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Most complex human traits differ by sex, but we have limited insight

into the underlying mechanisms. Here, we investigated the influence of
biological sex on protein expression and its genetic regulationin 1,277
human brain proteomes. We found that 13.2% (1,354) of brain proteins had
sex-differentiated abundance and 1.5% (150) of proteins had sex-biased
protein quantitative trait loci (sb-pQTLs). Among genes with sex-biased
expression, we found 67% concordance between sex-differentiated protein
and transcript levels; however, sex effects on the genetic regulation

of expression were more evident at the protein level. Considering 24
psychiatric, neurologic and brain morphologic traits, we found that an
average of 25% of their putatively causal genes had sex-differentiated protein
abundance and 12 putatively causal proteins had sb-pQTLs. Furthermore,
integrating sex-specific pQTLs with sex-stratified genome-wide association
studies of six psychiatric and neurologic conditions, we uncovered

another 23 proteins contributing to these traits in one sex but not the
other. Together, these findings begin to provide insights into mechanisms
underlying sex differences in brain protein expression and disease.

Differences between females and males abound among human traits
and disease. For instance, the prevalence of common psychiatric and
neurologic conditions such as major depressive disorder’, schizo-
phrenia?, Parkinson’s disease’ and Alzheimer’s disease (AD)* differ by
sex. Even what constitutes disease risk may differ by sex. For instance,
females have significantly higher risk for myocardial infarction at
lower systolic blood pressure than males’. Recent genetic studies have
also found genetic risks differ by sex for psychiatric and neurologic

conditions®’. Underlying reasons complex traits differ by sex may stem
from many factors, including physiologic, genetic and environmental®,

Differences in gene expression by sex have been observed in
human brain across the major developmental stages (prenatal, early
childhood, puberty and adulthood)’ and in splicing'’. Reasons for
sex-biased gene expression for some autosomal genes may be related
to the presence of androgen or estrogen hormone response ele-
ments". Sex-biased gene expression likely contributes to differences
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Fig.1|Summary of main analyses. We investigated sex differences in protein
expression and its genetic regulation using brain proteomic and genetic data.
Next, we compared effects of sex on gene expression and its genetic regulation
atboth the mRNA and protein levels using genetic and brain transcriptomic
and proteomic data. Subsequently, we examined the intersection between

psychiatric and neurologic causal genes and genes with sex-biased protein
expression or sb-pQTLs. Finally, we integrated sex-stratified GWAS with pQTLs to
identify sex-specific causal genes in psychiatric and neurologic disorders. TMT,
tandem mass tag.

in prevalence or manifestation of psychiatric and neurologic condi-
tions ", Previous studies of sex-biased genetic regulation of gene
expression have focused ontranscriptsin up to150 post-mortem brain
tissues'>"®. These studies relied on hard-to-obtain post-mortem brain
tissues, making large-scale studies challenging. Thus, while these stud-
ies provided valuable insights, larger studies and ones that examine
bothtranscriptand proteinexpression are needed. No study, however,
has examined sex differencesinbrain protein expression, to our knowl-
edge. Directly testing the effect of sex on protein expressionisimpor-
tant because of the low correlation between messenger RNA (mRNA)
and protein levels’® %, possibly due to layers of post-transcriptional
regulation that are also likely influenced by sex.

Toaddress these knowledge gaps, we investigated the influence of
biological sex on protein abundance and its genetic regulation using
1,277 human brain proteomes (Fig. 1). Next, we compared effects of
sex on gene expression and its genetic regulation at the transcript and
protein levels using data from 621 human brain transcriptomes whose
donors were a subset of the donors of the brain proteomes. Finally,
we investigated connections between sex-differentiated brain pro-
tein abundance and a range of psychiatric and neurologic conditions
(Fig. 1). Collectively, these results shed light on the effects of sex on
gene expression at both the transcript and protein levels and identify
new molecular mechanisms underlying the role of sexin brain disease.

Results

Sex differences in brain protein abundance

Deep brain proteomes from 1,277 donors of European ancestry were
generated from six brain regions with 62% (793 of 1,277) from the

dorsolateral prefrontal cortex (dPFC; Supplementary Table 1). Sex
wasinferred from X-chromosome genotyping and was consistent with
self-reported sex for all donors. After quality control, 10,198 proteins
were considered, of which 371 (or 3.6%) were encoded by genes onthe
X chromosome. Before testing for sex-biased expression, the effects
of protein sequencing batch, post-mortem interval, donor age and
clinical diagnosis were estimated and removed using linear regres-
sion, and surrogate variable analysis (SVA) was used to infer hidden
technical or biological factors that may influence brain protein levels,
including cell-type composition. To identify genes with sex-biased
expression, wefitalinear regression model with protein expression as
the outcome, sex astheindependent variable and surrogate variables
(SVs) as covariates in each brain region separately.

