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Orthogonality constrained gradient reconstruction for
superconvergent linear functionals

Roberto Porcù2,3, Maurizio M. Chiaramonte1,2
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Abstract The post-processing of the solution of variational problems discretized
with Galerkin finite element methods is particularly useful for the computation of
quantities of interest. Such quantities are generally expressed as linear functionals of
the solution and the error of their approximation is bounded by the error of the so-
lution itself. Several a posteriori recovery procedures have been developed over the
years to improve the accuracy of post-processed results. Nonetheless such recovery
methods usually deteriorate the convergence properties of linear functionals of the
solution and, as a consequence, of the quantities of interest as well. The paper devel-
ops an enhanced gradient recovery scheme able to both preserve the good qualities of
the recovered gradient and increase the accuracy and the convergence rates of linear
functionals of the solution.

Keywords superconvergent patch recovery · linear functionals · Barlow points ·
goal-oriented error estimation · quantities of interest

1 Introduction

In this work, we develop a novel gradient reconstruction technique aimed at increas-
ing the accuracy of the gradient approximant and the linear functionals thereof.

While much effort has been devoted to a posteriori gradient reconstruction tech-
niques (cf. for example [23]) the goal of most methods is an improved approximation
of the gradient without regards for their corresponding linear functionals. As these
functionals encode important information which can be useful for many applications,
it can be very beneficial computing these functionals with a high order of accuracy.
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The work contained herein is mostly driven by the importance of quantities of interest 
in engineering analysis. Some examples of quantities of interest for physics applica-
tions are averages, flow rates, velocities, temperatures, shear stresses, stress intensity 
factors in fracture mechanics, to name a few.

In the context of adaptivity, the a posteriori evaluation of the error of a given 
quantity of interest is in general exploited in order to improve the accuracy of that 
particular quantity, see for example [4,12,16,21,27,31,34,40]. Duality-based ap-
proaches to a posteriori goal-oriented error estimation are described in [11,17,18, 
33]. Specific techniques for controlling and bounding the errors in quantities of inter-
est are described in [5,25,38].

In [8,19,20,34] the authors introduce weight factors in the a posteriori error es-
timates to economically generate optimal meshes for the quantities of interest. Other 
applications of a posteriori error estimates in acoustic wave propagation and general 
solid and fluid mechanics are discussed in [13,14,26,28,33,35,36].

In addition to the above, there are several works, such as [43], exploiting a pos-
teriori gradient reconstruction techniques. As detailed in [1,2,3,4] it is possible to 
define a gradient reconstruction operator which maps the finite element solution into 
an approximation of the gradient expected to be faster converging than the gradient of 
the approximate solution. Three pivotal conditions necessary for the gradient operator 
to yield a good approximation and an alternative option to higher order polynomial 
approximants are:

- consistency: the recovery operator should be able to reproduce exactly the true
gradient when the dimension of the approximated problem tends to infinity;

- localization: the operator should not depend on global computations;
- boundedness and linearity: the recovery operator should be a linear bounded op-

erator of its arguments.

Different approaches have been proposed in the literature. For example, in [6]
the authors introduce a postprocessing operator constituted by an L2 projection and 
a smoothing operation, which can recover the superconvergence property for any pth 
derivative of the solution for finite-element problems on unstructured but shape regu-
lar triangulations. We focused on the “superconvergent patch recovery” method [48], 
abbreviated as SPR, due to its high accuracy and computational efficiency for error-
bounding applications [24]. The SPR technique for finite-element methods derives 
from the existence of the so-called Barlow points, see for example [7]. At such points, 
the gradient of the approximated solution possesses a convergence rate higher than 
elsewhere inside the element. Figure 1.1 provides an intuitive illustration of the re-
construction technique.

In [23,44,46,47] a mathematical analysis of the SPR technique is carried out for 
general quadrilateral finite elements. In recent years considerable efforts have been 
concentrated on enhancing the SPR method. For instance in [41] the authors propose 
a simultaneous interpolation of all the derivative components to improve 
efficiency. In [45] the SPR technique is applied directly on the solution in order 
to allow the use of unstructured meshes where the existence of the Barlow points 
is not always guaranteed [50]. In [16] the authors introduce an enhanced SPR 
technique able to recover at the same time both primal and dual solutions. Several 
works, such as [9,
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Fig. 1.1: Chosen the recovery point, the nearest Barlow points and the patch of cells 
that contains them are identified. A polynomial least square fit of the values of the 
gradient of the approximate solution at the Barlow points is then carried out.

