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ABSTRACT OF THE DISSERTATION

Quantum Monte Carlo Calculations of Scattering

By

Abraham R. Flores

Doctor of Philosophy in Computational Science

University of California, Irvine, 2023

Professor Kenneth M. Nollett, Chair

A paramount goal in nuclear physics is to unify ab-initio treatments of bound and unbound

states. The position-space quantum Monte Carlo (QMC) methods have a long history of

successful bound-state calculations in light systems but have seen minimal implementation

in unbound systems. Here I introduce a numerical method to improve the efficiency and

accuracy of unbound-state calculations in QMC, implement it numerically in the definitive

computer codes for these methods, and test it out in nuclear systems small enough for quick

turnaround but large enough to have interesting dynamics. The method involves inferring

long-range amplitudes in the wave function from integrals over the small region where all the

particles interact. This approach using integral relations is well established in the literature;

here, I develop it for the QMC framework in both variational Monte Carlo (VMC) and

Green’s function Monte Carlo (GFMC) calculations. The integral method produces more

accurate scattering observables in neutron-3H scattering for VMC wave functions than direct

evaluation from the same variational wave function. Applying the integral method in Green’s

function Monte Carlo reproduces existing results in neutron-alpha scattering, clearing the

way for its use in coupled-channels problems. Establishing these methods reduces the amount

of human effort needed for a specified level of precision. It clears the way for GFMC-accurate

calculations of coupled-channels scattering, including reactions, in nuclear mass ranges that

may be permanently beyond the range of the other few-body methods.
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Chapter 1

Introduction

In recent years there has been a growing call for ab-initio calculations of unbound nuclear

systems; such calculations constitute half of the acknowledged goal of unifying the treatment

of bound and unbound systems in nuclei [1, 2]. The work for bound systems is far ahead

of that for unbound systems, because unbound systems are significantly harder to treat.

For example, the observables one computes in unbound systems do not trivially reduce to

eigenvalue or Rayleigh-Ritz problems. Additionally, the solution of unbound systems by

basis-function expansion is much more expensive than comparable bound systems. Beyond

mass-4 systems, these hurdles are rarely overcome due to the required basis drastically

growing with the number of particles. This has resulted in the development of ab-initio

methods, mainly in the context of bound states.

Developing methods for computing nuclear systems goes hand in hand with developing nu-

clear representations of the nucleon-nucleon interaction. Mass-4 and -5 systems are com-

putationally efficient testing grounds for methods to compute unbound systems. Regarding

physical interest, the A = 4 and A = 5 are some of the smallest systems available to probe

three-body forces. Additionally, both systems are well-benchmarked by existing computa-
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tional methods in calculations that use some of the same nuclear potentials available to

Quantum Monte Carlo (QMC) methods. Comparison against the benchmarks generates

instant numerical and systematic feedback at a near-zero computational cost.

Benchmarks for the A = 4 systems have been published [3, 4], using the Faddeev-Yakubovsky

equations (FY) [5–10], the Alt-Grassberger-Sandhas equations (AGS) [11–19], and the Hy-

perspherical Harmonic (HH) method [20–24]. As for A = 5, to my knowledge, the only

neutron-alpha phase shifts that have been computed with the Argonne v18 (AV18) potential

are the GFMC results from Ref. [25] and the calculations using the FY equations in Ref. [9].

Those computations are a reliable benchmark for applying new methods to n-alpha.

QMC methods have succeeded in computing bound states for systems up to carbon-12 to

within 1-2% of experimental results [26] and accurately computed infinite matter [27, 28].

Recently, there has been a renewed push to go to larger nuclei (A > 12). This work greatly

benefits from that push from code speed-up, which enables more calculations with QMC

methods in unbound systems, as they are significantly more expensive to map the entire

energy dependence of observables for the system. This work aims to enable QMC methods

to compute unbound systems for systems beyond mass-4. However, the mass-4 and -5

systems now serve as an efficient testing environment for method development.

The few studies of nuclear scattering with QMC published so far are all based on representing

continuum states as particle-in-a-box states and have not included coupled-channels cases.

The first iterations of this technique in Refs. [29, 30] used the variational Monte Carlo

(VMC) method to compute proton + 3H and neutron + 4He, respectively. In Ref. [25],

the Green’s function Monte Carlo (GFMC) method was used to compute energies and phase

shifts of particle-in-a-box wave functions in n+4He, scattering. The same system and method

were revisited in [31] to analyze new nuclear potentials. In this thesis, I seek to reduce the

difficulty of QMC scattering calculations by implementing well-established relations between

the short-range wave function and scattering properties. I refer to the resulting method as

2



the “integral method,” closely related to the Lippmann-Schwinger equation. This method

is similar to the source term calculations of [32, 33], the aysmptotic normalization coefficent

(ANC) calculations of [34–38], and the scattering calculations of [22–24, 39, 40].

The integral methods are techniques for obtaining accurate information from wave functions

that have already been computed. Accordingly, my work to develop them begins with

the computation of n-triton and n-alpha scattering states as particle-in-a-box problems.

Specifying the logarithmic derivative of the wave function at the surface of a spherical box

makes the kinetic energy operator Hermitian so that the ground state of the box can be

found by an energy minimization procedure. For single-channel scattering, the S -matrix can

be directly computed from the energy and the boundary condition in what I call the direct

procedure. This procedure requires that the outer parts of the wave function are accurate,

so that the relationship between the measurable region and interaction region is correct. In

VMC, it is challenging to construct a variational ansatz that works well in the outer parts of

the box. Although GFMC is more accurate than VMC, it has difficulties in the outer parts

of wave functions [25]. Once the wave function exists, the integral method fully utilizes the

well-computed short-range wave function to compute surface amplitudes similar to ANCs

from integrals throughout the box. These amplitudes explicitly determine the S -matrix.

I demonstrate the implementation of the integral methods in VMC by computing neutron-

triton scattering. The first step in this procedure is an internal verification of the integral

relations by comparing spectroscopic overlaps computed by direct sampling and by the in-

tegral relations. Additionally, I use these overlaps to choose a regularization parameter

unambiguously, which cannot be chosen by energy minimization. Lastly, I introduce the

fixed interior wave (FIW) approximation, a procedure for computing the full low-energy

(Elab ⩽ 10 MeV) dependence of the S-matrix using only a single VMC wave function. Using

the integral method in VMC with the FIW approximation, I compute the first few rele-

vant channels in 3H(n, n)3H for both traditional r-space potentials and more modern chiral
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potentials and compare against available benchmarks. The scattering cases include single-

and coupled-channel problems; for QMC, I present the first coupled-channel scattering re-

sults. I also compute near-threshold n-trition scattering observables and discuss the observed

relationship to the triton binding energy.

The next step in developing the QMC integral methods is implementing the integral relations

in GFMC. Because adding the correct spin dependence for the neutron-triton system in

GFMC would have taken away from limited development time, I decided to test, apply

and benchmark the GFMC integral method to 4He(n, n)4He. In developing the integral

relations for GFMC, I started from existing GFMC spectroscopic overlap routines [41]. The

critical task is to develop routines that compute the nuclear potential acting on the n+ 4He

clusterized wave function. After this implementation, I present and benchmark the GFMC

integral method to the previous GFMC calculations of Ref. [25] and the FY calculations of

Ref. [9].

In the n+ 4He calculations, I propose adjusting the fixed interior wave approximation (FIW)

by computing actual wave functions on a sparse grid in energy. Then I interpolate the

results over a dense grid between those wave functions through the FIW approximation.

Although I do not prove this interpolation scheme is explicitly correct, I demonstrate that the

fixed interior wave interpolation (FIWI) maintains the trend established in integral method

calculations.

The remainder of this dissertation is organized as follows. In Chapter 2, I describe my

notation and connect it to the formalisms used in the literature. In Chapter 3, I describe

the QMC wave functions and their adaptation to scattering states. In Chapter 4, I describe

how to extract scattering amplitudes and spectroscopic overlaps from the wave function using

both the “direct” and “integral” procedures in single- and coupled-channel cases. In Chapter

5, I compare the overlap functions computed by the two procedures, interpret the output

of the integral method, and use the results to select the regularization parameter needed in

4



the integral calculations. I also introduce the fixed interior wave approximation. In Chapter

6, I demonstrate the successful use of the integral method with VMC wave functions by

computing overlaps and scattering observables of the neutron-triton system. I then present

n + 4He GFMC single channel phase shifts and compare them with available benchmarks.

In Chapter 7, I summarize my findings and discuss their implications for the future.
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Chapter 2

Introduction to Scattering

This section outlines the necessary mathematical framework to describe single-nucleon scat-

tering. Specifically, I describe how one relates theoretical descriptions of scattering theory

to experimental results. I also describe my two-body scattering notation and how to extrap-

olate low-energy experiments to threshold to determine scattering lengths. In this chapter I

draw extensively from the introductory information in Ref. [42].

2.1 Theory and Experiment

Scattering experiments deal with particles that come from infinity and escape to infinity.

It is usually convenient to define the energy of a system so that it is zero when the kinetic

energy is zero and the projectile is infinitely far from the target; then, scattering always

involves positive energy states. Since the particles can escape to infinity, a fixed energy wave

function fills all of space and constitutes an open quantum system. The experimental results

depend on the amplitudes of the wave function at infinity.

The prototypical setup for scattering experiments starts with a collimated beam of projectiles
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that all have the same energy and directs them onto a target containing many nuclei. When

it reaches the target, the projectile can collide with a target nucleus through the nuclear

and Coulomb interactions and scatter in some other direction of travel. When a detector is

placed near the target at some angle away from the initial beam, the number of projectiles

deflected in that direction can be measured. The number of particles detected will depend

on both the scattering angle and the solid angle subtended by the detector as seen from

the target, ∆Ω (assumed to be small). The detection rate per target nucleus dN/dt is then

related to the incoming flux of projectiles jinc by

dN

dt
= jinc

dσ

dΩ
(θ, ϕ)∆Ω. (2.1)

A counting experiment then allows the experimenter to map out the differential cross section

(dσ/dΩ) as a function of projectile energy. The differential cross section relates the incoming

flux of projectiles to the scattered flux of particles in a given angular direction. The total

cross section σT specifies the total fraction of projectiles that are deflected per target nucleus

and is found by integrating the differential cross section over all angles.

In terms of wave functions, there is an initial incoming wave function ψ(r) that depends on

the vector separation r of the projectile from the target. Incoming projectiles in a beam

of given energy constitute a plane wave along the polar axis, ψ(r) = eikz, where the wave

number k2 = 2m/ℏ2Ecm, and Ecm is the energy of the system in the center-of-mass frame.

The unscattered particles remain part of the plane wave. However, scattered particles form a

spherical wave propagating outward from the target, like waves moving out of a disturbance

in a pond surface, precisely analogous to Huyghens’ principle. The asymptotic wave function

is then a superposition of the original plane wave with an outgoing spherical scattered wave,

lim
r→∞

ψ(r) = eikz +
eikr

|r|
f(θ, ϕ), (2.2)

7



where I have introduced the angular function f(θ, ϕ) referred to as the scattering amplitude.

It describes the magnitude and phase of the current in the scattered beam. The scatter-

ing amplitude is the fundamental bridge between theory and experiment. We can see this

through the conservation of probability current, which gives the following relation for the

scattered flux,

jscat(r) = jinc
|f(θ, ϕ)|2

r2
+O(r−3). (2.3)

By using this relation in Eq. 2.1 and ignoring the additional terms because the detector is

effectively at infinity, we are able to relate the differential cross section to the scattering

amplitude,

dσ

dΩ
= |f(θ, ϕ)|2. (2.4)

Once the scattering amplitude is computed, the cross section follows. The main goal in

theoretical calculations is to establish the relationship between different parts of the wave

function embodied in f(θ, ϕ). From there, outcomes of all scattering experiments can be

predicted, including their dependence on projectile energy.

It is useful to expand the entire wave function into a sum over partial waves that each have

definite values of all angular momentum quantum numbers. For a partial wave of given

orbital angular momentum L, the radial dependence at large r can be written in terms

of a pair of known linearly independent functions instead of the pair in Eq. 2.2. Partial

waves are more conveniently calculated than the whole wave function, and their individual

contributions to the scattering amplitude can be read out of their large r regions.

For low-energy scattering, only the partial waves with the smallest values of angular momen-

tum contribute to the scattered wave. Each partial wave constitutes a “channel” through

which probability can “flow,” and I label them in two ways. The first way is by the total

angular momentum and parity (Jπ), which are both conserved by the nuclear Hamiltonian.

In addition to Jπ, I label channels by orbital angular momentum L and spin angular momen-

8



tum S (which can be changed by our interaction), using Russell-Saunders notation 2S+1LJ .

For some Jπ, there is only one channel, but for others (e.g., 3S1 and 3D1), there are two.

In the multiple-channel case, the incoming and outgoing channels can differ, and we have a

coupled-channel problem. This can result from the tensor term of the strong force, which

mixes channels of the same parity but with L = J ± 1. In the systems examined below, I

also have a case of significant mixing between channels of the same L and J but different S

due to spin-flip operators in the potential.

2.2 Two-Body Scattering

In two-cluster scattering there are three common representations of the asymptotic wave

function. In these, wave function amplitudes at infinity are related to each other by the T -,

S-, or K-matrix, depending on whether the incoming wave function is represented by plane,

spherical, and/or standing waves.

In all of these, projecting the wave function into a specific channel at large radius gives a

result that can be written in terms of solutions to the Coulomb wave equation. This is a radial

Schrödinger equation with a Coulomb potential and positive energy, and in dimensionless

form it is

−d
2ul
dρ2

+

(
l(l + 1)

ρ2
+

2η

ρ

)
ul = ul. (2.5)

Here ρ = kcrc, while the Sommerfeld parameter is given in terms of charges Z1e and Z2e

and the reduced mass µ by η = Z1Z2e
2µ/(ℏ2kc). The channel wave number is given in terms

of the channel energy Ec by k
2
c = 2µEc/ℏ2. Real-valued independent solutions of Eq. (2.5)

are the usual regular Fl(η, ρ) and irregular Gl(η, ρ) Coulomb functions [43]. (For neutron

scattering η = 0, and these reduce to spherical Bessel functions; I will retain the more general

notation of the Coulomb functions.) Outside the interaction region, the wave function may
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be written in terms of products of these functions with wave functions for the individual

colliding nuclei, coupled to specified angular-momentum quantum numbers. These products

form the regular and irregular channel-cluster functions

Fc = Ψc
1⊗2

Flc(ηc, kcrc)

kcrc
(2.6)

and

Gc = Ψc
1⊗2

Glc(ηc, kcrc)

kcrc
. (2.7)

I define the channel product function of cluster wave functions ψ1c and ψ2c with specified

angular momentum in channel c as

Ψc
1⊗2 = Ac

[
ψJ1c
1c ⊗

[
ψJ2c
2c ⊗ Ylc(r̂c)

]
jc

]
J
. (2.8)

The operator Ac antisymmetrizes the function with respect to the partitions of the nucleons

into the two clusters of channel c, which have wave functions ψJ1c
1c and ψJ2c

2c . The angular

momentum coupling in Eq. (2.8) organizes the spin and orbital angular momenta (J2c and

lc) of cluster 2 to total jc (corresponding to “jj coupling” when cluster 2 is a single nucleon

as in my case.) This is then coupled to the angular momentum J1c of cluster 1, which in my

case is either a triton with J = 1/2 or an alpha particle with J = 0.