Among10,198 measured proteins, 1,239 differed by sexin the dPFC
atthefalsediscoveryrate (FDR) <0.05and, of these, 4.8% were encoded
by genes on the X chromosome (Supplementary Table 2). Among the
1,239 proteins, 51% had higher expressionin females and 49% had higher
expression in males (Supplementary Table 2). As expected, the sex
chromosomes had the highest proportions of genes with sex-biased
expression, whereas the autosomes had roughly similar proportions
(Extended Data Fig. 1). Since different brain regions may have dif-
ferent cell-type composition and biological functions, we tested for
sex-biased expression in five additional regions: parahippocampal
gyrus, temporal cortex, premotor, precuneus and middle frontal gyrus
(Supplementary Table 2). Within each region, about half of the proteins
had higher abundance in males, while the other halfhad higher abun-
danceinfemalesat FDR < 0.05 (Supplementary Tables 2 and 3), which
was consistent with findings from the dPFC.
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Toidentify proteins with sex-biased protein expression across mul-
tiple brain regions, we used multivariate adaptive shrinkage (MASH)*
to perform a meta-analysis for each protein across all measured brain
regions and estimated a local false sign rate (LFSR) for each protein.
LFSR is analogous to the FDR but more stringent?. Sex-biased gene
expression was observed in each of the six brain regions examined
(Supplementary Tables 2,3). We found 13.2% (1,354 0f10,198) proteins
with sex-biased proteinexpressioninatleast one brain region at MASH
LFSR < 0.05 and, among those, 4.7% were encoded by genes on the X
chromosome (Supplementary Tables 2 and 3).

Sex differences in genetic control of brain protein abundance

We nextinvestigated whether thereis adifferenceinthe genetic regula-
tion of protein abundance between females and males by performing
sex-biased protein quantitative trait locus (sb-pQTL) analysis in the
dPFC, whichis the brain region with the largest sample size with both
genetic and proteomic data (n = 716). We examined proteins encoded
by genes on the autosomes and the X chromosome. For the latter, we
coded thenumber of minor allelesas 0,1or 2 for females and O or 2 for
males who are hemizygous for the X chromosome. To identify proteins
with sb-pQTL, we performed a two-stage analysis (Fig. 2a). The first
stage comprehensively identified pQTLs and the second stage tested
significant pQTLs for interaction with sex. To comprehensively identify
pQTLs, we performed a pQTL analysis jointly in males and females, and
ineachsex separately. For each pQTL analysis, we adjusted for SVs and
genetic principal components, and sex in the joint analysis. pQTLs
were defined as single nucleotide polymorphisms (SNPs) that have
anassociation with proteins at FDR < 0.05. Inthe second stage, pQTLs
were tested for genotype-by-sexinteraction, adjusting for the SVs and
genetic principal components. sb-pQTLs were defined as pQTLs that
have asignificant genotype-by-sexinteraction at FDR < 0.05 (Fig. 2a).

There were 1,036,025 pQTLs identified in the first stage and 1,171
sb-pQTLsidentified in the second stage for 150 unique proteins. Link-
age disequilibrium clumping of the 1,171 sb-pQTLs yielded 166 index
sb-pQTLs (at * < 0.5) or 154 independent sb-pQTLs (at < 0.1), both
of which corresponded to 150 unique proteins. For the 166 index
sb-pQTLs, 48% had a positive beta coefficient and 52% had a negative
beta coefficient for the genotype-by-sex interaction term (Supple-
mentary Table 4). The quantile-quantile plot for the P values of the
genotype-by-sexinteraction termin the regression modeling for all the
autosomes (Extended Data Fig.2a) and the X chromosome (Extended
DataFig. 2b) showed no evidence of inflation. Of the index sb-pQTLs,
5.4%were pQTLsinboth sexes with concordantdirection of association,
2.4%were pQTLsinboth sexes with discordant direction of association,
51.2% were pQTLs in males only and 37.9% were pQTLs in females only
(Supplementary Tables 4-6). These sb-pQTLs were enriched for inter-
genic (odds ratio (OR) =1.73; P=4.2 x 10~) and exonic SNPs (OR =2.1;
P=0.01)and depleted for intronic SNPs (OR = 0.6; P=2.2 x 107%; Fig. 2b).
Among the 150 proteins with sb-pQTLs, nine were encoded by genes
onthe X chromosome and none were in the pseudo-autosomal region
of the X chromosome (Supplementary Table 7).

