7, 128.4, 128.3, 118.3 (q, JC–F = 318.7), 117.9, 117.4, 67.9, 52.5, 50.3, 44.4, 34.0, 18.2, 

7.8; 19F NMR (376 MHz, CDCl3): δ –72.5; IR (film): 2957, 2880, 1710, 1423, 1210 cm–1; HRMS–

APCI (m/z) [M + H]+ calcd for C23H33F3NO7SSi+, 552.1694; found, 552.1793. 

Note: 4.24 was obtained as a mixture of rotamers. These data represent empirically observed 

chemical shifts from the 13C-NMR spectrum. 

 

 

i.   NaH (2.1 equiv)
     CH2Cl2, 0 → 23 °C

ii.  Tf2O (1.3 equiv)
     –78 → 23 °C

(76% yield) 4.24

CbzN

OTf
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4.9.2.2 Diels–Alder Trapping Experiments 

Representative Procedure (Preparation of cycloadduct 4.32 is used as an example).  

 

Cycloadduct 4.32. To a stirred solution of silyl triflate 4.19 (52.1 mg, 0.108 mmol, 1.0 equiv) and 

N-phenylpyrrole (4.29a, 77.6 mg, 0.543 mmol, 5.0 equiv) in CH3CN (1.1 mL) was added CsF 

(82.5 mg, 0.543 mmol, 5.0 equiv). The reaction vessel was sealed and allowed to stir at 23 °C for 

4 h. The reaction mixture was filtered by passage through a plug of silica gel (EtOAc eluent,           

10 mL). Evaporation under reduced pressure yielded the crude residue, which was purified by 

preparative thin layer chromatography (2:1 hexanes:EtOAc) to afford cycloadduct 4.32 as a light 

yellow amorphous solid (77% yield, 4.7:1 dr, average of two experiments). Diastereomeric ratio 

was determined by integrating the following peaks in the 1H-NMR spectrum of the crude reaction 

mixture (Ha Major: 3.64 ppm; Minor: 3.80 ppm). Cycloadduct 4.32: Rf  0.26 (2:1 hexanes:EtOAc); 

1H-NMR (500 MHz, CDCl3): δ 7.38–7.28 (m, 5H), 7.23–7.16 (m, 2H), 6.89–6.83 (m, 1H), 6.80 

(d, J = 6.9, 2H), 6.32–6.26 (m, 1H), 6.09–5.99 (m, 1H), 5.75–5.61 (m, 1H), 5.18–5.06 (m, 2H), 

4.87 (s, 1H), 4.76–4.67 (m, 1H), 4.51–4.30 (m, 1H), 4.28–4.16 (m 1H), 3.60 (d, J = 18.4, 1H), 

2.56–2.46 (m, 1H), 1.91 (dt, J = 31.5, 11.3, 1H); 13C-NMR (125 MHz, CDCl3): δ 155.9, 155.4, 

146.6, 139.3, 138.9, 136.9, 135.0, 134.7, 129.2, 129.1, 128.8, 128.6, 128.2, 128.1, 128.0, 120.8, 

120.7, 117.6, 117.5, 114.8, 114.4, 67.3, 65.4, 65.3, 45.7, 45.5, 43.9, 43.5, 39.3, 39.1; IR (film): 

3033, 2862, 1697, 1497, 1415 cm–1; HRMS–APCI (m/z) [M + H]+ calcd for C23H23N2O2+, 

359.1754; found, 359.1744.   
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(77% yield)
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Note: 4.32 was obtained as a mixture of rotamers. These data represent empirically observed 

chemical shifts from the 13C-NMR spectrum. 

 

The structure of 4.32 was verified by 2D-NOESY, as the following interaction was observed: 

 

All reactions were monitored by TLC until starting material was consumed; the specific times are 

listed in the reaction scheme for each reaction. Any modifications of the conditions shown in this 

representative procedure are specified in the following schemes, which depict all of the results 

shown in Table 4.1. For all compounds in which the diastereomeric ratios were >20:1, the minor 

diastereomer was not observed in the 1H-NMR of the crude reaction mixture.  

 

 

Cycloadduct 4.33. Purification by preparative thin layer chromatography                                          

(2:1:1 hexanes:CH2Cl2:Et2O) afforded an inseparable mixture of cycloadducts 4.33 and 4.66 as a 

light yellow amorphous solid (77% yield, 7.4:1 dr, average of two experiments). Diastereomeric 

ratio was determined by integrating the following peaks in the 1H-NMR spectrum of the crude 

reaction mixture (Ha Major: 5.61 ppm; Minor: 5.82 ppm). Cycloadducts 4.33 and 4.66 were 

characterized as a mixture of diastereomers. Cycloadducts 4.33 and 4.66: Rf  0.47                               
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(1:1 hexanes:EtOAc); 1H-NMR (400 MHz, CDCl3): 4.33 (major isomer): δ 7.41–7.28 (m, 5H), 

6.41–6.32 (m, 1H), 6.09 (dd, J = 15.3, 5.4, 1H), 5.67–5.54 (m, 1H), 5.20–5.02 (m, 4H), 4.56–4.35 

(m, 1H), 4.33–4.19 (m, 1H), 3.65–3.55 (m, 1H), 2.62–2.51 (m, 1H), 1.86–1.71 (m, 1H);                 

4.66 (minor isomer) δ 7.41–7.28 (m, 5H), 6.55–6.49 (m, 1H), 6.41–6.32 (m, 1H), 5.88–5.76 (m, 

1H), 5.20–5.02 (m, 3H), 4.85–4.77 (m, 1H), 4.56–4.35 (m, 1H), 4.33–4.19 (m, 1H), 3.81–3.72 (m, 

1H), 2.62–2.51 (m, 1H), 2.06–1.97 (m, 1H); 13C-NMR (100 MHz, CDCl3): δ 156.0, 155.5, 138.9, 

138.6, 136.9, 136.1, 135.8, 129.5, 129.4, 128.6, 128.2, 128.0, 113.4, 113.0, 81.3, 80.1, 80.0, 79.9, 

79.4, 77.4, 67.3, 45.6, 45.4, 43.8, 43.3, 40.1, 40.0; IR (film): 3008, 2866, 1691, 1414, 1229 cm–1; 

HRMS–APCI (m/z) [M + H]+ calcd for C17H18NO3+, 284.1281; found, 284.1271.   

Note: 4.33 and 4.66 were obtained as a mixture of rotamers. These data represent empirically 

observed chemical shifts from the 13C-NMR spectrum. 

 

The structures of 4.33 and 4.66 were verified by 2D-NOESY, as the following interactions were 

observed: 

 

 

 

Cycloadduct 4.34. Purification by preparative thin layer chromatography                                          

(2:1:1 hexanes:CH2Cl2:Et2O) afforded cycloadduct 4.34 as a colorless oil (82% yield, 13.7:1 dr, 
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average of two experiments). Diastereomeric ratio was determined by integrating the following 

peaks in the 1H-NMR spectrum of the crude reaction mixture (Ha Major: 5.48 ppm;                     

Minor: 5.65 ppm). Cycloadduct 4.34: Rf  0.67 (1:1 hexanes:EtOAc); 1H-NMR (500 MHz, CDCl3): 

δ 7.42–7.27 (m, 5H), 6.15–6.09 (m, 1H), 5.88 (dd, J = 14.7, 5.2, 1H), 5.53–5.41 (m, 1H),             

5.22–5.10 (m, 2H), 4.47–4.20 (m, 2H), 3.60 (ddd, J = 18.0, 4.2, 2.2, 1H), 2.37–2.30 (m, 1H), 1.80 

(dt, J = 34.3, 11.3, 1H), 1.66–1.50 (m, 6H); 13C-NMR (125 MHz, CDCl3): δ 156.0, 155.6, 145.3, 

145.0, 139.9, 139.6, 136.95, 136.90, 133.6, 133.4, 128.9, 128.7, 128.6, 128.2, 128.0, 111.6, 111.1, 

87.0, 86.8, 67.3, 67.2, 47.1, 47.0, 45.3, 45.1, 43.7, 43.2, 18.1, 15.6, 15.01, 14.97; IR (film): 2974, 

2931, 1702, 1606, 1416 cm–1; HRMS–APCI (m/z) [M + H]+ calcd for C19H22NO3+, 312.1600; 

found, 312.1593.   

Note: 4.34 was obtained as a mixture of rotamers. These data represent empirically observed 

chemical shifts from the 13C-NMR spectrum. 

 

The structure of 4.34 was verified by 2D-NOESY, as the following interaction was observed: 

 

 

Cycloadduct 4.35. Purification by preparative thin layer chromatography (3:1 hexanes:EtOAc) 

afforded cycloadduct 4.35 as a colorless oil (73% yield, >20:1 dr, average of two experiments). 
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Cycloadduct 4.35: Rf  0.23 (3:1 hexanes:EtOAc); 1H-NMR (500 MHz, CDCl3): δ 7.39–7.29 (m, 

5H), 7.23–7.17 (m, 2H), 6.89–6.83 (m, 1H), 6.80 (d, J = 8.2, 2H), 6.37–6.30 (m, 1H), 6.08–5.98 

(m, 1H), 5.20–5.01 (m, 3H), 4.75–4.66 (m, 1H), 4.37 (ddd, J = 69.6, 11.4, 4.9, 1H), 4.18–4.06 (m, 

1H), 3.54–3.38 (m, 1H), 2.55–2.46 (m, 1H), 1.94–1.76 (m, 4H); 13C-NMR (125 MHz, CDCl3): δ 

155.7, 155.3, 146.8, 136.9, 134.3, 134.0, 132.3, 131.9, 129.1, 128.9, 128.70, 128.69, 128.6, 128.3, 

128.12, 128.09, 122.3, 121.9, 120.8, 120.7, 117.7, 117.6, 67.25, 67.22, 65.5, 65.4, 63.8, 47.7, 47.3, 

45.7, 45.5, 38.9, 38.6, 16.99, 16.97; IR (film): 3033, 2857, 1691, 1416, 1235 cm–1; HRMS–APCI 

(m/z) [M + H]+ calcd for C24H25N2O2+, 373.1911; found, 373.1905.   

Note: 4.35 was obtained as a mixture of rotamers. These data represent empirically observed 

chemical shifts from the 1H and 13C-NMR spectra. 

 

The structure of 4.35 was verified by 2D-NOESY, as the following interaction was observed: 

 

 

 

Cycloadduct 4.36. Purification by flash chromatography (2:1:1 hexanes:CH2Cl2:Et2O) afforded 

cycloadduct 4.36 as a light yellow oil (73% yield, 12.8:1 dr, average of two experiments). 

Diastereomeric ratio was determined by integrating the following peaks in the 1H-NMR spectrum 
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of the crude reaction mixture (Major: 6.41 ppm; Minor: 6.51 ppm). Cycloadduct 4.36: Rf  0.71 (1:1 

hexanes:Et2O); 1H-NMR (600 MHz, C6D6): δ 7.32–7.28 (m, 2H), 7.15–7.10 (m, 2H), 7.08–7.04 

(m, 1H), 5.91–5.85 (m, 1H), 5.51–5.45 (m, 1H), 5.27–5.21 (m, 1H), 5.20–5.14 (m, 1H), 4.97 (br. 

s, 1H), 4.60–4.55 (m, 1H), 4.52–3.93 (m, 2H), 3.30–3.03 (m, 1H), 2.41–2.29 (m, 1H), 1.46–1.36 

(m, 1H), 1.22–1.13 (m, 3H); 13C-NMR (125 MHz, CDCl3): δ 155.7, 155.3, 136.8, 135.4, 135.2, 

132.0, 131.6, 129.5, 129.3, 128.6, 128.5, 128.3, 128.04, 128.01, 127.98, 121.1, 120.6, 80.1, 80.0, 

78.6, 67.2, 47.5, 47.1, 45.4, 45.2, 39.5, 39.3, 16.8; IR (film): 2923, 1697, 1416, 1236, 1115 cm–1; 

HRMS–APCI (m/z) [M + H]+ calcd for C18H20NO3+, 298.1438; found, 298.1433.   

Note: 4.36 was obtained as a mixture of rotamers. These data represent empirically observed 

chemical shifts from the 1H and 13C-NMR spectra. 

 

The structure of 4.36 was verified by 2D-NOESY, as the following interaction was observed: 

 

 

 

Cycloadduct 4.37. Purification by flash chromatography (2:1:1 hexanes:CH2Cl2:Et2O) afforded 

an inseparable mixture of cycloadducts 4.37 and 4.63 as a light yellow oil (74% yield, 3.1:1 ratio 

of regioisomers, >20:1 dr, average of two experiments). Regioisomeric ratio was determined by 
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integrating the following peaks in the 1H-NMR spectrum of the crude reaction mixture                     

(Ha Major: 5.87 ppm; Minor: 5.97 ppm). Cycloadducts 4.37 and 4.63 were characterized as a 

mixture of regioisomers. Cycloadducts 4.37 and 4.63: Rf  0.10 (9:1 hexanes:EtOAc); 1H-NMR (500 

MHz, CDCl3): 4.37 (major isomer): δ 7.39–7.28 (m, 5H), 6.25–6.20 (m, 1H), 5.87 (dd, J = 13.3, 

5.4, 1H), 5.21–5.11 (m, 2H), 4.38–4.00 (m, 2H), 3.43–3.34 (m, 1H), 2.34–2.27 (m, 1H), 1.81–1.71 

(m, 6H), 1.63–1.59 (m, 3H), 1.10 (d, J = 4.5, 1H); 4.63 (minor isomer) δ 7.39–7.28 (m, 5H), 6.06 

(dd, J = 9.0, 5.4, 1H), 5.97 (dd, J = 17.3, 5.4, 1H), 5.46–5.35 (m, 1H), 5.21–5.11 (m, 2H), 4.38–

4.00 (m, 2H), 3.68 (dt, J = 17.3, 5.1, 1H), 2.21–2.14 (m, 1H), 1.81–1.71 (m, 3H), 1.63–1.59 (m, 

3H), 1.54–1.50 (m, 3H); 13C-NMR (125 MHz, CDCl3): δ 156.5, 155.7, 155.3, 149.3, 148.9, 139.7, 

139.4, 139.3, 137.2, 137.0, 135.5, 133.8, 133.7, 128.9, 128.72, 128.65, 128.2, 128.14, 128.11, 

128.0, 127.9, 120.2, 119.6, 110.3, 89.1, 87.4, 86.6, 86.3, 86.1, 67.9, 67.3, 67.25, 67.17, 51.7, 51.6, 

48.4, 47.9, 47.5, 47.2, 45.94, 45.89, 45.1, 44.9, 43.2, 42.7, 29.8, 27.6, 18.2, 18.10, 18.09, 18.0, 

17.5, 15.8, 15.2, 15.1, 14.59, 14.57; IR (film): 3032, 2932, 1701, 1416, 1239 cm–1; HRMS–APCI 

(m/z) [M + H]+ calcd for C20H24NO3+, 326.1748; found, 326.1751.   

Note: 4.37 and 4.63 were obtained as a mixture of rotamers. These data represent empirically 

observed chemical shifts from the 13C-NMR spectrum. 

 

The structures of 4.37 and 4.63 were verified by 2D-NOESY, as the following interactions were 

observed: 
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Cycloadduct 4.38. Purification by preparative thin layer chromatography (2:1 hexanes:EtOAc) 

afforded cycloadduct 4.38 as a colorless oil (75% yield, >14:1 dr, average of two experiments). 

Diastereomeric ratio was determined by integrating the following peaks in the 1H-NMR spectrum 

of the crude reaction mixture (Ha Major: 5.73 ppm; Minor: 5.86 ppm). Cycloadduct 4.38: Rf  0.29 

(2:1 hexanes:EtOAc); 1H-NMR (500 MHz, CDCl3): δ 7.39–7.27 (m, 5H), 6.55–6.32 (m, 1H), 

6.29–6.02 (m, 1H), 5.79–5.67 (m, 1H), 5.20–5.01 (m, 4H), 4.78–4.60 (m, 1H), 4.36–4.26 (m, 1H), 

3.68–3.50 (m, 4H), 1.99 (dd, J = 13.7, 12.2, 1H), 1.39 (s, 9H); 13C-NMR (125 MHz, CDCl3): δ 

171.7, 155.7, 155.1, 154.6, 139.9, 139.6, 138.0, 137.8, 136.6, 136.5, 136.0, 135.7, 131.3, 131.0, 

129.5, 129.2, 128.52, 128.48, 128.1, 128.0, 127.8, 116.7, 116.4, 80.8, 67.2, 66.3, 65.6, 63.6, 62.9, 

55.0, 54.5, 52.7, 49.2, 48.9, 43.8, 43.4, 28.2; IR (film): 2978, 2950, 1732, 1704, 1278 cm–1; 

HRMS–APCI (m/z) [M + H]+ calcd for C20H29N2O6+, 441.2020; found, 441.2017. 

Note: 4.38 was obtained as a mixture of rotamers. These data represent empirically observed 

chemical shifts from the 1H and 13C-NMR spectra. 

 

The structure of 4.38 was verified by 2D-NOESY, as the following interaction was observed: 
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(5.0 equiv)
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Cycloadduct 4.39. Purification by flash chromatography (2:1 hexanes:EtOAc) afforded 

cycloadduct 4.39 as a colorless oil (74% yield, >9:1 dr, average of two experiments). 

Diastereomeric ratio was determined by integrating the following peaks in the 1H-NMR spectrum 

of the crude reaction mixture (Ha Major: 4.33 ppm; not unambiguously assigned Ha or Hb Minor: 

2.86 ppm). Cycloadduct 4.39: Rf  0.19 (2:1 hexanes:EtOAc); 1H-NMR (500 MHz, CDCl3):                 

δ 7.43–7.27 (m, 5H), 6.52–6.45 (m, 1H), 6.42–6.15 (m, 1H), 5.82–5.72 (m, 1H), 5.41–5.31 (m, 

1H), 5.28 (s, 1H), 5.19–5.07 (m, 2H), 4.74 (dd, J = 33.8, 11.9, 1H), 4.39–4.29 (m, 1H), 3.68–3.54 

(m, 4H), 1.98 (dd, J = 19.3, 12.1, 1H); 13C-NMR (100 MHz, CDCl3): δ 172.4, 171.9, 155.8, 155.1, 

138.6, 138.3, 137.1, 136.9, 136.7, 136.6, 129.7, 129.5, 128.52, 128.50, 128.1, 128.01, 127.98, 

127.81, 116.4, 116.2, 83.6, 83.5, 79.8, 79.7, 77.4, 77.2, 77.0, 76.7, 67.2, 54.44, 54.35, 52.7, 49.3, 

49.0, 43.7, 43.4, 30.0; IR (film): 3029, 2951, 2854, 1728, 1692 cm–1; HRMS–APCI (m/z) [M + 

H]+ calcd for C19H20NO5+, 342.1336; found, 342.1354.   

Note: 4.39 was obtained as a mixture of rotamers. These data represent empirically observed 

chemical shifts from the 1H and 13C-NMR spectra. 

 

The structure of 4.39 was verified by 2D-NOESY, as the following interaction was observed: 
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Cycloadduct 4.40. Purification by preparative thin layer chromatography (2:1 hexanes:EtOAc) 

afforded cycloadduct 4.40 as a colorless oil (95% yield, >20:1 dr, average of two experiments). 

Cycloadduct 4.40: Rf  0.25 (2:1 hexanes:EtOAc); 1H-NMR (500 MHz, CDCl3): δ 7.43–7.28 (m, 

5H), 6.20 (dd,  J =  8.6, 5.4, 1H), 5.99–5.92 (m, 1H), 5.65–5.53 (m, 1H), 5.22–5.10 (m, 2H), 4.93–

4.77 (m, 1H), 4.21–4.12 (m, 1H), 3.68–3.58 (m, 4H), 1.97 (dd, J = 15.1, 11.4, 1H), 1.71 (s, 3H), 

1.60–1.55 (m, 3H); 13C-NMR (125 MHz, CDCl3, 60 °C): δ 171.4, 155.4, 144.4, 141.5, 136.9, 

134.5, 128.4 127.9, 127.8, 112.9, 88.8, 86.8, 67.1, 58.3, 52.0, 49.1, 43.3, 16.3, 14.6; IR (film): 

2979, 2933, 1723, 1705, 1412 cm–1; HRMS–APCI (m/z) [M + H]+ calcd for C21H24NO5+, 

370.1649; found, 370.1657. 

Note: 4.40 was obtained as a mixture of rotamers. These data represent empirically observed 

chemical shifts from the 1H and 13C-NMR spectra. 

 

The structure of 4.40 was verified by 2D-NOESY, as the following interaction was observed: 
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Cycloadduct 4.41. Purification by preparative thin layer chromatography (3:1 hexanes:EtOAc) 

afforded cycloadduct 4.41 as a white amorphous solid (95% yield, >20:1 dr, average of two 

experiments). Cycloadduct 4.41: Rf  0.18 (3:1 hexanes:EtOAc); 1H-NMR (500 MHz, CDCl3): δ 

7.40–7.29 (m, 5H), 7.21–7.15 (m, 2H), 6.86 (t, J = 7.1, 1H), 6.80 (t, J = 7.8, 2H), 6.43–6.36 (m, 

1H), 5.98–5.90 (m, 1H), 5.18–5.05 (m, 4H), 4.71–4.57 (m, 1H), 4.34–4.23 (m, 1H), 3.62–3.49 (m, 

3H), 3.47–3.39 (m, 1H), 2.10–2.02 (m, 1H), 1.85–1.79 (m, 3H); 13C-NMR (125 MHz, CDCl3): δ 

173.3, 172.8, 155.8, 155.2, 146.1, 146.0, 137.0, 136.9, 136.73, 136.69, 130.8, 130.5, 128.8, 128.64, 

128.62, 128.2, 128.12, 128.11, 128.0, 127.9, 127.6, 123.9, 123.5, 121.1, 118.70, 118.67, 67.31, 

67.28, 64.6, 54.8, 54.6, 52.7, 52.6, 49.0, 48.6, 47.8, 47.5, 17.15, 17.12; IR (film): 3032, 2950, 

1726, 1696, 1418 cm–1; HRMS–APCI (m/z) [M + H]+ calcd for C26H27N2O4+, 431.1965; found, 

431.1950. 

Note: 4.41 was obtained as a mixture of rotamers. These data represent empirically observed 

chemical shifts from the 13C-NMR spectrum. 

 

The structure of 4.41 was verified by 2D-NOESY, as the following interaction was observed: 
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Cycloadduct 4.42. Purification by preparative thin layer chromatography (2:1 hexanes:EtOAc) 

afforded cycloadduct 4.42 as a colorless oil (93% yield, >20:1 dr, average of two experiments). 

Cycloadduct 4.42: Rf  0.40 (1:1 hexanes:EtOAc); 1H-NMR (500 MHz, CDCl3): δ 7.42–7.28 (m, 

5H), 6.56–6.50 (m, 1H), 6.22–6.13 (m, 1H), 5.40 (br s, 1H), 5.39–5.30 (m, 1H), 5.18–5.06 (m, 

2H), 4.76–4.63 (m, 1H), 4.27–4.17 (m, 1H), 3.65–3.53 (m, 3H), 3.43–3.37 (m, 1H), 1.98–1.90 (m, 

1H), 1.79–1.74 (m, 3H); 13C-NMR (125 MHz, CDCl3): δ 173.0, 172.5, 155.7, 155.1, 138.1, 137.8, 

136.8, 136.7, 130.8, 130.5, 130.0, 129.8, 128.6, 128.21, 128.15, 128.1, 128.0, 124.5, 124.2, 83.8, 

83.7, 78.9, 78.8, 67.35, 67.32, 54.1, 54.0, 52.8, 52.7, 49.3, 49.0, 47.7, 47.3, 17.2; IR (film): 2951, 

1726, 1695, 1416, 1212, 1126 cm–1; HRMS–APCI (m/z) [M + H]+ calcd for C20H22NO5+, 

356.1493; found, 356.1495. 

Note: 4.42 was obtained as a mixture of rotamers. These data represent empirically observed 

chemical shifts from the 1H and 13C-NMR spectra. 

 

The structure of 4.42 was verified by 2D-NOESY, as the following interaction was observed: 
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Cycloadduct 4.43. Purification by preparative thin layer chromatography (2:1 hexanes:EtOAc) 

afforded 4.43 as a colorless oil (95% yield, >20:1 dr, average of two experiments). Cycloadduct 

4.43: Rf  0.14 (3:1 hexanes:EtOAc); 1H-NMR (500 MHz, CDCl3, 50 °C): δ 7.44–7.27 (m, 5H), 

6.31 (d, J = 4.8, 1H), 5.93 (d, J = 4.8, 1H), 5.19–5.12 (m, 2H), 4.83–4.69 (m, 1H), 4.02 (d, J = 

18.1, 1H), 3.60 (s, 3H), 3.40 (d, J = 17.4, 1H), 2.00–1.91 (m, 1H), 1.86 (s, 3H), 1.79 (s, 3H), 1.56 

(s, 3H); 13C-NMR (125 MHz, CDCl3): δ 171.8, 171.7, 155.7, 155.5, 144.6, 144.1, 141.8, 141.5, 

136.95, 136.89, 134.6, 134.4, 128.6, 128.1, 128.05, 127.99, 113.3, 113.0, 89.0, 88.9, 87.04, 87.01, 

67.3, 66.0, 58.4, 58.3, 52.5, 52.4, 49.1, 49.0, 43.5, 43.1, 16.54, 16.51, 15.4, 14.83, 14.81; IR (film): 

2982, 1722, 1709, 1414, 1280 cm–1; HRMS–APCI (m/z) [M + H]+ calcd for C22H26NO5+, 

384.1811; found, 384.1795. 

Note: 4.43 was obtained as a mixture of rotamers. These data represent empirically observed 

chemical shifts from the 13C-NMR spectrum. 

 

The structure of 4.43 was verified by 2D-NOESY, as the following interaction was observed: 
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4.9.2.3 (3+2) and (2+2) Trapping Experiments 

Representative Procedure (Preparation of isoxazolidine 4.46 is used as an example).  

 

Isoxazolidine 4.46. To a stirred solution of silyl triflate 4.19 (51.4 mg, 0.107 mmol, 1.0 equiv) and 

trapping agent (nitrone 4.45, 24.7 mg, 0.214 mmol, 2.0 equiv) in CH3CN (1.1 mL) was added CsF 

(81.5 mg, 0.536 mmol, 5.0 equiv). The reaction vessel was sealed and allowed to stir at 23 °C for 

8 h. The reaction mixture was filtered by passage through a plug of silica gel (EtOAc eluent,            

10 mL). Evaporation under reduced pressure yielded the crude residue, which was purified by 

preparative thin layer chromatography (3:1 hexanes:EtOAc) to afford isoxazolidine 4.46 as a clear, 

colorless oil (88% yield, >20:1 dr, average of two experiments). Isoxazolidine 4.46: Rf  0.29          

(3:1 hexanes:EtOAc); 1H-NMR (500 MHz, CDCl3): δ 7.40–7.28 (m, 5H), 5.49–5.36 (m, 1H), 5.15 

(s, 2H), 4.76–4.54 (m, 1H), 4.44–4.42 (m, 2H), 3.72 (q, J = 6.2, 1H), 3.65–3.50, (m, 1H), 2.61–

2.46 (m, 1H), 1.28 (d, J = 6.4, 3H), 1.10 (s, 9H) ; 13C-NMR (100 MHz, CDCl3): δ 155.6, 155.3, 

146.4, 146.1, 136.5, 128.5, 128.1, 128.0, 112.5, 111.9, 70.0, 67.4, 58.7, 57.0, 44.3, 43.9, 43.2, 42.9, 

26.3, 25.8, 23.9; IR (film): 2972, 2929, 2871, 1696, 1418 cm–1; HRMS–APCI (m/z) [M + H]+ calcd 

for C19H27N2O3+, 331.2016; found, 331.2026.   

Note: 4.46 was obtained as a mixture of rotamers. These data represent empirically observed 

chemical shifts from the 13C-NMR spectrum. 

 

The structure of 4.46 was verified by 2D-NOESY, as the following interaction was observed: 
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Any modifications of the conditions shown in this representative procedure are specified in the 

following schemes, which depict all of the results shown in Table 4.2. Diastereomeric and 

regioisomeric ratios were determined by 1H-NMR of the crude reaction mixtures. For all 

compounds in which the diastereomeric ratios were >20:1, the minor diastereomer was not 

observed in the 1H-NMR spectra of the crude reaction mixture. 

 

 

Isoxazolidine 4.48. In this reaction, nitrone 4.47 was utilized as a mixture of double bond isomers 

(6.4:1 ratio, major isomer depicted). Purification by preparative thin layer chromatography (5:1 

hexanes:EtOAc) afforded isoxazolidine 4.48 as a colorless oil (85% yield, 5.4:1 dr, average of two 

experiments). Diastereomeric ratio was determined by integrating the following peaks in the         

1H-NMR spectrum of the crude reaction mixture (Ha Major: 5.98 ppm; Minor: 5.52 ppm). 

Isoxazolidine 4.48: Rf  0.49 (3:1 hexanes:EtOAc); 1H-NMR (500 MHz, CDCl3): δ 7.66–7.59 (m, 

2H), 7.45–7.32 (m, 8H) 6.05–5.90 (m, 1H), 5.24–5.15 (m, 2H), 4.82–4.44 (m, 3H), 3.85–3.68 (m, 

1H), 2.78–2.63 (m, 1H), 2.60 (s, 3H); 13C-NMR (125 MHz, CDCl3): δ 155.5, 155.3, 141.3, 140.8, 

136.4, 136.3, 133.1 133.0, 129.4, 128.8, 128.7, 128.4, 128.3, 128.2, 125.4 (q, JC–F = 287), 121.4, 
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120.8, 72.1, 67.8, 44.4, 43.9, 43.7, 43.4, 41.5, 41.2; IR (film): 3032, 1704, 1497, 1111, 729 cm–1; 

HRMS–APCI (m/z) [M + H]+ calcd for C22H22F3N2O3+, 419.1577; found, 419.1556.   

Note: 4.48 was obtained as a mixture of rotamers. These data represent empirically observed 

chemical shifts from the 13C-NMR spectrum. 

 

The structure of 4.48 was verified by 2D-NOESY, as the following interaction was observed: 

  

 

 

Isoxazolidine 4.50. Purification by preparative thin layer chromatography (1:1 hexanes:EtOAc) 

afforded isoxazolidine 4.50 as a clear, colorless oil (72% yield, 8.3:1 dr, average of two 

experiments). Diastereomeric ratio was determined by integrating the following peaks in the         

1H-NMR spectrum of the crude reaction mixture (Ha Major: 5.57 ppm; Minor: 5.47 ppm). 

Isoxazolidine 4.50: Rf  0.41 (100% EtOAc); 1H-NMR (500 MHz, CDCl3): δ 7.43–7.30 (m, 5H), 

5.68–5.51 (m, 1H), 5.20–5.11 (m, 2H), 4.72–4.49 (m, 1H), 4.46–4.26 (m, 2H), 4.22–4.13 (m, 1H), 

3.70–3.53 (m, 1H), 3.32–3.16 (m, 2H), 2.62–2.44 (m, 1H), 2.13–2.01 (m, 1H), 1.89–1.68 (m, 3H); 

13C-NMR (125 MHz, CDCl3): δ 155.7, 155.4, 145.5, 145.1, 135.5, 128.7, 128.3, 128.1, 114.8, 
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114.3, 70.5, 67.6, 67.2, 58.2, 58.1; 44.8, 44.4, 43.3, 43.0, 32.4, 25.2; IR (film) 2947, 1695, 1419, 

1224, 979 cm–1; HRMS–APCI (m/z) [M + H]+ calcd for C17H21N2O3+, 301.1547; found, 301.1531.   

Note: 4.50 was obtained as a mixture of rotamers. These data represent empirically observed 

chemical shifts from the 13C-NMR spectrum. 

 

The structure of 4.50 was verified by 2D-NOESY, as the following interactions were observed: 

  

 

 

Isoxazolidine 4.52. Purification by preparative thin layer chromatography (3:1 hexanes:EtOAc) 

afforded isoxazolidine 4.52 as a colorless oil (Quantitative yield, 5.3:1 dr, average of two 

experiments). Diastereomeric ratio was determined by integrating the following peaks in the         

1H-NMR spectrum of the crude reaction mixture (Ha Major: 5.34 ppm; Minor: 5.94 ppm). 

