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Abstract

This study presents a Kalman filter-based framework to establish a real-time 
in situ monitoring system for groundwater contamination based on in situ 
measurable water quality variables, such as specific conductance (SC) and 
pH. First, this framework uses principal component analysis (PCA) to identify 
correlations between the contaminant concentrations of interest and in 
situmeasurable variables. It then applies the Kalman filter to estimate 
contaminant concentrations continuously and in real-time by coupling data-
driven concentration-decay models with the previously identified data 
correlations. We demonstrate our approach with historical groundwater data 
from the Savannah River Site F-Area: We use SC and pH data to estimate 
tritium and uranium concentrations over time. Results show that the 
developed method can estimate these contaminant concentrations based on 
in situ measurable variables. The estimates remain reliable with less 
frequent or no direct measurements of the contaminant concentrations, 
while capturing the dynamics of short- and long-term contaminant 
concentration changes. In addition, we show that data mining, such as PCA, 
is useful to understand correlations in groundwater data and to design long-
term monitoring systems. The developed in situ monitoring methodology is 
expected to improve long-term groundwater monitoring by continuously 
confirming the contaminant plume’s stability and by providing an early 
warning system for unexpected changes in the plume’s migration.



Introduction

Sustainable remediation of soil and groundwater involves balanced decision-
making with respect to environmental, social, and economic sustainability 
criteria and their acceptable ranges.(1,2)Overall environmental benefit, 
disturbances, and footprints, including waste, construction noise/traffic, 
ecological disturbance, and water/energy use, need to be considered. 
Sustainable remediation is often coupled with attractive end-use scenarios 
with restrictive use of the subsurface, such as the installation of solar power 
stations under long-term institutional control.(3)It usually involves 
attenuation-based remedies – such as enhanced natural attenuation (ENA) 
and monitored natural attenuation (MNA) – that remove or immobilize 
contaminants in the subsurface through natural or engineered processes.(4) 
Attenuation-based approaches are particularly effective at managing large 
volumes of contaminated soil and groundwater with relatively low 
concentrations, where soil removal is not practical due to its large volume, 
and active treatment systems are no longer effective due to relatively low 
contaminant concentrations.

Environmental monitoring has become increasingly important for 
implementations of ENA and MNA.(5,6) Attenuation-based remedies carry 
the increased burden of proof that the remaining contaminants will stay on-
site, that the contaminant plume is stable, and that the residual 
contaminants do not pose a significant risk to public health. Regulatory 
approval of ENA or MNA requires long-term monitoring programs to ensure 
plume stability and demonstrate compliance with approved levels of risk 
reduction. This is particularly important for metals and radionuclides, 
because these contaminants will remain in the subsurface for an extended 
time. In addition, a hydrological shift or an extreme event, for example due 
to climate change, could alter the plume’s mobility in the future due to a 
change in the hydraulic gradient or geochemical conditions, particularly for 
redox-sensitive species like uranium, chromium, and arsenic.(7) Proper 
monitoring provides assurance for local communities in terms of health 
concerns and improves the negative perception often associated with 
contaminated sites.(5,8)



The challenge is to develop cost-effective strategies for long-term 
groundwater monitoring because it could become a significant portion of the 
overall life-cycle cost at contaminated sites. Although there have been 
significant advances in the development of sensor networks and data 
analytics technologies in the past decade,(9−11) they have rarely been used
in groundwater monitoring, and most contaminants still cannot be detected 
directly. The current standard practice at contaminated sites is to sample 
and analyze groundwater samples from multiple wells quarterly or yearly. 
Such discrete measurements could miss significant changes in plume 
mobility and contaminant transport. In addition, current practices can lead to
a “compliance only”-focus, meaning that contaminant concentrations are 
assessed for regulatory compliance alone and little effort is put into 
understanding the system and plume behavior. Lack of understanding could 
potentially result in increased liability, when data anomalies are 
misinterpreted.