37,42] have enhanced the standard SPR method adding constraints to satisfy internal 
equilibrium, compatibility, and boundary conditions.

The methods discussed above do not analyze the convergence of functionals of 
the solution, though. As highlighted in [8,15,29,32] and discussed in [15,29,30] 
the violation of the Galerkin orthogonality of the recovered solution results in lower 
accuracy and slower rates of convergence of the functionals.

In this work, we develop a novel gradient reconstruction technique that not only 
increases the accuracy but also preserves the convergence properties of functionals 
of the solution. To achieve the above, we enforce that the reconstructed gradient sat-
isfies the Galerkin orthogonality condition. This new technique requires to take 
into account the Riesz’s representative www of the functional at hand, and to solve 
a dual problem which provides the finite-element projection wwwh of the Riesz’s 
representative. Overall, we are introducing another non-local problem which, in 
general, is not required by other standard approaches.

The paper is structured into four sections: in Section 2 we present the problem 
statement together with a preliminary discussion on convergence. The above is fol-
lowed in Section 3 by a brief formulation of the SPR approach and an a priori analysis 
of the convergence of the reconstructed solution. In Section 4 we motivate and de-
scribe our enhanced gradient reconstruction technique, abbreviated as SPR+. In Sec-
tion 5 we provide and discuss some numerical results obtained for different test cases.

2 Problem statement

Let us consider a generic elliptic problem with no reaction terms and mixed boundary 
conditions, defined in a bounded set Ω . The problem reads:

find uuu(xxx) such that:

∇ · (C∇uuu)+ fff = 000 in Ω ,

uuu = ūuu on ΓD, C∇uuu ·nnn = t̄tt on ΓN ,
(2.1)

where Γ̊D∩ Γ̊N = /0 and ΓD∪ΓN = ∂Ω . We assume the forcing term fff and the bound-
ary functions to be sufficiently regular. We also assume C(xxx) to be a bounded, positive-
definite, symmetric tensor.

Let us denote by C the number of components of the unknown of the prob-
lem. We introduce the test functions space V := {ννν ∈ [H1(Ω)]C : ζζζ |ΓD = 000} and
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a new unknown field zzz := uuu− RRRūuu where RRRūuu is the lifting of the Dirichlet bound-
ary data ūuu. We then define the bilinear form a : V ×V → R, such that a(φφφ ,vvv) :=
(C∇φφφ ,∇vvv)

Ω
for all φφφ and vvv ∈ V , and the linear functional F : V → R, such that

F(vvv) := ( fff ,vvv)
Ω
+(t̄tt,vvv)

ΓN
− (C∇RRRūuu,∇vvv)

Ω
for all vvv ∈ V . Thanks to the hypotheses

made a(·, ·) is continuous and coercive and F(·) is bounded. With this notation at
hand the variational problem can be formulated as:

find zzz ∈ V such that: a(zzz,vvv) = F(vvv), ∀vvv ∈ V . (2.2)

Since all the hypotheses of the Lax-Milgram theorem are satisfied we conclude that
the solution zzz ∈ V of the variational problem (2.2) exists and is unique.

Let us consider a subdivision Th :=
⋃

m Km of the domain such that Th ≡ Ω .
We define the space Xh

p := {vvvh ∈
[
C 0(Th)

]C : vvvh|Km ∈ [Pp(Km)]
C , ∀Km ∈ Th} as

the space of continuous piecewise polynomials of maximum degree p ∈ N on each
subdomain Km. Then we introduce the finite dimensional space V h = V ∩Xh

p and the
finite element approximation of the solution zzzh ∈ V h. The Galerkin formulation of
problem (2.2) reads:

find zzzh ∈ V h such that: a(zzzh,vvvh) = F(vvvh), ∀vvvh ∈ V h.