Isoxazolidine 4.52: Rf  0.14 (3:1 hexanes:EtOAc); 1H-NMR (500 MHz, CDCl3): δ 7.40–7.30 (m, 

5H), 7.28–7.20 (m, 2H), 7.17–7.12 (m, 2H) 5.43–5.28 (m, 1H), 5.20–5.13 (m, 2H), 5.0 (s, 1H), 

4.87–4.67 (m, 1H), 4.51–4.29 (m, 2H), 3.60–3.46 (m, 1H), 3.29–3.20 (m, 1H), 3.07–2.98 (m, 1H), 

2.88–2.80 (m, 1H), 2.77–2.69 (m, 1H), 2.57–2.43 (m, 1H) ; 13C-NMR (100 MHz, CDCl3): δ 155.4, 
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155.2, 142.5, 142.1, 136.4, 134.0, 131.6, 128.6, 128.5, 128.2, 128.0, 127.2, 126.3, 117.8, 117.2, 

72.7, 67.5, 64.4, 51.2, 47.2, 46.8, 43.2, 42.9, 28.8; IR (film): 3030,  2850, 1707, 1223, 1417 cm–1; 

HRMS–APCI (m/z) [M + H]+ calcd for C22H23N2O3+, 363.1703; found, 363.1703.   

Note: 4.52 was obtained as a mixture of rotamers. These data represent empirically observed 

chemical shifts from the 13C-NMR spectrum. 

 

The structure of 4.52 was verified by 2D-NOESY, as the following interaction was observed: 

	 	

	

	
Pyrazolidine 4.54. Purification by preparative thin layer chromatography (3:1 hexanes:EtOAc) 

afforded pyrazolidine 4.54 as a colorless oil (68% yield, 10.6:1 dr, average of two experiments). 

Diastereomeric ratio was determined by integrating the following peaks in the 1H-NMR spectrum 

of the crude reaction mixture (Ha Major: 5.56 ppm; Minor: 6.05 ppm). Pyrazolidine 4.54: Rf  0.66 

(100% EtOAc); 1H-NMR (500 MHz, CDCl3): δ 7.42–7.26 (m, 10H), 5.63–5.48 (m, 1H), 5.27–

5.06 (m, 3H), 4.44–4.16 (m, 3H), 3.75–3.60 (m, 1H), 3.49–3.38 (m, 1H), 3.05 (q, J = 9.8, 1H), 

2.99–2.85 (m, 1H), 2.68–2.47 (m, 2H); 13C-NMR (125 MHz, CDCl3): δ 168.4, 155.5, 143.1, 142.6, 
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138.0, 136.5, 129.1, 128.7, 128.6, 128.33, 128.27, 128.1, 118.3, 117.8, 71.8, 67.6, 52.7, 50.0, 

43.52, 43.47, 43.2, 34.7; IR (film): 3032, 2251, 1683, 1417, 906 cm–1; HRMS–APCI (m/z) [M + 

H]+ calcd for C23H24N3O3+, 390.1812; found, 390.1822.   

Note: 4.54 was obtained as a mixture of rotamers. These data represent empirically observed 

chemical shifts from the 13C-NMR spectrum. 

 

The structure of 4.54 was verified by 2D-NOESY, as the following interaction was observed: 

 

Note: The closest aromatic protons of the Cbz group are estimated to be roughly 6.7 Å away from 

the methine proton used for the NOE assignment. On the other hand, the distance between the 

shown phenyl C–H and the methine is roughly 2.2 Å (based on examination of a computed 

geometry-optimized structure). A correlation between the two methine protons in 4.54 was not 

observed. 
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Pyrazolidine 4.56. Purification by preparative thin layer chromatography (19:1 CH2Cl2:MeOH) 

afforded pyrazolidine 4.56 as a colorless oil (81% yield, 14:3 dr, average of two experiments). 

Diastereomeric ratio was determined by integrating the following peaks in the 1H-NMR spectrum 

of the crude reaction mixture (Ha Major: 5.53 ppm; Minor: 6.07 ppm). Pyrazolidine 4.56: Rf  0.29 

(19:1, CH2Cl2:MeOH); 1H-NMR (300 MHz, CDCl3): δ 8.62–8.53 (m, 2H), 7.70–7.61 (m, 1H), 

7.43–7.27 (m, 6H), 5.62–5.46 (m, 1H), 5.32–5.07 (m, 3H), 4.48–4.30 (m, 1H), 4.27 (s, 1H), 4.14 

(br s, 1H), 3.76–3.58 (m, 1H), 3.55–3.43 (m, 1H), 3.09–2.86 (m, 2H) 2.76–2.61 (m, 2H); 13C-NMR 

(100 MHz, CDCl3): δ 167.7, 155.4, 150.1, 149.4, 142.2, 136.5, 135.4, 134.2, 128.7, 128.3, 124.0, 

118.9, 118.4, 69.5, 67.7, 52.7, 49.6, 43.6, 43.3, 43.0, 34.7; IR (film) 3032, 2251, 1683, 1417, 906 

cm–1; HRMS–APCI (m/z) [M + H]+ calcd for C23H24N3O3+, 390.1812; found, 390.1822.   

Note: 4.56 was obtained as a mixture of rotamers. These data represent empirically observed 

chemical shifts from the 13C-NMR spectrum. 

 

The structure of 4.56 was verified by 2D-NOESY, as the following interaction was observed: 
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Isoxazoline 4.58. Purification by preparative thin layer chromatography (5:1 hexanes:EtOAc) 

afforded isoxazoline 4.58 as a colorless oil (81%, average of two experiments). Isoxazoline 4.58: 

Rf  0.23 (3:1 hexanes:EtOAc); 1H-NMR (500 MHz, CDCl3): δ 7.42–7.30 (m, 5H), 6.91 (d, J = 4.5, 

2H), 5.64–5.50 (m, 1H), 5.20 (m, 2H),  5.07–4.86 (m, 2H), 4.56–4.35 (m, 1H), 3.85–3.68 (m, 1H), 

2.87–2.71 (m, 1H), 2.30 (s, 3H), 2.17 (s, 6H); 13C-NMR (125 MHz, CDCl3): δ 156.8, 156.6, 155.5, 

155.3, 142.0, 141.7, 139.3, 137.6, 137.5, 137.2, 136.21, 136.16, 128.6, 128.53, 128.50, 128.3, 

128.2, 128.1, 123.4, 123.3, 118.7, 117.9, 76.2, 76.0, 67.8, 44.9, 44.5, 43.4, 43.1, 21.1, 19.9, 19.7; 

IR (film): 2919, 1705, 1415, 1248, 852 cm–1; HRMS–APCI (m/z) [M + H]+ calcd for C23H25N2O3+, 

377.1860; found, 377.1842.    

Note: 4.58 was obtained as a mixture of rotamers. These data represent empirically observed 

chemical shifts from the 13C-NMR spectrum. 

 

	
Cycloadduct 4.60. Purification by preparative thin layer chromatography (5:1 hexanes:EtOAc) 

afforded cycloadduct 4.60 as a colorless oil (78%, average of two experiments). Cycloadduct 4.60: 

Rf  0.41 (5:1 hexanes:EtOAc); 1H-NMR (500 MHz, CDCl3): δ 7.39–7.29 (m, 5H), 5.51–5.40 (m, 
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1H), 5.22–5.09 (m, 2H), 4.46–4.20 (m, 2H), 3.68–3.56 (m, 1H), 3.52–3.35 (m, 4H), 3.06–2.95 (m, 

1H), 2.88 (s, 2H), 2.84–2.75 (m, 1H), 1.21 (t, J = 7.1, 3H), 1.16 (t, J = 7.1, 3H); 13C-NMR (125 

MHz, CDCl3): δ 156.2, 155.9, 137.0, 132.7, 132.2, 128.6, 128.08, 128.06, 128.03, 128.01, 114.1, 

113.5, 102.3, 102.2, 67.2, 67.1, 58.1, 58.0, 50.0, 49.8, 44.1, 43.7, 41.8, 40.8, 40.4, 15.3, 15.2; IR 

(film): 2976, 2929, 1699, 1418, 1228 cm–1; HRMS–APCI (m/z) [M + H]+ calcd for C19H26NO4+, 

332.1856; found, 332.1852.   

Note: 4.60 was obtained as a mixture of rotamers. These data represent empirically observed 

chemical shifts from the 13C-NMR spectrum. 

 

The structure of 4.60 was verified by 2D-NOESY, as the following interaction was observed: 

  

 

4.9.2.4 Enantiospecific Trapping Experiments 

4.9.2.4.1 Separation of Ketones 4.17 and 4.18 

Compound 4.17 was separated into its enantiomers by Lotus Separations on 2.0 gram scale.  

Preparative Method:    Analytical Method: 

AS-H (2 x 25 cm)    AS-H (25 x 0.46 cm) 

10% isopropanol in CO2, 100 bar  10% isopropanol/CO2, 100 bar   

60 mL/min, 220 nm    3 mL/min, 220 and 280 nm 
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4.60
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OEt

H
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Racemic 4.17:  

 
Figure 4.6. SFC trace for rac-4.17. 

 

Enantioenriched (+)-4.17 (Peak-1b was used for our studies):  

 

Index Time (min) Area (%) 
Peak-1a 3.03 2.702 

Imp 4.02 1.512 
Peak-1b 4.94 95.786 

Total  100.00 
Figure 4.7. SFC trace for (+)-4.17. 
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Compound 4.18 was separated into its enantiomers by Lotus Separations (1.0 gram, batch). 

Preparative Method:    Analytical Method: 

AD-H (3 x 25 cm)    AD-H (25 x 0.46 cm) 

10% methanol/CO2, 100 bar   15% methanol/CO2, 100 bar   

70 mL/min, 220 nm    3 mL/min, 220 and 280 nm 

inj vol.: 1 mL, 20 mg/mL acetonitrile:DCM 

>1.0 gram was processed using this method in batch 

Racemic 4.18:  

 

Figure 4.8. SFC trace for rac-4.18. 
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Enantioenriched (–)-4.18 (Peak 1 was used for cycloadditions to form (+)-4.35 and (+)-4.37) 

    
Index Time (min) Area (%) 
Imp 1.62 6.624 
Imp 2.43 1.138 

Peak-1 2.62 90.770 
Imp 2.77 0.745 

Peak-2 2.99 0.211 
Imp 3.49 0.512 
Total  100.00 

 
Figure 4.9. SFC trace for (–)-4.18. 

 
Enantioenriched (+)-4.18 (Peak 2 was used for cycloaddition to form (–)-4.36): 
 

 

Index Time (min) Area (%) 
Imp 1.65 6.596 

Peak-1 2.63 0.343 
Imp 2.88 0.583 

Peak-2 2.98 92.478 
Total  100.00 

 
Figure 4.10. SFC trace for (+)-4.18. 
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4.9.2.4.2 Synthesis of Enantioenriched Silyl Triflates (+)-4.23 and (+)-4.20 

 

Silyl triflate (+)-4.23. Followed procedure outlined for the preparation of 4.23 in section 4.9.2.1. 

Spectral data matched those previously reported (see page 180). [α]28.0D +128.0° (c = 1.00, 

CH2Cl2). 

 

 

Silyl triflate (+)-4.20. Followed procedure outlined for the preparation of 4.20 on pages in section 

4.9.2.1. Spectral data matched those previously reported (see page 177). [α]28.8D +36.0° (c = 1.00, 

CH2Cl2). 
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Verification of enantioenrichment of compounds 4.23 and 4.20: 

Compound 
Method 

Column/Temp. 
Solvent 

Method 

Flow Rate 

Retention 

Times 

(min) 

Enantiomeric 

Ratio 

(er) 

 

Daicel 

ChiralPak 

OD-H/35°C 

3% 

isopropanol 

in CO2 

2 mL/min 9.96/10.71 ~48.5:51.5 

 

Daicel 

ChiralPak 

OD-H/35°C 

3% 

isopropanol 

in CO2 

2 mL/min 9.76/10.34 ~93.7:6.3 

 

Daicel 

ChiralPak 

AD-3/35 °C 

3% 

isopropanol 

in CO2 

2 mL/min 6.17/6.80 49.9:50.1 

 

Daicel 

ChiralPak 

AD-3/35 °C 

3% 

isopropanol 

in CO2 

2 mL/min 5.95/6.66 99.6:0.4 

 

Note: Although the two enantiomers of 4.23 were unable to be completely resolved utilizing 

various column conditions, this result was ultimately deemed inconsequential and not pursued 

further. 
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Figure 4.11. SFC trace for rac-4.23. 
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Figure 4.12. SFC trace for (+)-4.23. 
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Figure 4.13. SFC trace for rac-4.20. 
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Figure 4.14. SFC trace for (+)-4.20. 
 

4.9.2.4.3 Transfer of Chirality in Cycloaddition Reactions 

 

Cycloadduct 4.38. Followed procedure outlined for the preparation of 4.38 in section 4.9.2.2 (0.1 

mmol scale). Spectral data matched those previously reported (see page 190). [α]25.6D 0.0° (c = 

1.00, CH2Cl2). 
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Cycloadduct 4.39. Followed procedure outlined for the preparation of 4.39 in section 4.9.2.2 (0.1 

mmol scale). Spectral data matched those previously reported (see page 191).  

 

 

Cycloadduct 4.40. Followed procedure outlined for the preparation of 4.40 in section 4.9.2.2 (0.1 

mmol scale). Spectral data matched those previously reported (see page 192). [α]25.9D 0.0°      (c = 

1.00, CH2Cl2). 

 

 

Cycloadduct (+)-4.30. Followed procedure outlined for the preparation of 4.35 in section 4.9.2.2 

(0.1 mmol scale). Spectral data matched those previously reported (see page 187). [α]25.1D 518.0° 

(c = 1.00, CH2Cl2). 
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Cycloadduct (–)-4.31. Followed procedure outlined for the preparation of 4.36 in section 4.9.2.2 

(0.1 mmol scale). Spectral data matched those previously reported (see page 187). [α]28.0D –56.0° 

(c = 1.00, CH2Cl2). 

 

Cycloadduct (+)-4.32  and (+)-4.63. Followed procedure outlined for the preparation of 4.37 and 

4.63 in section 4.9.2.2 (0.1 mmol scale). Spectral data matched those previously reported (see page 

188). [α]25.7D 332.0° (c = 1.00, CH2Cl2). 
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Verification of enantioenrichment of compounds 4.39, (+)-4.35, (–)-4.36, (+)-4.37, and          

(+)-4.63: 

Compound 
Method 

Column/Temp. 
Solvent 

Method 

Flow Rate 

Retention 

Times 

(min) 

Enantiomeric 

Ratio 

(er) 

 

Daicel 

ChiralPak 

IA-3/35 °C 

20% 

isopropanol 

in CO2 

2 mL/min 5.69/9.16 50.5:49.5 

 

Daicel 

ChiralPak 

IA-3/35 °C 

20% 

isopropanol 

in CO2 

2 mL/min 5.79/9.50 49.8:50.2 

 

Daicel 

ChiralPak 

IA-3/35 °C 

20% 

methanol in 

CO2 

3.5 

mL/min 
6.42/8.53 49.9:50.1 

 

Daicel 

ChiralPak 

IA-3/35 °C 

20% 

methanol in 

CO2 

3.5 

mL/min 
6.22/8.31 90.7:9.3 

 

Daicel 

ChiralPak 

OJ-H/35 °C 

8% 

isopropanol 

in CO2 

2 mL/min 10.60/13.30 49.1:50.9 
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Daicel 

ChiralPak 

OJ-H/35 °C 

8% 

isopropanol 

in CO2 

2 mL/min 10.66/13.42 6.4:93.6 

 

Daicel 

ChiralPak 

IC-3/35 °C 

5% 

methanol in 

CO2 

3.5 

mL/min 
15.67/16.63 49.4:50.6 
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ChiralPak 

IC-3/35 °C 

5% 

methanol in 

CO2 

3.5 

mL/min 
15.58/16.63 98.9:1.1 
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5% 

methanol in 

CO2 

3.5 

mL/min 
12.28/13.06 50.6:49.4 
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Figure 4.15. SFC trace for rac-4.39 from rac-4.23. 
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Figure 4.16. SFC trace for rac-4.39 from (+)-4.23. 
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Figure 4.17. SFC trace for rac-4.35 from rac-4.20. 
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Figure 4.18. SFC trace for (+)-4.35 from (–)-4.20. 
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Figure 4.19. SFC trace for rac-4.36 from rac-4.20. 
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Figure 4.20. SFC trace for (–)-4.36 from (+)-4.20. 
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Figure 4.21. SFC trace for rac-4.37 from rac-4.20. 
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Figure 4.22. SFC trace for (+)-4.37 from (–)-4.20. 
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Figure 4.23. SFC trace for rac-4.63 from rac-4.20. 
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Figure 4.24. SFC trace for (+)-4.63 from (–)-4.20. 
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were obtained by single point energies at the HF/6-31G(d) level of theory. Computed structures 

are illustrated using CYLView.50  

 

4.9.3.1 Complete Reference of Gaussian 09 

Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; 

Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; 

Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; 

Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; 

Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, 

E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; 

Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, 

M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. 

E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, 

K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; 

Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Rev. D.01; 

Gaussian, Inc., Wallingford, CT, 2010. 

 

4.9.3.2 Choice of Computational Method 

DFT methods were examined to study the Diels–Alder cycloaddition of allene 4.62 with 

furan (4.30) (Figure 4.25). Calculations using B3LYP/6-31G(d) were able to successfully explain 

the observed diastereoselectivity, however they did not correctly account for the observed 

regioselectivity. M0-62X was not able to predict either the observed diastereoselectivity or 

regioselectivity. Computations with wB97XD/6-31G(d) were able to predict both the observed 
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regioselectivity and the diastereoselectivity and was further optimized to include solvent 

(wB97XD/6-311+G(d,p)/SMD(MeCN)) to give the best correlation with experimental results. We 

then applied this optimal level of theory to cycloaddition between allene 4.61 and furan (4.30) and 

again found good agreement with experimental results (Figure 4.26). 

 

 

Figure 4.25. DFT methods tested to correlate experimental results on the high regioselectivity 
and diastereoselectivity observed in the cycloaddition between allene 4.62 and furan (4.30). All 

calculated energies are reported in kcal/mol. 
 

 

Figure 4.26. DFT methods tested to correlate experimental results on the high regioselectivity 
and diastereoselectivity observed in the cycloaddition between allene 4.61 and furan (4.30). All 

calculated energies are reported in kcal/mol. 
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4.9.3.3 Strain Energy in 3,4-Azacyclohexadiene 

 

A homodesmic equation at the wB97XD/6-31G(d)+ZPVE level of theory was used to estimate 

strain in 3,4-azacyclohexadiene 4.14. Molecular strain in 3,4-azacyclohexadiene 4.14 was 

calculated relative to penta-2,3-diene (4.13). 

4.9.3.4 Geometries of TS 4.1, TS 4.2, and Diastereomeric Transition States 
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Transition states geometries for concerted cycloadditions of allenes 4.61 and 4.62 with furan (4.30) 

at the wB97XD/6-31G(d) level of theory. TS 4.1 and TS 4.2 lead to endo products (major 

diastereomers) while TS 4.3 and TS 4.4 lead to exo products. ΔG‡ values are also provided 

(wB97XD/6-311+G(d,p)/SMD(MeCN)//wB97XD/6-31G(d)). 

4.9.3.5 Geometries of Cycloadducts 

 

Optimized structures of endo and exo products from cycloaddition of allenes 4.61 and 4.62 with 

4.30. Cycloaddition products from Diels–Alder reaction of allenes 4.61 and 4.62 with furan (4.30). 

4.69 and 4.66 are endo diastereomers while 4.70 and 4.67 are exo diastereomers. All of the 

displayed cycloadducts are considered the observed major regioisomers. 
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4.9.3.6 Geometries of Regioisomeric Transition States 

 

Transition states geometries for concerted cycloadditions of allenes 4.61 and 4.62 with furan (4.30) 

leading to minor regioisomers (endo diastereomers). TS 4.5 and TS 4.6 were optimized at the 

wB97XD/6-31G(d) level of theory. ΔG‡ and ΔE‡ values are also provided in kcal/mol 

(wB97XD/6-311+G(d,p)/SMD(MeCN)//wB97XD/6-31G(d)). 

4.9.3.7 Distortion/Interaction Activation Strain Analyses 

Distortion/interaction activation strain analyses were performed along the reaction 

coordinate for cycloadditions of allenes 4.61 and 4.62 with furan (4.30) at the ωB97XD/6-

311+G(d,p)/SMD(MeCN)//ωB97XD/6-31G(d) level of theory. The purpose was to determine the 

relative importance of distortion and interaction energies along the reaction pathway. 

Endo pathways leading to the two possible regioisomers were analyzed in each case. In 

Figures 4.27 and 4.28, the total electronic energy (ΔE), distortion energy (ΔEdist), and interaction 

energy (ΔEint) are plotted versus the average length of the two forming bonds (χ). For the reaction 

of allene 4.61 with furan (4.30), the total energies are lower as reactants proceed toward the 

transition state (Figure 4.27). Although distortion energies are slightly more elevated in the 

pathway leading to the major regioisomer, interaction energies are much lower. This indicates that 
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there are more stabilizing HOMO/LUMO interactions in the pathway leading to the major 

regioisomer. 

A similar trend in interaction energies is observed for cycloaddition of allene 4.62 with 

furan (4.30) as demonstrated in Figure 4.28. Interaction energies are much more stabilizing in the 

pathway leading to the major regioisomer, indicating that regioselectivity is controlled by 

differences in interaction energies along the reaction coordinate. Additionally, distortion energies 

are slightly lower for the pathway leading to the major regioisomer. 

 

 

Figure 4.27. Distortion/interaction activation strain analysis along the reaction coordinate in the 
Diels–Alder reaction of allene 4.61 with furan (4.30). Concerted endo pathways leading to two 
possible regioisomers are plotted. The last points to the right are the respective transition states. 
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Figure 4.28. Distortion/interaction activation strain analysis along the reaction coordinate in the 
Diels–Alder reaction of allene 4.62 with furan (4.30). Concerted endo pathways leading to two 
possible regioisomers are plotted. The last points to the right are the respective transition states. 

 

4.9.3.8 Racemization Barriers 

 

The barrier for racemization of 1,2-cyclohexadiene (4.3) was calculated at the wB97XD/6-

311+G(d,p)//wB97XD/6-31G(d)/SMD(MeCN) level of theory. Racemization was found to 

proceed via a diradical transition state (TS 4.7) and with a barrier of 13.7 kcal/mol. This value is 

in close proximity to the literature reported value (15.0 kcal/mol).6 
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The barrier for racemization of ester allene 4.62 was calculated at the wB97XD/6-

311+G(d,p)/SMD(MeCN) level of theory. Racemization was found to proceed via a diradical 

transition state (TS 4.8) and with a barrier of 14.1 kcal/mol. 

 

 

The barrier for racemization of methyl allene 4.61 was calculated at the wB97XD/6-

311+G(d,p)/SMD(MeCN) level of theory. Racemization was found to proceed via a diradical 

transition state (TS 4.9) and with a barrier of 16.4 kcal/mol. 

 

4.9.3.9 Energies and Cartesian Coordinates for Optimized Structures 

Cartesian coordinates for the optimized structures were reported in the literature.51 
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4.10 Spectra Relevant to Chapter Four: 

 

Diels–Alder Cycloadditions of Strained Azacyclic Allenes 

 

Joyann S. Barber,† Michael M. Yamano,† Melissa Ramirez, Evan R. Darzi,  

Rachel R. Knapp, Fang Liu, K. N. Houk, and Neil K. Garg. 

Nat. Chem. 2018, 10, 953–960. 
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Figure 4.29. 1H NMR (400 MHz, CDCl3) of compound 4.65.  

 
Figure 4.30. 13C NMR (100 MHz, CDCl3) of compound 4.65.  
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Figure 4.31. 1H NMR (400 MHz, CDCl3) of compound 4.16.  

 
Figure 4.32. 13C NMR (125 MHz, CDCl3) of compound 4.16.  
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Figure 4.33. 1H NMR (500 MHz, CDCl3) of compound 4.17.  

 
Figure 4.34. 13C NMR (125 MHz, CDCl3) of compound 4.17.  
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Figure 4.35. 1H NMR (500 MHz, CDCl3) of compound 4.18.  

 
Figure 4.36. 13C NMR (125 MHz, CDCl3) of compound 4.18.  
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Figure 4.37. 1H NMR (500 MHz, CDCl3) of compound 4.19.  

 
Figure 4.38. 13C NMR (125 MHz, CDCl3) of compound 4.19.  
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Figure 4.39. 1H NMR (500 MHz, CDCl3) of compound 4.20.  

 
Figure 4.40. 13C NMR (125 MHz, CDCl3) of compound 4.20.  
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Figure 4.41. 1H NMR (500 MHz, CDCl3) of compound 4.21.  

 
Figure 4.42. 13C NMR (125 MHz, CDCl3) of compound 4.21.  
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Figure 4.43. 1H NMR (500 MHz, CDCl3) of compound 4.22.  

 
Figure 4.44. 13C NMR (125 MHz, CDCl3) of compound 4.22.  
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Figure 4.45. 1H NMR (400 MHz, CDCl3) of compound 4.23.  

 
Figure 4.46. 13C NMR (100 MHz, CDCl3) of compound 4.23.  
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Figure 4.47. 1H NMR (500 MHz, CDCl3) of compound 4.24.  

 
Figure 4.48. 13C NMR (125 MHz, CDCl3) of compound 4.24.  
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Figure 4.49. 1H NMR (500 MHz, CDCl3) of compound 4.32.  

 
Figure 4.50. 13C NMR (125 MHz, CDCl3) of compound 4.32. 
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Figure 4.51. 1H NMR (400 MHz, CDCl3) of compounds 4.33 and 4.66.  

 
Figure 4.52. 13C NMR (100 MHz, CDCl3) of compounds 4.33 and 4.66. 
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Figure 4.53. 1H NMR (500 MHz, CDCl3) of compound 4.34.  

 
Figure 4.54. 13C NMR (125 MHz, CDCl3) of compound 4.34. 
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Figure 4.55. 1H NMR (500 MHz, CDCl3) of compound 4.35.  

 
Figure 4.56. 13C NMR (125 MHz, CDCl3) of compound 4.35. 

10 9 8 7 6 5 4 3 2 1 0 ppm

1.
77

7
1.

81
0

1.
82

0
1.

84
4

1.
86

7
1.

91
1

2.
49

0
2.

49
5

2.
50

4
3.

39
3

3.
42

8
4.

07
3

4.
10

8
4.

12
1

4.
15

7
4.

42
8

4.
43

7
4.

45
1

4.
46

0
4.

68
6

4.
72

8
5.

02
3

5.
10

8
5.

12
6

5.
13

1
5.

14
1

5.
15

4
5.

16
6

5.
17

3
5.

99
5

6.
00

3
6.

00
6

6.
03

8
6.

04
2

6.
05

0
6.

05
3

6.
31

4
6.

32
0

6.
32

4
6.

79
4

6.
81

0
6.

84
0

6.
84

6
6.

85
5

7.
18

6
7.

20
1

7.
20

3
7.

21
4

7.
21

8
7.

31
6

7.
32

3
7.

33
0

7.
35

0
7.

35
7

4.
07

8

1.
05

9

0.
98

6

1.
05

2
1.

02
7

1.
04

8

3.
03

5

1.
00

0

0.
99

8

2.
01

1
1.

07
5

2.
05

4
5.

03
6

Current Data Parameters
NAME        MY-2-294a-p
EXPNO                 1
PROCNO                1

F2 - Acquisition Parameters
Date_          20170321
Time              17.49
INSTRUM          drx500
PROBHD   5 mm bb-Z Z800
PULPROG            zg30
TD                65536
SOLVENT           CDCl3
NS                    8
DS                    0
SWH           10000.000 Hz
FIDRES         0.152588 Hz
AQ            3.2767999 sec
RG                 90.5
DW               50.000 usec
DE                 6.00 usec
TE                297.0 K
D1           2.00000000 sec
TD0                   1

======== CHANNEL f1 ========
NUC1                 1H
P1                13.30 usec
PL1      0 dB
SFO1        500.3330020 MHz

F2 - Processing parameters
SI                32768
SF          500.3300220 MHz
WDW                  EM
SSB      0
LB                 0.30 Hz
GB       0
PC                 1.00

Purified Product, 1H NMR

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm

16
.9

69
16

.9
94

38
.6

12
38

.8
80

45
.4

53
45

.6
51

47
.3

06
47

.7
37

63
.7

89
65

.3
68

65
.5

20
67

.2
18

67
.2

49

11
7.

59
3

11
7.

68
9

12
0.

67
7

12
0.

75
8

12
1.

88
5

12
2.

33
5

12
8.

09
2

12
8.

12
9

12
8.

31
1

12
8.

62
5

12
8.

68
7

12
8.

70
2

12
8.

90
5

12
9.

14
4

13
1.

89
5

13
2.

32
9

13
3.

99
0

13
4.

26
5

13
6.

88
9

14
6.

76
8

15
5.

32
3

15
5.

72
8

Current Data Parameters
NAME     MY-2-284a-p-2d
EXPNO                 4
PROCNO                1

F2 - Acquisition Parameters
Date_          20170321
Time               2.51 h
INSTRUM           av500
PROBHD   Z119248_0002 (
PULPROG          zgpg30
TD                65536
SOLVENT           CDCl3
NS                 3400
DS                    2
SWH           31250.000 Hz
FIDRES         0.953674 Hz
AQ            1.0485760 sec
RG               204.54
DW               16.000 usec
DE                18.00 usec
TE                298.0 K
D1           2.00000000 sec
D11          0.03000000 sec
TD0                   1
SFO1        125.7722511 MHz
NUC1                13C
P1                 9.63 usec
PLW1        23.00000000 W
SFO2        500.1330008 MHz
NUC2                 1H
CPDPRG[2        waltz16
PCPD2             80.00 usec
PLW2        13.50000000 W
PLW12        0.21094000 W
PLW13        0.13500001 W

F2 - Processing parameters
SI               131072
SF          125.7577743 MHz
WDW                  EM
SSB      0
LB                 1.00 Hz
GB       0
PC                 1.40

Purified Product, 13C NMR

CbzN

4.35
rotamers

Me

NH

Ph



 251 

  
Figure 4.57. 1H NMR (600 MHz, C6D6) of compound 4.36.  

 
Figure 4.58. 13C NMR (125 MHz, CDCl3) of compound 4.36. 
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Figure 4.59. 1H NMR (500 MHz, CDCl3) of compounds 4.37 and 4.63.  

 
Figure 4.60. 13C NMR (125 MHz, CDCl3) of compounds 4.37 and 4.63. 
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Figure 4.61. 1H NMR (500 MHz, CDCl3) of compound 4.38.  

 
Figure 4.62. 13C NMR (125 MHz, CDCl3) of compound 4.38. 
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Figure 4.63. 1H NMR (500 MHz, CDCl3) of compound 4.39.  

 
Figure 4.64. 13C NMR (100 MHz, CDCl3) of compound 4.39. 
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Figure 4.65. 1H NMR (500 MHz, CDCl3) of compound 4.40.  

 
Figure 4.66. 13C NMR (125 MHz, CDCl3, 60 °C) of compound 4.40. 
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Figure 4.67. 1H NMR (500 MHz, CDCl3) of compound 4.41.  

 
Figure 4.68. 13C NMR (125 MHz, CDCl3) of compound 4.41. 
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Figure 4.69. 1H NMR (500 MHz, CDCl3) of compound 4.42.  

 
Figure 4.70. 13C NMR (125 MHz, CDCl3) of compound 4.42. 
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Figure 4.71. 1H NMR (500 MHz, CDCl3) of compound 4.43.  

 
Figure 4.72. 13C NMR (125 MHz, CDCl3) of compound 4.43. 
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Figure 4.73. 1H NMR (500 MHz, CDCl3) of compound 4.46.  

 
Figure 4.74. 13C NMR (100 MHz, CDCl3) of compound 4.46. 
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Figure 4.75. 1H NMR (500 MHz, CDCl3) of compound 4.48.  

 
Figure 4.76. 13C NMR (125 MHz, CDCl3) of compound 4.48. 
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Figure 4.77. 1H NMR (500 MHz, CDCl3) of compound 4.50.  

 
Figure 4.78. 13C NMR (125 MHz, CDCl3) of compound 4.50. 
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Figure 4.79. 1H NMR (500 MHz, CDCl3) of compound 4.52.  

 
Figure 4.80. 13C NMR (100 MHz, CDCl3) of compound 4.52. 
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Figure 4.81. 1H NMR (500 MHz, CDCl3) of compound 4.54.  

 
Figure 4.82. 13C NMR (125 MHz, CDCl3) of compound 4.54. 
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Figure 4.83. 1H NMR (300 MHz, CDCl3) of compound 4.56.  

 
Figure 4.84. 13C NMR (100 MHz, CDCl3) of compound 4.56. 

10 9 8 7 6 5 4 3 2 1 0 ppm

2.
65

7
2.

67
6

2.
68

5
2.

70
5

2.
94

1
2.

97
3

3.
00

6
3.

03
6

3.
06

9
3.

45
1

3.
47

4
3.

48
4

3.
49

4
3.

50
4

3.
50

8
3.

52
7

3.
61

9
3.

67
7

4.
14

2
4.

26
8

4.
36

2
4.

42
7

5.
12

5
5.

16
4

5.
19

0
5.