Recently, Eddy-Dilek et al. (2014) have explored a new approach for the 
long-term monitoring of metal and radionuclide plumes.(12) Their method 
proposes to monitor the changes of in situmeasurable groundwater variables
(such as pH, temperature, specific conductance (SC), and water level), which
are indicative of plume behavior. This approach is similar to previous 
hydrogeophysical studies, which have shown that, for example, electrical 
properties are correlated to contaminant concentrations.(13,14) This in situ 
monitoring approach has great potential to monitor contaminant 
concentrations continuously over time. In addition, when an event occurs 
that could potentially change plume mobility, such a monitoring system 
enables a swift response and a rapid adjustment of remedial actions.

In this study, we present a framework for the continuous real-time estimation
of groundwater contaminant concentrations based on in situ measurable 
variables. First, we apply a data mining approach – here, principal 
component analysis (PCA) – to historical monitoring data sets to improve our 
system understanding by identifying possible correlations between different 
groundwater variables and contaminant concentrations. Once identified, the 
correlations need to be quantified with an appropriate correlation coefficient.
After this exploratory data analysis, we apply the Kalman filter algorithm, 
which can integrate mixed time-series data (e.g., various data types and 
accuracies) with a temporal evolution model, i.e. physical or empirical 
models, continuously in real-time.(15) The Kalman filter has been applied in 
numerous fields, particularly in navigation,(16) traffic prediction,(17,18) 
remote sensing,(19) and sensor network applications.(20)In the context of 
groundwater monitoring, the Kalman filter enables us to estimate 
contaminant concentrations in real-time as well as to decrease the frequency
of direct contaminant sampling.

We demonstrate this approach using the extensive historical data sets from 
the Department of Energy (DOE) Savannah River Site (SRS) F-Area (South 
Carolina, United States). The site is contaminated with radionuclides, such as



tritium (H-3), iodine-129 (I-129), and uranium-238 (U-238), and a significant 
amount of these contaminants remains in the vadose zone.
(21)Approximately 200 groundwater monitoring wells have been installed 
since 1955. The vast amount of available historical data makes this site an 
excellent location to test and demonstrate our approach which can 
potentially be transferred to other contaminated sites. The proposed method
is a general framework that could possibly contribute to improved 
environmental protection as well as reduced long-term monitoring costs.

Site Description

The SRS F-Area has three unlined seepage basins, which received 
approximately 7.1 million m3of acidic, low-level radioactive waste solutions 
between 1955 and 1988.(22) Currently, an acidic contaminant plume 
extends from the basins to about 600 m downgradient, moving toward the 
Fourmile Branch creek. The plume contains various radionuclides (e.g., H-3, 
I-129, U-238) as well as nitric acid. The plume penetrates the upper and 
lower aquifer,(23) which are hydrologically connected, despite being 
separated by a thin clay-rich layer.(24,25)

In order to reduce the effect of infiltration, the basins were capped in 1991.
(26) In addition, a pump-and-treat system was installed in 1997 and then 
replaced by ENA in 2004, using a hybrid funnel-and-gate system.(12,23) This
system consists of low-permeability engineered flow barriers (Figure 1) and 
injections of alkaline solutions, which are considered effective at neutralizing 
the acidic groundwater and enhancing uranium retardation.(23)

Figure 1. Site map of the SRS F-Area. The contour lines indicate the elevation of the groundwater table 
in meters. The contaminant plume originates from the three basins (rectangular boxes) and moves 
toward the Fourmile Branch creek in the southeast (thick blue line). Thick black lines indicate the 
location of low-permeability flow barriers. Black circles indicate well locations used for PCA analysis, 
and the red circles are FSB-95DR and FSB-110D, the wells used for the further demonstration of our 
framework.



The current ENA strategy is supposed to be replaced by MNA, based on the 
hypothesis that rainwater infiltration and groundwater mixing will eventually 
dilute the plume and neutralize the pH. Radioactive constituents have been 
monitored since the basins began operation in 1955, while quarterly 
groundwater sampling for nonradioactive contaminants began in 1982.(22)

Methodology

Exploratory Data Analysis

First, we apply PCA to the historical data sets to improve our system 
understanding by visualizing the correlations between the different 
groundwater quality variables and contaminant concentrations. Although 
such understanding can also be obtained through laboratory experiments 
and modeling,(23,27) it is important to use field data for validation. PCA 
converts multivariate data into a set of uncorrelated principal components 
(PCs), which are linear combinations of all original variables.(28,29) It is 
effective at visualizing and identifying data correlations and patterns, 
especially when the number of parameters is too large to assess the 
correlations with individual cross plots. In the context of hydrology and 
remediation, there have been several applications of PCA: Brown (1993) 
applied PCA to assess relationships between physical and hydraulic 
properties in a carbonate-rock aquifer.(30) Barker et al. (1988) used PCA to 
delineate the plume extent at a landfill site based on multivariate 
groundwater data.(31) In this study, we use PCA to support and improve 
long-term monitoring. The results of the PCA analysis inform our selection of 
in situ measurable variables suitable for the estimation of contaminant 
concentrations.

