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Abstract

Future Networks of Gravitational Wave Detectors:

Quantum Noise and Space Detectors

by

Kevin A. Kuns

The current network of three terrestrial interferometric gravitational wave detectors

have observed ten binary black holes and one binary neutron star to date in the frequency

band from 10 Hz to 5 kHz. Future detectors will increase the sensitivity by up to a

factor of 10 and will push the sensitivity band down to lower frequencies. However,

observing sources lower than a few Hz requires going into space where the interferometer

arms can be longer and where there is no seismic noise. A new 100 km space detector,

TianGO, sensitive to the frequency band from 10 mHz to 100 Hz is described. Through

its excellent ability to localize sources in the sky, TianGO can use binary black holes as

standard candles to help resolve the current tension between measurements of the Hubble

constant. Furthermore, all of the current and future detectors, on both the ground and

in space, are limited by quantum shot noise at high frequencies, and some will be limited

by quantum radiation pressure at low frequencies as well. Much effort is made to use

squeezed states of light to reduce this quantum noise, however classical noise and losses

severely limit this reduction. One would ideally design a gravitational wave transducer

that, using its own ability to generate ponderomotive squeezing due to the radiation

pressure mediated interaction between the optical modes of the light and the mechanical

modes of the mirrors, approaches the fundamental limits to quantum measurement. First

steps in this direction are described and it is shown that it is feasible that a large scale

40 m interferometer can observe this ponderomotive squeezing in the near future. Finally,

vii



a method of removing the effects of the vacuum fluctuations responsible for the quantum

noise in gravitational wave detectors and its application to testing for the presence of

deviations from general relativity is described.
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Chapter 1

Introduction

The ground based network of interferometric gravitational wave detectors, consisting

of the LIGO observatories in Hanford and Livingston [1] and the Virgo observatory in

Italy [2], have detected ten binary black holes and one binary neutron star to date [3–5].

The KAGRA detector in Japan [6] will join LIGO and Virgo soon, and construction on

a third LIGO site in India will begin shortly. While not as sensitive as these detectors at

lower frequencies, the GEO600 detector in Germany [7] is also part of this global network

of detectors.

1.1 Future Gravitational Wave Detectors

With the focus of the current detectors moving from making the first detections to

being a network of observatories routinely detecting sources, studies for the future of

gravitational wave detectors are underway and focus on improvements to the current

network in two ways. First, improving the sensitivity of the next generation of detectors,

and, second, expanding the frequency range over which the network can observe. Fig. 1.1

shows the sensitivities of possible future detectors.

LIGO Voyager is a cryogenic upgrade to the existing LIGO facilities [8], and Cosmic

Explorer (CE) would be a 40 km long interferometer [9, 10]. The Einstein Telescope (ET)

1
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Figure 1.1: Sensitivities of future ground and space gravitational wave detectors. The
trace labeled GW150914 is the waveform of the first direct detection of gravitational
waves.
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would be a set of six 10 km long interferometers forming an equilateral triangle [11–13].

Each corner has two interferometers: one cryogenic low-frequency interferometer and one

high frequency interferometer.

These ground-based detectors are limited by seismic noise at low frequencies and

cannot observe lower than a few Hz in the best case of ET. To see lower frequency

sources, one needs to use space detectors which are not affected by these noises and

where the arms can be significantly longer than ground-based interferometers.

LISA (Laser Interferometer Space Antenna) is perhaps the best known and furthest

developed space detector [14]. It consists of three spacecraft in a triangular configuration

forming three interferometers with 2×106 km long arms. The three satellite constellation

is in a heliocentric orbit trailing the Earth by 20◦. It uses time-delay interferometry with

a 2 W, 1064 nm laser and 2 kg test masses. LISA is briefly discussed in Chap. 5. TianQin

is similar to LISA but with 105 km long arms, a 4 W laser, and is in a geocentric orbit [15].

DECIGO is another three spacecraft constellation in a heliocentric Earth trailing orbit,

but it has 1000 km long arms and does traditional interferometry [16, 17]. DECIGO’s

arms are Fabry-Perot cavities (with a finesse of 10) and it uses a 10 W, 515 nm laser

with 100 kg test masses.

TianGO is a relatively simple and cheap space detector and is described in Chap. 5.

TianGO has three satellites with 100 km long arms that form a simple Michelson in-

terferometer and which will also likely be in a heliocentric Earth trailing orbit. It uses

a 5 W, 532 nm laser with 10 kg test masses and employs 10 dB of phase squeezing to

reduce quantum noise. Advanced TianGO (aTianGO) is a speculative idea that would

use large lightweight foldable mirrors that would allow it to have 1000 km long arms.

The astrophysical reach of most of the detectors shown in Fig. 1.1 to compact binary

systems is shown in Fig. 1.2 as a function of the total mass of the binary system. The

ground detectors are sensitive to lower mass systems because they are sensitive to higher

3
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Figure 1.2: Compact binary horizons for different ground and space detectors. The
binary systems are equal mass and oriented face on. The maximum detectable dis-
tance, defined as the distance at which a source has an SNR of 8 in a given detector,
is computed for 48 source locations uniformly tiling the sky. The horizon is the maxi-
mum distance at which the best source is detected, 50% of these sources are detected
within the dark shaded band, and 90% of the sources are detected within the light
shaded band. If a source stays in a space detector’s sensitivity band for more than 5
years, the 5 year portion of the system’s evolution that gives the best SNR in each
detector is used.
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Figure 1.3: Voyager noise budget. The interferometer will be dominated by quantum
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frequencies than the space detectors. The horizon is the furthest distance a given detector

could see an optimally oriented source in the optimal orientation in the sky. The figure

also shows how far a given detector can see binary systems that are not at the optimal

orientation in the sky. A source is said to be detectable if it has a signal to noise ratio

(SNR) of at least 8 in a given detector.

1.2 Quantum Noise in Gravitational Wave Detectors

All of the detectors shown in Fig. 1.1 will be limited by quantum shot noise at high

frequencies, and some will be limited by quantum radiation pressure at low frequencies.

The noise budget for LIGO Voyager [8] is shown in Fig. 1.3 and shows that the detector

will be limited by quantum noise at all frequencies above 20 Hz, though coating Brownian
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noise makes a significant contribution around 100 Hz. Since quantum noise is so impor-

tant, much effort is made to use squeezed states of light in interferometers to reduce this

noise. The relevant aspects of quantum noise are briefly reviewed in Sec. 2.1.

These fragile quantum states thus need to be protected from losses and other classical

noises. A good way to do this is to get the interferometer to amplify the signal, and

noise, itself through optomechanical interactions, known as ponderomotive squeezing [18],

before the signal encounters the large sources of noise and losses. Sec. 2.2 introduces

ponderomotive squeezing and Sec. 2.3 discusses the detrimental effects of losses and

classical noise on quantum states and their mitigation with optomechanical amplifiers.

Chap. 3 discusses progress towards observing ponderomotive squeezing in a large scale

40 m interferometer.

Finally, the source of quantum noise in gravitational wave detectors is the beating

of vacuum fluctuations of the electromagnetic field with the strong laser, known as the

local oscillator (LO), needed to detect the signals. Chap. 4 describes a scheme to remove

the LO, and thus be free from the quantum noise of the vacuum fluctuations, when

looking for deviations from general relativity (GR). To do so, the interferometer mirrors

are driven in such a way that the predicted signal from general relativity is canceled; any

signal exiting the interferometer thus signals a modification to GR. By counting photons

instead of measuring the signal, the need for a local oscillator is removed and the noise

due to the vacuum fluctuations is eliminated.

1.3 Permissions and Attributions

1. The content of Sec. 2.3 is the result of discussions with Rana Adhikari, Yanbei Chen,

Gautam Venugopalan, Yuntao Bai, Aaron Markowitz, Chris Wipf, and Haixing

Miao.

6



Introduction Chapter 1

2. The content of Chap. 4 is the result of a collaboration with Zachary Mark, Rana

Adhikari, and Yanbei Chen and is based off of a rough draft of a paper to be

submitted soon.

3. The content of Chap. 5 is the result of a collaboration with Rana Adhikari and

Geoffrey Lovelace and is based off of a rough draft of a paper to be submitted soon.

4. The content of Appendix. B is a slightly more detailed analysis of an idea due to

Koji Arai [19] which is necessary for part of a noise analysis in Sec. 3.4.

7



Chapter 2

Quantum Noise in Optomechanical
Systems

This chapter very briefly reviews quantum noise in states of the electromagnetic field in

Sec. 2.1. Then Sec. 2.2 introduces the optomechanical interactions that are important

in the rest of this thesis and explains their effects on quantum noise. Finally, Sec. 2.3

explains how classical noise degrades quantum states and describes schemes using these

optomechanical interactions to ameliorate these effects.

2.1 Quantum States of the Electromagnetic Field

and Their Noise

2.1.1 Quantization of the Electromagnetic Field

In this section we very briefly review the semiclassical quantization of the electro-

magnetic field. See, for example, Refs. [20–22] for more details. All topics in this thesis

occur at sufficiently low energies that matter does not need to be quantized.

For simplicity, we consider a single polarization of the electromagnetic field describing

a laser beam with an effective cross sectional area A. To quantize the field, one starts by

8
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expanding the electromagnetic field in a set of normal modes [23–26]

E(t) =

∫ ∞

0

dω

2π

√
2π~ω
Ac a(ω) e−iωt + h.c. (2.1)

where a(ω) is the annihilation operator for the mode of frequency ω which is quantized

according to

[a(ω), a†(ω′)] = 2πδ(ω − ω′), [a(ω), a(ω′)] = 0. (2.2)

Note that we will always be interested in evaluating fields at a particular point in space

and so fields will be written as a function of time only.

For applications to interferometric gravitational wave detectors, it is inconvenient to

use (2.1) directly. The lasers used in these interferometers have wavelengths of order

1µm which corresponds to frequencies of order ω0/2π = 300 THz. On the other hand,

the gravitational waves themselves have frequencies Ω/2π ranging from roughly 10−4 Hz

for some space detectors to 104 Hz for the ground detectors. These signals that we are

interested in detecting are imprinted on the light as phase fluctuations on top of the

carrier oscillating at ω0. The detectors do not directly measure signals at ω0 but instead

optically demodulate1 the signals to measure the gravitational wave signals oscillating at

Ω. It is thus convenient to have a description of the electromagnetic field in terms of the

demodulated signal frequencies which is provided by the two-photon formalism [23, 24].

One defines the annihilation operators for the upper and lower signal sidebands as

a±(Ω) ≡ a(ω0 ± Ω)

√
1± Ω

ω0

≈ a(ω0 ± Ω). (2.3)

The only nonzero commutators are

[a+(Ω), a†+(Ω)] = 2π δ(Ω− Ω′)

(
1 +

Ω

ω0

)
≈ 2π δ(Ω− Ω′) (2.4a)

[a−(Ω), a†−(Ω)] = 2π δ(Ω− Ω′)

(
1− Ω

ω0

)
≈ 2π δ(Ω− Ω′). (2.4b)

1This demodulation is done by combining the signal light with another beam, the local oscillator,
before being measured on a photodiode. Appendix. B describes one method of doing this, known as
homodyne detection, where the local oscillator is at the same frequency ω0 as the signal field.
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Since Ω/ω0 � 1 for our applications, the Ω/ω0 terms will be neglected.

In terms of the sideband annihilation operators (2.3), the field quantization (2.1)

becomes

E(t) =

√
2π~ω0

Ac e−iω0t

∫ ∞

0

dΩ

2π

[
a+(Ω) e−iΩt + a−(Ω) eiΩt

]
+ h.c. (2.5)

It is now useful to define the two-photon modes

a1(Ω) =
1√
2

[a+(Ω) + a†−(Ω)], a2(Ω) =
1√
2i

[a+(Ω)− a†−(Ω)], (2.6)

whose only nonzero commutators are

[a1(Ω), a†2(Ω)] = −[a2(Ω), a†1(Ω)] = 2πi δ(Ω− Ω′). (2.7)

We can now expand the field (2.5) in terms of the quadrature operators

Ek(t) =

√
4π~ω0

Ac

∫ ∞

0

dΩ

2π

[
ak(Ω) e−iΩt + a†k(Ω) eiΩt

]
, (2.8)

for which the full electromagnetic field becomes

E(t) = E1(t) cosω0t+ E2(t) sinω0t. (2.9)

Eq. (2.9) describes the state of a general field of frequency ω0 with signals oscillating

at frequencies of order Ω � ω0. However, we will often be interested in the case where

these signals are oscillating on top of a strong signal of amplitude E0—the carrier. By

convention the carrier is usually put in the cosine quadrature. In this case the field is

E(t) = [E0 + E1(t)] cosω0t+ E2(t) sinω0t. (2.10)

For this reason, the cosine quadrature is also often referred to as the amplitude quadrature

and the sine quadrature is often referred to as the phase quadrature.

10
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2.1.2 Coherent States and Squeezed States

We now briefly review the quantum noise in commonly used quantum states of the

electromagnetic field. The one-sided noise spectral density in the state |ψ〉 is defined

as [23–25]
〈
ψ
∣∣∣ai(Ω)a†i (Ω

′)
∣∣∣ψ
〉

sym
=

1

2
2πδ(Ω− Ω′)Sai , (2.11)

where

〈AB〉sym =
1

2
〈AB +BA〉. (2.12)

Let |0a〉 be the vacuum of the a modes, i.e.

a+(Ω)|0a〉 = a−(Ω)|0a〉 = 0. (2.13)

From (2.6) and (2.7)

〈
0a

∣∣∣ai(Ω)a†j(Ω
′)
∣∣∣0a
〉

=
1

2
2πδ(Ω− Ω′)δij. (2.14)

The noise in the vacuum is, therefore,

Sa1 = Sa2 = 1, Sa1a2 = 0. (2.15)

This is the minimum noise allowed by the Heisenberg uncertainty relations. A state for

which Sa1Sa2 = 1 is called a minimum uncertainty state. The a vacuum |0a〉 is also called

the unsqueezed vacuum or the coherent vacuum. It is useful to visualize quantum states

by plotting ellipses that represent the shape of the quantum noise. Fig. 2.1 shows several

examples. The horizontal axis represents the noise in the a1, or amplitude, quadrature

and the vertical axis represents the noise in the a2, or phase, quadrature. The unsqueezed

vacuum is represented by a circle at the origin with radius Sa1 = Sa2 = 1.

A coherent state is a non-zero minimum uncertainty state. It is obtained by using

the one photon displacement operators

D(α, a) = eαa
†−α∗a (2.16)

11
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Figure 2.1: Quantum noise ellipses

to displace the vacuum state:

|α+, α−〉 = D(α+, a+)D(α−, a−)|0a〉 = eα+a
†
+−α∗+a+eα−a

†
−−α∗−a−|0a〉 (2.17)

and has non-zero expectation value for the one-photon annihilation operators

〈α+, α−|a±|α+, α−〉 = α±. (2.18)

See Refs. [23, 24] for details and expectation values for the quadrature operators a1,2.

Physically, a coherent state is a classical signal with the minimum amount of quantum

noise. It is the state of an ideal laser, for example. The noise ellipse of a coherent state is

again a circle of radius Sa = 1, but it is displaced from the origin by the strength of the

signal; see Fig. 2.1. The direction of the displacement is the quadrature of the signal. If

the displacement is along the a2 axis, as it is in Fig. 2.1, it is a phase signal; if it is along

the a1 axis it is an amplitude signal. The displacement can be in any direction in which

12
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case it is a mixture of the two quadratures.

The uncertainty relations say only that the product of the noise in both quadratures

is no less than one. Squeezed states are also minimum-uncertainty states but have the

noise in one quadrature less than one at the expense of the noise in the other quadrature

being greater than one. The squeezed vacuum state is made by acting on the unsqueezed

vacuum with

S(r, φ) = exp
[
r
(
a+a−e−2iφ − a†+a†−e2iφ

)]
. (2.19)

The state S(r, φ)|0a〉 has noise e−2r in the φ quadrature and e2r in the φ+π/2 quadrature.

Again see Refs. [23, 24] for details. If φ = 0 so that the uncertainty is reduced in the

amplitude quadrature, the state is an amplitude squeezed state, and if φ = π/2 so that

the uncertainty is reduced in the phase quadrature, the state is a phase squeezed state.

The noise of a squeezed state is plotted as an ellipse with semi-minor axis e−2r and

semi-major axis e2r with the axis oriented along the direction of squeezing. Squeezed

vacuum states can also be displaced. These are signals with reduced uncertainty in one

quadrature. Fig. 2.1 shows several examples.

2.2 Optomechanical Interactions

2.2.1 Ponderomotive Squeezing

This thesis is concerned with the generation of squeezing through the optomechanical

interaction between a laser and a movable mirror [18, 27, 28]. Intuitively what happens

is the following. Suppose we send light towards a movable mirror where it is reflected

and returns to the starting point where the phase is measured. Since the light exerts

radiation pressure on the mirror, any fluctuations in the amplitude of this force results in

fluctuations in the position of the mirror. But the phase of the light also changes when the
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mirror moves since the distance it has to travel also fluctuates. Therefore, this radiation

pressure induced optomechanical interaction converts amplitude fluctuations into phase

fluctuations thus correlating the two quadratures and producing a squeezed state. This

optomechanical generation of squeezing is known as ponderomotive squeezing. The rest

of this section describes this process quantitatively.

Suppose we send the field Ea(t) towards the mirror a distance L from the starting

point and measure the field Eb(t) that returns. The two fields are related by Eb(t) =

Ea(t− 2L/c). Let Ea have the form (2.10):

Ea(t) = [E0 + E1a(t)] cosω0t+ E2a(t) sinω0t, (2.20)

where E0 is the amplitude of the carrier, and similarly for Eb. This notation signifies

that Ea is expanded as (2.8) with quadrature operators a1 and a2, and Eb is expanded

as (2.8) with quadrature operators b1 and b2. If the position of the mirror is L + x(t),

the relation between Ea and Eb is, for small x/L, and ẋ/c,

Eb(t) = [E0 + E1a(t− 2L/c)] cosω0t+

[
E2a(t− 2L/c) +

2ω0E0

c
x(t− L/c)

]
sin(ω0t)

(2.21a)

= E0

[
1 +

E1a(t− 2L/c)

E0

]
cos

[
ω0t−

2ω0E0

c
x(t− L/c)

]
. (2.21b)

Indeed, the vacuum fluctuations a1 are responsible for amplitude fluctuations and the

vacuum fluctuations a2 are responsible for phase fluctuations. In the frequency domain,

(2.21) is

E1b(Ω) = e2iβE1a(Ω) (2.22a)

E2b(Ω) = e2iβE2a + eiβ 2ω0E0

c
x(Ω), (2.22b)

where β = ΩL/c is the phase gained going one way.

14



Quantum Noise in Optomechanical Systems Chapter 2

Now we relate the mirror position x to the amplitude vacuum fluctuations E1a. The

radiation pressure induced force on the mirror is

F =
2P

c
= 2
Ac
8π

[E0 + E1a(t− L/c)]2 =
AE2

0

4π
+
AE0E1a(t− L/c)

2π
≡ F0 + FBA. (2.23)

The first term F0 is the DC contribution to the radiation pressure force which would be

canceled by a control system. In gravitational wave detectors, the mirrors are suspended

from pendula which cancel this force at DC. Above the mechanical resonance frequency

of the pendula (roughly 1 Hz in the case of these detectors) the mirrors behave as free

masses like we are considering here. The second term FBA is the back action force due

to the amplitude vacuum fluctuations a1. The equations of motion for a free mass in the

presence of this radiation pressure force are

−MΩ2 x(Ω) = eiβ FBA(Ω) = eiβAE0

2π
E1a(Ω), (2.24)

where M is the mass of the mirror.

Plugging this into (2.22) and using (2.8) to write it in terms of the quadrature oper-

ators, the input output relations for reflection from a mirror are

b1 = e2iβa1 (2.25a)

b2 = e2iβ(a2 −Ka1), (2.25b)

where

K =
8Pω0

MΩ2c2
(2.26)

is the strength of the optomechanical coupling and P is the power of the light. The noise

spectral densities are

Sb1 = 1, Sb2 = 1 +K2, Sb1b2 = −K (2.27)

This is a squeezed state with r = arcsinh(K/2). Even though this is a very simple

system, it captures the fundamental physics of ponderomotive squeezing. The structure
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Figure 2.2: Quantum noise ellipses ponderomotively generated as a function of fre-
quency. Frequency increases from left to right as the amount of squeezing is reduced.

of (2.25) and (2.27) is very general; it is mostly the optomechanical coupling K that

changes for different systems. Eq. (2.25) says that amplitude fluctuations cause amplitude

fluctuations and phase fluctuations cause phase fluctuations. But amplitude fluctuations

also cause phase fluctuations with strength K. Furthermore, the first term in (2.27) for

the noise for the phase quadrature is the shot noise Sshot = 1, and the second term

is the radiation pressure noise SRP = K2. The origin of both comes from the vacuum

fluctuations beating with the carrier: the beating of the phase fluctuations a2 cause the

shot noise and the beating of the amplitude fluctuations a1 cause the radiation pressure

noise.

Note that the optomechanical coupling from (2.26) is proportional to the power P

and inversely proportional to the mass M and squared frequency Ω2. This is also a

general feature of ponderomotive squeezing in more complicated systems. The frequency

dependence may be different but it will eventually decrease at higher frequencies. Note

that this means the squeezing is frequency dependent and has a larger magnitude at lower

frequencies. Fig. 2.2 shows the quantum noise ellipses for a ponderomotively squeezed
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Figure 2.3: Quantum noise ellipses expressed as decibels relative to vacuum noise.
The same ellipses are plotted here as are plotted in Fig. 2.2. The radial distance is
measured in dBvac and the red dashed circle is the noise of the unsqueezed vacuum
at 0 dBvac.

state for increasing frequency. Indeed, the magnitude of the squeezing decreases and the

ellipse rotates counterclockwise as the frequency increases.