Of the standard scattering-matrix formulations, the one written entirely in terms of standing

waves is the K-matrix, where the long-range part of the wave function is written as

Ψ(all rc → ∞) =
∑
c

(AcFc +BcGc) . (2.9)

The amplitudes Ac and Bc determine all scattering observables, so the task of theoretical

calculations is to find relations among them across all channels. Alternatively, the same

function can be written in terms of incoming plane-wave components and outgoing spherical
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waves H+
c = Gc + iFc to obtain the T -matrix formalism, where schematically

Ψ(all rc → ∞) =
∑
c

(
AcFc + BcH+

c

)
(2.10)

and the surface amplitudes are Ac, Bc. Finally, the S-matrix formalism is written in terms

of incoming and outgoing spherical waves H±
c (with H±

c = Gc ± iFc) so that

Ψ(all rc → ∞) =
∑
c

(
αcH−

c + βcH+
c

)
; (2.11)

in this case the amplitudes are αc and βc.

All of these formulations are equivalent and can be interconverted. When each set of am-

plitudes is written as a column vector, the relation between them is a matrix that predicts

scattering outcomes by relating incoming to outgoing amplitudes:

B = K̂A (2.12)

B = T̂A (2.13)

β = Ŝα. (2.14)

Regardless of the form chosen, the amplitude vectors in Eqs. (2.12)-(2.14) can in principle

be read out of any wave function solution and the scattering matrices found by inverting

these equations, a process that requires Nc linearly independent wave functions if there are

Nc coupled channels. Each formalism provides a natural way to view some calculations.

Because the particle number is conserved, single-channel scattering satisfies the constraint

|α| = |β| and allows scattering matrices (actually scalars in this case) to be written in

terms of a phase shift δ. Then K = tan δ, T = eiδ sin δ, and S = e2iδ. In multichannel

scattering, each matrix has dimension Nc × Nc, where Nc is the number of open channels.

For n + 3H scattering each matrix is block-diagonal and splits into 1 × 1 and 2 × 2 blocks
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with definite parity π and total angular momentum J . For n-alpha, channel spin is 1/2 and

there is no possibility of coupled channels if parity is conserved. For comparability with the

literature, I report results in terms of channels defined by orbital quantum number L and

by coupling neutron and triton spins to total spin quantum number S (instead of the lc and

jc of Eq. 2.8). In this basis, the 2× 2 coupled pairs of channels either have L = J ± 1 or else

have S = 0, 1 together with L = J . For these cases, I write the 2× 2 S-matrix block in the

Blatt-Biedenharn or eigenphase representation [44] as

Ŝ = ÔT

e2iδ− 0

0 e2iδ+

 Ô, (2.15)

where

Ô =

 cos ϵJπ sin ϵJπ

− sin ϵJπ cos ϵJπ

 . (2.16)

In the absence of channel mixing, Ô is the identity matrix and the δ± are the phase shifts

associated with the L channels L = J ± 1 (when L ̸= J) or with the spin channels S = 0, 1

(when L = J > 0). Each 2× 2 block has a mixing parameter ϵJπ that specifies the degree of

channel mixing. Since δ± are defined by eigenvalues of Ŝ, they are independent of the angular

momentum coupling scheme; ϵJπ is not. Converting the amplitudes of Eqs. (2.9)-(2.11) from

the jj coupling of Eq. (2.8) to the customary LSJ scheme for scattering is a straightforward

exercise in Racah coefficients.

Because any pair of linearly independent solutions to Eq. (2.5) can be used to describe the

asymptotic region in a given channel, it is straightforward to write the various scattering

matrices in terms of each other [45] as follows:

T̂ =
1

2i
(Ŝ − Î) (2.17)
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K̂ = i(Î − Ŝ)(Î + Ŝ)−1, (2.18)

where Î is the identity matrix. I use all three of these. I compute the A and B amplitudes of

theK-matrix formalism so that the work is formulated in terms of Fl and Gl. My phase shifts

and mixing parameters are defined in the S-matrix formalism using Eq. (2.15). Scattering

experiments involve incoming plane waves, so that the T -matrix is the natural framework to

compute differential cross sections.

2.3 Near Threshold Scattering with Spin

For neutrons, precise measurements and nonresonant scattering has known energy depen-

dence given by effective-range theory, so the limit that k → 0 requires special attention

from a theorist. I compute observables in this region by linearly extrapolating energy to

lower values; experimentalists take many measurements at low energy for example with

room-temperature or cooled neutrons, and theorists compute the limit for a given potential.

For low-energy neutrons, the effective range expansion, of which the scattering length is a

parameter is generally valid and helpful.

Some observables of interest in this limit are the total cross-section and the scattering length

a, defined by

lim
k→0

k

tan δ
= −1

a
. (2.19)

The standard interpretation of the scattering length is that the target scatters the projectile

in the near-threshold limit as if it were a hard sphere of radius a. The total cross-section of

that system is then similar to four times the classical result of a hard-sphere,

lim
k→0

σ = 4πa2. (2.20)
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In the light nuclei with A=3 and 4, it is known that as one varies the potential, binding

energies and scattering lengths vary in a correlated way that is referred to as the Phillips

relation which relates triton binding energy to n+ d scattering lengths [46].

When there are multiple S-wave channels, each has its own scattering length and effective

range. What is observed in measurements of total scattering depends on the scattering

lengths in all channels and on the manner in which the target nuclei move independently or

are bound in solid or molecular targets. For systems with two s-waves, such as n + 3H, the

near-threshold observables are written as

lim
k→0

σ = π(a20 + 3a21), (2.21)

and the coherent scattering length for spin-1/2 targets in diatomic molecules

lim
k→0

a =
1

4
(a0 + 3a1), (2.22)

with,

as =
sin(δs)

k
, (2.23)

and s labels spin. Here, I have taken the zero-energy limit of the total cross section for spin

systems. We compute σ by integrating the spin-dependent differential cross-section:

dσ

dΩ
=

1

4
Tr
(
MM†) , (2.24)

over all angles. I introduce the scattering matrix, M, and its components

M ss′

µµ′(θ) =

√
4π

k

∞∑
J=0

∑
ll′

√
2l + 1(l0sµ|Jµ)(lm′s′µ′|Jµ)T ss′

ll′ Yl′m′(θ, 0), (2.25)

where m = µ − µ′ and T ss′

ll′ is an element of the T̂ -matrix. This scattering matrix can be
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derived by explicitly following the spin dependence in the partial-wave expansion of Eq. (2.2),

and it holds all the physical information from the L-coupling and S-coupling channels. For

n + 3H in the zero-energy limit, it is convenient to compute and report it for the spin-zero

and spin-one systems.

To obtain estimates at threshold, one traditionally performs a simple linear regression on

the computed values of k/ tan δ approaching threshold to approximate the intercept, which

is the negative inverse of the scattering length. In the case of thermal neutron scattering

(1/40 eV), we can also evaluate observables near thermal energy and extrapolate.
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Chapter 3

Quantum Monte Carlo

The QMC wave functions are approximate solutions of the nonrelativistic many-body Schrödinger

equation,

Ĥ |Ψ(R, Jπ, T, Tz)⟩ = E |Ψ(R, Jπ, T, Tz)⟩ , (3.1)

with energy E, particle coordinates R = {r1, r2, ..., rA}, total angular momentum J , parity

π, total isospin T , isospin projection Tz, and Hamiltonian operator

Ĥ = −
A∑
i=1

ℏ2

2m
∇2

i +
A∑
i<j

vij +
A∑

i<j<k

Vijk. (3.2)

Here sums run over particles, ∇2
i is the Laplacian operator in the coordinates of particle i,

vij is the two-body potential between particles i and j, and Vijk is the three-body potential

among particles i, j, and k. The charge-conserving form of |Ψ⟩ at each point in space is a

2A ×
(
A
Z

)
spin-isospin vector of complex amplitudes. However, in most systems and in this

work isospin is a reasonably good quantum number. We can then reduce the total size of

matrix operations on that vector using an isospin-conserving basis.
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3.1 Variational Monte Carlo

In my calculations, I use variational wave functions of the form generally employed for nuclear

VMC in bound systems [47–49], with minor modifications for scattering. Here, I describe

the structure of the VMC wave functions, emphasizing aspects that require modification for

scattering.

The variational wave function |ΨV ⟩ is constructed from two- and three-body operator corre-

lations acting on a Jastrow wave function that contains only scalar correlations, assembled to

have definite quantum numbers of angular momentum and isospin as well as antisymmetry

under particle exchange [26]. The form of the variational ansatz used here is [50]

|ΨV ⟩ =

[
S
∏
i<j

(
1 + Uij +

∑
k ̸=i,j

Uijk

)]
|ΨJ⟩ , (3.3)

where the sums and products run over nucleon labels. The operator correlations contain

the same operators on spin, isospin, and coordinates that appear in the largest terms of the

nucleon-nucleon interaction. They have the forms

Uij =
∑
p=2,6

[∏
k ̸=i,j

fp
ijk(rik, rjk)

]
up(rij)O

p
ij, (3.4)

where the indexed operators are Op=1,6
ij = [1,σi · σj, Sij] ⊗ [1, τi · τj]. Here σi, τi, and Sij

are spin, isospin, and spin-tensor operators, respectively, and rij is the distance between

nucleons i and j. The spatial dependence up(rij) in each term is calculated from two-body

Euler-Lagrange equations [51] that contain the nucleon-nucleon potential and variational

parameters, while the correlations fp
ijk suppress the spin-isospin pair correlations when a third

particle is nearby. The three-body correlations Uijk are constructed from operators appearing

in three-body terms of the potential, but with strengths and pair-separation dependences
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scaled by variational parameters ϵp and b respectively,

Uijk = −
∑
p

ϵpV
p
ijk(brij, brjk, brki). (3.5)

The operator S in Eq. (3.3) symmetrizes over orderings of the operators (which do not

commute) so that |ΨV ⟩ inherits the antisymmetry of the Jastrow function.

For a given permutation of particle labels (that is, before antisymmetrization), each particle

in the Jastrow function |ΨJ⟩ is assigned to the s- or the p-shell. The central pair correlations

depend on this assignment, so, for example, fss(rij) is applied when particles i and j are

both in the s-shell core described below, while fsp(rij) is applied when one is in the s- and

one in the p-shell. Then for a nucleus of A nucleons with a full four-particle s-shell and at

least two p-shell particles (presented to connect this work to notation in the prior literature),

|ΨJ⟩ = A

{ ∏
i<j<k⩽4

f sss
ijk

∏
t<u⩽4

f ss(rtu)
∏
i⩽4

∏
5⩽j⩽A

f sp(rij)
∏

5⩽k<l⩽A

fpp(rkl) (3.6)

×
∑
LS[n]

βLS[n] |ΦA(LS[n]JMTT3)P ⟩

 .

If there is only one p-shell particle, then fpp
ij = 1. The function

|ΦA (LS[n]JMTT3)P ⟩

=

∣∣∣∣∣Φα(0000)1234
∏

5⩽i⩽A

ϕLS[n]
p (rαi)

×

[ ∏
5⩽j⩽A

Ylml
(r̂αj)

]
LML

⊗

[ ∏
5⩽k⩽A

χk

(
1

2
mi

)]
SMS


JM

×

[ ∏
5⩽l⩽A

νi

(
1

2
tz

)]
TTz

〉
, (3.7)

is a spin-isospin vector that depends on the partition of the particles, in which the first four
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nucleons are assigned to the s-shell (or “alpha core”). This core is constructed as a simple

Slater determinant of spins and isospins coupled to definite total angular momentum and

isospin quantum numbers denoted by Φα(J=0,M=0, T=0, Tz=0)1234, while the remaining

particles are assigned to p-shell orbitals. Spinors χi and νi specify spin and isospin states

of the p-shell particles, and spherical harmonics Ylml
describe their angular motion around

the center of mass of the core, from which they are separated by vectors rαi. These are

coupled to specified quantum numbers of total spin S, orbital angular momentum L and

net angular momentum J (with projection M), as well as total isospin T (with projection

Tz), as indicated by square brackets. Full specification in general also requires a definite

permutation symmetry among p-shell orbitals, in the form of a Young diagram label [n].

Each p-shell orbital ϕ
LS[n]
p (rαi) depends on the magnitude of rαi (keeping the wave function

translation-invariant), and on the specified quantum numbers. Since pair correlations appear

elsewhere, ϕ
LS[n]
p can be thought of as accounting for interactions with the mean field of the

nucleus, and as allowing antisymmetry when A > 4. The fsp are constructed explicitly to

describe close-in-pair correlations, so that fsp(r → ∞) = 1, and the exponential drop-off

of the wave function at large rαi for bound states is built into ϕ
LS[n]
p . Each ϕ

LS[n]
p (rαi) is

accordingly computed from a Woods-Saxon potential well with orbital angular momentum

l = 1 (for a p-shell nucleus) in a one-body Schrödinger equation. The geometric parameters

of the wells and their separation energies are parameters to be varied in the VMC procedure,

with the initial guess of the separation energy given by the appropriate breakup threshold

for the nuclear system at hand. Configurations having all the quantum numbers L, S, and

[n] that can be consistent with the given J , T , and Tz are generally present, so they are

all included with weight amplitudes βLS[n] in Eq. (3.6). Finally, the operator A denotes an

antisymmetric sum over every permutation P of particle labels.