After PCA, we quantify the correlations between the different contaminant 
concentrations and relevant in situ measurable variables, such as the H+ 
activity (calculated from pH values) and the SC, using the Pearson 
correlation coefficient.(32) We evaluate the time series of multiple variables 
at individual wells independently and investigate the spatial consistency 
across the site. This kind of correlation analysis is commonly used to 
estimate various hydrological and biogeochemical properties based on in 
situ-measured electrical properties.(33,34) The exploratory data analysis is 
done in RStudio 1.0.153.

Before applying PCA, we remove outliers from all time series, including the 
contaminant concentration data ct, linearly interpolate them, and then log-
normalize them using historical minima and maxima:

This log-normalization is useful to facilitate the visualization of multiple time 
series whose values vary in scale. The log-normalized values are shown in 



the Supporting Information (SI) in Figure S1. We use Excel 2016 for the data 
preparation.

Estimation Strategy

Our goal is to estimate contaminant concentrations at groundwater wells 
continuously over time by using in situ measurable groundwater quality 
variables (e.g., SC and H+ activity). We aim to use the contaminant 
concentration estimates to significantly reduce the frequency of direct 
measurements, i.e. groundwater sampling. Our method is based on two 
data-driven models: (1) the temporal evolution model of the contaminant 
concentrations and (2) the data correlation modelbetween contaminant 
concentrations and in situ measurable variables.

Temporal Evolution Model

A data-driven exponential decay model is often used to describe the 
temporal evolution of contaminant concentrations in a plume’s trailing edge.
(21,35−38) It approximates the combined effects of dilution, advective 
transport, and, if applicable, biodegradation and radioactive decay with an 
effective exponential decay constant. The model is known to have good 
predictive power, despite its simplicity. Since exponential decay becomes 
linear in log-normal concentrations ct,norm , a linear model can describe its 
temporal evolution

where ċt,norm is the rate of concentration change or the concentration decay 
rate.

Data Correlation Model

Multiple studies have documented significant correlations between 
contaminant concentrations and in situ measurable variables.(14,21,33) 
Such correlations are physically explained by the contaminant transport 
conditions (e.g., cocontaminants, geochemistry). At the SRS F-Area, the SC is
primarily controlled by nitrate, which was released together with other 
contaminants.(21)Uranium mobility is primarily influenced by the pH.(23,27) 
In this study, we assume that the correlations between contaminant 
concentrations ct,norm and in situ measurable variables are linear (SI, Figure 
S2)

where analogous to the contaminant concentrations, SCnorm and H+
t,norm are 

the log-normalized SC and H+ activity values, respectively. The linear 
regression parameters include the slopes (aSCand aH

+) and the intercepts (bSC 
and bH

+).



Kalman Filter

In this study, we formulate our system as a discrete time-dependent system 
based on a state-space model.(39) We define a system state vector at time 
step t as xt = [ct,norm, ċt,norm]T, where ct,norm represents the contaminant 
concentrations, ċt,norm is the decay rate, and T indicates a vector transpose. 
The temporal evolution model (eq 2) is translated into the state-transition 
equation to describe the change of xt within the discrete time interval Δt:

The state transition matrix F is defined as

We assume that w is a system noise vector, that follows a zero-mean 
Gaussian distribution with covariance matrix Q and is associated with the 
uncertainty in the temporal evolution model due to various hydrological and 
geochemical fluctuations, as well as sampling and analytical errors.