It is difficult to plot these ellipses when the magnitude of the squeezing becomes large.

For this reason we also plot them in terms of decibels relative to unsqueezed vacuum noise

(dBvac), i.e. 10 log10(Sb/Sa). Fig. 2.3 shows these noise ellipses for the same noise ellipses

plotted in Fig. 2.2. The radial direction is measured in dBvac. The red dashed circle is

the unsqueezed vacuum ellipse and is at 0 dBvac. We will use these plots exclusively in

Chap. 3 since the magnitude of squeezing can be as much as 50 dBvac.

The input output relations for a Michelson interferometer with Fabry-Perot cavities

as arms (FPMI) also has the form (2.25). In fact, the response to differential arm motion

of such an interferometer is equivalent to that of a single Fabry-Perot cavity.2 We will

discuss this in detail in Chap. 3 where we also include the signal recycling mirror. In

that case, the interferometer acts like a three mirror cavity; see Fig. 3.2. For now we

stick with the FPMI, or PRFPMI, which is equivalent to a single Fabry-Perot cavity.

2The same is true for a power recycled Fabry-Perot Michelson interferometer (PRFPMI). For the
purposes of differential arm motion, the only difference is the relationship between the amount of power
incident on the interferometer and the amount of power in the arms.
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The input output relations are [25]


b1

b2


 = e2iβ




1 0

−K 1






a1

a2


+

√
2K

hSQLL




0

1


∆L, (2.28)

where L is the length of the arms, the strength of the optomechanical coupling is

K =
2PBS/PSQL

(Ω/γ)2[1 + (Ω/γ)2]
(2.29)

γ = cTi/4L is the cavity pole, β = arctan Ω/γ, PBS is the power on the beam splitter,

and

hSQL =

√
8~

MΩ2L2
, PSQL =

ML2γ4

4ω0

. (2.30)

We will explore the behavior of Fabry-Perot cavities (and thus interferometers) in detail

in Chap. 3, but for now notice the form of the optomechanical coupling (2.29). As with

the free mass K, it is proportional to the power PBS and inversely proportional to the

mass M . For Ω < γ, the coupling also has the behavior of the free mass coupling falling

like Ω−2; for Ω > γ, it falls faster like Ω−4.

2.2.2 Optical Spring

When a Fabry-Perot cavity is detuned from resonance, the radiation pressure force

produces a spring-like coupling between the two mirrors known as an optical spring [27–

29]. Fig. 2.4 shows a Fabry-Perot cavity with one movable mirror suspended from a

pendulum as well as the circulating power in the cavity as a function of mirror position.

The force between the mirrors is due to the radiation pressure of the circulating power

and is proportional to Pcirc. When the cavity is held on resonance, the circulating power

Pcirc is maximized and there is no first order change in the power as the position of the

mirror moves ∂Pcirc/∂x = 0.

When the length of the cavity is made slightly longer, also known as blue-detuning,

the circulating power is reduced. Now, if the mirror moves slightly to the right, the
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Figure 2.4: Optical spring

circulating power is reduced, which reduces the radiation pressure, which then forces

the mirror back towards the left until the radiation pressure force balances the restoring

force from the pendulum. Similarly, if the mirror moves to the left the circulating power

increases which pushes the mirror back to the right. The detuning has created an optical

spring between the two mirrors with spring constant proportional to −∂Pcirc/∂x > 0.

If the length of the cavity is made slightly shorter, also known as red-detuning, the

circulating power is again reduced. Now, however the situation is the opposite as with

the blue-detuned case. Motion to the right increases the circulating power and forces

the mirror further to the right; motion to the left decreases the circulating power and

forces the mirror further to the left. This detuning has created an optical anti-spring

with spring constant proportional to −∂Pcirc/∂x < 0.

Note that the force slightly lags the position of the mirror. This leads to the spring

being anti-damped by this phase delay and the anti-spring being damped. Thus, optical
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springs or anti-springs are always unstable: the spring is statically stable and dynamically

unstable, but the anti-spring is statically unstable and dynamically stable. Thus any use

of an optical spring in an experiment requires a control system to stabilize.3

2.3 The Effects of Classical Noise on Quantum States

Anytime there are losses, unsqueezed vacuum is added in quadrature with the signal

thus degrading the squeezing. This can be thought of as circularizing the quantum noise

ellipse; see Fig. 2.5. If a is the input signal before losses and b is the output signal after

ε losses, the resulting state is

b =
√

1− ε a+
√
ε c (2.31)

where c is unsqueezed vacuum. Since c is, by definition, uncorrelated with a and, since

Sc = 1, the noise becomes

Sb = (1− ε)Sa + ε. (2.32)

If a was squeezed so that Sa < 1, the unsqueezed vacuum has degraded the squeezing.

In gravitational wave detectors, and elsewhere, much effort may be made to squeeze the

light so that a small signal can be detected. The presence of classical noise seriously

limits the benefit of such efforts. Even if the signal is not appreciably reduced by losses

or noise, the quantum noise can become significantly worse as is shown in Fig. 2.5.

An interferometric gravitational wave detector can have significant squeezing inside

the interferometer, but then encounter losses in the readout chain between the interfer-

ometer and the photodetectors. To ameliorate these effects, one can consider amplifying

the signal and the noise before encountering losses that could reduce the signal below

detectable levels, and this should be done as soon as possible after the signal exits the

3Ref. [30] suggests a scheme where two optical springs can be combined to produce a stable composite
system.
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Figure 2.5: Degradation of a squeezed state by classical noise. A signal with 12 dB
phase squeezing in the phase quadrature encounters 10% losses, which mixes in 10%
unqueezed vacuum. The arrows denote the signal.

interferometer. This is similar to the idea of a classical amplifier where both the signal

and noise are amplified but the signal to noise ratio stays the same, if it is an ideal

amplifier. In reality the amplifier will add some noise itself.

When dealing with very weak signals near the quantum limit, however, a more careful

analysis is required. Furthermore, we want the output signal to be in a highly quantum

squeezed state with reduced uncertainty in the signal quadrature. In addition to degrad-

ing the signal itself, any noise added to such a state decreases the squeezing and thus

also decreases the SNR. So the amplification is extra important here.

To prevent the amplifier itself from adding extra quantum noise to the signal, a phase

insensitive amplifier which amplifies all quadratures equally cannot be used, however.

Such phase insensitive amplifiers must add at least half a quantum of vacuum noise to

the signal [31–34]. This can be understood physically by noting that some other mode

must be present to provide the energy for the amplification. It is the quantum noise from

this mode that is added to the signal. This additional quantum noise can be avoided,

however, if a phase sensitive amplifier is used which amplifies the quadratures differently.

If the signal quadrature is amplified by a factor of er then the orthogonal quadrature is
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Figure 2.6: Amplification of a squeezed state before degradation by classical noise. The
same original 12 dB squeezed state from Fig. 2.5 is shown as the blue dashed ellipse.
The orange dashed ellipse is the noise that would be found with no amplification. The
blue solid ellipse is the input state amplified by 10 dB, and the state after 10% losses
is shown as the solid orange ellipse.
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reduced by the same amount. Thus, if the signal is in the a2 quadrature, the amplifier

should output the state

b1 = e−ra1, b2 = era2. (2.33)

Such a phase sensitive amplification scheme is shown in Fig. 2.6.

It is possible to make such phase sensitive amplifiers out of optomechanical systems

using ponderomotive squeezing. Such amplifiers are known as phase-sensitive optome-

chanical amplifiers (PSOMAs). The general amplifier scheme as used in interferometers

is shown in Fig. 2.7. The input and output from the main interferometer are the fields

aIFO and bIFO, respectively. These signals are sent through an amplifier which has its

own input and output fields α and β. (The amplifier fields α and β would be responsible

for the extra quantum noise if the amplifier was phase insensitive.) The full input and

output from the detector are the fields a and b. So the output from the interferometer

bIFO is amplified to the detected signal b and input vacuum a enters the interferometer

as aIFO.

Such PSOMAs will have the general form (2.25). The signal to be amplified should

be put in the amplitude quadrature. The general interaction (2.25) will than amplify the

signal into the phase quadrature. Explicitly, suppose the signal exits the interferometer

in the amplitude quadrature bIFO,1. The amplifier should then amplify the signal like



b1

b2


 =




1 0

−K 1






bIFO,1

bIFO,2


 (2.34)

The signal that exits the interferometer as bIFO,1 gets amplified by K and should be

measured in the output phase quadrature b2.

The form of K will be determined by the details of the amplifier. The amplifier field

α is responsible for the amplification and one of the α quadratures will have the strong

carrier, or pump. Note that the quadrature is defined by where the carrier or pump is. So
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Interferometer

Amplifier

Figure 2.7: General scheme for phase sensitive optomechanical amplifier

even if a signal is in the phase quadrature when it exits the interferometer bIFO,2 it can be

in the amplitude quadrature with respect to the amplifier by making the amplifier pump

field α2 instead of α1. The important thing is that the signal that exits the interferometer

be in the same quadrature as the amplifier pump. Whichever quadrature that is gets

amplified by the optomechanical interaction into the other quadrature where it should

be measured.

One way of realizing such an optomechanical amplifier in practice is with another

interferometer, as is illustrated in Fig. 2.8. The details of this kind of interferometer are

given by (2.28). A Faraday isolator serves as an optical circulator and is used to send the

signal from the main interferometer bIFO into the dark port of the amplifier interferometer.

The amplified signal b exits the dark port and is detected. The noise entering the full

detector a is routed through the Faraday into the main interferometer and bypasses the

amplifying interferometer. That the vacuum entering the main interferometer bypasses
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Figure 2.8: Using an interferometer as a phase sensitive optomechanical amplifier.
The Faraday isolator acts as an optical circulator.

the amplifier is important so that the amplifier doesn’t make the quantum noise of the

main interferometer itself worse. In this case, the amplifier pump field α is the laser of

the amplifier interferometer.

Another way of realizing such an optomechanical amplifier is to use a ring cavity, as

is illustrated in Fig. 2.9. A strong pump field is sent into the ring and travels in the

same direction as the signal field bIFO exiting from the interferometer. This amplifies

the output signal b which is detected. The noise a entering the detector travels in the

opposite direction around the ring and so the noise aIFO entering the interferometer is

not amplified. The ring thus acts as an amplifer and a circulator. There are also two

sets of modes that couple into the amplifier in this case denoted by α, β, α̃, and β̃. If the

input noise a is squeezed then the noise α̃ coupled in through the amplifier will degrade

the resulting squeezing aIFO entering the dark port of the interferometer.
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Figure 2.9: Using a ring cavity as a phase sensitive optomechanical amplifier. The
one-way direction of the pump makes turns the ring cavity into an optical ciculator.
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Chapter 3

Towards the Observation of
Ponderomotive Squeezing in a 40 m
Interferometer

In this chapter we discuss the possibility of observing ponderomotive squeezing at the

Caltech 40 m interferometer. The goal is to measure the output vacuum noise at the

asymmetric port of the interferometer and observe it squeezed, through the ponderomo-

tive interactions of the interferometer, below the level of vacuum fluctuations entering

the interferometer in some quadratures. Sec. 3.1 describes the optomechanical response

of the interferometer. Sec. 3.2 describes the propagation of quantum noise throughout

the interferometer and the optimization of the interferometer to maximize the observ-

able squeezing. In Sec. 3.3, we add classical noise to get an understanding of what the

fundamental limits to the observable squeezing are, and in Sec. 3.4 we discuss further

technical challenges that must be overcome. Finally, in Sec. 3.5 we discuss the prospects

of observing squeezing below vacuum with different upgrades to the current state of the

interferometer.
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Figure 3.1: Schematic of a dual-recycled Fabry-Perot Michelson interferometer. In
reality, the vacuum noises a and b enter and exit at the detector (labeled BHD);
however, all calculations are done with them entering and exiting the interferometer
as shown here. For our purposes, the only difference is losses going through the
readout train to the photodiode, and these losses are included in the calculations.
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Figure 3.2: The CARM and DARM degrees of freedom are equivalent to two inde-
pendent three mirror cavities. The CARM cavity is formed by the PRM, ITMs, and
ETMs, and the DARM cavity is formed by the SRM, ITMs, and ETMs.
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3.1 Optomechanical Response of a DRFPMI

The 40 m interferometer is a dual-recycled Fabry-Perot Michelson interferometer

(DRFPMI), as is LIGO. Fig. 3.1 shows a schematic of a DRFPMI. Fabry-Perot Michelson

means that, rather than being a simple Michelson with a beam splitter and two end

mirrors, the interferometer has Fabry-Perot optical cavities for arms. Each cavity has an

input test mass (ITM) and end test mass (ETM). Dual-recycled means that it employs

both power and signal recycling: a power recycling mirror (PRM) forms a power recycling

cavity (PRC) and a signal recycling mirror (SRM) forms a signal recycling cavity (SRC).

The optomechanical response of a DRFPMI can be reduced to that of coupled three

mirror cavities: the differential arm length changes and common arm length changes

each behave as independent coupled cavities. In both cases, the ETMs and ITMs form

effective mirrors and the recycling mirror is the third; see Fig. 3.2. If Lx and Ly are the

lengths of the X and Y arms, respectively, the common arm length (CARM) is defined as

L+ = (Lx +Ly)/2 and the differential arm length (DARM) is defined as ∆L = Lx−Ly.1

The reflectivity of one of the simple Fabry-Perot cavities making one of the arms of

the interferometer is2

rarm =
−ri + ree

−2iφarm

1− riree−2iφarm
(3.1)

where φarm = ωL/c is the phase the light accrues traveling one-way in the cavity, ri is

the ITM mirror reflectivity, re is the ETM mirror reflectivity, and we have neglected

losses in the mirrors. If a third mirror is added, any two look like an effective mirror to

the third. In an interferometer, the arm cavities are always held on resonance φarm = 0.

Furthermore, the end mirrors are almost perfectly reflecting re ≈ 1, so the effective mirror

1This definition of CARM and DARM with differing factors of 2 is unfortunate but seems to be
standard when actually plotting data, so we begrudgingly use it for calculations here. Note that some
references use symmetric factors of 2 in calculations, however.

2We use the convention that the reflection from the front of a mirror is positive and the reflection
from the back of a mirror is negative.
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formed by the ETMs and ITMs is rarm ≈ 1.

Now consider the compound mirror formed by one of the recycling mirrors and the

ITM of one of the effective DARM or CARM cavities. The reflectivity of this mirror is

rrec =
ri + rre

−2iφrec

1 + rirre−2iφrec
(3.2)

where φrec is the phase the light accrues traveling one way in the recycling cavity. There

are three possible tunings for this recycling cavity that lead to qualitatively different

behavior for the full coupled three mirror cavity.

First, φrec = 0 gives the reflectivity rrec = (ri+rr)/(1+rirr), which is greater than the

reflectivity ri of the single ITM. The coupled cavity therefore has a higher finesse, stores

more power, and has a lower bandwidth than the original cavity. This is the tuning always

used for the power recycling cavity for two reasons. First, we always want more power in

the arms since, everything else being equal, this increases the response to gravitational

waves and reduces the shot noise. Second, optical cavities act as low pass filters and

attenuate signals outside of their bandwidth. The power recycling cavity passively filters

laser noise outside of its bandwidth and, since this tuning lowers the bandwidth, this

noise is filtered more aggressively. If this tuning is used for the signal recycling cavity it

is called signal recycling (SR). With signal recycling, the interferometer is more sensitive

to low frequency signals at the expense of losing sensitivity at higher frequencies. This

tuning for the SRC is not used for gravitational wave detectors.

Second, the tuning φrec = π/2 gives the reflectivity rrec = (ri − rr)/(1− rirr), which

is less than the reflectivity of the single ITM. The coupled cavity therefore has a lower

finesse, stores less power, and has a higher bandwidth than the original cavity. This is

the tuning commonly used for gravitational wave detectors and is known as resonant

sideband extraction (RSE).3 One of the main motivations for having an SRC is to store

3It is called resonant sideband extraction because, with φrec = π/2, the carrier is resonant in the
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more power in the arms while minimizing thermal loads on the optics. One way to

store more power in the arms is to increase the power into the arms, either by getting a

bigger laser or by increasing the power recycling gain, but this requires more power to

be dissipated in the beam splitter and ITMs. Another way of storing more power is to

increase the ITM mirror reflectivity, but this reduces the bandwidth of the detector. So

the power can be increased by increasing the ITM reflectivity and then the bandwidth

of the detector increased by adding an SRM and tuning it so that φrec = π/2.

Finally, the recycling cavity can be detuned, meaning φrec is any angle other than

0 or π/2. This leads to a more complicated response, which we discuss in detail now,

and which we will exploit to observe ponderomotive squeezing below vacuum. The input

output relations for a DRFPMI are4 [29, 35]


b1

b2


 =



C11 C12

C21 C22






a1

a2


+



D1

D2


∆L, (3.3)

where a1,2 are the input and b1,2 are the output vacuum fields at the asymmetric port.

The expressions for the matrices C and D in the presence of losses are also given in

Refs. [29, 35], but they are complicated and unilluminating so we do not write them

here; however, all calculations done in this chapter are done with losses included.

Rather than writing the matrices C and D in (3.3) in the parametrization of Refs. [29,

35], we use the parametrization of Ref. [36]. Any linear combination of the output

quadratures b1 and b2 can be readout. The quadrature measured is

bζ = b1 sin ζ + b2 cos ζ, (3.4)

where ζ is known as the homodyne angle. One method, and the method planned for

recycling cavity if the arm is not resonant, i.e. if the ETM is removed so that it is just the recycling
mirror and ITM. When the arm is brought into resonance the sign of the effective ITM reflectivity
changes and so the carrier becomes non-resonant.

4Some multiplicitive constants have been absorbed into the definitions of the matrices C and D from
their definitions in Refs. [29, 35].
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Figure 3.3: DARM transfer functions for typical 40 m parameters given in Tab. 3.1.
The magnitude is the power detected at the asymmetric port per differential arm
length change ∆L = Lx − Ly.
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this experiment and some future GW detectors, of measuring this signal is described in

Appendix. B and is known as homodyne readout. This angle is defined so that the phase

quadrature, and thus the quadrature with a gravitational wave signal, is at ζ = 0 and

the amplitude quadrature is at ζ = π/2. The response of this quadrature to differential

arm motion is5

bζ = g0
cos(φ+ ζ)− rs cos(φ− ζ)

1− 2rs cos 2φ+ r2
s

(1 + if/z)e−2πifL/c

1 + if/(fpQp)− (f/fp)2 − (ξ/f)2
∆L (3.5a)

≡ g∆LG (1 + if/z) e−2πifL/c ∆L (3.5b)

≡ H ∆L, (3.5c)

where H is known as the DARM transfer function and we have defined

G =
1

1 + if/(fpQp)− (f/fp)2 − (ξ/f)2
, (3.6)

and the optical gain

g∆L = g0 [cos(φ+ ζ)− rs cos(φ− ζ)] gvac. (3.7)

The gain in the response of the interferometer due to differential arm motions ∆L is

increased from the gain due to quantum vacuum fluctuations entering the asymmetric

port described below by the first factor in (3.7). The gain due to the vacuum fluctuations

is

gvac =
1

1− 2rs cos 2φ+ r2
s

, (3.8)

and the constant g0 sets the scale of the overall gain of the interferometer.

The other parameters defined in (3.5) have the following interpretations. The fre-

quency fa = cTi/8πL is the cavity pole of the arm cavities and is the frequency at which

the response of the interferometer would start to roll off if there was no signal recycling

5The operator bζ has units of
√

photons/Hz and so the units of g0 as written are
√

photons/Hz/m.
However, this transfer function is also valid for the physical power measured at the asymmetric port. In
this case the numerical value of g0 changes and has units of W/m.
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mirror. As discussed above, the presence of the SRM modifies the bandwidth of the ef-

fective DARM cavity formed by the coupled cavity consisting of the arms and the SRM.

The complex coupled DARM pole is

p = fa
1− rse2iφ

1 + rse2iφ
, (3.9)

which is often useful to write in terms of it’s magnitude

fp = |p| = fa

√
1− 2rs cos 2φ+ r2

s

1 + 2rs cos 2φ+ r2
s

(3.10)

and Q factor

Qp =
fp

2 Re p
=

√
1− 2r2

s cos 4φ+ r4
s

2(1− r2
s)

. (3.11)

For SR tuning (φ = 0), the coupled pole fp = fa(1 − rs)/(1 + rs) is less then the arm

pole and the bandwidth is reduced; for RSE tuning (φ = π/2), fp = fa(1 + rs)/(1 − rs)

is greater than the arm pole and the bandwidth is increased, as described above.

When the SRC is detuned, the DARM cavity forms an optical spring with the squared

spring frequency

ξ2 = f 2
a

(
cPbs

2π3λ0f 4
aML2

)(
2rs sin 2φ

1− 2rs cos 2φ+ r2
s

)
. (3.12)

The mechanical resonance of the mirror pendula is shifted from its free value ω2
m to ξ2.

If ξ2 > 0 the interaction is that of a spring, and if ξ2 < 0 it is an anti-spring. Note that

ξ2 ∝ φ(PBS/ML2)/(1−rs)2 for detunings near SR, and that ξ2 ∝ −φ̃(PBS/ML2)/(1+rs)
2

for detunings near RSE where φ = π/2 + φ̃. The mechanical resonance is thus shifted to

higher frequencies with SR tuning than with RSE tuning.

Finally, the homodyne zero

z = fa
cos(φ+ ζ)− rs cos(φ− ζ)

cos(φ+ ζ) + rs cos(φ− ζ)
(3.13)

is a zero of the DARM transfer function.
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Fig. 3.3 shows several DARM transfer functions H for different SRC tunings φ near

signal recycling (φ = 0) and resonant sideband extraction (φ = π/2) for parameters

characteristic of the 40 m interferometer. For φ ≈ 0, the spring frequency is greater than

the coupled pole; for φ ≈ π/2 the spring frequency is less than the coupled pole and the

resonance is clearly seen in the transfer functions.

