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The problems of pion-nucleon and nucleon-nucleon scattering and nucleon 

electromagnetic structure involve the matrix element for two pions producing a 

nucleon-antinucleon pair. By use of the Mandelstam representation we are able 

to write dispersion relations for the partial-wave scattering amplitudes of this 

process. In the low-energy range these dispersion relations can be transformed 

into integral equations whose kernels are simply related to pion-nucleon and 

pion-pion scattering amplitudes. 

* This work was performed under the auspices of the u.s. Atomic Energy Commission. 

t A visitor from the Argentine Army. 
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A method for calculating the behavior of systems of strongly interacting 

1 particles has been developed recently by Chew and Mandelstam, and has been 

applied by them to the problem of pion-pion scattering. Their procedure is 

based on Mandelstam's generalization of dispersion relations, 2 which prescribes 

a method of analytic continuation of scattering amplitudes into the complex 

plane as a function of both the energy and momentum-transfer variables. This 

simultaneous extension of both variables into the complex plane permits one to 

write dispersion relations for partial-wave amplitudes. Applying the unitarity 

condition and using the "effective-range" approximation--i.e., determining the 

behavior of an analytic function by considering only near-by singularities--

one can transform these partial-wave dispersion relations into a system of 

integral equations. 

We have applied this method to the calculation of the matrix element 

for the production of a nucleon-antinucleon pair by two pions. This matrix 

element enters into many of the problems of strong interactions, such as pion-

nucleon scattering and photoproduction, the nucleon-nucleon interaction, and 

the nucleon electromagnetic structure. In pion-nucleon scattering the structure 

of the Mandelstam representation forces one to consider simultaneously the 

three processes shown in Fig. 1. In the nucleon-nucleon interaction problem, 

knowledge of the process ~~ ~ NN will permit calculation of the two-pion 

exchange contribution. In the nucleon electromagnetic structure this process 
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in the state of total angular momentum one, together with the pion form factor, 

dominates the isotopic vector properties. 3 This application will be discussed in 

a succeeding paper. 

In Section II the kinematics and isotopic spin analysis are treated. The 

partial-wave decomposition is carried out in Section III. We follow there the 

work of Jacob and Wick, 4 in terms of helicity states rather than orbital angular 

momenta. In Section IV the Mandelstam representation and its properties are 

described, and in Section V they are used to study the structure of the 

singularities of the partial-wave amplitudes. In Section VI the dispersion 

relations are transformed into integral equations and a method of approximate 

solution in the low-energy (unphysical) region is given. 

II. KINEMATICS 

Let the four-vector momenta of the pions be q
1 

and ~' and those of 

the antinucleon and nucleon be p
1 

and p2 respectively (Fig. la). Define 

the variables5 

-(ql + ~)2 4(q2 2 2 2 (2.la) t = ::: + ll ) = 4(p + m ) , 

-(p -
2 2 2 (2.lb) s = q•) = -p - q + 2pq cos e , 

1 1 

- 2 2 2 (2.lc) s = -(pl - ~) = -p ... q - 2pq cos e , 

where q and p are the magnitudes of the pion and nucleon momenta, and 

cos e = _R2"%fPq , all in the barycentric system .. 

to the relation 

Momentum conservation leads 

s -+ s + t ::: + (2.2) 
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The Lorentz invariants defined by Eqs. (2.1 a, b, c) are just the squares of the 

energies in the barycentric system of the corresponding process in Fig. 1 a, b, c. 

The structure of the Mandelstam representation2 forces us to consider these 

three processes simultaneously. 