23
3

5.
50

2
5.

56
3

7.
28

7
7.

30
3

7.
31

5
7.

33
0

7.
35

2
7.

37
2

7.
64

1
7.

66
8

8.
56

1
8.

56
7

8.
57

6
8.

58
1

8.
59

2
8.

59
7

1.
99

2

2.
06

1

0.
99

1
1.

05
2

1.
00

9
1.

03
6

0.
95

1

3.
05

1

1.
00

5

5.
94

6

1.
01

8

1.
96

6

Current Data Parameters
NAME     MY-2017-099a-rp-b2-300
EXPNO                 1
PROCNO                1

F2 - Acquisition Parameters
Date_          20171211
Time              19.02
INSTRUM           av300
PROBHD   5 mm PABBO BB-
PULPROG            zg30
TD                65536
SOLVENT           CDCl3
NS                    8
DS                    0
SWH            5995.204 Hz
FIDRES         0.091480 Hz
AQ            5.4657025 sec
RG                322.5
DW               83.400 usec
DE                 6.00 usec
TE                297.8 K
D1           2.00000000 sec
TD0                   1

======== CHANNEL f1 ========
NUC1                 1H
P1                14.50 usec
PL1      0 dB
PL1W         9.31909847 W
SFO1        300.1318008 MHz

F2 - Processing parameters
SI                65536
SF          300.1300125 MHz
WDW                  EM
SSB      0
LB                 0.80 Hz
GB       0
PC                 1.40

Purified Product, 1H NMR

220 200 180 160 140 120 100 80 60 40 20 ppm

34
.7

16
43

.0
15

43
.2

80
43

.5
60

49
.5

86
52

.6
99

67
.6

60
69

.5
13

11
8.

37
0

11
8.

94
4

12
4.

01
8

12
8.

30
6

12
8.

66
4

13
4.

21
0

13
5.

43
5

13
6.

45
3

14
2.

23
6

14
9.

42
5

15
0.

12
7

15
5.

41
2

16
7.

73
6

Current Data Parameters
NAME     MY-2017-099a-p-b2-13c
EXPNO                60
PROCNO                1

F2 - Acquisition Parameters
Date_          20171211
Time              21.50
INSTRUM           av400
PROBHD   5 mm PABBO BB/
PULPROG          zgpg30
TD                65536
SOLVENT           CDCl3
NS                  520
DS                    0
SWH           25252.525 Hz
FIDRES         0.385323 Hz
AQ            1.2976128 sec
RG               189.85
DW               19.800 usec
DE                 6.50 usec
TE                299.2 K
D1           2.00000000 sec
D11          0.03000000 sec
TD0                   1

======== CHANNEL f1 ========
SFO1        100.6243395 MHz
NUC1                13C
P1                10.00 usec
PLW1        52.00000000 W

======== CHANNEL f2 ========
SFO2        400.1324008 MHz
NUC2                 1H
CPDPRG[2        waltz16
PCPD2             90.00 usec
PLW2        13.00000000 W
PLW12        0.36111000 W
PLW13        0.29249999 W

F2 - Processing parameters
SI                65536
SF          100.6127593 MHz
WDW                  EM
SSB      0
LB                 1.00 Hz
GB       0
PC                 1.40

Purified Product, 13C NMR

CbzN N
N

O
H

4.56
rotamers

N



 265 

 
Figure 4.85. 1H NMR (500 MHz, CDCl3) of compound 4.58.  

 
Figure 4.86. 13C NMR (125 MHz, CDCl3) of compound 4.58. 
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Figure 4.87. 1H NMR (500 MHz, CDCl3) of compound 4.60.  

 
Figure 4.88. 13C NMR (125 MHz, CDCl3) of compound 4.60. 
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CHAPTER FIVE  

 

Cycloadditions of Oxacyclic Allenes and a Catalytic Asymmetric Entryway to 

Enantioenriched Cyclic Allenes 

Michael M. Yamano, Rachel R. Knapp, Aurapat Ngamnithiporn, Melissa Ramirez, 

Kendall N. Houk, Brian M. Stoltz, and Neil K. Garg. 

Angew. Chem., Int. Ed.  2019, 58, 5653–5657.  

 

5.1 Abstract 

The chemistry of strained cyclic alkynes has undergone a renaissance over the past two 

decades. However, a related species, strained cyclic allenes, especially heterocyclic derivatives, 

have only recently resurfaced and represent another class of valuable intermediates. We report a 

mild and facile means to generate the parent 3,4-oxacyclic allene from a readily accessible silyl 

triflate precursor, and then trap it in (4+2), (3+2), and (2+2) reactions to provide a variety of 

cycloadducts. In addition, we describe a catalytic, decarboxylative asymmetric allylic alkylation 

performed on an α-silylated substrate, to ultimately permit access to an enantioenriched allene. 

Generation and trapping of the enantioenriched cyclic allene occurs with complete transfer of 

stereochemical information in a Diels–Alder cycloaddition via a point-chirality, axial-chirality, 

point-chirality transfer process.  

5.2 Introduction 

 Despite once being mere scientific curiosities, strained cyclic intermediates have become 

a popular arena for chemical discoveries. A notable breakthrough in the field was the discovery 

of benzyne (5.1), initially proposed by Wittig in 1942 and validated by Roberts and co-workers 
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in 1953 (Figure 5.1).1 In the modern era, benzyne (5.1) and other cyclic alkynes are readily used 

to make natural products, 2  medicinal agents, 3  agrochemicals, 4  materials,5  tools for chemical 

biology,6  and ligands for catalysis.7 , 8  The related intermediate 1,2-cyclohexadiene (5.2) has 

generally received less attention despite being validated not long after benzyne (5.1) in 1966.9 

Historically, theoretical studies of 5.2 and its derivatives have been popular.10 However, only 

recently has 5.2 seen synthetic use in cycloadditions.11 This is largely due to the fact that it can 

be accessed under mild fluoride-mediated conditions from silyl triflate 5.3.12,13  

One exciting opportunity in the field of strained cyclic intermediates is the ability to 

access heterocyclic allenes. Early efforts in this field relied on harsh reaction conditions;14,15 

however, we recently demonstrated that azacyclic allenes 5.4 (Figure 5.1) can be accessed using 

mild reaction conditions. Moreover, using chiral separation technology, enantioenriched 5.4 was 

intercepted (R=Cbz, R'=H, R''=Me), and its stereospecific trapping allowed for a unique 

approach to access enantioenriched cycloadducts.16 

 

Figure 5.1. Highlights of benzyne and cyclic allene chemistry and cycloadditions of oxacyclic 
allenes described in this study.  
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Given the potential for heterocyclic allenes to provide a facile means to rapidly assemble 

stereochemically-rich scaffolds,16 we wondered whether oxacyclic allenes 5.6 could be employed 

efficiently in cycloadditions to access oxygen-containing heterocycles. 17  Oxygenated 

heterocycles are often seen in natural products and drugs18,19,20,21 and are known bioisosteres for 

their nitrogen and sulfur-containing counterparts. 22  A single report by Christl and Schreck 

demonstrated that 5.6 (R'=H) could be generated using the Doering–Moore–Skattebøl reaction, 

however, this required harsh organolithium-based conditions.14 If 5.6 could be generated under 

mild conditions from silyl triflates 5.5, the synthetic utility of this species could be unlocked. 

Additionally, we sought to access 5.6 in enantioenriched form, ideally by preparing an 

enantioenriched precursor to the desired allene 5.6 using asymmetric catalysis. By accessing 

enantioenriched 5.5, we could explore the possibility of transferring stereochemical information 

from allene precursor 5.5 to cycloadduct 5.7, through a point-chirality, axial-chirality, point-

chirality transfer process. The results presented herein not only demonstrate the scope and utility 

of oxacyclic allene cycloadditions, but also showcase an exciting strategy that merges 

asymmetric catalysis with cyclic allene chemistry as a means to access enantioenriched 

scaffolds. 

5.3 Computational Analysis of 3,4-Oxacyclohexadiene  

 Density functional theory (DFT) calculations on the structure of heterocyclic allene 5.8 

were performed using ωB97XD/6-31G(d) (Figure 5.2).10a,10c,10d,23 The C=C bond length of the 

allene is 1.32 Å, which is only slightly longer than the C=C bond length in a linear allene.16 

Furthermore, the internal angle at the central allene carbon is 133°, which is a significant 

deviation from the typical internal angle of 180° seen in linear allenes. The allene π orbitals in 

5.8 are not perfectly orthogonal, resulting in the C–H bonds being twisted out-of-plane (i.e., 38° 
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and 41°). Thus, 5.8 is inherently chiral, in a manner analogous to linear allenes. The ground state 

geometry deviates from C2 symmetry because the molecule adopts an envelope shape; inversion 

of the envelope requires only 0.8 kcal/mol. Interestingly, oxacyclic allene 5.8 is calculated to 

possess 31.0 kcal/mol of strain energy, which is nearly 4 kcal/mol more than the azacyclic 

variant we previously reported.16 This difference can be attributed to the smaller atomic radius of 

oxygen and the shorter C–O bond length relative to the C–N bond length in the azacyclic variant. 

The significant strain associated with oxacyclic allene 5.8 is expected to promote rapid 

cycloadditions.  

 

Figure 5.2. Ground state structure of oxacyclic allene 5.8. The structure was computed using 
wB97XD/6-31G(d). 
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DABCO and TESCl. 25  Subsequent retro-Brook rearrangement furnished the desired a-silyl 

ketone 5.11. Finally, triflation afforded silyl triflate 5.12.16 Our three-step, scalable26 synthesis of 
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Currently, a-silyl ketones are most commonly prepared by 1,4-reduction of the corresponding 

a,b-unsaturated ketones.11a,12,16,27  

 

Scheme 5.1. Synthesis of silyl triflate 5.12.  

 
5.5 Scope of Methodology 
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product. The observed diastereoselectivity is supported by computations.26 It should be noted 
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heteroatoms.  
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Table 5.1. Mild generation of oxacyclic allene 5.8 and its trapping in Diels–Alder 
cycloadditions. 

 
aThe major diastereomer is shown. bYields reflect an average of two isolation experiments. 
cDiastereomeric ratios were determined by 1H NMR analysis of the crude reaction mixture. dThe 
reaction was performed at 60 °C for 2.5 h using 2.0 equiv of diene 5.21.  
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The results of the (3+2) and (2+2) cycloadditions are shown in Figure 5.3 and Table 5.2. 

The use of simple nitrones gave high yields of isoxazolidine products 5.27–5.29, whereas 

nitrones bearing either an indole or quinoline unit delivered cycloadducts 5.30 and 5.31. We also 

evaluated two cyclic nitrones where R'' and R''' of 5.25 were tethered, which furnished tri-  and 

tetracyclic products 5.32 and 5.33. Additionally, a ketone-derived nitrone was utilized, ultimately 

giving rise to the heteroatom-rich trifluoromethylated product 5.34. Azomethine imines 5.37 and 

5.39 were tested, giving rise to the corresponding pyrazolidines, 5.38 and 5.40, with good to 

excellent diastereoselectivity (Table 5.2, entries 1 and 2). The use of nitrile oxide 5.41 led to the 

formation of isoxazoline 5.42 in 91% yield (entry 3). With regard to a (2+2) cycloaddition, the 

use of indene (5.43) gave cyclobutane 5.44 in excellent yield and with high regioselectivity 

(entry 4).  
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Figure 5.3. (3+2) cycloadditions with nitrones. The major diastereomeric product is shown. 
Yields reflect an average of two isolation experiments. Diastereomeric ratios were determined by 

1H NMR analysis of the crude reaction mixture.  
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Table 5.2. Additional (3+2) and (2+2) cycloadditions. 

 
aThe major diastereomer is shown. bYields reflect an average of two isolation experiments. 
cDiastereomeric ratios were determined by 1H NMR analysis of the crude reaction mixture.  
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5.6 Catalytic Asymmetric Synthesis of an Oxacyclic Allene Precursor and Trapping 

As noted earlier, one of the most exciting opportunities regarding cyclic allene chemistry 

is the possibility of intercepting enantioenriched allenes for the synthesis of enantioenriched 

cycloadducts. In a seminal study, Christl and co-workers generated 1-phenyl-1,2-cyclohexadiene 

in enantioenriched form, as judged by the formation of an enantioenriched cycloadduct, albeit in 

low yield, likely owing to the necessary use of organolithium reagents.29 Our laboratory recently 

disclosed a mild, alternative strategy whereby silyl triflate precursors to the desired cyclic allenes 

could be employed in enantioenriched form.16 However, in both cases, the key substrates were 

only accessible through chiral separation technologies. A catalytic asymmetric strategy to access 

enantioenriched cyclic allene precursors has not been reported. 

Our efforts in this area are highlighted in Scheme 5.2. Enol carbonate 5.45 was formed 

by intercepting the enolate intermediate generated during the retro-Brook rearrangement of 5.10 

(see Scheme 5.1). This set the stage for a Pd-catalyzed decarboxylative asymmetric allylic 

alkylation. Allylation was attractive, given that allyl groups serve as versatile handles for further 

manipulation.30  After extensive experimentation,26 it was found that treatment of 5.45 with 

Pd(dmdba)2 and (S)-(CF3)3-tBu-PHOX ligand 5.47 in toluene at –10 °C gave the desired ketone 

5.46 in 9:1 er (81% ee) and 75% yield. This is the first example of a decarboxylative asymmetric 

allylic alkylation reaction being performed on an a-silyl-substituted enol carbonate. In fact, 

decarboxylative asymmetric allylic alkylations on substrates bearing a-heteroatoms are 

significantly underdeveloped.30, 31  5.46 was converted to silyl triflate 5.48 in one-step, thus 

establishing the first catalytic asymmetric strategy for the synthesis of enantioenriched cyclic 

allene precursors.  
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Scheme 5.2. Catalytic asymmetric approach and cycloaddition results.  
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surmise that enantioenriched 5.49 is formed under the mild reaction conditions with complete 

transfer of stereochemical information. In the case of the nitrone trapping, previous 
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computational studies have demonstrated that trapping may occur through either a stepwise or 

concerted pathway,11a which accounts for the partial loss of stereochemical information. 32 

However, in the case of the Diels–Alder reaction, it is likely that a concerted pathway is 

operative, based on our recent computational investigation of azacyclic allenes,16 thus leading to 

complete transfer of stereochemical information. 

The overall conversion of 5.48 to 5.49 to 5.52 deserves special attention. This is a 

scenario wherein the silyl-bearing stereocenter in 5.48 was ultimately accessed by asymmetric 

catalysis. The point chirality in 5.48 is then transferred to the axially chiral transient intermediate 

5.49, which is then relayed to product 5.52, which possesses point chirality. Enantioenriched 

cycloadduct 5.52 contains three stereocenters, none of which were present in the starting 

material, which bears only one stereocenter. The transformation occurs preferentially at the 

olefin more distal to the 2-phenyl allyl group undergoing cycloaddition. This is presumably 

because of favorable electronic interactions in the transition state based on our prior studies,16 

however, we cannot rule out the steric impact of the 2-Ph allyl chain as a contributor to the 

observed regioselectivity.  

5.7 Conclusion 

We have discovered an efficient synthetic route to prepare a silyl triflate precursor to 3,4-

oxacyclohexadiene, the first generation of an oxacyclic allene under mild conditions, and the in 

situ trapping of the oxacyclic allene in diastereo- and regioselective cycloadditions. These efforts 

collectively establish the synthetic utility of oxacyclic allenes for the rapid generation of 

complex heterocyclic scaffolds. In addition, we have uncovered the first catalytic, asymmetric 

approach to access an enantioenriched cyclic allene precursor. This relies on a Pd-catalyzed 

allylic allylation, performed for the first time on an a-silyl substituted substrate, which ultimately 
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permitted access to the necessary enantioenriched silyl triflate precursor. We show that trapping 

of the enantioenriched oxacyclic allene in a Diels–Alder reaction occurs with complete transfer 

of stereochemical information through a point-chirality, axial-chirality, point-chirality transfer 

process. These results showcase an exciting strategy that merges asymmetric catalysis with 

cyclic allene chemistry as a means to access densely functionalized, enantioenriched scaffolds. 
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5.8 Experimental Section  

5.8.1 Materials and Methods 

Unless stated otherwise, reactions were conducted in flame-dried glassware under an 

atmosphere of nitrogen using anhydrous solvents (freshly distilled or passed through activated 

alumina columns). All commercially obtained reagents were used as received unless otherwise 

specified. Cesium fluoride (CsF), tetrakis(triphenylphosphine)palladium(0) (Pd(PPh3)4), and 

tris(dibenzylideneacetone)dipalladium(0) (Pd2(dba)3) were obtained from Strem Chemicals. 

(1,3)-diphenylisobenzofuran (5.21), N-tert-butyl-a-phenylnitrone (5.55), chlorotrimethylsilane 

(TMSCl) were obtained from Alfa Aesar. N-(5-chloro-2-

pyridyl)bis(trifluoromethanesulfonimide) (Comins’ Reagent), n-butyllithium (n-BuLi), 

potassium bis(trimethylsilyl)amide (KHMDS), N-Boc pyrrole (5.17), N-phenylpyrrole (5.15), 

2,5-dimethylfuran (5.19), dicyclopentadiene, dimethylphenylsilyl chloride (PhMe2SiCl), and 

allyl chloroformate were obtained from Sigma Aldrich. Diisopropylamine and 1,4-

diazabicyclo[2.2.2]octane (DABCO) were obtained from Acros Organics. Indene (5.43) was 

purchased from Combi-Blocks. 2,5-dimethylfuran (5.19), TMSCl, and diisopropylamine were 

distilled over CaH2 prior to use. Allyl chloroformate was desiccated with CaCl2 and distilled 

prior to use. 5.17 was filtered over basic alumina prior to use. Dicyclopentadiene was cracked 

and cyclopentadiene (5.23) was stored at –80 °C prior to use.  Reaction temperatures were 

controlled using an IKAmag temperature modulator and, unless stated otherwise, reactions were 

performed at room temperature (approximately 23 °C). Thin layer chromatography (TLC) was 

conducted with EMD gel 60 F254 pre-coated plates (0.25 mm) and visualized using a 

combination of UV light, anisaldehyde, and potassium permanganate staining. Silicycle 

Siliaflash P60 (particle size 0.040–0.063 mm) was used for flash column chromatography. 1H-
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NMR and 2D-NOESY spectra were recorded on Bruker spectrometers (at 300, 400, 500, and 600 

MHz) and are reported relative to the residual solvent signal. Data for 1H-NMR spectra are 

reported as follows: chemical shift (δ ppm), multiplicity, coupling constant (Hz) and integration. 

13C-NMR spectra were recorded on Bruker spectrometers (at 100 and 125 MHz) and are reported 

relative to the residual solvent signal. Data for 13C-NMR spectra are reported in terms of 

chemical shift and, when necessary, multiplicity, and coupling constant (Hz). 19F NMR spectra 

were recorded on Bruker spectrometers (at 376 MHz) and reported in terms of chemical shift (δ 

ppm). IR spectra were obtained on a Perkin-Elmer UATR Two FT-IR spectrometer and are 

reported in terms of frequency of absorption (cm–1). Uncorrected melting points were measured 

using a Digimelt MPA160 melting point apparatus. DART-MS spectra were collected on a 

Thermo Exactive Plus MSD (Thermo Scientific) equipped with an ID-CUBE ion source and a 

Vapur Interface (IonSense Inc.). Both the source and MSD were controlled by Excalibur 

software v. 3.0.  The analyte was spotted onto OpenSpot sampling cards (IonSense Inc.) using 

CDCl3 as the solvent. Ionization was accomplished using UHP He (Airgas Inc.) plasma with no 

additional ionization agents. The mass calibration was carried out using Pierce LTQ Velos ESI 

(+) and (–) Ion calibration solutions (Thermo Fisher Scientific). Determination of enantiopurity 

was carried out on a Mettler Toledo SFC (supercritical fluid chromatography) using a Daicel 

ChiralPak IC-3 column and a Daicel ChiralPak AD-3 column. Optical rotations were measured 

with a Rudolph Autopol III Automatic Polarimeter. 

 

Nitrones 5.54,33 5.50,34 5.56, 5.57,11a 5.58,35 5.59,35 5.60,11a azomethine imines 5.3736 and 

5.39,37 nitrile oxide 5.41,38 imidazole carboxylate 5.66,39 and (S)-(CF3)3-t-BuPHOX (5.47)40 are 

all known compounds. 1H-NMR spectral data matched those reported in the literature.   
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5.8.2 Experimental Procedures 

5.8.2.1 Synthesis of Silyl Triflate 5.12 

 

Silyl ketone 5.11. To a solution of known silyl enol ether 5.1025 (5.6 g, 19.1 mmol, 1.0 equiv) in 

THF (225 mL) at –78 °C was added n-BuLi (2.02 M in hexanes, 9.9 mL, 20.1 mmol, 1.05 equiv) 

dropwise over 18 min. The solution was stirred for 43 min at –78 °C, then the reaction was 

quenched with sat. aq. NaHCO3 (80 mL) and allowed to warm to 23 °C. The layers were then 

separated and the aqueous layer was extracted with EtOAc (3 x 80 mL). The combined organic 

layers were then dried over Na2SO4, filtered, and concentrated under reduced pressure. The 

resulting crude oil was purified by flash chromatography (19:1 hexanes:EtOAc) to afford silyl 

ketone 5.11 (3.4 g, 84% yield) as a colorless oil. Silyl ketone 5.11: Rf  0.29 (9:1 hexanes:EtOAc); 

1H-NMR (400 MHz, CDCl3): δ 4.20–4.09 (m, 2H), 3.92 (dd, J = 11.4, 4.6, 1H), 3.74 (ddd, J = 

11.4, 10.9, 4.0, 1H), 2.47 (ddd, J  = 15.6, 10.9, 6.8, 1H) , 2.38–2.31 (m, 2H), 0.97 (t, J = 7.7 9H), 

0.68 (q, J = 7.7, 6H) ; 13C-NMR (100 MHz, CDCl3): δ 207.7, 68.1, 67.2, 44.5, 42.0, 7.4, 3.2; IR 

(film): 2954, 2911, 2876, 1691, 1218 cm–1; HRMS–APCI (m/z) [M + H]+ calcd for C11H23O2Si+, 

215.14618; found, 215.14678. 

 

 

Silyl triflate 5.12. To a solution of diisopropylamine (1.30 mL, 9.1 mmol, 1.30 equiv) in THF 

(8.0 mL) at –78 °C was added n-BuLi (2.02M in hexanes, 4.20 mL, 8.4 mmol, 1.20 equiv) 

O

OSiEt3

Br
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i. LDA (1.2 equiv), THF, –78 °C
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(73% yield)5.11 5.12
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dropwise over 7 min. The reaction was then stirred at –78 °C for 20 min and then allowed to 

warm to 23 °C. After stirring for 10 min at 23 °C, the reaction mixture was again cooled to –78 

°C and a solution of silyl ketone 5.11 (1.5 g, 7.01 mmol, 1.0 equiv) in THF (8.0 mL) was added 

dropwise over 15 min and left to stir for 1.0 h at –78 °C. A solution of Comins’ Reagent (3.86 g, 

9.81 mmol, 1.4 equiv) in THF (8.2 mL) was then added dropwise over 20 min at –78 °C. The 

reaction was then stirred for 10 min at –78 °C before being warmed to 23 °C. After stirring for 

an additional 14 h, the reaction mixture was quenched by the addition of sat. aq. NaHCO3 (30 

mL), and the layers were separated. The aqueous layer was extracted with Et2O (3 x 30 mL) and 

the combined organic layers were dried over Na2SO4, filtered, and concentrated under reduced 

pressure. The resulting crude oil was purified by flash chromatography (4:1 hexanes:benzene) to 

give silyl triflate 5.12 (1.77 g, 73% yield) as a colorless oil. Silyl triflate 5.12: Rf  0.55 (9:1 

hexanes:EtOAc); 1H-NMR (400 MHz, CDCl3): δ 5.67–5.65 (m, 1H), 4.25 (qt, J = 16.1, 3.1, 2H), 

3.96 (dd, J = 11.2, 4.7, 1H), 3.86 (dd, J = 11.2, 4.7, 1H), 2.14–2.10 (m, 1H), 0.98 (t, J = 8.2, 9H), 

0.68 (q, J = 8.0, 6H); 13C-NMR (125 MHz): δ 149.7, 118.7 (q, J = 318.3), 113.0, 66.7, 64.4, 

28.5, 7.3, 2.9; 19F-NMR (376 Hz, CDCl3): –73.5; IR (film): 2957, 2880, 1681, 1418, 1245, 1207 

cm–1; HRMS–APCI (m/z) [M + H]+ calcd for C12H22F3O4Si+, 347.09547; found, 347.09659  
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5.8.2.2 Diels–Alder Trapping Experiments 

Representative Procedure (Preparation of cycloadduct 5.16 is used as an example).  

 

Cycloadduct 5.16. To a stirred solution of silyl triflate 5.12 (52.6 mg, 0.152 mmol, 1.0 equiv) 

and N-phenylpyrrole (5.15, 217 mg, 1.52 mmol, 10.0 equiv) in CH3CN (1.52 mL) was added 

CsF (115.0 mg, 0.759 mmol, 5.0 equiv). The reaction vessel was sealed with a PTFE lined cap 

and allowed to stir at 23 °C for 7 h. The crude reaction mixture was then filtered by passage 

through a plug of silica gel (EtOAc eluent, 10 mL). Concentration under reduced pressure 

yielded the crude residue (3.8:1 dr, average of two experiments).  Purification by preparative thin 

layer chromatography (5:1 hexanes:EtOAc) allowed for separation of the two diastereomers, 

which were obtained in a total yield of 91% (average of two experiments). The major 

diastereomer 5.16 was obtained as a light yellow amorphous solid. Cycloadduct 5.16: Rf  0.15 

(5:1 hexanes:EtOAc); 1H-NMR (400 MHz, CDCl3): δ 7.23–7.18 (m, 2H), 6.87–6.80 (m, 3H), 

6.30 (dd, J = 5.6, 2.6, 1H), 5.97 (dd, J = 5.7, 2.1, 1H), 5.69–5.68 (m, 1H), 4.89 (br s, 1H), 4.71–

4.70 (m, 1H), 4.25 (dt, J = 16.5, 2.1, 1H), 4.15 (dd, J = 9.4, 4.7, 1H), 3.96 (dt, J = 16.6, 3.0, 1H), 

2.64–2.60 (m, 1H), 2.46 (t, J = 9.8, 1H); 13C-NMR (125 MHz, CDCl3): δ 146.8, 137.6, 135.0, 

129.2, 128.4, 120.7, 117.7, 117.3, 67.9, 65.4, 64.96, 64.95, 38.6; IR (film): 3060, 3005, 2920, 

1496, 1315 cm–1; HRMS–APCI (m/z) [M + H]+ calcd for C15H16NO+, 226.12264; found, 

226.12161. 
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The structure of 5.16 was verified by 2D-NOESY, as the following interaction was observed: 

 

All reactions were monitored by TLC until starting material was consumed; the specific 

times are listed in the reaction scheme for each reaction. Any modifications of the conditions 

shown in this representative procedure are specified in the following schemes, which depict all of 

the results shown in Table 5.1. For all compounds in which the diastereomeric ratios were 

>20:1, the minor diastereomer was not observed in the 1H-NMR spectrum of the crude reaction 

mixture. 

 

Cycloadduct 5.18. Following concentration under reduced pressure, the crude residue was 

obtained (6.2:1 dr, average of two experiments). Purification by preparative thin layer 

chromatography (5:1 hexanes:Et2O) allowed for separation of the two diastereomers, which 

provided a total yield of 74% (average of two experiments). Major diastereomer 5.18 was 

obtained as a clear oil. Cycloadduct 5.18: Rf  0.28 (9:1 hexanes:EtOAc); 1H-NMR (600 MHz, 

CDCl3): δ 6.32 (br s, 1H), 5.99–5.95 (m, 1H), 5.61 (br s, 1H), 4.99–4.93 (m, 1H), 4.79–4.73 (m, 

1H), 4.28 (dt, J = 16.6, 2.1, 1H), 4.14 (dd, J = 9.6, 4.8, 1H), 3.95 (dt, J = 16.6, 2.9, 1H), 2.65 (br 

s, 1H), 2.36 (t, J = 10.1, 1H), 1.43 (s, 9H); 13C-NMR (125 MHz, CDCl3): δ 155.1, 136.3, 135.5, 

129.5, 128.3, 120.2, 117.0, 116.4, 80.6, 67.6, 65.0, 63.7, 63.0, 62.1, 61.6, 39.8, 39.3, 28.4; IR 
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(film): 2978, 1738, 1599, 1319, 1160 cm–1; HRMS–APCI (m/z) [M + H]+ calcd for C14H20NO3+, 

250.14377; found, 250.14536.   

Note: 5.18 was obtained as a mixture of rotamers. These data represent empirically observed 

chemical shifts from the 1H-NMR and 13C-NMR spectra. 

The structure of 5.18 was verified by 2D-NOESY, as the following interaction was observed: 

 

 

 

Cycloadduct 5.20. Following concentration under reduced pressure, the crude residue was 

obtained (9.2:1 dr, average of two experiments). Purification by flash chromatography (5:1 

pentanes:Et2O) allowed for separation of the two diastereomers, which afforded a total yield of 

86% (average of two experiments). Major diastereomer 5.20 was obtained as a colorless oil. 

Cycloadduct 5.20: Rf  0.27 (9:1 hexanes:EtOAc); 1H-NMR (500 MHz, CDCl3): δ 6.13 (d, J = 5.4, 

1H), 5.82 (d, J = 5.4, 1H), 5.48 (app q, J = 2.3, 1H), 4.28 (dt, J = 16.5, 2.1, 1H), 4.11 (dd, J = 

9.3, 4.7, 1H), 3.94 (dt, J = 16.4, 2.9, 1H), 2.45–2.41 (m, 1H), 2.36–2.32 (m, 1H), 1.63 (s, 3H), 

1.62 (s, 3H); 13C-NMR (125 MHz, CDCl3): δ 143.5, 139.9, 132.8, 113.7, 86.8, 86.6, 67.2, 64.6, 

46.5, 18.2, 14.8; IR (film): 2973, 2929, 2851, 1382, 1308 cm–1; HRMS–APCI (m/z) [M + H]+ 

calcd for C11H15O2+, 179.10666; found, 179.10719.   
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The structure of 5.20 was verified by 2D-NOESY, as the following interaction was observed: 

 

 

 

Cycloadduct 5.22. Following concentration under reduced pressure, the crude residue was 

obtained (2.0:1 dr, average of two experiments). Purification by preparative thin layer 

chromatography (9:1 hexanes:EtOAc) allowed for separation of the two diastereomers, which 

provided a total yield of 97% (average of two experiments). Major diastereomer 5.22 was 

obtained as a clear oil. Cycloadduct 5.22: Rf  0.36 (9:1 hexanes:EtOAc); 1H-NMR (500 MHz, 

CDCl3): δ 7.88–7.86 (m, 2H), 7.65–7.63 (m, 2H), 7.53–7.45 (m, 5H), 7.43–7.41 (m, 1H), 7.25–

7.21 (m, 2H), 7.17–7.14 (m, 1H), 7.01–6.99 (m, 1H), 5.71 (app q, J = 2.5, 1H), 4.45 (dd, J = 9.8, 

4.9, 1H), 4.34 (dt, J = 16.9, 2.5, 1H), 3.87 (ddd, J = 16.6, 3.6, 2.9, 1H), 3.43–3.39 (m, 1H), 2.40 

(t, J = 10.2, 1H); 13C-NMR (125 MHz, CDCl3): δ 148.1, 144.3, 142.5, 137.3, 134.1, 129.0, 

128.72, 128.66, 128.6, 128.5, 127.6, 127.0, 126.4, 121.3, 118.6, 118.0, 90.2, 89.4, 67.0, 64.9, 

46.3; IR (film): 3060, 2923, 1734, 1448, 734 cm–1; HRMS–APCI (m/z) [M + H]+ calcd for 

C25H21O2+, 353.15361; found, 353.15563.   
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The structure of 5.22 was verified by 2D-NOESY, as the following interaction was observed: 

 

 

 

Cycloadducts 5.24 and 5.53. Following concentration under reduced pressure, the crude residue 

was obtained (1.6:1 dr, average of two experiments). Purification by flash chromatography (30:1 

pentane:Et2O), provided a total yield of 83% (average of two experiments) of 5.24 and 5.53 as an 

inseparable mixture. 5.24 and 5.53 (inseparable mixture) were obtained as a colorless oil. 

