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ABSTRACT OF THE DISSERTATION 
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 The Casimir effect has become very important in modern physics since its 

prediction in 1948. Not only is it the most accessible evidence of vacuum fluctuations in 

macroscopic systems but also has important applications in many areas such as 

condensed matter physics, atomic physics, cosmology and nano-technology. Therefore, 

the theoretical activity in the analysis of the Casimir effect has dramatically increased in 

the past 60 years. To provide deeper insights, precise Casimir force measurements are 

necessary. Here, we develop a high precision dynamic Casimir force measurement 

system based on short coherence length fiber-optics interferometer in UHV. The 

frequency modulation (FM) technique and precise calibration are the key points to 

achieve a high precision in the Casimir force measurement. It is also the first time in our 
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group; random errors are reduced to be smaller than systematic errors. The Casimir force 

was measured between a Au-coated sphere and Au-coated plate using FM technique. A 

comparison to the theory where the description of the permittivity using the generalized 

Plasma and Drude model is done. In addition, Casimir Pressure measurement between a 

Au-coated sphere and Ito plate will be presented. 
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Chapter 1.  Introduction of Casimir effect
1
 

Recent years have seen increased attention being given to Casimir force measurement 

in quantum physics. This is because it provides the most direct evidence of the existence 

of zero point vacuum oscillation is the Casimir effect which was predicted by Casimir in 

1948. He showed that one consequence of the zero-point field fluctuations is an attractive 

force between the two electrically neutral, perfect conducing, and infinitely large parallel 

plates. Unlike other evidence such as Lamb shift, spontaneous emission or atomic 

stability, the Casimir effect has potential applications in micro- or nanotechnology, 

because of its unique shape dependence not to mention its importance in 

multidisciplinary areas. In beginning of this chapter, we will discuss the physical 

foundations of Casimir effect and the simplest case, Casimir effect between ideal metals. 

This is followed by some background information on the research. Finally, the overview 

of my thesis is presented. 

1.1 The origin of Casimir effect 

1.1.1 Zero-point energy  

Zero point energy is one of the most interesting results in quantum theory. It is also the 

source of Casimir effect. To better understand the Casimir effect, it is worthwhile to 

briefly review the harmonic oscillator in quantum mechanics. 



 

2 
 

 The basis of quantum field theory is the representation of the field as a system of 

oscillators. The Hamiltonian of each state kH  has the eq. (1-1) as below: 

  
k

kkk

k

k QPHE 222

2

1
        (1-1) 

Where the kP and kQ  are quantum mechanical operators.  

Because of the commutation rule   kkkk aa 
  ,,  , we can define the operator and its 

ad-joint eq. (1-2) and (1-3) 

   kkkkk iPQa 
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2         (1-2) 
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1

2        (1-3) 

The eq. (1-1)-(1-3) allow us to write the Hamiltonian in the form 

k

k
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1
        (1-4)  

The harmonic oscillator has discrete energy levels which are given by 
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
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kknE 
2
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Where the k is the wave factor, k  
is the angular frequency of the oscillator and kn

=1,2,3…. is number of energy quanta. According to the eq. (1-5), the sum energy of the 

vacuum (ground state kn
=0) is given by: 

   
 

 
   

 

 

.     

         

1.1.2 Casimir effect due to zero point energy fluctuation  

 Obviously, from the above equation, we know that the vacuum energy is infinite 

in free space. This is one of the manifestations of the problem of ultraviolet divergences. 

Casimir first subtracted  the infinite vacuum energy of the quantized electromagnetic 

field in the presence of ideal conductor plane, from the infinite vacuum energy to the 

same field in free Minkowski space. Mathematically speaking, to obtain a  finite value 

immediately from the subtraction of two infinite numbers a procedures such as  

regularization and renormalization have to be used. Based on these two techniques, the 

derivation of the attractive Casimir force between two ideal metal plates can be expressed 

as follows. Assuming two ideal conducting plates are closely spaced at a distance L from 

each other in vacuum, the electromagnetic fields are given by boundary condition on 

plate surfaces. In the bounded region as shown in figure 1.1, the electromagnetic field is 

subject to the Dirichelt and Neumann boundary condition ( 0Bn and 0En ). Some 
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of the wave vector components become discrete in the perpendicular direction because of 

the tangential component of the electric field vanish on the metal surface. 

 

 

Figure1- 1 Two perfect conducting parallel plates experience an attractive force due 

to the zero-point electromagnetic field. Only certain modes are allowed, which are given 

by the boundary conditions that could exist inside the cavity. 
 

For example, the modes of the electromagnetic field are labeled by a three dimensional 

wave vector k. Thus, the frequency is given by eq. (1-6) 

      
2222

zyxk kkkckc 
       (1-6) 
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At the boundaries (z-axis), 
L

n
kz


 ,  ...2,1,0 n , while xk  and yk  are continuous 

components. The sum of vacuum energy from eq. (1-5) is  

 
  






n

n

nkk

yx
A

dkdk
LE

yx ,,20
22





 , where A is the area of the metal plate.  

The vacuum energy is infinite in any given condition. The potential energy of system 

when the plates are separated by a distance L is       00 ELELU casimir , the energy 

required to bring the plates from far distance to the separation L. This is the difference 

between two infinite quantities. So we introduce a regularization method with cutoff 

wavelength (frequency) to extract from the difference (infinite) a meaningful finite value. 

Since metals become transparent to light with very small wavelengths, especially those 

small compared with an atomic dimension, it is reasonable to have an exponential decay 

function to limit the contribution to the sum of the vacuum energy for short wavelengths. 

Therefore, the subtracted energy with cut-off function  
ikexp  (Casimir energy) 

is shown as below: 
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The Casimir force per unit area (Casimir pressure) is given as: 

 
 

4

2

240Z
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Z
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





       
(1-7) 
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 which is finite and is independent of the cutoff frequency. It is worth noting that  eq. (1-7) 

only relates the fundamental constants   and c (without electron charge e) which implies 

that real light (electromagnetic field) does not couple to matter in the ordinary sense 

through the charge, in the case of ideal metal plates. It worth to note that Dirichlet and 

Neumann boundary conditions are not specific to the EM field  

 

1.2 The connection between van der Waals and Casimir 

forces 

Essentially, the Casimir force can be understood in a unified way with van der Waals 

force
2,3

. The van der Waals force acts between two neutral atoms separated by a distance 

which is small (smaller than the characteristic absorption wavelength) but much larger 

than the atomic dimensions (Bohr radius ~0.053nm). It arises in second order 

perturbation theory from the fluctuating dipole-dipole interaction, i.e. the mean value of 

the operator of the dipole moment in the ground state is equal to zero but the square of 

the dipole moment is not. To put it briefly, the origin of both the van der Waals and 

Casimir forces is connected with the existence of quantum fluctuations
4
. Usually, we 

refer to  them as dispersion forces. 
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Considering large distances (larger than the characteristic absorption wavelength) 

between two atoms or two macro objects, we need to take retardation effects into account. 

In this regime, dispersion forces are called Casimir-Polder force (atom-atom) or Casimir 

force
1
 (micro size boundary conditions). However, eq. (1-4) is universal at any separation 

distance. They do not change back to the non-relativistic dispersion forces at short 

distances. It leads to the idea that there are two different kinds of forces rather than two 

limiting cases of a single physical phenomenon. The result motivated Lifshitz
5
 to develop 

a unified theory between those two forces in the case of two parallel dielectric plates. 

Lifshitz's theory not only provides all the results of Casimir, Casimir-Polder and van der 

Waals
4
 forces in their respective limits of applicability, but also produces smooth 

transitions between them.  

In this theory, the plate materials are considered as continuous described by the 

frequency-dependent dielectric permittivity ε(ω) and characterized by zero point energy 

fluctuation of the electromagnetic field. Lifshitz's theory has found many applications 
2,6

 

in the investigation of Casimir forces. Lifshitz's theory related to real materials will be 

discussed more in the Chapter 2. In the following section, the importance of modern 

experiments will be presented. 
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1.3 Application of Casimir effect in multidisciplinary 

field 

Precise investigation of Casimir force has powerful impact on multidisciplinary areas, 

such as the fields of particle physics, atomic physics, astrophysics, mathematical 

physics
6-8

, condensed matter and biophysics. Besides the impact on fundamental physics, 

the applications in MEMS or NEMS
9
 (nano-electromechanical systems) are worth  

emphasizing.   

1.3.1 Fundamental physics 

 Astrophysics - Casimir-type polarization of vacuum is important in cosmic string 

theory used to describe the early Universe before the Big Bang. 

  Atomic Physics- Casimir effect helps us to understand the atom-atom and atom-

wall interaction and absorption of atoms by nano structures. 

 Particle physics - The understanding of  the Casimir energy of quarks and gluons 

can help us to realize the hadron masses and provides an effective mechanism for 

understanding extra spatial dimensions
7
. Also, the Casimir effect has been actively used 

for obtaining stronger constraints on hypothetical long-range interactions
10,11

. 

 Mathematical physics - The derivation of the Casimir effect has inspired 

scientists to develop powerful regularization methods based on the zeta function and the 

heat kernel expansion. 
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 Condensed mater physics – The Casimir force leads to the investigation of 

various properties of thin films, surface tension, colloids, and adhesion of microelements. 

It also plays a role in bulk phenomena such as by modifying the free carrier density   in 

semiconductor which in turn can tune the scale of the Casimir force
12,13

.  

1.3.2 Application in Micro- and nano-technology 

Although the Casimir force is too small to be observed for plate-plate at very 

large separation distances, it becomes very strong in the micro- or nano- scales. At 

separations of 10nm the Casimir effect produces the equivalent of 1 atmosphere of 

pressure as shown in figure 1-2. The Casimir force is an obviously dominant force 

compared to the electrical force at 10nm as shown by the red dash line. Most of MEMS 

or NEMS devices are actuated or affected by the electrostatic force.  

These devices, therefore, are likely to have coupled effect of electrostatic and 

Casimir forces
14

. The combined action can cause non-linear
15

 and bi-stable phenomena
16

 

and even lead to device failure as shown in figure 1-3 by such effects as abrupt "pull-

in"
9
of the moving elements.  
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Thus, the modification of the Casimir force by changing parameters of materials, 

rather  than the separation is a very important project to investigate. It should be noted 

that researchers from MIT
17

 have developed  new tools for calculating the effects of 

Casimir forces which are useful for MEMS design to keep micro-machines from sticking 

together. Other than the Casimir force reduction, the force itself can switch the sign from 

the attractive to repulsive force because of its unique shape dependence. It makes the 

Casimir force a potential candidate for making frictionless devices
18

. 

 

Figure1- 2 Casimir force compared to electrostatic force with a potential difference of 

0.25V for two parallel plates as a function of separation distance. 
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Figure1- 3 The MEMS device might stick together by Casimir force (pull-in effect). 

Image download from Sandia National Laboratories.  . 

1.4 Review of Casimir force experiments 

In the past 50 years since the prediction of Casimir effect, science and technology for 

Casimir force measurement have progressed tremendously. The first attempt was 

undertaken by  Sparnaay
19

 using the spring balance in the separation range of 

0.5um~5um. Although the force error was 100% error with respect to the theory of 

Caimir force, it raised interest in  Casimir force measurements. In this chapter, in order to 

clearly and easily compare contributions to Casimir force measurements from various 

experiments, we present them with tables and diagrams. 

 



 

12 
 

 

 Research information Instrumentation 

Sparnaay
19

 

(1957) 

Parallel metal plates in Air (AL,Cr and steel) 

Force sensitivity ~10-4 dyne 

Measurement Range:  0.5~5 um  

Systematic error 100%  

Spring balance system (Figure 1-4) 

extension of spring was calibrated by 

capacitive method 

 

Blockland & 

Overbeek 

(1978) 

Measurement type (lens to plate) In Air 

(Cr coating plate to lens) 

Measurement Range:  0.1~0.7 um  

Systematic error ~40 to 50% 

“First unambiguous Casimir force measurement6” 

Spring balance system (Figure 1-5) 

(force measurement) 

Separation distance calibrated by 

Schering bridge 

 

Lamoreaux et.al 

(1997) 

Au lens to Au plate  in vacuum 

Measurement Range:  0.1~6 um  

Radius of lens curvature ~15cm 

Systematic error ~5%  at the closest distance  

Torsion pendulum system with phase-

sensitive circuit (Figure 1-6) 

static (force )measurement 

Mohideen 

et.al
13,20,21

. 

(1998~ 2009) 

Au sphere to plate in vacuum 

Measurement Range:  60 nm~1 um  

Radius of sphere ~ 100um 

Systematic error ~1%  at the closest distance  

Atomic Force Microscopic  (Figure 1-7) 

static (force )measurement  

z distance calibrated by interferometry22 

Bressi et.al. 

(2002) 

Chromium plate to plate  

Measurement Range:  0.5~3 um  

Radius of sphere ~ 100um 

Dynamic measurement  

(Casimir force gradient measurement) 

Figure 1-8 



 

13 
 

Systematic error ~15%  at the closest distance 

Chen et al. 

 Chiu et al. 

(2002,2008) 

First experimental demonstration of lateral Casimir 

force measurement. 

Demonstration of Asymmetrical lateral Casimir 

force 

 

AFM (Figure 1-9) 

(lateral Casimir force measurement) 

 

Decca et al. 

(2003,2007) 

“Most precise measurements so far”. 

Measurement Range:  0.2~5 um  

Radius of sphere ~ 150um 

Systematic error ~0.2%  at the closest distance 

MTO  (Figure 1-10) 

(micro-mechanical torsion oscillator) 

The oscillator was made by heavily 

doped poly-silicon plate. 

static and dynamic measurement 

Chan et al. 