The S matrix for the process ~~ ~ NN can be written 

m 

(2.3) 

where E1 and E2 are the antinucleon and nucleon energies, ro1 and ro2 are 

the meson energies, and 

(2.4) 

The decomposition of T into spin-independent functions has been carried out by 

Chew, Goldberger, Low, and Nambu for pion-nucleon scattering. 6 Making the 

substitution we find for the process ~~ ~ NN 

T -A 1 
+ 2 i r·(q1 - ~)B (2.5) 

where A and B are functions of s , s , and t , and matrices in isotopic 

spin space. As in pion-nucleon scattering, the most general form consistent 

with charge independence6 is 

(2.6) 

and similarly for Bf30; • The Pauli principle requires 

A(±)(s, s, t) :::: ±A(±)c;, s, t) 
' 

(2.7a) 

B(±)(s, s, t) = - ( ±) (-+ B s, s, t) (2.7b) 
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Note that, according to Eq. (2.1), s .. s means cos e .. -cos e . It is also 

evident from the symmetry properties of the (±) amplitudes that they are 

proportional to the two possible eigenamplitudes of total isotopic spin. As 

shown in the App~ndix, 

1 
=-(?: ( 2.8) 

III. ANGUlAR-MOMENTUM DECOMPOSITION 

In the barycentric system the differential cross section for ~~ ~ NN is 

do 
dn 

m 
2E ' 

( 3.1) 

where Z represents a sum over final spin states. The quantity T , defined by 

Eq. (2.4), can be written as a matrix element between Pauli spinors, X , in the 

form 

(±) x; (h (±) O•p + h (±) o-.9)X-T = ' 1 NV N.,l 2 - N 
( 3.2) 

where 

h (±) -,!(A(±) 
B(±) 

) = + p•q 
' 1 m m+E - __, 

( 3.3) 

~(±) = ...!_ B(±) 
m ( 3.4) 

We could now write partial-wave amplitudes corresponding to each value of 

the orbital angular momentum £ of the nucleon-antinucleon system; however, as 

we shall show later, the amplitudes introduced by Jacob and Wick4 have simpler 

analytic properties. Therefore we shall carry out the partial-wave decomposition 

by their method, defining 
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do 
dn = 

2 

1: {-IJ~I ' ( 3-5) 

where is the amplitude for production of a nucleon with helicity ~ and 

an antinucleon with helicity ~ • We have suppressed the superscripts (±) in 

Eq. (3.5). Equations ( 31) and (44) of Reference 4 then give 

J ++ 7- 1 (J 1 J ( 3.6) = = 1: + 2) T+ PJ(cos 9) ' q J 

J + 1 
1 2 T J 

1 

:;-+_ = - ]-_+ = 1: I sin 9 PJ (cos 9) ' q J i J(J + 1) 
( 3· 7) 

1 where we have used the abbreviation ± for ± 2 . The scattering amplitudes 

J T± for the state of total angular momentum J are related to the corresponding 

8-matrix elements as follows: 

Our next step is to relate the T±J to the invariant functions A(±) 

and This can easily be done by choosing the z-axis along R and 

evaluating Eq. (3.2) for the helicity states. We find 

]-++ = 

ia 
i e m 

8 1C E ' ( 3-9) 

]a+- = 

ia 
i e m h2 q sin 9 
8 1C E ' 

( 3.10) 

where the arbitrary phase a, arising from the relation between Eq. (3.1) and 

(3.5), will be adjusted later. Introducing Eqs. (3.9) and (3.10) into (3.6) and 

(3.7), and using the orthogonality properties (Eq. (23) of Ref. 4), we obtain 
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. ia = ~ e m q 
8 1C E p 

( 3.11) 

where x = cos e . Using Eq. (3.3) and (3.4), and defining the new amplitudes 

f J _L E TJ = + q J + ' (pq) 

f J _L 1 T J = q J ' (pq) 
( 3.14) 

we finally find 

f J(t) = 1 ) 
+ '8i l 

2 
p 

--=--=J AJ + 
(pq) 

m [(J + l)BJ+l + J BJ_l]} ' 
(2J + l)(pq)J-l 

1 
J (BJ-1 - BJ+l) (pq) -1 

where we have defined 

(A ( ±) · B ( ±) ) 
J ' J 

( 3·17) 

J The arbitrary phase a has been adjusted in Eqs. (3.15) and (3.16) so that f± 

are real when A and B are real. Notice that the Pauli principle, as expressed 

by Eq. (2.7), implies that for J even, 
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(-) B ( +) 0 AJ = = ' J. 

whereas for J odd 

A ( +) (-) 
0 = B .. = . 