Let us consider a linear and continuous functional J : V → R such that the quan-
tity of interest that we want to compute is provided by the evaluation of J on the
solution of the problem. Since the bilinear form a(·, ·) is continuous and coercive it
defines an inner product on V and (V ,a(·, ·)) is a Hilbert space whose norm is de-
fined as ‖zzz‖2

V := a(zzz,zzz). This implies that, thanks to a straightforward application of
the Riesz’s representation theorem, we are able to guarantee the existence of a unique
solution www ∈ V such that:

J(vvv) = a(www,vvv), ∀vvv ∈ V , (2.3)

and www is the Riesz’s representative of the functional J in (V ,a(·, ·)).
Hence considering a finite element space W h := V ∩Xh

q we define the discrete
field wwwh to be the solution of the Galerkin formulation of problem (2.3):

find wwwh ∈W h such that: J(vvvh) = a(wwwh,vvvh), ∀vvvh ∈W h, (2.4)

and wwwh is the projection of the Riesz’s representative www on the space W h.
We firstly observe that, if the solution is sufficiently regular, the convergence

rate of the approximated gradient in the ||·||V -norm with respect to the characteristic
mesh size h is equal to the polynomial degree denoted by p with constant A ∈ R+

independent of zzz and h:

||zzz− zzzh||V ≤ Ahp|zzz|Hp+1(Ω). (2.5)

Assuming the Riesz’s representative to be sufficiently regular, i.e. at least www ∈ H 
p+1(Ω), through simple considerations we get the following a priori estimate for the 
error of the functional with constant D ∈ R+ independent of zzz and h:

|J(zzz)− J(zzzh)|6 Dh2p|www|Hp+1(Ω)|zzz|Hp+1(Ω), (2.6)

where the symmetry of the bilinear form a(·, ·) has been exploited together with the
Galerkin orthogonality a(zzz− zzzh,wwwh) = 0.
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3 Superconvergent patch recovery technique (SPR)

It was experimentally observed in [7] that the approximated gradient converges with
one order more than expected at the Barlow points. The SPR method consists in intro-
ducing an operator GX : V h→ V h which defines a new finite element approximation
of the exact gradient, that we denote by GX [zzzh], which permits us to establish the
following a priori estimate with constant A ∈ R+ independent of zzz and h:

||∇zzz−GX [zzzh]||L2(Ω) ≤ Ahp+1|zzz|Hp+1(Ω). (3.1)

A detailed analysis of the method is provided in [3].
At this point let us observe that there is no guarantee of the a-orthogonality of the

error of the recovered gradient with respect to the space V h. To clarify this statement
let us define the bilinear form aSPR : V h×V → R as aSPR(φφφ

h,vvv) := (CGX [φφφ
h],∇vvv)

Ω
,

for all φφφ
h ∈ V h and for all vvv∈ V . It is evident that the Galerkin orthogonality identity

a(zzz,vvvh) = a(zzzh,vvvh) for all vvvh ∈ V h is no longer generally satisfied. In fact, while
a(zzz,vvvh)=F(vvvh), we have that there exists at least one vvvh ∈V h such that aSPR(zzzh,vvvh) 6=
F(vvvh).

Then defining the approximated evaluation of the functional J over the recovered
gradient of the solution as JSPR(zzzh) := aSPR(zzzh,www), we can prove the following error
estimation with constant D ∈ R+ independent of zzz, www, and h:

|J(zzz)− JSPR(zzzh)|6 Dhp+1|www|H1(Ω)|zzz|Hp+1(Ω). (3.2)

The last inequality (3.2) indicates that the accuracy and the convergence rate of the
linear functional for the recovered solution is lower with respect to result (2.6).

4 SPR+: a-orthogonality constrained SPR

We have enhanced the standard SPR approach by constraining the discrete least
squares problem in a way such that the recovered gradient of the solution satisfies
the a-orthogonality condition. Let us introduce the operator G+

X : V h → V h which
maps the solution to a reconstructed gradient G+

X [zzz
h]. Then we define the bilinear

form aSPR+ : V h×V →R as aSPR+(φφφ
h,vvv) := (CG+

X [φφφ
h],∇vvv)

Ω
, for all φφφ

h ∈ V h and for
all vvv ∈ V . To enforce the orthogonality constraint we employ Lagrange multipliers
and we save the details of the implementation for Appendix A.3.

Let us now discuss the convergence of a linear functional J : V → R of the
solution. We assume www ∈ V to be the Riesz’s representative of the functional and
wwwh ∈W h := V ∩Xh

q to be its finite element approximation. Here we define the space

Xh
q := {vvvh ∈

[
C 0(Th)

]C : vvvh|Km ∈ [Pq(Km)]
C , ∀Km ∈ Th} as the space of continu-

ous piecewise polynomials of maximum degree q ∈ N on each subdomain Km. Then, 
defining JSPR+ (zzzh) := aSPR+ (zzzh,www), if the Riesz’s representative is sufficiently reg-
ular, i.e. at least www ∈ Hq+1, it is easy to obtain the following error estimate with 
constant D ∈ R+ independent of zzz, www, and h:

|J(zzz)− JSPR+(zzzh)|6 Dhq+p+1|www|Hq+1(Ω)|zzz|Hp+1(Ω). (4.1)
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The previous result derives from a straightforward application of the constraint iden-
tity a(zzz,wwwh)−aSPR+(zzzh,wwwh) = 0 and of inequality (2.5).

