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Abstract

For a chemical signal to propagate across a cell, it must navigate a tortuous environment

involving a variety of organelle barriers. In this work we study mathematical models for a

basic chemical signal, the arrival times at the nuclear membrane of proteins that are acti-

vated at the cell membrane and diffuse throughout the cytosol. Organelle surfaces within

human B cells are reconstructed from soft X-ray tomographic images, and modeled as

reflecting barriers to the molecules’ diffusion. We show that signal inactivation sharpens sig-

nals, reducing variability in the arrival time at the nuclear membrane. Inactivation can also

compensate for an observed slowdown in signal propagation induced by the presence of

organelle barriers, leading to arrival times at the nuclear membrane that are comparable to

models in which the cytosol is treated as an open, empty region. In the limit of strong signal

inactivation this is achieved by filtering out molecules that traverse non-geodesic paths.

Author summary

The inside of cells is a complex spatial environment, filled with organelles, filaments and

proteins. It is an open question how cell signaling pathways function robustly in the pres-

ence of such spatial heterogeneity. In this work we study how organelle barriers influence

the most basic of chemical signals; the diffusive propagation of an activated protein from

the cell membrane to nucleus. Three-dimensional B cell organelle and membrane geome-

tries reconstructed from soft X-ray tomographic images are used in building mathemati-

cal models of the signal propagation process. Our models demonstrate that organelle

barriers significantly increase the time required for a diffusing protein to traverse from

the cell membrane to nucleus when compared to a cell with an empty cytosolic space. We

also show that signal inactivation, a fundamental component of all signaling pathways,
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can provide robustness in the signal arrival time in two ways. Increasing rates of signal

inactivation reduce variability in the arrival time, while also dramatically reducing the

degree to which organelle barriers increase the arrival time (in comparison to a cell with

an empty cytosol).

Introduction

Spatial dynamics can play a critical role in the successful functioning of cellular signaling pro-

cesses, where as basic a property as cell shape can significantly influence the behavior of signal-

ing pathways [1, 2]. Idealized one-dimensional [3], spherical [2, 4, 5] or planar [6] geometries

are commonly used in mathematical models of the cell, with the cytosol represented as an

empty region of fluid [1–3]. Despite the simplicity of the representation of the plasma mem-

brane and/or cytosolic space, the study of spatial signaling dynamics within mathematical

models has provided key insights into the function of many biological pathways, including

cyclic AMP signaling in neurons [1], T cell synapse formation through T cell receptor signal-

ing [6], B cell activation through kinase-receptor interactions [4], and general protein kinase

signaling [2, 3, 5]. For example, changes in idealized cell shapes can induce significant changes

in the timing of signal propagation and the size of concentration gradients across the cytosol

[2].

In modeling signal propagation from the cell membrane to the nucleus, a further challenge

arises from the crowded, spatially heterogeneous nature of the cytosolic space [7]. In this work

we investigate the question of how spatial heterogeneity arising from organelle barriers, as

illustrated in Fig 1b, might influence the propagation of signals from the cell membrane to the

nuclear membrane. We consider the simplest possible model for signal propagation from the

cell membrane to the nucleus, the release of a one or more activated proteins from the inner

Fig 1. Soft X-ray tomography (SXT) imaging of human B cells. (a) One 2D image plane within a 3D SXT reconstruction of a B cell. The corresponding 3D

reconstruction is subsequently labeled as Bcell1 in simulations. Pixel intensity corresponds to linear absorption coefficient (LAC), a measure of the local density

of organic material [10, 11]. Larger LAC values are shown in lighter colors. The bright white band corresponds to the glass capillary in which the cryo-

preserved cell was contained. (b) 3D SXT reconstruction of a human B cell with cutaway to show segmented organelles: heterochromatin (blue), euchromatin

(green), mitochondria (beige), Golgi (purple) and endoplasmic reticulum (ER) (red). Bulk cytosol is shown in gray, with the cell membrane given by the outer

boundary of the cytosol. In our mathematical model, the nucleus, N, is given by the set of voxels with labels corresponding to components of the nucleus (e.g.

euchromatin and heterochromatin in this image). Cytosol, C, is given by voxels rendered in gray, while all other (colored) voxels outside the nucleus are labeled

as organelles, O. (c) Organelle label field values for voxels within the cell in the image plane shown in (a). Here free cytosolic space corresponds to the regions in

yellow, and voxels outside the cell are not shown.

https://doi.org/10.1371/journal.pcbi.1008356.g001
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cell membrane, and their diffusion throughout the cytosol until they first reach the nuclear

membrane. As the classical picture of signal propagation to the nucleus typically involves large

pathways of many chemically reacting molecules (such as the MAPK pathway [3]), this model

may seem overly simplified. However, a number of proteins are known to be activated at the

cell membrane and then directly translocate to the nucleus [8, 9]. For example, in Notch sig-

naling the extracellular domain of Notch receptor can interact with ligands, leading to release

of NICD (Notch intracellular domain) from the plasma membrane into the cytosol. NICD

then translocates to the nucleus where it can regulate gene transcription [8, 9]. More generally,

studying signals that correspond to the diffusive propagation from cell membrane to nucleus

of individual proteins provides a first step towards understanding how cellular substructure

might influence the dynamics of more complicated signaling pathways.

Using segmented reconstructions of organelle geometry obtained by soft X-ray tomography

(SXT) imaging, we study how the presence of organelle barriers modifies the time needed for

diffusing molecules to reach the nucleus in comparison to the time required within an empty

cytosol. As signaling molecules diffusing through the cytosol can not persist indefinitely, we

next investigate how signal inactivation might influence the search process. This creates a com-

petition where the diffusing signal may be inactivated or degraded prior to reaching the

nuclear membrane. We study how the strength of signal inactivation can modulate statistics of

the first passage time (FPT) for an individual molecule to reach the nucleus, conditional on it

reaching the nucleus before inactivation. It is shown that if the total signal (i.e. number of mol-

ecules) that ultimately reach the nucleus is held constant, increasing the inactivation rate leads

to signal sharpening. We also find that signal inactivation can provide robustness to the pres-

ence of organelle barriers, significantly reducing the difference between the average arrival

time of molecules that successfully reach the nucleus in geometries containing organelle barri-

ers, from the time in geometries containing an empty cytosol.