J J 

IV. THE MANDEISTAM REPRESENTATION 

A
(±) ( +) 

We assume that the invariant functions and B - satisfy the spectral 

representation proposed by Mandelstam: 2 

1 +-2 
Jt 

2 

2 
gr 

m - s 

-+ 2 
m - s 

1 +-2 
1{ 

b (±)(s' t') 
13 . ' 

(s' - s)(t' - t) 

b C±)<s' t') 
23 ' 

Cs, .. 5) < t, - t) 

b (±)(s' si) 
12 ' 

(s' - s)(s' - s) 

( 4.1) 

Although the variables s, s, and t are related by Eq. (2.2), we shall often 

write them explicitly in order to show the full symmetry of the representation. 

The functions A(±) satisfy a similar representation, excluding the first two 

terms. We shall not consider the possibility of subtraction terms in Eq. (4.1), 

since we shall use the representation only to determine the location of 

singularities in the partial-wave amplitudes. The spectral fUnctions b 
(±) 

ij 
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(±) 
are not independent; it follows from Eqs. (2.7) that 

(+) 
al2 - (x, y) + (±)( ) : - a12 y, x ' 

( 4.2) 

(+) + b
12 

(±)(y, x) bl2 - (x, y) = 
' 

(+) 
al3 - (x, y) = + (±)( ) - a23 x, Y ' 

( 4.4) 

(+) 
bl3 - (x, y) = - (+)( ) + b23 - x, y 

As shown by Mandelstam,- one can easily derive from Eq. (4.1) one-dimensional 

dispersion relations with either s, s, or t held fixed. In order to derive 

dispersion relations for partial-wave amplitudes for 1C1C -+ Ni , we need the 

representation which makes explicit the dependence on the momentum transfer (s) 

for fixed energy (t): 

2 2 (±) ( t t) 
B(±)(s, ~ gr 1 00 bl s ' 

t) - f ds' s, = 2 + + -2 
1C (m+iJ.)2 s' - s m - s m - s' 

00 b <±>cs• t) 
1 f ds' 2 ' + -1( 2 s' - s (m+iJ.) ( 4.6) 

Then Eq. (4.1) shows 

b
1
(±)(s', t) 1 00 b (±)(s' t') 

!2 dt' 13 ' = -1( t' - t 41-l 
b (±)(s' s') 

1 
00 ( 4. 7) f ds' 12 ' ' + - 2 2j.J.2 1( 2 s' ( m+j.J.) + s' + t ... 2m -
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b (±)<s' t') 
23 J 

t' - t 

1 +-
1( 

()) 

I ds' 
2 

(m+~-t) 

Using Eq. (4-.3), one finds 

= f. b (±)(8 1 t) 
1 . ' 

UCRL-8806 

b (±)(s' s') 
12 J 

- 2 2 s' + s' + t - 2m - 2~-t 

(4-.8) 

Relations similar to Eqs. (4-.6- 4-.9) hold for A(±), but without the pole terms 

and with the + inverted. 

The spectral functions bij' aij are nonzero in regions whose boundaries 

2 have been calculated by Mandelstam. For completeness we reproduce his results 

here. The spectral functions b13 and a13 are bounded by the following two 

curves (see Fig.· 2): 

I. 2 2 2 
( t - 4-~-t )[ s - ( m + 2~-t ) )[ s .. ( m - :4-L) ] 16 ~-t4(s + 3m

2 
- 3~-t2 ) = 0 

( 4-.lOa) 

II. 
2 2 2 

( t .. 16 1-1 ) [ s - ( m + 1-1 ) ] [ s - ( m - 1-1) ] 
4 

64 1-1 s = 0 ( 4.10b) 

The bounding curves for b
23 

and a
23 

can be obtained from these equations by 
" 

changing s to s. The spectral functions b
12 

and a
12 

are bounded by 
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[s- (m + 2~) 2 ][~- (m- 2~) 2 ][s- (m + ~) 2 ][s- (m- ~) 2 ] - 16 s.s m
2 ~2 = o , 

( 4.11) 

-and by a second curve obtained by interchanging s and s • From Eqs. (4.10) 

and (4.11) it is evident that the regions in which the spectral functions are 

nonzero are asymptotically bounded by the lower limits of integration in Eq. (4.1). 