5 Numerical results

In this section, we present numerical results about errors measured for problems of
the type (2.1) for three different test cases, one for each spatial dimension, with prob-
lem data summarized in Table A.1. For the sake of simplicity, all the tests have been
run on equispaced structured meshes. We consider first linear finite element spaces
and later, for the mono- and bi-dimensional cases, we analyze quadratic approxima-
tions. Besides, we investigate the convergence of the computed functional by varying
the polynomial degree of the approximant of the dual solution www for a fixed zzzh.

Throughout this section we adopt the following notation:

eeeh := ∇z−∇zh, eeeh
SPR := ∇z−GX

[
zh
]
, eeeh

SPR+
:= ∇z−G+

X

[
zh
]
,

eJh := J(z)− J(zh), eJh
SPR := J(z)− JSPR(zh), eJh

SPR+
:= J(z)− JSPR+(zh).

(5.1)

When the polynomial degree q∈N used for the computation of the finite element
approximation of the Riesz’s representative wh (solution of problem (2.4)) is different
to the degree p used to solve the problem, we use the notation SPR+,q. We denote
by eeeh

∗ and eJh
∗ any of the errors listed in (5.1). Finally we consider linear functionals

J : V → R of the solution having the following general structure:

J(v) = (∇v,ηηη)
Ω
, ∀v ∈ V , (5.2)

where ηηη ∈ [L2
Ω ]

d is a vectorial field defined case by case and d is the dimension of the 
problem.

5.1 Test cases

Tables 5.1a to 5.1c report the errors for each test case for piecewise linear approxi-
mants of the solution and of its dual. We observe that the convergence orders for the 
finite element method are in agreement with error estimate (2.5) while the SPR and 
SPR+ techniques allow recovering one order of convergence for the gradient of the 
solution. In particular, the a-orthogonality constraint in the SPR+ approach does not 
corrupt the recovered accuracy and convergence rates.

Convergence analysis of the linear functional of the solution is summarized 
in Tables 5.2a to 5.2c. We observe that the convergence rates for the FEM and SPR 
approaches are in agreement with error estimates (2.6) and (3.2), respectively, and 
that the SPR technique induces greater errors. On the contrary, it is interesting to 
observe that the SPR+ method allows recovering the original accuracy and provides 
a convergence order equal to 4, which is one order more than predicted by inequal-
ity (4.1).

The results for piecewise quadratic polynomials (for the mono- and bi-dimensional 
cases alone due to the computational cost) are summarized in Tables 5.3a and 5.3b as



Orthogonality constrained gradient reconstruction for superconvergent linear functionals 7

Table 5.1: Convergence results of solutions for the three test cases of mono-, bi- and
tri-dimensional problems with piecewise linear finite elements V h = V ∩Xh

1 . The
error in the gradient of the solution is reported for standard FEM, SPR and SPR+.

(a) Convergence results of the solution of the monodimensional test case.

h/h0 ‖eeeh‖L2(Ω) O ‖eeeh
SPR‖L2(Ω) O ‖eeeh

SPR+
‖L2(Ω)

O ‖w−wh‖V O

1/1 8.90 ·10−2 – 7.53 ·10−3 – 7.14 ·10−3 – 7.02 ·10−2 –
1/2 4.45 ·10−2 1.00 1.90 ·10−3 1.98 1.74 ·10−3 2.04 3.51 ·10−2 1.00
1/4 2.23 ·10−2 1.00 4.79 ·10−4 1.99 4.26 ·10−4 2.03 1.75 ·10−2 1.00
1/8 1.11 ·10−2 1.00 1.20 ·10−4 2.00 1.05 ·10−4 2.02 8.77 ·10−3 1.00

(b) Convergence results of the solution of the bidimensional test case.

h/h0 ‖eeeh‖L2(Ω) O ‖eeeh
SPR‖L2(Ω) O ‖eeeh

SPR+
‖L2(Ω)