We note that our studies focus on statistics of the time required for the diffusing protein to

reach the nucleus. In the case that there is no inactivation, so that the protein simply diffuses

until reaching the nucleus, this is an example of a classical diffusion-limited first passage time

problem [12]. First passage time problems are widely used in the study of chemical reactions

[13, 14], with a variety of asymptotic results and exact solution techniques when the target site

is small or a basic geometrical shape such as a sphere [15–18].

Results

Mathematical model

We consider the time required for a protein to diffuse from the cell membrane to the nuclear

membrane. Let N denote the nucleus of the cell, with @N denoting the nuclear membrane.

Similarly, we let C denote the cytosol of the cell, with @C denoting the cell membrane. We

assume the cytosol may be filled with a collection of closed subvolumes corresponding to

organelles, denoted by O, with boundary surfaces @O. Fig 1a shows a slice plane through a 3D

soft X-ray tomography (SXT) reconstruction of a human B cell illustrating such geometries,

with Fig 1b showing a 3D reconstruction identifying the nucleus, cytosolic organelles, and the

cytosol.

We assume a molecule is initially activated at the cell membrane, and diffuses throughout

the cytosolic space until it first reaches the nuclear membrane. Both the cell membrane and

organelle surfaces are assumed to be reflecting barriers to the molecule’s diffusion. Denote by

D = 10(μm)2s−1 the diffusivity of the molecule, and by p(x, t) the probability density the mole-

cule is located at position x within C at time t. η(x) will denote the unit outward normal to a
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surface at x. p(x, t) then satisfies the diffusion equation

@p
@t
ðx; tÞ ¼ DDpðx; tÞ; x 2 C;

pðx; tÞ ¼ 0; x 2 @N;

rpðx; tÞ � ηðxÞ ¼ 0; x 2 @O or @C;

pðx; 0Þ ¼ gðxÞ; x 2 C [ @C:

ð1Þ

Note, in the following we assume the initial position of the molecule is located on the inner

surface of the cell membrane, so that g(x) is zero away from @C. The Dirichlet boundary condi-

tion on @N in (1) encodes that the protein is instantly absorbed upon reaching the nuclear

membrane, allowing us to study statistics of diffusing protein’s arrival time at the nuclear

membrane.

Let T denote the random time at which the protein first reaches the nuclear membrane sur-

face. The survival probability that the protein has not yet reached @N at time t is then given by

SðtÞ ¼ Prob ½T > t� ¼
Z

C
pðx; tÞ dx:

The corresponding probability per time the molecule reaches @N is the probability density

function (pdf)

f tð Þ ¼ �
dS
dt
¼ � D

Z

@N
rp x; tð Þ � η xð ÞdA xð Þ; ð2Þ

where dA(x) denotes the surface area measure at x 2 @N. Knowing f(t), we can calculate statis-

tics of T, using that the average of a function w(T), denoted by E wðTÞ½ �, is defined by

E½wðTÞ� ¼
Z 1

0

wðtÞf ðtÞ dt:

Our representations of cellular geometry are derived from 3D SXT reconstructions, see

Methods, for which the label field identifying organelles is provided as a Cartesian grid of

cubes with mesh-width h, see Fig 1. To simulate the time required for the protein to traverse

the cytosol we therefore discretize (1) onto this grid, generating a system of ODEs we solve

numerically. Let Ch denote the collection of mesh voxels that are labeled as being cytosol, with

Nh those that are labeled as being within the nucleus, and Oh those within organelles. We label

the individual voxels within the cytosol by Ch ¼ fVig
M
i¼1

, and let N ðVi;ChÞ denote the indices

of the subset of the six Cartesian grid nearest-neighbors of voxel Vi that are within the cytosol.

N ðVi;NhÞ will similarly denote the indices of the subset of the six Cartesian grid nearest-

neighbors of Vi that are within the nucleus. For xi denoting the centroid of voxel Vi, we let

ph(xi, t)� p(xi, t). ph then satisfies the semi-discrete diffusion equation that

dph
dt

xi; tð Þ ¼ DðDhphÞðxi; tÞ; Vi 2 Ch

phðxi; 0Þ ¼ ghðxiÞ; Vi 2 Ch;

ð3Þ
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where the discrete Laplacian is defined by

ðDhphÞðxi; tÞ ¼
1

h2

X

j2N ðVi ;ChÞ

ðphðxj; tÞ � phðxi; tÞÞ �
X

j2N ðVi ;NhÞ

phðxi; tÞ

" #

; ð4Þ

and gh(xi) denotes the initial condition in the semi-discrete model.

This semi-discrete model corresponds to approximating the continuous Brownian motion

of the particle in C by a continuous-time random walk of the molecule hopping between near-

est-neighbor voxels of Ch.

If we denote by Th the corresponding random time for the protein to first reach a voxel that

is labeled as being within the nucleus, we have the corresponding survival probability,

ShðtÞ ¼ Prob ½Th > t� ¼
X

Vi2Ch

pðxi; tÞh
3;

with analogous definitions for the pdf fh(t) and averages, E wðThÞ½ �, as above.

In the remainder, unless stated otherwise time will be reported in units of seconds, and dis-

tance in units of μm.