In addition, we define the observation vector zt that represents measured 
data (direct measurements of the contaminant concentrations ct,norm,direct and 
the in situ measurable variables SCt,norm and H+

t,norm) at time t as zt = [ct,norm, 

direct, SCt,norm, H+
t,norm]T. We expect that, to confirm the algorithm’s estimation 

performance, direct measurements of the contaminant concentrations will be
taken occasionally. However, these measurements would be less frequent 
than the current quarterly or yearly sampling standard. To include these 
infrequent measurements in a consistent manner, missing data are dealt 
with by ignoring the respective terms during the computation. The data 
correlation model (eqs 3 and 4) is translated into the state-observation 
equation, which describes the relationship between the state and 
observation vectors

where the observation matrix H and the intercept term u are defined as

The observation noise vector v is assumed to follow a zero-mean Gaussian 
distribution with covariance matrix R. It includes not only the instrument 
noise but also the uncertainty in the linear correlations (eqs 3 and 4).

The parameters in eqs 5 through 8 are estimated based on historical data 
sets before applying the Kalman filter. The covariance matrix Q is 



determined based on past contaminant concentrations and their variability. 
The parameters in H and u are determined by the linear regression analysis 
between contaminant concentrations and in situ parameters (eqs 3 and 4). 
The covariance matrix R is defined based on the residuals of the linear 
regression. Although the parameters can also be updated during the 
estimation, we assume that they are constant for the sake of simplicity in 
this demonstration. We further assume that there is sufficient historical data 
available to determine the parameters.

Once all parameters are determined, we can apply the standard linear 
Kalman filtering algorithm to estimate the contaminant concentrations 
continuously in real-time (SI, Text S1 and Figure S3). The algorithm is 
recursive; at each time step, the state vector xt is first predicted based on 
the previous time step xt–1 and the state-transition model (eq 5) and then 
updated based on the state-observation model (eq 7). We use MATLAB 
R2016a for the implementation of the Kalman filter.

Results

Exploratory Data Analysis

Figure 2 shows the biplot from the PCA analysis based on time-series data 
from 42 wells. The first and second PCs account for most of the variability 
(>80%). The biplot reveals that, except for I-129, all variables are positively 
correlated to each other, particularly the nonreactive tracers (H-3, SC, and 
nitrate). I-129 is isolated, possibly because it has more complex speciation 
and geochemical behavior than other species.(40) The SC is strongly 
correlated with the nitrate concentrations, since nitrate dominates the total 
dissolved solids at this site. The U-238 concentration has a positive 
correlation with the H+ activity, which is consistent with laboratory 
experiments and modeling studies.(23,27) This plot suggests that the SC and
the H+ activity (both measurable in situ) can be used to estimate U-238 and 
H-3 concentrations.



Figure 2. PCA biplot showing the second PC vs the first PC. Each arrow represents the loading of each 
variable on the PCs. Two variables with arrows pointing in the same/opposite direction are strongly 
positively/negatively correlated. Variables with orthogonal arrows are likely to be uncorrelated.

The Pearson correlation coefficients between the SC and U-238 are positive 
up to 0.96 with an average of 0.55 (Figure 3a), except for a few low 
correlations at some wells at the edge of the plume. The correlation between
the H+ activity and U-238 is also positive up to 0.91 with an average of 0.58 
(Figure 3b). The results for H-3 are similar to positive correlations for both 
the SC (maximum: 0.98, average: 0.73) and the H+ activity (maximum: 0.93, 
average: 0.51). Overall, Figure 3 shows that the correlation coefficients are 
spatially consistent across the site. The statistically insignificant correlations 
and outliers are due to low contaminant concentrations and/or occur at wells 
at the edge or outside the plume.



Figure 3. Bubble plots of the Pearson correlation coefficients for a) SC and U-238, b) H+ and U-238, c) 
SC and H-3, and d) H+ and H-3. All concentrations are log-normalized (eq 1). Positive correlations are 
shown in green circles, i.e. bubbles, and negative ones are shown in red. A black dot marks a well with 
an insignificant p-value (>0.05). The size of a bubble represents the absolute value of the coefficient. 
All wells shown are fully screened in the upper aquifer.