3.2 Quantum Noise in a DRFPMI

In Sec. 3.1, we described the response of the interferometer to differential arm motion,

and thus to gravitational waves. In this section we describe the response to vacuum

fluctuations entering the asymmetric port. The input output relations are


b1

b2


 = gvacG

[
1 + (f/fa)

2
]


C̄11 C̄12

C̄21 C̄22






a1

a2


, (3.14)

where [29, 35]

C̄11 = C̄22 = (1 + r2
s)

(
cos 2φ+

K
2

sin 2φ

)
− 2rs

1− (f/fa)
2

1 + (f/fa)2
(3.15a)

C̄12 = −t2s(sin 2φ+K sin2 φ) (3.15b)

C̄21 = t2s(sin 2φ−K cos2 φ). (3.15c)

The function

K =
cPbs

π3λ0f 4
aML2

1

(f/fa)2[1 + (f/fa)2]
(3.16)

quantifies the strength of the optomechanical coupling. Below the cavity pole fa, it

behaves as a free mass falling like f−2. At frequencies above the cavity pole, the low pass

filtering of the cavity causes the response to fall faster like f−4.

When reading out the quadrature bζ defined in (3.4) the quantum noise is

Sbζ = Sb1 sin2 ζ + Sb2 cos2 ζ + Sb1b2 sin 2ζ. (3.17)
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Figure 3.4: 40 m displacement noise budget. The dashed red trace is the noise of the
unsqueezed vacuum, i.e. the vacuum noise measured if the output from the interfer-
ometer is blocked.
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Quantity Symbol Value
Arm length L 37.795 m
Mirror mass M 264.2 g
Arm cavity pole fa 4.4 kHz
Arm finesse F 450
Input power Pin 30 W
Power recycling gain gprc 80
Power on the beam splitter PBS 2.4 kW
Power in the arms Parm 344 kW
SRM power transmissivity Ts 0.245
ITM power transmissivity Ti 0.01384
ETM power transmissivity Te 13.7 ppm
Round trip losses in the arms L 20 ppm
Loss in the SRC λSR 150 ppm
Downstream losses λPD 0.05

Table 3.1: Optimistic 40 m parameters. Not all parameters are independent.

Since we only consider unsqueezed vacuum entering the interferometer, Sa1 = Sa2 = 1

and Sa1a2 = 0, so (3.17) becomes

Sbζ =
∣∣gvacG

[
1 + (f/fa)

2
]∣∣2[C̄2

11 − t2sKC̄11 sin 2ζ

+K2(cos4 φ cos2 ζ + sin4 φ sin2 ζ)− 2K sin 2φ cos(φ− ζ) cos(φ+ ζ)
]
. (3.18)

Now we take a detailed look at the quantum noise in the 40 m interferometer and

ways to maximize the observable squeezing below vacuum. We will use the optimistic

but plausible parameters given in Tab. 3.1 and briefly discuss other scenarios in Sec. 3.5.

When investigating squeezing below vacuum, there are two useful ways of plotting

the relevant noises. The first is to directly plot the displacement noises on a standard

noise budget, an example of which is shown in Fig. 3.4. It is important to note that

these noises are signal referred. This means that the output from the interferometer is

divided by the DARM transfer function H given by (3.5) so that the noises are what they

would be if they were added directly to ∆L rather than to H∆L. In this noise budget,

the red dashed trace labeled “Unsqueezed vacuum” is the (signal referred) unsqueezed
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Figure 3.5: 40 m noise budget expressed as noise relative to unsqueezed vacuum noise

in decibels below vacuum, i.e. 20 log10

(
S

1/2
bζ
/S

1/2
a

)
. Squeezing below vacuum occurs

for negative values.

vacuum noise that would be observed in the photodiode if no signal was being measured,

i.e. S
1/2
a /|H|. This is the noise we are trying to beat. The blue trace labeled “Quantum”

is the (signal referred) quantum noise that exits the interferometer, i.e. S
1/2
bζ
/|H|. The

black trace is the sum of the quantum noise exiting the interferometer and the classical

noises described in Sec. 3.3. Squeezing below vacuum is observed when there is less noise

exiting the interferometer than unsqueezed vacuum, i.e. when the black total noise is

below the red vacuum noise.

The second way of thinking about the noises is to directly look at their magnitude

relative to the unsqueezed vacuum Sa, an example of which is shown in Fig. 3.5. To

convert a displacement noise as shown in Fig. 3.4 to a relative noise as shown in Fig. 3.5,

one multiplies by the DARM transfer function |H|. To convert a relative noise as shown

in Fig. 3.5 to a displacement noise as shown in Fig. 3.4, one divides the relative noise by

38



Towards the Observation of Ponderomotive Squeezing in a 40 m Interferometer Chapter 3

the DARM transfer function. For the following discussion we will mostly use this second

method of plotting the relative noises since it directly captures our goal of observing noise

below standard vacuum noise: negative values are places where the noise is squeezed

below vacuum levels.

Once the parameters given in Tab. 3.1 are set, two questions remain. First, “What

should the SRC detuning φ be?” And second, “At what homodyne angle ζ should we

measure?” It is important to note that, unlike in an interferometer used for detecting

gravitational waves, we are not trying to measure a differential arm signal generated in

the phase quadrature bζ=0. In order to maximize the signal to noise ratio of a signal,

the readout angle should neither be along the signal to maximize the signal nor in the

direction of lowest noise to minimize the noise [37, 38]. But we are not trying to measure

a signal at all and are thus just looking for the direction of minimal noise. In fact, as is

discussed below in Sec. 3.3, we want to be as insensitive to a differential arm signal as

possible.

It follows from (3.18) that the maximum squeeze factor below vacuum is

rmax =
1

2
arcsinh

(
1

2

√
(Sb1 − Sb2)2 − 4Sb1b2

)
(3.19)

and occurs at a homodyne angle of6

ζmax =
1

2
arccot

(
Sb2 − Sb1

2Sb1b2

)
=

1

2
arccot

(
C̄2

21 − C̄2
12

2C̄11

)

=
1

2
arccot

(
t2s

2 sin 2φ−K cos 2φ

2C̄11

)
. (3.20)

It is important to note that these values are frequency dependent, due to the frequency

dependence of the optomechanical interaction K described above in (3.16), and illustrated

6Unless
∂2Sζ
∂ζ2

= 2(Sb1 − Sb2) cos 2ζ − 4Sb1b2 sin 2ζ < 0,

in which case ζmax → ζmax + π/2.
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Figure 3.6: Amplitude to phase conversion for signal recycling

in Figs. 2.2 and 2.3, and so it is not a well defined task of simply finding a set of angles

that minimizes the noise. Though it is in principle possible to measure the optimal

angle at all frequencies by sending the output from the interferometer through a filter

cavity [25], we do not consider this extreme complication here.

Signal Recycling We start by analyzing the noise near signal recycling φ ≈ 0, which

will ultimately be the optimum configuration for the measurement. Since the carrier

does not get a net phase rotation in the SRC for φ = 0, the amplitude quadrature is

still at ζ = π/2 and the phase quadrature, where a differential arm signal would be, is

still at ζ = 0. It is therefore still mainly the amplitude to phase conversions, given by

the C21 matrix element of the matrix C in (3.3), that are responsible for ponderomotive

squeezing. The C21 amplitude to phase matrix element is plotted in Fig. 3.6 for several

SRC detunings near φ = 0. It is clear that φ = 0 has the most amplitude to phase

conversion, and therefore the most squeezing. For φ = 0, the free mass behavior of the
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Figure 3.7: Squeezing as a function of SRC detunings near signal recycling with
quantum noise only
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coupling falling like f−2 is evident below the cavity pole fa with the coupling falling like

f−4 above the coupled cavity pole fp due to the f−2 filtering of the DARM cavity. For

φ 6= 0, the coupling is flat below fp. This is because the presence of an optical spring

or anti-spring leads to the response rising like f 2 below the spring frquency ξ2; see (3.6),

(3.14), and Fig. 3.3. This f 2 rise from the spring or anti-spring cancels the f−2 fall

from the free mass response to radiation pressure and reduces the overall conversion of

amplitude to phase fluctuations below the coupled pole.

Fig. 3.7 shows squeezing as a function of SRC detuning φ at fixed homodyne angle

ζ. Fig. 3.8 show the corresponding quantum noise ellipses at several detunings at a fixed

frequency. The left plot of Fig. 3.8 shows the standard quantum noise ellipses, the radial

black line in the plots is the homodyne angle used in Fig. 3.7, and the red dashed circle is

the unsqueezed vacuum noise. It is clear from the left plot in Fig. 3.8 that φ = 0 has the

most squeezing below vacuum as discussed above and shown in Fig. 3.6. However, φ = 0

is not a good choice. When actually measuring the field at a certain homodyne angle ζ,

it is not the value of the noise on a noise ellipse at the angle ζ but rather the projection

of the noise ellipse onto a radial line extending from the origin in the ζ direction that is

measured. It is true that φ = 0 has the most squeezing in the amplitude quadrature, but

it also has the most anti-squeezing in the phase quadrature. As soon as one moves off the

axis orthogonal to the anti-squeezing, the anti-squeezing swamps the squeezing and the

observed noise is above vacuum noise. The right plot in Fig. 3.8 shows this projection

of the noise on the observation direction. In this plot, every angle where the projected

noise is below the red vacuum noise is an angle where squeezing would be observed. As

is evident from this figure, the φ = 0 noise does indeed have the maximum squeezing

below vacuum, but this occurs only for an extremely narrow range of homodyne angles.

Note that as the SRC detuning is increased from negative values to positive values,

the noise ellipses in Fig. 3.8 rotate counterclockwise. For φ = 0 the direction of squeezing
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Figure 3.8: Quantum noise curves as a function of SRC detuning near signal recycling.
The radial dotted lines in the left plot show the optimum homodyne angle to readout
to observe the most squeezing below vacuum (at this frequency). The radial black
dotted lines show the homodyne angle used in Fig. 3.7. The red dashed circle is
the unsqueezed vacuum noise. The left plot is the standard quantum noise ellipse
as introduced in Fig. 2.3 where the radial distance is the noise relative to vacuum
noise measured in dBvac. The right plot is the noise one would see by observing
at a given homodyne angle, i.e. the projection of the noise in the left plots in the
direction of observation, again measured in dBvac. For the right plots, squeezing
below vacuum occurs anywhere the noise curve is below the red vacuum noise; it is
not as straightforward to see by eye where the noise is squeezed below vacuum in
the left plots. Note that the right plots are zoomed very far in so that the large
anti-squeezing is not visible for all angles. See text for details.
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is along ζ = π/2.7 For negative φ, the carrier gains less phase in the SRC than for φ = 0

and so these ellipses are rotated clockwise of the φ = 0 ellipse. For positive φ, the carrier

gains more phase in the SRC and so these ellipses are counterclockwise of the φ = 0

ellipse.

We can now understand the structure of the quantum noise in Fig. 3.7. For detunings

from around 1◦ to 3◦, the noise is squeezed below vacuum and is approximately constant

until around 600 Hz. Recall that the noise ellipses rotate counterclockwise and become

more circular as frequency is increased and the effects of radiation pressure subside; see

Figs. 2.2 and 2.3. In Fig. 3.8, it is only the φ = 1.5◦ and φ = 3◦ angles that are below

vacuum at the given homodyne angle. The ellipses don’t start to appreciably rotate

until around 600 Hz, at which time the dip below vacuum for both of these detunings

has rotated counterclockwise past the observed homodyne angle. At the same time, the

dip below vacuum for the φ = −1.5◦ and φ = −3◦ ellipses is clockwise of the observed

homodyne angle for the frequency plotted in Fig. 3.8. But, as the frequency increases, this

dip briefly rotates counterclockwise through the observed homodyne angle. This explains

why the band of squeezing in Fig. 3.7 is relatively constant for positive detunings and

low frequencies and then rapidly moves up in frequency as the detuning becomes more

negative.

Finally, note that the squeezing (and anti-squeezing) is reduced as |φ| is increased.

This is because the gain gvac given by (3.8) decreases from (1− rs)−2 for SR at φ = 0 to

(1 + rs)
−2 for RSE at φ = π/2. The tuning of φ thus provides a trade off: small φ has

more squeezing but for a smaller range of homodyne angles and frequencies, while large

φ has less squeezing but for a larger range of homodyne angles and frequencies. This

trade off can be seen from the depth and width of the dips below vacuum in Fig. 3.8.

7This is true for the frequency plotted in Fig. 3.8 since the frequency is low enough that the ellipses
have not yet started to appreciably rotate counterclockwise as the effects of radiation pressure diminish.
At higher frequencies the direction of squeezing for φ = 0 would be counterclockwise of ζ = π/2.
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Figure 3.9: Phase to amplitude conversion for resonant sideband extraction

Resonant Sideband Extraction Next, consider the noise near resonant sideband

extraction φ ≈ π/2. Since the carrier gets a π/2 phase shift traveling one way in the

SRC, the amplitude quadrature is now at ζ = 0 and the phase quadrature, where a

differential arm signal would be, is now at ζ = π/2. It is therefore mainly the phase to

amplitude conversions, given by the C12 matrix element of the matrix C in (3.3), that are

responsible for ponderomotive squeezing. The C12 phase to amplitude matrix element is

plotted in Fig. 3.9 for several SRC detunings near φ = π/2.

The physics responsible for generating the ponderomotive squeezing for φ ≈ π/2 is

the same as is responsible for squeezing for φ ≈ 0: it is still a radiation pressure induced

modulation of the mirrors getting converted to a phase fluctuation in the light. The

difference is that what are the amplitude and phase quadratures at the input to the

asymmetric port are swapped by the π/2 rotation in the SRC when they enter the arms.

That the squeezing generation is the same in both cases can be seen quantitatively by
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expanding (3.15) for an interferometer operating near SR with |φ| � 1

C̄11 = (1+r2
s)(1+Kφ)−2rs

1− (f/fa)
2

1 + (f/fa)2
, C̄12 = −2t2sφ, C̄21 = t2s(2φ−K) (3.21a)

and for an interferometer operating near RSE with φ = π/2 + φ̃ where |φ̃| � 1

C̄11 = −(1 + r2
s)(1 +Kφ̃)− 2rs

1− (f/fa)
2

1 + (f/fa)2
, C̄12 = t2s(2φ̃−K), C̄21 = −2t2sφ̃.

(3.21b)

Indeed, the conversion of amplitude to phase fluctuations responsible for ponderomotive

squeezing for SR C̄21 is the same as the conversion of phase to amplitude fluctuations

responsible for the squeezing for RSE C̄12. The other off-diagonal matrix elements are

similarly swapped. Once the squeezing is generated in the arms, however, the propagation

through the rest of the interferometer, described by the prefactor in (3.14), is responsible

for the different behaviors between the two tunings.

In comparing the amplitude to phase coupling of the SR tuning shown in Fig. 3.6

with the phase to amplitude coupling of the RSE tuning shown in Fig. 3.9, the free mass

behavior of the phase to amplitude coupling falling like f−2 is still visible for φ = π/2

at low frequencies. Furthermore, the RSE coupling is still flat in frequency for low

frequencies because the f 2 rise of the spring or anti-spring cancels the f−2 fall from the

free mass response. However, in the RSE case shown in Fig. 3.9, the coupling continues to

fall like f−2 instead of falling faster like f−4. As is discussed in Sec. 3.1, the spring/anti-

spring frequency ξ2 is below the coupled pole frequency fp for RSE but above it for

SR—in the case of the 40 m with these parameters at least where the coupled pole fp

is greater than the arm pole fa = 4.4 kHz for RSE. Because it is the low pass filtering

of the DARM cavity that is responsible for the extra f−2 decay, the phase to amplitude

coupling continues to fall like f−2 for a free mass above the spring frequency.

Fig. 3.10 shows squeezing as a function of SRC detuning near RSE, and Fig. 3.11

shows the corresponding quantum noise ellipses. The fact that the phase and amplitude
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Figure 3.10: Squeezing as a function of SRC detunings near resonant sideband extrac-
tion with quantum noise only
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Figure 3.11: Quantum noise curves as a function of SRC detuning near resonant
sideband extraction. The radial black dotted lines show the homodyne angle used in
Fig. 3.10. See caption for Fig. 3.8

quadratures have been rotated by π/2 is evident in Fig. 3.11. The overall structure of

the quantum noise for RSE shown in Fig. 3.10, with the exception of the resonance from

the optical spring, is similar to that for SR shown in Fig. 3.7. The same considerations

about the noise ellipses rotating counterclockwise both as the detuning is increased and

as the frequency is increased apply in both cases. The major difference is that the region

of squeezing below vacuum is shifted to lower frequencies for RSE as compared to SR.

This is because the noise ellipses don’t start to appreciably rotate counterclockwise as

frequency is increased until the optomechanical coupling starts to decrease. As can be

seen from Figs. 3.6 and 3.9 this starts to happen at lower frequencies for RSE than for SR.

This is also evident by looking at the rotation of the noise ellipses for RSE in Fig. 3.11

compared to that for SR in Fig. 3.8.
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3.3 Ponderomotive Squeezing in the Presence of Clas-

sical Noise

In reality there are several sources of classical and technical noise which must be

considered in addition to the quantum noise discussed in Sec. 3.2 when trying to observe

noise squeezed below the vacuum level. These noises are shown along with the quantum

noise in the noise budgets in Figs. 3.4 and 3.5.

The displacement noises shown in Fig. 3.4 couple to the fields at the output of the

interferometer through the DARM transfer function (3.5). The total noise at the output

is therefore

S
(tot)
bζ

= Sbζ + |H|2S(class)
x , (3.22)

where Sbζ is the quantum noise given by (3.18) and analyzed in Sec. 3.2, and S
(class)
x

are all of the classical displacement noises. To reduce the effects of classical noise, we

therefore want the sensitivity to differential arm signals, and thus to gravitational waves,

to be as small as possible.

The DARM transfer functions for the SRC detunings shown in Figs. 3.7 and 3.10

are shown in Fig. 3.3. From the perspective of reducing the effects of classical noise,

detuning is beneficial because the presence of an optical spring or anti-spring reduces the

sensitivity to classical noises below the spring frequency. As can be seen from Fig. 3.3,

even though the low frequency response for RSE (φ = π/2) is less than that for SR

(φ = 0), the response for small detunings away from RSE is about an order of magnitude

greater than that for small detunings away from SR. Furthermore, the f 2 rise in the low

frequency sensitivity for the detunings away from RSE flattens out before the rise for

detunings near SR. Both of these effects are due to the spring frequency being lower near

RSE than near SR as discussed above.
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Figure 3.12: Squeezing as a function of SRC detunings near signal recycling with
both classical and quantum noise. The light dotted traces in the bottom figure are
the quantum contributions to the total noise and are the same as those plotted in the
lower figure of Fig. 3.7.
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Figure 3.13: Squeezing as a function of homodyne angle with both classical and quan-
tum noise

From the standpoint of reducing classical noise, tunings near SR are therefore better.

Fig. 3.12 shows squeezing as a function of SRC detuning when the classical noise is

included. The light dotted traces are the quantum contributions to the total noise and

are the same as those shown in Fig. 3.7. The squeezing has been reduced to a bucket from

around 70 Hz to 500 Hz and exists only for positive detunings φ > 0, which corresponds

to the spring. At low frequencies it is limited by seismic noise. At higher frequencies,

the noise ellipses are starting to rotate and so the only place the quantum noise is below

vacuum is for negative detunings φ < 0, which corresponds to the anti-spring; see Fig. 3.7.

But for these tunings, the resonances caused by the coupled pole and the optical anti-

spring lead to the peak in the sensitivity to classical noises which causes the total noise

to be greater than vacuum. There is no squeezing below vacuum when classical noise

is included with any of the tunings near φ = π/2 shown in Fig. 3.10 due to the higher

sensitivity to classical noise here.
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For illustrative purposes, the examples used in the last two sections have used a

homodyne angle of 82◦ for detunings near φ = 0◦ and a homodyne angle of −8◦ for

detunings near φ = 90◦. There is, however, a trade off between the amount of squeezing

and the range of frequencies and homodyne angles over which that squeezing occurs,

as was discussed in Sec. 3.2. There is more squeezing confined to a smaller region of

parameter space for detunings closer to 0◦ and homodyne angles closer to 90◦. For these

reasons, the optimal angles to use for this experiment are closer to φ = 0.275◦ and ζ = 88◦.

These are the parameters used for the noise budgets in Figs. 3.4 and 3.5. Fig. 3.13 shows

squeezing as a function of homodyne angle for the detuning set at φ = 0.275◦.

3.4 Technical Challenges

Sec. 3.3 described the fundamental limits to observing squeezing; however, there are

several sources of technical noise that exceed these fundamental noise sources, and which,

if not reduced, will make the observation of squeezing impossible.

Coil driver The positions of the suspended optics are controlled electromagnetically.

As is shown in Fig. 3.14, each mirror has five magnets glued onto it: four on the back

at the corners of a square and one on the side. Around each magnet a coil of wire is

attached to the suspension cage. By adjusting the current through each coil, the position

and angular orientation of the mirrors can be controlled. This also means that current

noise in the coils is converted to a displacement noise on the optics.

A simplified schematic of the circuit controlling the current to a single coil is also

shown in Fig. 3.14. The Johnson noise of the series resistor Rs is S
1/2
V =

√
2kBTRs and

is the dominant source of current noise in the coil driver circuit at the values necessary

to observe squeezing. The current in a coil produces a force F = αI on the optic where
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Figure 3.14: Electromagnetic control of suspended optics. Left: the 40 m ETMY
showing the five electromagnets used to control its position and angular orientation.
The steel wire suspension is also visible. Right: a highly simplified schematic of the
coil driver circuit.