Organelle barriers slow the propagation of a signal from the cell membrane

to nucleus, while increasing variability in arrival time for signals initiated

at different locations

We begin by numerically solving (3) to investigate how the presence of organelles as reflecting

barriers influences statistics of the time required for the diffusing protein to reach the nuclear

membrane. Let @Ch denote the collection of voxels within the free cytosol, Ch, that border the

exterior of the cell, with |@Ch| denoting the volume of this set of voxels. Note, this collection of

voxels corresponds to a thin region of cytosol bordering the cell membrane. In the semi-dis-

crete model, we will approximate starting the protein uniformly distributed on the inner sur-

face of the cell membrane by starting the protein uniformly within the volume @Ch. Then

gh xið Þ ¼

1

j@Chj
; Vi 2 @Ch;

0; else:

8
><

>:
ð5Þ

In Fig 2a we show the survival probability Sh(t) from Bcell1, the reconstruction shown in

Fig 1 (results from two additional cell reconstructions, labeled Bcell2 and Bcell3, are shown in

Fig A and Fig B of S1 Text). We consider three cases, the physiological data where voxels corre-

sponding to organelles within the cytosol are inaccessible (labeled “physiological”), a modified

geometry where voxels corresponding to the endoplasmic reticulum (ER) are added back into

the collection of cytosolic voxels the protein can diffuse through (labeled “no ER”), and a mod-

ified geometry where all voxels within cytosolic organelles are added back into the collection

of cytosolic voxels the protein can diffuse through (labeled “no organelles”). This latter geome-

try corresponds to the cytosol filling all space between the cell membrane and the nuclear

membrane. In Fig 2a we observe that the presence of organelle barriers dramatically increases

the time required for the protein to reach the nuclear membrane (shifting the survival proba-

bility curve upwards), with the primary contribution to this shift arising from the barrier pro-

vided by the ER. Table 1 shows that the corresponding mean and median times to reach the

cell membrane change similarly. For Bcell1, the presence of the ER as a barrier accounts for

most of the the time required to reach the nucleus; removing the ER decreases the median of

Th by almost a factor of three.
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Fig 2. The presence of organelles as diffusive barriers increases the time required for a diffusing (signaling) molecule to traverse from the cell membrane

to the nuclear membrane. (a) Survival probability, Sh(t), when the diffusing molecule is started uniformly distributed within a thin region, @Ch, of cytosol

bordering the inner surface of the cell membrane (5). (b) Mean first passage time (MFPT) u(xi) from each voxel within @Ch to reach the nuclear membrane in

the “physiological” case that organelles are present as diffusive barriers. Colorbar gives the MFPT values in seconds, spatial units are μm. (c) Corresponding

MFPTs in the “no organelles” case that the molecules can freely diffuse everywhere between the cell and nuclear membranes. Color scale is the same as (b). (d)

Volume rendering of the organelles in Bcell1, with the cell in the same orientation as in (b) and (c) (but zoomed in). Note, the ER rendering (green) is

attenuated to make other organelles more apparent, and the cell membrane is not shown. Nucleus is in yellow, mitochondria in cyan, and the Golgi in purple.

(e) Distributions of mean first passage times (MFPTs), fuhðxiÞgVi2@Ch
, starting from the same thin region of cytosolic voxels bordering the cell membrane as in

(b) and (c). Note, here the distribution is over the voxels within the region, illustrating how starting at different initial positions can lead to variation in the

MFPT. For the “No ER” case we use the analogous region when just the ER is removed. See (6) for definition of the MFPTs uh(xi). Bin width is .01 (seconds). (f)

Distribution of the ratios of the corresponding “Physiological” to “No Organelles” MFPTS from (e). This illustrates when starting from each individual voxel

bordering the cell membrane, how much organelle barriers increase the MFPT to reach the nucleus from that voxel. Bin width is .1. Note, almost all locations

have a ratio of two or more, showing that organelle barriers significantly increase the time required to reach the nuclear membrane from most initial positions.

Fig A and Fig B of S1 Text show similar results for Bcell2 and Bcell3 respectively. The obscured z-axes labels in panels (b) and (c) range from zero to eighteen

on a linear scale.

https://doi.org/10.1371/journal.pcbi.1008356.g002

Table 1. Statistics of Th, the random time to reach the nucleus in Bcell1. The diffusing molecule is assumed to ini-

tially be randomly distributed on the cell membrane, @Ch. Here STD denotes standard deviation and CV denotes the

coefficient of variation (the standard deviation divided by the mean). Values in parenthesis denote the ratio of the phys-

iological value to the corresponding no ER or no organelle values. See Table A of S1 Text for statistics in Bcells 2 and 3.

Physiological No ER No Organelles

Bcell1 Mean 0.7070 0.2721 (2.6) 0.2499 (2.8)

Bcell1 Median 0.4054 0.1393 (2.9) 0.1335 (3.0)

Bcell1 STD 0.8472 0.3561 0.3173

Bcell1 CV 1.1983 1.3086 1.2695

https://doi.org/10.1371/journal.pcbi.1008356.t001
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In Fig 2b–2f we examine how the time to reach the nucleus varies when the diffusing mole-

cule is started at different points on the cell membrane. Let u(x) denote the mean first passage

time (MFPT) to diffuse from x 2 C to the nuclear membrane. u(x) then satisfies [19]

DuðxÞ ¼ � 1

D ; x 2 C

uðxÞ ¼ 0; x 2 @N

ruðxÞ � ηðxÞ ¼ 0; x 2 @O or @C:

In practice, we solve a discretized version of this PDE that gives the corresponding MFPTs

on our Cartesian grid arising from the imaging data. Let uh(xi) denote the MFPT to reach the

nucleus from xi, which satisfies the linear system of equations

ðDhuhÞðxiÞ ¼ �
1

D ; Vi 2 Ch: ð6Þ

Fig 2b plots uh(xi) over the cytosolic voxels bordering the cell membrane (@Ch) in the physi-

ological case, while Fig 2c shows the case with no organelles (i.e. an empty cytosol). We see

that the presence of organelles significantly slows the MFPT to the nucleus for most points bor-

dering the cell membrane. Not surprisingly, locations closest to the nucleus (left side) generally

have smaller MFPTs than locations far from the nucleus (right side). Fig 2e shows that the dis-

tribution of MFPTs, fuðxiÞgVi2@Ch
, across the cytosolic voxels bordering the cell membrane is

much flatter and broader when organelles are present as barriers (green, physiological case) in

comparison to an empty cytosol (purple, no organelles case). Moreover, examining the ratio of

these MFPTs in the physiological case to the no organelle case, Fig 2f, we find that at almost all

locations the presence of organelle barriers increases the MFPT by a factor of two or more.

In conclusion, we observe that organelle barriers can substantially hinder the diffusion of

molecules across the cytosol, significantly increasing the time required to reach the nuclear

membrane, and increasing the variability of this time over cytosolic voxels bordering the cell
membrane when comparing signals initiated at different points (Fig 2f). While our discussion

has focused on Bcell1, we observe similar qualitative behavior in Bcell2 and Bcell3, see Fig A

and Fig B of S1 Text.