(2001,2008) 

Au sphere to Silicon rectangular trenches 

Studied the expected deviation from PFA 

 

MTO (Figure 1-11) 

(micro-mechanical torsion oscillator) 

static and dynamic measurement 

 

 

Table 1- 1 Tabulation of the primary achievements of a normal Casimir force 

measurement. Note that some of important experiments such as the Casimir torque, force 

measurement in liquids and Casimir-Polder force are not shown in this table. 
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Figure1- 4 shows the simple schematic  of the spring balance system used by Sparnaay. 

The extension of the spring was measured through a measurement of the capacitance 

between two plates. 

 

 

Figure1- 5 Schematic of lens-plate force balance system used by Overbeek et.al  
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Figure1- 6 Experimental setup of torsion balance pendulum by S.K.Lamoreaux. 

 

 

Figure1- 7 The picture on the left  shows schematic diagram of Mohideen et al.
20,23

 

experimental setup. The distance between the bottom of sphere and plate is changed by 

application of voltage to the piezo. Right hand side picture shows Scanning Electron 

Microscope image of the metalized sphere on a triangular AFM cantilever.  
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Figure 1- 8 Interferometer-based Vacuum system with FFT spectrum analyzer by Bressi 

et al
24

. 

 

Figure 1- 9  Schematic of the experiment setup of the lateral Casimir force measurement. 

A modified cantilever was used in vacuum with an AFM. 
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Figure 1- 10 Schematic diagram of the measurement o of the Casimir force using a MTO 

by  Decca et al.2003
25,26

 and Chan et al.2001
14

 

 

Figure 1- 11 Schematic of the experimental set-up, including the MTO, gold sphere and 

silicon trench array by Chan et al
27

. 
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1.4.1 General requirements for a high precision Casimir 

force measurement 

From the history of development in Casimir force measurement, some  fundamental 

requirements for precision Casimir force measurement are, 

(1) Completely clean sample surface. 

(2) Precise, independent, and reproducible measurement of separation between 

two sample surfaces. 

(3) Low electrostatic charges. 

(4) High force sensitivity system. 
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1.5 Overview                      

The reminder of this thesis is divided into four sections. The first section (chapter 2) 

is a review of the theory, addressing the Lifshitz’s equations and its applications to ideal 

materials. Special attention is paid to geometry (approximation methods ) other than 

planar boundaries. In the middle of this section, corrections to the Casimir force between 

real materials with temperature, roughness and finite conductivity will be discussed. At 

the end of chapter 2, the main purpose of this thesis which is a consideration of the Drude, 

Plasma and generalized Plasma-like model that takes into account inter-band transitions 

of core electrons in application of Lifshitz equation will be presented.  

 In chapter 3, the research methodology with full details of the instrumentation 

(high vacuum short coherence length interferometer) and procedure will be presented. To 

address the limited force sensitivity, the noise levels of measurement system will be 

discussed. The next chapter deals with data analysis, i.e. the rigorous procedures for 

comparison of experiment and theory.  

 Finally, in the chapter 5, conclusions are presented and suggestions are made for 

further research. 
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Chapter 2. Lifshitz theory for real materials 

As we mentioned in chapter 1, Lifshitz developed a more general theory which 

successfully describes the Van der waals and Casimir force in a unified way. The 

assumption of Lifshitz theory is based on random fluctuating currents at the surface of 

material caused by the fluctuation of charges in the medium through Maxwell’s equations. 

Thus, the results from Lifshitz theory depend strongly on the model of dielectric 

permittivity used to describe real materials. In this chapter, contrary to the ideal case, we 

will focus on the distinguishing features such as non-zero temperature, surface roughness 

or finite conductivity of the boundary materials which should be taken into account in 

order to obtain accurate results. In the final section of this chapter, thermo-dynamical 

aspects of thermal Casimir force between real metals will be presented. 

2.1 Lifshitz theory for two parallel dielectric plates 

CASE T=0: 

Let us consider the case in which a monochromatic electromagnetic field, eq. (2-1), 

(2-2), interacts with the dielectric medium as shown in figure 2-1:  

                        (2-1) 

                        (2-2) 
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Figure 2- 1 Two plates with the dielectric permittivity ϵ(ω) and reflections of 

electromagnetic oscillations at the surface given by the  boundary conditions. 

 

Considering only non-magnetic materials in the absence of charge and current 

densities, we obtain equations inside the dielectric plates by substituting the eq.2-1 and 2-

2 into Maxwell’s equations. The equations are shown below: 

                (2-3)   

         
 
             (2-4) 

             
 
            (2-5) 

                (2-6) 
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Now, let us supplement the boundary conditions by using the  continuity conditions at 

the surface separated by distance  a/2, 

                        (2-7) 

                        (2-8) 

                        (2-9) 

                        (2-10) 

where n and t  refer to the normal and tangential component to the boundary plane 

directed inside the dielectric. D(ω) is the electric displacement which is equal to 

ε(ω)E(ω). And ε(ω) is the complex dielectric constant of the dielectric. 

 The solutions of vacuum energy of the electromagnetic field in thermal 

equilibrium with the dielectric plates at zero temperature is given by (in terms of un-

known photon eigen-frequencies)  

      
 

  
             

        
  

   
 

 
    (2-11) 

where the TE and TM are represent the transverse electric mode and transverse 

magnetic mode and           ,respectively. Using the regularization method  mentioned in 

Chapter1, the finite Casimir energy per unit area of the boundary planes is  

     
     

 
 

By using the explicit expressions shown  below 
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                (2-13) 

We arrive at the Lifshitz formula at zero temperature, 

      
 

  
         

 

 

 

 
         

         
              

         
       

       (2-14) 

Hence, the Lifshitz formula for the Casimir pressure is  

      
     

  
      

 
 

  
         

 

 

 

 

     
          

              
          

           

       (2-15) 

From the derivation of Lifshitz theory, we know the electrical and optical properties 

of real materials will have to be accounted for, to provide a consistent theory of the 

Casimir force. 

 

CASE T 0: 

The Lifshitz equation for the dispersion force takes into account not only fluctuations of 

zero point energy but also thermal photons when the material of the plates is in thermal 

equilibrium at non-zero temperature T. Therefore, the final equation of the free energy 
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and pressure in terms of the two independent polarizations of the electromagnetic field 

and Matsubara frequencies  , (     
   

 
   are presented as eq.2-16 and eq. 2-17. 

        
   

  
  

 

   

      

 

 

         
          

              
         

       

            

                 (2-16) 

       
    

 
  

 

   

       

 

 

     
          

         

     
          

           

                 (2-17) 

where the prime on the summation sign means that the term for l=0 has to be multiplied 

by ½ . The expressions for the reflection coefficients at the Matsubara frequencies are 

           
       

       
               

     

     
          (2-18)  

 

        
    

  
  
 

  
       

    
    

  
 

  
           .  Bearing in mind; Eq. (2-18) 

represents the standard reflection coefficients which are usually real, this  is along the 

imaginary axis. It is worth pointing out again that the Lifshitz theory applied in real 

materials is obtained by the solution of  one-dimensional scattering on the axis 

perpendicular to the plates. Thus, the scattering method leading to eq.2-16, has the 

definite solution under the condition that  
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Temperature correction 

Note that the representation of equations 2-16 and 2-17 for the finite temperature 

Casimir force has a disadvantage as the l=0 term  is the product of zero by divergent 

integral. Because of this, the representation of eq. 2-14 is preferable as compared eq. 2-16. 

Thus, let us apply eq.2-14 to ideal metals of infinitely high conductivity in order to find 

the temperature correction to the Casimir energy between ideal metals. One should take 

limit     before setting l=0 (Schwinger prescription). 

The expression of Casimir force can be presented as a function of the Casimir force at 

zero temperature and temperature correction terms. 

                
  

  
   

 

    
 
  

  
 
      

 

    

 

 
       

 

    
          

 

    
   (2-20) 

 where the effective temperature is defined as       
  

  
. 
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Low temperature limit:         , it follows from eq. 2-20        

         
 

 
 

 

    
 
 

    (2-21) 

From eq. 2-19, we could estimate the error from the temperature correction ~0.15% for 

T=300K and separation distance a~1um.  

High temperature limit:         , 

       
   

    
                                         (2-22) 

Where       is the Riemann zeta function and            . In comparing with 

these two temperature terms eq. 2-21 and 2-22, we know the corrections to the original 

Casimir force at short separations are negligibly small. Contrary to the low temperature 

limit, if the separation "a" is about a few micrometers or in the higher temperature region, 

the corrections become large. For example, at a room temperature of 300K and plate 

separations larger than 6um, the total Casimir pressure is already equal to the thermal 

term (behavior as classical limit determined by thermal photons) as mentioned in eq. 2-22. 

 

 

Finite conductivity correction (skin depth correction) 

To calculate the Casimir force between  real dielectric materials, we need to correct for 

the frequency as a function of permittivity. In contrast to dielectrics, metals have a non-

zero conductivity which comes from free electrons at zero temperature. Compared to 
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perfect metals, in real metals we need to take the penetration depth (skin depth) of an 

electromagnetic wave into account. Considering the penetration depth, intuitively, the 

real separation distance could be treated as larger than real distance. Thus, the force is 

smaller compare to the real value. Essentially, the skin depth is presented as the function 

of plasma frequency depending on the property of the metal. Thus, in this section, we will 

study the effect of the skin depth using the plasma model.  

 Based on the characteristic frequency 
a

c

2
~ (optical region from visible to 

infrared), it is reasonable to consider separation distances from 100nm to 1.5um. As 

mentioned in the previous section, the thermal correction is negligibly small. We can 

assume the temperature is effectively equal to zero. A good approximation for the 

dielectric permittivity of metals is represented by the free electron plasma model
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,where the subscript “p” indicates the plasma model and E (a) is Casimir energy for ideal 

metals. 
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Figure 2- 2 The ratio of the correction due to the finite conductivity of metal. The solid 

line 1 and 2 represent the computational results for Al and Au, respectively.  The dashed 

lines 1 and 2 represent the correction factor up to the fourth order for the same material as 

eq2-24. 
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Roughness correction
29

: 

The surface of real bodies always has small deviations from perfect geometry. In the 

theory, so far, we discussed, dispersion force are determined by the reflection of 

electromagnetic waves from the surface. Thus, reflecting processes on rough surfaces 

become important for corrections to the Casimir force resulting from surface roughness. 

Here, we apply the method of PWS, (pair-wise summation), to calculate the roughness 

corrections to Casimir force between real material bodies. 

As depicted in figure 2-3 , we consider two parallel plates of thickness D with sides 

of length 2L with surface roughness. Assuming the separation distance between the plates 

is sufficiently large and roughness is extremely irregular, the descriptions of roughness 

could be presented by the stochastic function as below: 

                     (2-25) 

                      (2-26) 

where a is the mean separation distance as shown in figure 2. The A1 and A2 are 

amplitude of the roughness function which is defined as max           . Here, we 

introduce the Casimir energy by PWS
30

 (the interaction energy between two bodies can 

be obtained as an integral of the inter-atomic potentials over the volumes of both bodies). 
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31
Figure 2- 3 presents two parallel plates with rough surfaces. fi(x,y) indicates the 

stochastic roughness function.  
 
 

The total Casimir energy between two rough surfaces is  

        
                 

 

    
 

    
 

   
 

    

  

  

    

   

  

       
   

where         is potential energy in-between two bodies. The Casimir force between the 

plates is given by  
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For example, as is the usual case, the respective amplitude of the stochastic roughness 

is around 1.2nm in our previous static experiment.  It introduces effective corrections of 

~0.22% at the shortest distance of around 100 nm. 

2.2Thermal Casimir Force: calculations and 

controversy 

In Metals 

Conceptually, the Lifshitz theory for the  Casimir Force at any temperature provides a 

way for obtaining all the necessary results for any real metal. To precisely calculate 

thermal Casimir force between two real metal plates, the correct permittivity ε(ω) related 

to the dielectric properties of material is needed. For the UV, optical and infrared region, 

tabulated data is available for most materials. However for the low frequency, the 

dielectric permittivity is described by either the  Plasma or Drude models..  

There is at present unresolved controversy of whether the Plasma or Drude is more 

appropriate for presenting permittivity ε(ω) in the thermal Casimir force calculation.
32

. 

Note that the Casimir energy given by the Lifshitz theory depends strongly on the model 

for the different dielectric functions we choose, as shown in picture below. 
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Figure 2- 4  The energy correction factor for Au in different temperature (thermal 

corrections) and different dielectric models (Plasma and Drude corrections). The dashed 

line is the thermal correction (300K) for ideal metal plates. The thermal correction factor 

with Plasma or Drude model is shown by the open circles and solid line, respectively. 

The dotted line indicates the plasma model correction at zero temperature. The solid 

square with error bar is experimental data from Lamoreaux 1997. 

 

 In the Plasma model, the dependence of dielectric function on the frequency is 

given by         
  
 

   along the real frequency axis or by          
  
 

  
 along the 

imaginary frequency axis. This dielectric permittivity is applicable in the frequency 

region of infrared optics. At 300K, all non-zero Matsubara frequencies are located in this 

frequency region. It leads more accurate results for the Casimir force when separation 

distance is above the plasma wavelength due to penetrate depth. The generalized Plasma-
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like model is similar to Plasma model but it includes the role of the core electrons  which 

are modeled by Lorentz oscillators. Compared to the Plasma model, the generalized 

Plasma-like model can be applied even for short separation distances between the plates. 