α is approximately 0.016 N/A. The displacement noise due to Johnson noise of the series

resistor of a single coil is thus

S1/2
x =

√
2kBT

Rs

α

m(2πf)2
. (3.23)

The total noise on one mirror is the quadrature sum of the four electromagnets controlling

position 2S
1/2
x . To decrease this coil driver noise, the series resistance should be increased,

however this requires higher input voltages Vin to produce a given force on an optic.

The current through the series resistor Rs is Is = VinR2/R1Rs. So if the maximum

force needed to control the mirrors is Fmax, the maximum input voltage necessary is

Vin = (R1Rs/R2)(Fmax/α). High voltage coil driver circuits are currently being designed

so that the series resistance can be increased sufficiently high to observer squeezing.

Local oscillator intensity noise As is discussed in Appendix B, the output from the

interferometer is mixed with a strong local oscillator (LO) in order to measure the signal

in a method known as balanced homodyne readout. In principle, any noise on the LO is

canceled if the signal is small. Unfortunately, the output from the interferometer is not

small in practice and is dominated by “junk light.”
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Figure 3.15: Requirements for laser intensity noise at the input to the interferometer
(back of PRM) to be ten times less than the total noise goal in Fig. 3.4 for a contrast
defect of 1 mW.

In a perfect Michelson interferometer with a perfect 50/50 beam splitter and end

mirrors with the exact same reflectivity, there is no light at the asymmetric port in the

absence of a differential arm signal. However, if these conditions are not exactly met,

there will not be a perfect cancellation at the beam splitter and some light, known as

the contrast defect, will leak out to the asymmetric port. In a Fabry-Perot Michelson

interferometer, differences in the two arms lead to different arm reflectivities and cav-

ity poles. The contrast defect caused by the presence of these imperfections exits the

interferometer in the amplitude quadrature.

The contrast defect can then beat with the local oscillator light creating a signal

that is not canceled in the balanced homodyne readout. Since the contrast defect is in

the amplitude quadrature, its presence makes the measurement susceptible to amplitude

noise on the LO. Since some light from the power recycling cavity (about 50 mW) would

be taken to make the LO in the 40 m, this sets a requirement on the intensity noise
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present on the light going into the interferometer, as is shown in Fig. 3.15. Taking the

LO from the power recycling cavity rather than from some other source, such as another

laser, benefits from the LO automatically having the amplitude stability of the main

beam and getting passively filtered by the power recycling cavity.

OMC displacement noise As is mentioned in Appendix. A, the laser is phase modu-

lated with two sets of RF sidebands so that the interferometer length degrees of freedom

can be controlled. Ref. [39] explains the need for these sidebands and their use in con-

trolling the interferometer. However, these sidebands need to be removed from both the

signal and LO before the homodyne detection is done. This is done by sending the signal

and LO through a resonant bowtie cavity called the output mode cleaner (OMC). Since

the OMC has a bandwidth less than the RF sideband frequencies, the sidebands do not

resonate and are filtered from the signal and LO.

Early plans to use homodyne detection in gravitational wave detectors assumed that

separate OMCs would be used for both the LO and signal before the beamsplitter where

the two are mixed [40]; see Appendix. B. However, displacement noise in the OMC gets

converted into phase noise, and subsequent analysis found that this sets very stringent

requirements [41]. For this experiment we are considering using a single OMC, described

in Appendix B and shown in Fig. B.2, where the signal and LO have different polariza-

tions. We would use the second option shown in Fig. B.2, where the half-waveplate is

after the OMC, and where the displacement noise is (B.13). This noise is proportional

to sin ζ and, since we are reading out almost entirely the amplitude quadrature |ζ| < 1◦,

we are not affected by OMC displacement noise.

Angular instabilities As we have seen, when a cavity formed by two suspended mir-

rors is detuned from resonance, the power circulating in the cavity creates an optical
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Figure 3.16: Frequencies of the hard and soft modes for the 40 m interferometer

spring: the two mirrors can now excert a force on one another and the mechanical reso-

nance of the free mirrors is increased through the interaction. Similarly, if the laser beams

are not centered on the optics, the optomechanical interaction will allow the two mirrors

to excert a torque on one another. This interaction modifies the torsional resonance of

the free mirrors.

A two mirror cavity has two torsional modes modified by the optomechanical cou-

pling [42–44]. The first mode, called the hard mode, occurs when the beam is off center

on opposite sides of the optic. This mode becomes stiffer as the power in the cavity is

increased. The second mode, called the soft mode, occurs when the beam is off center

on the same sides of the optic. This mode becomes softer as the power in the cavity

is increased. If the power in the cavity is sufficiently high, the torque caused by the

radiation pressure will exceed the restoring torque of the free mirrors and the soft mode

will become unstable.
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Figure 3.17: Squeezing below vacuum as a function of SRM transmissivity

The resonance frequencies of the hard (+) and soft (-) modes are

ω2
± = ω2

0 +
PL

Ic

−(g1 + g2)±
√

4 + (g1 − g2)2

1− g1g2

(3.24)

where ω0 is the torsional resonance of the free mirror, P is the power in the cavity, L is

the cavity length, I is the moment of inertia of a mirror, and g1,2 = 1 − L/R1,2 are the

stability factors of the cavity where R1,2 are the radii of curvature of the mirrors. When

the power is increased to the point that ω2
− becomes negative, the soft mode becomes

unstable. Fig. 3.16 shows the resonance frequencies of the hard and soft mode as a

function of cavity power for the 40 m interferometer. The arm cavities are predicted to

become unstable for arm powers of about 6 kW.
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Pin [W] gprc Ts PBS [W] Parm [kW] φ ζ S
1/2
min [dBvac] fmin [Hz]

A 1 40 0.099 40 2.9 0.002◦ 89.7◦ −2.5 98
B 1 80 0.099 80 5.7 0.004◦ 89.7◦ −3.6 107
C 10 80 0.099 800 57 0.015◦ 89.7◦ −8.3 95
D 30 80 0.245 2400 340 0.275◦ 88◦ −10.1 100

Table 3.2: Achievable squeezing below vacuum for different 40 m upgrades. Case
A is close to the state of the interferometer today and Case D is the configuration
considered in the rest of the chapter. The noise for each case is shown in Fig. 3.18.

S
1/2
min is the minimum total noise which occurs at the frequency fmin.

3.5 Prospects for the Future

The parameters from Tab. 3.1 used in the rest of this chapter are not those of the

40 m interferometer today. The current input power to the interferometer is Pin = 1 W,

the power recycling mirror transmissivity is Tp = 0.056, and the signal recycling mirror

transmissivity is Ts = 0.099. After installing new folding mirrors in the power recycling

cavity and with the current Tp = 0.056, it is expected that a power recycling gain of 40

can be achieved in the near future. In order to maximize the power in the PRC, the

reflectivity of the PRM should be equal to the reflectivity of the compound mirror of the

effective common arm cavity minus the losses in the cavity. With current estimates of

these losses, a new PRM with Tp = 0.01 should be able to achieve a recycling gain of

about 80, which is the number used in the rest of this chapter.

The possibility of getting a fiber amplifier for the laser is also being considered. It

is conceivable that an input power of Pin = 30 W, the number used in the rest of this

chapter, can be achieved with an amplifier.

Though focussing on increasing the power in the arms, either through increasing the

input power or by increasing the recycling gain, is most important in increasing the

ponderomotive squeezing, adjusting the SRM transmissivity can improve the situation

as well. As can be seen from Fig. 3.17, increasing Ts from the current value of 0.099 to
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Figure 3.18: Squeezing below vacuum for the different 40 m upgrades listed in Tab. 3.2.
The thick lines show the total classical and quantum noise for each case and the light
dashed lines show the quantum noise only.

about 0.245, the number used in the rest of this chapter, can increase squeezing by a few

dBvac. Since the 40 m is currently setup to operate in RSE, the SRM will need to be

moved to operate in SR, as is discussed in Appendix A. Since the radius of curvature of

the SRM will then need to be adjusted so that the SRM stays mode-matched with the

rest of the interferometer, a new SRM needs to be installed. This gives us the opportunity

to choose the SRM transmissivity to maximize squeezing.

Tab. 3.2 lists a few different upgrades to the 40 m interferometer; the noise for each

case is shown in Fig. 3.18. As can be seen from the figure, there are two regimes: a low

power regime (Cases A and B) and a high power regime (Cases C and D). As the power

is reduced, the optomechanical coupling (3.16) is also reduced. As a consequence, the

region of squeezing below vacuum shown in Fig. 3.7 moves down to lower detunings and
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left to lower frequencies. At high power, the approximately constant region of squeezing

below vacuum extends to high enough frequencies for classical noise to also be below

vacuum. However, as the power is reduced, the noise ellipses start to appreciably rotate

at lower frequencies and it is only the momentary dip below vacuum, shown in Fig. 3.7

and described in the surrounding text, that extends to high enough frequencies for the

classical noise to also be below vacuum.
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Chapter 4

Quantum Hypothesis Testing and
Model Independent Tests of General
Relativity

4.1 Introduction

Direct observations of gravitational waves provide a new way to look for deviations

from the theory of general relativity. Such tests of general relativity have been carried

out [45, 46] with the recent observations of binary black hole and binary neutron star

mergers [3–5]. Such searches are an example of hypothesis testing.

There are two classes of hypothesis testing in this context [45–47]. In the first, one

has a specific set of alternative theories and asks specifically, “Is this theory or general

relativity more likely?” In this case, the data is analyzed with both theories to see if the

alternative theory explains the data significantly better than GR does. In the second

class, one just asks, “Is there any evidence for a deviation from general relativity?” In

this case, the data is only analyzed to see if it is consistent with GR. There is no other

theory it is being explicitly compared with. It is in this case that the test is “model

independent.” If the signals are weak, we may be content at first knowing only whether

a deviation from GR exists and not in what the details of that deviation are.
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In the following, we describe testing whether a signal is or is not present in a coherent

state of the electromagnetic field. The discussion is general, but we keep the example

of testing for a deviation from GR in mind. In the case of interferometric gravitational

wave detectors, we measure the light coming out of the interferometer to see if there is a

signal present or not, but there is nothing special to the light exiting an interferometer.

Typically one would just measure the signal by mixing it with a strong local oscillator and

observing it on a photodiode, with a homodyne detector for example. This measurement

suffers from shot noise arising from vacuum fluctuations beating with the local oscillator.

Since we are not trying to measure the signal and are content knowing only if one exists,

there is another option: we can count photons. By removing the local oscillator, we no

longer suffer from the vacuum fluctuations.

Sec. 4.2 gives an example of the benefits of counting photons over measuring a sig-

nal directly by looking at the coherent state of a quantum harmonic oscillator. Sec. 4.3

develops the general theory of hypothesis testing with coherent states of the electromag-

netic field. Sec. 4.4 describes combining multiple measurements to do hypothesis testing.

Finally, Sec. 4.5 gives an example of using these methods to look for deviations from

general relativity. Throughout, we compare hypothesis testing using photon counting

with hypothesis testing using homodyne detection and always find that photon counting

is more sensitive than homodyne detection.

4.2 Hypothesis Testing: A Single Mode

To illustrate the idea of quantum hypothesis testing, suppose we want to measure the

displacement α of the coherent state

|α〉 = e−|α|
2/2

∞∑

n=0

αn√
n!
|n〉 (4.1)
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of the quantum harmonic oscillator. We could measure the position of the oscillator

X = (a + a†)/
√

2, in which case the distribution of measurement outcomes would be

Gaussian

P (x|α) = |〈x|α〉|2 =
1√
π

e−(x−µ)2

, (4.2)

where the mean is µ = Reα; or, we could measure the number of quanta N = a†a in the

state, in which case the distribution of measurement outcomes would be Poissonian

P (n|α) = |〈n|α〉|2 =
N̄n

n!
e−N̄ , (4.3)

where the mean number of quanta is N̄ = |α|2. In either case, one would make multiple

measurements of identical states and, using either (4.2) or (4.3), would infer the value of

α.

Now suppose α is small and that we are content knowing only whether α is zero

or not. In this case, we could perform hypothesis testing between the null hypothesis

H0 that α = 0, signaling the absence of an effect such as a deviation from GR, and

the alternate hypothesis that α 6= 0, signaling the presence of such an effect. To do so

we need to set the criteria for deciding between H0 and H1 based on the outcome of

a measurement of either X or N . We need to minimize the probability of missing the

presence of an effect, the false dismissal rate PFD = P (H0|α 6= 0), while at the same time

minimizing the probability of claiming the presence of an effect when there is none, the

false alarm rate PFA = P (H1|α 6= 0).

First consider the case where the position X is measured. We will claim H1 if |x| ≥ rc

and claim H0 if |x| < rc for some cutoff rc chosen to minimize PFA and PFD. The false

alarm rate is

PFA|X = P (|x| ≥ rc|α = 0) =
2√
π

∫ ∞

rc

e−x
2

dx = 1− erf rc, (4.4)
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where erf is the error function, and the false dismissal probability is

PFD|X = P (|x| < rc|α 6= 0) =
1√
π

∫ rc

−rc
e−(x−µ)2

dx

=
1

2
[erf(µ+ rc)− erf(µ− rc)]. (4.5)

Next consider the case where the number of quanta N is measured. In this case we

can actually claim α 6= 0 by observing even a single quanta since we know with certainty

that α 6= 0 if n > 0: from (4.3),

PFA|N = P (n > 0|α = 0) = 0. (4.6)

The false dismissal rate is

PFD|N = P (n = 0|α 6= 0) = e−N̄ . (4.7)

Fig. 4.1 compares the minimum detectable displacement α for counting quanta and

measuring position. Quantum noise enters these measurements in different ways. In the

case of the position measurement, the Heisenberg uncertainty relation prevents us from

perfectly measuring α. In the case of counting quanta, it is the counting statistics of the

coherent state, i.e. the shot noise, that prevent a perfect measurement of N̄ .

4.3 Coherent States of the Electromagnetic Field with

Classical Noise

We now describe testing whether signals are present in the electromagnetic field and

consider the effects of classical noise on such measurements. Suppose we want to look

for signals oscillating at frequencies Ω on top of a strong carrier oscillating at ω0. For

example, the carrier could be a laser and the signals phase fluctuations imprinted on it
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Figure 4.1: Minimum detectable displacement of the quantum harmonic oscillator for
counting quanta vs. measuring position. As the false dismissal rate is decreased for
position measurements, the minimum displacement increases. The false dismissal rate
is zero for counting quanta and the minimum detectable displacement is smaller than
that of position measurements even tolerating an error rate as high as 10%.

from a gravitational wave. If Ω � ω0, as is always the case for lasers, the field can be

quantized in the Heisenberg picture as [23–25]

E(t) =

√
2π~ω0

Ac e−iω0t

∫ ∞

0

dΩ

2π

[
a+(Ω)e−iΩt + a−(Ω)eiΩt

]
+ hc. (4.8)

where a±(Ω) ≡ a(ω0 ± Ω) are the annihilation operators for the upper and lower signal

sidebands and A is the effective cross sectional area of the carrier. To describe such

signals it is useful to use the two-photon formalism [23, 24] where states are described

by the quadrature operators

a1(Ω) =
a+(Ω) + a†−(Ω)√

2
, a2(Ω) =

a+(Ω)− a†−(Ω)√
2i

. (4.9)

Any linear combination aζ = a1 sin ζ + a2 cos ζ can be measured but, since it is not

important which quadrature is measured in the following discussion, we simply write a

to denote an arbitrary quadrature of the field. A two-photon coherent state displaces
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both the upper and lower sidebands:

b = D†+(α+)D†−(α−)aD+(α+)D−(α−) = b+ α (4.10)

where the displacement operators

D±(α±) = exp
(
α±a

†
± − α∗±a±

)
(4.11)

are the usual one-photon displacement operators exciting either the upper or lower side-

band. From the definitions (4.9), we see that the upper and lower sidebands are them-

selves the excited states

D†(α+)a+D(α+) = a+ +
iα√

2
, D†(α−)a−D(α−) = a− +

iα∗√
2
. (4.12)

Suppose we are trying to make a linear measurement of a classical signal h(f) with

a detector which adds the classical noise ξ(f); see Fig. 4.2. If the field of the carrier is

described by the operator a, the total signal measured in the detector will be

b(f) = a(f) +Hdet(f)[h(f) + ξ(f)] (4.13a)

= a(f) + s(f) +
ξ(f)

S
1/2
shot(f)

. (4.13b)

Here, Hdet(f) is the frequency response of the detector and s(f) = Hdet(f)h(f) is

the signal as actually measured. In the case of an interferometric gravitational wave

detector, h is the gravitational wave strain and s is the electromagnetic field measured

by a photodiode at the output of the interferometer. If the time-domain signal has the

units [h(t)] = [h], then the frequency-domain signal has the units [h(f)] = [h]/Hz, the

frequency response has the units [Hdet(f)] =
√

photons/Hz/([h]/Hz), and the signals

measured in the photodiode have units [b(f)] = [a(f)] = [s(f)] =
√

photons/Hz.

Quantum noise is added to the measurement through the shot noise Sa of the mode

a(f), which is described by the single-sided noise spectral density defined as [23–25]

1

2

〈
a(f ′)†a(f) + a(f)a(f ′)†

〉
=

1

2
δ(f − f ′)Sa(f). (4.14)

66



Quantum Hypothesis Testing and Model Independent Tests of General Relativity Chapter 4

Detector Photodiode

h(f)

f

Hdet(f)
f

S 1/2
a

S 1/2shot

s(f)

Figure 4.2: Cartoon of the detection process described by (4.13). An incoming signal
h is measured by a detector and filtered through the detector’s response Hdet. The

resulting signal s = Hdeth is then measured by a photodiode where the shotnoise S
1/2
a

of the signal field is added in the photodetection process. In order to analyze signals
in terms of the signal h itself rather than s, the measurement is divided by |Hdet|.
The effective shotnoise is therefore S

1/2
shot = S

1/2
a /|Hdet|. The detector response shown

here is that of a low pass filter. The light dotted line is the response for an all pass
detector, and the light dotted line in the plot for s is the corresponding signal that
would be measured in such a detector. Not shown is the classical noise ξ which can
enter this process at any point.
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We will only be concerned with coherent states, for which Sa = 1. Instead of looking

at the noise of the state b(f), it is oftentimes useful to look at the noise of the state

b(f)/Hdet(f) so that the noise is relative to the original signal h itself instead of the signal

s filtered through the detector’s response. In this case, the shot noise is Sshot = Sa/|Hdet|2

and so the detector response can also be written as |Hdet(f)| = 1/S
1/2
shot(f).

We can now consider testing the hypothesis H1 that there is a signal h, and therefore

s, present vs. the hypothesis H0 that there are no signals. As with the case of the

harmonic oscillator of Sec. 4.3.2, we can do this in two ways. First, we can count the

number of photons in the state b as is described in Sec. 4.3.1. Second, we can measure

the quadrature b directly, which is analogous to measuring the position of the harmonic

oscillator, as is described in Sec. 4.3.2. We refer to this method as homodyne detection

since this is one method of measuring this quadrature. In both cases we measure signals

for a time T over a frequency band B.

4.3.1 Photon Counting

Suppose we measure the number of photons with frequencies within the frequency

band B. The number density of photons at frequency f is described by a†+(f)a+(f) +

a†−(f)a−(f) and the mean total number of photons is the sum of the number of photons

in the upper and lower sidebands:

N̄ =

∫

B

df
(
|α+|2 + |α−|2

)
=

∫

B

df |α|2, (4.15)

where (4.12) was used. Now if we measure the number of photons in the state (4.13),

the expected number of photons averaged over classical noise realizations of ξ is

N̄ =

∫

B

df

(
|s|2 +

〈
|ξ|2
〉

Sshot

)
. (4.16)
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The classical noise spectral density is

〈ξ∗(f ′)ξ(f)〉 =
1

2
δ(f − f ′)Sξ(f). (4.17)

Since the signal lasts for a finite time T , the delta function should be taken as δ(0)→ T

so that

N̄ =

∫

B

df |s|2 +
T

2

∫

B

df
Sξ
Sshot

(4.18a)

=

∫

B

df ns(f) + T

∫

B

df nξ(f) = N̄s + N̄ξ. (4.18b)

The terms in (4.18) have the following interpretations. The photon number density ns(f)

is the expected number of photons due to the signal detected per unit frequency and nξ(f)

is the expected number of photons due to noise detected per unit frequency per unit time.

N̄s and N̄ξ are the total expected number of photons detected due to signal and noise,

respectively. The number of photons Nγ actually detected is then Poisson distributed

P (Nγ) =
(N̄s + N̄ξ)

Nγ

Nγ!
e−(N̄s+N̄ξ). (4.19)

If we test the hypothesis that N̄s is either zero or nonzero, as we did with the harmonic

oscillator, the false alarm rate 1−e−N̄ξ becomes unacceptably large for noisy detectors. To

deal with this, we can require detecting at least Nc photons before declaring a detection.

Fig. 4.3 shows the necessary photon number cutoff as a function of noise for different

false alarm rates. Note the discrete nature of this cutoff which is responsible for many

of the jagged features in the examples below. In the context of photon counting, one is

penalized for increasing the bandwidth B or the time of the measurement T by increasing

the total number of noise photons N̄ξ detected.

Finally, it is important to note that this analysis, and the benefits of photon counting,

depends crucially on the state a being a coherent state. For example, suppose a is a

squeezed state, as is often used in gravitational wave detectors and elsewhere to reduce

69



Quantum Hypothesis Testing and Model Independent Tests of General Relativity Chapter 4

10−3 10−2 10−1 100

Average noise photons N̄ξ

0

1

2

3

4

5

6

P
h

ot
on

nu
m

b
er

cu
to

ff
N
c

PFA = 10−1

PFA = 10−2

PFA = 10−3

Figure 4.3: Minimum number of photons Nc required to claim a detection for different
false alarm rates.

quantum noise. In this case, even in the absence of classical noise (N̄ξ = 0), there are

photons in the absence of a signal: the probability distribution for the number of photons

in the squeezed vacuum with squeeze factor r is [24]

P (Nγ) =

(
tanhNγ r

cosh r

)2

. (4.20)

The false alarm rate is now 1− cosh−2 r rather than 0.