Inactivation filters out molecules undergoing longer searches, reducing

variability in signal arrival time

Activated signaling molecules cannot diffuse throughout the cytosol of cells searching for the

nuclear membrane indefinitely. Whether by degradation mechanisms, or inactivation mecha-

nisms (such as phosphorylation or dephosphorylation), cellular signals will eventually be ter-

minated. From the perspective of a diffusing signaling molecule this creates a competition

between the search for the nuclear membrane and the inactivation process. We now examine

how the interplay between these two processes can modulate the timing at which activated sig-

nals reach the cell membrane.

We consider the simplest possible mechanism for modeling signal inactivation, assuming

the diffusing molecule can now also be inactivated with probability per time λ. Let pλ(x, t)
denote the probability density the diffusing molecule is still activated and within the cytosol at
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time t. pλ then satisfies

@pl
@t
ðx; tÞ ¼ DDplðx; tÞ � lplðx; tÞ; x 2 C;

plðx; tÞ ¼ 0; x 2 @N;

rplðx; tÞ � ηðxÞ ¼ 0; x 2 @O or @C;

plðx; 0Þ ¼ gðxÞ; x 2 C [ @C:

ð7Þ

Note that pλ(x, t) = e−λt p(x, t), so that p0(x, t) = p(x, t), the solution to the diffusion equation (1).

We are interested in statistics of the exit time through the nuclear membrane, Tλ, condi-

tioned on the protein actually reaching the nuclear membrane before inactivation (i.e. the

event that Tλ<1). The probability per time that the diffusing molecule reaches the nuclear

membrane at time t is then

flðtÞ ¼ � D
Z

@N
rplðx; tÞ � ηðxÞ dAðxÞ ¼ e� lt f ðtÞ ð8Þ

where f(t) = f0(t) denotes the probability per time to reach the nuclear membrane in the

absence of degradation, given by (2). With these definitions, the probability the molecule

reaches the nuclear membrane before inactivation is

Zl :¼ Prob ½Tl <1� ¼

Z 1

0

flðtÞ dt ¼
Z 1

0

e� lt f ðtÞ dt:

Denoting the conditional cumulative distribution function (CDF) of Tλ by

FlðtÞ ¼ Prob Tl < t j Tl <1½ � ¼

R t
0
flðsÞ dsR1

0
flðsÞ ds

; ð9Þ

in Section SI1 of S1 Text we prove the following results

Theorem 1 For all fixed t> 0 and λ� 0, Zλ(t) is a strictly decreasing function of λ, and Fλ(t)
is a strictly increasing function of λ.

This result gives several immediate corollaries, including that

Corollary 1 Both the conditional MFPT, hTli≔ E½TljTl <1�, and the conditional median
first passage time, MðTlÞ :¼ F� 1

l
1

2

� �
, are strictly decreasing with respect to λ. That hTλi is

decreasing in λ was also shown in [20] for probability density functions with the factored form

e−λt g(t).
Theorem 1 and Corollary 1 together demonstrate that as the inactivation rate λ is increased,

the time for a molecule to reach the nucleus, conditioned on the molecule actually reaching the

nucleus, decreases. The probability any individual molecule actually reaches the nucleus, Zλ,
also decreases as λ increases. In this way strong signal inactivation will filter out molecules

undergoing longer diffusive searches.

To explore how increasing the inactivation rate λ influences statistics of the time to reach

the nucleus, we now study a semi-discrete model defined on the meshes representing the B cell

geometries, and corresponding to a spatial discretization of (7). Let pλ,h(xi, t)� pλ(xi, t) denote

the probability density that the diffusing molecule is located at xi at time t, then

dpl;h
dt

xi; tð Þ ¼ DðDhpl;hÞðxi; tÞ � lpl;hðxi; tÞ; Vi 2 Ch

pl;hðxi; 0Þ ¼ ghðxiÞ; Vi 2 Ch;

ð10Þ
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where pλ,h(xi, t) = e−λt ph(xi, t). Similarly, fλ,h(t) = e−λt fh(t), so that the probability the diffusing

molecule reaches the nucleus is given by

Zl;h ¼
Z 1

0

fl;hðtÞ dt ¼
Z 1

0

e� lt fhðtÞ dt: ð11Þ

For Tλ,h the random time at which the nucleus is reached, the conditional MFPT to reach

the nucleus is then

hTl;hi ¼ E Tl;h j Tl;h <1
� �

¼ �
d
dl

ln ðZl;hÞ ¼ �
Z0
l;h

Zl;h
¼

R1
0
te� lt fhðtÞ dtR1

0
e� lt fhðtÞ dt

: ð12Þ

In Fig 3 we consider statistics of Tλ,h when the diffusing molecule is initially placed ran-

domly on the cell membrane (i.e. the uniform initial condition (5)). Fig 3a illustrates Corollary

1, showing that for each cell hTλ,hi is strictly decreasing as λ is increased. Similarly, Fig 3c illus-

trates Theorem 1, showing that the probability the molecule reaches the nucleus, Zλ,h, is strictly

decreasing as λ increases. In Fig 3b we examine the conditional variance of Tλ,h, defined by

Var ½Tl;h� :¼ E ðTl;h � hTl;hiÞ
2
j Tl;h <1

� �
¼

R1
0
ðt2 � hTl;hi

2
Þe� lt fhðtÞ dtR1

0
e� lt fhðtÞ dt

: ð13Þ

In each B cell the conditional variance is strictly decreasing. In Fig E, Fig F and Fig G of S1

Text we show that similar results hold when the diffusing molecule’s initial position is more

localized. There the molecule is initially placed randomly within small patches of the cell mem-

brane, see Section SI2 of S1 Text for details.