All of the correlations and orbitals are either explicit functions of variational parameters

or solutions of differential equations whose constants are treated as variational parameters.
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Optimal values of all parameters are found from a Rayleigh-Ritz variational principle by

minimizing the energy expectation value

EV =
⟨ΨV | Ĥ |ΨV ⟩
⟨ΨV |ΨV ⟩

. (3.8)

The integrals in Eq. (3.8) and other matrix elements are calculated by Monte Carlo inte-

gration, using Ψ†
VΨV (a function of particle coordinates) as weight function. I optimize

parameters using an implementation of the nonlinear optimizing algorithm COBYLA from

the NLopt library [52]. After minimization, the result of VMC is a variational upper bound

on the energy expectation value and an optimized wave function that can be used as an

input to further calculations.

3.1.1 VMC Scattering States

This general framework is adaptable to unbound states [25, 29, 30]. The eigenvalue nature of

bound states arises from the condition that their wave functions should be square-integrable.

This is enforced in VMC by exponential decay at large distances in the fss correlations and

in the p-shell orbitals ϕ
LS[n]
p . Scattering formally involves wave functions that extend to

infinity and cannot be found by energy minimization. However, we can adapt the VMC

procedure and wave function to scattering by confining the wave function to a spherical

box and imposing a boundary condition at its edge. The boundary condition renders the

kinetic energy operator Hermitian and the wave function normalizable, so that VMC energy

minimization gives access to a unique ground state. Once this ground state has been found,

it may be smoothly matched onto asymptotic scattering solutions outside the box and viewed

as the portion of a scattering wave function near the origin.

The most useful boundary condition for single-channel scattering is a specified logarithmic
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derivative ζc of the wave function at the box surface, defined by

n̂c · ∇rc

(
rc |Ψ⟩

)
= ζcrc |Ψ⟩ , (3.9)

where the subscript c denotes a scattering channel specified by a division of nucleons into two

nuclei and by values of J,MJ , L, and S. The gradient is evaluated in coordinates defined by

the vector rc that separates the centers of mass of the scattering nuclei and n̂c is an outward

normal unit vector at the surface of the box, defined by rc = R0 for a box of radius R0. For

fixed R0, different choices of ζc give boxes with different ground state energies, corresponding

to scattering at different energies.

The wave function ansatz of Eqs. (3.3)–(3.7) is easily adapted to describe the scattering of a

single nucleon by an s-shell nucleus. The s-shell nucleus is well-described by a spin-isospin

Slater determinant and correlations between its nucleons, just like the s-shell portion of

Eqs. (3.3) and (3.6) [53]. The scattered nucleon can be incorporated into the wave function

just like the p-shell particles in Eq. (3.7), using the same routines in the VMC code but

narrowing to the case of only one “p-shell” particle, which could have any value of L = l for

its orbital motion around the nuclear center of mass, not just l = 1. Then the coordinate

rαj in Eq. (3.7) is identical to the channel separation rc for scattering. For scattering from a

triton, the Slater determinant for the core contains only three particles, coupled to J = 1/2,

T = 1/2, Tz = −1/2 to form Φt(
1
2
1
2
1
2
(−1

2
))123; the correlations ss and sss should in principle

be optimized for the triton ground state so that configurations at the box surface truly match

onto a triton cluster outside the box. To produce a specific scattering channel with good

quantum numbers, the angular momentum coupling in Eq. (3.7) has to be adapted to couple

the scattered nucleons to the J = 1/2 core. Fermionic exchange of the scattered nucleon

with a nucleon of the core enters through the antisymmetrization in Eq. (3.6). A similar

but more elaborate approach has been used for scattering of composite nuclei and for highly

clustered nuclei, when one of the clusters is an alpha particle [54–56].
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Since the sp pair correlations are constrained to go over to the identity operator at large

separation, placement of R0 at large enough radius turns Eq. (3.9) into a boundary condition

on computation of uc = rcϕ
LS[n]
p from its Woods-Saxon well, so that in principle

ζcuc(R0) =
duc
drc

∣∣∣∣
rc=R0

. (3.10)

However, in optimizing the wave function it is often possible to lower EV by altering the cutoff

parameter that enforces fsp −→ 1 at large separations, as assumed in using Eq. (3.10) as a

boundary condition on the whole wave function. When the cutoff radius becomes too large,

the fsp correlations gain a slope near the box surface and alter ζc. To solve this problem, I

apply the condition in Eq. (3.10) to the product [fsp(rc)]
nspuc(rc) instead of just uc(rc) by

itself, where nsp is the number of nucleons in the scattering nucleus (nsp = 3 for n + 3H).

This works because high-probability configurations all have a distance from a neutron at the

box boundary to any nucleon inside the triton or alpha particle (mean radius 1.7 and 1.68

fm, respectively, smaller than my 9 fm box) close to rc on average. I found that the modified

Eq. (3.10) enforces the desired boundary condition in Eq. (3.9) on the wave function with

good precision. It also prevents the optimizer from pushing the fsp cutoff to larger radius,

removing a significant source of difficulty in the variational search.

For coupled-channels problems there is a ζc for each channel and also a βc amplitude (cor-

responding to the βLS[n] of a bound state), but I leave that complication for later sections.

The value of ζc in a single uncoupled channel (so that no βc is needed) determines the energy

of the lowest state in the box, which I find by the usual energy minimization. Repeated cal-

culations at many different ζc values yield scattering wave functions over a range of energies.

At each energy, the values of ζc and βc determine how the wave function matches across the

box boundary, yielding phase shifts and mixing parameters (and therefore observables) as

functions of energy.
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3.2 Green’s function Monte Carlo

Green’s function Monte Carlo (GFMC) is a method for projecting out properties of the true

ground state wave function from an initial variational solution. In my GFMC work, I use

the same code base described in Ref. [57], which was originally developed and presented in

Ref. [48, 58]. Starting from VMC wave functions, we apply the imaginary-time evolution

operator,

lim
τ→∞

e−(H′−Eg)τ , (3.11)

where τ = it, Eg is a guess for the ground state energy, and H ′ is a local (diagonal in

position space) approximation to the full Hamiltonian. In practice, we can only compute

the propagator accurately for sufficiently small changes in τ (∆τ < 0.1 GeV−1). Evolution

to large imaginary time τ is then carried out by repeated propagation at small ∆τ steps,

where the propagated wave function,

Ψ(τ) =
[
e−(H′−Eg)∆τ

]Nτ

ΨV , (3.12)

obviously Ψ(0) = ΨV , and the evolution to τ involves Nτ = τ/∆τ total steps. We evalu-

ate the precomputed short-time propagator as a Green’s function, Gαβ(R
′,R; ∆τ), which

propagates a spin-isospin vector at location R in configuration space into a new spin-isospin

vector at location R′. Locations R are specified by the coordinates of all particles. Since G

takes a vector to a vector, it is a matrix operator and is defined as

Gα,β(R
′,R; ∆τ) = ⟨R′, α| e−(H′−Eg)∆τ |R, β⟩ , (3.13)

where α and β indicate spin-isospin indices and for compactness will be hidden in later

equations. R′ is the new position of particles, chosen by following a rejection sampling

algorithm [26] for reasons described below. Having computed the short-time propagator, we
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can begin to build up our wave function to large τ , where the final propagation step will be

ΨNτ (RNτ ) =

∫
G(RNτ ,RNτ−1; ∆τ)ΨNτ−1(RNτ−1)dRNτ−1. (3.14)

We can then immediately start to unroll the entire propagation into many repeated integrals,

which can be sampled using a Monte Carlo Markov chain,

ΨNτ (RNτ ) =

∫ Nτ−1∏
n=0

{
G(Rn+1,Rn; ∆τ)

}
·ΨV (R0)

Nτ−1∏
n=0

dRn. (3.15)

This brings us back to the initial VMC wave function; GFMC starts with a swarm of samples

from ΨV , and each of those becomes a “walker”. Each walker follows its own Markov chain

path through configuration space from one τ value to the next. The combination of Green’s

functions and Monte Carlo integration is where GFMC gets its name. A single walker

contributes to a single energy evaluation, but on the order of 105 initial configurations are

generated in a practical calculation to provide good statistics. In order to guarantee that

the calculation does not become dominated by a few walkers, a branching algorithm either

multiplies or kills walkers based on their projected growth. The walkers also follow an

importance sampling distribution based on Ψ†(R; τ)ΨV (R) (an inner product in the spin-

isospin space) at each propagated point. After a set number of propagation steps (∼20-80),

we compute the energy expectation value at the corresponding τ . After propagating to large

enough τ , the averaged energy in a successful calculation stabilizes to the ground state energy

with some sampling noise.

Unfortunately, during propagation of the wave function, the variance of the computed energy

begins to grow exponentially unless some countermeasure is taken, a difficulty known as the

fermion sign problem. This difficulty arises because there is an unphysical bosonic ground

state with (much) lower energy than the fermionic ground state. Sampling individual points

provides no way to enforce a nonlocal constraint like antisymmetry under particle exchange.
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The contribution of the bosonic state to the walkers grows, and when energy is evaluated

by projecting this mostly bosonic state onto the antisymmetric variational wave function (as

described below), the result is eventually numerical noise with no signal. The GFMC code

solves this problem with a constrained path algorithm [59, 60] that requires each walker to

have a positive overlap at each step with the variational starting point,

Ψ†(R; τ)ΨV (R) > 0. (3.16)

Like the fixed-node approximation used to solve the sign problem in many-electron systems,

this approximation is limited by the quality of the variational wave function. Fortunately,

nuclear VMC is an excellent starting point in its own right. However, the constrained path

can cause convergence to the wrong energy (lower or higher). To alleviate this problem, we

release the constraint for several steps to reduce these errors before each energy calculation.

The number of unconstrained steps is usually 10-30 for bound states [26]. and for unbound

states of 5He, it has been found that around 80 steps are necessary to avoid introducing a

bias of 10-20 keV in energy evaluation [25]. We can also store all of the spin-isospin vectors

from the energy calculations for later offline calculations of other quantities.

Expectation values based on a propagated GFMC wave function, in principle, only require

that wave function and the desired operator O,

⟨O⟩ = ⟨Ψ(τ)| O |Ψ(τ)⟩ . (3.17)

If the operator O contains derivatives, we face the problem that GFMC only gives us am-

plitudes at discreet points in space, and computation of the derivatives in Eq. (3.17) is

impossible. Additionally there is a mismatch between sample locations on the left and right

propagated wave functions. Nonetheless, we can write Ψ(τ) = ΨV + δΨ(τ), where δΨ(τ)

is small and terms of order [δΨ(τ)]2 are assumed negligible, and obtain the commonly used
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approximation [57, 60–62],

⟨O⟩ ≈ ⟨O⟩L + ⟨O⟩R − ⟨O⟩V . (3.18)

Here subscript V denotes the variational expectation value,

⟨O⟩V = ⟨ΨV | O |ΨV ⟩ , (3.19)

with L (left) and R (right) denoting which side the propagator acts on:

⟨O⟩L = ⟨Ψ(τ)| O |ΨV ⟩ (3.20)

⟨O⟩R = ⟨ΨV | O |Ψ(τ)⟩ . (3.21)

In most cases, ⟨O⟩L and ⟨O⟩R evaluate to nearly the same value; they are called “mixed

estimates”. The energy is a special case in computing expectation values, as the Hamiltonian

commutes with the propagator. We see why this is important by splitting the propagation

in half and commuting the Hamiltonian past the short-time propagators for one half of the

evolution,

E = ⟨ΨV | Ĥ |Ψ(τ)⟩ = ⟨Ψ(τ/2)| Ĥ |Ψ(τ/2)⟩ . (3.22)

For sufficiently large τ , Eq. 3.22 will approach Eg.s.. Additionally, recall that in practice, we

use a localized approximation to the Hamiltonian (H ′). We compute ⟨Ĥ −H ′⟩ perturbatively

via Eq. (3.18) to remedy this.

In this work, I have a more complicated mixed estimate to evaluate for the integral method

amplitudes (an off-diagonal case), because I have a channel cluster product function on the

left and an A-body scattering wave function on the right. Therefore, evaluating the left

and right matrix elements, analogous to the left and right expectation values above, requires

similar but different computations. Following the derivations in Refs. [41, 61] and labeling the

initial and final nuclear states in those matrix element calculations as Ψi and Ψf respectively,
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we can obtain the general formulation for GFMC mixed estimates of off-diagonal quantities,

⟨Ψf (τ)| O |Ψi(τ)⟩√
⟨Ψf (τ)|Ψf (τ)⟩

√
⟨Ψi(τ)|Ψf (τ)⟩

≈ ⟨O(τ)⟩Mi
+ ⟨O(τ)⟩Mf

− ⟨O⟩V , (3.23)

where

⟨O⟩V =
⟨Ψf

V | O |Ψi
V ⟩√

⟨Ψf
V |Ψ

f
V ⟩
√
⟨Ψi

V |Ψi
V ⟩
, (3.24)

⟨O(τ)⟩Mi
=

⟨Ψf
V | O |Ψi(τ)⟩
⟨Ψi

V |Ψi(τ)⟩

√
⟨Ψi

V |Ψi
V ⟩

⟨Ψf
V |Ψ

f
V ⟩
, (3.25)

and

⟨O(τ)⟩Mf
=

⟨Ψf (τ)| O |Ψi
V ⟩

⟨Ψf (τ)|Ψf
V ⟩

√
⟨Ψf

V |Ψ
f
V ⟩

⟨Ψi
V |Ψi

V ⟩
. (3.26)

As I do not have an initial and final state in this work, I refer to mixed estimates in later

sections as involving “right” and “left” states instead of “initial” and “final” states, and my

notation below reflects those terms. Since derivative operators can only act on ΨV but the

codebase always places cluster-product functions on the left, significant code development

was needed to set up action of the potential operator toward the left in Eq. (3.25).