4.3.2 Homodyne Detection

When doing homodyne detection we measure an infinite number of modes and we

should consider how the signal is recorded and analyzed. As with the photon counting

case, consider making the measurement for a signal lasting for time T sampled at a rate

of ∆t and analyze the part of the signal in a bandwidth B. We can measure the excess
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power statistic defined as [48]

E = 4

Tfmax∑

k=Tfmin

|αk|2
Sb,k

(4.21)

where αk is the discrete Fourier transform of the signal

αk =
1

∆t
[s(k/T ) +Hdet(k/T )ξ(k/T )] (4.22)

and Sb,k is the discrete noise spectral density, including both quantum and classical noise,

of the b quadrature

Sb,k =
T

∆t2
Sb(k/T ) =

T

∆t2

(
Sa +

Sξ
Sshot

)
=

T

∆t2
(1 + 2nξ). (4.23)

The excess power, averaged over classical noise realizations, can thus be written as

E = 4

Tfmax∑

k=Tfmin

[
1

T

ns(k/T )

1 + 2nξ(k/T )
+

nξ(k/T )

1 + 2nξ(k/T )

]
= λs + λξ. (4.24)

The excess power statistic is distributed as a noncentral χ2 distribution with N = 2BT

degrees of freedom

P (E) =
1

2
e−(E+λ)/2

(E
λ

)N/4−1/2

IN/2−1

(√
λE
)

(4.25)

with noncentral parameter λ. As in the case of photon counting, we must choose a

cutoff power Ec below which we will not claim a detection. In the context of homodyne

detection, one is penalized for increasing the bandwidth B or the time of the measurement

T by increasing the number of samples N = 2BT .

4.3.3 Example Signal

To fully compare hypothesis testing with photon counting to hypothesis testing with

homodyne detection, we need a model of a signal. To that end, consider a signal that,

once filtered through the detector, is white noise

〈s∗(f ′)s(f)〉 =
1

2
δ(f − f ′)Ss (4.26)
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Figure 4.4: Ratio of the minimum detectable signal for hypothesis testing with homo-
dyne detection to that for photon counting, i.e. the amount by which photon counting
outperforms homodyne detection, as a function of the number of samples N = 2BT
and average noise photons N̄ξ using the model signal (4.26) for PFA = 10−3 and
PFD = 0.5.
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where Ss ≡ 2αs = 2ns(f)/T is constant. (In the gravitational wave example below, we

consider the case where the signal h is itself white.) Furthermore, we take the noise

photon number density to be constant nξ(f) = αξ. Plugging this into (4.18) gives

N̄ = BT (αs + αξ) =
N
2

(αs + αξ) = N̄s + N̄ξ. (4.27)

Since there are N /2 terms in the sum in (4.24),

E =
N
2

4

T

T (αs + αξ)

1 + 2αξ
=

4(N̄s + N̄ξ)

1 + 4N̄ξ/N
= λs + λξ. (4.28)

Now we want to compare the minimum detectable signal amplitude αs for photon

counting and homodyne detection. Let N̄pc be the minimum number of signal photons

required for a photon counting detection and λhom be the minimum non-central parameter

λs necessary for a homodyne detection. The number of signal photons in a signal that

would produce a non-central parameter λhom is, from (4.28),

N̄hom =
λhom

4

(
1 +

4N̄ξ

N

)
. (4.29)

The amount by which hypothesis testing with photon counting outperforms that of ho-

modyne detection is quantified by the ratio N̄hom/N̄pc, which is plotted in Fig. 4.4 as a

function of N and N̄ξ.

To understand how this ratio scales with Nξ, note that, to hold the total expected

number of noise photons N̄ξ constant as the duration and bandwidth of the measurement

N = 2BT is varied, the noise density αξ is varied. Since the variance of the Poisson

distribution of the number of noise photons is N̄ξ, the minimum number of signal photons

necessary to claim a detection for photon counting is N̄pc ∼
√
N̄ξ. The minimum signal

photons necessary to claim a detection for homodyne detection is set by N . Thus, with

N constant, N̄hom/N̄pc ∝ 1/
√
N̄ξ. That photon counting does better than homodyne

detection with decreasing classical noise can be understood intuitively since the false
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alarm rate for photon counting goes to zero as N̄ξ vanishes, as we saw with the harmonic

oscillator example, while the false alarm rate for homodyne detection is set by the number

of modesN measured independent of the amount of classical noise. Of course, the amount

of classical effects the false dismissal rate for both methods, however.

To see how this ratio scales with N , note that, since the excess power has a noncentral

χ2 distribution E ∼ χ2
N (λ), for N � 1 it is normally distributed as E ∼ N[N + λ, 2(N +

2λ)].1 Therefore, for a signal to be detectable λhom ≈
√
N for large N . If N̄ξ is constant,

so is N̄pc, and so N̄hom/N̄pc ∝
√
N .

When the classical noise is larger than the time-frequency product N̄ξ & N , N̄hom/N̄pc

for decreases with increasing N before increasing as
√
N . This is explained by the

conversion, Eqs. (4.28) and (4.29), between λhom and N̄hom: when the classical noise is

large, N̄ξ & N , the number of signal photons N̄s necessary to reach a given λ increases.

4.4 Combining Multiple Measurements

We have described how hypothesis testing can be used to test whether a signal is

present in a measurement. If multiple measurements of processes with possible signals

are made, these measurements can be combined to test whether any of them contained

a signal.

First, consider two measurements with signals s1 and s2. If photons were counted,

suppose that the first measurement observes N1 and the second observes N2 photons. If

instead a homodyne measurement was made, suppose an excess power of E1 was observed

with N1 samples for the first measurement and an excess power E2 observed with N2

samples for the second. We can now compute the total number of photons Ntot = N1+N2

1The notation X ∼ D means, “The random variable X has the distribution D.” The normal distri-
bution with mean µ and variance σ2 is denoted by N(µ, σ2), the Poisson distribution with mean (and
variance) N̄ is denoted by Pois(N̄), and the noncentral χ2 distribution with N degrees of freedom and
noncentral parameter λ is denoted by χ2

N (λ).
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Figure 4.5: Scaling of the minimum number of signal photons for the example sig-
nal (4.26) for hypothesis testing by photon counting as a function of the number of
identical measurements made.

observed over both measurements or the total excess power Etot = E1 + E2. In this, case

the Ntot is again Poisson distributed with mean N̄1 + N̄2

Ntot ∼ Pois(N̄1 + N̄2) (4.30)

and Etot is again distributed as a non-central χ2 distribution

Etot ∼ χ2
N1+N2

(λ1 + λ2). (4.31)

If we now consider M measurements of the same signal, the total number of photons

Ntot and total excess power Etot are distributed as

Ntot ∼ Pois(MN̄), Etot ∼ χ2
MN (Mλ). (4.32)
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For many measurements M � 1, both are approximated by normal distributions:

Ntot ∼ N(MN̄,MN̄) (4.33)

Etot ∼ N[M(λ+N ), 2M(N + 2λ)]. (4.34)

This means that, for large M , both the total number of photons Ntot and the total

excess Etot power necessary to claim a detection scale as
√
M . Therefore, the minimum

detectable signals for an individual signal for both methods scale as
√
M/M = 1/

√
M .

The situation is actually better for photon counting if the noise N̄ξ is small. As N̄ξ

becomes much less than M , the minimum number of signal photons becomes constant.

Therefore, the minimum signal for a single measurement scales as 1/M instead of 1/
√
M .

Fig. 4.5 shows how N̄pc for the example signal (4.26) discussed above depends on the

number of measurements M .

4.5 Application to Tests of General Relativity through

Gravitational Wave Detection

In this section we discuss how hypothesis testing with photon counting and homodyne

detection can be used to search for deviations from general relativity in observations of

gravitational waves. To apply the formalism developed above, where the null hypothesis

H0 is that no signal is present (i.e. no deviation from GR) and the alternate hypothesis

H1 is that a signal exists (i.e. there is a deviation from GR), the GR prediction must be

subtracted from the measured data.

To do so in practice, the inspiral of a gravitational wave would be used to estimate

the parameters of the source. With space detectors, signals can be studied for months

to years before entering the ground network bands and the parameters can thus be

determined very accurately. Some sources may also stay in the low frequency band of
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future gravitational wave detectors long enough to estimate the parameters of the source

from the ground alone. These parameters would then be used to generate a numerical

relativity waveform for the GR prediction, and this waveform would be used to actuate

on the interferometer mirrors in such a way as to cancel the expected signal. Any signal

detected after this subtraction would thus be evidence for a deviation from GR.

In interferometric gravitational wave detectors at low frequencies, radiation pressure

causes the output signal to be in a squeezed state. As discussed above, photon counting

is not useful in such a case. However, at higher frequencies, the signal is dominated

by shotnoise and the output is in a coherent state. In a standard configuration of such

interferometers, the output has the form of a low pass filter [35, 36]

Hdet(f) =
ge−2πifL/c

1 + if/fp
, (4.35)

where L is the length of the arms, fp is the cavity pole frequency, and g is the optical gain.

For the remainder of this section we take numbers characteristic of the LIGO Voyager

design [8], for which L = 4 km, fp ≈ 250 Hz, and g ≈ 1024
√

photons/Hz/(strain/Hz).

At frequencies above the cavity pole, where shotnoise dominates and we would want to

do photon counting, the dominant source of classical noise is coating thermal noise which

scales as Sξ ∝ 1/f . The noise photon number density is thus

nξ =
1

2

Sξ
Sshot

=
1

2
|Hdet|2Sξ =

k

(f/fp)[1 + (f/fp)2]
. (4.36)

For Voyager parameters, k ≈ 0.2 photons/s/Hz.

4.5.1 Example GR Modification

Now consider a gravitational wave signal with a modification to general relativity of

the form

h = hGR + ∆h (4.37)
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Figure 4.6: Ratio of the minimum detectable deviation from GR for hypothesis testing
with homodyne detection to that of photon counting for the deviation (4.37) and (4.38)

where hGR is the waveform predicted by general relativity and ∆h is the deviation. We

want to compare how large of a deviation ∆h from GR is necessary before it can be

detected by performing hypothesis tests with photon counting and homodyne detection.

As a simple example of a deviation from GR, suppose that the signal is modified by

white noise with spectral density S∆h = A, i.e.

〈∆h∗(f ′)∆h(f)〉 =
1

2
δ(f − f ′)A. (4.38)

The signal noise photon density is thus ns = TA/2Sshot. The average number of signal

photons is thus

N̄s =
TA

2

∫ fmax

fmin

g2

1 + (f/fp)2
df

=
1

2
TAg2fp

(
arctan

fmax

fp
− arctan

fmin

fp

)
, (4.39)
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and the average number of noise photons is

N̄ξ = T

∫ fmax

fmin

k

(f/fp)[1 + (f/fp)2]
df

= Tkfp ln

[
fmax

fmin

√
1 + (fmin/fp)2

1 + (fmax/fp)2

]
, (4.40)

For homodyne detection, the contribution to the noncentral parameter from the signal

and noise are

λs = 2A

Tfmax∑

k=Tfmin

|H|2
1 + 2nξ

(4.41)

λξ = 4

Tfmax∑

k=Tfmin

nξ
1 + 2nξ

(4.42)

where H is given by (4.35) and nξ is given by (4.36).

The ratio of the minimum detectable deviation when performing hypothesis testing

with homodyne detection Ahom to the minimum detectable deviation for photon counting

Apc is shown in Fig. 4.6. To see how the noise behaves when the duration and bandwidth

of the measurement are changed, the minimum frequency is set at fmin = 300 Hz as fmax

and T are varied. For photon counting, since both N̄s and N̄ξ are proportional to T ,

Apc ∝ 1/
√
T . As the bandwidth increases, Apc decreases initially since both more signal

and more noise photons are detected; however, since both the detector response decreases

like |H|2 ∝ (f/fp)
−2 and the noise photon number density decreases like nξ ∝ (f/fp)

−3

for frequencies f � fp ≈ 250 Hz, further increase of the bandwidth leads to no further

detection of either signal or noise photons. Therefore, once fmax ≈ 600 Hz, further

increase of the bandwidth has no effect on the minimum detectable deviation.

The situation is worse for homodyne detection. Since increasing T increases both

the magnitude of the excess power and the number of samples N = 2BT , the minimum

detectable signal also scales as Ahom ∝ 1/
√
T . As for photon counting, since the detector

acts like a low-pass filter, no extra signal is detected by increasing the bandwidth past
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fmax ≈ 600 Hz. However, homodyne detection always suffers from increasing the number

of samples: N ∝ fmax. Thus, Ahom ∝
√
fmin after fmax & 600 Hz. The ratio of the

minimum detectable signals thus scale as Ahom/Apc ∝
√
fmax for large fmax and Ahom/Apc

asymptotes to a constant ratio as T is increased.

Finally note that, if M measurements are combined to search for deviations, based

on the general considerations described above, both Ahom ∝ 1/
√
M and Apc ∝ 1/

√
M .

4.5.2 Technical Sources of Photon Noise

When using hypothesis testing to look for deviations from general relativity, there are

several sources of noise. First, there is the fundamental and technical noise of the detec-

tor itself. Ground-based interferometric detectors will be shot noise limited Sξ/Sshot < 1

above a few hundred Hz. In this regime, the largest source of classical noise is coat-

ing thermal noise, as discussed above. Second, losses in the interferometer, including

imperfect photodiode quantum efficiency, increase the minimum detectable signal.

Third, the arms of an interferometer are not perfectly balanced. This results in some

light leaking out of the interferometer even in the absence of a signal. This contrast

defect will need to be removed before photons can be counted.

Finally, there is noise coming from imperfect subtraction of the waveform expected

from general relativity under the null hypothesis. To make the subtraction, the parame-

ters of the source must be known precisely; any uncertainties in these parameters are a

source of noise. Furthermore, even with perfectly known parameters from the source, the

deviations of the numerical relativity waveforms from the exact predictions of general

relativity will result in imperfect waveform subtraction. Finally, errors in the actua-

tion of the interferometer mirrors to cancel the expected signal will result in imperfect

subtraction as well.
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4.6 Conclusions

When deciding between the two hypotheses that there is vs. there is not a signal

present in a coherent state of the electromagnetic field, we can either measure that

field directly (homodyne detection) or can count photons in the field. Measuring the

signal requires a local oscillator which adds quantum noise to the measurement through

its beating with vacuum fluctuations. Photon counting does not suffer from vacuum

fluctuations.

When looking for signals, one must limit the search to a certain time-frequency region.

Increasing the size of this region increases the amount of signal that could be detected,

but it also increases the noise in both methods. For photon counting the increased noise

comes only from classical noise in the detection process: the larger the time-frequency

region the more classical noise photons will be detected. Increasing the time-frequency

region increases the number of modes a homodyne detection has to search and thus

decreases the statistical significance of a given signal due to the multiple hypothesis

testing.

We have shown in two examples that photon counting allows one to detect a weaker

signal than homodyne detection. Furthermore, the extent to which photon counting

surpasses homodyne detection increases as the classical noise in the detector becomes

much less than the quantum noise Sξ/Sshot � 1: the probability of photon counting

making a mistake decreases as the number of noise photons decreases.

The kind of hypothesis testing described here can, in principal, be used to search for

deviations from general relativity in measurements of gravitational waves with interfero-

metric gravitational wave detectors; however, many technical challenges remain to reduce

the classical noise to acceptable levels.
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Chapter 5

TianGO: A Space Interferometer
Between the LISA and LIGO Bands

This chapter describes the TianGO space detector briefly mentioned in the introduction.

Sec. 5.1 explains why using space interferometers, and TianGO in particular, is useful.

Sec. 5.2 introduces some difficulties of space missions that do not exist for the terrestrial

interferometers and explains how LISA addresses them. Sec. 5.3 explains the preliminary

TianGO design, and Sec. 5.4 gives the noise budget. Future work is discussed in Sec. 5.5.

5.1 Why Space?

Ground detectors are limited by seismic noise at low frequencies, so one needs to

put detectors in space to escape this noise. Furthermore, the sensitivity to gravitational

waves is proportional to the arm length and it is easier to make long arms in space and

thus to increase the sensitivity to gravitational waves.

A space detector can also localize source locations extremely accurately. When com-

bined with a network of ground detectors, the long baseline between the space detector

and the ground network allows for good triangulation. For sources that last for signif-

icant fractions of an orbit, as many signals detected by space detectors do, the large

area that the detector sweeps out in it’s orbit provides a long baseline with the space
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detector itself. Furthermore, the modulation of the signal by the time dependence of

the detector antenna patterns and the Doppler shifts imposed on the waveform by the

detector’s motion in its orbit help to localize the source [49].

As an example of TianGO’s sky localization ability, consider the case of GW170817,

the first binary neutron star observed with gravitational waves [4]. This binary had a

chirp mass ofM = 1.2M� and a luminosity distance of DL = 40 Mpc. The gravitational

wave detector network was able to localize the source to a 28 deg2 region of the sky.

TianGO would have seen the source long before it entered the ground detector band. It

would take about 5 years to sweep through the band from 100 mHz to 160 mHz, during

which time TianGO would detect it with a squared SNR of roughly ρ2 = 220. As a rough

estimate of TianGO’s ability to estimate the source location over this time, one can use

the geometric estimate from Ref. [50]. For an optimally oriented source, the angular

uncertainty in the localization is

∆Ω =
c2

f 2ρ2πR2
, (5.1)

where R = 1 AU is the radius of TianGO’s orbit around the sun. For GW170817, this is

of order 10−3 deg2 for TianGO.

With this ability to localize sources, space detectors can also give early warnings

for both terrestrial gravitational wave detectors and, especially, for electromagnetic tele-

scopes so that they know where and when to point to observe the electromagnetic coun-

terparts to gravitational wave signals [51, 52].

The ability to point electromagnetic telescopes to sources of gravitational waves is

especially useful for resolving the current tension between the two types of measure-

ments of the Hubble constant [53–55]. One makes local measurements and relies on the

astrophysics of stars to calibrate standard candles that can then be used to measure

cosmological distances. The second fits observations of the CMB to models of the early
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universe. These two types of measurements now disagree at the 3σ level.

Measurements of a gravitational wave signal from compact binary system provides an

accurate estimate of the distance to the source but does not determine the redshift. If the

host galaxy can also be identified, however, the redshift can be measured independently

with electromagnetic telescopes. Combining the optical and gravitational observations

thus provides a measurement of the Hubble constant [56–59]. It is possible to identify

the host galaxy if the gravitational wave signal is accompanied by an optical counterpart,

however this is not always the case. TianGO can be used to identify the measure the

Hubble constant without an optical counterpart by combining its sky localization ability

with statistical methods of extracting redshifts from clusters of galaxies [60].

5.2 TianGO is not Like LISA

There are many aspects of the TianGO design that can be borrowed from LISA,

however the principle of operation is quite different. In this section we describe some

unique aspects of interferometry in space and the way that LISA addresses them. The

design of TianGO is described in Sec. 5.3.

The LISA detector is a set of three (not independent) interferometers in space. It

consists of three spacecraft that form an equilateral triangle with 2× 106 km long arms.

Each spacecraft serves as the corner of one of the three interferometers with the links

to the other two spacecraft forming the arms. Instead of the mirrors that serve as the

test masses in terrestrial detectors, LISA uses cubes, known as proof masses, made out

of an alloy of gold and platinum [14, 61–63]. Each spacecraft has two proof masses,

one for each interferometer arm. Since it is the distance between the proof masses that

is monitored to search for gravitational waves, the masses should be kept as inertial

as possible. To accomplish this, the proof masses are not attached to the spacecraft.
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Instead, in a technique known as drag-free flight, the spacecraft sense the position of the

proof mass and fly around to follow their motion. TianGO will use drag-free flight as

well, but the proof masses will be mirrors like are used for ground detectors.

TianGO is most similar to LISA in its orbit around the sun. The three spacecraft

LISA constellation orbits the sun in an orbit trailing the Earth by 20◦. Each spacecraft

is in its own elliptical orbit around the sun and the plane of the constellation is tilted

60◦ with respect to the ecliptic plane. The orbits are arranged so that the triangular

constellation tumbles as it advances in its orbit [64–68]. This rotation increases the

angular resolution of the detector [49].

Due to the eccentricity of the orbits and gravitational perturbations from the Earth

and other planets, the spacecraft move relative to one another throughout the orbits, and

so the arms of the interferometers are not constant. Fig. 5.1 shows the arm length change

for a LISA-like orbit that TianGO could use. These changing orbits leads to Doppler

shifts in the lasers traveling between two spacecraft as is also shown in Fig. 5.1. The

magnitude of the Doppler shifts increase linearly with increasing arm length. Since it is a

gravitational force gradient between the Earth and the satellites that is mostly responsible

for the arm length change, the Doppler shifts decrease as the cube of the distance from

the Earth. For the LISA orbit trailing the Earth by 20◦ and with 2× 106 km armts, the

Doppler shifts can be around 10 MHz [14].

Another difficulty LISA faces is that the diffraction of the laser beams along its

2 × 106 km long arms results in only about 100 pW of power being received at the far

spacecraft [14, 61]. This is far too little power to reflect back to the first spacecraft as is

done with traditional interferometry. Since it is not possible to use a simple Michelson

interferometer, each arm of the LISA interferometer consists of two laser links. The light

from one spacecraft is received at the far spacecraft where it is phase-locked to a second

laser on that spacecraft. This phase-locked light is then sent back to the first spacecraft.
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Figure 5.1: Arm length change and Doppler shifts of an uncontrolled TianGO orbit
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The phase meter is designed to have enough dynamic range that it can track the phase

on top of the Doppler shifts arising from the changing arm lengths.

A final difficulty arising from the changing arm lengths is susceptibility to laser noise.