Inactivation can sharpen the signal reaching the nuclear membrane

To understand how inactivation can affect signal propagation, we investigate how the signal

reaching the nucleus changes as the inactivation rate λ is increased, but the number of mole-

cules reaching the nucleus is held fixed. By fixing the number of molecules (i.e. total signal)

that ultimately reach the nucleus, we can investigate how inactivation influences signal timing

Fig 3. Signal inactivation filters out molecules undergoing longer diffusive searches, reducing both the average ime and variance in the time at which a

molecule reaches nucleus, conditional on the molecule reaching the nucleus before inactivation. The figures show statistics of the conditional first passage

time, Tλ,h, to reach the nucleus when the diffusing molecule is started randomly on the cell membrane (i.e. uniformly distributed, see (5)), and the molecule can be

inactivated with rate λ. (a) The conditional mean first passage time (MFPT), hTλ,hi (12). In all cases we see that hTλ,hi is strictly decreasing as λ increases,

illustrating Corollary 1. Fig D of S1 Text shows an expanded range of λ values, with a logarithmic scale on the y-axis. (b) The conditional variance of Tλ,h, given by

(13), is decreasing as λ increases. (c) The probability that the diffusing molecule reaches the nucleus, Zλ,h, is strictly decreasing as λ increases, illustrating

Theorem 1.

https://doi.org/10.1371/journal.pcbi.1008356.g003
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without modulating the total signal strength. Note, to fix the total signal reaching the nucleus

requires that an increasing number of signaling molecules be released from the cell membrane

as λ increases.

Consider a deterministic version of (10). Assume N0 molecules are initially uniformly dis-

tributed across the interior of the cell membrane, and let uh(xi, t) denote the (deterministic)

concentration of molecules located at xi at time t. We assume uh has units of number per

(μm)3. uh then also satisfies (10), but with the initial condition

uhðxi; 0Þ ¼ N0ghðxiÞ; Vi 2 Ch;

so that uh(xi, t) = N0 pλ,h(xi, t). The number of molecules per time that successfully reach the

nucleus is given by the total flux of uh into the nucleus, N0 fλ,h(t). Similarly, the total number of

molecules to successfully reach the nucleus is

N ¼ N0

Z 1

0

fl;hðtÞ dt ¼ N0Zl;h:

We define the signal reaching the nucleus to be the number of molecules per time that

reach the nucleus, given that we assume N molecules overall arrive. N0 is therefore chosen so

as to keep N fixed as the inactivation rate is varied, so that

N0 ¼
N
Zl;h

:

With this choice, the signal, i.e. number of molecules per time, reaching the nuclear mem-

brane is then Nfl;hðtÞZ� 1
l;h.

In Fig 4 we plot the signal reaching the nucleus in Bcell1 as the inactivation rate is increased.

Fig H of S1 Text shows the corresponding signals reaching the nucleus in Bcell2 and Bcell3.

We see a clear sharpening effect as λ increases, with molecules arriving within an earlier and

more localized time window. In this context we can interpret increasing inactivation as speed-

ing up the arrival of the signal at the nuclear membrane. We note that in the single particle sto-

chastic model (10), fl;hðtÞZ� 1
l;h corresponds to the particle’s first passage time density to reach

the nucleus, conditional on it reaching the nucleus before inactivation. Fig 4 therefore illus-

trates that the (conditional) density of random arrival times for an individual particle also

undergoes sharpening as the strength of inactivation is increased (setting N = 1 on the y-axis).

While the deterministic model shows the window in which the molecules arrive becomes

smaller as inactivation increases, the single-particle stochastic model (10) allows us to see how

much variation one would have in the number of molecules that successfully reach the nucleus.

We again assume that N0 signaling molecules are activated uniformly on the interior of the cell

membrane, and that the molecules’ dynamics are completely independent. The number of mol-

ecules that reach the nucleus would then be a binomial random variable, N� B(N0, Zλ,h), in

N0 with parameter Zλ,h. The average number of molecules to reach the nucleus would be

E N½ � ¼ N0Zl;h, while the coefficient of variation in the number of molecules to reach the

nucleus is

CV N½ � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � Zl;h
N0Zl;h

s

�
1
ffiffiffiffiffiffiffiffiffiffi
E½N�

p ð14Þ

for λ large. Here we have used that the probability to reach the nucleus, Zλ,h approaches zero as

λ!1, see the next section, and approximated the square root in the numerator by the
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leading-order term of its Taylor series expansion about Zλ,h = 0. Keeping N0Zλ,h fixed as the

inactivation rate is increased then preserves the expected number of molecules to reach the

nucleus. Moreover, (14) demonstrates that the relative variation in the number of molecules

that reach the nucleus will be small if the average number of molecules that reach the nucleus,

E N½ �, is sufficiently large. By modulating both the inactivation rate and the number of signal-

ing molecules released at the cell membrane, a cell can then tune both how localized the signal

is in time, and the noisiness in the number of molecules that successfully reach the nuclear

membrane.

Fig 4. The signal in Bcell1 that successfully reaches the nuclear membrane is sharpened as the inactivation rate, λ, is increased. Here signal denotes the

expected rate of arrival of signaling molecules at the nuclear membrane when the number of arriving molecules overall is N. The expected rate of arrival is

plotted as a function of the time that has elapsed since the signaling molecules were released uniformly distributed across the interior of the cell membrane.

Note that the total number of arriving molecules is being held constant in the results plotted here, and this requires that more signaling molecules be released

when λ is greater. This is achieved by choosing the total number of molecules that are released initially as N0 ¼ NZ� 1
l;h. As explained above, in a deterministic

model with this initial condition, the signal corresponds to the flux (number of molecules per time) successfully reaching the nucleus (given by Nfl;hðtÞZ� 1
l;h).

For the single-particle stochastic model (10), we can alternatively define the signal to be fl;hðtÞZ� 1
l;h. This corresponds to the single particle’s first passage time

density to reach the nucleus, conditional on the molecule arriving before inactivation. The graph of this function is mathematically equivalent to the preceding

figure with the units N = 1 on the y-axis. A similar signal sharpening effect is observed in Bcell2 and Bcell3, see Fig H of S1 Text.

https://doi.org/10.1371/journal.pcbi.1008356.g004
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Inactivation can provide robustness with respect to cellular substructure in

the time for a signal to reach the nucleus

In Fig 5a we plot the ratio of hTλ,hi in the physiological case to the no organelles case. For very

small values of the inactivation rate the figure demonstrates that the presence of organelles can

significantly increase the time required for one diffusing molecule to reach the nucleus. In con-

trast, as λ increases, for each B cell we see that the ratio decreases to a value close to one. That

is, strong signal inactivation seems to be able to buffer out the effect of cellular geometry. This

comes at the cost of a significantly decreased probability any individual signaling molecule will

reach the nucleus.