V. ANALYTIC PROPERTIES OF THE PARTIAL-WAVE AMPLITUDES 

Let us now use the analytic properties of the invariant functions 

A(±)(s, s, t) and B(±)(s, s, t), as given in Section IV, to make an analytic 

continuation into the complex t plane of the partial-wave amplitudes f±J(t) 

defined by Eqs. (3.15) and (3.16). In order to do this let us consider, for 

example, the term A~(pq)J. Using Eqs. (3.17), (4.6), and (4.9), we find 

1 
=-

1{ 

where 

::: 

00 

I ds' 
2 (m+~) ' 

( 5-l) 

---~=-----,2=---- ( -l) J --~2=-----:\=----­
s ' + p + q - 2pqx s' + p + q + 2pqx 

(5.2) 

By inspection of these two equations and Eq. (4.7), it is a straightforward 

task to determine the nature and locatioh of the singularities of AJ;{pq)J. The 

vanishing of the denominator of the first term in Eq. (4.7) produces a series 

of branch cuts on the positive real t axis associated with the thresholds of 

] . 
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the possible intermediate states between two pions and a nucleon-antinucleon pair. 

The lowest occurs at 
2 

t = (2~) , the next at t = 2 
(4~) , and so on. The threshold 

of the physical region comes at t = (2m) 2 • The apparent singularity from the 

vanishing of the second denominator in Eq. (4.7) was introduced artificially 

through the separation into partial fractions of one of the terms in Eq. (4.1). 

This singularity can easily be seen to vanish after the integration in Eq. (5.1) 

is performed. 

The other two sets of branch cuts, arising from the vanishing of the 

denominators in Eq. (5.2), are coincident and lie on the negative real axis. It 

can easily be shown that the branch cuts extend from t = - oo to 

t = 
2 2 2 

(s' - m - ~ ) 
s' (5.3) 

Since s' is the energy variable for pion-nucleon scattering, Eq. (5.3) means 

that there will be a branch point in t arising from each threshold for the 

states which can be produced by·a pion and a nucleon. Therefore the first 

branch point, lying at t = o, correspon&to the lower limit of integration 

in Eq. (5.1). The second, corresponding to the thr~ld for pion production, 

occurs at t ~ 
2 

- 10 ~ • 

It should further be noticed that IJ(s', t) contains no singularities 

other than those arising from vanishing denominators in the Mandelstam 

representation. Since it can easily be shown that the integral in Eq. (5.2) 

vanishes at p = 0 or q = 0 as J (pq) , no pole is introduced by dividing by 

this factor. Finally, since only even powers of pq are present in IJ(s', t), 

no branch points arising from kinematical factors occur. 

Similar considerations hold for the terms proportional to BJ in 

However, the pole terms in Eq. (4.6) produce an additonal branch point at 
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t 2 2/ 2 
4 ~ (1- ~/4m ). Thus we can conclude that the functions f±J(t) are 

analytic in the complex t plane except for branch cuts on the real axis 
f) 

extending from - oo to 4 ~2(1 - ~}14m2 ) and from 4 ~~-- to oo . We remark 

here that the amplitudes f±J corresponding to definite helicities are clearly 

more convenient than the usual amplitudes corresponding to definite orbital 

angular momenta, since the latter contain additional singularities of a purely 

kinematical origin (such as factors of E). 

In order now to be able to.write dispersion relations for the partial-wave 

amplitudes we must consider their asymptotic behavior. The unitarity condition 

J tells us that T± (t) are bounded as t ~ oo. Therefore we see from Eqs. (3.13) 

and (3.14) that a! 
.. J+-

J 2 f+ (t), as t 

where a = 

l 
:Jt 

For J = 0, 

t-+oo, J -J f_ (t) goes to zero at least as fast as t , 

Guided by these considerations we write for J;' 0 

2; 2 
~I 4m ) . 