To answer whether the Plasma model is appropriate to Lifshitz theory of thermal Casimir 

forces, we need to find  the asymptotic expression for the Casimir free energy given by 

the Plasma model. As defined in the section “temperature correction”, the low 

temperature asymptotic expression for Casimir energy given by Plasma model is  

   
               

      
      

  
 

 

    
    

 

    
   

  

   
 
      

  
 

 

    
 
 

  
 

    
 
 

  

               (2-28)

 Thus, the corresponding Casimir entropy  is presented as below. 

        
    

           

  
 

         

    
 

 

    
     

  

      

 

    
 

  

   
   

  

      

 

    
   (2-29) 

 As can be seen in above equation, the thermal Casimir entropy goes to zero when 

the temperature goes to absolute zero. This means that the third law of thermodynamics is 

satisfied. It is worth noting that the Casimir entropy using the plasma model is positive as 

shown in figure2-5 at all temperatures which is different from the  Drude model as shown 

in the following section.  
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Figure 2- 5 The Casimir entropy per unit area versus  temperature at a separation 

a=300nm given by  plasma model (ωp=9.0 ev)
33

. 

 

 The Drude model provides a proper an alternative low-frequency description for 

metals in condensed matter physics and the dielectric permittivity, ε  ω    

ω 
 

ω ω       
 depends on ω-1

, where the (T) is the relaxation parameter (Drude dielectric 

function along the imaginary frequency axis is ε        
ω 
 

         
). Actually, the first 

violation of Lifshitz equation is evident. According to the eq. (2-19), dielectric function 

must approach a constant value (the static permittivity) when the     goes 0. The second 

problem, concern the value of the reflection coefficients (eq.2-17) from TM and TE mode 

at zero frequency are  
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For example, if we substitute eq. 2-25 into thermal casimir energy and pressure eq.2-15 

2-16, we obtain asymptotic expressions as given by Drude model, 

            
    

     
                  

    

    
       

 Those expressions are equal to one-half value of the corresponding value for ideal 

metal plates regardless of how large a conductivity is used for the real metal. The result is 

counter-intuitive because the conductivity does not play any role in this approach.  

The other important issue is the violation of third law of thermodynamics for the 

Drude model. Recalling the temperature correction, the Casimir energy for the Drude 

model at low-temperature limit can be presented in the form
29,34

: 

   
              

                     

   

     
           

         
      

         
      

 

 

    
 

 

 

 

where    
            is the low temperature asymptotic expression for the Casimir 

energy given by the plasma model. The second term is the contribution to Drude free 

energy,                
 

    
   and depends on the relaxation parameter      given 

by Drude model. Therefore, the Casimir entropy is given by  
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where  
        

  
  , because      is proportional to T

2
 and the entropy given by 

plasma model goes to zero when T vanishes. 

From the above equation, the Casimir entropy for perfect crystal lattice metal 

calculated by the Drude model at zero temperature is equal to a non-zero negative value 

as shown in figure 5. This value depends on parameters such as the plasma frequency, 

and the separation distance. According to the third law of thermodynamics (the Nernst 

heat theorem), as a system temperature approaches the absolute zero, the entropy of the 

system approaches a minimum value. Therefore, Drude model combined with Lifshitz 

equation violates the third law of thermodynamics. 
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Figure 2- 6 
33

The Casimir entropy per unit area as function of temperature at a 

separation 1um is given by Drude model 

 

 To sum up, thermodynamics helps us make a decision regarding which model is 

in accordance with fundamental physical principles. Lifshitz theory combined with 

Plasma model is thermodynamically consistent. In condensed matter field, Plasma model 

does not take free electron dissipation into account and is  applicable in the frequency 

region of infrared optics.  Unlike plasma, Drude model is the self-consistent solution of 

Maxwell equations with the real current of conduction electrons. These real current (DC 

current) which involves electric resistance and heating of a metals created by real 

electromagnetic fields are better explained by the Drude model. In the infrared region 
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frequencies are too high to cause real current. Since for the separation regions of interest 

to the experiment, the infrared and visible frequencies are more important, the plasma 

model might be more applicable. Or the neglect of dissipation in the Drude model might 

be necessary when dealing with virtual photons.  
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Chapter 3. Instrumentation and experimental method 

3.1 Introduction
35

 

A scanning force microscope is usually used to detect small forces or force gradients. 

In our case, we are doing measurements of Casimir effect between a 100 micron size 

sphere and plane sample surface. In order to reach high precision, we must pay more 

attention to the sensitivity of the detection system. Our detection system consists of a 

cantilever with attached micro-sphere, piezoelectric actuator, fiber interferometer 

including pre-amplifier, light source and electronic frequency modulation controller, 

phase detector, voltage amplifiers, etc. Each of them contributes phase noise to the 

detecting system.  The ultimate sensitivity of system is determined by the ratio between 

signal (frequency shift) and the total noise level. Apart from  noise sources listed above, 

there are external noise sources such as vibrations from environment, 1/f low frequency 

noise level or acoustic noise. With a carefully designed the system, the amplitude of the 

passive cantilever approaches the thermal noise limited amplitude. In this chapter, we 

will focus on the principles of force microscopy including  up-to-date measurement 

techniques, including theoretical considerations of cantilever-based force or force 

gradient measurements. 

We will discuss the contribution of each noise source in my system and also the 

theoretical consideration of noise limited minimum detectable force gradient. In the last 

part of this chapter, the standard experimental method will be presented. 
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 3.2 Review of Measurement techniques 

Currently, there are some unique techniques for detecting motion of the sensor 

(micro-sized cantilever). Each of techniques have their advantages and disadvantage with 

respect to sensitivity, low-frequency stability and complexity. At micron scales, for 

example, SPM (Scanning probe microscopies) and MEMS, their readout system are 

usually optical or capacitance based, respectively. However, when the size of system 

goes to the nano scale, usually the piezo-based detection is the favored way because of its 

low noise level.  

Piezo-based detection
36

 

The effect was first discovered by Lord Kelvin in 1856 who noted that the resistance 

of copper and iron wires increased when in tension. The basic idea is that a sensor 

patterned from piezoresistive material, affixed to moving parts of a mechanical device 

undergoes a resistance change due to the motion-induced strain. On biasing with a current 

source, the piezoresistor translates the strain into voltage signal. The merit of this method 

is that it does not need any external system for alignment and could be fabricated on the 

nano scale.  

This simplifies the detection system design. But the main disadvantages are the need 

for extensive calibration and temperature compensation of "offset" and "sensitivity", 

since  piezoresistor change their resistance value because of leakage currents.  
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Capacitive-based detection 

The physical structures of capacitive sensors are simple. Essentially the device 

comprise a set of parallel plates and the capacitance is given by  

  
    
 

  

where ε0 is the permittivity of free space, εr is the relative permittivity of the material 

between the plates, A is the area of overlap between the plate electrodes, and d is the 

separation between the electrodes. In this configuration, there is a linear relationship 

between the capacitance and area of overlap. If we monitor the capacitance, we will be 

able to detect the motion of the sensor. One of advantages in the capacitive technique is 

that it is  inherently less noisy than those based on piezoresistance due to the negligible 

thermal noise (thermal noise is effective small as the plates are massive). Another 

advantage, other than  the noise level, is that no external alignment system is required.  

However, when the size shrinks to the micro or nano scale, the additional noise from the 

interface electronic circuits or thermal noise often exceeds the signal level. An added 

concern is the role of the fringe fields.  

 

Optical based detection  

The optical detection system can basically  be divided into two methods, Beam-

bounce and interferometer-based detection. The optical based detection is capable of 

monitoring small vibrations all the way to the  sub-angstroms scale. 
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Optical Beam deflection detection 

Most of the commercially available AFMs use the optical beam deflection method 

because of the simplicity of the  experimental setup and the easy optical beam alignment. 

A simple setup is shown in picture 3-1. Because the noise level of this method depends 

on the geometry (optical lever length) and shape of the light beam, the noise level in  

practice  is usually worse than that from interferometry detection. But recently  
37

 

Fukuma et.al have  developed a low noise cantilever deflection based on optical beam 

deflection which has the same noise level as that of an  interferometer.  

 

Figure 3- 1 Typical experimental setup for the cantilever deflection sensor using optical 

Beam deflection technique. The deflection of the cantilever is detected from the  

difference signal between the photodiodes A and B (PSPD stands for position sensitive 

photo-detector). 
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Fiber-optic interferometer  

Many cantilever deflection sensors have been used. But so far, the highest deflection 

sensitivities have been achieved with optical interferometers. For example, Rugar et 

al
38,39

. reported a fiber-based interferometer with 17 fm/(Hz)
1/2

. and 
40

Schȍnenberger et al. 

demonstrated a noise level of 6 fm/(Hz)
1/2 

with a polarizing optical interferometer. The 

basic principle is that by using the cantilever and fiber end as simple  Fabry-Perot Cavity 

as shown in picture 3-2., part of the light is reflected back into the fiber and interferes 

with the light reflected  from the cantilever surface. Because of its simple design and low 

noise level, we will use an interferometer to monitor the motion of our cantilever. 
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Figure 3- 2 The schematic of a fiber optic interferometer. 
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3.3 Theoretical considerations of a cantilever position 

sensors 

3.3.1 Static Force   measurement  

The force measurement can be explained by the elastic response of cantilever to the first 

order term of tip-sample force that is related to Hooke’s law.     where k is the 

spring constant of cantilever and Z is the elastic response (deflection of the end of 

cantilever). By measuring the deflection of cantilever, we can have the interaction force 

on cantilever. The minimum detectable force is determined by the characteristics of 

cantilever. In our static mode Casimir force measurement
41

 using a commercial AFM, the 

force sensitivity can be as low as 0.01pN/(Hz)
1/2

.  However, in the static measurement, 

the signal is given by the DC deflection of cantilever which is subject to the 1/f  noise 

background. The sensitivity is determined by the integrated noise level over the low 

frequency region. It usually degrades the sensitivity dramatically. 

3.3.2 Force Gradient (Dynamic) measurement  

In dynamic measurements, the cantilever is typically far away from the sample surface as 

compared to static force measurements and the excitation is done near or at the cantilever 

resonant frequency with a constant amplitude. A force gradient acting on the cantilever 

modulates the resonant frequency according to the  equations given below. A cantilever  

driven by an external force  can be treated as a damped harmonic oscillator. Thus, the 

equation of motion is given by: 
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                                             (3-1) 

where Fext is the sinusoidal excitation force      
      and Fint stands for interaction 

force between cantilever sensor and sample which can be Taylor expanded at the average 

separation distance  Z0. Eq. (3-1) as, 

     
   

 
                                      (3-2) 

where         
     

  
                 

 

 
 
     

  
        

if  
     

  
       , then, the responses of the cantilever deflection can be presented 

as : 

         
  

  
 
     

  
 
    

           (3-3) 

The absolute value of the amplitude is given by 

          
    

    
  

  
  

   
  

    
  

                                                                     (3-4) 

and the phase angle between the driving and resulting signals is  

 

     
     

     
               (3-5) 

The force gradient can be measured using several modes such as Slope or as described in 

the following section. 
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 Slope mode
42

: 

The slope mode  is usually referred to as the tapping mode in the common terminology of 

AFM systems. This technique measures force gradients by detecting changes in 

amplitude or phase of the cantilever with a constant drive at a frequency slightly off 

resonance as described by eq. (3-4), (3-5). A change in force gradient give rise to a shift 

in the resonance leading to a shift in the vibration amplitude of cantilever and phase 

change as shown in picture 3-3. 
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Figure 3- 3 In  slope detection , the cantilever is excited at fixed frequency ωd slightly 

off resonance. Force gradients are measured by monitoring either the amplitude change  

δA or phase change (frequency) δω 
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 FM  mode (Frequency Modulation technique) 

The frequency modulation technique
39,43,44

 has been used to enhance the sensitivity of 

non-contact mode force microscopy in high vacuum because it is inherently insensitive to 

the amplitude vibration noise and can operate over a wide range. The FM technique uses 

the force sensor as resonator in an active feedback circuit. By phase shifting the resonator 

(cantilever) 90
0 

and driving it with the resultant waveform, the resonant frequency and 

amplitude of cantilever could be measured . In other words, if the phase shift between 

cantilever drive and signal is maintained at  90
0 

, the cantilever will be excited at its 

resonant frequency as eq. (3-5) shown. Because the force gradients acting on the 

cantilever can cause instantaneous shift of resonant frequency as shown in equation (3-3) 

where the Fint is the interaction force, we can measure the force gradients through 

frequency demodulation. The eqs. (3-3) (3-4) (3-5) represent the response motion of 

cantilever. The cantilever can be treated as a damped harmonic oscillator that is driven by 

ω externally.  

 In the case of the phase-controlled oscillator set-up used for dynamic force 

measurement as shown in figure 3-4, the driving frequency is determined by resonant 

frequency ω, Q, and phase shift φ. The main purpose of the block circuit is the controlled 

positive feedback with a phase φ=1/2 to keep the cantilever at the resonant frequency 

and at a constant amplitude. Unlike the commonly used method  "slope detection" as 

described in the previous section, the unwanted effects of changes in Q factor are also 

eliminated by exciting cantilever at the resonant state (φ=1/2).  
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Figure 3- 4 (a) The block diagram of the constant amplitude mode of a frequency-

modulation force  detection method as provided by nano-surf. co. In picture (b), the phase 

locked loop used for the  phase lock of φ=1/2 between the driving voltage and 

interference signal to regulate the phase signal along with the FM-detector which outputs 

the frequency shift dF. 
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As shown in figure 3-5, a change in Q will cause the frequency shift which is coupled 

to a frequency shift due to an interaction force gradient. It will lead to a systematic error 

in our precise measurement. 
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Figure 3- 5 The figures (x-axis is excitation frequency and y-axis are the gain of 

amplitude and phase, respectively.) indicate that a frequency shift might be 

indistinguishable between that resulting from a  force gradient (conservative force as 

shown in (a)) or Q (dissipation as shown picture (b)).  The change in the dissipation Q 

(Q1>Q2>Q3) can mimic as a  shift of resonance frequency which can lead to systematic 

error in the force gradient measurement. 