Cycloadducts 5.24 and 5.53: Rf  0.62 (9:1 hexanes:EtOAc); 1H-NMR (300 MHz, CDCl3): δ 6.34 

(dd, J = 5.7, 3.1, 1H, 3.53), 6.09–6.02 (m, 1H, 3.24, 1H, 3.53), 5.77 (dd, J = 5.5, 2.9, 1H, 3.24), 

5.59–5.54 (m, 1H, 3.53), 5.48–5.44 (m, 1H, 3.24), 4.29 (dt, J = 15.9, 2.0, 1H, 3.53), 4.26 (dt, J = 

16.4, 2.2, 1H, 3.24), 4.15–4.06 (m, 1H, 3.24, 2H, 3.53), 3.97 (dt, J = 16.9, 2.9, 1H, 3.24), 3.36 

(br s, 1H, 3.53), 3.26 (br s, 1H, 3.24), 2.99 (dd, J = 10.6, 9.6, 1H, 3.53), 2.95–2.90 (m, 1H, 3.24), 

2.70 (br s, 1H, 3.53), 2.54–2.45 (m, 1H, 3.24), 2.41 (dd, J = 10.2, 8.7, 1H 3.24), 2.02–1.92 (m, 

1H, 3.53), 1.63 (dt, J = 8.2, 1.6, 1H, 3.24), 1.59–1.54 (m, 1H, 3.53), 1.52–1.47 (m, 1H, 3.24), 

1.41–1.37 (m, 1H, 3.53); 13C-NMR (125 MHz, CDCl3): δ 142.6, 141.3, 138.7, 136.2, 132.8, 

129.8, 114.9, 114.4, 69.0, 67.8, 65.2 (2C), 50.0, 49.1, 48.7, 47.4, 43.5, 41.9, 41.2, 40.9; IR (film): 
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3059, 2970, 2924, 2851, 1375 cm–1; HRMS–APCI (m/z) [M + H]+ calcd for C10H13O+, 

149.09609; found, 149.09597.   

The structures of 5.24 and 5.53 were verified by 2D-NOESY, as the following interaction were 

observed: 

 

5.8.2.3 (3+2) Trappings with Nitrones 

Representative Procedure (Preparation of isoxazolidine 5.27 is used as an example).  

 

 

Isoxazolidine 5.27. To a stirred solution of silyl triflate 5.12 (52.2 mg, 0.151 mmol, 1.0 equiv) 

and nitrone 5.54 (20.8 mg, 0.181 mmol, 1.2 equiv) in CH3CN (1.51 mL) was added CsF (114 

mg, 0.753 mmol, 5.0 equiv). The reaction vessel was sealed with a PTFE lined cap and allowed 

to stir at 23 °C for 4.5 h. The reaction mixture was filtered by passage through a plug of silica gel 

(EtOAc eluent, 10 mL). Concentration under reduced pressure yielded the crude residue (>20:1 

dr, average of two experiments). Purification by preparative thin layer chromatography (5:1 

hexanes:EtOAc) afforded isoxazolidine 5.27 as a clear, colorless oil (85% yield, average of two 

experiments). Isoxazolidine 5.27: Rf  0.25 (9:1 hexanes:EtOAc); 1H-NMR (400 MHz, CDCl3): δ 

5.46–5.45 (m, 1H), 4.38–4.34 (m, 1H), 4.27 (dd, J = 10.1, 5.9, 1H), 4.16 (dq, J = 16.3, 2.4, 1H), 
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4.07–4.01 (m, 1H), 3.74–3.70 (m, 1H), 3.11 (app t, J = 8.9, 1H), 1.29 (d, J = 6.4, 3H), 1.10 (s, 

9H); 13C-NMR (100 MHz, CDCl3): δ 144.8, 114.1, 69.2, 66.5, 64.9, 58.8, 57.1, 25.9, 23.9; IR 

(film): 2971, 2929, 2865, 1361, 1129 cm–1; HRMS–APCI (m/z) [M + H]+ calcd for C11H20NO2+, 

198.14886; found, 198.14936.   

 

The structure of 5.27 was verified by 2D-NOESY, as the following interaction was observed: 

  

 

 

Isoxazolidine 5.28. Following concentration under reduced pressure, the crude residue was 

obtained (>20:1 dr, average of two experiments). Purification by flash chromatography (9:1 

hexanes:EtOAc) afforded isoxazolidine 5.28 as a white powder in 77% yield (average of two 

experiments). Isoxazolidine 5.28: Mp: 103–105 °C; Rf  0.14 (9:1 hexanes:EtOAc); 1H-NMR (500 

MHz, CDCl3): δ 5.45 (s, 1H), 4.30–4.28 (m, 1H), 4.23–4.20 (m, 2H), 4.05–4.02 (m, 1H), 3.31 (s, 

1H), 3.17 (t, J = 9.8, 1H), 1.03 (s, 9H), 0.95 (s, 9H); 13C-NMR (125 MHz, CDCl3): δ 141.7, 

117.6, 71.5, 70.9, 66.9, 64.7, 59.9, 34.3, 27.1, 26.9; IR (film): 2955, 2836, 1595, 1417, 1205 cm–

1; HRMS–APCI (m/z) [M + H]+ calcd for C14H26NO2+, 240.19581; found, 240.19751. 
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The structure of 5.28 was verified by 2D-NOESY, as the following interaction was observed: 

 

 

 

Isoxazolidine 5.29. Following concentration under reduced pressure, the crude residue was 

obtained (10.7:1 dr, average of two experiments). Purification by preparative thin layer 

chromatography (9:1 benzene:CH3CN) allowed for separation of the two diastereomers, which 

provided a total yield of 84% (average of two experiments). Major diastereomer 5.29 was 

obtained as a white powder. Isoxazolidine 5.29: Mp: 111–112 °C; Rf  0.43 (9:1 hexanes:EtOAc); 

1H-NMR (400 MHz, CDCl3): δ 7.49–7.47 (m, 2H), 7.33–7.30 (m, 2H), 7.25–7.22 (m, 1H), 5.44 

(app quint, J = 2.0, 1H), 4.62 (s, 1H), 4.50–4.46 (m, 1H), 4.31 (dd, J = 9.6, 5.6, 1H), 4.13–4.02 

(m, 2H), 3.17 (app t, J = 9.4, 1H), 1.08 (s, 9H); 13C-NMR (125 MHz, CDCl3): δ 144.8, 143.8, 

128.6, 127.3, 127.0, 115.5, 70.1, 66.3, 65.7, 65.0, 59.0, 26.2; IR (film): 2972, 2931, 2867, 1492, 

1453 cm–1; HRMS–APCI (m/z) [M + H]+ calcd for C16H22NO2+, 260.16451; found, 260.16520. 
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The structure of 5.29 was verified by 2D-NOESY, as the following interaction was observed: 

 

 

 

Isoxazolidine 5.30. Following concentration under reduced pressure, the crude residue was 

obtained (>7.7:1 dr, average of two experiments). Purification by preparative thin layer 

chromatography (2:2:1 hexanes:benzene:Et2O) allowed for separation of the two diastereomers, 

which provided a total yield of 77% (average of two experiments). Major diastereomer 5.30 was 

obtained as a white foam. Isoxazolidine 5.30: Rf  0.27 (5:1 hexanes:EtOAc); 1H-NMR (400 MHz, 

CDCl3): δ 7.98 (d, J = 8.3, 1H), 7.75–7.70 (m, 4H), 7.33–7.29 (m, 1H), 7.25–7.21 (m, 1H), 7.21–

7.16 (m, 2H), 5.55–5.52 (m, 1H), 4.87 (s, 1H), 4.51–4.45 (m, 1H), 4.30 (dd, J = 10.2, 5.6, 1H), 

4.06–4.02 (m, 2H), 3.18 (app t, J = 9.0, 1H), 2.32 (s, 3H), 1.06 (s, 9H); 13C-NMR (100 MHz, 

CDCl3): δ 144.8, 142.9, 135.8, 135.3, 129.8, 129.0, 126.8, 125.0, 124.8, 124.0, 123.1, 120.3, 

115.6, 114.0, 69.8, 66.1, 64.2, 58.8, 58.2, 25.8, 21.5; IR (film): 2971, 2931, 2868, 1445, 1363 

cm–1; HRMS–APCI (m/z) [M + H]+ calcd for C25H29N2O4S+, 453.18425; found, 453.18223. 
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The structure of 5.30 was verified by 2D-NOESY, as the following interaction was observed: 

 

 

 

Isoxazolidine 5.31. Following concentration under reduced pressure, the crude residue was 

obtained (2.8:1 dr, average of two experiments). Purification by preparative thin layer 

chromatography (2:2:1 hexanes:CH2Cl2:Et2O) allowed for separation of the two diastereomers, 

which provided a total yield of 96% (average of two experiments). Major diastereomer 5.31 was 

obtained as a white powder. Isoxazolidine 5.31: Rf  0.33 (5:1 hexanes:EtOAc); 1H-NMR (400 

MHz, CDCl3): δ 8.13 (d, J = 8.5, 1H), 8.06 (d, J = 7.8, 1H), 7.86 (d, J = 8.9, 1H), 7.80 (dd, J = 

8.2, 1.3, 1H), 7.70 (ddd, J = 9.0, 7.8, 1.4, 1H), 7.51 (ddd, J = 9.0, 7.5, 1.2, 1H), 5.66 (app quint, J 

= 2.0, 1H), 5.02–5.01 (m, 1H), 4.60–4.56 (m, 1H), 4.35 (dd, J = 10.0, 5.5, 1H), 4.07 (app q, J = 

2.6, 2H), 3.21 (dd, J = 10.2, 9.0, 1H), 1.10 (s, 9H); 13C-NMR (100 MHz, CDCl3): δ 163.0, 147.6, 

143.3, 136.8, 129.6, 129.1, 127.82, 128.76, 126.3, 120.1, 117.2, 70.5, 68.5, 66.3, 65.1, 59.1, 26.0; 

IR (film): 3061, 2971, 2866, 1597, 1502 cm–1; HRMS–APCI (m/z) [M + H]+ calcd for 

C19H23N2O5+, 311.17540; found, 311.17394.  
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The structure of 5.31 was verified by 2D-NOESY, as the following interaction was observed: 

 

 

 

Isoxazolidine 5.32. Following concentration under reduced pressure, the crude residue was 

obtained (8.7:1 dr, average of two experiments). Purification by sequential preparative thin layer 

chromatography (99:1 CHCl3:MeOH, eluted once, then 19:1 Et2O:EtOAc, eluted twice) allowed 

for separation of the two diastereomers, which provided a total yield of 79% (average of two 

experiments). Major diastereomer 5.32 was obtained as a colorless oil. Isoxazolidine 5.32: Rf  

0.26 (19:1 Et2O:EtOAc); 1H-NMR (500 MHz, CDCl3): δ 5.62–5.57 (m, 1H), 4.45–4.39 (m, 1H), 

4.23–4.15 (m, 3H), 4.09–4.03 (m, 1H), 3.29–3.19 (m, 2H), 3.09 (dd, J = 10.0, 9.6, 1H), 2.11–

2.03 (m, 1H), 1.91–1.82 (m, 1H), 1.81–1.71 (m, 2H); 13C-NMR (125 MHz, CDCl3): δ 143.5, 

116.2, 69.1, 66.9, 66.6, 64.7, 58.1, 32.2, 25.3; IR (film): 3032, 1695, 1414, 1229, 1109 cm–1; 

HRMS–APCI (m/z) [M + H]+ calcd for C9H14NO2+, 168.10191; found, 168.10434. 
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The structure of 5.32 was verified by 2D-NOESY, as the following interaction was observed: 

 

 

 

Isoxazolidine 5.33. Following concentration under reduced pressure, the crude residue was 

obtained (5.3:1 dr, average of two experiments). Purification by preparative thin layer 

chromatography (4:1 benzene:CH3CN) allowed for separation of the two diastereomers, which 

provided a total yield of 94% (average of two experiments). Major diastereomer 5.33 was 

obtained as a colorless oil. Isoxazolidine 5.33: Rf  0.53 (1:1 hexanes:EtOAc); 1H-NMR (400 

MHz, CDCl3): δ 7.29–7.19 (m, 2H), 7.18–7.13 (m, 2H), 5.34 (app quint, J = 2.2, 1H), 5.00 (br s, 

1H), 4.54–4.46 (m, 1H), 4.35 (dd, J = 10.3, 5.5, 1H), 4.25 (dq, J = 16.9, 2.4, 1H), 3.99 (dq, J = 

16.9, 2.6, 1H), 3.21 (ddd, J = 10.1, 4.5, 3.8, 1H), 3.07–2.98 (m, 2H), 2.84 (ddd, J = 11.7, 10.5, 

3.0, 1H), 2.73 (dt, J = 16.2, 3.5, 1H); 13C-NMR (100 MHz, CDCl3): δ 141.0, 134.4, 131.9, 128.6, 

128.1, 127.2, 126.3, 119.3, 71.7, 68.9, 64.7, 64.4, 51.3, 28.9; IR (film): 3023, 2964, 2923, 1494, 

1454 cm–1; HRMS–APCI (m/z) [M + H]+ calcd for C14H16NO2+, 230.11756; found, 230.11828. 
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The structure of 5.33 was verified by 2D-NOESY, as the following interaction was observed: 

 

 

 

Isoxazolidine 5.34. In this reaction, nitrone 5.60 was utilized as a mixture of double bond 

isomers (5:1 ratio, major isomer depicted). Following concentration under reduced pressure, the 

crude residue was obtained (5.5:1 dr, average of two experiments). Purification by preparative 

thin layer chromatography (5:1 hexanes:EtOAc) allowed for separation of the two diastereomers, 

which provided a total yield of 85% (average of two experiments). Major diastereomer 5.34 was 

obtained as a white solid. Isoxazolidine 5.34: Mp: 67–68 °C; Rf  0.37 (9:1 hexanes:EtOAc); 1H-

NMR (500 MHz, CDCl3): δ 7.67–7.62 (m, 2H), 7.42–7.38 (m, 3H), 6.03–6.00 (m, 1H), 4.63–

4.57 (m, 1H), 4.41 (dt, J = 17.3, 2.4, 1H), 4.32 (dd, J = 9.9, 5.4, 1H), 4.20 (dt, J = 17.3, 2.9, 1H), 

3.25 (app t, J = 9.4, 1H), 2.62 (s, 3H); 13C-NMR (125 MHz, CDCl3): 139.3, 133.0, 129.3, 

128.74, 128.72, 128.6, 125.2 (q, J = 287), 122.8 (q, J = 1.6), 70.7, 66.1, 64.9, 41.4; IR (film): 

2971, 2875, 1450, 1268, 1157 cm–1; HRMS–APCI (m/z) [M + H]+ calcd for C14H15F3NO2+, 

286.10494; found, 286.10572.  
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The structure of 5.34 was verified by 2D-NOESY, as the following interaction was observed: 

 

 

5.8.2.4 Additional (3+2) and (2+2) Trapping Experiments 

Representative Procedure (Preparation of pyrazolidine 5.38 is used as an example).  

 

Pyrazolidine 5.38. To a stirred solution of silyl triflate 5.12 (51.3 mg, 0.148 mmol, 1.0 equiv) 

and azomethineimine 5.37 (31.0 mg, 0.178 mmol, 1.2 equiv) in CH3CN (1.48 mL) was added 

CsF (112 mg, 0.740 mmol, 5.0 equiv). The reaction vessel was sealed with a PTFE lined cap and 

allowed to stir at 23 °C for 5 h. Then, the crude reaction mixture was filtered by passage through 

a plug of silica gel (EtOAc eluent, 10 mL). Concentration under reduced pressure yielded the 

crude residue (7.6:1 dr, average of two experiments).  Purification by preparative thin layer 

chromatography (2:1 benzene:CH3CN) allowed for separation of the two diastereomers, which 

were obtained in a total yield of 76% (average of two experiments). The major diastereomer 5.38 

was obtained as a colorless oil. Pyrazolidine 5.38: Rf  0.12 (1:1 hexanes:EtOAc); 1H-NMR (400 

MHz, CDCl3): δ 7.41–7.31 (m, 5H), 5.61–5.55 (m, 1H), 4.78 (dd, J = 10.2, 4.8, 1H), 4.31–4.22 

(m, 3H), 4.20–4.11 (m, 1H), 3.54–3.44 (m, 2H), 3.05 (app q, J = 9.2, 1H), 2.70–2.55 (m, 2H); 
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13C-NMR (100 MHz, CDCl3): δ 167.9, 141.3, 138.5, 129.1, 128.5, 128.0, 119.7, 72.0, 65.1, 51.8, 

49.7, 49.6, 34.7; IR (film): 3060, 2981, 2927, 1678, 1453 cm–1; HRMS–APCI (m/z) [M + H]+ 

calcd for C15H17N2O2+, 257.12845; found, 257.12933.   

 

The structure of 5.38 was verified by 2D-NOESY, as the following interaction was observed: 

  

 

 

Pyrazolidine 5.40. Following concentration under reduced pressure, the crude residue was 

obtained (>20:1 dr, average of two experiments). Purification by preparative thin layer 

chromatography (2:1 benzene: CH3CN) afforded Pyrazolidine 5.40 as a white powder in 83% 

yield (average of two experiments). Pyrazolidine 5.40: Mp: 120–122 °C; Rf  0.15 (1:1 

hexanes:EtOAc); 1H-NMR (400 MHz, CDCl3): δ 5.57 (app quint, J = 2.0, 1H), 4.88 (dd, J = 

10.7, 5.4, 1H), 4.27 (dq, J = 16.8, 2.4, 1H), 4.14–4.06 (m, 1H), 3.93–3.85 (m, 1H), 3.67–3.58 (m, 

1H), 3.42 (dd, J = 10.6, 9.8, 1H), 2.91–2.77 (m, 3H), 2.57–2.45 (m, 1H), 0.93 (s, 9H); 13C-NMR 

(100 MHz, CDCl3): δ 164.0, 138.0, 120.7, 78.9, 65.7, 65.2, 56.3, 51.1, 35.3, 35.2, 26.3; IR 
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(film): 2955, 2868, 1679, 1445, 1421 cm–1; HRMS–APCI (m/z) [M + H]+ calcd for C13H21N2O2+, 

237.15975; found, 237.16054.  

The structure of 5.40 was verified by 2D-NOESY, as the following interaction was observed: 

  

 

 

Isoxazoline 5.42. Purification by preparative thin layer chromatography (5:1 hexanes:EtOAc) 

afforded isoxazoline 5.42 as a clear, colorless oil (91% yield, average of two experiments). 

Isoxazoline 5.42: Rf  0.36 (9:1 hexanes:EtOAc); 1H-NMR (500 MHz, CDCl3): δ 6.94–6.90 (m, 

2H), 5.60–5.58 (m, 1H), 5.02–4.96 (m, 1H), 4.55 (dd, J = 9.6, 5.4, 1H), 4.36 (ddd, J = 18.4, 4.6, 

2.4, 1H), 4.20 (ddd, J = 18.4, 5.0, 3.0, 1H), 3.35 (app t, J = 9.3, 1H), 2.31 (s, 3H), 2.20 (s, 3H), 

2.18 (s, 3H); 13C-NMR (100 MHz, CDCl3): δ 156.7, 140.6, 139.2, 137.6, 137.3, 128.51, 128.48, 

123.6, 120.1, 75.0, 66.0, 64.5, 21.2, 20.0, 19.7; IR (film) 2975, 2865, 1736, 1612, 1113 cm–1; 

HRMS–APCI (m/z) [M + H]+ calcd for C15H18NO2+, 244.13321; found, 244.13475.   
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Cyclobutane 5.44. Following concentration under reduced pressure, the crude residue was 

obtained (5.2:1 dr, average of two experiments). Purification by successive preparative thin layer 

chromatography (20:5:1 hexanes:CH2Cl2:Et2O, eluted twice) allowed for separation of the two 

diastereomers, which provided a total yield of 96% (average of two experiments). Major 

diastereomer 5.44 was obtained as a colorless oil. Cyclobutane 5.44: Rf  0.48 (9:1 

hexanes:EtOAc); 1H-NMR (500 MHz, CDCl3): δ 7.30–7.23 (m, 1H), 7.21–7.12 (m, 3H), 5.47–

5.42 (m, 1H), 4.32–4.26 (m, 1H), 4.19–4.10 (m, 2H), 3.83–3.75 (m, 1H),  3.63–3.59 (m, 1H), 

3.34–3.25 (m, 2H), 3.21 (app t, J = 9.8, 1H), 3.07–3.00 (m, 1H); 13C-NMR (125 MHz, CDCl3): δ 

146.0, 145.9, 141.4, 126.8, 126.7, 125.3, 123.5, 113.0, 66.9, 65.5, 50.1, 49.3, 48.8, 37.3; IR 

(film): 3067, 3041, 2939, 2844, 1480 cm–1; HRMS–APCI (m/z) [M + H]+ calcd for C14H15O+, 

199.11174; found, 199.11236.   

 

The structure of 5.44 was verified by 2D-NOESY, as the following interaction was observed: 
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5.8.2.5 Synthesis of the Allylation Substrates 

In addition to 5.45, enol carbonates 5.63, 5.64, and 5.65 were prepared in order to determine the 

optimal substrate and conditions for the asymmetric allylic alkylation. The enol carbonates were 

then tested in the subsequent Pd-catalyzed allylic alkylation in Section 5.8.2.6. 

 

 

 

Silyl enol ether 5.61. To a stirred solution of known bromo ketone 5.925 (300 mg, 1.68 mmol, 

1.0 equiv) in DMF (1.52 mL) and PhMe2SiCl (0.45 mL, 2.68 mmol, 1.6 equiv) was added 

DABCO (432 mg, 3.85 mmol, 2.3 equiv). The reaction vessel was then purged with N2 and 

sealed with a PTFE lined cap, before allowing it to stir at 23 °C. After 12 h, the mixture was 

cooled to –40 °C for 10 min before quenching the reaction with sat. NaHCO3 (2.0 mL) and water 

(4.0 mL). The layers were then separated and the aqueous layer was then extracted with EtOAc 

(3 x 10 mL). The combined organic layers were washed with water (2 x 10 mL) and brine (1 x 

10 mL), before being dried with Na2SO4, filtered, and concentrated under reduced pressure. The 

resultant crude oil was purified via flash chromatography (19:1 hexanes:EtOAc) to afford silyl 

enol ether 5.61 as a colorless oil (308.5 mg, 59% yield). Silyl enol ether 5.61: Rf  0.48 (9:1 

hexanes:EtOAc); 1H-NMR (500 MHz, C6D6): δ 7.59–7.53 (m, 2H), 7.20–7.14 (m, 3H), 4.10–

4.07 (m, 2H), 3.27 (t, J = 5.5, 2H), 1.83–1.77 (m, 2H), 0.37 (s, 6H); 13C-NMR (125 MHz, C6D6): 

δ 145.1, 137.5, 133.7, 130.3, 98.8, 69.8, 64.7, 32.9, –0.5; IR (film): 3071, 2964, 2828, 1675, 
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1428 cm–1; HRMS–APCI (m/z) [M + H]+ calcd for C13H18BrO2Si+, 313.02540; found, 

313.02630. 

 

 

Silyl enol ether 5.62. To a stirred solution of known bromo ketone 5.925 (100 mg, 0.559 mmol, 

1.0 equiv) and TMSCl (0.11 mL, 0.894 mmol, 1.6 equiv) in DMF (0.51 mL) was added DABCO 

(144 mg, 1.28 mmol, 2.3 equiv). The reaction vessel was then purged with N2 and sealed with a 

PTFE lined cap, before allowing it to stir at 23 °C. After 22 h, the mixture was cooled to –40 °C 

for 10 min and quenched with sat. aq. NaHCO3 (0.5 mL) and deionized water (0.5 mL). The 

layers were then separated and the aqueous layer was extracted with EtOAc (3 x 3 mL). The 

combined organic layers were washed with water (2 x 5 mL) and brine (1 x 5 mL), before being 

dried with Na2SO4, filtered, and concentrated under reduced pressure. The resultant crude oil was 

purified via flash chromatography (19:1 hexanes:EtOAc) to afford silyl enol ether 5.62 as a 

colorless oil (119.1 mg, 85% yield). Silyl enol ether 5.62: Rf  0.49 (9:1 hexanes:EtOAc); 1H-

NMR (400 MHz, C6D6): δ 4.10 (t, J = 2.3, 2H), 3.35 (t, J = 5.5, 2H), 1.86–1.81 (m, 2H), 0.10 (s, 

9H); 13C-NMR (100 MHz, C6D6): δ 144.7, 98.2, 69.4, 64.4, 32.6, 0.4; IR (film): 2968, 2861, 

1675, 1265, 1252 cm–1; HRMS–APCI (m/z) [M + H]+ calcd for C8H16BrO2Si+, 253.00770; 

found, 253.00876.   
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Enol carbonate 5.63. To a solution of known silyl enol ether 5.1025 (330 mg, 1.13 mmol, 1.00 

equiv) in THF (13.2 mL) at –78 °C was added n-BuLi (2.24 M in hexanes, 0.527 mL, 1.18 

mmol, 1.05 equiv) dropwise over 2.0 min. The solution was stirred for 34 min at –78 °C, before 

neat allyl chloroformate (0.180 mL, 1.69 mmol, 1.5 equiv) was then added dropwise over 1 min 

and the reaction was allowed to stir for 1.0 h at –78 °C, before warming to 23 °C. After stirring 

for 2.0 h, the reaction was quenched with water (10 mL). The layers were then separated and the 

aqueous layer was extracted with EtOAc (3 x 10 mL). The combined organic layers were then 

dried over Na2SO4, filtered, and concentrated under reduced pressure. The resulting crude oil 

was purified by flash chromatography (19:1 hexanes:EtOAc) to afford enol carbonate 5.63 

(273.1 mg, 81% yield) as a colorless oil. Enol carbonate 5.63: Rf  0.58 (5:1 hexanes:EtOAc); 1H-

NMR (600 MHz, CDCl3): δ 5.99–5.91 (m, 1H), 5.39 (dq, J = 17.2, 1.4, 1H), 5.30 (dq, J = 1.4, 

1.3, 1H), 4.66 (dt, J = 5.9, 1.3, 2H), 4.22 (t, J = 2.6, 2H), 3.85 (t, J = 5.6 6H), 2.41 (s, J = 2.6, 

2H), 0.93 (t, J = 8.0, 9H), 0.62 (q, J = 8.0, 6H); 13C-NMR (100 MHz, CDCl3): δ 152.9, 151.7, 

131.5, 120.1, 119.4, 68.8, 67.5, 64.3, 28.1, 7.4, 3.0; IR (film): 2954, 1754, 1657, 1228, 1161 cm–

1; HRMS–APCI (m/z) [M + H]+ calcd for C15H27O4Si+, 299.16731; found, 299.16694. 

 

 

Enol carbonate 5.64. To a solution of silyl enol ether 5.61 (150.0 mg, 0.479 mmol, 1.00 equiv) 

in THF (5.6 mL) at –78 °C was added n-BuLi (2.22 M in hexanes, 0.237 mL, 0.527 mmol, 1.1 

O

OSiEt3

Br

i.  n-BuLi (1.05 equiv)
    THF, –78 °C

ii. allyl chloroformate (1.5 equiv)
    –78 → 23 °C

5.63

O

O

SiEt3

5.10

O

O

(81% yield)

O

OSiMe2Ph

Br

i.  n-BuLi (1.1 equiv), THF, –78 °C

ii. allyl chloroformate (1.5 equiv), –78 °C

5.64

O

OCO2allyl

SiMe2Ph

5.61 (56% yield)
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equiv) dropwise over 1.0 min. The solution was stirred for 20 min at –78 °C, then neat allyl 

chloroformate (76.6 µL, 0.718 mmol, 1.5 equiv) was added dropwise over 1 min and the reaction 

was allowed to stir at –78 °C. After stirring for 4.0 h, the reaction was quenched with water (4.0 

mL) at –78 °C. The layers were then separated and the aqueous layer was extracted with EtOAc 

(3 x 10 mL). The combined organic layers were dried over Na2SO4, filtered, and concentrated 

under reduced pressure. The resulting crude oil was purified by flash chromatography (15:1 

hexanes:EtOAc) to afford enol carbonate 5.64 (84.6 mg, 56% yield) as a colorless oil. Enol 

carbonate 5.64: Rf  0.31 (9:1 hexanes:EtOAc); 1H-NMR (500 MHz, CD3CN): δ 7.54–7.49 (m, 

2H), 7.39–7.31 (m, 3H), 5.92–5.82 (m, 1H), 5.33–5.27 (m, 1H), 5.25–5.21 (m, 1H), 4.47–4.43 

(m, 2H), 4.17–4.14 (m, 2H), 3.78–3.75 (m, 2H), 2.32–2.27 (m, 2H), 1.92 (app quint, J = 2.4, 

2H), 0.34 (s, 6H); 13C-NMR (125 MHz, CD3CN): δ 153.4, 153.3, 138.2, 134.7, 132.8, 130.3, 

128.8, 121.8, 119.3, 69.4, 67.6, 64.8, 28.7, –2.8; IR (film): 2958, 2855, 1755, 1428, 1253 cm–1; 

HRMS–APCI (m/z) [M + H]+ calcd for C17H23O4Si+, 319.13601; found, 319.13757. 

 

 

Enol carbonate 5.65. To a solution of silyl enol ether 5.62 (60.0 mg, 0.239 mmol, 1.00 equiv) in 

THF (2.8 mL) at –78 °C was added n-BuLi (2.25 M in hexanes, 0.117 mL, 0.263 mmol, 1.1 

equiv) dropwise over 2.0 min. The solution was stirred for 21 min at –78 °C, then neat allyl 

chloroformate (38.2 µL, 0.385 mmol, 1.5 equiv) was added dropwise over 1 min and the reaction 

was allowed to stir at –78 °C. After stirring for 3.0 h, the reaction was quenched with water (2.0 

mL). The layers were then separated and the aqueous layer was extracted with EtOAc (3 x 5 

mL). The combined organic layers were then dried over Na2SO4, filtered, and concentrated under 

O

OSiMe3

Br

i.  n-BuLi (1.1 equiv),  THF, –78 °C

ii. allyl chloroformate (1.5 equiv), –78 °C

5.65

O

O

SiMe3

5.62

O

O

(62% yield)
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reduced pressure. The resulting crude oil was purified by flash chromatography (15:1 

hexanes:EtOAc) to afford enol carbonate 5.65 (37.7 mg, 62% yield) as a colorless oil. Enol 

carbonate 5.65: Rf  0.29 (9:1 hexanes:EtOAc); 1H-NMR (500 MHz, C6D6): δ 5.68–5.59 (m, 1H), 

5.07 (dq, J = 17.2, 1.7, 1H), 4.91 (dq, J = 10.3, 1.2, 1H), 4.36 (dt, J = 5.8, 1.4, 2H), 4.13 (t, J = 

2.6, 2H), 3.55 (t, J = 5.6, 2H), 2.26–2.21 (m, 2H), 0.06 (s, 9H); 13C-NMR (125 MHz, C6D6): δ 

153.3, 152.1, 131.9, 122.4, 118.7, 68.5, 67.0, 64.2, 28.3, –1.5; IR (film): 2956, 2856, 1755, 1252, 

1231 cm–1; HRMS–APCI (m/z) [M + H]+ calcd for C12H21O4Si+, 257.12036; found, 257.12173. 

 

 

Enol carbonate 5.45. To a solution of silyl enol ether 5.10 (601.0 mg, 2.05 mmol, 1.00 equiv) in 

THF (24.1 mL) at –78 °C was added n-BuLi (2.19 M in hexanes, 1.03 mL, 2.25 mmol, 1.1 

equiv) dropwise over 1.0 min. The solution was stirred for 45 min at –78 °C, then a solution of 

the known imidazole carboxylate39 5.66 (702 mg, 3.07 mmol, 1.50 equiv) and BF3•Et2O (390 

µL, 2.25 mmol, 1.5 equiv) in THF (4.0 mL) that was prestirred for 35 min (at 23 °C) was added 

dropwise over 5 min and the reaction was allowed to stir at –78 °C. After stirring for 3.0 h the 

reaction was quenched with water (10.0 mL) at –78 °C. The layers were separated and the 

aqueous layer was extracted with EtOAc (3 x 50 mL). The combined organic layers were then 

dried over Na2SO4, filtered, and concentrated under reduced pressure. The resulting crude oil 

was purified by flash chromatography (19:1 hexanes:EtOAc) to afford enol carbonate 5.45 (391 

mg, 51% yield) as a colorless oil. Enol carbonate 5.45: Rf  0.54 (9:1 hexanes:EtOAc); 1H-NMR 

(500 MHz, CDCl3): δ 7.47–7.43 (m, 2H), 7.38–7.29 (m, 3H), 5.60 (br s, 1H), 5.44 (q, J = 1.0, 

O

OSiEt3

Br

i.  n-BuLi (1.1 equiv), THF, –78 °C

ii.                                             

                                               (1.5 equiv)
   

     
     BF3•Et2O (1.5 equiv), THF,  –78 °C

5.45

O

O

SiEt3

5.10

O

O

(51% yield)

Ph
N

O

O
PhN

5.66
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1H), 5.10 (d, J = 0.9, 2H), 4.20 (t, J = 2.6, 2H), 3.82 (t, J = 5.5, 2H), 2.39–2.34 (m, 2H), 0.89 (t, 

J = 7.8, 9H), 0.57 (q, J = 7.6, 6H); 13C-NMR (100 MHz, CDCl3): δ 152.9, 151.6, 142.1, 137.8, 

128.7, 128.3, 126.2, 120.1, 116.4, 69.6, 67.5, 64.3, 28.1, 7.4, 3.0; IR (film): 2953, 1755, 1656, 

1230, 1165 cm–1; HRMS–APCI (m/z) [M + H]+ calcd for C21H31O4Si+, 375.19861; found, 

357.20141. 