' 

and 

(5.4) 

0 
f_ (t) = o, from Eq. (3.16). This is obvious physically 

from the fact that f J refers to states in which the projection of J along 

~ is unity. Moreover, the quantity f+0;ip
2 

remains finite at p = 0 and 

has the necessary asymptotic behavior as t ~ oo. 

Our next task is to evaluate Im f±J(t) on the left-hand branch cut 

(- oo-' t ~a). In this region a1(s', t) and b1(s', t) are real (Eq. (4.7)), 

and we find, from Eq. (5.1), 
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L(t) 
- f 2 ds' a1(s', t) 

(m+J..L) 

L(t) 2 2 t 
= m + ~ + 2 P_ q_ - 2 ' 

UCRL-8806 

(m2 
t 1/2 

p = - 4) ' -
2 t J/2 

q_ = (~ - 4) ' 

2 2 s' - q - p -z 
2 q p - -

( 5 ·5) 

A relation similar to Eq. (5.5) but including the contribution of the pole terms 

holds for BJ(t), leading to 

Im f J(t) = 
+ 

/J(J + 1) 

8 n(2J + l)(p_ q_)J 

(5.7) 
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where 

2 2 2 
m q_ - P_ 

2 q_ P_ 

As we have stated previously, the left-hand branch cut is associated with 

pion-nucleon scattering. From Eqs. (4.6) and (4.9) it follows, for t <: 0, 

( 5·9) 

and the same for b1 • Although in Eqs. (5.7) and (5.8) the energy variable s' 

is in the physical range for pion-nucleon scattering, the upper limit L(t) is 

such that cos ¢ ~ -1, where ¢ is the pion-nucleon scattering angle in the 

barycentric system. Therefore we must make an analytic continuation from the 

physical region. A well-known method of continuation is to expand Im A(s, t) 

6 in Legendre polynomials: 

where 

w2 = s ' 

and 

k2 = E2 

= 

(w - m;-1) 
E + m 

E = cJ 

2 
cos¢ - m ' 

(W + m; 1) 
E + m 

Im f (±) P' (cos¢) ] 
£- £-1 . 

~ P ' ( cos ¢) [ Im f ( ±) - Im f ( ±) ] ] 
£ £ £- £+ ' 

2 
- JJ.

2
)/2W +m 

1 + t 
= 

2k2 

(5.10) 
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The region of convergence of this Legendre polynomial expansion can be 

determined from Eq. (4.7). Since a function f(cos ¢) that is analytic inside 

an ellipse with foci at -1 and +1 can be expanded in Legendre polynomials, 

we must find the position of the nearest singularity in cos ¢. This singularity 

can be seen to come from the vanishing of the denominator of the first term in 

Eq. (1+.7) in the region where b13(s, t) ::/ 0. Using Eq. (4.10) for the 

boundary curve of this region, we find that the expansion converges on the 

2 left-hand branch cut as long as t ~ -26 ~ • For comparison we state the 

result rigorously proved by Lehmann, 7 that the expansion in Eq. (5.10) converges 

at least for values of t greater than - 32~2(2m~ + J.l.
2

0(2mJ..L - J.1
2

) -;:;; - 12 J.l.
2

• 

Beyond the region of convergence of the polynomial expansion more subtle 

methods of analytic continuation will be necessary. However, on the basis of the 

effective range approximation, which we shall discuss in the next section, the 

J 2 
contribution of Im f± (t) to the scattering amplitude for t ;t - 26 J.l. 

might be considered unimportant. 

VI. THE INTEGRAL EQUATIONS 

In Reference 3 we have outlined an approximate method of solution of 

Eq. (5.4) for the J = 1 state, based on the effective range approximation 

and therefore appropriate to the low-energy unphysical region. We shall now 

generalize this method to states of arbitrary J. 