3.4 Instrumentation 

A scanning force microscope is used to detect small force or force gradients e.g. from 

Casimir effect between a 100 micron sized sphere and sample surface. In order to achieve 

the best precision, we must pay more attention to each part of system to reach the lowest 

noise level. Our detection system consists of a cantilever attached to a 100 micron sized 

sphere, piezoelectric actuator, fiber interferometer including pre-amplifier, light source 

and electronics (PLL circuit, voltage amplifiers, etc.). Each of them contributes noise to 

the detecting system. The ultimate sensitivity of the system is determined by the 

summation of those noise levels. Apart from those noises, there are external noise sources 

including vibrations from pump, room floor low frequency oscillation or acoustic noise. 

Thus, with careful design of the vacuum system, we could make vibration noise approach 

the thermal amplitude of cantilever. 

In the beginning of this chapter, the design of detection system as shown in picture 3-7 

including vacuum system, short coherence length fiber-based interferometer, cantilever 

fabrication, FM-AFM and programming will be discussed. This is followed by 

contributions of each noise source in my system in order to approach the noise limited 

minimum detectable force gradient. Finally, we will demonstrate the improvement of 

precision Casimir force measurement by the dynamic mode (FM-AFM). 
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Figure 3- 6 Layout of the vacuum FM-AFM setup used in precision dynamic 

measurements of the Casimir force. 
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3.4.1 Vacuum system
45

 

In a dynamic measurement, increased sensitivity is made possible by operation in a 

high vacuum by as it increases the Q factor of the vibration force sensor (cantilever)
46

. 

Also, it is important that the sample surfaces used in Casimir force measurements be 

preserved in the cleanest state possible, as the optical properties of the material are 

directly used for the Casimir force measurement. Those conditions require a high vacuum 

technique. Basically, our vacuum system as shown in figure 3-8 consists of five parts, 

pumps system, chamber body, valve, gauge and different kinds of vacuum feed-through.  

Before designing the vacuum system, one key parameter which is the ultimate pressure 

must be specified.  

Ion

pump

Rotational 

feed-through

View window

Fiber

feed-through

Vacuum chamber
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Figure 3- 7 Layout of the vacuum chamber  with rotational feed-through and view 

window for manually aligning the fiber . The rotational feed-through used for align 

optical fiber. 

 

 Vacuum pressure: The ultimate pressure requirement dictates the choices of 

the vacuum system. In our system for the precision Casimir force measurement, 

ultimate base pressure that we achieve is 10
-9

 Torr. 

 Chamber and pumping system: The main chamber, is a six-way stainless 

cross, connecting the turbo-pump (V-301, pumping speed for nitrogen ~ 250 l/s) 

followed by an oil-free dry scroll pump which can reach a vacuum down to 2x10
-7

. 

To achieve pressures below 10
-7

 Torr, baking chamber is necessary to remove 

water or other absorbed molecule from vacuum system walls. Heating to 100 
0
C 

for several hours and activating. ion pump can improve the ultimate pressure 

down to the 10
-9

 level. During data acquisition, the turbo and scroll pump will be 

turned off to reduce vibration noise. Thus, we close the valve (6” viton o-ring 

sealed gate with stainless steel construction) between the chamber and the turbo 

before venting the pumps by clean and dry nitrogen gas to make the mechanical 

pump system come to a complete stop. The pressure of chamber keeps going 

down when only the ion pump is active. Notice that the chamber should be 

supported on a damped optical table and designed to have a large mass to reduce 

the mechanical noise. 
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 Gauges: The vacuum pressure is measured by thermal–conductivity gauge for 

low vacuum (about 10
-3

 Torr) and an ionization gauge (from 10
-4

 to 10
-10

 Torr) 

connected to main vacuum chamber (to get exact working pressure). 

 Electric supply in vacuum:  We use type D subminiature connectors 

offering UHV feed-throughs with 25 pins which are hermetically sealed and 

electrically insulated using glass ceramic bonding. Feed-throughs are on CF 

conflate metal seal flange. For vacuum side connections, a kapton insulated in-

vacuum ribbon cable and polyether-ketene thermoplastic connector meet the 

demands of our UHV system. 

 Optical-fiber feed-through: the home-made optical fiber feed-through is 

made by cladding-stripped 1550nm SM28 fiber sealed by Varian vacuum Torr 

seal inside a clean stainless steel tube welding on a CF flange.  

 Surface preparation: To lower the outguessing rate, any metal part put into 

the high vacuum environment must satisfy some surface requirements.  The 

surface should be as smooth as possible to minimize the surface area and thus 

decrease the amount of adsorbed gas. In addition, organic, hydrocarbon oils, 

greases and water, must be removed from the surfaces of the vacuum apparatus. 

Disposable plastic gloves (powder free) are convenient for holding vacuum 

apparatus after cleaning. 
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3.4.3 Design of the short coherence fiber-optical 

interferometer 

 In my atomic force microscopic, a fiber optic interferometer shown schematically 

in picture 3 is implemented as the displacement sensor. A SLD (Super Luminescent 

Diode) with a wavelength of 1550 nm, serves as the light source for the interferometer. 

We use  an IR wavelength  because it is above the band-gap in silicon which prevents the 

cantilever heating and frequency fluctuation. The SLD is packaged with an FC-APC 

connection to the optical fiber. An optical isolator with FC-APC connectors (the fiber-air 

junction is intentionally cut at an angle) joins the diode to 50/50 directional coupler. The 

isolator attenuates light reflected back to the laser source by >58dB; therefore, it can 

prevent instabilities in the light source resulting from  optical feedback. 

  The directional coupler splits the laser into 50% (primary output) and 50% 

(secondary output). The primary output is used for monitoring the laser power. The 

secondary output is a bare optical fiber which enters into the high vacuum chamber 

through a home-made (sealed with high vacuum sealant) conflates feed-through, and 

mounted on the oil-free xyz stage above the cantilever holder. Through the xyz stage and 

glass view window, we can control the fiber alignment in the vacuum chamber manually 

by the rotation  of the vacuum feed-through. They are shown in figure 3-8. The fiber end 

is cleaved to give a mirror-like reflective surface (figure 2). Approximately 4% of 

incident light is reflected from the glass-vacuum interface. Most of the light transmitted 

out of the fiber end is reflected from the backside of cantilever to which it is aligned, and 

re-enters the fiber. Interference occurs between these two beams, providing the cantilever 
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deflection signal. In order to avoid unwanted back reflection, the ends of the fibers for 

signal output is terminated with an APC connector. There are issues relating to the 

operation of fiber-based interferometer. The active core diameter of 1550 nm SM28 fiber 

is 5um and the cantilevers we use are around 35um wide and 350um long. 

Therefore, precise positioning of the optical fiber above the cantilever is major 

concern in any interferometer design. In our system, this is done  with the help of a CCD 

camera and a high precision xyz stage. The gap between the cantilever and the fiber along 

the z-axis is maintained as small as possible to have better SNR (Signal to Noise ratio) in 

addition to a cavity length  smaller than coherence length of light source.  

 However, the drifting of the cavity length limits the stability of the force sensor 

which  always occurs  at room temperature. A closed loop controls the distance between 

the fiber and the cantilever in our system. 

 

 Principles of the fiber-based interferometer: 

As mentioned above, the interferometer signal can be assumed to be a two beam system, 

low-finesse Fabry-Perot interferometer as shown in Figure 3-2. E0 is the incident energy. 

Intensity E1, E2 are reflected from the mirrors 1 and 2  

                                                  (3-6) 

                 
    

                      (3-7) 
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where r1 and t1 are the reflection and transmission coefficients from fiber end (1st mirror), 

and r2 is the reflection coefficient of cantilever (2nd mirror).      is the attenuation 

coefficient of optical intensity due to the divergence of the light beam,  which is closely 

related to the numerical aperture  and core radius of the fiber. Θ is the optical path length 

difference between fiber and cantilever reflections and can be expressed as  
    

 
 , where 

n is a refractive index of cavity (vacuum) ~1 and d is the length of the cavity. The total 

power in the reflected beam can be obtained by time averaging the total output of the 

electrical field E1+E2 which is associated with the product of the overall output fields  

E1+E2 and its complex conjugate given by: 

Pout = < (E1+E2) (E1+E2)
*
>                                                                    (3-8) 

   
    

    
   

                                                                       (3-9) 

                         
                                    (3-10) 

Where      
       

   and      
  are the power reflection coefficients. The 

typical fiber power reflection coefficient is given by 

    
              

              
      

where                           are indices of refraction of the fiber and vacuum, 

respectively. Because of     , the equation (3-10) can be written as: 

                                                               
    

 
                              (3-11) 
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Where the                                and a visibility   
            

           
 

According to equation (6), the interferometer response to a motion of the cantilever is 

given by: 

  

          
 
   

 
      

   

 
 
    

  
      

   

 
 

                               

The most sensitive operating point is where the optical path difference is at the 

quadrature point i.e.                   ….. as shown in figure 3-8 

When the separation distance is at the Q point as shown in figure 3-9 and    is 

ideally small (using PID control of the laser temperature and single mode fiber position) , 

the response for small amplitude oscillations of the cantilever is given by: 
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Figure 3- 8 Observed experimental interferometer fringes  taken from a sweep of 

cavity length d at fixed wavelength 1550nm 

 Short coherence length light source     

Many of fiber-based interferometers for scanned probe application has been made of 

narrow-line-width He-Ne laser light sources. However, because of its characteristic, long 

coherence length, the stray reflections  in the optical path  led to spurious interferences 

and substantial low-frequency noise. Our experiment is based on the principle of LCI
47

 

(Low Coherence Interferometry) using an optical homodyne interferometer. It provides a 

coherence passive filter to achieve path-length selectivity. For a low-coherence length 

source, the auto-correlation function usually has the Gaussian profile shown in figure 3-9 

as it is determined by  the spontaneous emission. Then equation (3-6) can be rewritten as  
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               (3-12) 

 

Figure 3- 9 The coherence length of the SLD  used is Lc~(λ
2
/λ) =66um 

The interference signal as we consider coherence length is  given by equation (3-12) 

as shown in figure 3-9 (b). 
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Figure 3- 10 (a) indicates the regular laser (with long coherence length). Power of 

interference fringes follow sinusoidal function. Figure 3-9-(b) illustrates the case when 

the path-length difference reaches the coherence length, the interference signal almost 

vanishes. The difference between the red and black lines is when the coherence length 

Lc1 >Lc2. The coherence length acts as a filter to help in the selectivity of the preferred 

optical cavity. 

Obviously, if the optical path length difference is longer than the coherence length, 

the interference signal from that cavity will be eliminated in the system. In figure 3-11, 

we compare noise the interference signal for three different light sources with different 

coherence lengths. 
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Figure 3- 11 The noise level of the interference signal (at the same power) from 

cantilever and fiber surface can be greatly reduced by selecting the coherence length. The 

blue line indicates the interference signal from a 1550nm DFB laser with a 0.1nm line 

width  which corresponds to as  coherence length CL~24 cm. The red and black lines are 

signals from a regular laser (CL~600um) and SLD (CL~66um), respectively. The peaks of 

signal indicate the thermal noise of the cantilever. In the blue line (DFB), we are not able 

to observe thermal noise vibration because of the large background noise level. Therefore, 

it is clear that the corresponding noise reduction  in the short coherence length source  is 

because of  spurious signals resulting from other undesired interference
45

. 

 

 Coarse approach (xyz stage):  

For our microscope, we decided to use a commercial anodized black xyz stage to 

manipulate the fiber toward the cantilever because of its relative simplicity. But the 

anodizing may significantly increase out gassing rates because of its porous structure. 

Therefore, some special treatment need to be done before placing the xyz-stage into the 

high vacuum chamber. The treatments are discussed below. 

1) The xyz-stage was first disassembled into several parts  

2) Scrub them with strong solution of detergent in an ultrasonic cleaner. 

3) Rinse with very hot water  
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4) Immerse and pickle the surface of the parts in a 10% solution of sodium 

hydroxide (NAOH) saturated with common salt (NACl) at 80
0 

C.  

5) Polish in conventional wheel polishing machine. 

6) Immerse those parts into 10% solution of hydrochloric acid to obtain a bright 

finish. 

7) Rinse with DI water. 

8) Re-assemble xyz stage with powder-free disposable plastic gloves. 

9) Rinse with acetone and ethyl alcohol.  

 Optical components 

The basic optical components such as fiber, coupler, fiber connector, and fiber feed-

through used to build up our interferometer are depicted in figures 3-5 and 3-6. The 

proper selection and careful design steps of each component can improve the signal to 

noise ratio in the interferometer 

 Directional coupler:  First a directional coupler with the lowest return loss 

possible should be used. The one we used is a typical fused-tapered bi-conic coupler at 

1550nm wavelength with return-loss of -55dB relative to the input power. In the future, 

we will use an optically contacted evanescent wave coupler with a specified return loss of 

-70dB to decrease parasitic fringes due to the return reflection from fiber and coupler. 
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 Fiber:  Because any changes of amplitude or phase of the signal becomes a 

displacement error in our interferometer system, fixing the fiber with tape on  heat sinks 

and preventing hanging loops is necessary as they could vibrate at low frequency and 

lead to bending noise. Also, we used 1550B-HP 1550nm single mode fiber which has 

extremely low bending loss and low splice loss compared to the standard SMF-28 

1550nm fiber. We found that using bend-insensitive fiber significantly reduced the noise 

level in the low frequency region when we monitor the interference signal on a spectrum 

analyzer SR560 (show picture).  