We found that 17% of the proteins with sb-pQTLs (25 of 150) also
had sex-differentiated protein abundance (Supplementary Table 8).
Our findings at the protein level are comparable with published find-
ings at the transcript level, in which 14% of the sex-biased expression
quantitativetraitlocus (sb-eQTL) transcripts also had sex-biased mRNA
expression'.,

To determine the internal replication rate (rr;) for sb-pQTLs, we
used the Religious Orders Study (ROS)/Rush Memory and Aging Pro-
ject (MAP) dataset as the discovery sample (n=565) and the Banner
dataset (n=151) as the replication sample. The m; replication statistic
estimates the rate of sb-pQTLsidentified in the discovery dataset that
aresb-pQTLsinthereplication dataset. Theinternal replicationrate for
sb-pQTLs was 0.52, which implies that 52% of the sb-pQTLs identified
inthe discovery sample were also sb-pQTLsinthe replication sample.

a
Joint pQTL analysis ‘ ’ Sex-stratified pQTL analysis
FDR < 0.05 FDR < 0.05 FDR < 0.05
pQTLs pPQTLs pQTLs
in both sexes in females in males
Genotype-by-sex interaction analysis
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Fig.2|Sex-biased pQTLs. a, Operational definition of sb-pQTLs: an SNP needs to
meet both of the following two criteria to be declared asb-pQTL. First, itisa pQTL
in males or females or both at FDR < 0.05. Second, it has a significant genotype-
by-sex interactionin protein expression at FDR < 0.05. We identified 166 index sb-
pQTLs corresponding to 150 unique proteins in human brain. b, Genomic site-type
enrichment of 166 index sb-pQTLs. Data are presented as OR + 95% confidence
interval. Fisher’s exact test was used to calculate the ORs. Error bars reflect a 95%
confidenceinterval. ncRNA, non-coding RNA; UTR, untranslated region.

For context, in the largest sb-eQTL study to date, the most sb-eQTLs
were identified in breast tissue and the internal replication rate for
sb-eQTLsin breast tissue was 0.28 (ref. 12).

To test whether environmental factors could explain the modify-
ing effect of sex on genetic regulation of protein expression for the
identified 150 proteins with sb-pQTLs, we examined the environmental
factors presentinour dataset, includinglifetime alcohol use, smoking,
comorbid medical conditions and education. We found a significant
difference between males and females for education, alcohol use and
smokingbut not for comorbid medical conditions. Next, we determined
whether there was asignificant SNP-by-environment termin the regres-
sionmodel ‘protein - SNP +environment + SNP x environment + SVs + 10
principal components’ for the environment factor of education, alcohol
useand smoking, respectively. We used the P-value threshold of 5.6 x 107
since it was the P-value threshold for FDR < 0.05 for the sb-pQTL analysis.
We found the SNP-by-environment term to be significantin one SNP for
education and five SNPs for lifetime alcohol use among the 166 index
sb-pQTLs. Then we tested whether the genetic interaction with sex
remained significant when considering a sex-by-environment term for
these six SNPs using the regression model‘protein ~ SNP + sex +environ-
ment + SNP x sex + SNP x environment + SVs + 10 principal components’.
Among these six SNPs, four continued to have a significant SNP x sex
term (education and alcohol use) and two no longer had a significant
SNP x sex term (alcohol use; Supplementary Table 9). Thus, among
the 166 index sb-pQTLs, only two may be potentially affected by the
difference in lifetime alcohol use between males and females, lending
confidenceto the sb-pQTL findings.