These simulations illustrate that the ratio of the MFPTs between the physiological and no

organelle cases is decreased for sufficiently strong signal inactivation. To understand the limit

to how much strong signal inactivation can buffer out the effect of organelle barriers in our

model, we now examine the large λ asymptotic expansion of the conditional MFPT, hTλ,hi.

Our goal is to derive an explicit formula for the asymptotic limit of hTλ,hi as λ!1 that illus-

trates the role of the geometry of the cytosolic space. Our derivation demonstrates how the

effect of geometry on the limiting conditional MFPT arises. Readers interested solely in the

derived formula may skip ahead to (17).

By (12), knowing the asymptotic behavior of Zλ,h as λ!1 would allow us to calculate the

behavior of hTλ,hi. In turn, the behavior of Zλ,h can be calculated from the integral representa-

tion (11). This will be determined by the short-time behavior of fh(t) due to the rapid decay of

the exponential for large λ. We therefore begin by examining the behavior of fh as t! 0. We

can estimate this short-time behavior by direct Taylor series expansion using a matrix

Fig 5. Strong signal inactivation can buffer out the effects of cellular substructure on the time to find the nucleus. (a) The ratio of the conditional mean first

passage time (MFPT) to reach the nucleus, hTλ,hi, in the physiological case to the conditional MFPT in the no organelles case decreases significantly from its initial

value as λ increases. For each cell the ratio approaches a number close to one, indicating that strong signal inactivation can completely buffer out the effect of cellular

substructure on the time to find the nucleus. (b) Difference of the ratio of hTλ,hi shown in (a) from its asymptotic limit (18). Note, (b) demonstrates that the slight

increase above one for the ratio (18) in Bcell1 is just the approach to its asymptotic limit, 1.125. The ratios (18) for Bcell2 and Bcell3 both converge to 1 in (a).

https://doi.org/10.1371/journal.pcbi.1008356.g005
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exponential representation for the evolution operator, i.e.

fhðtÞ ¼ �
dSh
dt
¼ �

X

Vi2Ch

dph
dt
ðxi; tÞh

3

¼ � Dh3
X

Vi2Ch

ðDhe
DDhtghÞðxi; tÞ

¼ � h3
X

Vi2Ch

X1

n¼0

ðDDhÞ
nþ1tn

n!
gh

� �

ðxiÞ

¼ � h3
X1

n¼0

X

Vi2Ch

Dnþ1tn

n!
ðDhÞ

nþ1gh
� �

ðxiÞ:

ð15Þ

To simplify this expression we make use of the relationship between powers of the discrete

Laplacian and geodesic (nearest-neighbor) graph distances.

Recall our assumption that gh(xi) = 0 for all xi =2 @Ch, and denote by Gh � @Ch the set of vox-

els in which gh(xi) 6¼ 0 (i.e. the support of gh). If the particle is started randomly placed within

the voxels bordering the cell membrane then Gh ¼ @Ch, whereas if the particle is initially

started at a fixed point, xi, then Gh ¼ fxig. Given a set of voxels V � Ch, we define dðV;NhÞ to

be the shortest (integer) graph distance along a nearest-neighbor path from each voxel in V to

first reach a voxel in Nh. Here by nearest-neighbor we mean the six nearest-neighbors to a

given voxel, two from each of the x, y and z directions. For example, if no voxel in V is within

Nh, but some voxel in V has a nearest neighbor that is within Nh, then dðV;NhÞ ¼ 1.

It is from the powers of the discrete Laplacian in (15) that the role of cytosolic geometry in

the short-time behavior of fh(t) arises, ultimately dictating the large λ behavior of hTλ,hi. As

shown in Lemma 1 of S1 Text, the {Vi 2 Ch|(Δh)k gh(xi) 6¼ 0} will contain no voxels bordering
the nucleus until k ¼ dðGh;NhÞ � 1. For any smaller k, one additional application of the dis-

crete Laplacian then simply moves probability mass within the cytosol. As such, mass is con-

served and we have the following result which is proven in Section SI1 of S1 Text

Theorem 2

X

Vi2Ch

ððDhÞ
kghÞðxiÞ ¼ 0

for 1 � k � dðGh;NhÞ � 1.

With dg ¼ dðGh;NhÞ, the theorem implies that (15) can be simplified to

fhðtÞ ¼ � h3
X1

n¼dg � 1

X

Vi2Ch

Dnþ1tn

n!
ðDhÞ

nþ1gh
� �

ðxiÞ

� � h3
Ddg tdg � 1

ðdg � 1Þ!

X

Vi2Ch

ðDhÞ
dg gh

� �
ðxiÞ; as t ! 0:

Assuming that dg> 1, we obtain the corresponding estimate for Zλ,h as λ!1 by

Zl;h ¼
Z 1

0

e� lt fhðtÞ dt ¼
1

l

Z 1

0

e� sfhðsl
� 1
Þ ds

� � h3
Ddg

l
dg

X

Vi2Ch

ðDhÞ
dg gh

� �
ðxiÞ; as l!1:

ð16Þ
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In Theorem 3 of S1 Text we prove this asymptotic formula holds. Taking logarithmic deriv-

atives, we find that

hTl;hi ¼ �
d
dl

log ðZl;hÞ �
dðGh;NhÞ

l
; as l!1: ð17Þ

In Fig D of S1 Text we show the convergence of hTλ,hi to this asymptotic formula as λ!1.

Let dðGh;NhÞphys
denote the distance from Gh to the nucleus in the physiological case, with

dðGh;NhÞn:o: the distance in the no organelle case. Define hTλ,hiphys and hTλ,hin.o. analogously.