 Optical-fiber feed-through:  To reduce the signal power attenuation, we need to 

avoid using bulkhead connectors that usually have ~0.3dB power loss. The home-made 

optical fiber feed-through is made by cladding-removed 1550B-HP fiber sealed (Torr-

sealant which has very low  vacuum weight loss and can withstand repeated temperature 

cycling from -200 
0
C to 450 

0
C) inside a clean stainless steel tube welded on a CF flange.   



 

66 
 

 Photo detector and electronics  

There are two sets of interferometers in my system as shown in figure 3-11.  

Home-build Cantilever Holder

actuator 

cantilever

XYZ oil free stage

& 

Fiber holder
x

z

y

Fiber

Feed-through
Rotational

Feed-through

Sample

piezo

Au plate

Z

 

Figure 3- 12 The two sets of interferometers and the design of cantilever holder used 

inside the vacuum chamber is shown 

  

 One of them is used for monitoring the sample piezo movement with a regular 

laser diode. The other one is used for detecting the cantilever movement with the SLD. 

For the regular laser diode, we observe that the interference signal correlates significantly 

with the laser power. For having high signal to noise ratio fringe signal, there is a good 

benefit to use divider to normalize the signal to reduce the power intensity noise as 

shown in figure 3-13.   



 

67 
 

 

Figure 3- 13 The flowchart of interferometer we used to monitor and calibrate the 

movement of the sample plate piezo. 

 

 In contrast to the interferometer used for monitoring the sample plate movement, 

the noise level of the cantilever interferometer was not correlated with the light source 

power. To avoid any potential error source or noise the from divider or balancing system, 

we  simply use the photon detector coupled to an OPA627 low noise operational 

amplifier (very high input impedance~10
13 
) as a trams-impedance amplifier. As shown 

in picture 3-14,  the output interference signal directly goes into a band-pass filter 

cascaded by low and high pass filter to cut off unwanted frequency bands. The filtered 

signal is fed into the nano-surf PLL electronic device for Frequency Modulation detection. 

The other channel of the interference signal is fed into the divider and coupled with laser 
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output from second lead of optical directional coupler to form a closed loop PID control 

of the separation distance between the fiber and the cantilever during FM detection. 

 

 

 

 

Figure 3- 14 The flow chart of my fiber-based interferometer experiment setup. The 

resonant frequency shift is detected by the FM-controller and detector. The separation 

distance between the fiber and the cantilever is PID controlled to keep it constant during 

measurement. 
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3.4.4 Design of piezo actuators 

For precise Casimir force measurement, the most important thing as mentioned before 

is reproducible measurement of separation between two sample surfaces. It needs to 

precisely control the Piezo actuators. In our detection system, a piezo tube and monolithic 

chip  multilayer piezo are used for controlling sample movement and cantilever actuation.  

Cantilever Piezo Actuator: These actuators are made from ceramic material in 

which the piezo-ceramic properties  such as stiffness, capacitance, displacement, 

temperature stability, leakage current are optimally combined. Because the lack of 

polymer insulation (lower out gassing rate) and the high Curie temperature, it is well 

suited to a high vacuum environment. As figure 3-13 shown, the piezo actuator is glued 

to a home-made holder. The cantilever is below the piezo and fixed by a spring clip. Thus, 

the cantilever can be oscillated at any chosen frequency. Note that since the displacement 

of a piezo actuator is based on ionic shift and orientation of the PZT unit cells, hysteresis 

and creep are unavoidable effects in piezo movement as shown in figure 3-16. However, 

by using the interferometer calibration one can precisely determined the movement of the 

piezo which we will present in chapter 4 . 
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Figure 3- 15 Hysteresis curves of an open-loop piezo actuator . The hysteresis is 

related to the distance movement. Noted that for periodic motion, creep and hysteresis do 

not affect repeatability. 

 

 Sample piezo tube: In our experiment, we use a commercial piezo tube made by 

Veeco  (E-Scanner) as shown in picture 3-17 and 3-18. The E-Scanner provides 3-

demensional movement and is combined with A/D converters and feedback loop to 

perform a sample image.  
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Figure 3- 16 The typical electrode configuration on the piezo tube. (provided by 

Veeco instruction manual) 
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Figure 3- 17 AC voltages applied to the scanner crystal X-Y axes produce a raster-

type scan motion shown. The picture is provided by Veeco. 
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3.4.5 Force sensor (cantilever) fabrication  

In selecting an FM-AFM cantilever, we need to consider many parameters. The first 

priority is the consideration of force sensitivity which is limited by thermal noise. The 

thermally limited minimum detectable force gradient is given by
46,48
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, where k is the spring 

constant and f0 is resonant frequency, M is mass of the sphere coated with metal. If we 

ignore the mass M, then the minimum detectable force gradient in bandwidth Bw 
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where Y is Young’s modulus, L, w, t are the  dimensions of the rectangular silicon 

cantilever which represent the length, width and thickness.  

From the equation (3-14), the sensitivity is optimized by using  narrow, thin, and long 

cantilevers.  We used commercial silicon rectangular cantilevers which are 350um long, 

35um wide and 1um thick. Notice that the use of the cantilever with high Q also helps to 

reduce the frequency noise . Therefore, the material for cantilever should have little 

internal dissipation. This holds for single crystal silicon. We  use a silicon  cantilevers 

with a sphere attached and  coated with a gold film. 
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According to  equation (3-13),  the resonant frequency is dramatically lowered by 

adding mass to it. If the frequency is reduced below 1kHz (usually the knee of the 1/f 

noise level in my system), the sensitivity will be reduced because of the low frequency 

noise level. Therefore, instead of the polystyrene sphere (heavier and solid sphere), we 

use a 3M hollow silica sphere (Scotchlite glass bubbles).  

For Casimir force measurement, the metal coated sphere attached to a cantilever is the 

major tool. However, as the Au films cover the entire cantilever, they tend to 

dramatically reduce the quality factor. This can potentially degrade the sensitivity in 

thermally limited measurements. Due to this concern, the cantilever is only coated at the 

tip by shadow masking the cantilever with a razor blade. The alignment and thermal 

evaporator setup used for this purpose are shown in figure 3-18 and figure 3-19. The 

finished force sensor for Casimir force measurement is shown in figure 3-20. 

Au 
source

Razor blade

Razor blade
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Figure 3- 18 The cantilever attached with silica sphere is shadow masked by a razor blade 

and rotated in vacuum with a high torque and stable stepper motor during the  

evaporation of Au. 

 

 

 

Figure 3- 19 The design of  the resistive (thermal) evaporation system.  It consists of 

filament coil (evaporation source), vacuum chamber (Pyrex bell jar), pump system , 

rotational motor and different kinds of feed-through. 
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Length~300um

Width~35um

Thickness~1um

Au coated hollow sphere

Au coated 

thickness

~80nm

Radius of sphere~75um

Figure 3- 20 (a) The SEM micrographs  of Au coated cantilever (b)The finished Au 

coating sensor usually has a  spring constant between 0.01~0.03 N/m, resonant frequency 

1500Hz~5000Hz and Q factor of  around 10000 after the gold coating. 
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3.4.6 FM controller and detector 

Other than the interferometer used to monitor the motion of the cantilever, the FM 

controller and detector (frequency demodulator) are the two most important components 

in our system. We employ easy-PLL plus made by Nano-surf co. (including controller 

and detector) to measure the force gradient induced resonant frequency shift. The main 

function of the controller is to regulate the resonant amplitude and phase difference 

between the cantilever vibration and driving signal.  

It consists of three parts. The first part is an analog phase shifter which can produces 

the phase shifted signal with respect to the reference which is the interference signal from 

"detector in" input. The second one is an RMS-to-DC converter used for amplitude 

measurement. The last part is an amplitude controller that consists of a PI-gain controller 

and a multiplier. By adjusting the set-point of the  PI controller, the amplitude can be 

controlled to approach the set-point as shown in picture 3-21.  
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Figure 3- 21 The block diagram of the controller electronics (provided by nano-surf.) 
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The FM detector  shown in figure 3-22 consists of three parts, a VCDO (voltage 

controlled digital oscillator), phase detector and PI controller as a PLL (phase lock loop). 

Note that the PLL circuit serves simultaneously as an accurate frequency detector 

because the control voltage applied to the VCDO is a measure of its frequency. 

 VCDO- it digitally produces an internal signal  and sets the phase shift with 

respect to the reference signal. In the locked-in state, the VCDO signal shows a 

mirror image (within the bandwidth of the PLL) of the frequency components 

contained in the cantilever response signal. 

 Phase detector-is composed of a multiplier and a low pass filter. The input 

signal multiplied with the internal reference signal results in a low frequency term 

from difference of the two signals and the high frequency term from the sum of 

the two frequencies. Once the system is in the lock-state, the high frequency term 

is equal 2ω which will be eliminated by a low frequency filter.  

 PI controller (PLL) - it regulates the output frequency generated by the 

VCDO as a control voltage.  
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Figure 3- 22 The block diagram of the FM detector electronics (provided by nano-surf.) 
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3.4.7 Sensitivity and frequency noise level in FM-AFM
43,46,49

 

 In the frequency modulation AFM, we applied the phase locked loop technique to 

demodulate the frequency shift. It is an electronic circuit consisting of a variable 

frequency oscillator and a phase detector that compares the phase of the signal derived 

from the oscillator to an input signal. Thus, in the locked state, any phase noise added to 

the signal will be converted to the noise level of the DC output signal. For example, an 

ideal oscillator (cantilever) would generate a pure sinusoidal wave                It 

can be presented as delta function in the frequency domain as shown. In the real case, 

phase noises such as thermal (Lorentzian), electronic and interferometer noise (white 

noise ) are added to this signal by adding stochastic process represented by φ(t) to the 

signal as                     as shown in figure 3-23. Therefore, the phase noise 

(jitter) arising from thermal and instruments result in the frequency noise in FM-AFM. 

The root mean square frequency fluctuation can be presented as 

               
  

 
            (3-15) 

(see appendix 1) where    is the phase noise density.  It can be measured by the 

Spectrum analyzer and related to the spectral density and detection bandwidth Bw
50

.  

 The sensitivity of the FM technique is usually limited by three major noise 

sources
43,46

.(1) The intrinsic noise of sensor due to thermal excitation and its own 

characteristics, (2) the noise of frequency detector (FM controller and detector) and (3) 

the noise generated by electronics and the interferometer associated with the detection of 

http://en.wikipedia.org/wiki/Electronic_circuit
http://en.wikipedia.org/wiki/Electronic_oscillator
http://en.wikipedia.org/wiki/Phase_detector
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the resonator response. In our detection system for Casimir force gradient measurement, 

the third noise source dominates the first two.  
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Figure 3- 23 The blue dashed line indicates the "ideal" oscillator signal with sinusoidal  

function which is delta function in the frequency domain. Considering the phase noise 

jitter from the thermal noise and other white noise as shown in the red solid line and 

black line, the noise level due to phase jitter will be added into the DC signal from the 

PLL loop. 

 

 

 Thermal noise: The intrinsic frequency noise due to thermal excitation of the 

cantilever as we mentioned before is 
QE

BTK WB

0

0 '
,where the E0=1/2kA

2
 is the 
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energy stored in the oscillator, and the Bw is the detection bandwidth that can be 

controlled. In our experiment, the thermal amplitude of the oscillator is around 6Å  and 

the Q factor and resonant frequency for our cantilever with sphere in ultra high vacuum is 

typically 10000~30000 and ~1.5kHz respectively as shown in figure 3-24. With these 

parameters, the frequency noise response to the thermal excitation is 1.2e-6 
  

     
     

    

corresponding to 3.8e-5 Hz
0.5

 times the square root of 1kHz bandwidth which is the 

typical limited bandwidth for the frequency detector. Thus the spectral noise density due 

to thermal phase noise is a constant  1.2e-6 and related to Bw. 
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Figure 3- 24 Thermal cantilever noise in a vacuum of 10
-7

 (Torr). The x-axis is in Hz and 

the y-axis is in nm/(Hz)
0.5

 (log scale). The parameters for the cantilever are: spring 

constant ~ 0.0125 N/m. Resonant frequency is ~1480Hz and Q~25000. 

Frequency detector noise (phase noise due to FM controller and detector): We use 

the low noise AC signal from the function generator 33220A to test the noise level from 

the frequency detector. The AC signal was fed into the easy-PLL (frequency detector) 

and the output signal was analyzed with a spectrum analyzer SR 760. According to eq. 3-

15,                
  

 
     

    The frequency noise density from FM 

controller and detector can be presented as equation 3-16: 

  

     
                                                                                 (3-16)                                                    

we assume that the    is a uniform phase noise density (white phase noise density) from 

frequency detector and Bw is the detection bandwidth of the system. The slope of theory 

curve from eq.3-15 represents the phase noise density which is around 3.4-e7 (rad.Hz
1/2

)
 

as shown in figure 3-25 (dashed line). With a bandwidth of 1KHz, this the ultimate 

instrumental sensitivity 6mHz  specified by the company, Nano-surf,  cannot be achieved. 