3.2.1 GFMC Scattering States

We build GFMC scattering wave functions from the same particle in-a-box framework as

the VMC case. Because GFMC operates only on isolated points in configuration space,

the logarithmic derivative boundary condition cannot be explicitly enforced. However, the

equivalence of the particle-in-a-box wave function to the short-range part of a wave function

filling all of space provides a way to incorporate the boundary condition [25, 63]. GFMC

walkers would cross the boundary in both directions if the entire wave function were present,

and the wave function inside the box would contain contributions propagated from within

and from outside. At each propagation step, the integral in Eq. (3.14) is then split into
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contributions from inside and outside the box,

Ψn+1(R
′) =

∫
|r12|<R0

G(R′,Rn; ∆τ)Ψn(Rn)dR1dR2dr12

+

∫
|r12|>R0

G(R′,Rn; ∆τ)Ψn(Rn)dR1dR2dr>, (3.27)

where R1 and R2 represent the internal cluster coordinates inside the clusters, r12 is the

separation of cluster centers of mass inside the box; r> is the separation of cluster centers

of mass when |r12| > R0 [25, 63]. We can then map every point in the second integral into

a point in the first integral with the change of variable r> = (r>/R0)
2r12. This substitution

maps the outside integral into the box,

Ψn+1(R
′) =

∫
|r12|<R0

G(R′,Rn; ∆τ)Ψn(Rn)dR1dR2dr12

+

∫
|r12|<R0

G(R′,R>; ∆τ)
(r>
r

)3
Ψn(R>)dR1dR2dr12, (3.28)

where R> is the “image” location outside the box implied by the value of r>. However,

we do not sample the wave function outside the box, so Ψ(R>) is not directly available.

Fortunately, because G(R′,R,∆τ) is evaluated for small ∆τ , the propagator range is small.

The short range implies that only when we are “near” (|r− r>| ⩽ 1 fm) the surface of the

box will these contributions become significant during a single time step. Thus a simple

linear extrapolation to compute Ψ(R>) will suffice,

Ψn(R>) ≈ (1 + ζc(R> −R) · n̂)Ψn(R), (3.29)

where ζc is the same boundary condition from the VMC wave function and n̂ is the outward

direction perpendicular to the box surface. The propagated wave function for scattering
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states is then

Ψn+1(R
′) =

∫
|r12|<R0

(
G(R′,Rn) +G(R′,R>)[1 + ζc(R> −Rn) · n̂]

(r>
r

)3)
Ψn(Rn)dRn.

(3.30)

From there, we carry out the GFMC algorithm as usual. This specific method has been

successfully applied to n-alpha scattering in Refs. [25, 31]
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Chapter 4

Determination of Overlaps and

Scattering Observables

Here I describe the direct and integral methods for computing spectroscopic overlaps and

scattering observables, including details for both VMC and GFMC wave functions.

4.1 Direct Method

Let us first examine the connection of particle-in-a-box wave functions to scattering phase

shifts. Applying Eqs. (2.9), (3.9) and (2.15) at the boundary of radius R0 (and omitting the

channel label c) one finds B/A = tan δ for single-channel scattering. It then follows from

Eqs. (3.9) and (2.9) that B/A is equal to

tan δ =
k ∂
∂ρ
Fl(η, ρ)− ζFl(η, ρ)

ζGl(η, ρ)− k ∂
∂ρ
Gl(η, ρ)

∣∣∣∣∣
ρ=kR0

. (4.1)

30



Here, we have the phase shift as an explicit function of ζ and the channel energy (which enters

through η and k), without the need to compute A or B if the energy is accurately computed.

Choosing a value of ζ, we calculate the corresponding energy, subtract the threshold energy

to obtain the channel energy, and compute the phase shift from Eq. (4.1). Repetition at

several ζ values maps out δ as a function of energy. When there are coupled channels, the

linear relationship among amplitudes is more complicated than a simple ratio, and one of

Eqs. (2.12), (2.13), or (2.14) has to be inverted. When computing a wave function for that

case, both the amplitudes (by setting βLS[n] parameters in Eq. (3.6)) and the ζc values are

inputs. Inversion of Eq. (2.12) to obtain K̂ requires two or more (depending on the number

of channels) linearly independent solutions constructed to have the same or nearly the same

energy.

The amplitudes described by the scattering matrices are effectively values of spectroscopic

overlap functions, computed by projection of a state onto the cluster-product function of

Eq. (2.8). A spectroscopic overlap onto a scattering channel is defined as

Rc(r) =
1

NV

⟨Ψc
1⊗2|

δ(r − rc)

r2c
|ΨV ⟩ , (4.2)

where

NV ≡
√
⟨ψJ1c

1c |ψJ1c
1c ⟩ ⟨ΨV |ΨV ⟩ (4.3)

normalizes the wave functions (cluster 2 being only a neutron spinor in the neutron scattering

cases examined in this work). In principle, the cluster product function is antisymmetrized

with respect to nucleon exchange between clusters, as in Eq. (2.8). However, the explicit

antisymmetry of |ΨV ⟩ has the result that an antisymmetrized |Ψc
1⊗2⟩ gives the same Rc(r)

as a single permutation, multiplied by the square root of the number of possible exchanges

(A exchanges for scattering of a nucleon from an (A-1)-body nucleus.); therefore, we use

a single permutation and replace the operator Ac by the appropriate multiplicative factor.

Finally, all of our wave functions are explicitly translation invariant, so no correction factor
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is needed to account for use of fixed-center basis states.

The spectroscopic factor is defined as the norm of the overlap,

Sc =

∫ ∞

0

|Rc(r)|2 r2dr. (4.4)

My definition of this norm is consistent with previous QMC works [41, 64] and similar

calculations [36] but differs from some [65, 66] by inclusion of Clebsch-Gordan coefficients into

the cluster product function. Although I do not present any results of spectroscopic factors

in this work, it is worth describing their calculation due to similarities in the calculation

between spectroscopic factors and surface amplitudes (A,B). In principle, the Ac and Bc

amplitudes could be read from our wave function specification using values of βc, ϕc(R0),

and ζc. Instead, to directly determine asymptotic amplitudes, I examine the overlap in each

channel and separate it into terms Fl and Gl at the surface of the box. As I show below,

overlap functions near the center of the box are also useful for interpretation and validation

of the integral method, particularly since the computational routines for one-nucleon removal

overlaps have a long history of previous use [41, 67].

Evaluation of the overlap integral in VMC is straightforward with the same techniques used

in energy expectation values. To compute spectroscopic overlaps (and spectroscopic factors)

using GFMC wave functions, we need to evaluate Eq. (3.23) with O = δ(r−rc)/r2c as in Ref.

[41]. Applying the general Eq. (3.23) to the specfic case of Eq. (4.2), we find the resulting

GFMC spectroscopic overlap,

Rc(r) ≈− 1

NV

⟨Ψc
1⊗2(τ = 0)| δ(r − rc)

r2c
|ΨV ⟩

+
1

NL

⟨Ψc
1⊗2(τ)|

δ(r − rc)

r2c
|ΨV ⟩

+
1

NR

⟨Ψc
1⊗2(τ = 0)| δ(r − rc)

r2c
|Ψ(τ)⟩ , (4.5)
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with the left norm

NL ≡
√
N ⟨ψJ1c

1c (τ)|ψJ1c
1c (τ = 0)⟩ , (4.6)

and the right norm

NR ≡
√

1

N
⟨ΨV |Ψ(τ)⟩ , (4.7)

where the self normalization factor

N ≡ ⟨ΨV |ΨV ⟩
⟨ψJ1c

1c (0)|ψJ1c
1c (0)⟩

. (4.8)

I have also introduced the GFMC cluster-product function

Ψc
1⊗2(τ) = Ac

[
ψJ1c
1c (τ)⊗

[
ψJ2c
2c ⊗ Ylc(r̂c)

]
jc

]
J
, (4.9)

which is nearly the same as Eq. (2.8) but with the GFMC-propagated “core” wave function,

ψJ1c
1c (τ); when τ = 0 they are equivalent.

These off-diagonal calculations are carried out in the VMC code using stored GFMC samples,

just as in off-diagonal calculations in Refs. [41, 61]. When the GFMC-evolved wave function

is the full A-body function on the right, the locations of the GFMC samples define sampling

for all A particles. When the GFMC-evolved function is the (A− 1)-body target or core on

the left, the GFMC samples only give locations for those A− 1 particles. A choice then has

to be made for how to sample locations of the projectile or valence particle. We must then

assign a probability distribution ρ(rc) for the cluster separation (rc) in this case. In principle,

any distribution will suffice. However, the Monte Carlo statistical variance depends on the

choice. As long as
∣∣ψJ1c

1c · ρ(rc)
∣∣2 is a reasonable approximation of the A-body wave function

sampling density, the variance of N will be acceptable. To preserve N , we require that∫
rc<R0

ρ2(rc)drc = 1. For bound states, either a Gaussian or a Woods-Saxon function works

well for ρ(rc) [41]. However, for scattering calculations, I have found that an exponential
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decay function,

ρ(rc) =
√
2e−aρrc , (4.10)

diminishes sampling variances in the outer regions of the 9 fm box by an appropriate amount

when aρ = 1 fm−1.

4.2 Integral Method

Alternatively, the surface amplitudes may be computed from integrals over the part of the

box interior where all of the nucleons interact. I start with the K-matrix formalism, defined

by the standing wave in Eq. (2.9). Application of Green’s theorem over a sphere of fixed

cluster separation rc, together with the Wronskian relation for the Coulomb functions at the

sphere’s surface, gives

2µkc
ℏ2

(
⟨Fc| Ĥ − E |Gc⟩ − ⟨Gc| Ĥ − E |Fc⟩

)
= 1, (4.11)

where H is the full many-body Hamiltonian and E is the total energy. The Dirac bracket

here denotes full contraction of the spin-isospin vector at every point and integration over

all independent nucleon coordinates in the center-of-mass frame. This expression is nonzero

because the Laplacian operator inside H is not Hermitian in a finite region (without further

specification of a boundary condition) [23, 40].

If the sphere of constant rc is located where the limit in Eq. (2.9) holds, we obtain from

Eq. (4.11)

Ac =
2µkc
ℏ2

(
⟨Ψ| Ĥ − E |Gc⟩ − ⟨Gc| Ĥ − E |Ψ⟩

)
(4.12)

and

Bc =
2µkc
ℏ2

(
⟨Fc| Ĥ − E |Ψ⟩ − ⟨Ψ| Ĥ − E |Fc⟩

)
. (4.13)
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Applying the condition that (Ĥ − E) |Ψ⟩ = 0 to the surface amplitudes of Eqs. (4.12) and

(4.13) gives

Ac =
2µkc
ℏ2

⟨Ψ| Ĥ − E |Gc⟩ (4.14)

and

Bc = −2µkc
ℏ2

⟨Ψ| Ĥ − E |Fc⟩ . (4.15)

The main difficulty in evaluating these expressions lies in Eq. (4.14), where the divergence

in Gl at rc = 0 gives rise to a delta function in the ∇2Gl term of the integrand. I resolve this

difficulty using the regularization strategy described in Refs. [4, 23, 24, 40]. The essential

property of Gl for application of Eqs. (4.11)-(4.15) is that it satisfies a Wronskian relation

with Fl outside the interaction region. Any function satisfying that relation at the rc = R0

box boundary would work just as well, so I replace Gc with a regularized function G̃c that

has the properties

G̃c = f c
regGc (4.16)

G̃c(rc → 0) = 0 (4.17)

G̃c(rc → R0) = Gc. (4.18)

One possible choice of the regularizer that satisfies these properties for all partial waves and

eliminates the delta function is

f c
reg(γ, r) = (1− e−γr)2l+1, (4.19)

where γ is a parameter to be fixed. I tried a few different regularizing functions, but this

one produced the best evidence of giving correct results when γ is chosen within a favorable

range (as shown below). This specific regularizer has been used in hyperspherical harmonic

calculations in recent years [23, 24, 40, 68]. Here, I explore its application in the QMC

context.
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Starting from Eq. (4.11) and replacing Gl with G̃l we find similar results as before, with

initially

2µkc
ℏ2

(⟨Fc| Ĥ − E |G̃c⟩ − ⟨G̃c| Ĥ − E |Fc⟩) = 1. (4.20)

Picking up from there, Eq. (4.15) for Bc remains the same. However, Ac of Eq.(4.14) becomes

Ac =
2µkc
ℏ2

⟨Ψ| Ĥ − E |G̃c⟩ . (4.21)

Further simplification follows from a separation of the Hamiltonian into three parts,H=Hrel+

H1 + H2, suggested by partitioning the nucleons of G̃l into clusters ψc1 and ψc2. Parts H1

and H2 contain only the relative coordinates and spinors inside ψc1 and ψc2, respectively.

The third part Hrel contains the kinetic energy of cluster relative motion and all terms of the

nucleon-nucleon potential that act between nucleons that are not in the same cluster [38].

I denote this sum of different cluster potential terms in channel c as V c
rel (which depends

on how nucleons are partitioned). I similarly divide the energy into E = Ec + E1 + E2,

where Ec is energy relative to the threshold of channel c, while (H1 − E1)ψc1 = 0 and

(H2 − E2)ψc2 = 0. For exact solutions, the terms H1 and H2 then cancel out of Eqs. (4.15)

and (4.21). Furthermore, the point Coulomb potential V c
C ≡ Z1Z2e

2/rc can be added and

subtracted from H to take advantage of the appearance of that term in Eq. (2.5) defining

the Coulomb functions.

After that work and after applying the Laplacian operator in Hrel to the function f c
reg(r)

inside G̃c = f c
regGc, the integrals of Eqs. (4.15) and (4.21) become

Bc = −2µ

ℏ2

∫ ∞

0

Ψ†(V̂ c
rel − V c

C )Fc d
3AR (4.22)
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and

Ac =

∫ ∞

0

Ψ†
{
2µ

ℏ2
(V̂ c

rel − V c
C )G̃c − 2

df c
reg

drc

∂Glc

∂ρc

Ψc
1⊗2

rc
−
d2f c

reg

dr2c
Gc

}
d3AR. (4.23)

This is a reformulation of the same equations in Ref. [20]. Integration in these expressions

takes place in the coordinates of all nucleons, Ri with i = 1, ..., A, in the center of mass

frame. Once these coordinates are given, the value of rc depends on the partition of nucleons

into ψc1 and ψc2, so that the cluster antisymmetrizer Ac in Ψ† everything to the right of Ψ in

the integrands. The integral relations to calculate the surface amplitudes Ac and Bc are then

readily applied using VMC computed wave functions Ψ, ψ1c, and ψ2c. I evaluate integrals

over the entire interior of the box at rc < 9 fm using Monte Carlo importance sampling with

weight function Ψ†Ψ; the short range of V̂ c
rel − V c

C ensures that the integrand is zero in the

outer parts of the box.