 

5.8.2.6 Pd-Catalyzed Decarboxylative Allylic Alkylation  

5.8.2.6.1 Racemic Reactions Toward a-Silyl Substituted Ketones 

Representative Procedure for Racemic Reactions (Preparation of silyl ketone rac-5.67 used 

as an example). 

 

Silyl Ketone rac-5.67. In a nitrogen-filled glovebox, an oven-dried 1-dram vial was equipped 

with a stir bar, enol carbonate 5.63 (100 mg, 0.335 mmol, 1.0 equiv), and toluene (1.7 mL). Then 

Pd(PPh3)4 (38.7 mg, 0.034 mmol, 10 mol%) was added slowly in one portion, before sealing the 

vial with a PTFE-lined cap. The reaction was then allowed to stir for 20 h at 23 °C before the 

addition of hexanes (2 mL). After stirring for 2 min, the crude reaction mixture was filtered by 

passage through a plug of silica gel (Et2O eluent), and concentrated under reduced pressure. The 

resulting crude oil was purified via flash chromatography (19:1 hexanes:EtOAc), to provide silyl 

ketone rac-5.67 as a colorless oil (70.5 mg, 83% yield). Silyl ketone rac-5.67: Rf  0.58 (5:1 

hexanes:EtOAc); 1H-NMR (500 MHz, CDCl3): δ 5.77–5.67 (m, 1H), 5.05–4.96 (m, 2H), 4.19–

4.13 (m, 1H), 4.10 (dd, J = 11.8, 1.3, 1H), 3.76 (d, J = 11.7, 1H), 3.69 (ddd, J = 11.4, 11.4, 4.0, 

O

O O

O

SiEt3

Pd(PPh3)4 (10 mol%)

toluene, 23 °C

(83% yield) O

O

SiEt3

5.63 rac-5.67
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1H), 2.99–2.93 (m, 1H), 2.55 (ddd, J = 16.6, 11.5. 7.7, 1H), 3.32 (ddd, J = 16.6, 4.0, 2.0, 1H), 

1.92 (dd, J = 14.1, 8.8, 1H), 1.00 (t, J = 7.9, 9H), 0.80–0.66 (m, 6H); 13C-NMR (125 MHz, 

CDCl3): δ 208.7, 135.3, 117.6, 71.2, 67.0, 50.5, 41.3, 35.1, 7.8, 2.9; IR (film): 2956, 1682, 1211, 

1187, 1005 cm–1; HRMS–APCI (m/z) [M + H]+ calcd for C14H27O2Si+, 255.17748; found, 

255.17914.   

 

Silyl ketone rac-5.68. Purification by preparative thin layer chromatography (9:1 

hexanes:EtOAc) afforded silyl ketone rac-5.68 as a colorless oil (44% yield). Silyl ketone rac-

5.68: Rf  0.14 (3:1 hexanes:EtOAc); 1H-NMR (500 MHz, CDCl3): δ 7.55–7.51 (m, 2H), 7.43–

7.35 (m, 3H), 5.69–5.59 (m, 1H), 5.00–4.90 (m, 2H), 4.07 (dd, J = 11.8, 1.4, 1H), 4.05–4.00 (m, 

1H), 3.70 (d, J = 11.7, 1H), 3.68–3.62 (m, 1H), 2.88 (ddt, J = 14.2, 5.5, 1.6, 1H), 2.22–2.18 (m, 

2H), 1.88 (dd, J = 14.3, 8.7, 1H), 0.49 (s, 3H), 0.42 (s, 3H); 13C-NMR (125 MHz, CDCl3): δ 

208.5, 135.1, 134.8, 134.7, 129.8, 127.9, 117.6, 71.2, 67.0, 50.4, 40.7, 34.7, –3.6, –4.8; IR (film):  

3071, 2963, 2853, 1681, 1428 cm–1; HRMS–APCI (m/z) [M + H]+ calcd for C16H23O2Si+, 

275.14618; found, 275.14746. 

 

Silyl ketone rac-5.69. Purification by flash chromatography (15:1 hexanes:EtOAc) afforded silyl 

ketone rac-5.69 as a colorless oil (68% yield). Silyl ketone rac-5.69: Rf  0.26 (9:1 

hexanes:EtOAc); 1H-NMR (500 MHz, CDCl3): δ 5.77–5.67 (m, 1H), 5.05–4.96 (m, 2H), 4.19–

O

O O

O

SiMe2Ph
Pd(PPh3)4 (10 mol%)

toluene, 23 °C

(44% yield) O

O

SiMe2Ph

5.64 rac-5.68

O

O O

O

SiMe3

Pd(PPh3)4 (10 mol%)

toluene, 23 °C

(68% yield) O

O

SiMe3

5.65 rac-5.69
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4.13 (m, 1H), 4.07 (d, J = 11.8, 1H), 3.78 (d, J = 11.8, 1H), 3.70 (ddd, J = 11.6, 11.6,  3.9, 1H), 

2.85 (dd, J = 14.2, 5.4, 1H), 2.54–2.45 (m, 1H), 2.36–2.29 (m, 1H), 1.89 (dd, J = 14.3, 8.8, 1H), 

0.13 (s, 9H); 13C-NMR (125 MHz, CDCl3): δ 208.5, 135.0, 117.7, 71.1, 67.1, 50.1, 41.2, 34.5, –

2.5; IR (film): 3076, 2925, 2853, 1682, 1251 cm–1; HRMS–APCI (m/z) [M + H]+ calcd for 

C11H21O2Si+, 213.13053; found, 213.13138. 

 

Silyl ketone rac-5.46. Purification by preparative thin layer chromatography (9:1 

hexanes:EtOAc) afforded silyl ketone rac-5.46 as a colorless oil (42% yield). Silyl ketone rac-

5.46: Rf  0.34 (9:1 hexanes:EtOAc); 1H-NMR (600 MHz, CDCl3): δ 7.32–7.27 (m, 4H), 7.26–

7.22 (m, 1H), 5.20  (d, J = 1.4, 1H),  5.07 (s, 1H), 3.98–3.92 (m, 2H), 3.74–3.69 (m, 2H), 3.41 

(ddd, J = 11.1, 11.1, 4.9, 1H), 2.44 (d, J = 14.4, 1H), 2.36 (ddd, J = 17.6, 10.7, 8.2, 1H), 1.94 

(ddd, J = 17.7, 4.8, 2.5, 1H), 1.02 (t, J = 7.9, 9H),  0.84–0.69 (m, 6H); 13C-NMR (125 MHz, 

CDCl3): δ 208.3, 147.0, 141.7, 128.1, 127.5, 127.4, 116.8, 70.3, 66.1, 50.7, 40.1, 35.7, 7.8, 2.8; 

IR (film): 2955, 2877, 1680, 1444, 1188 cm–1; HRMS–APCI (m/z) [M + H]+ calcd for 

C21H31O4Si+, 331.20878; found, 331.20983. 

 

5.8.2.6.2 Additional Asymmetric Allylic Alkylation Optimization Reactions 

Representative Procedure for Optimization Reactions for Table 5.2, Table 5.3, Table 5.4, 

and Table 5.5. 

In a nitrogen-filled glovebox, an oven-dried 1-dram vial was equipped with a stir bar, 

ligand (6.25 µmol, 12.5 mol %), Pd2(dba)3 (2.50 µmol, 5 mol %), and toluene (0.75 mL). The 

O

O O

O

SiEt3

Pd(PPh3)4 (10 mol%)

toluene, 23 °C

(42% yield) O

O

SiEt3
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Ph
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vial was then capped with a PTFE-lined cap and stirred at 23 °C for 30 min before cooling to the 

desired temperature. A solution of enol carbonate starting material (0.05 mmol, 1 equiv) in 

toluene (0.75 mL) was slowly added over 1 min to the catalyst mixture. The vial was sealed with 

a PTFE-lined cap and stirred at the desired temperature for 20 h. The crude reaction mixture was 

filtered through a silica plug, eluted with Et2O, and concentrated under reduced pressure. 1,3,5-

Trimethoxybenzene was used then added and used as an external standard in quantitative NMR 

analysis. 
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Table 5.3. Additional Optimization Experiments. 

 

aConditions: enol carbonate (0.05 mmol), Pd2(dba)3 (5 mol %), and ligand (12.5 mol %) for 20 h. 
bConversion determined by 1H NMR analysis of the crude reaction mixture using 1,3,5-
trimethoxybenzene as a standard. cDetermined by chiral SFC analysis of the isolated product. 

  

O

O
SiEt3

O

O Pd2(dba)3 (5 mol %)
ligand (12.5 mol %)

solvent (0.033 M), temp.
20 h O

O
SiEt3

entry % conversionb % eec

47 618

10
11

>95
>95

47
57

ligand

12 >95
>95

52
6013

14 >95 61

5.76

5.47

5.47

5.47
5.47
5.47

temp (°C)

23

23
23
23
23
23

solvent

toluene

THF
1,4-dioxane

MTBE
benzene

2:1 hexanes:toluene
15 >95 685.47 0toluene

1 >95

>95

21

626

2
3

>95
>95

2
7

4 >95 13

5.47

5.71
5.72
5.73

23

23

23
23
23

toluene

toluene

toluene
toluene
toluene

5.70

>95 589 5.77 23toluene

>95 05 5.74 23toluene

16 >95 705.47 –10toluene

>95 537 5.75 23toluene

5.63 5.67

P N
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CF3
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CF3
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O
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Table 5.4. Testing Alternative Palladium Sources. 

 

aConditions: enol carbonate (0.05 mmol), Pd source (5 mol %), and ligand (12.5 mol %) for 20 h. 
bConversion determined by 1H NMR analysis of the crude reaction mixture using 1,3,5-
trimethoxybenzene as an external standard. cDetermined by chiral SFC analysis of isolated 
product. dUsed 10 mol% of Pd source. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Toluene (0.033 M), 0 °C
20 h

Pd source (5 mol %)
(S)-(CF3)3-t-BuPHOX (12.5 mol %)

entry % conversionb % eec

1 >95
>95

68
682

3
4

>95
<10

68
–

Pd source
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Pd(dmdba)2

d
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[PdCl(allyl)]2

O

O
SiEt3

O

O

O

O
SiEt3

5.63 5.67
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Table 5.5. Substrate, Temperature, and Concentration Optimization Experiments. 

 

aReactions performed at 23 °C utilized Pd2(dba)3, while reactions performed at –10 °C utilized 
Pd(dmdba)2. Utilizing different palladium sources did not have an observable effect on 
enantioselectivity (see Table 5.4 for details) and was only utilized to aid purification. 
bEnantiomeric excesses (ee’s) were determined by SFC analysis using a chiral stationary phase. 
cYields were determined by 1H NMR analysis using 1,3,5-trimethoxybenzene as an external 
standard. 
 

 

 

 

 

 

Pd2(dba)3 (5 mol%) or Pd(dmdba)2 (10 mol%)a

ligand (12.5 mol%)

toluene (conc.), temperature

SiR3 R’ temperature conc. (M) %eeb

23 °C 0.033 62

23 °C 0.033 58
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–10 °C 0.005 75

–10 °C 0.005 74

–10 °C 0.005 81
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SiMe2Ph
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H

H

H
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5.47
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yieldc
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85%
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5.8.2.6.3 Optimized Decarboxylative Allylic Alkylation Reactions 

Representative Procedure for Pd-Catalyzed Decarboxylative Allylic Alkylation Reactions. 

 

In a nitrogen-filled glovebox, an oven-dried scintillation vial was equipped with a stir bar, (S)-

(CF3)3-t-BuPHOX ligand (3.70 mg, 6.25 µmol, 12.5 mol %), Pd(dmdba)2 (4.08 mg, 5.00 µmol, 

10 mol %), and toluene (0.75 mL). The vial was then sealed with a PTFE-lined cap and stirred at 

23 °C. After 30 min, the catalyst mixture was diluted with 8.5 mL of toluene and cooled to –10 

°C. A solution of enol carbonate starting material (0.05 mmol, 1 equiv) in toluene (0.75 mL) was 

added dropwise to the catalyst mixture. The vial was sealed with a PTFE-lined septum cap and 

stirred at –10 °C for 24 h. The crude reaction mixture was filtered through a silica plug (Et2O 

eluent), concentrated under reduced pressure, and purified by flash chromatography to furnish 

the product. Silyl ketones 5.67, 5.68, 5.69, and 5.46 spectral data matched those previously 

reported (See Section 5.8.2.6.1). 

 

Compound 
Method 

Column/Temp. 
Solvent 

Method 

Flow 

Rate 

Retention 

Times 

(min) 

Enantiomeric 

Ratio 

(er) 

 

ChiralPak 

AD-3/40°C 

3% 

isopropanol 

in CO2 

2.5 

mL/min 
2.81/3.13 49.1:50.9 

5.45 5.46

O

SiEt3

O

O

O
Ph Toluene (0.005 M), –10 °C

24 h

Pd(dmdba)2 (10 mol %)
(S)-(CF3)3-t-BuPHOX (12.5 mol %)

O

O
SiEt3

Ph

O

O
SiEt3

rac-5.67
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ChiralPak 

AD-3/40°C 

3% 

isopropanol 

in CO2 

2.5 

mL/min 
2.80/3.12 87.0:13.0 

 

ChiralPak 

IC-3/35°C 

2% 

isopropanol 

in CO2 

3.5 

mL/min 
7.47/9.01 50.4/49.6 

 

ChiralPak 

IC-3/35°C 

2% 

isopropanol 

in CO2 

3.5 

mL/min 
9.76/11.9 77.0/23.0 

 

ChiralPak 

IC-3/40°C 

1% 

isopropanol 

in CO2 

2.5 

mL/min 
7.05/7.91 49.2/50.8 

 

ChiralPak 

IC-3/40°C 

1% 

isopropanol 

in CO2 

2.5 

mL/min 
6.67/7.67 87.7/12.3 

 

Chiralcel 

IC-3/40°C 

2% 

isopropanol 

in CO2 

2.5 

mL/min 
4.37/4.93 50.8/49.2 

 

Chiralcel 

IC-3/40°C 

2% 

isopropanol 

in CO2 

2.5 

mL/min 
4.47/5.05 90.3/9.7 
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Figure 5.4. SFC trace for rac-5.67. 

 

 

 

 

Figure 5.5. SFC trace for 5.67. 
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Figure 5.6. SFC trace for rac-5.68. 

 

 

 

Figure 5.7. SFC trace for 5.68. 
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Figure 5.8. SFC trace for rac-5.69. 

 

 

 

Figure 5.9. SFC trace for 5.69. 
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Figure 5.10. SFC trace for rac-5.46. 

 

 

 

Figure 5.11. SFC trace for 5.46. 
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5.8.2.7 Enantiospecific trappings 

Preparation of Silyl Triflate 5.48 

 

Silyl triflate 5.48. To a solution of KHMDS (7.31 mg, 0.0367 mmol, 1.20 equiv) in THF (0.1 

mL) at –78 °C was added silyl ketone 5.46 (10.1 mg, 0.0306 mmol, 1.00 equiv) in THF (0.1 mL) 

dropwise over 1 min. The solution was stirred for 1 h at –78 °C, before a solution of Comins’ 

Reagent (18.0 mg, 0.0458 mmol, 1.50 equiv) in THF (0.1 mL) was added dropwise over 30 sec. 

Following the addition, the cooling bath was removed and the reaction was allowed to stir at 23 

°C. After stirring for 11 h, the reaction was quenched with sat. aq. NaHCO3 (1.0 mL). The layers 

were then separated and the aqueous layer was extracted with EtOAc (3 x 4 mL). The combined 

organic layers were dried over Na2SO4, filtered, and concentrated under reduced pressure. The 

resulting crude oil was purified by preparative thin layer chromatography (9:1 hexanes:EtOAc) 

to afford silyl triflate 5.48 as a colorless oil (15.0 mg, 64% yield, 81% ee). Silyl Triflate 5.48: Rf  

0.48 (9:1 hexanes:EtOAc); 1H-NMR (500 MHz, CDCl3): δ 7.36–7.22 (m, 5H), 5.49 (app t, J = 

5.8, 1H), 5.23 (d, J = 1.1, 1H), 5.13 (s, 1H), 3.97 (d, J = 3.0, 2H), 3.72 (d, J = 11.8, 1H),  3.54 (d, 

J = 11.8, 1H), 3.02 (d, J = 14.2, 1H), 2.68 (d, J = 14.2, 1H), 1.02 (t, J = 7.9, 9H), 0.72 (q, J = 7.9, 

6H); 13C-NMR (100 MHz, CDCl3): δ 151.3, 146.4, 143.4, 142.7, 128.2, 126.7, 118.4 (q, J = 

320), 117.1, 110.7, 70.2, 64.2, 36.5, 36.3, 8.1, 2.6; 19F-NMR (376 Hz, CDCl3): –74.9; IR (film): 

2955, 2878, 1739, 1366, 1216 cm–1; [α]26.3D –4.00° (c = 1.00, CH2Cl2). 
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Representative Procedure (Preparation of cycloadduct 5.51 is used as an example).  

 

Isoxazolidine 5.51. To a stirred solution of silyl triflate 5.48 (14.2 mg, 0.031 mmol, 1.0 equiv) 

and nitrone 5.50 (9.7 mg, 0.0614 mmol, 2.0 equiv) in CH3CN (0.30 mL) was added CsF (23.3 

mg, 0.153 mmol, 5.0 equiv). The reaction vessel was sealed and allowed to stir at 23 °C for 26 h. 

The reaction mixture was filtered by passage through a plug of silica gel (EtOAc eluent, 15 mL). 

Concentration under reduced pressure yielded the crude residue (1.6:1 dr).  Purification by 

preparative thin layer chromatography (1:1 hexanes:CH2Cl2) allowed for separation of the two 

diastereomers, which were obtained in a total yield of 59%. The major diastereomer 5.51 was 

obtained as a colorless oil (21% ee). Isoxazolidine 5.51: Rf  0.12 (9:1 hexanes:EtOAc); 1H-NMR 

(600 MHz, CDCl3): δ 7.40–7.20 (m, 5H), 5.38 (d, J = 0.7, 1H), 5.13–5.11 (m, 1H), 4.40–4.34 (m, 

1H), 4.23–4.17 (m, 2H), 3.82 (dd, J = 16.2, 2.9, 1H), 3.54 (s, 1H), 3.30 (s, 2H), 3.16 (app t, J = 

9.6, 1H), 0.98 (s, 9H), 0.97 (s, 9H); 13C-NMR (125 MHz, CDCl3): δ 144.4, 141.5, 137.4, 128.5, 

127.8, 126.1, 125.8, 115.0, 71.7, 67.7, 67.4, 67.2, 59.5, 53.4, 37.0, 36.0, 27.8, 26.9; IR (film): 

2954, 1738, 1445, 1363, 1217, 1096 cm–1; HRMS–APCI (m/z) [M + H]+ calcd for C23H34NO2+, 

355.25058; found, 355.25071. [α]29.5D –4.00° (c = 1.00, CH2Cl2). 
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The structure of 5.51 was verified by 2D-NOESY, as the following interaction was observed: 

 

 

 

Cycloadduct 5.52. Following concentration under reduced pressure, the crude residue was 

obtained (>20:1 dr). Purification by preparative thin layer chromatography (5:1 hexanes:EtOAc)  

afforded cycloadduct 5.52 as a colorless oil in 37% yield (81% ee). Cycloadduct 5.52: Rf  0.35 

(9:1 hexanes:EtOAc); 1H-NMR (500 MHz, CDCl3): δ 7.42–7.38 (m, 2H), 7.36–7.27 (m, 3H), 

6.17 (d, J = 5.4, 1H), 5.85 (d, J = 5.4, 1H), 5.39–5.37 (m, 1H), 5.09–5.06 (m, 1H), 4.13–4.06 (m, 

2H), 3.82 (dd, J = 10.1, 2.8, 1H), 3.30 (d, J = 16.7, 1H), 3.15 (d, J = 16.7, 1H), 2.51–2.46 (m, 

1H), 2.40 (dd, J = 10.6, 9.3, 1H), 1.76 (s, 3H), 1.62 (s, 3H); 13C-NMR (125 MHz, CDCl3): δ 

145.4, 141.3, 139.8, 138.6, 133.5, 128.4, 127.7, 125.9, 123.4, 113.7, 87.4, 85.7, 67.3, 67.2, 46.7, 

34.2, 18.2, 17.5; IR (film): 2924, 2852, 1741, 1632, 1380 cm–1; HRMS–APCI (m/z) [M + H]+ 

calcd for C20H23O2+, 295.16926; found, 295.17032. [α]28.6D +73.3° (c = 1.00, CH2Cl2). 
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The structure of 5.52 was verified by 2D-NOESY, as the following interaction was observed: 

 

Compound 
Method 

Column/Temp. 
Solvent 

Method 

Flow Rate 

Retention 

Times 

(min) 

Enantiomeric 

Ratio 

(er) 

 

ChiralPak 

IC-3/35°C 

5% 

isopropanol 

in CO2 

3.5 mL/min 5.02/6.29 49.7/50.3 

 

ChiralPak 

IC-3/35°C 

5% 

isopropanol 

in CO2 

3.5 mL/min 5.29/6.55 39.2/60.8 

 

ChiralPak 

AD-3/35°C 

5% 

isopropanol 

in CO2 

3.5 mL/min 5.41/6.80 49.9/50.1 
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ChiralPak 

AD-3/35°C 

5% 

isopropanol 

in CO2 

3.5 mL/min 6.06/6.91 90.7/9.3 

 

 

 

 

Figure 5.12. SFC trace for rac-5.51. 
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Figure 5.13. SFC trace for 5.51. 

 

 

 

Figure 5.14. SFC trace for rac-5.52. 
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Figure 5.15. SFC trace for 5.52. 

5.8.3 Computational Methods 

All calculations were carried out with the Gaussian 09 package. Geometry optimizations 

were performed with ωB97XD and 6-31G(d) basis set. Frequency analysis was conducted at the 

same level of theory to verify the stationary points to be minima or saddle points. Free energy 

corrections were calculated with and without Truhlar’s quasiharmonic oscillator 

approximation.41 Single-point energies and solvent effects in acetonitrile were computed with the 

6-311+G(d,p) basis set and SMD solvation model.42 Computed structures are illustrated with 

CYLview. 43
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5.8.3.1 Complete Citation of Gaussian 09 

Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; 

Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; 

Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; 

Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; 

Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; 

Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; 

Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; 

Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; 

Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. 

W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. 

J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. 

J. Gaussian 09, Rev. D.01; Gaussian, Inc., Wallingford, CT, 2010. 

 

5.8.3.2 Strain Energy in 3,4-Oxacyclohexadiene 

 

A homodesmotic equation at the wB97XD/6-31G(d)+ZPVE level of theory was used to estimate 

strain in 3,4-oxacyclohexadiene 5.8. Molecular strain in 3,4-oxacyclohexadiene 5.8 was 

calculated relative to penta-2,3-diene (5.83). 

 

– Δ(E+ZPVE) = –31.0 kcal/mol

OHH3CO H3C CH3+

H

H
●

H3C

H

H
CH3

+H2O 22 +

5.8
–269.0456
Hartrees

5.80
–79.7262
Hartrees

5.81
–76.3654
Hartrees

5.82
–154.9039
Hartrees

5.83
–195.1050 
Hartrees
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5.8.3.3 Geometries of Diastereomeric Transition States 

 

Transition states geometries for concerted cycloaddition of 3,4-oxacyclohexadiene 5.8 with 

dimethylfuran (5.19) at the wB97XD/6-31G(d) level of theory. TS 5.1 leads to endo product 

(major diastereomer) while TS 5.2 leads to exo product (minor diastereomer). Endo and exo 

refer to the position of dimethylfuran (5.19)  relative to the additional π bond in 3,4-

oxacyclohexadiene 5.8. ΔG‡ values are provided (wB97XD/6-

311+G(d,p)/SMD(MeCN)//wB97XD/6-31G(d)). The reaction occurs with a notable preference 

for formation of endo product (ΔΔG‡ = 2.4 kcal/mol).  

 

5.8.3.4 Energies and Cartesian Coordinates for Optimized Structures 

Cartesian coordinates for the optimized structures were reported in the literature.44 
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5.9 Spectra Relevant to Chapter Five: 
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Figure 5.16. 1H NMR (400 MHz, CDCl3) of compound 5.11.  

 
Figure 5.17. 13C NMR (100 MHz, CDCl3) of compound 5.11.  
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Figure 5.18. 1H NMR (400 MHz, CDCl3) of compound 5.12.  

 
Figure 5.19. 13C NMR (125 MHz, CDCl3) of compound 5.12. 

10 9 8 7 6 5 4 3 2 1 0 ppm

0.
95

9
0.

97
1

0.
97

9
0.

99
9

2.
09

7
2.

10
0

2.
10

5
2.

10
8

2.
11

2
2.

11
6

2.
12

0
2.

12
4

2.
12

7
2.

13
1

2.
13

6
2.

13
9

3.
84

1
3.

85
3

3.
86

9
3.

88
2

3.
93

6
3.

94
7

3.
96

4
3.

97
6

4.
18

2
4.

18
9

4.
19

6
4.

22
3

4.
23

0
4.

23
7

4.
26

2
4.

27
0

4.
27

8
4.

30
2

4.
31

0
4.

31
8

5.
65

2
5.

65
6

5.
66

0
5.

66
3

5.
66

7
5.

67
0

6.
08

4

9.
13

6

1.
00

2

1.
02

3
1.

00
4

2.
10

0

1.
00

0

Current Data Parameters
NAME     MY-2017-019a-p-char
EXPNO                30
PROCNO                1

F2 - Acquisition Parameters
Date_          20180911
Time              20.27
INSTRUM           av400
PROBHD   5 mm PABBO BB/
PULPROG            zg30
TD                52882
SOLVENT           CDCl3
NS                    4
DS                    0
SWH            8012.820 Hz
FIDRES         0.151523 Hz
AQ            3.2998369 sec
RG               155.85
DW               62.400 usec
DE                 6.50 usec
TE                298.7 K
D1           2.00000000 sec
TD0                   1

======== CHANNEL f1 ========
SFO1        400.1324008 MHz
NUC1                 1H
P1                15.00 usec
PLW1        13.00000000 W

F2 - Processing parameters
SI                65536
SF          400.1300184 MHz
WDW                  EM
SSB      0
LB                 0.30 Hz
GB       0
PC                 1.00

Purified Product 1H NMR

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm

2.
93

7.
32

28
.4

5

64
.3

9
66

.6
8

11
3.

03
11

4.
83

11
7.

38
11

9.
93

12
2.

47

14
9.

72

Current Data Parameters
NAME          ST-char-2
EXPNO                 2
PROCNO                1

F2 - Acquisition Parameters
Date_          20181019
Time              10.36 h
INSTRUM           av500
PROBHD   Z119248_0002 (
PULPROG          zgpg30
TD                65536
SOLVENT           CDCl3
NS                  272
DS                    2
SWH           31250.000 Hz
FIDRES         0.953674 Hz
AQ            1.0485760 sec
RG               204.54
DW               16.000 usec
DE                18.00 usec
TE                298.0 K
D1           2.00000000 sec
D11          0.03000000 sec
TD0                   1
SFO1        125.7722511 MHz
NUC1                13C
P1                 9.63 usec
PLW1        23.00000000 W
SFO2        500.1330008 MHz
NUC2                 1H
CPDPRG[2        waltz16
PCPD2             80.00 usec
PLW2        13.50000000 W
PLW12        0.21094000 W
PLW13        0.13500001 W

F2 - Processing parameters
SI               131072
SF          125.7577708 MHz
WDW                  EM
SSB      0
LB                 1.00 Hz
GB       0
PC                 1.40

Purified product 13C NMR

O

OTf

SiEt3

5.12



 

 335 

 
Figure 5.20. 1H NMR (400 MHz, CDCl3) of compound 5.16.  

  
Figure 5.21. 13C NMR (125 MHz, CDCl3) of compound 5.16. 
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Figure 5.22. 1H NMR (600 MHz, CDCl3) of compound 5.18.  

 
Figure 5.23. 13C NMR (125 MHz, CDCl3) of compound 5.18. 
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Figure 5.24. 1H NMR (500 MHz, CDCl3) of compound 5.20.  

 
Figure 5.25. 13C NMR (125 MHz, CDCl3) of compound 5.20. 
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Figure 5.26. 1H NMR (500 MHz, CDCl3) of compound 5.22.  

 
Figure 5.27. 13C NMR (125 MHz, CDCl3) of compound 5.22. 
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Figure 5.28. 1H NMR (300 MHz, CDCl3) of compound 5.24 and 5.53.  

 
Figure 5.29. 13C NMR (125 MHz, CDCl3) of compound 5.24 and 5.53. 

10 9 8 7 6 5 4 3 2 1 0 ppm

1.
36

6
1.

39
4

1.
48

1
1.

50
8

1.
60

9
1.

61
4

1.
62

0
1.

63
6

1.
64

2
1.

64
7

2.
37

6
2.

41
1

2.
43

9
2.

45
5

2.
46

3
2.

47
5

2.
48

5
2.

70
3

2.
93

1
2.

95
9

2.
99

1
3.

02
6

3.
25

6
3.

35
7

3.
92

9
3.

93
9

3.
94

9
3.

98
3

3.
99

3
4.

00
2

4.
08

0
4.

09
3

4.
10

1
4.

10
9

4.
12

1
4.

22
6

4.
23

3
4.

23
9

4.
26

7
4.

27
9

4.
28

6
4.

29
3

5.
45

6
5.

46
3

5.
57

0
5.

75
6

5.
76

5
5.

77
4

5.
78

4
6.

04
0

6.
05

1
6.

06
9

6.
32

6
6.

33
6

0.
33

4
1.

10
1

0.
28

4
1.

04
7

0.
32

4

1.
07

9
1.

01
9

0.
30

3
1.

04
6

0.
36

8
0.

99
3

0.
31

0

1.
08

4
1.

61
5

1.
39

6

0.
99

7
0.

33
4

1.
00

0
1.

31
9

0.
30

9

Current Data Parameters
NAME     MY-2018-272a-p-b2-1
EXPNO                 1
PROCNO                1

F2 - Acquisition Parameters
Date_          20181016
Time              15.34
INSTRUM           av300
PROBHD   5 mm PABBO BB-
PULPROG            zg30
TD                65536
SOLVENT           CDCl3
NS                    8
DS                    0
SWH            5995.204 Hz
FIDRES         0.091480 Hz
AQ            5.4657025 sec
RG                812.7
DW               83.400 usec
DE                 6.00 usec
TE                298.8 K
D1           2.00000000 sec
TD0                   1

======== CHANNEL f1 ========
NUC1                 1H
P1                16.00 usec
PL1      0 dB
PL1W         9.31909847 W
SFO1        300.1318008 MHz

F2 - Processing parameters
SI                65536
SF          300.1300123 MHz
WDW                  EM
SSB      0
LB                 0.30 Hz
GB       0
PC                 1.40

default proton parameters

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm

40
.8

6
41

.1
8

41
.8

6
43

.5
4

47
.4

2
48

.7
4

49
.1

3
49

.9
6

65
.1

9
67

.7
6

69
.0

0

11
4.

40
11

4.
85

12
9.

80
13

2.
80

13
6.

16
13

8.
69

14
1.

31
14

2.
59

Current Data Parameters
NAME     MY-2018-272a-p-check
EXPNO                 2
PROCNO                1

F2 - Acquisition Parameters
Date_          20181028
Time              11.42 h
INSTRUM           av500
PROBHD   Z119248_0002 (
PULPROG          zgpg30
TD                65536
SOLVENT           CDCl3
NS                  160
DS                    2
SWH           31250.000 Hz
FIDRES         0.953674 Hz
AQ            1.0485760 sec
RG               204.54
DW               16.000 usec
DE                18.00 usec
TE                298.0 K
D1           2.00000000 sec
D11          0.03000000 sec
TD0                   1
SFO1        125.7722511 MHz
NUC1                13C
P1                 9.63 usec
PLW1        23.00000000 W
SFO2        500.1330008 MHz
NUC2                 1H
CPDPRG[2        waltz16
PCPD2             80.00 usec
PLW2        13.50000000 W
PLW12        0.21094000 W
PLW13        0.13500001 W

F2 - Processing parameters
SI               131072
SF          125.7577892 MHz
WDW                  EM
SSB      0
LB                 1.00 Hz
GB       0
PC                 1.40

Purified product 13C NMR

O

5.24

H
O

5.53

H

+



 

 340 

 
Figure 5.30. 1H NMR (400 MHz, CDCl3) of compound 5.27.  