We use two monitoring wells for a further demonstration: FSB-95DR, located 
immediately downgradient (21 m) of Basin 3, and FSB-110D, located 220 m 
downgradient. Both wells are screened in the upper aquifer and have been 
used in previous studies.(21,23) Significant positive correlations between in 
situ variables (H+ activity and SC) and contaminant concentrations (U-238 
and H-3) are observed at both wells (Table 1). The correlations are linear or 
close to linear with few outliers (SI, Figure S2). The correlation coefficients 
are higher than 0.72 (p-value <0.05) between the SC and both 
contaminants, while those for the H+ activity are generally lower. The 
correlation coefficients with the H+ activity are higher for uranium than for 
tritium at both wells. In general, the correlations are stronger further 
downgradient at well FSB-110D compared to well FSB-95DR.



Kalman Filter for Contaminant Concentration Estimation

We demonstrate the Kalman filter monitoring approach using historical data 
sets. The U-238 and H-3 concentrations are estimated over time based on 
both SC and H+ activity (Figure 4). The direct measurements of contaminant 
concentrations are used only once every two years. The 95% confidence 
interval shrinks at the time of the direct measurements because their 
uncertainty is very low. The estimated concentrations generally follow the 
validation data (not used for the estimation but set aside for validation 
purposes) for both U-238 and H-3 at both wells. Most of the validation data 
points are within the 95% confidence interval. At well FSB-95DR, both small 
contaminant concentration peaks (around 2008 and 2011) are successfully 
detected (Figure 4a, b) because the in situ measurable SC and H+ activity 
increase at the same time (Figure S1). Although the contaminant 
concentrations at this site are expected to decrease over time due to natural
attenuation, natural fluctuations or temporary concentration increases, e.g., 
due to water table changes, are expected.



Figure 4. Kalman filter results: (a) U-238 concentrations at well FSB-95DR, (b) H-3 concentrations at 
well FSB-95DR, (c) U-238 concentrations at well FSB-110DR, and (d) H-3 concentrations at well FSB-
110DR. In the plots, measured historical contaminant concentrations used for validation, but not for 
the estimation, are shown as blue dots, and direct measurements used as filter inputs for performance
confirmation are shown as red dots. The estimated mean concentrations returned by the Kalman filter 
are shown as red lines, and the 95% confidence intervals are shown as green dashed lines. All 
estimates are only based on the quasi-continuous measurements (1 per 90 days) of SC and H+ activity 
and occasional direct measurements (red dots, every 8 time steps or 720 days).

To analyze the sensitivity of the results to the two in situ variables, we 
compare the root-mean-square error (RMSE) of the estimation results based 
on only the SC, the H+ activity, and both (Table 2). In general, the SC-based 
estimation is more accurate than the H+ activity-based one, because the 
correlation with the SC is better (Table 1). Using both variables improves the 



estimation results in most cases, except for H-3 at FSB-110D (Table 2). The 
estimation accuracy for both wells is comparable, although the results for 
FSB-110D are better due to the slightly higher correlation coefficients (Table 
1).

We also compare the estimation results with respect to different direct 
measurement, i.e. groundwater sampling, frequencies (Table 3). In general, 
the estimation accuracy decreases with decreasing direct sampling 
frequency. However, the change in the RMSE appears to level off with larger 
sampling intervals. The results based on groundwater sampling every 540 
and 720 days show negligible differences, and the RMSE is only slightly 
higher when no direct measurements are used. This indicates that the filter 
still gives reasonable results without groundwater sampling if the data-driven
correlation coefficients and temporal evolution models are reliable over time.

Discussion

Our results demonstrate that (1) data mining (such as PCA and correlation 
analyses) is useful to understand a groundwater system and to identify 
correlations between different species for long-term monitoring, and (2) the 
Kalman filter enables the estimation of contaminant concentrations based on
in situ measurable groundwater quality variables. Our results show that the 
proposed algorithm can be used to establish real-time monitoring systems 
and to reduce the groundwater sampling frequency, while continuously 



monitoring the evolution of the plume. Such a monitoring system can 
confirm plume stability continuously as well as serve as an early warning 
system to detect plume remobilization. In addition, the correlations and the 
system understanding obtained through data mining can be used to explain 
data anomalies if detected.