It is implicit in the derivation of the integral relations that Ψ, ψ1c,, and ψ2c are exact

eigenfunctions of their respective Hamiltonians. Our ΨV and ψ1c, on the other hand, are

variational approximations to these eigenfunctions. Previous experience in using integral

relations with VMC wave functions [37, 38] supports their use despite this apparent short-

coming, because it produces results that compare well with experiment. Much of the utility

of the method, in fact, arises from the circumstance that the interior part of ΨV , where

the VMC ansatz is the most successful, is the only part that contributes to the integrals. I

tried to estimate the size of the error due to deviations from (H1 − E1)ψ1c = 0, but I found

that the Monte Carlo sampling variances on those deviation terms swamped their actual size.

Further progress on that question will presumably require modification of the sampling; past

experience has essentially always been that proposed modifications are even worse than the

standard sampling (e.g. Ref. [55]), so I chose not to pursue the question further at this time.

As mentioned in Chapter 1, Eqs. (4.23) and (4.22) can be viewed as r → ∞ properties of

the overlap of the wave function on channel c. A generalized version of Eq. (2.9) applicable
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at all radii is

Rc(r) =
1

rNV

{
Āc(r)Flc(ηc, kcr) + B̄c(r)Glc(ηc, kcr)

}
, (4.24)

with

Āc(r) ≡
2µ

ℏ2

∫
rc<r

Ψ†(V̂ c
rel − V c

C )Gc d
3AR (4.25)

B̄c(r) ≡ −2µ

ℏ2

∫
rc<r

Ψ†(V̂ c
rel − V c

C )Fc d
3AR, (4.26)

so that Āc(r → ∞) = Ac and B̄c(r → ∞) = Bc (cf. Eq. (34) of Ref. [38]). Since Eq. (4.25)

contains the same singularity that motivates the regularizer, the same problem has to be

avoided here. I do that by computing the integral over all space using the regularizer

(Eq. (4.23)) and then subtracting the portion of the unregularized integral located at larger

radius,

Āc(r) = Ac −
2µ

ℏ2

∫
rc>r

Ψ†(V̂ c
rel − V c

C )Gc d
3AR. (4.27)

Eqs. (4.25) and (4.26) or their equivalents have been used in the literature to calculate cluster

overlaps for Hartree-Fock and VMC wave functions [33, 38, 69]. In Ref. [38] it was found that

for VMC wave functions Eq. (4.24) produces overlap functions that agree well with Eq. (4.2)

at rc ⩽ 5 fm, but that diverge from the direct calculation at large radius by going over to the

correct asymptotic shapes for the specified Ec. This result can be interpreted as providing

an extension of the accurate short-range part of the VMC ansatz into parts of the wave

function that are more difficult to compute accurately with VMC, or at least within a given

channel. Recall that the integrals in Eqs. (4.14), (4.15), (4.25), and (4.26) are short-ranged

because the nucleon-nucleon pair and triplet interactions inside V c
rel are short-ranged, and

(for the cases of charged particles) V c
C removes the monopole Coulomb interaction at large

radius. For the present calculations, agreement between Eqs. (4.2) and (4.24) at small r is

an important tool for code validation and interpretation of results.
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To compute Eqs. (4.26), (4.23),and (4.24) using GFMC wave functions, I can use nearly

the same infrastructure in the VMC/GFMC code that was used for overlaps. However,

complications arise because the integral method requires the evaluation of V̂rel. For the

exact expressions in Eqs. (4.15) and (4.21), this does not pose an obvious problem. In

GFMC, integral relations are a special case of off-diagonal calculations, where both right-

and left-mixed estimates are required. In the VMC code where this operation is actually

carried out, the A-body wave function is always on the right and the potential was previously

only set up to operate toward the right. This leaves us unable to carry out mixed estimates

of the form shown in Eq. (4.5) where we only have discrete samples on the right and thus

cannot evaluate derivative operators. To solve this problem, I built the routines necessary to

evaluate the application of the potential operators on the Fc, Gc, and G̃c, which are always

constructed as “bra” objects on the left sides of Dirac brackets — I had to modify the

potential routines so that they can act “toward the left” rather than “toward the right” in

matrix element brackets. We can then compute the propagated estimates for Eq. (4.26) for

the left,

B̄c,L(r; τ) ≡ −2µ

ℏ2

∫
rc<r

Ψ†
V (V̂

c
rel − V c

C )Fc(τ) d
3AR, (4.28)

and the right,

B̄c,R(r; τ) ≡ −2µ

ℏ2

∫
rc<r

[Ψ(τ)]†(V̂ c
rel − V c

C )Fc(τ = 0) d3AR. (4.29)

analogously to the lower two lines of Eq. (4.5). Here, I have introduced the propagated

regular channel-cluster function

Fc(τ) = Ψc
1⊗2(τ)

Flc(ηc, kcrc)

kcrc
(4.30)

in which the target nucleus has been GFMC propagated. To calculate the GFMC mixed
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estimate we apply Eq. 3.23,

B̄c(r; τ) ≈
B̄c,L(r; τ)

NL

+
B̄c,R(r; τ)

NR

− B̄c,V (r)

NV

. (4.31)

The VMC quantities in Eq. (4.31) are denoted with a subscript V and they are analogous to

expressions given earlier in Eqs. (4.2) and (4.3). Likewise we can calculate the propagated

form of Eq. (4.27), Āc(r; τ), which is found from the expression in Eq. (4.31) that gives

B̄c(r; τ), mutatis mutandem. Additionally, we compute the GFMC surface amplitudes Ac(τ)

and Bc(τ) by evaluating Āc(r; τ) and B̄c(r; τ) at the surface.

We can then assemble B̄c(r; τ) and Āc(r; τ) to evaluate the GFMC estimate for the integral

method spectroscopic overlaps,

Rc(r; τ) ≈
1

r

{
Āc(r; τ)Flc(ηc, kcr) + B̄c(r; τ)Glc(ηc, kcr)

}
. (4.32)

As before in the VMC case the calculations of Eq. (4.5) and Eq. (4.32) are equivalent for

accurately-computed wave functions, and in turn are a useful diagnostic tool. I have also

implemented a test to evaluate pure-VMC integral relations when the potential acts on the

cluster-product function instead of on the A-body function, even though this is unnecessary

in the pure VMC calculation. The differences between the two methods are within Monte

Carlo variance, so no significant problems are visible.

The procedure for computing QMC scattering observables via the integral method begins

by computing VMC wave functions that minimize Eq. (3.8) separately for a scattering state

and for the individual colliding nuclei. The optimized wave functions are then propagated

to their near exact ground states using GFMC routines. This establishes both the VMC and

GFMC channel energies Ec corresponding to the imposed boundary conditions. That Ec is

used with the corresponding wave functions to evaluate the left, right and VMC estimates of

the surface amplitudes (Ac and Bc). Scattering observables are computed from the resulting
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amplitudes. To obtain results at multiple energies, one repeats this procedure for many

different boundary conditions that yield different Ec.
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Chapter 5

Integral Method Verification and

Regularizer Choice

In this section I verify the integral method by comparison of overlap functions between

integral and direct calculations in the n + 3H system. I also introduce the fixed interior

wave approximation and describe its advantages. Lastly, I outline how I choose my specific

regularizer.

5.1 Verification

Comparing VMC overlap functions computed using Eq.(4.2) against those computed from

Eq.(4.24) tests my implementation of the integral relations and identifies useful values of

the regularization parameter γ. I carry out this test by examining the states in the n+ 3H

system computed from the AV18 potential alone, with the boundary conditions ζc chosen

to give optimized variational energies EV (c.m.) in the neighborhood of 3.0 MeV. At this

energy, there is a broad resonant feature in the p-wave cross section.
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Figure 5.1: Overlap functions computed from a representative 3P0 wave function with the
AV18 interaction. These have been computed using the direct method of Eq. (4.2) (short-
dashed, with “shot noise”), the integral method of Eq. (4.24) (dash-dotted), and the fixed
interior wave (FIW) approximation (solid, energies distinguished by color). All curves except
the dotted are computed from the same wave function with VMC energy corresponding to
En = 4.09 MeV; the dotted curve shows the integral-method overlap (analogous to the dot-
dashed curve) for a separate wave function with VMC energy corresponding to En = 7.34
MeV (rescaled to account for differences in normalization that arise from how the wave
function fills the box). It is nearly identical to the FIW result at 7.33 MeV using the 4.09
MeV wave function, shown as a solid black line for visibility.

The direct overlap calculation of Eq. (4.2)) is carried out in the VMC code as a single Monte

Carlo integration over all particle coordinates, in which the radial overlap integral at each

rtn is calculated from the accumulated samples in a finite-thickness (0.1 fm) bin [41]; this

accumulation in shells is an implementation of the delta function in Eq. (4.2). In the figures,

each neutron-triton separation, rtn is identified as the midpoint of its shell. The integral-

relation overlap of Eq. (4.24) is evaluated in a similar procedure carried out at the same time.

The value of Ac is obtained from the regularized integral over all space in Eq. (4.23), and

contributions to the integrals in Eqs. (4.27) and (4.26) at any rtn consist of all Monte Carlo

samples at smaller and larger radius, respectively. The optimized energy EV is initially used

to specify kc and ηc in these integral calculations.
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In Fig. 5.1 I focus on results of these calculations for a representative state in the 3P0

scattering channel. After choosing the ζ boundary condition for this calculation, the center-

of-mass energy Etn was computed by VMC to be 3.07 MeV (En = 4.09 MeV). The dashed

curve shows the direct overlap (Eq. (4.2)), while the dash-dotted curve shows the integral-

method overlap (Eq. (4.24)). Each of these curves is shown multiplied by rtn to remove

a trivial source of radial dependence and give functions similar to solutions of a radial

Schrödinger equation (e.g., Eq. (2.5)). Since the direct overlap at each radius is computed

only from Monte Carlo samples that fall into a thin radial bin, the dashed curve displays

“shot noise” that is visible as small fluctuations with radius. On the other hand, the integral

method curve is smooth because at each rtn it contains contributions from samples at all rtn;

There are many more samples involved and also many shared samples contributing to any

two neighboring points on the curve.

5.2 Fixed Interior Wave Approximation

The dependence on Ec in Fc and Gc leads to an approximation procedure that avoids repeated

energy minimizations. This approach builds on previous experience imposing experimental

separation energies (or resonance energies) on the integral relations in Refs. [37, 38] even

when they differed from computed energies. If there are no sharp resonances, the small-rc

part of a scattering wave function changes very little over an energy range of several MeV

above threshold; this is a consequence of Ec being small relative to the potential strength

and (at least in some cases) of antisymmetry constraints on the wave function. Then I

expect that nearly all the evolution of the Ac and Bc amplitudes with energy comes from

the dependence of Fl and Gl on the channel energy Ec inside Eqs. (4.22) and (4.23).

The colored curves in Fig. 5.1 demonstrate application of the fixed interior wave (FIW)

approximation to overlap functions. For each of those curves, I take the single optimized
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Figure 5.2: Overlap functions computed with AV18 for various partial waves of neutron-
triton scattering using the same methods and symbols as Fig. 5.1. Qualitative matching in
the interior range is present for each channel between direct and integral overlaps (dotted).

VMC wave function that produced the short-dashed and dot-dashed curves, but I use a

different input energy for the integral relations. From the single variational wave function,

this method generates approximate overlap functions over the entire low-energy spectrum

from threshold to En = 10 MeV. (No attempt has been made to rescale the wave function to

unit norm inside the box for the revised probability densities implied by the new Rc.) Each

of these curves is consistent with the directly computed overlap at r < 5 fm. (See Sec. 5.3

for the dependence of this statement on the choice of γ.) The dotted curve shows the overlap

using the integral method (not FIW) for the higher energy variational wave function that

gave En = 7.34 MeV; it is nearly identical to the solid black curve, which was generated

from the 4.09 MeV wave function using 7.33 MeV in the FIW approximation. These results

are not unique to the 3P0 channel; Fig. 5.2 shows similar results for other partial waves.

The many curves (often visible as shaded regions rather than individual curves) in Fig. 5.1

illustrate a further point concerning the use of fixed interior waves: It is a very efficient

use of both computer and human resources. Computed directly from the definition, each

of the 60 solid (shaded) lines in Fig. 5.1 would require a separate wave function with a

different boundary condition and separate optimization. Instead, they have been computed
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from the integral relations for Rc from a single wave function. By skipping the separate wave

function optimization followed by Monte Carlo walk generation (which involves recomputing

wave functions) at every energy, the amount of work has been greatly reduced, especially for

coupled channels.

In my subsequent neutron-alpha phase shift calculations described in Chapter 6.2, I improved

the FIW approximation compared with my neutron-triton calculations. In neutron-triton,

I regarded FIW as something to be applied to one wave function at a time, effectively

extrapolating outward from a single phase shift point. In the neutron-alpha calculations,

I have developed it into an interpolation method to be used in the energy region between

two directly-computed wave functions. The fixed interior wave interpolation (FIWI) is as

follows: given two QMC (two VMC or two GFMC) wave functions at the ends of an energy

interval, FIW amplitudes are computed from each wave function using the energy at the

midpoint of the interval. I then average the resulting K-matrix (tan δ) from each calculation

so that Kmid=(K1(Emid)+K2(Emid))/2, the midpoint is found to lie on the expected trend.

The main justification for this method is that it works slightly better in the neutron-alpha

case than the original FIW approximation.

5.3 Regularizer Choice

Agreement between the overlap-computation methods at r < 5 fm is important because

this is the region where the VMC wave function is most reliable. In that region, iterated

pair correlations and antisymmetrization provide a structure that is not dominated by one

or two elements of the variational ansatz, and it is where most of the power of the VMC

method arises. The r < 5 fm region also typically contains the largest number of Monte

Carlo samples. We therefore expect the directly computed overlap to be rather accurate

there. In this region the integral method should be unable to improve significantly on the
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directly computed overlap, and we expect the two methods to agree there if the integral

method has been successfully implemented. In Figs. 5.1 and 5.2 the integral (dash-dotted

black curve) and direct (short-dashed) overlaps are, in fact, nearly identical between 0 fm

and 5 fm.

This match between the methods provides a vital test of the regularizer for Gl, which in

turn affects both the accuracy and variation of scattering calculations [24]. In carrying out

the present work, I tried several possible regularizing functions, but I found Eq. (4.19) to

be by far the most successful in reproducing overlap functions. All the results that I show

are computed with that regularizer, and it is also the one used in recent calculations with

the hyperspherical harmonics method [24] and in solving the 5-body Faddeev-Yakubovsky

equations [9]. The results shown are all computed with a specific value of the regularization

parameter γ, and now I describe how it was chosen.