The ratio of the conditional MFPTs then approaches

hTl;hiphys

hTl;hin:o:
�

dðGh;NhÞphys

dðGh;NhÞn:o:
; as l!1: ð18Þ

That is, how much the effect of geometry on the search time can be buffered out by strong

inactivation in our model is essentially controlled by how the shortest path (nearest-neighbor)

graph distance from the initial set the particle can be placed in to the nucleus changes between

the physiological and no organelle cases. In particular, since the voxels within the cytosol in

the physiological case are always a strict subset of those in the no organelles case, we see the

ratio is always at least one (in the limit).

In Fig 5b we plot the difference between the ratio of the conditional MFPTs and the derived

asymptotic limit in (18). We see that for each cell the asymptotic limit is approached as λ!
1, but that the approach is not always monotonic. In particular, the asymptotic limit (18)

does not appear to be a rigorous lower bound for how much the effect of geometry can be buff-

ered out over all possible inactivation rates.

If the diffusing molecule is started at a fixed location, xi, we obtain

hTl;hiphys

hTl;hin:o:
�

dðxi;NhÞphys

dðxi;NhÞn:o:
; as l!1;

the ratio of the shortest graph (nearest-neighbor) distances from xi to the nucleus in the two

cases. In particular, if the shortest path distance from xi to the nucleus is the same in both

cases, we find that the effect of organelle barriers on the conditional MFPT is completely fil-

tered out in the limit of strong signal inactivation.

In Section SI2 of S1 Text, we show analogous results to Fig 5 when the diffusing molecule is

started randomly within small patches of the cell membrane. We see similar qualitative behav-

ior for statistics of Tλ,h, and for the ratio of hTλ,hi in the physiological to no organelles cases.

Note, however, that we observe a variation in how much the effect of geometry can be buffered

out as the patch of cell membrane where the signal is initiated moves about.

Discussion

Our results demonstrate that organelle barriers to the molecular diffusion of signaling mole-

cules can significantly slow the propagation of a signal from the cell membrane to the nucleus.

Such barriers also increase the variability in the distribution of times to reach the nucleus for

signals activated at different localized portions of the cell membrane. Strong signal inactivation

provides one potential mechanism to both buffer out the effect of organelle barriers, and to

reduce variability in the time at which signals reach the nucleus. Mechanisms to reduce such

variability may be needed to ensure robust functioning of pathways that involve pulsatile

responses. For example, the relative expression of the pituitary hormones LH and FSH is
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controlled by the pulse frequency of extracellular GnRH ligands [21]. Sufficient variability in

processing such signals might lead to improper expression levels through misidentification of

the pulse frequency.

Under the constraint that the expected number of molecules to reach the nucleus should be

fixed at N, the inactivation rate can be adjusted provided that the initial number of molecules

activated at the inner surface of the cell membrane are varied in a compensating manner.

Under these assumptions, Fig 4 demonstrates that the time for a signal to reach the nuclear

membrane can be made arbitrarily small by increasing the inactivation rate. This comes with a

clear cost though; increasing the rate of signal inactivation requires increasing numbers of sig-

naling molecules to be activated at the cell membrane to maintain a fixed number of molecules

that successfully reach the nucleus.

Our conclusions can be generalized in several ways. First, while we focused on the propaga-

tion of a signal between the cell and nuclear membranes, our results should hold more gener-

ally for a variety of signal sources and targets within cells. In more general signaling pathways

they should also apply to the most downstream signaling component, presuming it is not acti-

vated right near the nuclear membrane. Finally, we note that while signaling pathways can

involve complicated reaction kinetics throughout the cytosol, it may be that in some cases

their overall effect can be approximated as a single signal that propagates throughout the cyto-

sol and is inactivated on some timescale.

Regime of Model Applicability: It is important to note that the large λ asymptotic scaling

in (17), and convergence to the ratio (18), may require relatively large values of λ (on the order

of λ between 104 s−1 and 106 s−1 for D = 10(μm)2s−1, see Fig 5b and Fig D of S1 Text). Mole-

cules that successfully reach the nucleus would on average arrive on time scales of 10−4s−1 or

less, see Fig D of S1 Text, which would not necessarily be expected to be physically plausible in

a typical mammalian cell. More generally, as λ!1 these results rely on the (increasingly)

short-time behavior of the continuous-time random walk model (10). However, both the con-

tinuous diffusion model (7) and the continuous time random walk model (10) become physi-

cally unrealistic as models for the very short-time motion of a molecule within a cell.

Moreover, the very short-time behavior of the semi-discrete model (10) and the continuous

diffusion model (7) would not be expected to agree, since the former only approximates the

latter on sufficiently large timescales.

The relative behavior of the two models is illustrated in Fig I and Section SI3 of S1 Text.

There we compare the analytical PDE solution, when the nuclear membrane and cell mem-

brane are represented as concentric spheres, to the numerical solution of the corresponding

semi-discrete model on a Cartesian grid approximation of the cytosolic region between the

spheres. We find that for a mesh spacing of h = 0.0351μm, comparable to that of our B cell

reconstructions, hTλi and hTλ,hi agree exceptionally well until the asymptotic λ−1 scaling takes

over in the semi-discrete model. Then we see a discrepancy due to the different short-time

behavior of the semi-discrete model, with the λ−1 scaling, and the exact solution to the contin-

uous diffusion PDE, which exhibits a λ−1/2 scaling, see (SI5) in S1 Text.

For these reasons the usefulness of understanding the large λ asymptotic behavior is not in

the predicted scaling of hTλ,hi (17), but in the decreasing asymptotic behavior of the condi-

tional MFPT ratio (18). This asymptotic limit provides insight into why, on physiological time-

scales, we observe a decrease in the effect of organelle barriers on signal propagation. Namely,

signal inactivation filters out the molecules that would have had to traverse longer paths to get

to the nucleus. This reduces differences between the lengths of paths which molecules that

reach the nucleus must take in the organelle filled, and organelle empty, cell.