 
Figure 5.31. 13C NMR (100 MHz, CDCl3) of compound 5.27. 
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Figure 5.32. 1H NMR (500 MHz, CDCl3) of compound 5.28.  

 
Figure 5.33. 13C NMR (125 MHz, CDCl3) of compound 5.28. 
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Figure 5.34. 1H NMR (400 MHz, CDCl3) of compound 5.29.  

 
Figure 5.35. 13C NMR (125 MHz, CDCl3) of compound 5.29. 
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Figure 5.36. 1H NMR (400 MHz, CDCl3) of compound 5.30.  

 
Figure 5.37. 13C NMR (100 MHz, CDCl3) of compound 5.30. 
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Figure 5.38. 1H NMR (400 MHz, CDCl3) of compound 5.31.  

 
Figure 5.39. 13C NMR (100 MHz, CDCl3) of compound 5.31. 
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Figure 5.40. 1H NMR (500 MHz, CDCl3) of compound 5.32.  

 
Figure 5.41. 13C NMR (125 MHz, CDCl3) of compound 5.32. 
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Figure 5.42. 1H NMR (400 MHz, CDCl3) of compound 5.33.  

 
Figure 5.43. 13C NMR (100 MHz, CDCl3) of compound 5.33. 
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Figure 5.44. 1H NMR (500 MHz, CDCl3) of compound 5.34.  

 
Figure 5.45. 13C NMR (125 MHz, CDCl3) of compound 5.34. 
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 Figure 5.46. 1H NMR (400 MHz, CDCl3) of compound 5.38.   

 
Figure 5.47. 13C NMR (100 MHz, CDCl3) of compound 5.38. 
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Figure 5.48. 1H NMR (400 MHz, CDCl3) of compound 5.40.  

 
Figure 5.49. 13C NMR (100 MHz, CDCl3) of compound 5.40. 
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Figure 5.50. 1H NMR (600 MHz, CDCl3) of compound 5.42.  

 
Figure 5.51. 13C NMR (100 MHz, CDCl3) of compound 5.42. 
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Figure 5.52. 1H NMR (500 MHz, CDCl3) of compound 5.44.  

 
Figure 5.53. 13C NMR (125 MHz, CDCl3) of compound 5.44. 
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 Figure 5.54. 1H NMR (500 MHz, CDCl3) of compound 5.61.   

 
Figure 5.55. 13C NMR (125 MHz, CDCl3) of compound 5.61. 
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Figure 5.56. 1H NMR (400 MHz, CDCl3) of compound 5.62.   

 
Figure 5.57. 13C NMR (100 MHz, CDCl3) of compound 5.62. 
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Figure 5.58. 1H NMR (600 MHz, CDCl3) of compound 5.63.  

 
Figure 5.59. 13C NMR (100 MHz, CDCl3) of compound 5.63. 
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Figure 5.60. 1H NMR (500 MHz, CDCl3) of compound 5.64.  

 
Figure 5.61. 13C NMR (125 MHz, CDCl3) of compound 5.64. 
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Figure 5.62. 1H NMR (500 MHz, CDCl3) of compound 5.65.  

 
Figure 5.63. 13C NMR (125 MHz, CDCl3) of compound 5.65. 
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Figure 5.64. 1H NMR (500 MHz, CDCl3) of compound 5.45.  

 
Figure 5.65. 13C NMR (100 MHz, CDCl3) of compound 5.45. 
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Figure 5.66. 1H NMR (500 MHz, CDCl3) of compound rac-5.67.  

 
Figure 5.67. 13C NMR (125 MHz, CDCl3) of compound rac-5.67. 
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Figure 5.68. 1H NMR (500 MHz, CDCl3) of compound rac-5.68.  

 
Figure 5.69. 13C NMR (125 MHz, CDCl3) of compound rac-5.68. 
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Figure 5.70. 1H NMR (500 MHz, CDCl3) of compound rac-5.69.  

 
Figure 5.71. 13C NMR (125 MHz, CDCl3) of compound rac-5.69. 
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Figure 5.72. 1H NMR (600 MHz, CDCl3) of compound rac-5.46.  

 
Figure 5.73. 13C NMR (125 MHz, CDCl3) of compound rac-5.46. 
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Figure 5.74. 1H NMR (500 MHz, CDCl3) of compound 5.48.  

 
Figure 5.75. 13C NMR (125 MHz, CDCl3) of compound 5.48. 
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Figure 5.76. 1H NMR (600 MHz, CDCl3) of compound 5.51.  

 
Figure 5.77. 13C NMR (125 MHz, CDCl3) of compound 5.51. 
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Figure 5.78. 1H NMR (500 MHz, CDCl3) of compound 5.52.  

 
Figure 5.79. 13C NMR (125 MHz, CDCl3) of compound 5.52. 
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CHAPTER SIX  

 

Silyl Tosylate Precursors to Cyclohexyne, 1,2-Cyclohexadiene, and 1,2 Cycloheptadiene 

Matthew S. McVeigh, Andrew V. Kelleghan, Michael M. Yamano,  

Rachel R. Knapp, and Neil K. Garg 

Org. Let. 2020, 22, 4500–4504.  

  

 

6.1 Abstract 

Transient strained cyclic intermediates have become valuable intermediates in modern 

synthetic chemistry. Although silyl triflate precursors to strained intermediates are most often 

employed, the instability of some silyl triflates warrants the development of alternative 

precursors. We report the syntheses of silyl tosylate precursors to cyclohexyne, 1,2-

cyclohexadiene, and 1,2-cycloheptadiene. The resultant strained intermediates undergo trapping 

in situ to give cycloaddition products. Additionally, the results of competition experiments 

between silyl triflates and silyl tosylates are reported.   

6.2 Introduction 

 The chemistry of transient strained cyclic intermediates has been a popular topic of study 

for over a century. 1  Early efforts in the field established the existence of benzyne (6.1), 2 

cyclohexyne (6.2), 3  and 1,2-cyclohexadiene (6.3) 4  through pioneering studies conducted by 

Roberts and Wittig in the 1950s and 1960s (Figure 6.1). Since their discovery, these species, 

along with their heterocyclic derivatives (e.g., 6.4) have been employed in a host of synthetic 

applications spanning natural product synthesis,1c,1d,1i, 5  heterocycle construction,1e,1g,1h, 6  and 

materials chemistry,1e,7 as exemplified by the syntheses of 6.5–6.7. 
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Figure 6.1. Strained cyclic intermediates and selected synthetic applications. 
 

Many of the advanced synthetic applications of strained cyclic intermediates have been 

enabled by the use of silyl triflates as precursors. Initially developed by Kobayashi as precursors 

to benzyne (6.1),8 silyl triflates have since become the most commonly employed precursors for 

accessing arynes, nonaromatic cyclic alkynes, and cyclic allenes.1, 9 , 10   However, we have 

encountered difficulties in preparing certain functionalized strained cyclic allene and alkyne 

precursors due to the instability of the corresponding silyl triflates. This instability can be 

attributed to the ease of triflate dissociation and cation formation in related systems.11,12  

With the aim of circumventing silyl triflate instability and accessing a wider range of 

strained intermediates under Kobayashi-type conditions, we sought to develop new precursors to 

cyclic alkynes and allenes (i.e., 6.2 and 6.3, Figure 6.2). As mentioned above, the most common 

means to access 6.2 and 6.3 is via the corresponding silyl triflates (e.g., 6.8 and 6.10, 

respectively) using fluoride-induced elimination. Encouraged by the success of silyl tosylates as 

aryne precursors,13 we sought to develop silyl tosylate cyclic alkyne and allene precursors 6.9 

and 6.11, respectively.14 We hypothesized that the diminished leaving group ability of a tosylate 
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anion relative to a triflate15 could alleviate difficulties associated with vinyl triflate instability, 

while retaining sufficient reactivity to form the desired strained intermediates.13 These alternative 

precursors could also allow for new synthetic methods that leverage the differences in reactivity 

between tosylates and triflates.16 Furthermore, we hoped that silyl tosylates 6.9 and 6.11 would 

be crystalline, 17  in contrast to silyl triflates which are often oils. This characteristic could 

facilitate their purification and use in process chemistry. Herein, we describe the preparation, 

validation, and synthetic application of the desired silyl tosylates as strained intermediate 

precursors. 

 

Figure 6.2. Silyl triflate (previous) and silyl tosylate (current) precursors to 6.2 and 6.3. 
 

6.3 Synthesis of Silyl Tosylate Precursors to Cyclohexyne and 1,2-Cyclohexadiene 

Our first objective was to develop synthetic routes to the requisite silyl tosylates, which 

led to the preparation of 6.9 and 6.11 as shown in Figure 6.3. Following literature procedures,18 
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generated silyl tosylates 6.9 and 6.11, respectively. Gratifyingly, both alkyne precursor 6.9 and 

allene precursor 6.11 were obtained as crystalline solids and could be prepared on gram-scale. 

 

Figure 6.3. Syntheses of silyl tosylates 6.9 and 6.11. 

6.4 Comparing Silyl Tosylates and Silyl Triflates as Precursors to Cyclohexyne 

As shown in Table 6.1, we found that silyl tosylate 6.9 serves as a viable precursor to 

generate cyclohexyne (6.2) with in situ trapping. It should be noted that our initial attempts to 

generate 6.2 from 6.9 using CsF (based on literature conditions for the corresponding 

trimethylsilyl triflate6b) led to the recovery of unreacted 6.9. However, the use of the more 

soluble fluoride source tetrabutylammonium fluoride (TBAF) proved fruitful and enabled the 

generation of 6.2 in situ. Trapping with diene 6.16 furnished oxabicycle 6.17 via a (4+2) 

cycloaddition (entry 1). Similarly, the use of nitrone 6.18 as the trapping agent gave rise to 

isoxazolidine 6.19 by way of a (3+2) cycloaddition (entry 2). In both cases, yields were 

comparable to those observed using a silyl triflate precursor.6b,18b Lastly, nucleophilic trapping of 

6.2 with imidazole (6.20) proved successful, generating vinyl imidazole 6.21 in moderate yield.19 

These trapping experiments demonstrate that silyl tosylate 6.9 serves as an effective precursor to 

6.2, rendering 6.9 a useful intermediate for the synthesis of heterocyclic products. 
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Table 6.1. Silyl tosylate 6.9 as a precursor to cyclohexyne (6.2). 

 

General conditions: silyl tosylate 6.9 (1.0 equiv, 0.14 mmol), trapping agent (1.5–3.0 equiv), 
TBAF (5.0 equiv), and THF (0.07 M) heated in a sealed vial under an atmosphere of N2. 
aIsolated yields. bLiterature isolated yields under comparable reaction conditions when using 6.8 
(R = Me or Et) 
 
6.5 Comparing Silyl Tosylates and Silyl Triflates as Precursors to 1,2-Cyclohexadiene 

We also investigated silyl tosylate 6.11 as a precursor to strained cyclic allene 6.3 (Table 

6.2). In contrast to our observations in reactions of alkyne precursor 6.9, CsF could be utilized to 

induce strained intermediate formation from silyl tosylate 6.11 under the same conditions 

reported in the literature for the corresponding silyl triflate 6.10 (R = Et).6a We were delighted to 

find that silyl tosylate 6.11 could be employed in (4+2), (3+2), and (2+2) cycloadditions to 

deliver 6.23, 6.24, and 6.26, respectively (entries 1–3). In all cases, yields and diastereomeric 

ratios were consistent with those reported in the literature for reactions employing silyl triflate 
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N t-BuN

O

Ph

t-Bu

6.19

Ph

69% (61%)

NHN N

N

53% (81%)
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6.10 (R = Et).6a,18b,20  The synthesis of isoxazolidine 6.24 was also carried out on mmol-scale to 

demonstrate scalability. 

Table 6.2. Silyl tosylate 6.11 as a precursor to 1,2-cyclohexadiene (6.3). 

 

General conditions: silyl tosylate 6.11 (1.0 equiv, 0.14 mmol), trapping agent (1.0–5.0 equiv), 
CsF (5.0 equiv), and MeCN (0.1 M) heated in a sealed vial under an atmosphere of N2. aIsolated 
yields. bLiterature isolated yields and diastereomeric ratios under comparable reaction conditions 
when using 6.10 (R = Et). cDiastereomeric ratios determined by 1H NMR analysis of the crude 
reaction mixture. dYield determined by 1H NMR analysis using an external standard. eCyclic 
allene generated from 6,6-dibromobicyclo[3.1.0]hexane. 
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on mmol-scale



 376 

6.6 Preparation of a Precursor to 1,2-Cycloheptadiene and its Subsequent Trapping 

Having established silyl tosylates as effective substitutes for silyl triflates, we sought to 

extend this alternative method of strained intermediate generation to address a particular 

shortcoming in silyl triflate chemistry. As mentioned earlier, silyl triflates can sometimes be 

unstable due to their pronounced leaving group ability.11,12 We have observed this type of 

instability when attempting to synthesize a silyl triflate precursor to 1,2-cycloheptadiene (6.29) 

(Figure 6.4).21  Alternatively, silyl tosylate 6.28, accessible in three steps from 6.27 (see section 

6.9.2.4 for details), could be obtained as a crystalline solid. Treatment of 6.28 with isobenzofuran 

6.16 under standard conditions for cyclic allene generation and trapping afforded oxabicycle 6.30 

in excellent yield via the intermediacy of cyclic allene 6.29. This example demonstrates that silyl 

tosylates can be used to expand the scope of strained intermediates accessible under mild 

fluoride-based conditions.22 

 

Figure 6.4. Silyl tosylate 6.28 to access 1,2-cycloheptadiene (6.29). 

6.7 Competition Experiments Between Silyl Triflates and Silyl Tosylates 

Finally, two key experiments were performed to compare the relative reactivity of our 

silyl tosylates to the corresponding silyl triflates (Figure 6.5). In the first, equimolar amounts of 
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silyl triflate 6.8a and silyl tosylate 6.9, both precursors to cyclohexyne (6.2), were treated with 

nitrone 6.18 under CsF-based reaction conditions. We observed that silyl triflate 6.8a reacted 

selectively over silyl tosylate 6.9 to generate cycloadduct 6.19. Silyl tosylate 6.9 did not react 

under these conditions. An analogous competition experiment was performed using silyl triflate 

6.10a and silyl tosylate 6.11, both of which serve as precursors to 1,2-cyclohexadiene (6.3). This 

led to the efficient formation of 6.24 and the nearly quantitative retention of silyl tosylate 6.11. 

The preferential reactivity of the silyl triflate in both cases can be rationalized based on the 

relative leaving group abilities of the triflate and tosylate anions.15 This observed selectivity 

should prove useful in synthetic applications, analogous to prior studies in which multiple 

strained intermediates have been generated sequentially to synthesize complex polycyclic 

products.7 

 

Figure 6.5. Competition experiments between silyl triflate and silyl tosylate strained 
intermediate precursors. Yields determined by 1H NMR analysis with external standard. 

 
6.8 Conclusion 

 In summary, we have developed scalable syntheses of silyl tosylate precursors to the 

transient strained intermediates cyclohexyne (6.2), 1,2-cyclohexadiene (6.3), and 1,2-
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cycloheptadiene (6.29). Our synthetic routes to these precursors generate crystalline silyl 

tosylates, an attribute that could prove useful to process chemists. The silyl tosylate strained 

intermediate precursors not only replicate the chemistry attained using silyl triflates, but also can 

allow access to strained intermediates inaccessible using known silyl triflate chemistry, as 

exemplified by silyl tosylate 6.28. Furthermore, competition experiments demonstrate that silyl 

triflate precursors to 6.2 and 6.3 react chemoselectively in the presence of their silyl tosylate 

counterparts. This selectivity should prove useful in synthetic design. Collectively, these studies 

demonstrate the synthetic utility of silyl tosylates as precursors to transient strained 

intermediates. 
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6.9 Experimental Section 

6.9.1 Materials and Methods  

Unless stated otherwise, reactions were conducted in flame-dried glassware under an 

atmosphere of nitrogen using anhydrous solvents (passed through activated alumina columns). 

All commercially obtained reagents were used as received unless otherwise specified. Imidazole 

(6.20), p-toluenesulfonic anhydride (Ts2O), n-butyllithium (n-BuLi), tetrabutylammonium 

fluoride (TBAF), and potassium tert-butoxide (KOt-Bu) were obtained from Sigma-Aldrich. 

Sodium tert-butoxide (NaOt-Bu), 1,3-diphenylisobenzofuran (6.16), N-tert-butyl-α-

phenylnitrone (6.18), and 1,3,5-trimethoxybenzene were obtained from Alfa Aesar. Styrene 

(6.25) was obtained from Fisher Scientific and filtered through basic alumina prior to use. 

Cesium fluoride (CsF) was obtained from Strem Chemicals. Diisopropylamine was obtained 

from Acros Organics and distilled over CaH2 prior to use. Reaction temperatures were controlled 

using an IKAmag temperature modulator, and reactions were performed at room temperature 

(approximately 23 °C) unless otherwise stated. Thin-layer chromatography (TLC) was conducted 

with EMD gel 60 F254 pre-coated plates (0.25 mm for analytical chromatography and 0.50 mm 

for preparative chromatography) and visualized using a combination of UV, anisaldehyde, and 

potassium permanganate staining techniques. Silicycle Siliaflash P60 (particle size 0.040–0.063 

mm) was used for flash column chromatography. 1H NMR spectra were recorded on Bruker 

spectrometers (500 and 600 MHz) and are reported relative to residual solvent signals. Data for 

1H NMR spectra are reported as follows: chemical shift (δ ppm), multiplicity, coupling constant 

(Hz), integration. Data for 13C NMR are reported in terms of chemical shift (at 125 MHz). IR 

spectra were recorded on a Perkin-Elmer UATR Two FT-IR spectrometer and are reported in 

terms of absorption frequency (cm-1). DART-MS spectra were collected on a Thermo Exactive 
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Plus Orbitrap (Thermo Scientific) equipped with an ID-CUBE ion source and a Vapur Interface 

(IonSense Inc.). Both the source and MSD were controlled by Excalibur software v. 3.0. The 

analyte was spotted onto OpenSpot sampling cards (IonSense Inc.) using CH2Cl2 as the solvent. 

Ionization was accomplished using UHP He plasma with no additional ionization agents. The 

mass calibration was carried out using Pierce LTQ Velos ESI (+) and (–) Ion calibration 

solutions (Thermo Fisher Scientific).  

 

Note: The syntheses of silyl triflates 6.8a and 6.10a,18b silyl ketone 6.14,18b and silyl enol ether 

6.3123 have been published, and spectral data match those previously reported. 
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6.9.2 Experimental Procedures 

6.9.2.1 Syntheses of Silyl Tosylates 6.9 and 6.11 

 

Silyl Tosylate 6.9. To a stirring suspension of sodium tert-butoxide (498 mg, 5.18 mmol, 1.1 

equiv) in THF (5 mL) at –20 °C was added silyl ketone 6.14 (1.00 g, 4.71 mmol, 1.0 equiv) in 

THF (5 mL) via cannula addition over 5 min. The resulting dark orange-red solution was then 

warmed to 0 °C and stirred for 1 h. Next, the ice bath was removed, and the solution was stirred 

at 23 °C for 30 min, then recooled to 0 °C.  p-Toluenesulfonic anhydride (1.69 g, 5.18 mmol, 1.1 

equiv) in THF (7.0 mL) was then added over 7 min. The cooling bath was removed, and the off-

white, heterogeneous solution was stirred at 23 °C for 5 h before being quenched with sat. 

aqueous NaHCO3 (20 mL). The layers were separated and the aqueous layer was extracted with 

diethyl ether (3 x 20 mL). The organic layers were combined, washed sequentially with 

deionized H2O (1 x 20 mL) and brine (1 x 20 mL), dried with Na2SO4, and concentrated under 

reduced pressure. The crude reaction mixture was purified via column chromatography (3:97 

Et2O:hexanes) to provide silyl tosylate 6.9 (1.06 g, 61% yield) as a white, crystalline solid. Silyl 

tosylate 6.9: Rf 0.55 (9:1 hexanes:EtOAc); 1H NMR (500 MHz, CDCl3): d 7.82–7.79 (m, 2H), 

7.34–7.30 (m, 2H), 2.44 (s, 3H), 2.23–2.20 (m, 2H), 2.11–2.06 (m, 2H), 1.64–1.58 (m, 2H), 

1.53–1.47 (m, 2H), 0.88 (t, J = 8.1, 9H), 0.61 (q, J = 7.5, 6H); 13C NMR (125 MHz, CDCl3): d 

154.5, 144.4, 135.8, 129.6, 127.6, 121.9, 28.8, 28.2, 23.0, 22.1, 21.7, 7.5, 3.1; IR (film): 2950, 

2875, 1642, 1368, 1191 cm–1; HRMS–APCI (m/z) [M + H]+ calcd for C19H31O3SSi+, 367.1755; 

found 367.1754. 

O

SiEt3

6.14

OTs

SiEt3

6.9

i.  NaOt-Bu (1.1 equiv)
    THF,  –20 → 23 °C

ii. Ts2O (1.1 equiv)
    THF, 0 → 23 °C

(61% yield)
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Silyl Tosylate 6.11. To a stirring solution of diisopropylamine (1.41 mL, 9.88 mmol, 2.1 

equiv) in THF (14 mL) at –78 °C was added n-butyllithium (2.50 M in hexanes, 3.78 mL, 9.44 

mmol, 2.0 equiv) dropwise over 3 min.  After stirring for 20 min, the reaction was warmed to 

23 °C and stirred for 10 min, before recooling the reaction to –78 °C. Next, silyl ketone 6.14 

(1.00 g, 4.72 mmol, 1.0 equiv) in THF (14 mL) was added dropwise via cannula addition over 10 

min. The resulting pale-yellow solution was stirred for 1 h. Then, a solution of p-toluenesulfonic 

anhydride (2.31 g, 7.08 mmol, 1.5 equiv) in THF (18 mL) was added dropwise via cannula 

addition over 6 min. The cooling bath was allowed to melt, gradually warming the reaction to 

23 °C over 18 h, at which point it was quenched with sat. aqueous NaHCO3 (40 mL). The layers 

were separated and the aqueous layer was extracted with diethyl ether (3 x 40 mL). The 

combined organic layers were then dried over Na2SO4, filtered, and concentrated under reduced 

pressure to provide a yellow oil. The crude oil was passed through a silica plug (3:97 

Et2O:hexanes), and the eluate was concentrated to give a pale-yellow oil. This oil was dissolved 

in refluxing hexanes and cooled gradually to –78 °C over 4 h to induce crystallization. The 

crystals were filtered off, washed with cold hexanes, and the mother liquor was concentrated to 

give a clear oil. This oil was subjected to the same crystallization procedure, and both crops of 

crystals were combined to afford silyl tosylate 6.11 (860 mg, 50% yield) as a white, crystalline 

solid. Silyl tosylate 6.11: Rf 0.57 (1:1 hexanes:benzene); 1H NMR (500 MHz, CDCl3): d 7.78 (d, 

J = 8.1, 2H), 7.32 (d, J = 8.1, 2H), 5.19–5.16 (m, 1H), 2.45 (s, 3H), 2.01–1.90 (m, 2H), 1.82–

1.74 (m, 2H), 1.62–1.56 (m, 1H), 1.53–1.45 (m, 1H), 1.36–1.27 (m, 1H), 0.92 (t, J = 7.9, 9H), 

0.60 (q, J = 8.2, 6H); 13C NMR (125 MHz, CDCl3): d 151.4, 144.7, 133.5, 129.4, 128.5, 114.3, 

O

SiEt3

6.14

OTs

SiEt3

6.11

i.  LDA (2.0 equiv)
    THF,  –78 °C

ii. Ts2O (1.5 equiv)
    THF, –78 → 23 °C

(50% yield)
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25.5, 25.3, 24.1, 21.8, 21.7, 7.5, 3.0; IR (film): 2954, 2877, 1370, 1179, 1191 cm–1; HRMS–

APCI (m/z) [M + H]+ calcd for C19H31O3SSi+, 367.1755; found 367.1758. 

 

6.9.2.2 Cyclohexyne Trapping Experiments 

Representative Procedure 6.1 (Table 6.1, entry 1 is used as an example). 

 

Cycloadduct 6.17. To a stirred solution of silyl tosylate 6.9 (49.6 mg, 135 µmol, 1.0 equiv), 

and 1,3-diphenylisobenzofuran (6.16) (54.9 mg, 203 µmol, 1.5 equiv) in THF (1.35 mL, 0.07 M) 

was added TBAF (1.0 M in THF, 677 µL, 677 µmol, 5.0 equiv). The reaction vessel was purged 

with N2, sealed with a teflon cap, and placed in a preheated, 60 °C aluminum heating block. 

After stirring for 15 h, the reaction was cooled to 23 °C. The resultant yellow solution was 

filtered through a plug of silica gel (EtOAc eluent, 10 mL) and concentrated under reduced 

pressure to afford a crude yellow solid. Purification by preparative thin layer chromatography 

(3:2 benzene:hexanes) provided cycloadduct 6.17 (36.2 mg, 76% yield, average of two 

experiments) as a pale-yellow solid. Cycloadduct 6.17: Spectral data match those previously 

reported.18b  
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Cycloadduct 6.19. Followed Representative Procedure 5.1. Purification by preparative thin layer 

chromatography (9:1 Hexanes:EtOAc) provided cycloadduct 6.19 (24.2 mg, 69% yield, average 

of two experiments) as a white solid. Cycloadduct 6.19: Spectral data match those previously 

reported.6b  

 

Imidazole adduct 6.21. Followed Representative Procedure 5.1. Purification by preparative thin 

layer chromatography (EtOAc) provided cycloadduct 6.21 (10.7 mg, 53% yield, average of two 

experiments) as an off-white solid. Imidazole adduct 6.21: Spectral data match those previously 

reported.6b 

 

 

 

 

 

 

(3.0 equiv)

TBAF (5.0 equiv)
THF (0.07 M)
60 °C, 15 h

(69% yield)

OTs

SiEt3

6.9

N

6.18

6.19

t-BuO

Ph

O
N

Ph

t-Bu

(3.0 equiv)

TBAF (5.0 equiv)
THF (0.07 M)
60 °C, 15 h

(53% yield)

OTs

SiEt3

6.9

6.20

6.21

N

NHN

N



 385 

6.9.2.3 1,2-Cyclohexadiene Trapping Experiments 

Representative Procedure 6.2 (Table 6.2, entry 1 is used as an example). 

 

Cycloadduct 6.23.  To a stirred solution of silyl tosylate 6.11 (49.7 mg, 136 µmol, 1.0 

equiv) and 1,3-diphenylisobenzofuran (6.16) (55.5 mg, 205 µmol, 1.5 equiv) in MeCN (1.40 mL, 

0.1 M) was added CsF (100 mg, 0.68 mmol, 5.0 equiv). The reaction vessel was purged with N2, 

sealed with a teflon cap and teflon tape, and placed in a preheated, 80 °C aluminum heating 

block. The reaction was allowed to stir at this temperature for 19 h. After cooling to 23 °C, the 

yellow, heterogenous solution was filtered through a plug of silica gel (EtOAc eluent, 10 mL) 

and concentrated under reduced pressure to afford a crude yellow solid. Purification by 

preparative thin layer chromatography (2:1 hexanes:CH2Cl2 with 2% acetone) provided 

cycloadduct 6.23 as a pale-yellow solid (36.9 mg, 78% yield, 2.7:1 d.r. by 1H NMR analysis of 

the crude material, average of two experiments). Cycloadduct 6.23: Spectral data match those 

previously reported.18b  

Any modification of the conditions shown in the representative procedure above are 

specified in the following scheme 
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Cycloadduct 6.24. Followed Representative Procedure 5.2. Purification by preparative thin layer 

chromatography (1:1 hexanes:benzene) provided cycloadduct 6.24 as a white solid (30.2 mg, 

80% yield, 9.3:1 d.r. by 1H NMR analysis of the crude material, average of two experiments). 

Cycloadduct 6.24: Spectral data match those previously reported.6a 

 

Cycloadduct 6.24 (mmol scale). To a stirred solution of silyl tosylate 6.11 (367 mg, 1.00 mmol, 

1.0 equiv) and N-tert-butyl-α-phenylnitrone (6.18) (181 mg, 1.02 mmol, 1.0 equiv) in MeCN 

(10.0 mL, 0.1 M) was added CsF (761 mg, 5.01 mmol, 5.0 equiv). The reaction vessel was 

purged with N2, sealed with a teflon cap and teflon tape, and placed in a preheated, 80 °C 

aluminum heating block. The reaction was allowed to stir at this temperature for 19 h. After 

cooling to 23 °C, the white, heterogenous solution was filtered through a plug of silica gel 

(EtOAc eluent, 30 mL) and concentrated under reduced pressure to afford a crude off-white 

solid. Purification by flash chromatography (4:1 to 1:1 hexanes:benzene) provided cycloadduct 

6.24 as a white solid (200.2 mg, 78% yield, 9.0:1 d.r.). Cycloadduct 6.24: Spectral data match 

those previously reported.6a 

OTs

SiEt3

6.11

6.18

6.24

(1.0 equiv)

CsF (5.0 equiv)
MeCN (0.1 M)

80 °C, 19 h

(80% yield)

N

H

t-BuO

Ph

O
N t-Bu

Ph

OTs

SiEt3

6.11

6.18

6.24

(1.0 equiv)

CsF (5.0 equiv)
MeCN (0.1 M)

80 °C, 19 h

(78% yield)

N

H

t-BuO

Ph

O
N t-Bu

Ph



 387 

 

Cycloadduct 6.26. Followed a modified Representative Procedure 5.2 by adding 1,3,5-

trimethoxybenzene as an external standard to the crude residue obtained by filtration of the 

reaction mixture. 1H NMR analysis of this crude mixture showed cycloadduct 6.26 (91% yield, 

2.0:1 d.r., average of two experiments). The volatility of 6.26 hampered isolation attempts. 

Cycloadduct 6.26: Spectral data match those previously reported.20 

 

6.9.2.4 Synthesis of Silyl Tosylate 6.28 

 

Silyl ketone 6.32. To a heterogeneous solution of potassium tert-butoxide (186 mg, 1.66 mmol, 

2.5 equiv) in hexanes (1.3 mL) at 0 °C was added n-butyllithium (2.36 M in hexanes, 0.561 mL, 

1.32 mmol, 2.0 equiv) dropwise over 2 min. The solution was removed from the ice bath and 

stirred at 23 °C for an additional 20 min. A solution of silyl enol ether 6.31 (150 mg, 0.662 

mmol, 1.0 equiv) in hexanes (1.3 mL) was then added dropwise over 5 min and stirred at 23 °C. 

After stirring for 2 h, deionized H2O (5.0 mL) was added to the reaction, and the aqueous layer 

was extracted with diethyl ether (3 x 5 mL). The combined organic layers were dried over 

Na2SO4, filtered, and concentrated under reduced pressure. The resulting crude oil was purified 

by flash chromatography (1.5:98.5 EtOAc:hexanes) to afford silyl ketone 6.32 (142 mg, 95% 
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yield) as a clear, colorless oil. Silyl ketone 6.32: Rf 0.36 (99:1 benzene:Et2O); 1H NMR (500 

MHz, CDCl3): d 2.63–2.56 (m, 1H), 2.37 (dd, J = 11.9, 4.9,  1H), 2.33–2.27 (m, 1H), 2.03–1.95 

(m, 1H), 1.93–1.82 (m, 3H), 1.72–1.61 (m, 1H), 1.46–1.29 (m, 2H), 1.18–1.07 (m, 1H), 0.94 (t, J 

= 8.0, 9H), 0.60 (q, J = 7.5, 6H); 13C NMR (125 MHz, CDCl3): d 215.9, 47.6, 43.6, 31.1, 30.5, 

25.9, 25.7, 7.3, 2.4; IR (film): 2880, 1670, 1417, 1208, 879 cm–1; HRMS-APCI (m/z) [M + H]+ 

calcd for C13H27OSi+, 227.1826; found 227.1826. 