In order to do this we conjecture that in the region (2tJ.) 2 ~ t ~ (1+~) 2 

the phase of the amplitudes f±J defined by Eqs. (3.15) and (3.16) is equal 

to the pion-pion scattering phase shift BJ in the corresponding angular 

momentum and isotopic spin state. This conjecture can be verified for the 

J = 1 state if one accepts the validity of the dispersion-relation treatment 

of the nucleon electromagnetic structure, 8 '9 where this phase condition is 
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10 necessary to maintain the reality of the spectral functionso In the general 

J case the reason for imposing the phase condition on the amplitudes f± , · rather 

J than T± for example, is that these amplitudes have the property of being real 

in the region (2~) 2 ~ t ~ (4~) for 5J = 0 • 

Use of the phase condition permits the construction of a solution for 
J -uJ(t) 

Consider the quantity f± (t) e , where 

= 
1 
1(" t' - t - i€ 

If this integral does not converge, define instead 

= 
t 
1{ t 1 

( t t - t - i €) 

-uJ(t) 
Now we can write a dispersion relation for f±J(t) e 

(6.1) 

( 6.2) 

provided the 

function approaches zero sufficiently rapidly. Since this function is real in 

the region ( 2~) 2 ~ t ~ ( 4~) 2 , the dispersion relation is 

1 
1( 

a 
J dt' 

-oo t' - t - i€ 

1 
+- dt' 

t' - t .. i€ 

(6.3) 

As a first effective-range approximation to f±J(t) for small t in the region 

2 
t > 4~ we can neglect the second integral on the right-hand side of Eq. (6.3) 
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by virtue of the size of its denominator. Moreover, we expect the phase condition 

to be approximately satisfied for values of t considerably above the next 

threshold at 16~2 • This has been found by Capps to be true for photoproduction.
11 

That being the case, the numerator in the second term of Eq. (6.3) will be small 

in a region extending considerably beyond the lower limit of integration, thus 

giving further justification to our approximation. 

Eqaution (6.3) is in general a very complex set of coupled integral 

equations since the imaginary part on the left-hand cut is related through 

Eqs. (5.7) and (5.8) to pion-nucleon scattering, which in turn involves the 

process ~~ ~ NN • However, as a first approach to the problem one can use 

experimental information about pion-nucleon scattering, so that Im f±J(t) becomes 

a known function within the.region of convergence of the Legendre polynomial 

expansion. We can again use the effective-range approach, hoping that the 

contribution beyond this region is small and therefore cutting off the first 

2 
integral in Eq. (6.3) at t = -26~ . Thus, if the pion~pion phase shift 5J is 

known, Eg. (6.3) gives an explicit solution. 

We have applied this method of solution to the J = 1 state, which 

enters in the nucleon electromagnetic structure problem. Results will be 

given in a succeeding paper. 
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APPENDIX: ISOTOPIC SPIN PROJECTION OPERATORS 

The isotopic spin decomposition of the invariant functions A and B 

can be written, assuming charge independence, as 

( j k J A I ~ a ) = E 
I=O,l 

(A.l) 

where j = n, p ; k = n, p and a, ~ = 1, 2, 3 are the isotopic spin 

indices of the pions; and the projection operator JI is defined as 

I I, I (n))( (n) I, I z z (A.2) 

The symbols (n) and (n) denote normalized nucleon-antinucleon and two-pion 

states, respectively. Then we write 

= (A.3) 

From Eq. (A.2) one can easily show 

(A.4) 

where the trace is taken in the nucleon isotopic spinor space, and where 

E (a' ~~ I I, I (n) )( (1t) I, Iz I a~ ) 
I z 

(A.5) 
z 

The PI, which are the normalized isotopic-spin projection operators for the 
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pion-pion scattering, are given implicitly by Eqs. (II.8) and (II.4) of Ref. 1. 

One can easily verify that the operators 

J 0 = 
•t30 

1 1 
= 4 [1"13 ' 

satisfy Eq. (A.4). This method has the advantage of avoiding the use of explicit 

representations for the isotopic spin eigenstates. 
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FIGURE CAPTIONS 

Fig. 1. The three channels of the two~nucleon, two•pion problem. 

Fig. 2. Boundary curve of the spectral functions b
13

(s, t), 
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