In traditional interferometers with equal arm lengths, noise from the laser is common

to both arms and is canceled when recombined at the beam splitter, but LISA does not

benefit from this common mode suppression. Instead, using a method known as time-

delay interferometry (TDI) [69–71], the time-series of the phase measurements from each

link of the interferometer are shifted and recombined in combinations that suppress the

laser noise during post-processing.

5.3 TianGO Design

Fig. 5.2 shows an overview of the TianGO detector. It is comprised of three spacecraft

that form a triangular constellation with 100 km long arms. Since the arms are short

enough that a Gaussian beam can be sent between two spacecraft with less than 1%

loss, TianGO operates as a simple Michelson interferometer. One spacecraft, the corner

spacecraft, houses a laser and a beam splitter. Just as with terrestrial interferometric

gravitational wave detectors, the laser is split at the beam splitter with half the light going

to each spacecraft. Each of the other two spacecraft have mirrors that simply reflect the

light back to the corner spacecraft where it is recombined at the beam splitter. To reduce

quantum shot noise, TianGO will also employ 10 dB of phase squeezing.

The beam splitter in the corner spacecraft and the mirrors in the end spacecraft are

under drag-free flight, as is done for the LISA proof masses. Sapphire and fused silica

are being considered to be the proof mass substrates. The mirrors will be 10 kg.

The following sections describe aspects of the TianGO design in more detail. Sec. 5.3.1

describes TianGO’s input and output optics in more detail. The TianGO telescopes are
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Figure 5.2: Overview of the TianGO detector
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discussed in Sec. 5.3.2 and a basic control system for controlling the proof masses is

described in Sec. 5.3.3.

5.3.1 Optics

TianGO will use a 5 W laser with a wavelength of λ0 = 532 nm. As is discussed

in Sec. 5.4 and shown in Fig. 5.6, the goal is to have a strain sensitivity of about

S
1/2
h = 10−22/

√
Hz at 1 Hz. Unlike LISA, TianGO benefits from the common mode

rejection of a Michelson interferometer. If the difference in the lengths of the arms of the

interferometer are ∆L, the equivalent displacement noise caused by laser frequency noise

S
1/2
ν is S

1/2
x /∆L = S

1/2
ν /ν0. So that the laser frequency noise is no larger than one-tenth

the sensitivity goal of 10−22/
√

Hz, this sets the requirement on the frequency noise of the

laser to be

S1/2
ν <

c

λ0

L

∆L

S
1/2
h

10
= 5.6× 10−4 Hz√

Hz

(
1 m

∆L

)
(5.2)

at 1 Hz. To keep the interferometer in the linear regime, ∆L should be no larger

than roughly 1% of a wavelength, which sets the fairly easy requirement that S
1/2
ν <

100 kHz/
√

Hz.

The laser will first be stabilization with an unequal arm-length Mach-Zehnder inter-

ferometer. Ref. [72] demonstrated frequency stabilization down to 100 Hz/
√
Hz at 1 Hz

with such an interferometer suitable for satellite flight. Alternatively, the laser could be

locked to a reference cavity with PDH locking [73, 74] as is done with the LIGO pre-

stabilized lasers [75]. Ref. [76] demonstrated stabilization to roughly 50 mHz/
√
Hz at

1 Hz with ultrastable reference cavities.

After frequency stabilization, the light is sent through a four mirror cavity known as

the input mode cleaner (IMC). The IMC reduces the higher-order mode content from the

input light since only the fundamental mode resonates in the cavity. The transmission
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of light through the IMC is also sensed and used for intensity stabilization of the light

as is done with the LIGO pre-stabilized laser [75]. The beam is sent through a Faraday

isolator before going to te beam splitter to prevent light from the interferometer being

reflected back towards the laser.

To reduce quantum shot noise, 10 dB of phase squeezed vacuum is injected into the

asymmetric port of the interferometer through the output Faraday isolator. Research

towards compact squeezed light sources using nonlinear waveguides is currently under-

way [77]. TianGO will use some of the stabilized light as a seed for such a waveguide

squeezer. The coherent locking technique [78, 79] will be used to control the squeeze

angle.

Another bowtie cavity at the asymmetric port, the output mode cleaner (OMC),

filters out higher order modes and the coherent locking field before the signal is sensed

with a balanced homodyne detector.

5.3.2 Telescope

Each spacecraft uses telescopes to expand the radius of the laser beams so that they

can be sent between the spacecraft without appreciable dispersion. The radius of a

Gaussian beam is [80]

w(z) = w0

√
1 + (z/zR)2, zR =

πw2
0

λ
(5.3)

where w0 is the radius of the beam waist and z is the distance along the beam from the

waist. The Rayleigh range zR is the distance from the waist over which Gaussian beams

are well collimated. The intensity of a beam of power P a radial distance R from the

beam axis is (2P/πw2)e−2R2/w2
[80]. Therefore, if light of power Ptrans is transmitted, the

light received from a mirror of diameter D is

Prec =
(

1− e−D
2/2w2

)
Ptrans. (5.4)
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To minimize the dispersion of a beam propagating between two mirrors a distance L

apart, the waist should be located halfway between them. The power transmitted be-

tween two such mirrors is maximized by choosing

w0 =

√
λL

2π
. (5.5)

With this choice, the radius of curvature of the beams at the mirrors is L.

The TianGO telescopes are designed to have a diameter of 40 cm which results in

a clipping loss of 0.9%. The g factor of the cavity formed between two telescopes with

radii of curvature Rtel is g = 1−L/Rtel and should satisfy 0 < g2 < 1 for the cavity to be

stable [80]. The radii of curvature of the TianGO telescopes are therefore made slightly

larger than L.

The possibility of eliminating separate telescopes and proof mass mirrors for the

corner spacecraft and instead using the proof masses directly as their own telescopes

warrants further study. The materials currently being considered for the proof masses

have densities of 2 × 103 kg/m3 for fused silica and 4 × 103 kg/m3 for sapphire. Thus,

for the proof masses to reach the 10 kg design goal, the mirrors need to have fairly large

diameters of roughly 15–20 cm. If these proof masses can serve to directly reflect the

light to the corner spacecraft, they would need to have diameters of 40 cm, which would

increase their mass by a factor of roughly 5–10, thus reducing radiation pressure noise by

the same amount. However, in addition to the engineering challenges, difficulties with

residual gas noise, discussed below in Sec. 5.4.1, suggest that this may be difficult.

The TianGO sensitivity can be improved if the arm lengths are increased. However,

doing so is impractical due to the beam divergence: increasing the arm length to 1000 km

would result in a beam radius of about 40 cm on the spacecraft mirrors. Making mirrors

big enough to reduce clipping loss to less than 1% is unrealistic with current technology.

First, the mirrors have to fit inside a rocket to be launched into space. Second, larger,
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Figure 5.3: Details of the TianGO corner satellite. The following acronyms are de-
scribed in the text. IMC: input mode cleaner; OMC: output mode cleaner; FSS:
frequency stabilization servo; ISS: intensity stabilization servo; IFI: input Faraday iso-
lator; OFI: output Faraday isolator; CLF AOMs: coherent locking field acousto-optic
modulators.

and therefore more massive, mirrors are more costly in terms of rocket fuel to get into

their final orbits. However, methods of making lightweight foldable telescope mirrors are

currently being investigated [81–85]. If this technology matures enough, a hypothetical

advanced TianGO (aTianGO) could improve on TianGO’s strain sensitivity by a factor

of 10 by employing 1.5 m diameter telescope mirrors with 1000 km long arms.

5.3.3 Control System

A diagram of the control loop for one of the proof masses is shown in Fig. 5.4.

The proof mass and spacecraft plants, from force to position, are Ppm = 1/MpmΩ2 and

Psc = 1/MscΩ
2, respectively, where Mpm and Msc are the masses of the proof mass and

spacecraft. A position sensor Dpm measures the distance between the proof mass and

spacecraft and feeds the signal back to the proof mass and spacecraft controllers Cpm
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and Csc. The resulting control signals are used to actuate on the proof mass with the

actuators A and on the spacecraft with the thrusters T . Displacement noise from the

position sensor enters in nd and external forces act on the proof mass and spacecraft at

fpm and fsc. A feedforward signal r is used to suppress relative motion between two proof

masses in different spacecraft due to the uncontrolled breathing of the orbits.

Newtonian gravity gradients and position dependent forces from the position sensors

and actuators produce a spring-like coupling ksc between the proof mass and spacecraft:

Mpmapm = ksc∆x and Mscasc = −ksc∆x where ∆x = xpm − xsc. It is useful to define the

spring frequency ω2
sc = ksc/MPM and the dimensionless couplings Γpm and Γsc as

ω2
sc =

ksc

Msc

, Γpm = Ppmksc =
ω2

sc

Ω2
, Γsc = −Pscksc = −Mpm

Msc

ω2
sc

Ω2
. (5.6)

Backaction forces from the position sensors and actuators are part of the forces fpm and

fsc.

If we define the open-loop transfer functions for the proof mass and spacecraft as

Hpm = APpmDpmCpm, Hsc = TPscDscCsc, (5.7)

the closed-loop position of the proof mass is

xsc =
1 + Γsc −Hsc

1 +Hpm − Γpm −Hsc + Γsc

Ppmapm

+
Hpm − Γpm

1 +Hpm − Γpm −Hsc + Γsc

Pscasc +
HscΓpm −HpmΓsc −Hpm

1 +Hpm − Γpm −Hsc + Γsc

nd. (5.8)

Since Msc � Mpm we can take Γsc = 0. Furthermore, for this discussion we are only

concerned with the position of the proof mass along one arm of the interferometer. So that

the measurement is limited by proof mass actuator noise, the proof mass controller should

have negligible gain in the measurement band |Cpm| � 1. With these simplifications

setting Γsc = 0 and Cpm = 0, (5.8) becomes

xsc =
1−Hsc

1− Γpm −Hsc

Ppmapm −
ΓpmPsc

1− Γpm −Hsc

asc +
ΓpmHsc

1− Γpm −Hsc

nd. (5.9)
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Figure 5.4: TianGO control system. Ppm, Cpm, and Fpm are the proof mass plant,
controller, and feedforward controller, respectively. Similarly for Psc, Csc, and Fsc

for the spacecraft. Dpm is the proof mass displacement sensor, A are the proof mass
actuators, and T are the spacecraft thrusters. A spring-like coupling with spring
constant ksc couples the proof mass to the spacecraft. xpm and fpm are the proof
mass position and the external forces acting on the proof mass, respectively, and
similarly for xsc and fsc for the spacecraft. nd is displacement noise of the position
sensor. The units of every link are also labeled (“cts” stands for counts and labels
digital signals).
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5.4 Noise Budget

TianGO will employ drag-free flight and will benefit from the development of LISA’s

disturbance reduction system (DRS) used to keep the LISA proof masses in free fall

as accurately as possible. Acceleration noises acting on the spacecraft, discussed in

Sec. 5.4.4 are suppressed by the DRS. Acceleration noises acting directly on the proof

mass, however, are not and are described in Secs. 5.4.1 and 5.4.2. Quantum noise is

described in Sec. 5.4.3 and the full noise budget is given in Sec. 5.4.5.

5.4.1 Proof mass Environmental Acceleration Noises

Magnetic There are two sources of magnetic fields that contribute to proof mass ac-

celeration noise: magnetic fields on the spacecraft itself Bsc and magnetic fields in inter-

planetary space Bip. The magnitude of the interplanetary field ranges from 5–50 nT and

has a spectral density of roughly S
1/2
Bip

= (30× 10−8)(1mHz/f) T/
√

Hz [86].

These magnetic fields give rise to two noise sources. First, since the proof mass

is moving through the interplanetary field with velocity v, if it has a charge q, it will

experience an acceleration due to the Lorentz force of [14, 86]

a =
1

Mpm

(q v ×Bip) =
1

Mpm

(q v ×Bip + δq v ×Bip + q v × δBip). (5.10)

The charge that accumulates on the proof mass will be periodically discharged, and

between these events the first term grows linearly as q̇t. The last two fluctuating terms

give rise to the acceleration noise due to the Lorentz force of

S (Lorentz)
a =

1

M2
pm

[
(vB̄ip)2Sq + (vq)2SBip

]
. (5.11)

The charge fluctuations are due to shot noise in the current I = q̇eff flowing to the proof

mass where q̇eff = λeffe is an effective charging rate and e is the electron charge. Since
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SI = 2eq̇eff , this noise is

S1/2
q =

e
√

2λeff

2πf
. (5.12)

LISA Pathfinder measured λeff to be between 1000 and 1400 s−1, a factor of roughly 5

higher than expected [87], though the exact value will likely be different for the TianGO

proof masses. Magnetic noise is not close to being a limiting noise according to the noise

budget Fig. 5.6, so finding an exact value is not critical at this time.

Second, the interaction of any proof mass dipole moment m with the magnetic fields

will give rise to a force ∇(m · B). The total dipole moment is the sum of an intrinsic

dipole moment m0 and an induced magnetic moment from the spacecraft magnetic field:

m = m0 +
χVpm

µ0

Bsc (5.13)

where χ is the magnetic susceptibility and Vpm is the proof mass volume. The acceleration

due to this force to first order in magnetic field fluctuations is thus [88]

a =

[
m0

mpm

+
χ

ρµ0

(2Bsc + Bip)

]
· ∇Bsc +

χ

ρµ0

(2δBsc + δBip) · ∇Bsc (5.14)

where ρ is the density of the proof mass and we have ignored gradients of the interplan-

etary field. The first term is a DC force canceled by the control systems. The total

acceleration noise due to forces on the magnetic dipole moment are

S (dip)
a =

(
χ

ρµ0

|∇Bip|
)2(

4SBsc + SBip

)
. (5.15)

It is possible to partially shield the proof mass from electric and magnetic fields [14,

86]. Taking this possibility into account, the total magnetic noise is the sum of the noise

due to the Lorentz force and the noise due to the interaction of the dipole moment with

the magnetic fields

S (mag)
a =

1

ξ2
e

S (Lorentz)
a +

1

ξ2
m

S (dip)
a (5.16)

where ξm and ξe are magnetic and electric shielding factors.
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Residual Gas Damping Residual gas molecules striking the proof mass lead to a

Brownian force noise which is given by the fluctuation-dissipation theorem [89–91]

S
(RG)
F = 4kBTβ (5.17)

where β is the gas damping coefficient of the gas, which depends on the geometry and

environment of the proof mass. The geometry relevant for TianGO is that of a cylindrical

mirror of radius Rpm and height hpm enclosed in a housing separated by a gap d. If such

a cylinder were in an infinite volume of gas of molecular mass m at pressure P without

the housing, the gas damping coefficient would be [90]

β∞ = πR2
pmP

√
8

π

(
1 +

hpm

2Rpm

+
π

4

)√
32m

πkBT
. (5.18)

The presence of the housing increases the force noise since a molecule will bounce several

times between the proof mass and the housing. A full calculation of this effect requires

simulation. However Ref. [89] showed that, for a cube of side length L in the limit d� L,

the damping coefficient is increased from its infinite volume limit by

β =
β∞

ln(Lpm/d)(d/Lpm)2
(5.19)

and found the result in agreement with a torsion balance experiment to within 10%.

A rough estimate based on (5.19) suggests that β/β∞ ≈ 50 for TianGO’s proof

masses, though this is likely overly pessimistic. The proof mass housing likely does

not have to fully surround the proof mass. Residual gas damping between the test

and reaction masses was an important source of noise in advanced LIGO [91] until the

reaction masses, hanging behind the test masses and used to actuate on them, were

changed from cylinders to annuluses [92]. Gaps in the TianGO proof mass housing can

likely be introduced as well.

Even if the increase from β∞ to β is reduced, residual gas damping is a serious

source of noise. In the noise budget shown in Fig. 5.6, the residual gas trace is plotted
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with β = β∞ and is still the dominant source of noise below about 100 mHz. This

suggest investigating changing the shape of the proof masses to minimize the residual

gas damping. Since this is such an important source of noise, it merits future detailed

numerical study.

Classical Radiation Pressure The force exerted on a perfect reflector by light of

power P due to radiation pressure is 2P/c. The acceleration noise caused by classical

fluctuations in this power is thus

[
S (class. RP)
a

]1/2
=

2P

cMpm

S
1/2
δP/P , (5.20)

where S
1/2
δP/P is the relative intensity noise of the stabilized laser. The intensity stabiliza-

tion servo will stabilize the laser to around S
1/2
δP/P = (108 RIN/

√
Hz) × (0.1 + f)/f and

the common mode rejection of the interferometer will provide another factor of about

1000 suppression of the intensity noise.

Thermal Radiation Pressure In addition to the classical radiation pressure from

the lasers, thermal photons emitted from the proof mass housing will also exert radiation

pressure on the proof mass. Thermal fluctuations across the proof mass thus lead to

fluctuating thermal radiation pressure. The power radiated from the proof mass housing

in the sensitive direction is P = πR2
pmσT

4 where σ is the Stefan-Boltzmann constant

and the radiation pressure force is 2P/3c with the extra factor of three accounting for

the fact that not all photons radiated from the housing strike the proof mass at normal

incidence. The force due to a small thermal gradient δT is thus

F =
8σ

3c
πR2

pmT
3δT (5.21)

leading to an acceleration noise [93, 94]

[
S (therm. RP)
a

]1/2
= κRP

8σ

3Mpmc
πR2

pmT
3S

1/2
T (5.22)
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where ST is the PSD of the temperature fluctuations. The factor κRP accounts for the

edge effect of photons with a component of momentum normal to one of the proof mass

faces striking a neighboring face. This factor also accounts for the absorption of the proof

mass and whether the reflection is specular or diffuse. κRP must be calculated through

simulations, which depend on the proof mass geometry, and can range from 0.32–1.17 in

the simulations presented in Tables I and II of Ref. [93], which calculates it for a cube.

Though the estimate used here is not exact, thermal radiation pressure is not one of the

dominant noise sources and so a more in depth numerical study is not critical.

Radiometric Thermal fluctuations across the proof mass lead to differential pressure

fluctuations in the residual gas. The force due to a small temperature gradient δT

is [93, 94]

F = κR
πR2

pmP

4T
δT, (5.23)

where κR is again a factor accounting for edge effects coming from gas molecules striking

neighboring sides of the proof mass. This leads to an acceleration noise

[
S

(rad)
F

]1/2

= κR
πR2

pmP

4MpmT
S

1/2
T . (5.24)

As with thermal radiation pressure, this calculation is not exact, but it is not expected

to be one of the dominant noise sources.

Differential Outgassing The outgassing of molecules from the proof mass enclosure

depends on temperature and thus leads to a fluctuating force in the presence of tempera-

ture fluctuations. A simple model for this effect is to consider a gas flow of Q = Q0e−Θ/T

where Θ is an activation temperature [93, 95]. According to this model, the force pro-

duced by a differential outgassing rate δQ is F = πR2
pmδQ/Ceff where Ceff is a geometric

factor estimated in [95] to be roughly 4.3 · 10−2 m3/s for the LISA geometry. The equiv-
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alent acceleration noise is thus

[
S (outgas)
a

]1/2
=

πR2
pm

MpmCeff

Q0Θ

T 2
e−Θ/TS

1/2
T . (5.25)

This effect is difficult to accurately model, but values of Q0 ∼ 1.4 nJ/s and Θ ∼ 3 · 104 K

are characteristic of the materials used for the LISA proof mass and enclosure [93]. Again,

this is not expected to be a dominant noise source.

Newtonian The spacecraft itself exerts a classical Newtonian gravitational force on

the proof mass. The distribution of the spacecraft mass will change in the presence of

thermal fluctuations due to thermal expansion. Ref. [86] made a crude estimate of this

effect by considering a mass Mdis a distance xdis moving by thermal expansion. The

length fluctuations of a mass a distance xdis from the proof mass are S
1/2
x = αxdisS

1/2
T

where α is the coefficient of thermal expansion of the spacecraft. The acceleration noise

due to the fluctuating distance of this disturbing mass from the proof mass is thus

[
S (Newt)
a

]1/2
=

2GMdis

x3
dis

S1/2
x =

2αGMdis

x2
dis

S
1/2
T . (5.26)

This crude estimate shows that the gravity gradients are possibly one of the dominant

noise sources for TianGO and this effect thus warrants a more detailed analysis.

Cosmic Rays Cosmic rays with enough energy to penetrate the spacecraft impart

momentum to the proof mass. Protons with energy Epr & 300 eV have enough energy to

penetrate the spacecraft and arrive at a rate of npr ≈ 30 protons/s [86]. The acceleration

noise to the proof mass caused by cosmic ray impacts is

[
S (CR)
a

]1/2
=

√
2nprmprEpr

Mpm

, (5.27)

where mpr is the proton mass.
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Figure 5.5: TianGO proof mass thermal noise

5.4.2 Thermal Noise

Thermal noise in the mirrors is another source source of spacecraft environmental

noise, but it is present in the telescopes as well. The thermal noise is split into thermal

noise in the coatings on the surface of the mirrors and thermal noise in the bulk or

substrate.

Brownian Noise Brownian noise in the coatings and the substrate cause a displace-

ment noise of [96–98]

S (Brown)
x =

2kBT

π3/2f

1− ν2

wE

[
φs +

2(1− 2ν)dcφc√
π(1− ν)w

]
(5.28)

where w is the beam spot size on the mirror, φs and φc are the loss angles of the substrate

and coating, respectively, E is the Young’s modulus, dc is the coating thickness, and ν is

the Poisson ratio. Eq. (5.28) is for an infinite size test mass, but Ref. [98] includes finite

size effects, which are included in the calculations here as well.