Therefore, it is worth noting that the noise level can be reduced greatly by low pass 

filtering the  frequency shift signal as shown in figure 3-25 by the green (200Hz) and red 

curves (50Hz). If the ultimate sensitivity needs to be achieved, the detection bandwidth is 

the critical parameter which needs to be considered. The figure 3-26 represents the 

frequency noise level due to phase detector which is ~6mHz when we use the 200Hz 

filter. 
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Figure 3- 25 The noise density of the FM controller and the phase detector. The input 

signal used for noise level test is from the very low noise function generator. Area 

underneath the curve shows the frequency noise. The dashed line shows the theory curve 

fitting from  eq. 3-16. The deviation between the theory and test (experimental curve ) is 

due to low pass-filtering the output frequency signal. 
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Figure 3- 26 A 0.1Hz square wave modulation and a 200Hz filter were used in the 

test of  frequency noise level. The resolution of the phase detector is 6 mHz. 

 

Instrument noise source: 

Even if the intrinsic (thermal) and detector noise is ideally small, we still have 

frequency fluctuation which originates from the finite SNR (signal to noise ratio)  which 

can be measured. Assuming that a white noise signal with spectral density δy
2
 is added to 

an oscillator signal y, the  phase noise density
51

 is given by 
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(3-17) 

According to eq.3-15, the corresponding frequency noise is  

               
  

 
  

  

   
  

    
  

     
                                      (3-18) 

is correlated to detection bandwidth Bw and SNR. In our experiment, with the usual 

parameters and bandwidth Bw ~50Hz and SNR  ~1000, the frequency noise is  35mHz. 

However, if the resolution capabilities of the frequency detector need to be approached as 

shown in previous section, an SNR at least 6000 is required for the same bandwidth 50Hz.  
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Figure 3- 27 A ~0.1Hz frequency shift due to square (voltage difference applied in-

between sample plate and sphere) electrostatic force modulation. The RMS frequency 

noise level is ~35mHz (Q=10000, SNR~1000) as shown in eq.3-18 .   
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Therefore, how to improve the SNR to reduce frequency noise level in our system is 

worth discussing. As shown in section 3.4.3, we know that y is related to the amplitude of 

the cantilever and the laser power which can be presented as: 

                
  

 
         (3-19) 

   is white noise spectrum originating from different noise sources. The common 

sources of noise in a fiber-based interferometer force microscopy are electronics noise 

(pre-amplifier noise) and optical noises (shot, laser intensity noise). 

 Electronic noises
52

:   

Pre-amplifier noise: Our Pre-amplifier consists of an OP-Amp and resistor. The 

noise level come from the  Johnson Noise of the resistor and OP-Amp noise level. The 

noise level measured by the spectral analyzer is 50nV/Hz
0.5

 for a 100k load resistor. 

 Optical noises
55

:  

Shot Noise : Shot noise arises from statistics of photons incident on a photo-

conductive detector. The shot noise can be described by the following equation: 

                          (3-20) 

where  is photo detector (A/W) efficiency and e is the electron charge. 
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Laser intensity noise: As long as the noise density is proportional to laser intensity, 

we call it as intensity noise. This noise comes from spontaneous emission, mode-hopping 

noise or laser phase fluctuation. The equation can be simplified as : 

                                                                                             (3-21) 

In fact, the usual limit for the fiber-based interferometer is shot noise. The figure 3-28 

depicts that the white noise density of interference signal is a function of square root of 

signal power P0.5 . Hence, the shot noise is the dominant noise level in our system. 
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Figure 3- 28 The y-axis is white noise PSD (power spectral density) measured by 

SRS760 spectrum analyzer. The PSD is roughly linear with increasing P
0.5

 as eq. 3-20. 
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 From eq.3-19 and 3-20, the  signal to noise ratio SNR is given by: 

    
           

  

 

            
                  

  

 
  (3-21) 

    

 Therefore, SNR can be improved by increasing    (the amplitude of cantilever), 

light source power as shown in figure 3-29  and by decreasing the wavelength of the light 

source. However, a large amplitude might introduces systematic error at short separation 

distances because of the uncertainty in frequency shift which we will discuss at chapter 5. 

Increasing the laser power and wavelength reduction can lead to increased heating in the 

cantilever. Also, when using a low spring constant and high vacuum like in our system, 

the light radiation can drive (heating) or damp (cooling) the cantilever. This will 

introduce another un-wanted force gradient in our system. 
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Figure 3- 29 SNR  (thermal noise amplitude to shot noise (white noise level)) is roughly 

linearly with increasing P
0.5

. The error might come from the un-wanted environmental 

vibration exciting the cantilever. 
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Chapter4 Experimental arrangement for dynamic 

Casimir force measurements 

4.1 Overview of experimental methods 

The Casimir force is a strong nonlinear function of the separation distance between the 

two objects. The final precision  of the Casimir force measurement is determined by how 

precisely you can measure the separation distance. Here, the experimental arrangements 

and methods for Casimir force measurement are presented graphically in figure 4-1. 

Basically, the first interferometer is used to monitor the cantilever motion and input the 

interference signal into two positive feedback loops where one is used for feedback (PID) 

control the separation distance between the fiber end and the cantilever, while the other 

one is used to generate the signal on the cantilever resonant frequency and also drive the 

cantilever . The second interferometer is used to precisely calibrate the sample movement 

which is driven by a ramp voltage provided by the high voltage power supply.  

 In our experiment, the Casimir force gradient is measured between a sphere and a 

plate. A sphere forms one surface because it provides easy alignment  at each position 

compared to the case of  two parallel plates which is hard to align. Therefore, we have to 

use proximity force approximation (PFA) to get the Casimir pressure between two plates 

from the  gradient of the Casimir force between the sphere and the plate . We will also 

explain the PFA approximation in this chapter. The standard procedure we used to extract 

the Casimir pressure is through an electrostatic force calibration. We apply a known 
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potential difference between the Au-coated sphere and Au plate. For  each applied 

potential difference, the frequency shift  as a function of the sphere-plate separation is 

measured.   

 The parameters related to the cantilever and sample (k, ω0, R, and residual 

potential V0), and the closest separation (Z0) distance between sphere and plate can be 

extracted  systematically using the shift in frequency with the applied electrostatic 

voltage. Using these parameters, the Casimir pressure can be determined . Note that all 

procedures related to the measurement is controlled by a lab-view program . In the 

following sections, details of the experimental process will be presented.   
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Figure 4- 1 Flow chart of dynamic Casimir force measurement technique used. 

 

4.1.1 Calibration of piezo movement
22

 

 There are many ways to calibrate the movement of the piezo precisely. One of 

most precise and direct ways is to use the  optical fiber interferometry technique.  Our 

calibration of the movement of the piezo tube is determined by this technique. For precise 

Casimir force measurement, the piezo tube held under the sample plate is usually driven 
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with a periodic linear voltage (triangle wave of appropriate amplitude). The interference 

signal from the fiber and sample plate is varies with the displacement of piezo tube 

relative to the scale of voltage. To measure the expansion  of the piezo leading to the 

displacement of the plate, we need to find  the sensitivity coefficient P=∆L/∆V, which 

relates the  piezo tube movement ∆L and voltage applied ∆V. Notice that for small 

scanning ranges the sensitivity coefficient is a constant. For large voltage ranges, the 

nonlinearities related to the magnitude, and polarity of the voltage and the frequency of 

applied voltage come from the effects of piezo tube hysteresis and creep. These 

nonlinearities will play an important role for precise measurement using the piezoelectric 

elements. As we saw in the previous section, the interference signal is given by: 

                       
       

 
                                                     

 where, d is the length of the optical cavity.  The  d can be Taylor expanded to relate the 

sensitivity P to the applied voltage V.  Therefore, the above equation can be modified as, 

                       
  

 
        

     
     

     
     

        

                                                                           (4-1) 

Pi are the coefficients corresponding to the exponents i of the voltage V   and   is the 

initial length of the cavity at V=0. Because the changes in the sensitivity are related to the 

applied voltage and frequency, we need to monitor the fringes during each scan. As the 

figure 4-1 shows, there are two fibers (interferometers) inside the chamber. One is used to 

monitor the cantilever, another is for sample piezo tube.  Through simultaneously 
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monitoring each scan of piezo tube and using the least 
2
 fit to obtain the Pi , we can 

calibrate the piezo movement with  sub-nanometer position resolution. 
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Figure 4- 2 The voltage applied (black line) on piezo is in the form of a triangular wave. 

The red line shows the corresponding interference signal from the reflection at the fiber 

facet and sample plate. 
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Figure 4- 3 The interference signal for the scanning range from 0 to 300 V. the black 

lines are experimental curve and the red line represents the least 
2
 fit to the data by 

equation (4-1). The fit gives linear calibration value P1~ 9.89 (nm/V) and first non-linear 

leading term P2 ~ -0.159. For precise Casimir force measurement, we fit interference 

fringes  to the tenth order term P10. 



 

98 
 

4.1.2 Feedback loop control of  separation distance 

between fiber end and cantilever 

 We used a feedback loop to keep (as shown in figure 4-3) a constant separation 

distance (d) between the fiber end and the cantilever. As we mentioned in chapter 3 , we 

would like to keep optical cavity length at the most sensitive operating point, "Q-point" 

as shown in figure 4-5. 

 

Figure 4- 4 Schematic of the feedback loop is used to control Piezo1 to keep a 

constant separation distance  between fiber and cantilever. 
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Figure 4- 5  The observed interference  fringes  versus optical sedations d. When we 

operate at the quadrature point, the vibration amplitude (orange curve) can be converted 

to large voltage signal (blue curve) to increase signal to noise ratio for the FM detection. 

 

  

 Another critical reason is that during the experiment , as the Au coated plate will 

be brought closer to the sphere on  the cantilever, the force (electrostatic + Casimir) will 

cause the cantilever to bend.   This is particularly an issue. Figure 4-6 illustrates the  

cantilever (k = 0.01N/m) deflection due to interactions which are electrostatic and 

Casimir force for the separation distances in our experiment at different voltage 

differences. It indicates the cantilever due to the Casimir force and electrostatic force 

(70mV) at 230 nm is ~4.882nm. The corresponding feedback voltage applied on the 

piezo to compensate  the deflection of the is around 5nm shown as figure 4-7 (b).  
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Figure 4- 6 The figure indicates the cantilever deflection due to the interaction 

between Au-coated sphere and Au-coated plate. 
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Figure 4- 7 In figure (a), interference signal is keep constant during each scan which 

indicates the separation between the fiber end and the cantilever is maintained constants 

by  the PID feedback control. (b) The compensated movement by the piezo1 is ~5nm at 

230 nm (70mV voltage difference). 

 

 

4.1.2 Signal curve obtained from FM technique 

 As mention in chapter 3, the interaction force acting on cantilever causes a slight 

change in resonance frequency which is given by    
  

  
 
     

  
 . The frequency signal 

is measured by the FM detector and the cantilever oscillation is driven at the resonant 

frequency at a fixed amplitude  by the FM controller. The frequency shift signal as a 

function of the sample movement is shown in figure 4-8. 
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Figure 4- 8 Frequency shift  as a function of the displacement of sample plate by the 

piezo Zpiezo.  
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4.2 Casimir Pressure Determination
10,25,53,54

 

4.2.1 Casimir pressure using Proximity Force 

Approximation 

 Unlike the static measurement, in the dynamic measurement the Casimir force 

gradient 
         

  
 is measured using    

  

  
 
  

  
  by observing the change in the 

resonant frequency as a as a function of the separation distance between the sphere and 

plate. We use PFA to derive Casimir pressure (Casimir energy between two plates per 

unit area) from the force gradient in the sphere-plate configuration.   

 The basic idea of the  PFA is that we can cut the sphere surface into infinitesimal 

small regions and integrate each piece for calculating Casimir energy. The proximity 

energy is    scorrectiondDEVP  . Here E(D) represents the Casimir energy per 

unit area of two parallel ideal metal plate at the separation D. The integral is over the area 

of the gap which is equivalently surface of the sphere.. The separation distance from a 

point on the flat region of the sphere to the plate can also be written as 

   cos,  1RzyxD  and the area as  RdRd sin2 . Therefore, the proximity 

energy can be transformed to: 

       



Rz

z
P DdDERdRRRzERDdxdyEzV  22 sincos . 
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 If zR  , and E(D) approaches zero sufficiently rapidly for large values of R, the 

upper limit of the integral can be replaced by infinity.    



z

P DdDERzV 2 . The 

Casimir force, which is given by the derivative of the energy between the sphere and 

plate is given by: 

     DREzVzF Pcasimir 2 / .      (4-1) 

Differentiating eq. (4-1) with respect to z one obtains 

          

  
                       (4-2) 

Thus, the Casimir force gradient between the sphere and plate can be directly related to 

the Casimir pressure between infinite parallel plates. 

 

Figure 4- 9 Configuration of a sphere above a plate 
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 The precision of the Casimir force from the Proximate Force approximation in our 

experiment with the sphere of the radius of 60 um and the closest separation 200 nm is 

smaller than 0.1%. 

4.2.2 Electrostatic calibration 

The electrostatic force between a sphere and plate is given by
55

:   

               
                          

             (4-

3) 

 where V and V0 are applied voltage on the plate and the residual voltage between the 

sphere and plate respectively.             
   . Z =Z0 +Zpiezo is a separation 

distance between sphere and plate. Z0 is the closest distance between sphere and plate. 