O ‖w−wh‖V O

1/1 1.26 ·10−1 – 2.10 ·10−2 – 2.08 ·10−2 – 3.08 ·10−1 –
1/2 6.30 ·10−2 1.00 5.33 ·10−3 1.98 5.26 ·10−3 1.98 1.54 ·10−1 1.00
1/4 3.15 ·10−2 1.00 1.35 ·10−3 1.99 1.33 ·10−3 1.99 7.71 ·10−2 1.00
1/8 1.57 ·10−2 1.00 3.39 ·10−4 1.99 3.33 ·10−4 1.99 3.86 ·10−2 1.00

(c) Convergence results of the solution of the tridimensional test case.

h/h0 ‖eeeh‖L2(Ω) O ‖eeeh
SPR‖L2(Ω) O ‖eeeh

SPR+
‖L2(Ω)

O ‖w−wh‖V O

1/1 1.24 ·100 – 1.84 ·100 – 1.83 ·100 – 1.38 ·101 –
1/2 6.17 ·10−1 1.00 5.64 ·10−1 1.70 5.62 ·10−1 1.71 7.15 ·100 0.94
1/4 3.08 ·10−1 1.00 1.51 ·10−1 1.90 1.50 ·10−1 1.90 3.61 ·100 0.99
1/8 1.54 ·10−1 1.00 3.87 ·10−2 1.96 3.85 ·10−2 1.96 1.81 ·100 1.00

well as Tables 5.4a and 5.4b showcasing superconvergent gradients for both the SPR
and SPR+ methods while only superconvergent functionals for the SPR+ method,
consistently with what is observed for piecewise linear approximants.

5.2 Higher order polynomials for the approximation of the Riesz’s representative

We have also investigated the convergence properties of the linear functional of the
solution when adopting different degrees for the computation of the finite element
approximation of the Riesz’s representative wh ∈W h := V ∩Xh

q .
We analyze the convergence properties of the SPR+,q technique for the bidi-

mensional test case previously proposed (although similar results were observed for
the other dimensions too) only for the resolution with piecewise linear polynomials.
We increase the polynomial degree q adopted to compute wh while we hold fixed
the degree p = 1 used to solve the problem. The results are respectively described
in Table 5.5 and show that the convergence order for the SPR+,2 test is equal to 4, in
agreement with the a priori error estimate (4.1). However, the solutions computed for
the SPR+,1 and SPR+,3 problems provide convergence rates that are one order higher
than predicted.
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Table 5.2: Convergence results of the linear functional for the three test cases for the
piecewise linear finite elements V h = V ∩Xh

1 with piecewise linear approximant of
the Riesz’s representative.

(a) Convergence results of the linear functional of the monodimensional test case.

h/h0 |eJh| O |eJh
SPR| O |eJh

SPR+
| O

1/1 5.84 ·10−3 – 1.66 ·10−2 – 9.89 ·10−5 –
1/2 1.46 ·10−3 2.00 4.56 ·10−3 1.87 7.11 ·10−6 3.80
1/4 3.65 ·10−4 2.00 1.19 ·10−3 1.94 4.80 ·10−7 3.89
1/8 9.11 ·10−5 2.00 3.05 ·10−4 1.97 3.12 ·10−8 3.94

(b) Convergence results of the linear functional of the bidimensional test case.

h/h0 |eJh| O |eJh
SPR| O |eJh

SPR+
| O

1/1 5.88 ·10−3 – 3.32 ·10−2 – 2.02 ·10−4 –
1/2 1.47 ·10−3 2.00 8.73 ·10−3 1.93 1.48 ·10−5 3.77
1/4 3.67 ·10−4 2.00 2.24 ·10−3 1.97 1.01 ·10−6 3.87
1/8 9.18 ·10−5 2.00 5.66 ·10−4 1.98 6.62 ·10−8 3.93

(c) Convergence results of the linear functional of the tridimensional test case.

h/h0 |eJh| O |eJh
SPR| O |eJh

SPR+
| O

1/1 1.15 ·100 – 5.26 ·100 – 1.41 ·100 –
1/2 2.71 ·10−1 2.08 1.87 ·100 1.49 1.61 ·10−1 3.13
1/4 6.67 ·10−2 2.02 5.33 ·10−1 1.81 1.56 ·10−2 3.37
1/8 1.66 ·10−2 2.01 1.41 ·10−1 1.91 1.32 ·10−3 3.57

Table 5.3: Convergence results of solutions for the test cases of monodimensional and
bidimensional problems with piecewise quadratic finite elements V h = V ∩Xh

2 . The
error in the gradient of the solution is reported for standard FEM, SPR and SPR+.