Substrate Thermo-elastic Noise Thermal fluctuations lead to fluctuations in the

coefficient of thermal expansion which then lead to displacement fluctuations [98–100].
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Quantity Symbol Fused Silica Sapphire Units
Young’s modulus E 7.2× 1010 4× 1011 Pa
Poisson ratio ν 0.17 0.23 -
Heat capacity C 1.64× 106 3.09× 106 J/K/m3

Coefficient of thermal expansion α 5.1× 10−7 5.4× 10−6 1/K
Thermal conductivity κ 1.38 33 W/m/K
Index of refraction n 1.45 1.76 -
Density ρ 2.2× 103 4× 103 kg/m3

Table 5.1: TianGO mirror substrate parameters from [103].

This noise in the infinite test mass limit is [100]

S (sub. TE)
x =

4α2(1 + ν)2kBT
2w√

πκ
J(f/fc) (5.29)

where α is the coefficient of thermal expansion, κ is the thermal conductivity, fc =

κ/πCw2, C is the specific heat per unit volume,1 ρ is the density, and [102]

J(x) = Re

{
eix/2(1− ix)

x2

[
erf

√
x(1 + i)

2
− 1

]}
+

1

x2
− 1√

πx3
. (5.30)

For x� 1, J(x)→ 1/x2 and so, for f � fc,

S (sub. TE)
x (f � fc) =

4kBT
2

π5/2f 2

α2(1 + ν)2κ

C2w3
. (5.31)

Ref. [98] again includes finite size effects to (5.29), which are included in the calculations

here as well.

Coating Thermo-optic Noise In addition to thermo-elastic noise, thermal fluctua-

tions lead to fluctuations in the index of refraction [101, 104, 105]. The combination of

thermo-elastic and thermo-refractive noise is called thermo-optic noise. Since both of

these noises come from the same thermal fluctuations, they must add coherently to give

the total thermo-optic noise [106, 107]. The spectrum of thermal fluctuations responsible

1Note that Refs. [98–101] use the specific heat per unit mass CV = C/ρ where C is the specific heat
per unit volume used here.
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for thermo-optic noise in the coatings is [101]

ST =
2kBT

2

π3/2w2
√
fCκ

(5.32)

and the total thermo-optic noise is [106]

S (coat. TO)
x = ΓtcST

(
αcdc − βcλ0 − αsdc

Cc
Cs

)2

(5.33)

where λ0 is the wavelength of the light, αc, βc, and Cc are the coefficient of thermal

expansion, coefficient of thermal refraction, and heat capacity of the coating, and αs and

Cs are the same for the substrate. Γtc is a correction factor accounting for the thickness

of the coating which goes to 1 if the coating thickness dc is much less than the thermal

diffusion length rT =
√
κ/2πfC. In the calculations here we use the details of the LIGO

Voyager coatings [8].

5.4.3 Quantum Noise

There are two sources of quantum noise: shot noise and radiation pressure. For all

frequencies above 1 Hz, the interferometer sensitivity is limited by photon shot noise. As

discussed in Sec. 5.3.1, TianGO uses squeezing to decrease shot noise at the expense of

increasing quantum radiation pressure.

The phase noise due to shot noise is

S
(shot)
φ =

2~ω0

Pbs

[
(1− ε)10−rsqz/10 + ε

]
(5.34)

where rsqz is the squeeze factor and ε are losses, and the radiation pressure is

[
S

(quant. RP)
F

]1/2

=
2

c

√
2~ω0Pbs 10ranti/20 (5.35)

where ranti is the anti-squeeze factor.
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5.4.4 Spacecraft Environmental Acceleration Noises

Solar Radiation Pressure In addition to the various sources of radiation pressure

acting directly on the proof masses, radiation pressure from the sun acts on the space-

craft. The DC solar irradiance is W = 1.3 kW/m2 and the relative intensity of the solar

irradiance is S
1/2
δW/W = (1.3 × 10−3)(1 mHz/f)1/3/

√
Hz [86, 108]. The acceleration noise

on the spacecraft due to solar radiation pressure is

[
S (sc RP)
a

]1/2
=

2AscW

cMsc

S
1/2
δW/W (5.36)

where Asc is the area of the spacecraft.

Thrusters The drag-free thrusters used for LISA are expected to produce a force noise

of roughly
[
S

(thr)
F

]1/2

= 10−7 N/
√

Hz [86]. The TianGO thrusters may be different, but

this is not a limiting source of noise. Furthermore, the coupling of the thruster noise to

the proof mass acceleration can be changed with the spacecraft controller Csc discussed

in Sec. 5.3.3 and Fig. 5.4.

5.4.5 Full Noise Budget

To compute the full noise budget, we need to propagate the above noises through the

control system described in Sec. 5.3.3. So that the acceleration noises from the spacecraft

minimally disturb the proof mass, the spacecraft controller gain should be large |Csc| � 1.

In this limit, the closed loop position of the proof mass (5.9) becomes

xpm =
1

Ω2

(
apm −

1

Hsc

ω2
sc

Ω2
asc − ω2

scnd

)
. (5.37)

The total strain noise is, therefore,

S
1/2
h =

1

LΩ2

√
S

(pm)
a + S

(ba)
a +

(
1

Hsc

ω2
sc

Ω2

)2

S
(sc)
a + ω4

scS
(sens)
x , (5.38)
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Figure 5.6: TianGO noise budget with sapphire mirrors. For fused silica mirrors the
thermal noise is better, see Fig. 5.5, but the residual gas damping is worse because
sapphire is denser than fused silica. Fused silica mirrors have to be bigger for the
same mass, which increases residual gas damping, see (5.18).

where S
(sens)
x is displacement noise due to the proof mass displacement sensor Dpm in

Fig. 5.4. The full noise budget is shown in Fig. 5.6.

5.5 Future Work

There is much to be done both in developing the technical aspects of the TianGO

detector and evaluating its scientific promise.

The above analysis did not incorporate the way the proof masses are actuated.

One possibility may be to use electrostatic actuators as are used for the LIGO test

masses [109], however excess noise has been observed in previous aLIGO observing runs
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due to charging from these actuators [110]. This could also make the magnetic noises

discussed above worse. It is also unclear how to control all degrees of freedom of the

cylindrical proof masses. It is important to know how the proof masses will be controlled

because, in addition to the direct force noise from the actuators, the control will create

some kind of spring-like coupling between the spacecraft and the proof masses. These

are all important effects for noise budgeting.

The above description of the control system was also heuristic. It should be checked

in more detail that the necessary controller gains can be achieved and that the actuator

noise is tolerable. The operation of TianGO also relies on us actively suppressing the

arm length changes of the uncontrolled orbits with spacecraft thrusters, as are illustrated

in Fig. 5.1 for example. The fuel requirements also need to be investigated to see if this

is feasible [111, 112].

More accurate estimates of TianGO’s ability to localize sources and its ability to

estimate astrophysical source parameters, both by itself and when integrated with a

terrestrial detector network, need to be made. This has proven technically difficult for

numerous reasons, but the waveforms described in Appendix C combined with a Fisher

matrix analysis [113–116] should make this possible.

Finally, the choice of orbit will also affect the details of the control scheme and the

scientific promise of the detector. Orbits near L2, which is 0.01 AU from the Earth,

require less forces to control than Earth trailing orbits to keep the arm lengths constant

but are closer to the Earth and thus provide a smaller baseline with the ground detectors

for sky localization. Orbits near L2 also require less fuel to get into and are thus cheaper.

An in depth study of these trade offs needs to be made once more accurate estimates of

sky localization have been done.
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Recycling Cavity Lengths

A dual-recycled Fabry-Perot Michelson interferometer (see Fig.3.1), such as the 40 m

interferometer or LIGO, have five length degrees of freedom: the common and differential

arm lengths (CARM and DARM), the power recycling cavity length (PRCL), the signal

recycling cavity length (SRCL), and the Michelson length (MICH) which is the difference

in the distance between the two ITMs and the beam splitter. To simultaneously control

these lengths, two sets of RF phase sidebands are added to the main laser before it enters

the interferometer. These are known as the f1 and f2 = 5f1 sidebands. At the 40 m,

f1 = 11 MHz and f2 = 55 MHz. These sidebands have different resonance conditions

in the different interferometer cavities which enables one to monitor the lengths of the

cavities. See, for example, Ref. [39] for a description of how these sidebands are used to

sense and control these five degrees of freedom.

For this control scheme to work, both the f1 and f2 sidebands are resonant in the

PRC, the f2, but not the f1, sidebands are resonant in the SRC, and neither the f1

or f2 sidebands are resonant in the arms. Here we are only concerned with how the

macroscopic lengths of the recycling cavities are chosen to satisfy these conditions.

The reflectivity of a Fabry-Perot cavity of length L with input mirror reflectivity ri
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and end mirror reflectivity re is

r(φ) =
−ri + ree

−2iφ

1− riree−2iφ
(A.1)

where φ = ωL/c is the phase a field of frequency ω accrues going one-way along the cavity.

Eq. (A.1) also holds when the mirrors are compound cavities with complex reflectivities.

A cavity is said to be resonant if the round-trip phase is zero and anti-resonant if the

round-trip phase is π. Taking the possibly complex arm reflectivities into account, these

conditions are

resonant : arg (riree
−2iφ) = 2πn (A.2a)

anti-resonant : arg (riree
−2iφ) = (2k + 1)π. (A.2b)

Eq. (A.1) is the fundamental relation that sets the macroscopic cavities lengths.

A.1 Arm Cavities

The arm cavities are chosen to be resonant for the carrier ω0 and (nearly) anti-resonant

for the sidebands ω0 ± Ωi. The end mirrors are highly reflective re ≈ 1 and so

rarm(ω0) =
−ritm + 1

1− ritm

= 1. (A.3)

If the sidebands were exactly anti-resonant

rarm(ω0 + Ωi) =
−ritm − 1

1 + ritm

= −1. (A.4)

In practice the sidebands are chosen to not be exactly anti-resonant in order to avoid

higher harmonics from resonating in the arms. The sidebands thus have complex reflec-

tivities

rarm(ω0 + Ωi) = |rarm(Ωi)|eiθi (A.5)

where |π − θi| � 1. For the 40 m arm cavities, θ1 = 180.5◦ and θ2 = 182.5◦.
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A.2 Power Recycling Cavity

The power recycling cavity length is chosen so that the carrier and both sidebands

are resonant in the PRC when the arms are resonant for the carrier. For the carrier

arg
[
rprmrarm(ω0)e−2iω0Lprc/c

]
= 2πn (A.6)

and so Lprc is microscopically adjusted such that ω0Lprc/c = nπ. For the f1 sideband

arg
[
rprm|rarm(Ω1)|eiθ1e−2iω0Lprc/ce−2iΩ1Lprc/c

]
= θ1 + 0− 2Ω1Lprc

c
= 2πn (A.7)

and so the power recycling length must satisfy

Lprc =

(
k +

θ1

2π

)
c

2f1

. (A.8)

If (A.8) is satisfied for f1 then it is automatically satisfied for f2 = 5f1 if θ2−π = 5(θ1−π).

For the 40 m, we choose k = 0 giving Lprc = 6.753 m.

A.3 Signal Recycling Cavity

The signal recycling cavity length is chosen so that the f2 sideband is resonant and the

f1 sideband is non-resonant in the SRC when the arms are resonant for the carrier. Since

the phase the carrier accrues in the SRC differs between signal recycling and resonant

sideband extraction, the two cases have different requirements for the SRC length.

Signal Recycling With signal recycling the carrier does not acquire any phase in the

SRC. This is the same as with the PRC. Since the f2 sideband is also resonant in the

PRC, the same condition (A.8) is necessary for Lsrc and f2. Since f1 has to be non-

resonant in the SRC, however, the conditions that must be simultaneously satisfied are
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Lsrc =

(
n+

θ2

2π

)
c

2f2

(A.9a)

Lsrc 6=
(
m+

θ1

2π

)
c

2f1

. (A.9b)

For the 40 m the first three lengths satisfying (A.9) are 1.336, 4.044, and 9.463 m. For

the ponderomotive squeezing experiment described in Chap. 3, we choose n = 1 giving

Lsrc = 4.044 m.

Resonant Sideband Extraction With RSE, the carrier has a one-way phase shift of

π/2. So for the f2 sideband to be resonant in the SRC,

arg
[
rsrm|rarm(Ω2)|eiθ2e−2iω0Lsrc/ce−2iΩ2Lsrc/c

]
= θ2 + π − 2Ω2Lsrc

c
= 2πn. (A.10)

The conditions that must be simultaneously satisfied are thus

Lsrc =

(
n+

1

2
+
θ2

2π

)
c

2f2

(A.11a)

Lsrc 6=
(
m+

1

2
+
θ1

2π

)
c

2f1

. (A.11b)

General Detuning For a general detuning, leading to an optical spring, the carrier

picks up a one-way phase of φ. Thus, for f2 to be resonant,

arg
[
rsrm|rarm(Ω2)|eiθ2e2φe−2iΩ2Lsrc/c

]
= θ2 + 2φ− 2Ω2Lsrc

c
= 2πn. (A.12)

The conditions that must be simultaneously satisfied are thus

Lsrc =

(
n+

2φ+ θ2

π

)
c

2f2

(A.13a)

Lsrc 6=
(
m+

2φ+ θ1

π

)
c

2f1

(A.13b)

(A.13c)
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Figure A.1: Recycling cavity lengths

A.4 Schnupp Asymmetry

Once the lengths of the recycling cavities are set, the Schnupp asymmetry is chosen

so that the f2 sideband is critically coupled into the SRC. To find the couplings we need

the transmission from the PRC to the SRC in a dual recycled Michelson interferometer

with X and Y mirror reflectivities given by (A.5). With the lengths defined as

Lprc = Lp +
ly + lx

2
, Lsrc = Ls +

ly + lx
2

, lsch = ly − lx, (A.14)

see Fig. A.1, we define the following phases:

φx =
ωlx
c
, φy =

ωly
c
, φ± =

φy ± φx
2

=
ωlsch

2c
, (A.15a)

φp =
ωLp
c
, φprc =

ωLprc

c
= φp + φ+, (A.15b)

φs =
ωLs
c
, φsrc =

ωLsrc

c
= φs + φ+. (A.15c)

The transmission and reflection of a simple Michelson formed by the beam splitter
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Figure A.2: RF sideband transmission to the asymmetric port for the 40 m interfer-
ometer configured for signal recycling. The maximum transmission for f2 is 0.997 and
occurs for lsch = 23.2 mm.

and end mirrors with reflectivities given by (A.5) are

tmich =
rarm

2
e−2iφ+

(
e2iφ− − e−2iφ−

)
= irarme−2iφ+ sin 2φ− (A.16)

rmich =
rarm

2
e−2iφ+

(
e2iφ− + e−2iφ−

)
= rarme−2iφ+ cos 2φ−. (A.17)

Using this, the transmission from the PRC to SRC is

tprc→src = tprmtsrm
irarme−i(φ++φsrc) sin 2φ−

1− rarm(rprme−2iφprc + rsrme−2iφsrc) cos 2φ− + r2
armrprmrsrme−2i(φprc+φsrc)

.

(A.18)

Eq. (A.18) can be simplified by noting that all fields we are considering are resonant in

the PRC and so θ − 2φprc = 0:

tprc→src = tprmtsrm
irarme−i(φ++φsrc) sin 2φ−

1− |rarm|[rprm + rsrmei(θ−2φsrc)] cos 2φ− + |rarm|2rprmrsrmei(θ−2φsrc)
.

(A.19)

Eq. (A.19) must be used for general fields resonant in the PRC. However, for f2 which
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also must be resonant in the SRC, θ2 − 2φsrc = 0 and the transmission is

tprc→src(f2) = tprmtsrm
irarme−i(φ++φsrc) sin 2φ−

1− |rarm|(rprm + rsrm) cos 2φ− + |rarm|2rprmrsrm

. (A.20)

Fig. A.2 shows the power transmissivity of the f1 and f2 sidebands to the asymmetric port

as a function of Schnupp asymmetry lsch for the 40 m. The maximum power transmission

for f2 is 0.997 and occurs at lsch = 23.3 mm.
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Appendix B

Homodyne Detection

This appendix describes how signals are measured with balanced homodyne detection

(BHD). Sec. B.1 describes the basic BHD setup where a local oscillator (LO) at the same

frequency as the signal is used to optically demodulate the signal down from optical

frequencies. As mentioned in Appendix. A, the laser is phase modulated with two sets

of RF sidebands before entering the interferometer. These sidebands need to be removed

using an output mode cleaner (OMC). Sec. B.2 describes an idea due to Koji Arai [19]

which cleans both the LO and the signal with a single OMC by making the signal p-

polarized and the LO s-polarized. Secs. B.3–B.5 analyze the displacement noise of this

setup.

B.1 Basic Balanced Homodyne Detection

The basic balanced homodyne detector is shown in Fig. B.1. A strong local oscillator

ELOeiζ =
√
PLOei(ζ+ωt) is mixed with the signal from the interferometer EIFO =

√
PIFOeiωt

on a beam splitter where PLO and PIFO are the LO and interferomter power and ζ is the

angle between the interferometer and LO quadratures. Assuming PLO � PIFO the power
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Figure B.1: Basic balanced homodyne detector

on the two photodiodes in Fig. B.1 is

PA =
1

2

[
PLO − 2

√
PLOPIFO(eiζ + e−iζ)

]
(B.1a)

PB =
1

2

[
PLO + 2

√
PLOPIFO(eiζ + e−iζ)

]
. (B.1b)

Subtracting the two photocurrents thus gives a signal proportional to the interferometer

signal

P =
PB − PA

2
=
√
PLOPIFO cos ζ. (B.2)

Ref. [117] analyzes noise from nonidealities in a BHD.

B.2 Two polarization OMC for BHD

When using a BHD to measure the signal from an interferometer, as in the experiment

described in Chap. 3 and Fig. 3.1, the RF sidebands need to be cleaned off of both the

signal and LO. A scheme for using a single OMC to filter both the LO and signal is shown

in Fig. B.2. The signal from the interferometer is p-polarized and the LO is s-polarized.

Since the signal and LO are in orthogonal quadratures they do not mix while they are

simultaneously resonating in the OMC. A polarized beam splitter is placed before the

two photodiodes. Before the signal and LO reach the PBS they are rotated by π/4.
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Figure B.2: Polarization OMC for BHD

Then, after the beam splitter the s-polarized field has signal and LO in phase and the

p-polarized signal has the signal and LO out of phase. The signals from both photodiodes

can then be subtracted as in regular BHD (B.2).

As shown in Fig. B.2, a half-wave plate can be used to rotate the polarizations by

π/4 either before or after the OMC. These cases are analyzed in Secs. B.3 and B.4,

respectively. In general the polarizations just need to have a net rotation of π/4 before

the second PBS. It is thus possible to have a half-wave plate both before and after the

OMC. This case is analyzed in Sec. B.5.

With the standard BHD scheme a single beam splitter is used. No extra quantum

noise is added by this setup since there are no open ports for vacuum fluctations to enter

through. On the other hand, the setup shown in Fig. B.2 has two PBS with one open port
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each. Vacuum noise enters each of these open ports but does not add any extra quantum

noise. For both PBS the vacuum that enters the system is polarized orthogonal to the

signal. For the PBS before the PDs, PDB measures the p-polarized signal and PDA

measures the s-polarized signals. But the s-polarized vacuum entering the PBS’s open

port is reflected to PDB and the p-polarized vacuum is transmitted to PDA. Similarly,

no extra noise is added from the first PBS.

In the following, the field from the interferometer EIFO is p-polarized and the LO field

ELO is s-polarized. The p-component is the field incident on PDB and the s-component

is the field incident on PDA.

The OMC mirror coatings are birefringent and do not have the same reflectivity for s-

and p-polarizations. The two polarizations have different cavity finesse and free spectral

ranges and have different transfer functions through the OMC. The OMC is critically

coupled and so the transfer function is approximately

G(f) =
1

1 + if/fc
=

eiφ

1 + (f/fc)2
= |G|eiφ (B.3)

where fc = fFSR/2F is the cavity pole. We are interested in frequencies f � fc. In

this case the magnitude |G| ≈ 1 and the phase φ ≈ 0. Since s and p have different

transfer functions, we keep |G| and φ general below to analyze the effects of OMC length

fluctuations. However, once these effects have been calculated we can set |G| = 1 and

φ = 0 for both s and p and obtain the standard BHD signal (B.2).

The circulating power for the s- and p-polarizations in the OMC is shown schemat-

ically in Fig. B.3. The s-polarization has a higher finesse and a larger FSR than the

p-polarization and so the circulating s-polarization is resonant at a higher frequency

than the p-polarization. The cavity can be locked halfway between the two resonances.
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Figure B.3: OMC circulating power. The cavity finesse plotted is a factor of 10 less
than the aLIGO OMCs and the frequency shift is exaggerated. For the aLIGO OMCs,
δfFSR/fFSR ≈ 10−5.

B.3 Noise with the half-wave plate before the OMC

With the HWP before the OMC, the polarizations are rotated before entering the

OMC. The field incident on the second PBS is thus

E =
1√
2
Gp

(
EIFO − ELOeiζ

)
p̂ +

1√
2
Gs

(
EIFO + ELOeiζ

)
ŝ. (B.4)

and the homodyne signal is

P =
1

4
(PIFO + PLO)

(
|Gs|2 − |Gp|2

)
+

1

2

√
PIFOPLO

(
|Gs|2 + |Gp|2

)
cos ζ. (B.5)

Since the cavity is locked off resonance for both polarizations, OMC length fluctua-

tions lead to first order fluctuations in the circulating power. The slope of the magnitude

of the transfer function is

∂ |G|2
∂f

= − 2f/f 2
c

[1 + (f/fc)2]2
. (B.6)
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Since the cavity is locked halfway between the two resonances at ±δfFSR/2, for f � fc,

∂ |Gp|2
∂x

=
δfFSR

f 2
c

fFSR

λ
= −∂ |Gs|2

∂x
. (B.7)

If the cavity gets longer the p-polarized circulating power increases and the s-polarized

power decreases, and vice versa.