 

 

Silyl tosylate 6.28. To a solution of diisopropylamine (0.110 mL, 0.762 mmol, 1.15 equiv) in 

THF (0.5 mL) at –78 °C was added n-butyllithium (2.36 M in hexanes, 0.309 mL, 0.729 mmol, 

1.1 equiv) dropwise over 2 min. The solution was stirred for 30 min at –78 °C, then warmed to 

23 °C over 15 min before being cooled to –78 °C. Silyl ketone 6.32 (150 mg, 0.662 mmol, 1.0 

equiv) in THF (0.5 mL) was added dropwise over 5 min and stirred for 1 h at –78 °C. Next, p-

toluenesulfonic anhydride (281 mg, 0.861 mmol, 1.3 equiv) in THF (2.0 mL) was added 

dropwise over 5 min and allowed to stir at –78 °C. After stirring for 1 h, sat. aqueous NaHCO3 

(3.0 mL) was added to the reaction, and the stirring solution was warmed to 23 °C. The aqueous 

layer was then extracted with diethyl ether (3 x 3 mL), and the combined organic layers were 

dried over Na2SO4, filtered, and concentrated under reduced pressure. The resulting crude solid 

was dissolved and passed through a plug of silica gel (2:1 hexanes:benzene eluent, 100 mL). The 

eluate was concentrated and divided into three equal portions. Each portion was purified by 

preparative thin layer chromatography (7:3 benzene:hexanes), and the individual portions were 

O OTsi.  LDA (1.1 equiv)
    THF, –78 °C

ii. Ts2O (1.3 equiv)
    THF, –78 °C

6.32 6.28
(56% yield)

SiEt3 SiEt3
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recombined to afford silyl tosylate 6.28 (141 mg, 56% yield) as a white solid. Silyl tosylate 6.28: 

M.p. 39.9–40.8 °C; Rf 0.79 (99:1 benzene:Et2O); 1H NMR (500 MHz, CDCl3): d 7.82–7.79 (m, 

2H), 7.35–7.31 (m, 2H),  5.22 (dd, J = 9.2, 4.4, 1H), 2.45 (s, 3H), 2.10 (t, J = 5.7, 1H), 2.07–2.00 

(m, 1H), 1.94–1.87 (m, 1H), 1.83–1.76 (m, 1H), 1.75–1.65 (m, 2H), 1.55–1.49 (m, 1H), 1.49–

1.41 (m, 1H), 1.37–1.28 (m, 1H), 0.94 (t, J  = 8.1, 9H), 0.63 (q, J = 7.7, 6H); 13C NMR (125 

MHz, CDCl3): d 154.3, 144.6, 133.6, 129.5, 128.5, 118.4, 33.0, 28.2, 27.6, 26.0, 23.9, 21.7, 7.5, 

3.6; IR (film): 2929, 2876, 1368, 1177, 994 cm–1; HRMS-APCI (m/z) [M + H]+ calcd for 

C20H33O3SSi+, 381.1914; found 381.1907. 

 

5.9.2.5 1,2-Cycloheptadiene Trapping Experiment 

 

Cycloadduct 6.30. To a stirred solution of silyl tosylate 6.28 (19.8 mg, 52.0 µmol, 1.0 

equiv) and 1,3-diphenylisobenzofuran (6.16) (21.1 mg, 78.0 µmol, 1.5 equiv) in MeCN (0.52 

mL, 0.1 M) was added CsF (39.5 mg, 260 µmol, 5.0 equiv). The reaction vessel was purged with 

N2, sealed with a teflon cap and teflon tape, and placed in a preheated, 80 °C aluminum heating 

block. The reaction was allowed to stir at this temperature for 14 h. After cooling to 23 °C, the 

yellow, heterogeneous solution was filtered through a plug of silica gel (EtOAc eluent, 10 mL) 

and concentrated under reduced pressure to afford a crude yellow solid. Purification by 

preparative thin layer chromatography (2:1 hexanes:CH2Cl2 with 2% acetone) provided 

6.16
(1.5 equiv)

CsF (5.0 equiv)
MeCN (0.1 M)

80 °C, 19 h

(91% yield)

O

Ph

Ph

OTs

6.28

SiEt3
O

H

Ph

Ph
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cycloadduct 6.30 (17.3 mg, 91% yield, 6.3:1 d.r. by 1H NMR analysis of the crude material). 

Cycloadduct 6.30: Spectral data match those previously reported.22  

 

6.9.2.6 Silyl Tosylate and Silyl Triflate Competition Experiments 

 

Alkyne precursor competition experiment. To a stirred solution of silyl triflate 6.8a (25.0 mg, 

72.6 µmol, 1.0 equiv), silyl tosylate 6.9 (26.6 mg, 72.6 µmol, 1.0 equiv), and N-tert-butyl-α-

phenylnitrone (6.18) (12.9 mg, 72.6 µmol, 1.0 equiv) in THF (2.4 mL, 0.03 M) was added CsF 

(55.1 mg, 363 µmol, 5.0 equiv). The reaction vessel was purged with N2, sealed with a teflon 

cap, and placed in a preheated, 60 °C aluminum heating block.  The reaction was allowed to stir 

at this temperature for 24 h. After cooling to 23 °C, the solution was filtered through a plug of 

silica gel (EtOAc eluent, 10 mL) and concentrated under reduced pressure to afford the crude 

reaction mixture. 1,3,5-trimethoxybenzene was added as an external standard. 1H NMR analysis 

of the crude reaction mixture showed cycloadduct 6.19 (42% yield) and silyl tosylate 6.9 (100% 

remaining).  
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Allene precursor competition experiment. To a stirred solution of silyl triflate 6.10a (25.0 mg, 

72.6 µmol, 1.0 equiv), silyl tosylate 6.11 (26.6 mg, 72.6 µmol, 1.0 equiv), and  N-tert-butyl-α-

phenylnitrone (6.18) (12.9 mg, 72.6 µmol, 1.0 equiv) in MeCN (0.73 mL, 0.1 M) was added CsF 

(55.1 mg, 363 µmol, 5.0 equiv). The reaction vessel was purged with N2, sealed with a teflon 

cap, and placed in a preheated, 35 °C aluminum heating block.  The reaction was allowed to stir 

at this temperature for 19 h. After cooling to 23 °C, the solution was filtered through a plug of 

silica gel (EtOAc eluent, 10 mL) and concentrated under reduced pressure to afford the crude 

reaction mixture. 1,3,5-trimethoxybenzene was added as an external standard. 1H NMR analysis 

of the crude reaction mixture showed cycloadduct 6.24 (94% yield, 12.2:1 d.r.) and silyl tosylate 

6.11 (94% remaining). 
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6.10 Spectra Relevant to Chapter Six: 

 

Silyl Tosylate Precursors to Cyclohexyne, 1,2-Cyclohexadiene, and 1,2-Cycloheptadiene 

 

Matthew S. McVeigh, Andrew V. Kelleghan, Michael M. Yamano, Rachel R. Knapp, and Neil K. Garg. 

Org. Let. 2020, 22, 4500–4504.  

 

 

 

 

 

 

 

 



 393 

 
Figure 6.6. 1H NMR (500 MHz, CDCl3) of compound 6.9.  

 
Figure 6.7. 13C NMR (125 MHz, CDCl3) of compound 6.9.  
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Figure 6.8. 1H NMR (500 MHz, CDCl3) of compound 6.11.  

 

Figure 6.9. 13C NMR (125 MHz, CDCl3) of compound 6.11.  
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Figure 6.10. 1H NMR (600 MHz, CDCl3) of compound 6.17. 

 
Figure 6.11. 1H NMR (500 MHz, CDCl3) of compound 6.19.   
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Figure 6.12. 1H NMR (500 MHz, CDCl3) of compound 6.21. 

 
Figure 6.13. 1H NMR (600 MHz, CDCl3) of compound 6.23.   
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Figure 6.14. 1H NMR (500 MHz, CDCl3) of compound 6.24. 

 

Figure 6.15. 1H NMR (500 MHz, CDCl3) of compounds 6.26 and 6.34. 
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Figure 6.16. 1H NMR (500 MHz, CDCl3) of compounds 6.32. 

 
Figure 6.17. 13C NMR (125 MHz, CDCl3) of compound 6.32.  
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Figure 6.18. 1H NMR (600 MHz, CDCl3) of compounds 6.28. 

 
Figure 6.19. 13C NMR (125 MHz, CDCl3) of compound 6.28.  

10 9 8 7 6 5 4 3 2 1 0 ppm

0.
60

8
0.

61
0

0.
62

2
0.

62
3

0.
63

5
0.

64
9

0.
92

7
0.

94
0

0.
95

3
1.

31
4

1.
32

0
1.

32
8

1.
33

6
1.

34
2

1.
44

1
1.

44
4

1.
45

8
1.

46
4

1.
49

6
1.

49
8

1.
50

4
1.

50
7

1.
51

9
1.

52
2

1.
52

7
1.

53
0

1.
53

7
1.

54
0

1.
67

5
1.

68
2

1.
68

9
1.

70
0

1.
70

3
1.

71
0

1.
72

3
1.

78
9

1.
80

2
1.

90
6

1.
91

2
1.

92
0

1.
92

8
2.

01
0

2.
03

0
2.

03
5

2.
03

7
2.

08
8

2.
09

7
2.

10
6

2.
45

1
5.

21
1

5.
21

8
5.

22
6

5.
23

3
7.

32
1

7.
33

4
7.

33
5

7.
79

4
7.

80
8

6.
13

3

9.
10

0
1.

28
9

1.
16

6
1.

19
3

2.
16

5
1.

06
1

1.
06

7
1.

12
7

1.
00

1
3.

10
5

1.
00

0

2.
10

6

1.
98

6

Current Data Parameters
NAME     AVK-2019-119a-p
EXPNO                 1
PROCNO                1

F2 - Acquisition Parameters
Date_          20190418
Time              21.06
INSTRUM           av600
PROBHD   5 mm BB5
PULPROG            zg30
TD                65536
SOLVENT           CDCl3
NS                    8
DS                    0
SWH           12376.237 Hz
FIDRES         0.188846 Hz
AQ            2.6476543 sec
RG                  362
DW               40.400 usec
DE                 6.50 usec
TE                295.7 K
D1           2.00000000 sec
TD0                   1

======== CHANNEL f1 ========
NUC1                 1H
P1                10.75 usec
PL1               -2.00 dB
PL1W        39.81071854 W
SFO1        600.1336008 MHz

F2 - Processing parameters
SI                65536
SF          600.1300273 MHz
WDW                  EM
SSB      0
LB                 0.30 Hz
GB       0
PC                 1.00

Purified Product, 1H NMR

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm

3.
62

7.
45

21
.6

8
23

.8
9

25
.9

7
27

.5
6

28
.2

3
33

.0
2

11
8.

37

12
8.

50
12

9.
46

13
3.

55

14
4.

60

15
4.

30

Current Data Parameters
NAME     AVK-2019-088a-p-char
EXPNO                13
PROCNO                1

F2 - Acquisition Parameters
Date_          20190417
Time              14.02 h
INSTRUM           av500
PROBHD   Z119248_0002 (
PULPROG          zgpg30
TD                65536
SOLVENT           CDCl3
NS                  262
DS                    2
SWH           31250.000 Hz
FIDRES         0.953674 Hz
AQ            1.0485760 sec
RG               204.54
DW               16.000 usec
DE                28.00 usec
TE                298.0 K
D1           2.00000000 sec
D11          0.03000000 sec
TD0                   1
SFO1        125.7722511 MHz
NUC1                13C
P1                10.50 usec
PLW1        23.00000000 W
SFO2        500.1330008 MHz
NUC2                 1H
CPDPRG[2        waltz16
PCPD2             80.00 usec
PLW2        13.50000000 W
PLW12        0.21094000 W
PLW13        0.10610000 W

F2 - Processing parameters
SI               131072
SF          125.7577892 MHz
WDW                  EM
SSB      0
LB                 1.00 Hz
GB       0
PC                 1.40

Purified Product, 13C NMR

OTs

6.28

SiEt3



 400 

 
Figure 6.20. 1H NMR (500 MHz, CDCl3) of compounds 6.30. 
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CHAPTER SEVEN 

 

Progress Toward the Total Synthesis of Alstilobanine A 

 

7.1 Abstract  

Monoterpene indole alkaloids represent the largest classes of natural products, many of 

which possess biological activity for the treatment of human diseases. One such alkaloid, 

alstilobanine A (7.1), is the focus of this chapter. Our synthetic strategy hinges on a on a key (4+2) 

cycloaddition between a pyrone and an azacyclic allene to construct the core of the natural product. 

Herein, we detail the current experimental progress toward the synthesis of alstilobanine A and 

outline future studies.  

7.2 Introduction 

Indole alkaloids comprise one of the largest groups of natural products with biological 

activity for the treatment of human diseases.1 One such alkaloid, (–)-alstilobanine A (7.1, Figure 

7.1), first isolated in 2008 by Morita and co-workers,2 consists of an unusual 2-azadecalin core 

appended to the indole fragment. The stereochemical complexity of 7.1 renders it a formidable 

synthetic target. In particular, the 2-azadecalin core contains four vicinal stereogenic centers, two 

of which are fully substituted, as well as a number of potentially sensitive functional groups. To 

highlight these challenges, only a single racemic synthesis of 7.1 has been reported, which 

provided access to the natural product in 20 linear steps.3 Intrigued by the structure of alstilobanine 

A (7.1), we pursued a concise synthesis of 7.1. Our proposed synthesis hinges on a (4+2) 

cycloaddition of a strained cyclic allene 7.3 to rapidly prepare a highly functionalize azadecalin.  
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Strained cyclic intermediates have long fascinated the scientific community4 and despite 

once being curiosities, small rings containing a triple bond can now be used in a host of 

applications.5 Specifically, synthetic strategies leveraging the reactivity of strained intermediates 

can be advantageous. Despite the high reactivity due to the ring strain found in these intermediates, 

they react regioselectively and can form multiple bonds in a single step. Additionally, they can be 

formed under mild reaction conditions. These characteristics make the use of strained 

intermediates well suited for complex molecule synthesis and strained cyclic intermediates 

possessing triple bonds have been utilized in a number natural product syntheses.5f–h  

Interestingly, the corresponding cyclic allenes, despite being first reported in 19766 and 

possessing similar strategic advantages as cyclic alkynes, has seen little application in the realm 

of complex molecule synthesis.7 From a strategic standpoint, the strain of cyclic allenes can also 

be harnessed to introduce complexity as the allene can be substituted and subsequent trapping 

gives rise to sp3-rich products.8 Furthermore, akin to linear allenes, cyclic allenes are chiral and 

this chirality can be leveraged to control the absolute stereochemistry found in the corresponding 

products. Our group and others have gained insights into the fundamental reactivity of these 

intermediates through methodology development.9 There have been a number of insights into the 

regio- and steroselecitivty trends as well as methods to control the absolute stereochemistry found 

in the products.10 With these synthetic advantages in mind, our proposed synthesis of alstilobanine 

A (7.1) strategically relies on a (4+2) cycloaddition with a substituted azacyclic allene 7.3 and 

pyrone 7.2 to rapidly access the azadecalin core of 7.1 (Figure 7.1). The key step would form two 

bonds and install three of the four stereocenters, two of which are fully substituted. The success of 

these studies would push the scope and limitations of this reaction methodology while enabling 

efficient access to alstilobanine A (7.1).  
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Figure 7.1. The structure of alstilobanine A (7.1) and overview of current approach. 

 

7.3 Retrosynthetic Analysis  

 A concise retrosynthetic analysis for alstilobanine A (7.1) is shown in Figure 7.2. 

Retrosynthetically, 7.1 was envisioned to arise from 7.5 through functional group manipulations 

to install the methyl ester and primary alcohol moieties. 7.5, in turn, could be prepared from 7.6 

via a reduction. Triol 7.6 could be accessed from 7.8 via a reductive opening of the lactone and 

cleavage of the acetate group. Next, it was envisioned that the key intermediate 7.8 could be 

prepared by a (4+2) cycloaddition between an indole 2-pyrone 7.9 and acetoxy-substituted aza 

cyclicallene 7.10. Notably, this key step would form two new bonds and set three of the four 

stereocenters. Overall, the strategic usage of a strained cyclic allene would enable the rapid 

generation of structural complexity and is expected to facilitate a concise synthesis of 7.1.  
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Figure 7.2. Retrosynthetic analysis of alstilobanine A (7.1). 

7.4 (4+2) Cycloadditions with Indole Pyrone 7.9 

 Studies toward the total synthesis of alstilobanine A (7.1) commenced by evaluating the 

regio- and stereoselectivity of the (4+2) cycloaddition between pyrone 7.9 (known in 6 steps)23and 

in situ-generated azacyclic allene 7.10, shown in Figure 7.3. To achieve this goal, acetoxy-

substituted azacyclic allene 7.11 precursor was prepared (see Section 7.9.2.1). Subjection of 7.9 

and 7.11 to mild fluoride-mediated conditions led to the formation of undesired cycloadduct 7.12 

in 80% yield. This unexpected adduct is proposed to arise through generation of cyclic allene 7.10 

and trapping with 7.9, followed by spontaneous decarboxylation and aromatization. Of note, the 

undesired regioisomer was observed in this transformation as cycloaddition occurred on the double 

bond of the cyclic allene distal to the acetoxy substituent. It was hypothesized that shifting from 

an electron-donating group (acetoxy group) to an electron-withdrawing group (ester) could reverse 

the regioselectivity, and lead to cycloaddition at the olefin proximal to the substituent. Of note, a 

previous study by our group has demonstrated the regioselectivity of (4+2) cycloadditions of 

azacyclic allenes is guided by the electronic nature of the substituents.11 To investigate this 

hypothesis, ester-substituted azacyclic allene precursor 7.13 was synthesized and treated with 
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pyrone 7.9 in the presence of CsF. Unfortunately, cycloaddition of cyclic allene 7.14 again 

occurred at the undesired double bond of the allene, giving 7.15 was obtained as the major product 

in 56% yield. 

 

Figure 7.3 Initial studies of the (4+2) cycloaddition of azacyclic allenes with indole pyrone 7.9 

give rise to the undesired regioselectivity. 

 

7.5 Revised Route to Alstilobanine A (7.1) 

 To overcome the regioselectivity challenges observed in cycloadditions of the azacyclic 

allene with indole pyrone 7.9, a revised retrosynthetic analysis was designed.  Retrosynthetically, 

compound 7.6 would still be accessed through the proposed route, however, it was envisioned to 

arise from o-nitro arene 7.16 via a reductive indolization. 7.16 could then be traced back to 7.17 

through reduction of the lactone and ester moieties. Key intermediate 7.17 could, in turn, be 

generated by a (4+2) cycloaddition between pyrone 7.18 and acetoxy-substituted azacyclic allene 

7.10. Key to the revised synthetic strategy is the use of an electron-poor diene 7.18. Studies within 

our group have validated pyrone dienes to participate in inverse electron-demand Diels–Alder 

reactions and cyclize on the alkene proximal to the electron-donating substituent. While the revised 

strategy does not incorporate the indole moiety in the key (4+2) cycloaddition, the reaction does 
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install all but one of the carbons found in the framework of alstilobanine A (7.1) and sets the 

stereochemistry.  

 

Figure 7.4 Revised retrosynthetic analysis of alstilobanine A (7.1). 
 

 With the revised retrosynthesis in hand, our attention turned to investigating the 

regioselectivity of the redesigned (4+2) cycloaddition (Figure 7.5). We were excited to find that 

exposure of silyl bromide 7.11 and pyrone 7.18 to mild fluoride-based conditions led to formation 

of cycloadduct 7.17 in 46% yield (>20:1 d.r.), via the proposed transition structure 7.19. Of note, 

the cycloaddition occurs on the olefin proximal to the acetoxy substituent, generating two fully 

substituted stereocenters in the process. Furthermore, this transformation assembles the core 

framework of alstilobanine A (7.1) in one step, giving a product that contains all but one of the 

carbon atoms present in the natural product.  
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Figure 7.5 Key (4+2) cycloaddition to access the core of alstilobanine A (7.1). 

 

7.6 Current Directions  

 With 7.17 in hand, the lactone bridge and acetate groups were reduced using lithium 

borohydride to afford triol 7.16 in 48% yield. Current efforts are focused on achieving a reductive 

indolization to forge the C–N bond of 7.6 and access the indole fragment present in alstilobanine 

A (7.1). Initial experiments employing TiCl3 as a reductant12 are promising, and assessment of 

alternative reducing conditions13 to optimize this transformation is ongoing.  

 

Figure 7.6 Current efforts en route to alstilobanine A (7.1). 
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result in hydrodeiodination, benzyl group removal, and alkene reduction in one step to afford 7.5. 

14 In the ideal scenario, the cis-decalin configuration is preferred, however, if this proves 

challenging, an alcohol-directed reduction using Crabtree’s catalyst can be employed.15 Treatment 

of 7.5 with TFA is expected to induce removal of the Bus group and dehydration of the activated 

alcohol, forming carbocation 7.20. Notably, dehydrations of this nature have been reported 

previously.16 The carbocation 7.20 is then proposed to be trapped by sodium cyanide (Route A),17 

whereby the approach of the nucleophile is expected to take place from the a-face. Following 

formation of 7.21, a Pinner reaction would be executed using HCl in methanol to convert the nitrile 

group to the methyl ester and give rise to alstilobanine A (7.1).18 If approach of the nucleophile 

from the concave a-face is challenging, an alternative route is proposed (Route B). Namely, the 

carbocation 7.20 could be trapped with a hydride source to give 7.2219 and subsequent oxidation 

should generate 7.23. Finally, a-deprotonation and trapping of the resultant enolate with 

formaldehyde is expected to deliver the natural product. 14 In this final step, alkylation is 

anticipated to occur on the less sterically hindered b-face. 
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Figure 7.7 Proposed strategy to complete the total synthesis of alstilobanine A (7.1). 

 

7.8 Conclusions 

 We have conceived an ambitious plan to synthesize alstilobanine A (7.1). Our route 

leverages a key (4+2) cycloaddition using an azacyclic allene to generate two bonds and set two 

stereocenters found in the natural product. Thus far, we have accessed key intermediate 7.16 in 

four steps from known starting materials. Current efforts are aimed at performing a reductive 

indolization to complete the core indole framework of the natural product. The success of this 

synthesis will underscore the synthetic advantages of employing strained cyclic allenes 

strategically in complex molecule synthesis and should facilitate a concise synthesis of 7.1.  
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7.9 Experimental Section 
 
7.9.1 Materials and Methods 

Unless stated otherwise, reactions were conducted in flame-dried glassware under an 

atmosphere of nitrogen using anhydrous solvents (freshly distilled or passed through activated 

alumina columns). All commercially obtained reagents were used as received unless otherwise 

specified. Cesium fluoride (CsF), copper bromide•dimethyl sulfide complex, and 

PdCl2(dppf)•CH2Cl2 were obtained from Strem Chemicals. Titanium trichloride, acetic anhydride, 

and lithium borohydride were obtained from Sigma-Aldrich. Potassium carbonate was obtained 

from Alfa Aesar. Reaction temperatures were controlled using an IKAmag temperature modulator 

and, unless stated otherwise, reactions were performed at room temperature (approximately 23 

°C). Thin layer chromatography (TLC) was conducted with EMD gel 60 F254 pre-coated plates 

(0.25 mm) and visualized using a combination of UV light and potassium permanganate staining. 

Silicycle Siliaflash P60 (particle size 0.040–0.063 mm) was used for flash column 

chromatography. 1H-NMR and 2D-NOESY spectra were recorded on Bruker spectrometers (at 

500 and 600 MHz) and are reported relative to the residual solvent signal. Data for 1H-NMR 

spectra are reported as follows: chemical shift (δ ppm), multiplicity, coupling constant (Hz) and 

integration. 13C-NMR spectra were recorded on Bruker spectrometers (at 125 MHz) and are 

reported relative to the residual solvent signal. Data for 13C-NMR spectra are reported in terms of 

chemical shift and, when necessary, multiplicity, and coupling constant (Hz). IR spectra were 

obtained on a Perkin-Elmer UATR Two FT-IR spectrometer and are reported in terms of frequency 

of absorption (cm–1). Uncorrected melting points were measured using a Digimelt MPA160 

melting point apparatus. DART-MS spectra were collected on a Thermo Exactive Plus MSD 

(Thermo Scientific) equipped with an ID-CUBE ion source and a Vapur Interface (IonSense Inc.). 
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Both the source and MSD were controlled by Excalibur software v. 3.0.  The analyte was spotted 

onto OpenSpot sampling cards (IonSense Inc.) using CDCl3 as the solvent. Ionization was 

accomplished using UHP He (Airgas Inc.) plasma with no additional ionization agents. The mass 

calibration was carried out using Pierce LTQ Velos ESI (+) and (–) Ion calibration solutions 

(Thermo Fisher Scientific).  

Enone 7.2420 Benzyl propargyl ether (7.27)21 and 3-bromopropiolic acid (7.26)22, 

 pyrone 7.923,and silyl triflate 7.1311 are known compounds. 

 

7.9.2 Experimental Procedures  

7.9.2.1 Synthesis of Silyl Bromide 7.11.  

 

Silyl bromide 7.11. A solution of copper bromide•dimethyl sulfide complex (356 mg, 1.73 mmol, 

1.25 equiv) suspended in THF (9.23 mL, 0.15 M) was cooled to 0 °C. Then, a previously prepared 

solution of 7.2524 (0.32M in THF, 10.8 mL, 3.46 mmol, 2.5 equiv) was added to the solution to 

give a deep red color dropwise via syringe over 7 mins. The resulting silyl cuprate solution was 

stirred for 30 min at 0 °C before being cooled to –78 °C. Once at –78 °C, a cooled (–78 °C) solution 

of known enone 7.2425 (0.25 M in THF, 410 mg, 1.38 mmol, 1.0 equiv) was added dropwise via a 

syringe over 5 mins. The reaction mixture stirred at –78 °C for 1 h. After 1 h, distilled acetic 

anhydride (0.653 mL, 6.92 mmol, 5.0 equiv) was added dropwise via syringe over 2 mins. The 

solution was allowed to stir at –78 °C for 5 h. The reaction was then quenched with diethyl ether 

(5 mL) and water (5 mL) and allowed to warm to 23 °C. The layers were then separated and the 
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aqueous layer was extracted with EtOAc (3 x 10 mL). The combined organic layers were dried 

Na2SO4, filtered, and concentrated under reduced pressure. The resulting crude oil was purified by 

flash chromatography (4:1 hexanes:EtOAc → 10:1 hexanes:EtOAc) to afford silyl bromide 7.11 

(410 mg, 62% yield) as a colorless oil. Silyl bromide 7.11: Rf  0.31 (100% benzene); 1H-NMR (400 

MHz, CDCl3): δ 7.57–7.52 (m, 2H), 7.40–7.34 (m, 3H), 4.00–3.84 (m, 2H), 3.54 (dd, J  = 9.1, 5.4, 

1H) , 3.42–3.33 (m, 1H), 2.65–2.55 (m, 1H),  2.18 (s, 3H), 1.32 (s, 9H), 0.53 (s, 3H), 0.48 (s, 3H); 

13C-NMR (125 MHz, CDCl3): δ 168.0, 136.7, 134.1, 129.6, 128.0, 112.8, 62.1, 48.4, 48.0, 35.0, 

24.7, 20.7, –2.5, –3.5; IR (film): 3070, 2976, 1772, 1368, 1320 cm–1; HRMS–APCI (m/z) [M + 

H]+ calcd for C19H28BrNO4SSi+, 476.07440; found, 476.07952. 

7.9.2.2 Synthesis of Pyrone 7.18.  

 
4-Bromo pyrone 7.28. To a solution of 3-bromopropiolic acid (7.26, 991 mg, 1.00 equiv, 6.65 

mmol), benzyl propargyl alcohol (7.27, 4.86 g, 5.00 equiv, 33.3 mmol), and (PPh3)AuCl (165 mg, 

5 mol%, 0.333 mmol) in CH2Cl2 (34 mL, 0.20 M) was added AgOTf (85.5 mg, 5 mol%, 0.333 

mmol). Then, the reaction was heated to 50 °C and allowed to stir for 14.5 h. After 14.5 h, the 

reaction was allowed to cool to 23 °C, filtered over celite (1 cm) with CH2Cl2 (~20 mL) to remove 

the black precipitate, and concentrated under reduced pressure to a crude oil. The crude oil was 

purified by flash chromatography (19:1 hexanes:EtOAc → 9:1 hexanes:EtOAc) to obtain pyrone 

7.28 (1.21 g, 61% yield) as an orange oil. Pyrone 7.28: Rf 0.31 (9:1 hexanes:EtOAc); 1H NMR 

(600 MHz, CDCl3): d 7.39–7.31 (m, 5H), 6.50–6.49 (m, 2H), 4.62 (s, 2H), 4.28 (t, J = 7.9, 2H); 

13C NMR (150 MHz, CDCl3): d 161.4, 159.7, 141.0, 136.7, 128.6, 128.3, 127.9, 116.0, 107.4, 73.5, 
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67.2; IR (film): 3090, 3031, 2863, 1732, 1622, 1549, 1107 cm–1; HRMS-APCI (m/z) [M + H]+ 

calcd for C13H12BrO3+, 294.9964; found 294.9964. 

 

Pyrone 7.18. A 1-dram vial was charged with potassium carbonate (50 mg, 0.36 mmol, 3.0 equiv) 

and flame-dried under reduced pressure. After cooling to room temperature, the vial was charged 

with boronic acid 7.29 (20 mg, 0.12 mmol, 1.0 equiv), pyrone 7.28 (35 mg, 0.12 mmol, 1.0 equiv) 

and PdCl2(dppf)•CH2Cl2 (9.8 mg, 0.012 mmol, 10 mol%). The vial was purged with N2 and diluted 

with acetonitrile (0.1 M). The vial then was sealed with a PTFE-lined cap under a flow of N2 and 

placed in a preheated 80 °C aluminum block and stirred for 12 h. After 12 h, the reaction was 

allowed to cool to 23 °C. The reaction was concentrated under reduced pressure and then diluted 

with water (4 mL) and EtOAc (4 mL). The layers were then separated and the aqueous layer was 

extracted with EtOAc (3 x 5 mL). The combined organic layers were dried Na2SO4, filtered, and 

concentrated under reduced pressure. The resulting crude reaction mixture was purified by 

preparative TLC (1:1 hexanes:EtOAc) to afford pyrone 7.18 (28 mg, 69% yield) as a white solid. 

Pyrone 7.18: Rf  0.19 5:1 hexanes:EtOAc); 1H-NMR (500 MHz, CDCl3): δ 8.14–8.08 (m, 1H), 

7.75–7.69 (m, 1H), 7.66–7.60 (m, 1H), 7.43–7.28 (m, 6H) , 6.21–6.18 (m, 2H), 4.63 (s, 1H), 4.35 

(s, 1H); 13C-NMR (100 MHz, CDCl3): δ 161.6, 161.2, 154.4, 147.4, 137.0, 133.9, 132.7, 130.7. 

130.6, 128.7, 128.3, 128.1, 125.2, 112.2, 103.9, 73.5, 67.8; IR (film): 3066, 2862, 1726, 1524, 

1346 cm–1; HRMS–APCI (m/z) [M + H]+ calcd for C19H15NO5Si+, 338.10230; found 338.10531. 

 

 

O

OBr
PdCl2(dppf)•CH2Cl2 (10 mol%)

K2CO3 (3.0 equiv)

CH3CN (0.10 M), 80 °C
12 hNO2

B(OH)2

(69% yield)
(1.0 equiv)

+

BnO

O

O

NO2

BnO
7.29 7.28

7.18
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7.9.2.3 Diels–Alder Trapping Experiments.  

Representative Procedure (Cycloadduct 7.12 is used as an example).  

 

Cycloadduct 7.12. To a stirred solution of silyl bromide 7.11 (5 mg, 0.01 mmol, 1.0 equiv) and 

pyrone 7.9 (20 mg, 0.05 mmol, 5.0 equiv) in CH3CN (0.1 mL) was added CsF (8 mg, 0.05 mmol, 

5.0 equiv) as a singular portion. The reaction vessel was sealed with a PTFE-lined cap and allowed 

to stir at 23 °C for 18 h. The crude reaction mixture was then filtered by passage through a plug of 

silica gel (EtOAc eluent, 10 mL) and then concentration under reduced pressure. The crude 

reaction mixture was purificated by preparative thin layer chromatography (2:1 hexanes:EtOAc) 

afford the cycloadduct 7.12 (3.1 mg, 80% yield). Cycloadduct 7.12: Rf  0.54 (2:1 hexanes:EtOAc); 

1H-NMR (400 MHz, CDCl3): δ 8.23 (d, J = 4.3, 1H), 8.2 (s, 1H), 7.99–7.94 (m, 2H), 7.50–7.45 

(m, 1H), 7.38–7.33 (m, 1H), 6.06 (s, 1H), 5.03–4.89 (m, 1H), 4.62 (d, J = 17.4, 1H), 4.21–4.11 (m, 

1H), 3.60 (dd, J = 7.1, 2.3, 1H), 2.13 (s, 3H), 1.76 (s, 9H), 1.45 (s, 9H); 13C-NMR (125 MHz, 

CDCl3): δ 151.0, 138.8, 132.9, 128.3, 127.5, 126.4, 125.4, 125.2, 123.3, 121.0, 119.9, 116.3, 113.6, 

84.4, 67.9, 61.9, 49.6, 28.4, 24.6, 21.4; IR (film): 2978, 2918, 1728, 1455, 1320 cm–1; HRMS–

APCI (m/z) [M + H]+ calcd for C26H32N2O6S+, 502.20874; found, 502.21183. 