Zpiezo is the plate movement due to the piezo which is calibrated interferometrically in the 

previous section. R is radius of the Au-coated sphere. Recalling eq.3-3          

  

  
 
     

  
 
    

, where Fint  represents the interaction force including Casimir and 

electrostatic force. According to PFA, eq.3-3 and 4-3, the frequency shift can be 

presented as the first derivative of the Casimir force and the electrostatic force. The 

equation is given by 

                    
           

         

  
    (4-4) 
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where             is associated with the first derivative of eq. 4-3 and           

which is related to parameters such as the spring constant k, resonant frequency    and 

sphere radius R. To provide those parameters, we apply a series of known potential 

differences between the sphere and plate. The frequency shift as a function of the plate 

movement for the different applied potentials to the plate are shown in figure 4-10. 
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Figure 4- 10 Frequency shift as a function of plate movement for  different voltages 

applied to the plate. In our experiments, we applied 13 different voltages at each piezo 

scan. 
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We apply 13 different potential differences. For a fixed Zpiezo  based on eq.4-3., the 

electrostatic force, the force gradient and therefore the frequency shift has a parabola 

dependence on the voltage Vapplied applied to the plate. This is shown in figure 4-11. From  

equation 4-4, the maximum in the frequency shift corresponds to  V0 (residual potential 

between sphere and plate and the offset from the zero level to associated 

         
         

  
. The curvature of the parabola which includes the spatial 

dependence of the electrostatic force and the cantilever parameters is denoted by  

            . The coefficient           which contains the cantilever spring constant, 

resonant frequency and the sphere radius can be obtained from             to its 

theoretical expression : 



 

107 
 

-0.05 0.00 0.05

-4.0

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

Applied voltage on Au plate(V)

 

 

fr
e

q
u

e
n

c
y

 s
h

if
t 

(H
z
)

V0

 

Figure 4- 11 Dependence of the resonant frequency shift as a function of the applied 

voltage on the plate. V0 is given by the maximum in the parabola. The offset of the  

parabola maximum from the zero value is proportional  to the gradient of the Casimir 

force as shown with the red dashed line. 
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4.2.3 Closest separation distance determination (Z0) 

As mentioned in the previous section,             is associated with the first z-

derivative of the electrostatic force coefficient which  is given by   

  
  

  
      

  

   
         

 

 
          

  

  
                               (4-

5) 

where Z =Z0 +Zpiezo. From the parabolas at each Z the              is obtained. In 

Figure 4.12 (you have to be consistent and used Figure or figure or Fig) the   is shown in 

black with error bars as  function of the distance moved by the plate, Zpiezo. The red solid 

line in Fig.4-12 shows the best 
2
 fit to fourth order term of eq.4-5 for the measured  

             with the two unknown  Z0  and   
   

 
  which are to be determined from 

the fit. In order to test for  systematic errors in of the fitting parameters, the   fitting is 

repeated at the different Z distance ranges . For example, we fix one end of the range to 

the sphere-plate closest distance and the other end is changed from 1200nm to 300 nm.  
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Figure 4- 12 The             as a function of distance moved by the plate, Zpiezo. 

The data points in black includes error bar and represents the experimental determining 

symbol beta . The red solid line is the best indicates the best 
2
 fit.  
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4.2.3 Electrostatic fringe field effect from fiber 

 Because the dynamic measurement is very sensitive, any small force interacting 

with cantilever will lead to a  frequency shift. Here, we observed the effect of the fringe 

fields from the voltage applied to the plate which affects the charge distribution at the 

surface of fiber as shown in figure 4-13. It induces a small electrostatic force between 

fiber and cantilever as shown in blue line. 
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Figure 4- 13 In this figure, the fringe fields (green solid line) due to voltage applied on 

the plate affects the charge distribution on the fiber surface. The charge distribution 

induces an electrostatic force due to image charge from cantilever. The density of red 

lines due to electric fields between sphere and plate is much higher than blue line induced 
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by fiber which represents the electrostatic force between sphere and plate is dominated  

comparing to fiber effects. 

   

 We  can prove  experimentally and theoretically that the electrostatic force 

between fiber and cantilever is independent of  sphere-plate separation distance Z as 

shown in figure 4-14. Hence, this force can be subtracted out from   curve as shown in 

Figure 4-15 . In Figure 4-15 the frequency shift of the cantilever is shown for large 

voltages applied to the plate for three different sphere-plate separations .In order to able 

to observe electrostatic force due to fringes fields, we need to apply high voltages  to the 

plate The voltage applied is two orders of magnitude larger than the usual voltage applied 

during the Casimir force measurement. As can be seen the frequency shifts are 

independent of the separation distance, pointing to the role of the fringe fields. From the 

curvature of the parabolas in Figure 4-15, the    from the fringe fields can be measured to 

be -7.09 .  This value is subtracted from that to obtained earlier as a function of the 

sphere-plate separation to eliminate the role of the fringe fields in the experiment.  The 

role of the fringe fields can be further confirmed from Figure 4-16 where the frequency 

shift from applying voltages to the plate is plotted as a function of the distance moved by 

the plate. The insets show the parabolas generated at the different sphere-plate 

separations.   

 As expected from Figure 4.15, at large separation distances, the parabola 

curvatures become asymptotically constant due to the effect of the fringe fields. This 

asymptotic value can be subtracted to eliminate the effect of the fringe fields.  
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Figure 4- 14 . The red, blue and pink square dot indicate frequency shift versus applied 

voltage on plate at large plate-sphere separation distances ~3.2m, 4.4 and 

5.6 ,respectively.  
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Figure 4- 15 The frequency shift for various applied voltages to the plate as a function 

of the distance moved by the plate. The corresponding parabolas at fixed separation 

distance are shown in the inset. The parabolas at large sphere-plate separation distances 

are seen to asymptotically tend to a constant value as expected from the effect of fringe 

fields.  
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Chapter5 Experimental results and Theory
54

 

5.1 Experimental results and Error budget 

In Casimir force measurement, electrostatic calibration plays an important role. It 

allows precise determination of basic quantities such as absolute separation distance, 

spring constant, radius of the sphere and the residual potential as mentioned in Chapter 4. 

Because of this, any inaccuracy in the electric force used in the calibration will introduce 

additional systematic errors. Here, we present an unambiguous dataset with 3 runs from 

200nm to ~1500nm  calibrated by fitting the electrostatic force. 

 Residual potential V0  

According to equation 4-4, V0 comes from the fitting curve of the x coordinate  of the 

maxima in the parabola at different separation distances. The V0 plotted in figure 5-1 

indicates it  is  independent of separation distance from 200nm to 1400nm. The V0 is 

equal to a constant which is an indirect confirmation of the fact that the interacting 

regions of the surfaces are clean or the adsorbed impurities are randomly distributed with 

a sub-micrometer length scales. 
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Figure 5- 1 Electrostatic  results for the residual potential V0 as a function of  

separations are shown in olive dots with error bars (green). The olive square dots indicate 

the residual potential between Au-coated plate and Au-coated sphere at V0=10.86mV 

1.28 mV (one run data with 10 points reduction).  

 

 Closest  separation distance on sphere-plate approach 

Z0  

As discussed in the previous chapter, the absolute separation Z=Zpiezo+Z0 needs the 

independent determination of the closest separation distance on sphere-plate approach Z0. 

This and  the other parameters associated with the cantilever such as the spring constant 

can be calibrated from beta value              (parabola curvature of the electrostatic 
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force as a function of the applied voltage) determined at each separation. In fitting   

            to the electrostatic force formula in eq. 4-5, the endpoint is kept fixed and 

the initial point is varied.  In figure 5-2, Z0 so determined is shown as a function of the 

initial point used in the fit.  The values of Z0 are seen to be independent of the start 

position indicating the absence of systematic errors resulting from Zpiezo calibration, 

mechanical drift etc. in the experiment. 
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Figure 5- 2 The black line represent the data of the beta curve as function of sample 

movement. The red line is  best 
2
 fit curve of the coefficient of the electrostatic force eq. 

5-2. In the inset, the blue line indicates Z0 values obtained from the fit as function of the 

end point of the fit with different fitting range (during the fit the point of closest 
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separation is kept fixed and the last point is varied) . The average value (from region as 

blue line shown) is Z0≈235.0± 0.4nm (one run data). 

 

 Other calibration parameters (       ) associated 

with sensor 

The constant  C(       ) can be also extracted by fitting the  beta curve as a function of 

separation. The fit done using different regions similar to that for Z0 by keeping the point 

of closest approach fixed and varying the endpoint to different Z is shown in  figure 5-3. 

The flat line indicates the absence of systematic errors. Because we have three runs of 

C(       ) curve as separation distance, the average of         ) = 7.0922± 0.037 

(LTM
-1

) from the three runs. The parameters of each run are listed in Table 5-1. 
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Figure 5- 3 The values of C(       ) obtained from fitting the beta curves in the same 

way as  Z0. The value of C(       ) is independent of separation indicating the absence 

of systematic errors during the duration of the experiment.  
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 Measure Casimir Pressure and Error budget 

The Casimir pressure for the parallel plate is given by: 

)(
)

),,(
()(

00

0

1

zz

F

RkC
zzP casimirCasimir







      (5-1) 

All parameters used for the Casimir pressure are calibrated from the electrostatic force as 

shown in table 5-1. The mean value of the  Casimir pressure measured with the dynamic 

technique is shown in figure 5-4 as a function of the separation. Three different 

experiments are averaged to obtain the mean value of the Casimir pressure. The 

separation distance ranges  from 230nm to 1400 nm.  

 

 Run 1 Run 2 Run 3 

Z0 (nm) 235.09  0.41 nm 233.58  0.37 nm 234.98  0.38 nm 

  
   

 
 (LTM

-1
) 6.9690  0.0172 7.0668  0.0194 7.0922  0.0167 

V0 (mV) 10.47  1.28mV 10.12  1.33 mV 10.86 1.36 mV 

 

Table 5- 1 It indicates parameters which are calibrated from the electrostatic force for 

three different datasets. The errors including random errors and systematic ones for each 

parameters was extracted from fitting curve. 
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Figure 5- 4 Measure Casimir pressure between Au plate and Au sphere as a function 

of separation distance. The mean value of three different pressure measurement is plotted.  

 

 The following standard random error analysis of our experiment is based on 3 

data sets. In the Gaussian normal distribution, random error can be presented as      

where  is standard deviation from an average of n=3 runs of Casimir pressure. . The 
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mean value of standard random error of the pressure measurements is calculated to be 

0.5mPa.  

The systematic errors are usually used with two different definitions. the first 

meaning is some bias in a measurement which always makes the measured value higher 

or lower than the true value. Such errors in our measurement can be excluded by 

calibration (the subtraction due to fringes field background) or experimental set-up. For 

example, in chapter 4, the cantilever's bending due to interaction between sphere and 

plate is one of the systematic errors. it can be solved by feedback loop controlled by PID 

circuit. Therefore, in the following section, the systematic error is assumed that the 

experimental data under consideration are already free of such affection. 

Another systematic error
54

 which is the errors of a calibrated measurement system. The 

errors of a theoretical formula used to convert a directly measured quantity into an 

indirectly measured one. they are determined by the minimum frequency shift that we can 

be measured and other parameters which are calibrated by electrostatic force. In our 

detection system, the main frequency noise of 35mHz is determined by the shot noise 

level as we mentioned in chapter 3. Next, the fitting errors from the parameters 

        ) need to be considered. The relative error of the Casimir pressure can be used 

for the error propagation from eq. 5-1.   

 Because         ) and frequency noise ω are uncorrelated, the form of relative 

error in the Casimir pressure is given by: 
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where                  coming from average out 3 runs data and    is 35mHz. 

Hence the systematic error varies from  2mPa  at z=230nm to 1.5mPa at all separations 

when Z > 400nm. In  figure 5-5, we show the systematic and random error with the black 

line and red bars, respectively. It indicates that the random error in our detection system 

is smaller than systematic error. 
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Figure 5- 5 The red bars  and the solid black line represent the random and systematic 

errors in the experiment respectively as a function of the plate-sphere separation. 
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5.2 Comparison of experiment with theory 

5.2.1 Theory 

 Roughness corrections 

The Casimir force at small separations depends sensitively on the profile of the 

surface roughness as we mentioned in chapter 2. Even though it is a very small effect in 

this experiment, the surface roughness should be analyzed and characterized. The 

roughness amplitude  was investigated using an AFM system as shown in Fig.5-6.  

 

Figure 5- 6 The topography of the Au layer on the silica sphere is measured by taping 

mode in Air.  
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The roughness amplitude of the Au-coated sphere is 1.94nm and that for the Au layer 

on the sapphire is ~ 2.74nm. The roughness corrections due to these two average 

amplitudes are < 0.1% of the  Casimir  pressure at 200nm. It is negligible when 

comparing theory to the experimental data. 

 

 Finite conductivity and finite temperature correction 

As described in Chapter 2, for  real metals, the Casimir pressure depends strongly on 

the model of the dielectric permittivity. Here, we apply two different models (Plasma and 

Drude models) of the dielectric function to the Lifshitz equations. Both models consider 

the case of the free electrons. In the Drude model, we take the energy dissipation into 

account which can be seen in the relaxation frequency  of the electrons. However, both 

the Plasma and Drude model disregard important physical processes determined by inter-

band transitions of core electrons. Hence, for taking more high frequency response terms 

due to the core electrons, we would like to use the generalized Plasma-like model and 

generalized Drude-like model to compare our experimental data. 

 

 Generalized Drude-like model 

The basic idea is to obtain the dielectric permittivity along the imaginary frequency axis 

      (dielectric function) by using the Kramers-Kronig relation through the fitting 

tabulated optical data for        where                 .     and      are the 
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real and imaginary part of complex refraction coefficient, respectively. The generalized 

Drude-like model includes the inter-band transition from core electrons. The equation can 

be presented as:  

             
  

 

       
  

  

  
         

 
        (5-2) 

where the    are the oscillator strengths, the    are the relaxation frequencies and 

  are the resonant frequencies of the oscillators describing the core electrons. By fitting 

the imaginary part of eq.5-2 to the optical data which is          , we can have fit 

values for the  parameters of the oscillators. Thus the dielectric permittivity along the 

imaginary frequency axis              of generalized Drude can be obtained.  