The power fluctuations in the homodyne power (B.5) due to OMC length fluctuations

are thus

∂P

∂x
=

1

4
(PIFO + PLO)(−2)

fFSR

λ

δfFSR

f 2
c

. (B.8)

The power fluctuations in the beet between the LO and signal cancel while the fluctua-

tions in the DC power add. The OMC displacement noise is thus

S
1/2
P =

PIFO + PLO

2

fFSR

λ

δfFSR

f 2
c

S1/2
x . (B.9)

B.4 Noise with the half-wave plate after the OMC

With the HWP after the OMC the field incident on the second PBS is

E =
1√
2

(
GpEIFO −GsELOeiζ

)
p̂ +

1√
2

(
GpEIFO +GsELOeiζ

)
ŝ (B.10)

and the homodyne signal is thus

P =
√
PIFOPLO |Gp||Gs| cos(ζ + ∆φ). (B.11)

where ∆φ = φs−φp. As with the case above, power fluctuations in s and p due to length

fluctuations cancel.

However, since s and p have different cavity finesse, the phase change due to cavity

length fluctuations is different:

∂φ

∂x
=

2F
π

2π

λ
⇒ ∂∆φ

∂x
=

4δF
λ

(B.12)
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where δF = Fs −Fp. The noise is thus

S
1/2
P =

√
PIFOPLO

4δF
λ
|sin ζ|S1/2

x . (B.13)

This noise could be significant if PIFO as a large contrast defect component. This noise

is largest when reading out the phase quadrature since the LO and CD are orthogonal.

However, there is no displacement noise when reading out the amplitude quadrature. In

this case the LO and CD are aligned and so there is no first order change in the rates of

rotation for the s- and p-polarizations.

B.5 Noise with half-wave plates on both sides of the

OMC

Since it is only necessary that there is a net π/4 polarization rotation before the

second PBS, it is possible to us a HWP before the OMC that rotates the polarizations

by θ and a second HWP after the OMC which rotates the polarizations by ϕ = π/4− θ.

In this case, the fields after the PBS are



EA

EB


 =

1√
2




cos θ + sin θ sin θ − cos θ

cos θ − sin θ cos θ + sin θ






Gp cos θ −Gp sin θ

Gs sin θ Gs cos θ






EIFO

ELOeiζ


 (B.14)

where the top component is p and the bottom component is s. In this case it can be

shown that P = P1 + P2 where

P1 =
1

8
[(sin 4θ − 2 sin 2θ)(|Gp|2PLO − |Gs|2PIFO)

+ (sin 4θ + 2 sin 2θ)(|Gs|2PLO − |Gp|2PIFO)]− 1

4
sin 4θ |Gp||Gs|(PLO − PIFO) cos ∆φ

(B.15a)
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Figure B.4: OMC sensitivity to displacement noise when the phase quadrature
(ζ = π/2) is readout. The parameters for the aLIGO OMCs are used with
PLO = 10 mW and PCD = 1 mW. The line marked δfFSR is the sensitivity due to
the FSR difference which would be obtained if a single HWP is placed before the
OMC (θ = π/4). The line marked δF is the sensitivity due to the finesse difference
which would be obtained if a single HWP is placed after the OMC (θ = 0).

and

P2 =
1

2

√
PLOPIFO{sin2 2θ (|Gs|2 + |Gp|2) cos ζ

+ 2|Gs||Gp| cos 2θ
[
cos2 θ cos(ζ + ∆φ)− sin2 θ cos(ζ −∆φ)

]
}. (B.15b)

Note that when |Gs| = |Gp| = 1 and ∆φ = 0, P1 = 0 and P2 =
√
PLOPIFO cos ζ regardless

of θ, as it should.

The length fluctuations of these terms are

∂P1

∂x
= −1

2

fFSR

λ

δfFSR

f 2
c

(PLO + PIFO) sin 2θ (B.16a)

∂P2

∂x
= −

√
PIFOPLO

4δF
λ

cos 2θ sin ζ (B.16b)
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Figure B.5: Optimal polarization angle for an aLIGO OMC with PLO = 10 mW and
PCD = 1 mW.

and so the total displacement noise is

S
1/2
P =

∣∣∣∣
1

2
(PLO + PIFO)

fFSR

λ

δfFSR

f 2
c

sin 2θ +
√
PLOPIFO

4δF
λ

sin ζ cos 2θ

∣∣∣∣S1/2
x . (B.17)

It is thus possible to cancel the displacement noise by choosing the polarization angle

appropriately. In the case that the interferometer beam is dominated by contrast defect

PCD and PLO � PCD, the optimal angle is

θopt = −1

2
arctan

(√
PCD

PLO

8δF
fFSR

f 2
c

δfFSR

sin ζ

)
. (B.18)

Note that the angle is π/2 periodic.

For the aLIGO OMCs, δF ≈ 80, δfFSR ≈ 30 kHz, fFSR ≈ 268 MHz, and fc ≈

340 kHz. The coatings can presumably be designed to minimize the birefringence, but

for concreteness the sensitivity of the OMC to displacement noise S
1/2
P /S

1/2
x when the

phase quadrature ζ = π/2 is readout is shown in Fig. B.4 for aLIGO parameters. The

optimal rotation angle as a function of homodyne angle is plotted in Fig. B.5.
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Appendix C

Compact Binary Waveforms for
Combined Networks of Ground and
Space Detectors

Analyzing the gravitational wave signal from a single source with a network of both

ground and space detectors is challenging for a few reasons. First, since the space detec-

tors are sensitive to lower frequencies than the ground detectors, the signals will stay in

the space detectors’ sensitivity band longer than the ground detectors’ band; see Fig. C.1

below. While the signal from a ground detector can be computed by projecting the grav-

itational wave signal onto the antenna pattern for that detector at the time the wave hits

the detector, space detectors have to account for the Doppler shift of the wave’s frequency

as well as the changing antenna pattern caused by the motion of the detector in its orbit.

Sec. C.1 gives rough estimates for the timescales over which these time dependent effects

are important.

Second, since the waves will often merge in the ground detectors’ band, the merger

and ringdown must be computed in addition to the inspiral. Waveforms used for low

frequency missions such as LISA or TianQin, see for example [49, 118–120], include

only the inspiral, and the current methods of calculating high frequency waveforms that

include the merger and ringdown do not include the time dependent effects necessary for
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the low frequencies.

Finally, on a more practical level, since the low frequency waveforms last for so long,

it is impractical to compute them with linearly spaced frequency points as is currently

done for these high frequency waveforms. Any attempt to add the time dependence

to the high frequency waveforms will be further complicated by the need to generate

the waveforms at logarithmically spaced frequency points. One approach is generate the

waveforms in two pieces: a high frequency linearly spaced waveform, and a low frequency

logarthmically spaced waveform with Doppler shifts and time dependent antenna patterns

built in. These two waveforms could then be joined, though this is difficult to achieve in

practice.

For a detector such as TianGO, which is sensitive to an intermediate frequency band

where a source will both spend a significant amount of time and merge, it is especially

important to account for both the merger and ringdown as well as the time dependence

and Doppler shifts.

This appendix describes such a waveform that can be simultaneously used for both

ground and space detectors. Sec. C.2 describes the basic waveform from Refs. [121, 122].

Sec. C.3 then describes the projection of this basic waveform onto ground detectors, and

Sec. C.4 describes how the waveform used to analyze low frequency LISA signals from

Ref. [49] can be modified to project the waveform from Sec. C.2 onto a space detector.

Since the waveform is analytic, it is also straightforward to evaluate at logarithmically

spaced frequency points.

Throughout this appendix the following mass quantities are used. The mass of each

binary in the compact binary system is M1 and M2, and the total mass of the system

is M = M1 + M2. The reduced mass is µ = M1M2/M and the symmetric mass ratio is
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η = M1M2/M
2. The chirp mass is

M = µ3/5M2/5 = η3/5M. (C.1)

C.1 Time Dependent Effects of Low Frequency Wave-

forms

The time it takes a binary system to coalesce from the time it is at the frequency f

is [123]

τ =
1

π8/3

5

256

(
GM�
c3

)−5/3(M
M�

)−5/3

f−8/3 (C.2)

Less massive systems therefore merge slower than more massive systems. If the frequency

at which a gravitational wave enters a detector’s band is sufficiently low, the time until

merger will be sufficiently long that Doppler shifts and time dependent antenna patterns

will need to be accounted for. In this section we give estimates for when these effects

become important.

Doppler shift This estimate for the magnitude of the Doppler shifts follows Ref. [123].

For a gravitational wave of frequency fgw, the observed frequency in a detector moving

with velocity v with respect to the source is

f = fgw

(
1 +

v · r̂
c

)
, (C.3)

where r̂ is the unit vector in the direction of the source. Therefore, the change in frequency

over a time T is ∆f = fgw∆v/c where ∆v is the change in velocity in the direction of the

source over this time. Let the rotational velocity of the detector be vrot = Rωrot where

R is the radius of the orbit. If we are considering the rotation of the detector around

the sun then R = R�, and if we are consider the rotation of the earth around its axis
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R = R⊕. These estimates are in the worst case where the detector is at the equator

and facing the source head on. The change in angle of the detector around the axis of

rotation is ∆θ = Tωrot. If ∆θ � 1

∆v ∼ vrot∆θ ∼ Tvrotωrot ∼ Rω2
rotT. (C.4)

If the source is observed for a time T , then the frequency resolution is ∆f = 1/T .

The Doppler shift is not important if the frequency shift due to the Doppler effect is less

than this frequency resolution:

fgwR
ω2

rot

c
T .

1

T
(C.5)

or

T .
1

ωrot

√
c

fgwR
. (C.6)

For the rotation of the Earth about its axis, this is

T⊕ . 50 min

√
1 kHz

fgw

, (C.7)

and for the rotation a detector around the sun, this is

T� . 120 min

√
1 kHz

fgw

. (C.8)

There is a distance between two binaries beyond which no stable orbit exists. This

orbit is called the innermost stable circular orbit (ISCO) and occurs at a frequency of

fISCO =
1

12
√

6π

(
c3

GM�

)(
M�
Mtot

)
. (C.9)

This is roughly the frequency at which the merger occurs and, since the gravitational

wave frequency is twice the orbital frequency, the maximum frequency observed in a

detector that sees the merger and ringdown is a little more than fgw = 2fISCO. This is

the value that should be used in the estimates in (C.6).
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f Mtot/M� τ 2fISCO T� T⊕ |δF/F |� |δF/F |⊕
10 Hz 8 170 s 550 Hz 160 min 67 min 7.3× 10−5 2.6× 10−2

10 Hz 80 3.8 s 55 Hz 8.5 hr 3.6 hr 1.5× 10−6 5.6× 10−4

10 Hz 800 81 ms 5.5 Hz 27 hr 11.2 hr 3.2× 10−8 1.2× 10−5

10 mHz 8 550 yr 550 Hz 160 min 67 min 1 1
10 mHz 80 11.9 yr 55 Hz 8.5 hr 3.6 hr 1 1
10 mHz 800 95 days 5.5 Hz 27 hr 11.2 hr 1 1

Table C.1: Importance of Doppler shifts and time dependent antenna patterns. The
time to coalescence τ is for the frequency f in the table, the maximum allowable
times in band T�,⊕ are for 2fISCO, and the magnitude of the relative antenna pattern
change |δF/F |�,⊕ are for the duration τ . As described in the text, for Doppler shifts
to be unimportant τ < T�, T⊕, and for antenna pattern variations to be unimportant
|δF/F |�,⊕ � 1. The time dependent effects are thus negligible for ground detectors
with sources entering their sensitivity band around 10 Hz, but are significant for space
detectors with sources entering their sensitivity bands extending down to 10 mHz or
lower.

Amplitude modulation The antenna patterns for the plus and cross polarizations

are

F+ =
1

2

(
1 + cos2 θ

)
cos 2φ, F× = cos θ sin 2φ (C.10)

For the rest of this estimate we take the maximum amplitude to get the worst case

amplitude modulation. The maximum values of the rate of change of these amplitudes

is
∣∣∣Ḟ+

∣∣∣ =
∣∣∣Ḟ×
∣∣∣ = 2φ̇ = 2ωrot (C.11)

and the change in the amplitudes during a time T is δF+,× = Ḟ+,×T . The maximum

value of the relative intensities is thus

∣∣∣∣
δF+

F+

∣∣∣∣
max

=

∣∣∣∣
δF×
F×

∣∣∣∣
max

∼ 2ωrotT. (C.12)

For the rotation of the Earth about its axis this is

∣∣∣∣
δF

F

∣∣∣∣
max,⊕

∼ 1.5× 10−4 T

1 s
, (C.13)
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and for the rotation of the detector about the sun this is

∣∣∣∣
δF

F

∣∣∣∣
max,�

∼ 4× 10−7 T

1 s
∼ 2.4× 10−5 T

1 min
. (C.14)

Tab. C.1 shows the estimates of the importance of Doppler shifts and time dependent

antenna patterns for various sources as detected in a ground or space detector. It is

assumed that the detector sees the source for the entire frequency band from f to 2fISCO.

As the table shows, the effects described in this section are significant for space detectors

but not for ground detectors. These effects may start to become important for the third

generation of ground based gravitational wave detectors which will be sensitive to lower

frequencies, however.

C.2 Basic Waveform

The waveform described in Refs. [121, 122] is an analytic phenomenological waveform

found by matching a numerical relativity waveform with a post Newtonian wave form.

It is written in the frequency domain as

u(f) = Aeff(f) eiΨeff(f) (C.15)

where the amplitude is broken up into an inspiral, merger, and ringdown phase:

Aeff(f) = C





(f/fmerg)−7/6 f < fmerg

(f/fmerg)−2/3 fmerg < f < fring

wL(f, fring, σ) fring < f < fcut

. (C.16)

The ringdown is described by a Lorentzian of width σ centered on the ringdown frequency

fring

L(f, fring, σ) =
1

2π

σ

(f − fring)2 + σ2/4
, (C.17)
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Quantity ak bk ck
fring 5.9411× 10−1 8.9794× 10−2 1.9111× 10−1

fmerg 2.9740× 10−1 4.4810× 10−2 9.5560× 10−2

fcut 8.4845× 10−1 1.2848× 10−1 2.7299× 10−1

σ 5.0801× 10−1 7.7515× 10−2 2.2369× 10−2

Table C.2: Parameters for waveform frequencies and Lorentzian width.

and

w =
πσ

2

(
fring

fmerg

)
(C.18)

is chosen to make the waveform continuous at the transition between the merger and

ringdown. The overall amplitude is

C =

√
5

24

c1/6

π2/3DL

(
GM�
c2

)5/6(M
M�

)5/6

f−7/6
merg . (C.19)

where M is the chirp mass and DL is the luminosity distance.

The merger, ringdown, and cutoff frequencies as well as the Lorentzian width are given

by matching to a numerical relativity waveform. If α1 = fmerg, α2 = fring, α3 = fcut, and

α4 = σ, the parameters are

αk =
c3

πGM�

(
M�
M

)(
akη

2 + bkη + ck
)
, (C.20)

where the constants ak, bk, and ck are given in Tab. C.2

The phase is

Ψeff(f) = 2πft0 + ψ0 +
7∑

k=0

ψkf
(k−5)/3 (C.21)

where

ψk =
1

η

(
c3

πGM�

)(5−k)/3(
M

M�

)(k−5)/3

(xkη
2 + ykη + zk). (C.22)

The phase parameters are given in Tab. C.3.
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k xk yk zk
0 1.7516× 10−1 7.9483× 10−2 −7.2390× 10−2

1 0 0 0
2 −5.1571× 101 −1.7595× 101 1.3253× 101

3 6.5866× 102 1.7803× 102 −1.5972× 102

4 −3.9031× 103 −7.7493× 102 8.8195× 102

5 0 0 0
6 −2.4874× 104 −1.4892× 103 4.4588× 103

7 2.5196× 104 3.3970× 102 −3.9573× 103

Table C.3: Parameters for waveform phase.

C.3 Projection onto Ground Detectors

Projecting the gravitational wave signal (C.15) onto a ground detector is relatively

straightforward since the detector itself can be treated as fixed in time. We use (C.15)

to write the plus and cross polarizations as [123]

h+(f) = Aeff(f) eiΨeff(f)

(
1 + cos2 ι

2

)
(C.23a)

h×(f) = Aeff(f) ei[Ψeff(f)+π/2] cos ι, (C.23b)

where ι is the source inclination. The antenna patterns for an interferometer are

F+ =

(
1 + cos2 θ

2

)
cos 2φ cos 2ψ − cos θ sin 2φ sin 2ψ (C.24a)

F× =

(
1 + cos2 θ

2

)
cos 2φ sin 2ψ + cos θ sin 2φ cos 2ψ, (C.24b)

where φ and θ are the azimuthal and polar angles, respectively, of the source relative to

the detector and ψ is the polarization phase. Instead of φ and θ, right ascension α = φ

and declination δ = π/2− θ are often used. The waveform observed in a given detector

is then

h(f) = F+h+(f) + F×h×(f). (C.25)
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C.4 Projection onto Space Detectors

We follow the approach of Ref. [49] to modify the waveform (C.15) to account for

the Doppler shifts and the time dependence of the space detector antenna pattern. The

strategy to account for the time dependence is to find the source location in the frame

of the detector as a function of time. The source location relative to the ecliptic plane φ,

θ, and ψ is fixed and the location in the detector frame φ̃(t), θ̃(t), and ψ̃(t) is a function

of time. Once these angles are known, they are used to calculate the Doppler shift and

the antenna patterns (C.24) as a function of time. Finally, a post-Newtonian expansion

is used to find the frequency of the waveform as a function of time so that the waveform

can be written in the frequency domain.

The post-Newtonian expansion is done in the parameter [49, 114]

x =

(
G

c3
πM�

)2/3M
µ

[(M
M�

)
f

]2/3

. (C.26)

The time as a function of frequency is

tf = tc − tx
[
1 +

4

3

(
743

336
+

11

4

µ

M

)
x− 32π

5
x3/2

]
, (C.27)

where tc is the coalescence time and

tx = 5c5/3(8πf)−8/3

(
GM�
c2

)−5/3(M
M�

)−5/3

. (C.28)

Now we summarize the time dependence of the source location [49]. The azimuthal

angle of the detector in its orbit around the sun is φ̄(tf ) = 2πtf/T where T is the period

of the orbit. Let n̂ be the unit vector from the detector to the source and let L̂ be the

unit vector of the source angular momentum in the ecliptic frame. The azimuthal and

polar angles of the angular momentum are φL and θL, respectively. If ẑ is the unit vector

along the z direction, the polar angle of the source in the detector frame is

cos θ̃(tf ) = ẑ · n̂ =
1

2
cos θ −

√
3

2
sin θ cos(φ̄(tf )− φ), (C.29)
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the azimuthal angle of the source in the detector frame is

φ̃(tf ) = φ̄(tf ) + arctan

[√
3 cos θ + sin θ cos(φ̄(tf )− φ)

2 sin θ sin(φ̄(tf )− φ)

]
, (C.30)

and the polarization phase of the source in the detector frame is

tan ψ̃(tf ) =
L̂ · ẑ− (L̂ · n̂)(ẑ · n̂)

n̂ · (L̂× ẑ)
(C.31)

where

L̂ · ẑ =
1

2
cos θL −

√
3

2
sin θL cos(φ̄(tf )− φL) (C.32)

L̂ · n̂ = cos θL cos θ + sin θL sin θ cos(φL − φ), (C.33)

and

n̂ · (L̂× ẑ) =
1

2
sin θL sin θ sin(φL − φ)

−
√

3

2
cos φ̄(tf ) (cos θL sin θ sinφ− cos θ sin θL sinφL)

−
√

3

2
sin φ̄(tf ) (cos θ sin θL sinφL − cos θL sin θ sinφ). (C.34)

Eqs. (C.29)–(C.31) are a function of frequency through (C.27).

The antenna patterns as a function of time are given by plugging the detector frame

angles (C.29)–(C.31) into (C.24). The amplitude of the waveform in the detector is

modulated by

Λ(f) =

√
[1 + (L̂ · n̂)2]2F 2

+(f) + 4(L̂ · n̂)2F 2
×(f) (C.35)

as the detector orbits the sun. The time dependence of the antenna pattern also adds

the additional polarization phase

tanφp(f) =
2(L̂ · n̂)F×(f)

[1 + (L̂ · n̂)2]F+(f)
(C.36)

to the overall phase. Finally, the motion of the detector around the sun Doppler shifts

the wave’s frequency and adds the additional phase

φD(f) =
2πf

c
R sin θ cos(φ̄(tf )− φ) (C.37)
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Figure C.1: Amplitude of the waveform (C.38) for two equal mass binary systems at
a redshift of z = 0.1. The legend denotes the total mass of the binary system. The
time the 80M� binary stays in the zoomed in region of the plot is approximately
11.7 years. In contrast, the time it takes the 800M� binary to sweep through the
same frequency band (of approximately 35 mHz) is approximately 3 months.

where R is the radius of the orbit.

The full waveform projected onto the space detector’s time-dependent antenna pat-

tern and accounting for the Doppler shift is

h(f) =

√
3

2
Λ(f)Aeff(f) ei[Ψeff(f)−φD(f)−φp(f)]. (C.38)

The factor of sin(π/3) =
√

3/2 accounts for a detector forming an equilateral triangle:

the antenna patterns for an interferometer with arms at 60◦ is sin(π/3) times those for

an interferometer with perpendicular arms.

Finally, note that this projection onto a space detector is most convenient in terms

of the source location θ and φ in the ecliptic frame and the orientation of the source

angular momentum θL and φL, while calculations are more commonly done in terms of the
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inclination ι and polarization phase ψ. The relation between the two parameterizations

is given by

cos ι = cos θL sin δ + sin θL cos δ cos(φL − α) (C.39)

tanψ =
cos θL + cos ι sin δ

cos δ sin θL sin(φL − α)
(C.40)

where α = φ is the right ascension and δ = π/2− θ is the declination of the source.
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