(a) Convergence results of the solution of the monodimensional test case.

h/h0 ‖eeeh‖L2(Ω) O ‖eeeh
SPR‖L2(Ω) O ‖eeeh

SPR+
‖L2(Ω)

O ‖w−wh‖V O

1/1 1.13 ·10−3 – 6.54 ·10−5 – 6.22 ·10−5 – 6.31 ·10−4 –
1/2 2.82 ·10−4 2.00 8.19 ·10−6 3.00 7.80 ·10−6 3.00 1.58 ·10−4 2.00
1/4 7.05 ·10−5 2.00 1.02 ·10−6 3.00 9.76 ·10−7 3.00 3.95 ·10−5 2.00
1/8 1.76 ·10−5 2.00 1.28 ·10−7 3.00 1.22 ·10−7 3.00 9.86 ·10−6 2.00

(b) Convergence results of the solution of the bidimensional test case.

h/h0 ‖eeeh‖L2(Ω) O ‖eeeh
SPR‖L2(Ω) O ‖eeeh

SPR+
‖L2(Ω)

O ‖w−wh‖V O

1/1 1.61 ·10−3 – 3.30 ·10−4 – 3.27 ·10−4 – 4.62 ·10−3 –
1/2 4.01 ·10−4 2.01 4.19 ·10−5 2.97 4.17 ·10−5 2.97 1.16 ·10−3 2.00
1/4 1.00 ·10−4 2.00 5.45 ·10−6 2.94 5.42 ·10−6 2.94 2.89 ·10−4 2.00
1/8 2.50 ·10−5 2.00 7.32 ·10−7 2.90 7.28 ·10−7 2.90 7.23 ·10−5 2.00
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Table 5.4: Convergence results of the linear functional for the mono- and bidi-
mensional test cases for the piecewise quadratic finite elements V h = V ∩Xh

2 with
piecewise quadratic approximant of the Riesz’s representative.

(a) Convergence results of the linear functional of the monodimensional test case.

h/h0 |eJh| O |eJh
SPR| O |eJh

SPR+
| O

1/1 5.87 ·10−7 – 1.01 ·10−4 – 1.41 ·10−8 –
1/2 3.67 ·10−8 4.00 1.23 ·10−5 3.04 4.22 ·10−10 5.07
1/4 2.29 ·10−9 4.00 1.51 ·10−6 3.03 1.28 ·10−11 5.04
1/8 1.37 ·10−10 4.06 1.87 ·10−7 3.01 3.00 ·10−13 5.42

(b) Convergence results of the linear functional of the bidimensional test case.

h/h0 |eJh| O |eJh
SPR| O |eJh

SPR+
| O

1/1 1.01 ·10−6 – 3.52 ·10−4 – 2.21 ·10−8 –
1/2 6.31 ·10−8 4.00 4.28 ·10−5 3.04 9.06 ·10−10 4.61
1/4 3.94 ·10−9 4.00 5.26 ·10−6 3.02 3.12 ·10−11 4.86
1/8 2.39 ·10−10 4.00 6.52 ·10−7 3.01 4.39 ·10−13 6.15

Table 5.5: Convergence results of the linear functional for the bidimensional test case 
when adopting different polynomial degrees for the computation of wh while keeping 
piecewise linear approximation for the solution uh.

h/h0 |eJh
SPR+,1 | O |eJh

SPR+,2 | O |eJh
SPR+,3 | O

1/1 4.47 ·10−2 – 6.45 ·10−4 – 1.51 ·10−6 –
1/2 4.29 ·10−3 3.38 3.43 ·10−5 4.23 2.26 ·10−8 6.06
1/4 3.56 ·10−4 3.59 2.01 ·10−6 4.10 3.46 ·10−10 6.03
1/8 2.64 ·10−5 3.75 1.23 ·10−7 4.03 4.08 ·10−12 6.40

5.3 Performance comparison

In Figure 5.1 we explore the error in the computed functional as against CPU time for
the three different methods: FEM, SPR, and SPR+. The results are related to the bidi-
mensional test case, although similar results were observed for the other test cases.
It is evident that, fixed the error under a reasonable accuracy, the SPR+ technique is
always preferable as the least computationally expensive approach.

Let us finally remark that the performance of the SPR+ reconstruction algorithm
can be further strengthened by localizing the reconstruction to subsets of the compu-
tational domain where the quantity of interest is to be computed (eg. around the crack
tip in fracture mechanics to calculate the Stress Intensity Factors).