All reactions were monitored by TLC until starting material was consumed; the specific times 

are listed in the reaction scheme for each reaction. Any modifications of the conditions shown in 

this representative procedure are specified in the following Figures. For all compounds in which 

the diastereomeric ratios were >20:1, the minor diastereomer was not observed in the 1H-NMR 

spectrum of the crude reaction mixture. 

CsF (5.0 equiv)

CH3CN (0.1 M), 23 °C
18 h N

Boc
NBus

OAcOAc
Br

PhMe2Si
NBus

7.11 7.12

O

N
Boc O

(5.0 equiv)
7.9

+

(80% yield)
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Cycloadduct 7.15. The crude reaction mixture was purified by preparative thin layer 

chromatography (5:1 hexanes:EtOAc) afford the cycloadduct 7.15 (11.7 mg, 56% yield). 

Cycloadduct 7.15: Rf  0.35 (5:1 hexanes:EtOAc); 1H-NMR (500 MHz, CDCl3): δ 7.8.34–8.07 (m, 

2H), 7.93 (d, J = 7.5, 1H), 7.79 (s, 1H), 7.45 (t, J = 7.5, 1H), 7.79 (s, 1H), 7.34 (t, J = 7.4, 1H), 

5.01–4.88 (m, 1H), 4.65 (d, J = 8.4, 1H), 4.37 (d, J = 5.8, 1H), 4.07–3.96 (m, 1H), 3.73 (s, 3H), 

3.61 (dd, J = 6.5, 4.1, 1H), 1.76 (s, 9H), 1.50 (s, 9H);  13C-NMR (125 MHz, CDCl3): δ 173.0, 

154.7, 1515.2, 139.0, 138.8, 138.4, 133.0, 128.5, 127.3, 124.9, 123.2, 119.9, 116.4, 114.5, 114.2, 

84.3, 80.3, 52.5, 47.0, 46.2, 45.2, 44.9, 44.4, 43.4, 28.6, 28.5; IR (film): 2977, 1726, 1697, 1366, 

1153 cm–1; HRMS–APCI (m/z) [M + H]+ calcd for C27H32N2O6+, 481.2331; found, 481.23567. 

 

Cycloadduct 7.17. The crude reaction mixture was purified by flash chromatography (1:1 

hexanes:EtOAc) afford the cycloadduct 7.17 (62.7 mg, 46% yield). Cycloadduct 7.17: Rf  0.15 (1:1 

hexanes:EtOAc); 1H-NMR (400 MHz, CDCl3): δ 7.80 (dd, J = 4.1, 1.1, 1H), 7.64 (td, J = 7.6, 1.3, 

1H), 7.51 (td, J = 7.8, 1.3, 1H), 7.42 (dd, J = 4.3, 1.3, 1H), 7.40–7.31 (m, 5H), 6.42–6.40 (m, 1H), 

5.93 (t, J = 3.0, 1H), 5.08–5.06 (m, 1H), 4.83 (d, J = 6.7, 1H), 4.83 (d, J = 1.5, 2H), 4.13 (d, J = 

5.3, 1H), 4.00 (d, J = 5.3, 1H), 3.78 (dd, J = 10.0, 3.0, 1H), 3.05 (d, J = 6.7, 1H), 2.07 (s, 3H), 1.33 

(s, 9H); 13C-NMR (125 MHz, CDCl3): δ 170.66, 168.7, 148.4, 137.0, 135.1, 133.1, 132.9, 131.5, 

CsF (5.0 equiv)

CH3CN (0.1 M), 23 °C
18 h N

Boc
NBoc

CO2MeCO2Me
TfO

Et3Si
NBoc

7.13 7.15

O

N
Boc O
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7.9

+

(56% yield)

AcO

Br
SiMe2Ph

NBus
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7.18

+
O

O

NO2

BnO

NBus
OAc

O
O

NO2

BnO

7.17

CsF (5.0 equiv)

CH3CN (0.1 M), 23 °C
18 h

(46% yield)
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130.13, 130.10, 129.7, 128.6, 128.2, 128.0, 124.5, 122.1, 82.8, 74.1, 67.6, 62.0, 52.0, 47.0, 45.1, 

24.6, 22.0; IR (film): 2925, 1767, 1751, 1318, 1219 cm–1; HRMS–APCI (m/z) [M + H]+ calcd for 

C30H32N2O9S+, 597.19013; found, 597.18917. 

 

7.9.2.4 Reduction of 7.17.  

 

Triol 7.16. To a stirred solution of lactone 7.16 (14.5 mg, 0.24 mmol, 1.0 equiv) in THF (0.03 M) 

was added LiBH4 (2.0 M in THF, 36.5 µL, 3.0 equiv) dropwise and the reaction stirred at 23 °C 

for 2.5 h. After 2.5 h, the reaction was quenched with ammonium chloride (2 mL) at 23 °C in one 

portion. The layers were then separated and the aqueous layer was extracted with EtOAc (3 x 2 

mL). The combined organic layers were dried Na2SO4, filtered, and concentrated under reduced 

pressure. The resulting crude reaction mixture was purified by preparative thin layer 

chromatography (2:1 benzene:EtOAc) to afford triol 7.16 (4.9 mg, 48% yield) as a clear oil. Triol 

7.16: Rf  0.12 (2:1 benzene:EtOAc); 1H-NMR (500 MHz, CDCl3): δ 7.94–7.86 (m, 1H), 7.62–7.51 

(m, 2H), 7.49–7.42 (m, 1H), 7.37–7.27 (m, 5H), 5.97 (s, 1H), 5.78 (d, J = 0.1, 1H), 5.51 (brs, 1H), 

5.51 (brs, 1H), 4.57 (s, 2H), 4.25–4.03 (m, 3H), 4.02–3.89 (m, 2H), 3.72–3.51 (m, 4H), 3.42 (brs, 

1H), 3.06 (s, 1H), 1.41 (s, 9H);  13C-NMR (125 MHz, CDCl3): δ 149.1, 137.5, 137.0, 135.2, 132.9, 

131.8, 128.64, 128.62, 128.5, 128.13, 128.12, 124.4, 122.1, 74.0, 73.7, 72.9, 72.6, 70.6, 62.2, 61.9, 

60.9, 53.3, 46.7, 46.5, 32.1, 24.86, 22.84, 14.3; IR (film): 3398, 2928, 1525, 1314, 1121 cm–1; 

HRMS–APCI (m/z) [M + H]+ calcd for C28H34N2O6S+, 559.21086; found, 559.20276. 

 

NBus
OAc

O
O

NO2

BnO

NBus
OH

NO2

OH

HO
(48% yield)
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OBn
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7.10 Spectra Relevant to Chapter Seven: 

 

Progress Toward the Total Synthesis of Alstilobanine A 
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Figure 7.8 1H NMR (500 MHz, CDCl3) of compound 7.11. 

 
Figure 7.9 13C NMR (125 MHz, CDCl3) of compound 7.11. 
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Figure 7.10 1H NMR (500 MHz, CDCl3) of compound 7.28. 

 
Figure 7.11 13C NMR (125 MHz, CDCl3) of compound 7.28. 
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Figure 7.12 1H NMR (500 MHz, CDCl3) of compound 7.18. 

 
Figure 7.13 13C NMR (125 MHz, CDCl3) of compound 7.18. 
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Figure 7.14 1H NMR (500 MHz, CDCl3) of compound 7.12. 

 
Figure 7.15 13C NMR (125 MHz, CDCl3) of compound 7.12. 

10 9 8 7 6 5 4 3 2 1 0 ppm

1.
45

2

1.
76

0

2.
13

3

3.
59

1
3.

59
5

3.
61

9
3.

62
4

4.
14

3
4.

16
7

4.
17

6
4.

60
3

4.
63

5
4.

95
5

6.
05

9

7.
34

4
7.

37
4

7.
46

1
7.

46
6

7.
47

6
7.

95
4

7.
96

1
7.

97
6

8.
15

3
8.

22
3

8.
24

0

9.
89

7

9.
67

5

3.
34

3

1.
24

2

1.
23

9

1.
10

9

1.
00

2

1.
00

2

0.
98

3
1.

28
1

2.
30

5
1.

05
4

1.
10

0

Current Data Parameters
NAME       RRK-2021-120
EXPNO                10
PROCNO                1

F2 - Acquisition Parameters
Date_          20220505
Time               9.59 h
INSTRUM           av500
PROBHD   Z119248_0002 (
PULPROG            zg30
TD                65536
SOLVENT           CDCl3
NS                    8
DS                    0
SWH           10000.000 Hz
FIDRES         0.305176 Hz
AQ            3.2767999 sec
RG                12.14
DW               50.000 usec
DE                10.00 usec
TE                298.0 K
D1           2.00000000 sec
TD0                   1
SFO1        500.1330008 MHz
NUC1                 1H
P1                10.00 usec
PLW1        13.50000000 W

F2 - Processing parameters
SI                65536
SF          500.1300123 MHz
WDW                  EM
SSB                   0
LB                 0.30 Hz
GB                    0
PC                 1.00

cycloadduct check

2030405060708090100110120130140150 ppm

21
.3

9
24

.5
7

28
.3

8

49
.6

2

61
.9

5

67
.8

6

84
.4

5

11
3.

56
11

6.
30

11
9.

86
12

1.
01

12
3.

30
12

5.
15

12
5.

39
12

6.
37

12
7.

53
12

8.
35

13
2.

88
13

8.
82

15
0.

97

Current Data Parameters
NAME       RRK-2021-120
EXPNO                11
PROCNO                1

F2 - Acquisition Parameters
Date_          20220505
Time              10.43 h
INSTRUM           av500
PROBHD   Z119248_0002 (
PULPROG          zgpg30
TD                65536
SOLVENT           CDCl3
NS                  512
DS                    2
SWH           31250.000 Hz
FIDRES         0.953674 Hz
AQ            1.0485760 sec
RG               204.54
DW               16.000 usec
DE                28.00 usec
TE                298.0 K
D1           2.00000000 sec
D11          0.03000000 sec
TD0                   1
SFO1        125.7722511 MHz
NUC1                13C
P1                10.50 usec
PLW1        23.00000000 W
SFO2        500.1330008 MHz
NUC2                 1H
CPDPRG[2        waltz16
PCPD2             80.00 usec
PLW2        13.50000000 W
PLW12        0.21094000 W
PLW13        0.10610000 W

F2 - Processing parameters
SI               131072
SF          125.7577892 MHz
WDW                  EM
SSB                   0
LB                 1.00 Hz
GB                    0
PC                 1.40

cycloadduct 13C

N
Boc

NBus

OAc

7.12



 

 428 

 
Figure 7.16 1H NMR (500 MHz, CDCl3) of compound 7.15. 

 
Figure 7.17 13C NMR (125 MHz, CDCl3) of compound 7.15. 
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Figure 7.18 1H NMR (500 MHz, CDCl3) of compound 7.17. 

   
Figure 7.19 13C NMR (125 MHz, CDCl3) of compound 7.17. 
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Figure 7.20 1H NMR (500 MHz, CDCl3) of compound 7.16. 

 
Figure 7.21 13C NMR (125 MHz, CDCl3) of compound 7.16. 
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CHAPTER EIGHT 

 

Catalysis in Modern Drug Discovery: Insights from a Graduate 

Student-Taught Undergraduate Course 

Jason V. Chari,† Rachel R. Knapp,† Timothy B. Boit, and Neil K. Garg. 

J. Chem. Educ. 2022, 99, 1296–1303. 

 

8.1 Abstract 

A course centered around transition-metal catalysis in modern drug discovery was designed 

to illustrate the central role of organic chemistry in driving small-molecule drug development. The 

course highlighted both fundamental and applied concepts, first with a focus on the drug discovery 

process, followed by foundational principles in catalysis and modern catalytic methods. Finally, 

these topics were unified in the last portion of the course, where case studies served to highlight 

the use of transition-metal catalysis in the synthesis of modern drugs. Three graduate students 

designed and taught the course, with mentorship from a faculty member, leading to several notable 

teaching outcomes. Additionally, experts in the fields of catalysis and drug discovery served as 

guest lecturers throughout the duration of the course. This approach spotlighted the various careers 

that organic chemists play in the development of new medicines. We hope that this course 

motivates the creation of other courses in STEM that unify fundamental concepts with applications 

and career outcomes. 

8.2 Introduction 

Organic synthesis plays an integral role in small molecule drug development.1 Indeed, 

chemists trained in organic synthesis execute both the design and synthesis of small molecules that 

treat widespread ailments and address global health crises.2 Comprising 71% of the 53 drugs 
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approved by the FDA in 2020,3 small molecule therapeutics continue to represent the majority of 

drugs approved in the US. In addition, multiple phases of the drug development pipeline require 

expertise in synthetic organic chemistry. For example, the discovery phase of small molecule drug 

development necessitates the synthesis and design of numerous analogs, whereas the process 

chemistry phase warrants the creation and optimization of a highly efficient synthetic route to the 

desired drug molecule. 

In spite of the connections between organic synthesis and the drug discovery process, this 

fundamental relationship is not always directly or thoroughly explored in undergraduate courses. 

Traditionally, undergraduate organic chemistry coursework centers around fundamental synthetic 

transformations, whereas discussions of applications are often limited or receive minimal context. 

Although there have been exciting advances that bring these connections into organic laboratory 

courses,4 as well as courses in computational drug design,5 considerably fewer initiatives have 

been reported in lecture-based courses. This can leave undergraduate students with a narrow 

perspective on the relevance of organic chemistry, as well as career opportunities. Articulating 

both the modern drug discovery process and careers in organic chemistry can serve to both 

empower students to consider its connection to human health and lead to greater student 

engagement overall.  

In addition to connecting organic chemistry to improving human health, an area that is 

often underemphasized or omitted from undergraduate coursework is transition-metal catalysis. 

As reflected in the awarding of three Nobel Prizes in chemistry over the past two decades,6 

transition-metal catalysis has had a widespread impact across many disciplines of science, enabling 

access to new pharmaceuticals, polymers, agrochemicals, and materials. In the area of drug 

discovery, transition-metal catalysis represents a ubiquitous and indispensable tool that has greatly 
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improved the ability to establish structure–activity relationships in drug leads.7 As an example, 

22% of representative medicinal chemistry publications in 2014 described a Suzuki–Miyaura 

cross-coupling reaction.8 In comparison, data from 1984 revealed no examples of transition-metal 

catalysis in medicinal chemistry publications.8 In spite of the dramatic impact and evolution of 

transition-metal catalysis in drug development, it often receives less attention than “classical” 

reactions (e.g., SN2, Diels–Alder, etc.) and their fundamental principles in undergraduate lecture 

courses.9 As such, students may not have the opportunity to learn fundamental concepts in 

catalysis, or perhaps more importantly, understand the applications of these concepts in important 

areas such as pharmaceutical development. Teaching transition-metal catalysis in the context of 

drug discovery offers a means for students to connect chemistry to human health, and to equip 

students with the conceptual tools necessary to devise syntheses of drug scaffolds. By clearly 

articulating the direct connection between transition-metal catalysis and improving human health, 

students can begin to appreciate the driving force of organic chemistry in the world around them. 

8.3 Course Rationale 

We sought to design a virtual course that teaches fundamental concepts in both drug 

discovery and catalysis, while also being engaging and impactful for students from diverse 

backgrounds. To achieve this, we pursued an approach that highlights both young researchers and 

established experts in the field. First, rather than being led by a professor or lecturer, the course 

was designed and taught by senior graduate students, under the advisement of a faculty member. 

This offered notable advantages for both the undergraduate students in the course and the graduate 

student instructors themselves. Indeed, previous studies have demonstrated that “undergraduates 

who take their first course in a given subject from a graduate student are nearly twice as likely to 

subsequently major in that subject compared to their peers who take the same course from full-
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time faculty.”10 This finding supports the idea that receiving instruction from graduate students 

can serve as a valuable supplement to professor-led courses. Of note, this model is by no means 

meant to replace faculty teaching responsibilities, nor should it be used by faculty to skirt or 

delegate their teaching responsibilities. Additionally, this approach is likely most suitable for 

summer course offerings, when faculty are ordinarily not expected to teach and greater flexibility 

may be available.  This can also positively impact the graduate student instructors themselves, as 

“graduate students who teach more frequently are more likely to graduate in a timely manner and 

more likely to subsequently be employed by a college or university in their early careers.”10 To 

ensure that the graduate students were well-equipped to lead this course, they received important 

mentorship from a faculty member in teaching, scientific communication, and management. In 

particular, the faculty member provided insight and advice on refining the course design as well 

as depth and difficulty of content, managing student issues, and providing advice on grading. In 

addition to this mentorship, the senior graduate students who led the course were also either 

pursuing research directly involved in transition-metal catalysis or had career aspirations of 

entering the pharmaceutical industry. This ensured that the instructors were both confident in the 

material and passionate about the topics discussed. 

It should also be noted that graduate student instructors are often similar in age to their 

undergraduate counterparts and can therefore appear more approachable, and additionally offer 

insight into the motivations and experiences of a graduate student. Demystifying the graduate 

student experience11 proved to be a defining feature of the course, as the majority of those enrolled 

were third- or fourth-year undergraduate students in the process of making important decisions 

about their post-graduation plans. 
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In addition to placing a focus on graduate student instruction, we also sought to include 

perspectives, insights, and stories from established leaders in the fields of drug discovery and 

catalysis through invited guest lectures.12 We envisioned that this would allow the course to more 

fully and accurately portray the field of drug discovery by serving as a supplement to the graduate 

student-produced lectures. Furthermore, this would provide an opportunity to showcase scientists 

from diverse backgrounds, including women and scientists of color, highlighting their unique 

experiences and career trajectories.13 Achieving diversity and inclusion in science remains a 

critical goal, and showcasing the empowering stories of chemists from underrepresented 

backgrounds in leadership positions has proven to be a powerful mechanism to address equity in 

chemistry.14 Indeed, many of the guest lecturers featured in our course had non-linear career paths 

and stories, but that still led to successful outcomes. Hearing these stories can provide important 

inspiration for students considering potential career paths and create an open space for students to 

pose questions and interact directly with leaders in the field. This fostered a unique environment 

for the students, who may not have otherwise had the opportunity to connect with chemists in this 

capacity. In addition to the positive impact on students, this design also appealed to the guest 

lecturers by providing a space for them to gain more exposure and visibility for their company or 

research group, as well as connect with students who are early in their careers. Likewise, the 

graduate student instructors for the course were able to broaden their professional network by 

connecting with leaders in industry. 

Beyond the overall learning experience of the undergraduate students, several 

administrative benefits can arise through the creation of virtual courses led by graduate students. 

Namely, the virtual, asynchronous design enables students outside of the university to participate 

in the course. Of note, this can provide students from smaller schools, which may have fewer 
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available elective courses, exposure to applications of organic chemistry in drug discovery. 

Moreover, individuals outside of academia would also have the opportunity to participate. This 

course garnered enrollment from the University of California, Los Angeles (UCLA) students as 

well as non-UCLA-enrolled undergraduate students and even individuals currently working in the 

pharmaceutical industry. In so doing, the virtual approach brought visibility to the department and 

university at large. Overall, the course was designed to not only better contextualize important 

concepts in organic chemistry, but also to provide a unique and positive experience for all 

participating groups. 

8.4 Course Design 

Catalysis in Modern Drug Discovery was offered as a 4-unit elective course that would 

take place over six weeks. The course was designed at UCLA and garnered an enrollment of 53 

students in its first year (summer of 2020) and 43 students in its second year (summer of 2021). 

The prerequisites for the course were general chemistry and introductory organic chemistry. 

The decision to render this course virtual, which was made prior to the COVID-19 

pandemic, was motivated by several guiding factors.15 First, this would offer UCLA students who 

were not on campus during the summer the opportunity to complete the course remotely. 

Moreover, this format would allow students outside of the UCLA community, both in academia 

and in industry, to participate. The virtual format would additionally provide flexibility regarding 

time commitment. In particular, the lectures, which were 30 to 60 minutes in length, were posted 

three times per week, and could be viewed at any time. These lectures were provided in the form 

of pre-recorded videos featuring narrated presentations and interactive clips. The lectures were 

supplemented with small-group, virtual discussion sections. Two one-hour sessions were offered 

per week, each of which was attended by 20–30 students. These sessions were focused on 
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answering questions from students, as well as reviewing challenging course content. These 

discussion sections served to maintain student engagement, provide important support to students, 

and create a sense of community, given the virtual nature of the course. As mentioned earlier, these 

sessions were optional, but attendance was rewarded with extra credit. Office hours were also 

conducted virtually in a one-on-one setting by student request. 

As mentioned, in addition to the core pre-recorded lecture content, a guest lecture series 

was incorporated into the course and featured five guest lectures delivered by experts in academia 

and the pharmaceutical industry. These live, virtual lectures featured a vice president at a major 

pharmaceutical company, an established academic medicinal chemist, a rising star at a small 

biotechnology company, a prominent process chemist, and an established academic researcher in 

the area of catalysis. The faculty advisor for the course provided important suggestions for 

potential guest lecturers and, in some cases, directly connected the graduate student instructors 

with these individuals. The first guest lecture took place during the second week of the course, 

ensuring that students were introduced to key principles in drug discovery prior to this lecture. The 

format of the guest lectures varied depending on the invited individual, but generally involved a 

30-minute lecture followed by a 30-minute question-and-answer session. The guest lecturers 

typically placed a large emphasis on illustrating the story of their journey to their current career, 

as well as providing advice and insights along the way. In addition to detailing empowering success 

stories in catalysis or drug discovery, these guest lectures and question-and-answer sessions 

sprouted meaningful discussions around topics such as diversity in STEM, how to engage in 

undergraduate research, and even advice on applying and interviewing for jobs. By conducting the 

course in a virtual setting, several speakers were able to attend from various parts of the country. 
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8.5 Course Content 

 The course was segmented into three main parts, as illustrated in Figure 8.1. Overall, this 

structure would allow students to gain a foundational understanding of the drug discovery process 

(Part I) before learning about catalysis as a field, and more specifically, the principles of transition-

metal catalysis (Part II). Equipped with knowledge of both drug development and important 

concepts in catalysis, the students would then be capable of combining all elements of these topics 

in the final portion of the course (Part III). More specifically, this latter section would challenge 

students to apply their knowledge of transition-metal catalysis in order to strategically build drug 

molecules. With three graduate students teaching the course, each graduate student spearheaded 

one of the three sections and was tasked with designing course content, recording lecture content, 

and leading discussion sections for those two weeks. 
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Figure 8.1. Structure of course content, including core lecture content and guest lecture topics. 

8.5.1 Part I: Introduction to the Drug Discovery Process 

The objective of the first part of the course was to provide students with an understanding 

of drug discovery and development, and to specify the role of the organic chemist in these 

processes.16 To begin, a brief history of drug discovery was described, showcasing key landmarks 

in the field. This included discussions of impactful drugs such as ephedrine, morphine, and 

penicillin. Important terms and drug categorizations (e.g., small molecules vs. biologics) were 

defined to clarify the scope of the course and relevant terminology. During the remainder of the 

first week, the students were presented with a blueprint of drug discovery in the modern era. This 

included a detailed overview of medicinal chemistry and techniques for target selection (e.g., 

identifying a particular protein to inhibit), lead discovery, and lead optimization. This was 
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followed by an introduction to process chemistry, which included guiding principles in route 

design, optimization, and scale-up, as well as brief industrial examples. Clear contrasts were drawn 

between the objectives and route design strategies pursued by medicinal chemists (e.g., design of 

diversifiable routes) in comparison to process chemists (e.g., design of a convergent route). In 

week two, in-depth case studies in drug discovery served to apply concepts from the first week by 

conveying the stories behind the discovery of particularly impactful drugs, from concept to market. 

As delineated in Figure 8.2, this included the discovery and development of therapeutics such as 

atorvastatin (Lipitor), norethindrone (the Pill), and antiviral drugs developed to treat global health 

crises such as HIV, influenza, and COVID-19. These case studies were typically structured in the 

form of a story, first capturing background on the ailment and key biological mechanisms of action 

before describing strategic features of target selection, lead discovery, hit-to-lead optimization, 

route optimization, scale-up, and lastly broader impacts of the therapeutic developed. Overall, the 

objective of these case studies was to solidify and contextualize key concepts in hit-to-lead 

optimization and the development of process routes. More broadly, we hoped to highlight the 

strategic aspects of drug discovery and development, as well as the long-term impact of 

therapeutics developed in part by organic chemists. 
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Figure 8.2. Exemplary drug scaffolds discussed in Part I of the course, and generalized flow of 

lecture content. 

8.5.2 Part II: Transition-Metal Chemistry 

 In Part II of Catalysis in Modern Drug Discovery, the focus of the course shifted from drug 

discovery into transition-metal catalysis. To introduce this new topic, basic principles of catalysis 

and transition-metal chemistry (e.g., definition of a catalyst, kinetics versus thermodynamics, and 

electron counting of metal complexes) were described in the first lecture of this section.17 

Following this introduction, a series of lectures dedicated to important bond-forming 

methodologies was presented. This included the Suzuki–Miyaura cross-coupling reaction, the 

Mizoroki–Heck reaction, olefin metathesis, and enantioselective processes such as the Sharpless 

asymmetric epoxidation. As illustrated in Figure 8.3, the organization of each topic featured an 
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introduction of the reaction, its mechanism, guiding principles, and scope studies and insights. 

Overall, this structure allowed students to develop a conceptual understanding of key C–C, C–O, 

and C–N bond-forming processes in organic chemistry that rely upon transition-metal catalysis. In 

addition, the focus on the scope and limitations of a particular reaction served to highlight the 

challenges that organic chemists still face in the synthesis of small molecule therapeutics. 

8.5.3 Part III: Catalysis in Modern Drug Discovery  

 Following Parts I and II, the final section of the course was focused on highlighting the use 

of transition-metal catalysis in the syntheses of notable pharmaceuticals.8,18 This section served to 

link together all aspects of the course up to this point by incorporating transition-metal catalysis 

into the students’ retrosynthetic toolbox. Each case study first introduced a small molecule 

therapeutic and described the disease or condition that it treats. Following this introduction, the 

development of the drug was described and a key aspect of the drug discovery process was 

highlighted in each case study. Examples included the rational design of lead structures, SAR 

studies, and process scale optimization. The compound was then analyzed from a synthetic 

chemistry perspective, with a focus on identifying particular bonds that were formed using the 

methodologies identified in Part II. By identifying these key disconnections, the students were 

exposed to strategy level retrosynthetic analysis. The final lecture provided a future outlook within 

the field of catalysis, underscoring the importance of developing new synthetic methods to 

accelerate the process of drug development. 
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Figure 8.3. Fundamentals of transition-metal catalysis (Part II of the course) and case studies 

presented (Part III of the course). 
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multiple choice and short answer questions based on course content from weeks 1–3. At the end 

of the course, a cumulative final exam was administered that consisted of multiple choice 

questions. 

8.7 Student Reflections 

At the end of the course, the students completed an anonymous feedback report through 

UCLA’s course evaluation form. The responses were collected from students who attended the 

course in summer 2020 (number of responses, n = 19) and summer 2021 (n = 39).19 Across the 

two terms, the “overall rating” average for the course was 8.43 out of 9.00 (94%), demonstrating 

a strongly positive overall response. Additionally, it was found that student interest in the subject 

grew substantially upon completion of the course, increasing from a score of 2.22 to 2.71 (where 

1 = low, 2 = medium, and 3 = high interest). At the end of the course evaluation, open-form 

comments provided by students reflected highly on two major aspects of the course: the 

structure/design of the course and its impact on students’ perspectives of career paths post-

graduation. 

Regarding the course structure, students’ comments displayed an appreciation for the three 

sections and how they were ultimately unified to highlight real-world applications: 

“I really enjoyed the structure of the course, as well as the guest lectures that have been 

integrated throughout the 6 weeks. It was such an eye opening and amazing experience to 

be able to hear from both medicinal and process chemists, and learn more about their work 

experience.” 

“Before, I didn't really have much interest in the subject, but after seeing so many examples 

of how these reactions were used, I saw the importance and applicability of catalysis in 
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drug synthesis. I feel like the class was structured very very well, and the schedule was 

very logical.” 

“I liked the real-world applications included throughout the lectures and how practical 

the material was.” 

“In [the third] part of the course we are taking what we learned about transition metal 

catalysis and applying it to some case studies of real drugs that use these methods. It was 

very interesting to see how what we are learning is applied to drugs that are being used in 

the market.” 

Additionally, the students described the impact the course had on them in showcasing career 

paths post-graduation:  

“This is perhaps the first organic chemistry-based course that I've taken that I have 

thoroughly enjoyed! Learning about actual applications of organic chemistry and hearing 

from experts in the field of drug discovery has been very rewarding and has helped me 

narrow down potential career choices.” 

“Ultimately, this course was fairly interesting and showed me that the pharmaceutical 

industry may be a route for me to think about going into later on in my career.” 

“The first two weeks of this course piqued my interest in the pharmaceutical industry, 

especially in the synthesis of various drug molecules, which I haven't thought much about 

prior to the course, giving me something to think about as I continue to decide on what to 

do with my education in chemistry.”   

“I appreciated hearing his unique backstory in terms of what led to him becoming a grad 

student.” 
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Overall, the feedback from students highlighted the impact of connecting chemistry concepts 

to real world applications and career avenues. 

8.8 Personal Reflections 

 This course was created to serve as a bridge between fundamental organic chemistry 

curricula and real-world applications. Toward this end, the course focused on the centrality of 

organic chemistry in the discovery of new medicines and the importance of transition-metal 

catalysis in the modern synthetic chemists’ toolbox. Despite the broad impact of transition-metal 

catalysis, which has been reflected in the awarding of multiple Nobel Prizes over the past two 

decades,6 it can often be overlooked or considered a minor focus in introductory coursework. 

Furthermore, the unique reaction mechanisms of these transformations require a deeper analysis 

of reaction mechanism and selectivity principles, as well as compel students to consider new 

disconnections in the synthesis of small molecule drugs. 

Due to the diverse range of skillsets required in drug development, a number of career 

opportunities are achievable for students majoring in fields such as chemistry or biochemistry. 

However, when these career avenues are not made clear to students, they may be unaware of these 

potential opportunities. In our multi-pronged approach, we sought to incorporate discussions of 

career opportunities into the video lectures, guest lectures, and discussion sections. The guest 

lectures provided a glimpse into what the careers of successful scientists might look like, from 

chemists at small biotechnology companies to large pharmaceutical companies, as well as those in 

academia. We sought to showcase diverse roles in our selection of guest lecturers, which included 

process chemists, medicinal chemists, and scientists in management-type roles. We also placed an 

important emphasis on selecting guest lecturers from diverse backgrounds, including women, 

scientists of color, and individuals with non-linear career paths. We hope to have inspired students 
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to follow their interests and pursue careers in drug discovery that they may not have considered 

previously. 

As described, the course was led by graduate student instructors, who in turn received 

guidance from a faculty member, representing a fairly uncommon feature in undergraduate 

curricula. This provided an environment in which the students enrolled in the course could relate 

more to the instructors and lowered the barrier for communication about the course or related 

topics. Moreover, creating this direct interface allowed the undergraduate students to gain insight 

into the day-to-day lifestyle of graduate students in chemistry. This additionally sparked 

meaningful conversations about how to get involved in research, reasons for pursuing a Ph.D. 

program, and perspective on the instructors’ own personal career plans. We would encourage the 

design of other STEM elective courses that are organized and led by senior graduate students. 

Given the COVID-19 pandemic, instructors globally have been required to transition into 

online learning. We remained highly focused on maintaining an interactive environment, despite 

the challenges of the virtual setting, and explored several avenues to achieve this. An illustrative 

example from the course was the incorporation of QR codes (powered by QRChem.net20) into the 

lecture content that link to the 3D structure of a particular chemical compound, which the students 

can interact with on their smartphones. This not only sought to make the lectures feel more 

immersive to the students, but also aided in conveying key chemical concepts that require 3D 

visualization. We also incorporated exciting video content into the lectures that served to make the 

course content more vibrant. The small group setting of the discussion sections also provided 

students an opportunity to ask questions. Finally, we utilized an online forum which allowed 

students to pose questions about course content or guest lecture material. 
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8.9 Conclusion 

In conclusion, we have described the rationale, design, and structure of a new graduate 

student-led course on drug discovery with a focus on transition-metal catalysis. Addition of this 

course to UCLA’s curriculum exposed students to the importance of organic synthesis in the 

development of novel medicines. Through this exposure, undergraduate students were introduced 

to potential avenues for careers within chemistry and engaged in direct interactions with leaders 

in the field. We hope this course encourages the development of new courses in STEM that sharpen 

the connection between fundamental concepts and their applications, while also highlighting 

career avenues. Moreover, we look forward to the development of new graduate student-led 

courses that serve to reduce barriers to higher education in STEM and curate an environment where 

students can explore potential avenues for their careers post-graduation. 
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