 Generalized plasma-like model 

For the  generalized plasma-like permittivity, we first need to subtract the Drude behavior 

of the conduction electrons from the tabulated optical data. The residual is then fit to six 

oscillators and their parameters are determined as before. The generalized plasma-like 

model which is given by: 

               
  

 
    

  

  
         

 
                       (5-3) 

After obtaining               and               from both models, the theoretical Casimir 

pressure can be obtained from the  Lifshitz equation. 
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5.2.2 Comparison of results 

 In the Fig.5-7 (a),(b),(c),(d) we compare the experimental data of the measured 

mean Casimir pressure including the total error bar with the two generalized models from 

230nm to 410nm. The size  of the total error bar is small enough to tell the difference 

between generalized Drude and Plasma model. Therefore, the experimental curve is in a 

good agreement with generalized Plasma model computed from the tabulated data. It is 

worth pointing out that the differences between the two models cannot be explained as an 

error in the measurement of the separation distance. Therefore, the experimental curve 

which is in a good agreement with the generalized Plasma model cannot be fit with a shift 

of a few nanometers of the  experimental curve onto the generalized Drude model. This is 

because the curvature of the two models are different. For example, if we shift the 

experimental curve by 2.5nm towards the Drude model, there will be only small range of 

240~280nm  is in good agreement with Drude model but starts to deviate from 280nm. 

Thus this is added proof that errors in the separation distance cannot lead to an overlap 

with the Drude model.  Additionally the shift of 2.5 nm required is much larger than the 

error of 0.4 nm in the separation distance.  

 However, in the Fig. (a), the mean value of Casimir pressure curve (blue dots) is 

slightly smaller than the generalized Plasma model. A possible reason is that the Au film 

used is slightly different from that in the optical data.  . In this generalized Plasma theory 

curve as shown in Fig. 5-7 with black solid line, the plasma frequency is ~8.9 e.V. But 

the Plasma frequency we measured using  ellipsometry  is ~6.4 e.v. (These ellipsometry 

data is not shown in my thesis). It implies that the theoretical magnitude of the Casimir 
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pressure in will be slightly decreased which suggests that our experimental curve might 

be more in agreement with the generalized Plasma model. (The completed analysis 

considering spectroscopic data will be presented in a future paper ). 

Furthermore, for statistical approaches to comparing experiment with theory, we need 

to provide the confidence interval for difference between the theory and experimental 

curve. Below, we follow the procedures from the book " Advances in the Casimir 

Effect
54

  (Chapter18)". In the first step, the total experimental error including standard 

random errors and  systematic errors must be ascertained regardless of the theory to be 

used. The second step is the uncertainties from the theory  used. Finally, the statistical 

approach to experimental curve is explained by 95% confidence interval which can be 

used to describe the reliability of the results.   

The confidence interval for the difference between theory and experimental data at a 95% 

confidence level is given by                ,where       is determined from the 

equation
56

: 

        
   
                                      (5-4) 

where              stands for total error at 95% confidence level including  random error 

                and systematic error              .             is the theoretical 

errors representing the accuracy of the theory. "Z" is separation distance between sphere 

and plate and   
   

=1.1 with 95% confidence level. 

 To have a conservative value of the total experimental error, we must combine 

random errors described by student-T distribution  and systematic errors described by a 



 

127 
 

uniform distribution. Based on  student-T distributions (as the number of samples is 

small ), the one sided 95% confidence level of our random errors is our mean value of  

random error (0.5mPa) times the student-t coefficient for n=3 (2.920) which is equal to  

1.46 mPa. The systematic error as we mentioned in previous section, is the second kind 

of systematic errors coming from a calibrated device which is the smallest fractional 

division of the scale of the device at the limits of this range, The systematic errors are 

considered as random quantities characterized by a uniform distribution. Therefore, the 

95% confidence level for the total systematic error is given by : 

                
        

   
          

 

   

 

                                                                     (5-5) 

where   is the confidence level and    
   

 is the tabulated coefficient depending on   

and on the total number of systematic errors J. Here we have two sources of systematic 

errors which indicate as J=2. For our case ,  is equal to 0.95 (95%) which means      
   

 is 

equal to 1.1. Therefore, the 95% confidence level of our total systematic error varies from  

1.1*2mPa (2.2mPa)  at z=230nm to 1.1*1.5mPa (1.65mPa) at all separations when Z > 

400nm. 

 The total experimental error is given by : 

                    
                                (5-6) 
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where       is determined by ratio of between systematic errors and  random errors. At a 

95% confidence level (       ,       varies between 0.71 and 0.81. Here, to be 

conservative, we used             .  

 Basically, the theoretical errors originate from (1) the dielectric permittivity of 

material we used for the Lifshitz theory. (2) deviation of the boundary surface (roughness) 

(3) the proximity force approximation we used with the configuration of a sphere and 

plate. (4) the errors in the measurement of the separation distance Z which propagates 

into theory when we compare theory and experiment. Here, for simplicity, we only 

discuss the theoretical error from (4) because (1),(2) and (3) are relatively small 

compared to (4).   

With the definition of error propagation, the errors due to Z are presented as : 

                            
         

  
       (5-7) 

where    is ~0.4nm as described from Table 5-1. Therefore, the confidence interval 

for the difference between theory (generalized Drude and Plasma model) and 

experimental data at a 95% confidence level can be calculated with  eq.5-4 and is  shown 

in Fig. 5-8.  

In the Fig. 5-8, the blue solid lines and green lines indicate the single sided border of the 

95% confidence level for generalized Plasma and Drude model, respectively. The red 

square dots indicate the difference between experimental data and generalized Drude 

model. Within the range of separations from 230 to 500nm the generalized Drude model 

approach is excluded experimentally at a 95% confidence level. The black dots represent 
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the difference between the experimental data and the generalized Drude model. As shown 

in Fig. 5-8, all dots are well below the 95% confidence level at all separations considered. 

This implies that the experimental data are consistent with the theory based on the 

generalized plasma-like dielectric permittivity.  
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Figure 5- 7 In (a)(b)(c)(d), the blue square dots are the experimental mean value of 

Casimir pressure  with total error bars. The red solid line is the generalized Drude model 

and the black line represent generalized plasma model. 
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Figure 5- 8 Difference between theory (generalized Drude-red dots and Plasma-black 

dots model) and experimental Casimir pressure versus separations. The solid blue and 

green lines indicate the 95% confidence levels of  generalized Plasma and generalized 

Drude model, respectively. 
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5.2 Preliminary experimental results for the Casimir 

force between an Au-coated sphere and ITO-coated 

plate (work in progress) 

 One of our motivations to investigate the Casimir effect is because of its 

application in nanotechnology. The continual drive to increase the functionality while 

minimizing energy consumption will lead to shrinking device sizes. Not only are features 

of the device smaller but also the separation distance between them. When separations 

become smaller, the Casimir force will be gradually dominate in the sub micrometer scale. 

Therefore, the Casimir force might cause stiction, in other words, malfunction of nano or 

submicron scale devices. Therefore, neutralizing the Casimir force using transparent 

electrodes such as Indium Tin Oxide coated on quartz plate might be a good solution for 

the future.   

Here we demonstrate the Casimir pressure between an Au-coated sphere and ITO-

coated plate without any comparison with theory. We used an  ITO plate with a sputtered 

layer of  ~100nm on a Quartz plate. The ITO sample resistivity was  7.2 (/).  Fig.5-9 

shows the SEM picture of ITO film where surface is very smooth. Fig. 5-10 indicate the 

roughness amplitude which is 2.08nm  measured by using an  AFM. 
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Figure 5- 9 SEM picture for the ITO film used. The grainy image below the film is  

that of the silver epoxy used to fix the sample for the analysis.  

 

 

Figure 5- 10 The 3D image of ITO surface is taken using an AFM.  
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In figure 5-11, we present a single scan of the Casimir pressure and compare it with 

the measured pressure  between an Au sphere and Au plate. The same procedures used 

for the case of two Au surfaces discussed above was followed in the case of the Au 

sphere and ITO plate. .  Table 5-1 indicates the ratio of the Casimir pressure  (AU/ITO) 

between the Au sphere and ITO plate to that between an Au sphere and Au plate at 

different separation distances.   
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Figure 5- 11 The blue line indicates the measured Au-Au Casimir pressure. The red 

line is the measured Au-ITO Casimir pressure curve. 
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Z (nm) ITO (mPa) Au(mPa) Ratio(Au/ITO) 

150 677.21 1430.83 2.11 

175 418.50 831.30 1.99 

200 275.67 511.27 1.85 

250 133.43 225.70 1.69 

300 72.99 116.54 1.60 

Table 5- 2 A factor of 2.11 reduction of Casimir pressure at 150nm is obtained by 

using an ITO plate in comparison to an Au plate.  
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Chapter 6 Conclusion and future works 

6.1 Conclusion 

One of the motivations in investigating the Casimir effect is the puzzles in the application 

of the Lifshitz equation to real metals. To carry out this goal, we developed a FM force 

microscopy technique based on a short coherence length fiber-optic interferometer for 

precise dynamic Casimir measurement. In our measurement, the Casimir force  between 

an Au sphere and an Au plate which using PFA is related to the Casimir pressure between 

two Au plates  was measured with a precision of 1.5mPa. With this error, we are able to 

tell the difference between generalized Drude model and generalized Plasma model 

description of the permittivity of Au. The experimental curve is in a good agreement with 

generalized Plasma model at separations from 230nm to 410nm. It is worth pointing out 

that the differences between the two models cannot be explained as an error in the 

measurement of the separation distance, since the differences between the two theoretical 

curves vary as a function of the separation distance. Therefore, our results may imply that 

the model with energy dissipation for the conduction electrons will give discrepancies 

when comparing the theory including the  thermal correction. In other words, our 

experimental results suggests physical insight thought that the  energy exchange in 

materials with real photons or virtual ones might be different.  
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The Casimir force can be reduced by using conductive oxide (ITO) which is 

transparent to reduce the Casimir attractive force to half its original value but conductive 

enough to prevent surface charge accumulation. We have measured the Casimir pressure 

between an ITO sample plate and Au-coated sphere in vacuum . There is a factor of  ~ 2 

Casimir pressure reduction  with the used of the ITO plate at separation distance of 

160nm.  

These findings, however, are slightly inconsistent with D.Iannuzzi et.al
57

 results at 

large separations. Therefore, this may suggest to us that Casimir force measurements 

might be slight different in vacuum and in an air environment. 

 6.1 Future work 

6.1.1 Increase force sensitivity in our system 

 To provide deeper insights into the  Casimir effect, the increase in the sensitivity  

of the dynamic Casimir force measurement technique  is our first concern. Below, we 

suggest  directions to improve dynamic force measurement in our system.  

 Fabricating new sensor (work in progress) 

In the dynamic measurement technique, adding the mass of sphere will cause the 

sensitivity to decrease as  mentioned in chapter3. Increasing the size of the sphere to 

increase the force and the resultant sensitivity, will lead the Q value to degrade 

dramatically because of unsymmetrical attachment of the sphere or the local deviations 
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from perfect spherical shape. For solving   these problems, we plan to apply  clean room 

micro fabrication technique to construct a cantilever with a spherical bottom made of a 

partial sphere at the end. This will reduce the attached mass and also prevent poor 

unsymmetrical attachment of the sphere. . We will use the standard cantilever fabrication 

techniques and combine it with the micro-lens construction technique (by ICP, photo-

resist reflow, photolithography) to make our low noise spherical sensor. The Fig.6-1 

shows each step for the proposed spherical sensor fabrication. 

 

 

Figure 6- 1 The process for the fabrication  of the spherical sensor (a) SOI wafer (b), (c), 

(d) pattern resist. (e) Reflow the Photo-resist (f) ICP transfer pattern to silicon wafer 

(g)(h)(i)(j)(k)(l) cantilever fabrication with backside etch and SiO2 layer wet etch. 
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 However, right now we have a problem when we transfer the pattern to silicon 

wafer. Because the ICP chamber was always contaminated by the residual chemicals. as 

shown in Fig. 6-2, when we transfer the pattern, the residual chemicals lead to a very 

rough  silicon surface  (annealing the Si surface might solve the problem). 

 

            (a)                                                        (b) 

 

Figure 6- 2 Image (a) was taken with an  optical microscope, before transferring 

pattern by ICP. From the optical pattern, we know the surface of reflowed photo-resist 

was smooth. Fig.(b) Shows the SEM image, after ICP etch (using SF6 and O2 etchant).  
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 Using close loop piezo system for sample plate and  

 One of methods to improve signal to noise ratio is to reduce the detection 

bandwidth Bw  as we mentioned in chapter 3. With a closed loop control at each sample 

position, we can average our frequency shift signal to approach 6mHz (phase detector 

limit) resolution limit of our PLL. This might lead to the  systematic error of Casimir 

pressure being reduced down to 0.2mPa which is one order magnitude smaller than what 

is reported here. 

 

 Varying cantilever amplitude at different separation distance 

Another way to have better signal to noise ratio is using a larger driving amplitude on 

the cantilever. However, using higher amplitude means that we might go outside the 

range of using only the first derivative of the force at very short distances. This problem 

can be solved if we vary amplitude at different separation distance. Thus small 

amplitudes will be used at short distances and large amplitudes at large separation 

distances.  
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