6 Conclusions

Linear functionals of the solution play a relevant role in engineering applications and
goal-oriented adaptivity. We discovered that the non-optimal convergence properties
induced by the SPR technique are related to the loss of the Galerkin orthogonality
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Fig. 5.1: Absolute value of the error of the linear functional over the CPU time when
using piecewise linear polynomials for the computation of the solution.

condition which is naturally satisfied by the approximated solution computed with
the finite element method.

The remedy that we have proposed in this work is provided by an enhanced vari-
ant of the SPR method, characterized by the addition of an orthogonality constraint
to the discrete least squares problem that represents the SPR approach. Analyzing the
numerical results obtained solving generic second-order elliptic problems in differ-
ent dimensions we have observed that the constraint yields simultaneously a more
accurate approximation of the gradient and linear functionals thereof.

A Appendix

A.1 Problem data for the numerical tests

In Table A.1 we summarize the problem data for the test cases of Section 5.

A.2 Implementation of the SPR method

In Section 3 we have introduced the reconstructed gradient GX [zzzh](xxx) which is built on the Lagrangian
tensorial basis functions {Ψl}L

l=1 having maximum degree p ∈ N identical to the one used for the approx-
imated solution zzzh with nodal values {ζl}L

l=1:

GX [zzzh](xxx) =
L

∑
l=1

ζlΨl(xxx). (A.1)

L

The integer number L corresponds to the total number of degrees of freedom and is equal to L = d ·C · K 
where d is the dimension of the space, C represents the number of components of the unknown of the 
problem and K is the number of support points.

As illustrated in Figure 1.1, to each support point xxxk it is associated at least one patch of cells Pk made 
of 2d cells, such that xxxk ∈ Pk. For each support point xxxk there are d ·C components of GX [zzzh](xxxk) to 
reconstruct. Each m-th component of the reconstructed gradient, with m ∈ {1, . . . ,d ·C}, is then approxi-
mated in a least squares sense by a complete polynomial centered in xxxk of maximum degree p coincident 
with the degree used for the basis functions {Ψl }l=1. Hence the polynomial approximation on the patch
Pk writes:

aaal · ppp(xxx− xxxk), ∀xxx ∈Pk, ∀l ∈ Ik, k ∈ {1, . . . ,K},
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Table A.1: Problem parameters for the monodimensional (1D), bidimensional (2D)
and tridimensional (3D) test cases.

(a) Description of the domain and its boundary decomposition and of the Dirichlet and Neumann boundary
conditions for the three test cases. The Dirichlet boundary is defined as ΓD ≡ ∂Ω \ (ΓN,1 ∪ΓN,2).

Test Ω ΓN,1 ΓN,2 ū t̄1 t̄2

1D [−1,1] {1} /0 1 −eπ –

2D [−1,1]2 {1}× [−1,1] [−1,1]×{1} 1 −π sin(πy) −2π sin(πx)

3D [−1,1]3 /0 /0 0 – –
(b) Exact expressions of the symmetric tensor C, of the analytical solution u and of the exact Riesz’s
representative w of the functional J for the three test cases. The source term is computed as f =−∇ ·(C∇u).
The rank-2 tensor I represents the tridimensional identity tensor.

Test C u w

1D ex sin(πx)+1 ex(1− x2)

2D

[
x2 xy

xy y2 +1

]
sin(πx)sin(πy)+1 e2xey(1− x2)(1− y2)

3D I sin(πx)sin(πy)sin(πz) exe2ye3z(1− x2)(1− y2)(1− z2)

(c) Exact expressions of the field ηηη adopted in identity (5.2) for the three test cases.

Test ηηη

1D e2x(1−2x− x2)

2D e2xey

[
2x2(1− x− x2)(1− y2)+ xy(1− x2)(1−2y− y2)

2xy(1− x− x2)(1− y2)+(y2 +1)(1− x2)(1−2y− y2)

]

3D


exe2ye3z(1−2x− x2)(1− y2)(1− z2)

2exe2ye3z(1− x2)(1− y− y2)(1− z2)

exe2ye3z(1− x2)(1− y2)(3−2z−3z2)



where Ik is an interval of d ·C indices related to the index k, that is Ik := {d ·C · (k−1)+1, . . . ,d ·C · k},
aaal ∈ RB represents the vector of the unknown coefficients and ppp(xxx− xxxk) ∈ RB is the vector containing
the polynomial basis functions. Then the nodal value ζl is set equal to the evaluation of the polynomial
approximant at the recovery point:

ζl = aaal · ppp(000). (A.2)

The integer number B coincides with the number of Barlow points belonging to the current Patch Pk, 
computed as:

B =
∏

d
i=1(p+ i)

d!
.