Conjectures and Open Problems: For the continuous diffusion model (7), let G denote the

set on which g(x) 6¼ 0 (i.e. the support of g(x)). For example, if the particle is started uniformly
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on the inner surface of the cell membrane than G ¼ @C. We conjecture that the corresponding

ratio of conditional MFPTs satisfies

hTliphys

hTlin:o:
�

dðG; @NÞphys
dðG; @NÞn:o:

; as l!1;

where dðG; @NÞ refers to the shortest path geodesic distance through the cytosol from the sig-

nal initiation location, G, to the nuclear membrane @N. We have obtained partial results to this

effect when there are straight line paths from G to @N and the principal curvatures of the

nuclear membrane satisfy certain constraints, but the general case remains an open problem.

The geodesic distance has recently been suggested to also arise in the context of the first

searcher problem. Here one is interested in the average time at which the first of N searchers

reaches a target as the number of searchers, N, becomes large (i.e. N!1). In [22] it was sug-

gested that, similar to our observations for strong signal inactivation, this limit also filters out

all but the shortest paths, with the average time for the first searcher to reach a target scaling

like the square of the geodesic distance. An interesting future question would be to understand

the interplay of these two problems; i.e. the time required for the first of many searchers to suc-

cessfully reach a binding target in the presence of strong signal inactivation.

Finally, we note that it is an open question to understand whether spatial signaling path-

ways [3, 23, 24] involve more general mechanisms for filtering out the effect of spatial hetero-

geneity within the cytosolic environment. It would be particularly interesting to investigate

such questions while also studying the role of two effects that we have not explicitly resolved;

crowding between molecules within the cytosol and active transport of signaling molecules to

the nuclear membrane. In addition, in this work we considered only the simplest of signaling

components: linear inactivation. For many signaling pathways, including BCR signaling in B

cells and general protein kinase signaling, inactivation is more appropriately modeled as

occurring through a nonlinear interaction with a phosphatase [4, 5]. Such pathways also com-

monly involve cascades of interactions [3], which could conceivably have additional mecha-

nisms that buffer out the influence of cellular substructure on signal timing. We hope to

explore such models in future work.

Cell signaling and computational modeling are an enormous field with a breadth of studies,

both spatial and non-spatial, that have been carried out, see the many references of [25, 26].

Within the field a variety of studies have investigated the spatial dynamics of cell signaling,

which can be critical to the proper function and decision making of cells, see the review [23]

and references. In particular, one focus within these works is understanding how cell shape

and organelle positioning can influence signaling [1, 4], the former reviewed in [27]. Our work

complements such studies, demonstrating how internal organelle barriers can impact signal-

ing, and provides insight into mechanisms that regulate the timing of signal propagation. It

represents another step in developing detailed, anatomically accurate whole-cell spatial models

that can account for the inherent stochasticity in both spatial transport and chemical reactions

[28].

Methods

Reconstruction of cellular substructure

To reconstruct the locations of organelles and membrane surfaces, we made use of soft X-ray

tomographic (SXT) imaging of cells. For an overview of SXT imaging, we refer the reader to

[11]. In this work we used reconstructions of three human B cells (GM12878 lymphoblastoids)

from [29]. The experimental protocol for obtaining these reconstructions was also described

in [29]. SXT is similar in concept to medical X-ray CT imaging, but uses soft X-rays in the
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“water window,” which are absorbed by carbon and nitrogen dense organic matter an order of

magnitude more strongly than by water [11]. As the absorption process satisfies the Beer—

Lambert law, the measured linear absorption coefficient (LAC) of one voxel of a 3D recon-

struction is linearly related to the density of organic material within that voxel [11]. In practice,

SXT reconstructions are able to achieve resolutions of 50 nm or less. For all reconstructions

used in this work, the underlying voxels were cubes with sides of length 0.03515625μm.

Another advantage of SXT is in the minimal preprocessing of cells that is required before

imaging. Cells are cryogenically preserved, but no segmentation, dehydration, or chemical fix-

ation is necessary. Fig 1a shows the reconstructed LAC values from one image plane within a

3D SXT reconstruction of Bcell1.

As discussed in [30], many organelles have different underlying densities of organic mate-

rial, and therefore attenuate soft X-rays differently. This is reflected in their having different

LAC values. Exploiting this property, 3D SXT reconstructions were labeled and segmented in

Amira [31], using a combination of Amira’s automated segmentation tools based on LAC val-

ues, followed by hand segmentation to refine segmentation boundaries [30]. Each underlying

voxel within the 3D SXT reconstruction was labeled as belonging to one of a variety of organ-

elles (heterochromatin, euchromatin, endoplasmic reticulum, mitochondria, Golgi apparatus,

bulk cytosol, etc.). Fig 1c shows one plane of the resulting label field.

Numerical solution of semi-discrete diffusion eq (3)

The semi-discrete diffusion eq (3) was solved in PETSc 3.7.7 [32, 33] using the adaptive

Runge-Kutta Chebyshev (RKC) method of [34] with both the absolute and relative errors set

to 10−8. To evaluate the solution, ph(x, t), at larger times, it was approximated by a truncated

eigenvector expansion using all terms with eigenvalues having a magnitude less than one. The

corresponding eigenvalues and eigenvectors of the discrete Laplacian (4) were calculated in

SLEPc 3.7.4 [35] using the Krylov-Schur solver with default parameter values and tolerances.

For all simulations the decision to switch from the RKC solver to the eigenvector expansion

was made by looking over the interval 1< t< 10 for where the two solutions first differed by

an absolute error of less than 10−5 and a relative error of less than .01.

To numerically evaluate the integrals defining statistics such as Zλ,h and hTλ,hi, we split

them into two pieces. The integral from zero to the time at which the PDE solver switched

from the RKC method to the truncated eigenvector expansion, and the integral from this time

to infinity. The first integral was evaluated using the cumulative trapezoidal rule at the discreti-

zation times used in the RKC method. The second integral was evaluated by analytically inte-

grating the truncated eigenvector expansion. Within these integrals the probability density

function for the molecule to reach the nucleus was calculated directly from the flux into voxels

of the nucleus,

fhðtÞ ¼
D
h2

XM

i¼1

X

j2N ðVi ;NhÞ

phðxi; tÞ;

using the numerically computed solutions.

Supporting information

S1 Text. Supporting information for “Strong intracellular signal inactivation produces

sharper and more robust signaling from cell membrane to nucleus”.

(PDF)
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