If γ is chosen too small, the regularizer has effects at the box surface that violate assumptions

behind Eqs. (4.23) and (4.27) (essentially, Eq.(4.20)). If it is chosen too large, the regularizer

does not adequately remove the harmful effects of the singularity in Eq. (4.14). In Fig. 5.3

I vary γ over the range 0.01 to 2.0 fm−1 for overlap calculations of a single state 3P0, and

I also show the overlap from the direct method. Color indicates the value of γ, with the

color scale chosen to emphasize values where the methods agree. I quantify the agreement

between the two methods with a sum of square errors (SSE) statistic in the r < 5 fm region.

The SSE is given by

SSEc(γ) ≡
nr∑
i=1

[
riR

D
c (ri)− riR

I
c(γ, ri)

]2
, (5.1)

where RD is the directly computed overlap of Eq. 4.2, RI is the integral-method overlap of

Eq. 4.24, and the sum extends over the 0.1-fm-thick bins that define neutron-triton sepa-

rations in the direct calculation. I continue to work with rRc rather than Rc, because it

reduces the weight in Eq. (5.1) of poorly-sampled low-volume shells near r = 0 and reduces

the severity of divergence of Gl near the origin in the Eq. (4.27) integrand.
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Figure 5.3: The effect of the regularization parameter γ on the overlap function rtnRc(rtn)
for a 3P0 state in neutron-triton scattering at En = 4.09 MeV with AV18. The dashed curve
shows the result of calculation from the definition, while the solid curves are the results of
integral-method calculations with varying γ. Values of γ run from 0.01 to 2.0 fm−1 and
are indicated by color. Values between roughly 0.4 and 1.4 fm−1 produce close agreement
between methods in the region where VMC is most accurate, and I choose 0.625 fm−1 for
further AV18 calculations.

In principle, I could choose a different gamma for each channel, but the SSE evaluation in

Fig. 5.4 reveals a single range that works well for many channels in neutron-triton scattering,

and I see little value in further fine-tuning for individual channels. For AV18 I find that

γ = 0.625 fm−1 minimizes the SSE for all neutron-triton and neutron-alpha cases examined

and lies in a “stationary” range of weak γ dependence. Repeating the analysis for the Norfolk

NV2+3-Ia interaction in n + 3H gives a slightly smaller best γ, with the stationary range

centered on 0.52 fm−1. At 4 MeV, I find that varying γ through the stationary SSE range

in VMC only changes phase shifts by ⩽ 2 degrees relative to the optimal γ for both of these

potentials and systems.
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Figure 5.4: Comparison between direct and integral-method overlap calculations for four
states in different neutron-triton channels near En = 4 MeV at varying γ. Agreement
is quantified by the sum of square errors at r < 5 fm defined in Eq. (5.1), SSE(γ), applied
separately to each channel and to a sum over all four channels. Small SSE indicates agreement
between methods when γ is small enough to regularize Gl effectively at the origin but large
enough not to affect the box surface. This occurs in the flat region between 0.5 and 1.0 fm−1.

49



Chapter 6

Results

I now present the results of scattering calculations using the direct method and the integral

method to determine overlaps, phase shifts, and cross sections. For neutron-triton scattering,

these results are computed entirely from VMC, and some pairs of coupled angular momentum

channels are treated. Neutron-alpha scattering was examined with both VMC and GFMC

calculations. Since it is customary in the recent literature on A = 4 systems to quote

laboratory energy rather than center-of-mass energy, I present most n+ 3H results in terms

of the neutron energy when the target is stationary,

En =
4

3
Ec.m.. (6.1)

This expression neglects the small correction arising from the binding energy and from the

difference of the proton from the neutron mass.
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6.1 n + 3H

6.1.1 Single-channel cases

I begin by showing the single-channel, Jπ = 0+ and 0−, phase shifts for neutron-triton

scattering computed from the AV18 potential in Fig. 6.1 and from the newer Norfolk-Ia

interactions in Fig. 6.2. For comparison with my calculations, I show results for AV18 using

the hyperspherical harmonics method [3] as black squares. These are well-benchmarked

against other methods and can be regarded as essentially exact; any accurate calculation from

AV18 should match them closely. I also show as a solid curve empirically-derived phase shifts

that were computed by fitting the much more extensive p+ 3He data to a phenomenological

R-matrix model and applying isospin symmetry [70]. (The isospin-rotation procedure mainly

involves replacing Coulomb functions with spherical Bessel functions and shifting the level

energies by a phenomenological difference of Coulomb interaction energies between the two

systems.)

The direct method of computing phase shifts from VMC (circles in Fig. 6.1) reproduces

qualitative features of the phase shifts for both of these partial waves. However, the phase

shift at fixed energy comes out too low by typically 10◦ for s-wave and 5◦ for p-wave states.

The variational principle implies that the computed energy is higher than the true energy for

any boundary condition ζ, so Eq. (4.1) in general gives curves that can be viewed as being

either too low in phase shift or too high in energy [30]. Failure to match the exact result

reflects limitations of the variational ansatz (or else failure to optimize it well). Until this

work, the main option to improve on the direct calculation from a VMC wave function has

been to use the VMC wave function as the starting point for a GFMC calculation [25, 31];

GFMC then finds the correct energy for the given boundary condition more accurately before

computation of the phase shift.
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Figure 6.1: Single-channel phase shifts (in degrees) for n + 3H with the AV18 potential,
computed from VMC using the direct method (blue circles), the integral method (cyan
diamonds), and fixed interior waves (red band). The width of the band indicates the Monte
Carlo sampling error. For comparison I show an empirical R-matrix model (solid black
curve labeled “LANL R-Matrix,” explained in the text) [70] and essentially exact results
from the hyperspherical harmonic method [3] with the same potential (black squares). The
plus symbol indicates the VMC wave function chosen to provide the fixed interior wave for
computations of the red band.
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Figure 6.2: Single-channel phase shifts (in degrees) for n + 3H in the FIW approximation
for multiple interactions, with and without three-nucleon terms. The R-matrix curve and
AV18 benchmark calculation are as in Figs. 6.1. The Norfolk Ia interaction both with and
without the Ia∗ three-body terms shows somewhat larger attraction in the p-waves than
both the AV18-based calculations (with and without Urbana IX three-body terms) and the
empirically-derived phase shifts. Widths of the bands show Monte Carlo sampling errors.
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The diamond shapes in Fig. 6.1 show results of applying the integral relations in Eqs. (4.22)

and (4.23) to VMC wave functions and using the single-channel relation tan δc = Bc/Ac.

The energy assumed in the integral relations is equal to the variational energy of each state.

These results are in much closer alignment with the exact results, but with some scatter away

from their trend for individual VMC points. The scatter presumably reflects the quality of

each wave function optimization. The energy used in computing both the circles and the

diamonds is measured relative to a neutron and triton at rest infinitely far apart. For this

I take the difference of computed VMC energies between the scattering state and my best

VMC triton wave function (rather than, e.g., the exact triton energy for AV18).

Finally, in each partial wave I apply the FIW approximation by choosing one VMC solution

(marked in the graphs with a cross) and computing integral-relation phase shifts at all

energies from that single wave function. The result is shown as the red curve with shaded

band corresponding to Monte Carlo statistical errors on the integrals. By its construction

the red curve passes through the point with the cross on it, which was chosen for its location

in the middle of the energy range of interest. Table 6.1 shows that the results are within

2.5◦ of exact phase shifts for AV18. Inspection of 3P0 phase shifts in Fig. 6.1 suggests that

better results might have been obtained by choosing the wave function for FIW treatment

based on how well it matches exact results; even without exact results for comparison, a

wave function with outlying low phase shifts relative to the trend of other VMC points could

be avoided as possibly poorly-optimized. Nonetheless, deviation of the p-wave phase shifts

from the trend of both the R-matrix model and the benchmark indicates that the FIW loses

accuracy when it proceeds too far above the energy of the wave function used; this appears

to happen around 6 MeV in the present case.

These results establish the integral method and its variant with fixed interior waves as useful

ways to obtain approximate phase shifts from VMC wave functions. The combination of

integral relations with VMC wave functions evidently does not quite achieve the precision

54



available with other computational frameworks in the n + 3H system. However, it greatly

improves both the quality and the efficiency of possible scattering calculations using VMC,

which might be more readily applied to larger systems than the other solution methods.

6.1.2 Coupled channels

Proceeding to other neutron-triton partial waves in Fig. 6.3, I show only results with fixed

interior waves, always generated from one VMC wave function per channel near 4 MeV.

The remaining partial waves relevant at low energy come in three pairs of coupled channels,

though the channel coupling is extremely weak in the 1+ and 2− states (where it arises from

the tensor force); the coupling is somewhat stronger between the two spin combinations in

the p-wave states with Jπ = 1−. Phase shifts and the largest mixing parameter from Fig. 6.3

are given in Table 6.1 at the energies of published benchmark calculations [3].

Considering only AV18 for the moment, I find good agreement with the benchmark for all

of the phase shifts except in the 1P1 channel, where the curve is qualitatively different from

both the benchmark and the empirically-derived curve. I obtain very similar results when

I carry out the calculation with other potentials, suggesting some systematic problem with

my calculations in this specific channel. After extensive checking, I have been unable to find

a coding error, and I suggest tentatively that it may be a shortcoming of the variational

ansatz specific to this configuration; specifically it could be related to the failure of linear

independence between the wave function pair involved. It will be informative in the near

future to see if the problem persists in GFMC calculations that use the VMC solutions here

as starting points.

The 1+ mixing parameter is very small in both my AV18 calculation and the hyperspherical

harmonics calculation, smaller than 2.5◦. In that sense there is good agreement, though the

VMC results are about half the size of the hyperspherical result. For 1− states the VMC
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Figure 6.3: Phase shifts and mixing parameters (in degrees) for n+ 3H in the FIW approx-
imation with the same interactions as Fig. 6.2. The R-matrix curve and AV18 benchmark
calculation are as in Figs. 6.1 and 6.2. The AV18 phase shifts are within 2.5◦ of the bench-
mark, except for an apparent difficulty shared by calculations with all potentials in the 1P1

channel. Widths of the bands show Monte Carlo sampling errors.
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Table 6.1: n + 3H phase shifts and mixing parameters for S- and P- waves computed using
the FIW approximation for various interaction models. The hyperspherical harmonics (HH)
results are from Ref. [3].

1S0
3P0

3S1
3P2

1P1
3P1 ϵ1−

1.0 MeV

HH AV18 −38.44 4.26 −33.57 8.82 5.87 9.44 9.19

AV18 −36.3(5) 2.9(1) −32.1(3) 7.0(3) 2.8(2) 6.8(3) 13.7(19)

AV18+UIX −36.2(8) 2.8(1) −31.1(2) 7.1(4) 2.3(2) 6.5(3) 11.8(17)

NV2-Ia −36.40(9) 4.34(5) −31.71(6) 10.6(1) 3.24(4) 10.4(1) 7.6(4)

NV2+3-Ia∗ −35.12(9) 4.57(6) −0.04(1) 12.2(2) 3.08(5) 13.7(2) 7.3(5)

2.0 MeV

HH AV18 −52.41 10.82 −46.04 23.21 13.00 23.39 9.19

AV18 −50.3(7) 8.3(3) −44.7(4) 21.3(10) 7.95(51) 20.0(8) 13.8(20)

AV18+UIX −50.3(11) 8.2(3) −43.3(3) 21.9(12) 6.4(7) 19.0(8) 11.9(18)

NV2-Ia −50.5(1) 12.1(1) −43.92(8) 30.8(3) 8.86(11) 28.9(3) 7.6(4)

NV2+3-Ia∗ −48.7(1) 12.8(2) −0.20(1) 38.1(5) 8.35(12) 33.3(5) 7.2(5)

3.5 MeV

HH AV18 −66.14 20.61 −58.53 42.22 20.68 39.63 9.48

AV18 −65.3(9) 18.1(7) −58.3(5) 43.6(17) 16.9(9) 39.6(13) 13.9(17)

AV18+UIX −65.4(14) 18.1(7) −56.5(5) 44.8(19) 13.7(12) 38.0(14) 12.2(16)

NV2-Ia −65.8(2) 24.1(3) −57.3(1) 52.1(3) 17.5(2) 48.1(4) 7.6(4)

NV2+3-Ia∗ −63.7(2) 25.2(3) −55.0(1) 58.6(4) 16.5(2) 52.3(5) 7.2(4)

6.0 MeV

HH AV18 −81.05 32.61 −72.40 57.94 26.55 51.27 10.57

AV18 −83.2(11) 32.3(11) −75.2(7) 60.1(13) 29.0(12) 54.4(11) 14.4(13)

AV18+UIX −83.7(17) 32.4(11) −73.1(6) 61.3(15) 24.3(17) 53.0(12) 12.7(11)

NV2-Ia −85.1(2) 37.5(3) −74.5(2) 62.1(2) 27.9(2) 57.3(3) 7.8(3)

NV2+3-Ia∗ −82.9(3) 39.1(3) −71.4(2) 66.0(3) 26.5(4) 60.2(3) 7.3(3)

57



mixing parameter comes out somewhat larger (roughly 14◦ instead of 10◦ over the whole

energy range) but they are of similar magnitude, and one of channels here is the 1P1 channel

where something has apparently gone wrong in my VMC calculations as discussed above.

6.1.3 Three-nucleon and chiral potentials

In addition to the AV18 potential alone, I also carried out calculations that combine the

AV18 two-body potential with the Urbana IX (UIX) three-nucleon interaction [26, 58], and

that use the Norfolk family of local chiral potentials [71, 72]. Results for AV18+UIX and for

the NV2-Ia and NV2+3-Ia∗ potentials are shown alongside the AV18-only results in Figs. 6.2

and 6.3 and in Table 6.1. These two Norfolk potentials differ in their inclusion or not of

three-nucleon terms and in what data were used in fitting them; NV2-Ia consists only of

two-body terms, while NV2+3-Ia∗ includes a three-body interaction. It is evident from the

phase shift graphs that while results in other channels are very similar between potentials,

the Norfolk interactions provide somewhat larger attraction in the p-wave channels than

appears to be supported by the isospin-symmetry-based R-matrix curve. No strong quali-

tative dependence on three-body terms is evident in the cases shown, though there is some

difference. Qualitative agreement of all calculations in the s-wave channels is not surprising,

since s-wave scattering in this and many light systems has the character of scattering from

a hard sphere, due to antisymmetry constraints on the wave function [25, 73].