For any component
(
GX [zzzh](xxxk)

)
m the coefficients vector aaal is computed fitting the values of the

gradient ∇zzzh at the B Barlow points {xxxb}B
b=1 inside the patch Pk associated to xxxk , by resolution of a

discrete least squares problem, which writes:

min
aaal

∑
xxxb∈Pk

∣∣∣aaal · ppp(xxxb− xxxk)−
(

∇zzzh(xxxb)
)

m

∣∣∣2, (A.3)

where m = (l− 1)mod(d ·C)+ 1. The operators div and mod represent respectively the integer division
and the modulo operation.
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The stationary point can be found by differentiation with respect to the minimization parameter aaal .
Setting the first-order derivative equal to zero we get the following linear algebraic system:

Mkaaal = rrrl , (A.4)

where the index k is related to the index l by the identity k = (l−1)div(d ·C)+1 and the matrix Mk and
the right hand side rrrl are defined as:

Mk := 2 ∑
xxxb∈Pk

ppp(xxxb− xxxk) pppT(xxxb− xxxk), rrrl := 2 ∑
xxxb∈Pk

(
∇zzzh(xxxb)

)
m

ppp(xxxb− xxxk). (A.5)

Hence for each support point xxxk we solve d ·C small linear problems (A.4) and we compute each nodal
value ζl according to (A.2).

A.3 Implementation of the SPR+ method

The constrained least squares problem that we want to solve has been discussed in Section 4 and derives
from the SPR problem (A.6). We firstly rewrite the a-orthogonality condition as:

0 = a(zzz,wwwh)−aSPR+ (zzz
h,wwwh) = F(wwwh)−

L

∑
r=1

aaar · ppp(000) (CΨr,∇wwwh)
Ωr
,

where zzzh ∈ V h and wwwh ∈ W h, as defined in Section 2. For any support point xxxk and its associated patch
Pk , saying that we want to reconstruct the m-th component

(
G+

X [zzz
h](xxxk)

)
m, the constrained discrete least

squares problem writes:

min
aaal

∑
xxxb∈Pk

∣∣∣aaal · ppp(xxxb− xxxk)−
(

∇zzzh(xxxb)
)

m

∣∣∣2,
s.t. F(wwwh)−

L

∑
r=1

aaar · ppp(000) (CΨr,∇wwwh)
Ωr

= 0,

(A.6)

where {xxxb}B
b=1 are the Barlow points belonging to the patch Pk . We adopt the Lagrange multiplier method,

then let us define the multiplier λ ∈ R and the objective function of the problem L (aaal ;λ ) as:

L (aaal ;λ ) := ∑
xxxb∈Pk

∣∣∣aaal · ppp(xxxb− xxxk)−
(

∇zzzh(xxxb)
)

m

∣∣∣2 + λ

(
F(wwwh)−

L

∑
r=1

aaar · ppp(000) (CΨr,∇wwwh)
Ωr

)
. (A.7)

We recall that {xxxb}B
b=1 are the Barlow points belonging to the patch Pk associated to the recovery point

xxxk and the index k is related to the index l according to the rule k = (l − 1)div(C · d) + 1. The index
m ∈ {1, . . . ,d ·C} refers to the component of the gradient that we want to reconstruct and is given by
m = (l−1)mod(d ·C)+1.

The stationary point can be found by imposing the first order derivatives to be equal to zero. Differ-
entiation by the coefficients vector aaal leads to:

Mkaaal = rrrl +λ bbbl , (A.8)

where the matrix Mk and the vector rrrl have already been defined in (A.5). Then we have:

bbbl =

∂

(
∑
r

aaar · ppp(000) (CΨr,∇wwwh)
Ωr

)
∂aaal

= (CΨl ,∇wwwh)
Ωl

ppp(000).

On the other hand differentiation by the Lagrange multiplier λ leads to the recovery of the constraint
equation of problem (A.6), which writes:

F(wwwh)−
L

∑
r=1

aaar · ppp(000) (CΨr,∇wwwh)
Ωr

= 0.
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Substituting the explicit expression for aaal provided by result (A.8), we finally get the following solution
for the Lagrange multiplier:

λ =

(
L

∑
l=1

bbbl ·M−1
k bbbl

)−1[
F(wwwh)−

L

∑
l=1

bbbl ·M−1
k rrrl

]
.
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