The successful estimation is attributed to the fact that (1) SC and H+ activity 
(converted from pH) follow similar temporal dynamics as the contaminant 
concentrations, and (2) the exponential decay model describes the temporal 
evolution of the concentrations reasonably well. Although these two 
assumptions have significant uncertainty, the Kalman filter can integrate 
both pieces of complementary information and provide reliable contaminant 
concentration estimates. Compared to typical time-series models, our 
approach has the flexibility to include continuous in situ data as well as 
sparse groundwater sampling data in a consistent manner. In addition, by 
integrating the temporal evolution model, the estimates are less susceptible 
to measurement errors or data noise, compared to regression models that 
exclusively use in situ data.

The estimation results are consistent for both the source-zone and the 
downgradient well (FSB-95DR and FSB-110D, respectively), since the data 
correlations between contaminants and in situvariables are consistent across
the site. Although the data correlations and the estimation performance are 
slightly higher for the downgradient well, the performance is still comparable
for the source-zone well. Such spatial consistency could enable us to deploy 
more extensive sensor network technologies at dozens or hundreds of wells 
to cover the entire plume.(41)

In addition, the framework shows good performance for both H-3 and U-238, 
even though their physical/geochemical properties and transport 
mechanisms are extremely different. H-3 is a nonreactive tracer with a short 
half-life, while U-238 has a complex geochemistry with a long half-life. At the 
source-zone well, the difference between the correlation coefficients for the 
two contaminants is small (Table 1), possibly because the source-zone well 
concentrations are influenced mainly by the source concentrations rather 
than by plume mobility. At the downgradient well, the correlation coefficients
between the contaminants and the H+ activity are very different. After 
applying the Kalman filter, however, the predictive performance is 
comparable for both contaminant concentrations, since the data correlation 
model and the temporal evolution model are integrated within the filter.

Our results show that, with few exceptions, having two in situ variables (H+ 
activity and SC) generally improves the estimation performance compared to
using only one of them (Table 2). This is because, although the pH is 
measurable in situ and is a key driver for uranium transport, pH 
measurements are known to be prone to calibration and other errors, leading
to lower correlation coefficients. The SC, on the other hand, is easily 
measurable with higher reliability. Although there have been more in situ 



sensors for groundwater quality developed in recent years,(42) their 
accuracy and reliability have to be carefully assessed before applying our 
method.

Our approach is likely to be transferable to other sites and other 
contaminants. Groundwater contamination by radionuclides (including U-238
and H-3) has been found at many locations in the world, including not only 
nuclear weapons production sites but also nuclear power plants,(43)uranium 
mining and processing sites,(44) and fertilizer production sites.(45) For other 
contaminant types, such as organic solvents, we expect different in situ 
measurable variables to be indicative of contaminant concentration changes,
e.g., dissolved oxygen or carbon. New in situ sensors are currently being 
developed, e.g., optical sensors for dissolved oxygen, carbon, and nitrate 
measurements.(46) Because of its generality and flexibility, our approach will
expand the applicability of these new sensors and possibly drive the 
development of others.

In this demonstration, we have estimated the Kalman filter parameters 
based on historical data sets. This means that the filter’s estimation 
performance depends on the amount and quality of the available data. Most 
sites accumulate a significant amount of groundwater data before 
transitioning from active remediation to ENA or MNA. Proper archiving and 
management of this data(47) are critical for applying our method. For sites 
that do not have sufficiently large historical data sets, the Kalman filter can 
be expanded to accommodate time-variant parameters,(29) and the 
correlations can be updated while the filter is in use.

Furthermore, the Kalman filter approach can include other models in addition
to the exponential decay model used in this study, e.g., numerical flow and 
transport simulation models.(48)Therefore, our approach provides a flexible 
framework for real-time continuous monitoring of contaminated sites that 
can confirm plume stability, detect contaminant concentration changes, and 
support the transition from active remediation to ENA and MNA.
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Abbreviations

DOE United States Department Of Energy

ENA enhanced natural attenuation

FSB groundwater well series name



H-3 hydrogen-3, tritium

I-129 iodine-129

MNA monitored natural attenuation

PC principal component

PCA principal component analysis

RMSE root-mean-square error

SC specific conductance

SI Supporting Information

SRS United States DOE Savannah River Site

Tc-99 technetium-99

U-238 uranium-238
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