I show total cross sections for these interactions and for two others in Fig. 6.4. In the left

panel, I show results for AV18 alone and for AV18+UIX; I also show results for AV18 with

the Urbana X three-nucleon interaction, which has a very similar structure to Urbana IX

but has been tuned to produce binding energies closer to those of the more computationally

expensive Illinois-7 interaction [74]. Although AV18+UIX produces very similar results to

AV18 alone here, it is evident that a different choice of three-nucleon interaction could have
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Figure 6.4: n+ 3H total cross section (in barns) as a function of neutron energy for various
interactions. The left panel shows results for AV18 with and without the Urbana IX or
Urbana X three-body terms. The right panel shows the Norfolk Ia potential with and without
the Ia or Ia∗ three-body terms; error bars show Monte Carlo statistical uncertainties. Other
symbols are as in Fig. 6.1 except that the LANL total cross section is from Ref. [75]. In
general, the Norfolk Ia interactions give somewhat too-pronounced resonance structures in
p-waves, while s-wave scattering correlates mainly with triton binding energy regardless of
potential.

a noticeable effect on the p-wave peak around 3 MeV. The right panel shows total cross

sections for NV2+3-Ia∗ and for NV2+3-Ia, which have three-body terms tuned to match

differing input data. Here the choice of three-body interaction also has a significant effect on

the resonance structure in the p-waves. In general, AV18 and AV18+UIX underpredict the

strength and width of the resonance feature while all of the Norfolk interactions overpredict

them.

6.1.4 Zero-Energy Limit

I summarize my s-wave calculations for a large collection of potentials by presenting total

cross sections σt for thermal neutrons and coherent scattering lengths ac in Table 6.2. These

are computed from the singlet and triplet s-wave phase shifts via Eqs. (2.21) and (2.22),

applying integral relations with Ecm = 0.025 eV to the usual fixed interior wave in each

channel with variational energy En ≃ 4 MeV. I found no significant evolution of σt(E) below
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10 eV. As indicated in Table 6.2, the total cross section has been measured to below 50 keV

and extrapolated to thermal energies yielding a result of σt = 1.70± 0.03 b [46]. The two

most recent measurements of the experimental coherent scattering length [76, 77] were carried

out by the same group, with a more advanced setup for the second measurement. A third

empirically-derived coherent scattering length comes from essentially the same Coulomb-

corrected R-matrix calculation shown in my graphs [70].

Table 6.2: n+ 3H Thermal-neutron cross section σt (in barns), coherent scattering length ac
(in fm), and 3H binding energy (in MeV) computed in VMC with various interactions. The
VMC phase shifts are computed in FIW approximation at Ecm = 0.025 eV using wave func-
tions of variational energy En ≈ 4 MeV. For comparison I show values from the essentially
exact hyperspherical harmonic (HH) method for AV18 and AV18+UIX, for the Coulomb-
corrected R-matrix, and from experiment.

Interaction σt ac B3

AV18 1.632(12) 3.598(27) 7.484(2)

AV18+UIX 1.558(13) 3.513(29) 8.277(2)

AV18+UX 1.543(15) 3.496(32) 8.254(6)

NV2-Ia 1.648(3) 3.615(6) 7.602(9)

NV2-Ib 1.656(3) 3.622(7) 7.339(9)

NV2-IIa 1.614(4) 3.579(9) 7.715(5)

NV2-IIb 1.734(68) 3.71(15) 7.646(14)

NV2+3-Ia 1.579(5) 3.535(10) 8.179(9)

NV2+3-Ib 1.558(4) 3.515(8) 8.170(15)

NV2+3-IIa 1.539(3) 3.494(6) 8.193(10)

NV2+3-IIb 1.566(8) 3.522(18) 8.236(14)

NV2+3-Ia∗ 1.536(3) 3.490(7) 8.205(8)

NV2+3-Ib∗ 1.580(5) 3.538(11) 8.161(14)

NV2+3-IIa∗ 1.544(5) 3.498(10) 8.218(17)

NV2+3-IIb∗ 1.557(5) 3.513(10) 8.212(22)

HH [24, 68]

AV18 1.85 3.83 7.624

AV18+UIX 1.73 3.71 8.479

R-matrix [70] - 3.607(17) -

EXPT. 1.70(3) [46] 3.82(7) [76] 8.475 [78]

3.59(2) [77]
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Figure 6.5: The n + 3H thermal neutron total cross section (in barns) coherent scattering
length (in fm) as a function of VMC-computed triton binding energy (see text) (B3 in MeV)
for various interactions. My VMC calculations of this line produce the same slope as the
near-exact HH calculations (black squares) for two interactions.

Overall, the results in Table 6.2 depend only slightly on potential. It is known that the triton

binding energy B3 in a given model correlates with the s-wave phase shifts, analogously to

the “Phillips line” that correlates B3 with the neutron-deuteron scattering length when

potentials are varied [79]. The VMC results in Table 6.2 support a reliable negative-slope

correlation between B3 and ac, with B3 taken not as the exact value for the potential but

as my best-optimized variational result. The hyperspherical harmonics results for AV18

with and without Urbana IX suggest a correlation that has the same slope I find but is

offset by about 0.2 fm in scattering length, presumably reflecting the same difference in

precision between VMC/FIW and exact results seen above. Considering the offset from the

hyperspherical harmonics calculations, it would appear that in general values for a given

potential can be estimated by adding about 0.2 fm to ac or 0.2 b to σt computed from

VMC/FIW. Essentially, all the differences among the Norfolk potentials in Table 6.2 are

attributable to the correlation between the VMC-optimized (not exact) B3 and ac.
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6.2 n + 4He

I now turn to neutron-4He scattering to test implementation of the integral method in GFMC

calculations. This section presents calculations done only with the two-body AV18 inter-

action, which is well-benchmarked. I compare results against the 2007 calculations from

Ref. [25] to judge success. Those older GFMC calculations differ from current direct GFMC

results mainly by an iterative procedure in Ref. [25] that forced consistency between outer

parts of Ψ(0) the final GFMC energy. I have not followed that procedure because it con-

sumes a large amount of effort for a small benefit that was expected to be unnecessary with

the integral method. Moreover, the improved implementation of the boundary condition

described below Eq. (3.10) made the variational wave function more consistent with the

GFMC energy to begin with.

6.2.1 Energies

I begin with the GFMC energy expectation values as a function of imaginary time τ with

∆τ = 0.0005 MeV−1 to demonstrate the stabilization of the propagated energy. The first

energy to establish is the alpha-particle energy, as I need it to establish threshold. In

Fig. 6.6 I show the bound 4He energy as a function of τ computed with the AV18 potential

(perturbatively corrected AV8′). As expected, the propagated energies (black circles with

error bars) quickly remove the high-energy contamination from the VMC energy (blue band)

and approach a stable value at large τ , estimated by the average shown as a red band.

Although the energy obtained from the VMC code and the τ = 0 energy obtained from the

GFMC code for the same wave function should be the same, there is a visible difference

because of sampling variance between two Monte Carlo calculations. The energy from the

VMC code is almost always lower because the wave function parameters are optimized on

the same VMC samples that were used to estimate the energy. The VMC alpha binding
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Figure 6.6: Ground state 4He quantum Monte Carlo energy expectation values (in MeV)
as a function of imaginary time (τ) for the AV18 nuclear interaction. The wave function
yielding the variational Monte Carlo estimate (solid blue line with error band) and the
τ = 0 value for Green’s function Monte Carlo constitute the initial starting point for GFMC.
Energies are computed at intervals of 40∆τ , from walkers that have been allowed to propagate
unconstrained for 25 steps before the evaluation. Each energy expectation value shown as a
black dot is an average over Monte Carlo samples at the indicated τ . The horizontal red line
and error band are the average of those expectation values from τ = 0.08 to 0.52 MeV−1.
The GFMC method quickly removes high-energy contamination from the initial VMC wave
function.

energy I computed with this potential is −23.77(1) MeV compared to the GFMC result of

−24.12(2) MeV, which is in excellent agreement with previously benchmarked QMC results

[57] and recent hyperspherical harmonic method calculations [68].

Moving on to unbound systems, low-energy scattering of neutrons from alpha particles is

dominated by three completely uncoupled partial waves, with Jπ = 1/2+, 1/2−, and 3/2−.

The positive parity channel is an s-wave (L=0), and the negative parity cases are p-waves

(L=1). The process of computing energies is nearly identical in every channel, so I present

only the procedure in the 1/2+ channel in Fig. 6.7. I begin by optimizing a VMC wave
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Figure 6.7: GFMC energy propagation of a scattering state in the 5He 1/2+ system for
AV18. The boundary condition is ζ = −0.13 fm−1 at 9 fm, and symbols are as in Fig. 6.6.
In this case energies were computed every 40 steps using walkers that had propagated 80
final steps without constraint.

function for a specific boundary condition (ζ = −0.13 fm−1 at 9 fm) and then propagating

that wave function according to Eq. 3.11. Similar to the bound case, the energy expectation

value depends on τ , and I show this for the representative 1/2+ state in Fig. 6.7.

The propagated energy of the unbound state reaches stability similarly to the bound state.

Similar plots are shown for several 1/2+ states in Fig. 6.8. In every case, GFMC evolution

finds a stable energy, which can be used in the direct method to find a phase shift for the

corresponding ζ.

6.2.2 Spectroscopic Overlaps

Next, I use the spectroscopic overlaps of GFMC wave functions to validate my calculations

by the integral method. For the integral method calculations in neutron-alpha I found that
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Figure 6.8: Energies relative to threshold of n + 4He scattering states with Jπ = 1/2+

(in MeV) as functions of imaginary time (τ) for the AV18 nuclear interaction and various
boundary conditions. Each choice of ζ has its own set of energy values. Symbols and methods
are as in Figs. 6.6 and 6.7. GFMC quickly settles on a stable energy corresponding to that
boundary condition in each case.
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the same regularizer (γ = 0.625 fm−1) as neutron-triton minimized the SSE of all channels.

I show the evaluation of direct overlaps from Eq. (4.5) and integral-relation overlaps from

Eq. (4.32) in Figs. 6.9, 6.10, and 6.11 for 1/2+, 1/2−, and 3/2− partial waves, respectively.

The VMC overlaps are colored blue and the GFMC red. The integral method results are

shown as solid curves with statistical error bands, and the circles show the direct method

with standard error. Looking first at the 1/2+ channel in Fig. 6.9, I present a wave function

with energy near the midpoint of the energy range examined, Ec.m. = 2.85(2) MeV. For this

channel and energy, I find close agreement between all methods. As expected from the 4H

results above, all overlap calculations agree at small radius. The integral method and GFMC

propagation significantly change the VMC overlap in the outer parts of the box. Surprisingly,

application of the integral method to the GFMC wave functions brings the overlap back into

close alignment with the original VMC result.

For both 1/2− (Fig. 6.10) and 3/2− (Fig. 6.11) partial waves, considerable statistical variances

are visible in the first few radial bins; this is due to evaluating derivatives (present in spin-

orbit terms of the potential) of the unregularized irregular Coulomb function near the origin

in Eq.(4.27). This does not affect scattering phase shifts because those come entirely from

regularized integrals (Eq. (4.23)). For the 1/2− scattering-state overlap in Fig. 6.10, the

expected short-range agreement between direct and integral-method overlaps is visible. They

diverge around 4 fm, similarly to the neutron-triton case. However, The 3/2− overlaps in

Fig. 6.11 show divergence between methods already at the shorter range of 2.5 — 3 fm.

Overall, the short-range spectroscopic overlaps agree reasonably well between direct and

integral-method calculations within GFMC. This agreement suggests that it is safe to pro-

ceed with scattering calculations using the integral method in GFMC. As in the calculations

of Chapter 6, I found that generating overlaps by the integral method and seeking reasonable

levels of agreement with other calculations (VMC or direct) allowed identification and cor-

rection of multiple errors while extending the integral-method code for application to GFMC
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Figure 6.9: n+ 4He overlaps as functions of alpha-neutron separation, computed from a rep-
resentative Jπ = 1/2+ wave function with the AV18 interaction. These have been computed
using the direct method of Eqs. (4.2) and (4.5) (circles with error bars) and the integral
method of Eqs. (4.24) and (4.32) (solid curves with error bands) for VMC (blue) and GFMC
(red) wave functions. The VMC overlaps were calculated using Ecm = 2.85(2) MeV, and
the GFMC results were calculated at Ecm = 2.47(3) MeV. There is substantial agreement
between all the methods for rnα ≤ 5 fm.
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Figure 6.10: n + 4He overlap functions computed from a representative Jπ = 1/2− wave
function with the AV18 interaction, analogous to Fig. 6.9. The VMC overlaps were calculated
using Ecm = 2.76(2) MeV, and the GFMC results were calculated using Ecm = 2.35(3) MeV.
Note the significant variance in the innermost bins due to the divergence of the irregular
Coulomb function; regularization keeps this problem from affecting the computed phase
shift. Away from the origin, overlaps computed with VMC wave functions agree with each
other throughout the box. However, the GFMC calculations diverge from the VMC results
and from each other outside the strong-interaction region (∼ 3 fm, cf. the 4He rms radius of
1.5 fm).
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Figure 6.11: n+4He overlap functions computed from a represtative Jπ = 3/2− wave function
with the AV18 interaction, analogous of Fig. 6.9. The VMC overlaps were calculated using
Ecm = 1.55(3) MeV, and the GFMC results were calculated using Ecm = 1.04(3) MeV.

samples.

6.2.3 Single-channel phase shifts with the GFMC integral method

Once an energy has been computed for a state, Eq. (4.1) gives direct phase shifts. I also

use GFMC samples generated during energy calculation to compute integral-method phase

shifts. I begin by first looking at the s-wave (1/2+) in Fig. 6.12. For each channel, I have

three benchmarks for the phase shift; an R-matrix analysis of experimental data for the 5He

system (solid black curve) [80], a Faddeev-Yakubovsky calculation (solid squares) [10], and

lastly, a careful direct-method GFMC calculation in which great caution was taken to limit

dependence on the VMC starting point from ref. [25] (black diamonds). The two theoretical

calculations are both based on the same AV18 interaction as those presented here. The

difference between the current and previously-published direct GFMC calculations is that
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in the 2007 GFMC calculations, it was found necessary to iterate for self-consistent energy

between the ϕ functions in the VMC starting point and the GFMC energy. I have not done

that in the present work. However, the improvement in applying the boundary condition to

f
(A−1)
sp ϕ discussed in Sec. 3.1.1 makes such iteration much less impactful. This is supported

by the closeness of the two sets of direct GFMC points in Figs. 6.12, 6.14, and 6.16. Since

the R-matrix curve is a fit to data, it is only presented for illustration; the accuracy of the

integral method can only be judged by agreement with accurate calculations using the same

potential. To my knowledge, the direct GFMC and the Faddev-Yakubovsky results are the

only published ab initio n-alpha calculations using the AV18 potential. Although the authors

of Ref. [10] claim convergence of their calculations at 5% precision in phase shift, their s-wave

results fall somewhat below the trend of Ref. [25] by amounts that vary noticeably among

their three points.

For the s-wave phase shifts in Fig. 6.12, I find that similarly to the n + 3H system, direct

VMC (blue circles) provides a poor match to the previous careful GFMC results. However,

direct GFMC (red circles) significantly corrects the phase shifts. Applying the integral

method in VMC (blue squares) also significantly improves agreement with the previous

GFMC calculations. Going from direct GFMC to integral-method GFMC phase shifts makes

little difference at low energy. However, as energy increases, it produces more-positive phase

shifts than the GFMC results from 2007.

In addition to including more physics through its direct use of the potential, the integral

method allows use of the FIW approximation, reducing the effort needed to produce phase

shifts of useful accuracy. Unlike the VMC FIW (blue dotted curves)calculations, the GFMC

FIW (red dotted curves) in the neutron-alpha system gives an unexpectedly shallow slope

for δ(E) in all channels for scattering energies above the energy of the wave function used.

However, by using FIW as an interpolation scheme rather than an extrapolation scheme

(FIWI see Sec. 5.2) we observe in Figs. 6.12, 6.14, and 6.16 that the interpolated phase
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Figure 6.12: Jπ = 1/2+ phase shifts (in degrees) for n + 4He calculated with multiple
methods using the AV18 interaction. The R-matrix phase shifts (black curve) are from
Ref. [80]. The Faddeev-Yakubovsky AV18 phase shifts (black stars) are from Ref. [10]. The
previously computed direct GFMC results (black diamonds) are from Ref. [25]. My current
GFMC results are colored red, and VMC is colored blue. The direct method for both QMC
methods is denoted with circles and the integral method with squares. I used the fixed
interior wave approximation (dotted curves) to compute phase shifts using a single wave
function marked with a “+” near the center of the computed energy range. I also use the
FIW approximation to interpolate between my wave functions by averaging the K-matrix
computed at the energy midpoint between any two wave functions; these interpolation points
are marked with an “x.” Lastly, the solid red and blue curves are fits of the squares and x’s
to ratios of quadratic polynomials.
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shifts (VMC: blue X, GFMC: red X) follow the established trend of integral method GFMC

results.

To better examine the trend of my computed phase shifts, I have fitted my results for the

K-matrix (K = tan δJπ) to rational polynomials analogous to those used in Ref. [25] to locate

S-matrix poles. I model K(E) = p(E)/q(E), with p and q as quadratic polynomials whose

coefficients are determined from a non-linear variance-weighted fitting procedure. I estimate

the error in this fit as the mean percent error of the Monte Carlo calculations, which is

around 1% for s-waves and 5 to 10% for p-waves. Without the FIWI, my computed grid of

scattering energies is too sparse to constrain a ratio of cubic polynomials, and it would take

more effort to obtain a smooth interpolant. To ease this problem I apply FIWI to add a point

at the halfway point of each energy step in the plain integral-method calculation. Once I fit

tan δJπ , I can quickly obtain phase shifts consistent with my integral-method calculations at

any point within the computed energy range, and this is the solid curve (GFMC: red line,

VMC: blue line) in Figs. 6.12, 6.14, and 6.16. This interpolation appears to produce a

faithful representation of the computed integral-method results in all three partial waves. It

is particularly useful in making differences between methods more visible in the graphs. In

order to examine the VMC and GFMC integral method results, I have found it helpful to

examine the K-matrix instead of the phase shift.

Moving on to the p-waves, I start by examining the 1/2− channel phase shifts in Fig. 6.14

and tan δJπ in Fig. 6.15. The integral method only helps VMC a little at the higher energies,

though it is effective near threshold. Although the direct GFMC calculation was done less

carefully here than in Ref. [25], the results are quite close except at the highest point.

The GFMC integral-method phase shifts computed here are in reasonable agreement with

Ref. [25]. They do differ noticeably from the direct phase shifts computed here, especially

at that highest point. These results appear to conflict with the Faddeev-Yakubovsky results

of Ref. [10]. This would seem to be caused by either a problem in the GFMC propagation
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Figure 6.13: Computed values of tan δJπ for n + 4He scattering in the Jπ = 1/2+ channel
with the AV18 interaction. I evaluate the integral relations at the QMC energy for both
GFMC (red) and VMC (blue) wave functions. Exact energy values are shown as squares,
and the interpolated points are shown as x’s, smooth curves are weighted fits to a ratio of
quadratic polynomials.
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Figure 6.14: Jπ = 1/2− phase shifts (in degrees) for n+4He calculated with multiple methods
using the AV18 interaction, analogous to Fig. 6.12.

(both here and in Ref. [25]) or overestimated convergence of the other group’s three AV18

phase shifts in this channel.

The other p-wave, the 3/2− channel, tells a slightly different story. In Fig. 6.16, all direct

GFMC results, old and new, agree with each other and with the FY calculations within the

error of the latter. However, the integral GFMC phase shifts tend to be larger than the other

calculations in the neighborhood of 2.0 — 2.5 MeV, where the phase shift passes through

90◦. We can see that the integral has difficulty near the resonance structure by analyzing

the K-matrix in Fig. 6.17. The large variance near the discontinuity is related to the surface

amplitude in the denominator of tan δJπ going to zero; however, this variance indicates that

better statistics might improve the phase shift calculations in this region. As with the other

channels, direct VMC results produce phase shifts far from the other methods. Applying

the integral method within VMC improves those results but does not bring them into an

agreement with the GFMC.
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Figure 6.15: Computed values of tan δJπ for n + 4He scattering in the Jπ = 1/2- channel
with the AV18 interaction, analogous to Fig. 6.13.
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Figure 6.16: Jπ = 3/2− phase shifts (in degrees) for n+4He calculated with multiple methods
using the AV18 interaction, analogous to Fig. 6.12. Note that the red integral-method point
near 90◦ lies near a pole of tan δ, where the amplitude A goes to zero and causes the phase
shift to have a large variance.
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Figure 6.17: Computed values of tan δJπ for n + 4He scattering in the Jπ = 3/2- channel
with the AV18 interaction, analogous to Fig. 6.13. The main feature of the 3/2− channel is a
strong resonance, which appears as a discontinuity in tan δ. Evaluating the integral relations
near this discontinuity implies that the amplitude A approaches zero in the denominator of
tan δ = B/A, which then diverges.
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In summary, I have successfully implemented the integral method within GFMC and tested

it out in neutron scattering from 4He. Since I already believed direct GFMC to be accurate,

it is no surprise that the integral method gives similar results. However, I have found some

statistically significant differences that could be either improvements on the direct method

or an unnoticed problem with the integral calculation. In either case, I have shown that

the integral method works within GFMC and provides precision comparable to the direct

calculation for single-channel scattering.
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Chapter 7

Conclusion

I have successfully explored the use of the integral method to calculate scattering observables

in the quantum Monte Carlo context. This method replaces operations on the most poorly

computed parts of a VMC or GFMC wave function with integrals over the well-computed

interaction region. They involve essentially matrix elements of the potential between the

wave function and a cluster-product function in a specific channel. The integrand also con-

tains regular and irregular scattering functions; the latter requires regularization to avoid

difficulties arising from our use of Monte Carlo integration. Once that is done, the calcula-

tion within VMC can be carried out successfully with the customary Ψ†Ψ weight function.

The cost of calculation is close to the cost of an energy expectation value calculation once

variational optimization is complete.

In every step of this work, I found it helpful to compute spectroscopic overlap functions using

integral relations applicable at small radii. These could be computed from the same routines

as the scattering integral relations and compared against directly-computed overlaps. This

test of ensuring the integral method matched well onto the directly computed overlaps was an

essential verification of the integral relation implementation in computer code at all stages.
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I consistently used the overlap test to identify coding errors when developing the integral

method for both VMC and GFMC, which is why I believe my scattering results. The overlaps

also provided my only way of identifying regularizers that are unlikely to bias phase shift

calculations. Since the regularization method is arbitrarily chosen, a crucial early task was

identifying a good regularizer. My initial phase-shift calculations were only successful once

I began measuring the accuracy of short-range overlap functions with the sum of square

errors (SSE) heuristic, which measures the mismatch between methods of computing the

short-range overlap.

In addition to developing the integral method, this work significantly improved the implemen-

tation of the scattering boundary condition, Eq. (3.9). Taking nucleon-nucleon correlations

into account at the matching surface improved the accuracy of the boundary condition. That

improved accuracy allowed better optimization of scattering wave functions, including auto-

mated variational minimization that was previously only useful for bound states. Further, I

added substantial functionality to the energy-minimization search so that generation of new

VMC wave functions is near fully automated for all systems. This functionality drastically

reduces the human effort to calculate bound and unbound systems with many potentials,

channels, and boundary conditions.

I have kept the computational expense of code development cheap by starting with some

of the lightest systems that are interesting. The combination of well-benchmarked results

and fast calculations allowed for quick development cycles, enabling internal tests to build

confidence in my implementations. I first applied the integral method to variational Monte

Carlo wave functions in both single- and coupled-channel problems for neutron scattering

from tritium. The coupled channel cases are the first successful coupled channel calculations

by any QMC method. I chose the n + 3H system as my initial test for the method because

it is well benchmarked by nearly exact ab initio methods using nuclear potentials available

to QMC, specifically the AV18 nucleon-nucleon interaction.
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For all single-channel cases, the integral method with VMC provided a substantial improve-

ment over phase shifts computed from the direct relationship between energy and the surface

boundary condition. However, the important payoff for the integral method is the ease with

which coupled channeled scattering can be computed. I explored the integral method for

coupled channels in n + 3H, where results were better in some channels than others. The

coupling of s-and d-waves reproduced the benchmark reasonably well. The coupling of sin-

glet and triplet states in p-wave scattering resulted in a phase shift curve in one channel

that is significantly different from the benchmark for unknown reasons, possibly related to

the failure of linear independence between wave functions.

I also developed the integral method as an approximation technique away from the wave

function energy in a procedure I call the fixed interior wave (FIW) approximation. In this

approach, a single wave function is used in the integral relations, but varying energies are

fed through the calculation. Tests of this method on VMC wave functions were reasonably

successful in the neutron-triton. The FIW approximation demonstrates that reducing the

effort to estimate cross sections over a substantial energy range is possible while retaining

the established trend of integral method results.

In addition to testing the method against established benchmarks, I presented some of the

only calculations done so far with the Norfolk potentials in nucleon-nucleus scattering. Al-

though I computed scattering observables with Norfolk potentials only using VMC wave

functions, the results provide valuable insight that is unavailable by only analyzing bound

states. I found a stronger resonance structure for the Norfolk interactions in n + 3H than

for AV18 + UIX in the p-wave channels. This difference is most visible in the larger Norfolk

total n+ 3H cross-section. By varying potentials, I found a ‘Phillips line’ relating the bind-

ing energy and neutron coherent scattering length of the triton with the same slope as that

indicated by previous work, but offset by an amount that appears to reflect the accuracy of

the VMC wave functions.
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After completing my integral method calculations with VMC, I implemented the integral re-

lations into the more accurate but expensive Green’s function Monte Carlo (GFMC) method.

This required the mixed-estimate calculation of essentially a matrix element of the poten-

tial, but the code was not written to allow application of the potential to cluster-product

functions. The calculation required that I write a second implementation of the potential

operator to do this. Since the spin-isospin states needed for most neutron-triton scattering

channels do not yet exist in the GFMC code, I tested the integral method’s implementation

on neutron-alpha scattering calculations using the AV18 potential.

The only extensive calculations of this system with potentials available to the GFMC method

were, in fact, also carried out in GFMC in an earlier version of the same code. Direct

calculations that I carried out agreed with those earlier calculations in most cases. Although

this left little room for the integral relations to improve the results (unlike the VMC case),

I verified that the integral relation produced consistent results. In some cases, there was

slight disagreement with the older calculations, suggesting minor difficulty with the method.

In future applications that involve coupled channels, a loss of accuracy on that level is an

acceptable trade-off for being able to carry out the calculation.

For my n+alpha calculations, I extended the FIW approximation to develop it as an in-

terpolation scheme I call fixed interior wave interpolation (FIWI). This procedure aims to

improve FIW results by applying FIW to wave functions at higher and lower energy than

the desired energy and averaging the results. I found some minor difficulties with the FIW

for energies above the computed wave functions energy expectation value, the FIWI was

successful in resolving this problem.

Overall, the integral method substantially improves scattering observables when applied to

VMC compared to previously used methods. However, for GFMC, in most cases the integral

method only maintains the accuracy previously achieved and, in some cases, has difficulties

reproducing benchmarked results. The critical trade-off is that the integral method paves
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the way for coupled-channel scattering in GFMC. Thus, the integral method provides a clear

path for single-nucleon scattering well into the p-shell (A ≤ 10). For comparable ab initio

methods, these larger nuclei and even A = 5 can be challenging to obtain converged results

for local potentials, primarily due to the exponential computational cost. If these larger

scattering systems are computed with local potentials, it will be an excellent achievement

for QMC and the field.

With GFMC-accurate coupled channel scattering just around the corner, prospects are suit-

able for a broader range of accurate ab initio calculations of reactions and scattering at mass

ranges beyond the mass-four systems. The integral method opens the door to a predictive

framework for bound and unbound nuclei that eludes generating system-dependent models.

Specifically, it is immediately possible to compute T = 0 states in 4He with excited states

treated as actual scattering states, which the calculation recently attained renewed focus. It

will also be possible with further work to calculate electromagnetic and weak capture reac-

tions, which will be of significant astrophysical interest; as some of those reactions cannot

be carried out in the laboratory. Lastly, with significantly more effort, it may be possible to

compute reactions with nuclear rearrangement. The ability to compute these reactions in a

general predictive framework would be a pinnacle accomplishment in our capacity to model

the world.
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