Sex-biased expression at both the mRNA and protein levels
We next examined genes with sex-differentiated expression in
humanbrain at both the mRNA and protein levels. First, we identified
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Fig. 3| Causal genes in psychiatric, neurologic and brain morphologic traits
with sex-biased protein abundance. a, Percentage of causal genes with sex-
biased protein abundance among the identified causal genes for each brain trait.

b, Causal genes with sex-biased expression at both the mRNA and protein levels
in concordant directions (n = 28). Full results are in Supplementary Table 17.
PTSD, post-traumatic stress disorder.

sex-differentiated mRNA expression using transcriptomic profiles from
the dPFC of 621 donors of European ancestry (Supplementary Table 1).
After quality control and normalization, 15,582 mRNAs were included
in the analysis and 500 (3.2%) mRNAs were encoded by genes on the
X chromosome. Before testing for sex-biased expression, the effects
of batch, RNA quality, post-mortem interval, donor age and clinical
diagnosis were estimated and removed using linear regression, and
SVA was used to infer hidden technical and biological variables. To
estimate the effect of sex on brain mRNA expression, we fit a linear
regression model with mRNA levels as the outcome, sex as the inde-
pendent variable and SVs as covariates. We found that 4,279 (27.5%)
mRNAs had different expression levels between males and females at
FDR < 0.05 and, among these, 226 mRNAs (or 5.3%) were encoded by
genes located on the X chromosome (Supplementary Table 10).
Interestingly, there were 498 (5.5%) genes with sex-differentiated
expression at both the mRNA and protein levels among the 9,080
genes measured in both the transcriptomic and proteomic profiles

(Supplementary Table 11). Among these 498 genes, 76.1% had con-
cordant sex-biased expression for mRNA and protein. The replication
rate (m;) of sex-biased expression between proteins and mRNAs was
0.67. Genes with discordant sex-biased expression between mRNA
and protein were enriched for proteins involved in axonal growth
cone (adjusted P=0.013). Genes with concordant sex-biased expres-
sion between mRNA and protein were enriched for proteins involved
in cellular morphology, cell adhesion, actin filament organization,
initiation of translation and branched-chain amino acid degradation
(Supplementary Table 12).

Comparing sex-biased genetic regulation of mRNAs versus
proteins

Tounderstand the shared and distinct sex effects on genetic regulation
of brain proteins and mRNAs, we compared sb-pQTLs with sb-eQTLs.
First, weidentified sb-eQTLs using the same two-stage approach as was
used to identify sb-pQTLs (Fig. 2) in 589 donors of European ancestry
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Fig. 4| Sex-specific causal genes and proteins. a, Causal genes with sb-pQTLs
(n=12). Amongthese, three also had sex-biased protein expression: CNTN2,
ERLECI and GIGYF2 (inbold). Detailed results are in Supplementary Table 18.

b, Causal proteinsin females only (n = 11). Among these 11 proteins, three

also had sex-biased protein expression: DOC2A, ITIH3 and DLST (in bold).
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¢, Causal proteins in males only (n =12). Of these 12, two also had sex-biased
protein expression: CADM2 and ZZEF1 (in bold). Cross-disorder refers to major
depression, bipolar disorder and schizophrenia. Asterisks indicate significant P
values in the sex-specific PWAS. Detailed results are in Supplementary Table 20.

with genetic and transcriptomic data from the dPFC (Supplementary
Table1). We observed no sb-eQTLs at FDR < 0.05 or FDR < 0.1. Relaxing
thethresholdto FDR < 0.2, there were 2,336 suggestiveindex sb-eQTLs,
which corresponded to1,834 unique mRNAs (Supplementary Table 13).
Surprisingly, using the threshold of FDR P < 0.2 to define sb-QTLs, the
replication rate m; between sb-pQTLs and sb-eQTLs was O despite an
internal sb-pQTL replication rate of 0.53.

We performed severalinternal and external checks of our sb-eQTL
findings. First, our sb-eQTL findings arein line with those from a prior
study that detected sb-eQTLs in brain only at FDR<0.25but not ata
lower FDR threshold™. Second, we found the m; replicationrate between
oureQTLsandalarge published eQTL study* tobe 0.96, lending con-
fidence in our QTL analysis. Third, we investigated whether higher
interindividual variations in mRNA levels or sample sizes (n =716 for
sb-pQTL and n =589 for sb-eQTL analysis) may partially drive the differ-
enceinsb-eQTLsand sb-pQTLs. To that end, we examined the number

of pQTLs, eQTLs, sb-pQTLs and sb-eQTLs in two scenarios: (1) among
allgenes profiled in the proteomes and transcriptomes, respectively;
and (2) only among genes profiled in both the transcriptomes and
proteomes (n = 8,009 genes). Interestingly, we found more eQTLs than
pQTLsinbothscenarios andinboth sexestogetherorineither sexalone
atFDR < 0.05 (Supplementary Table 14). Focusing on sb-QTLs, we found
comparable numbers of sb-eQTLs and sb-pQTLsat FDRP < 0.2inboth
scenarios; however, there were more sb-pQTLs than sb-eQTLs at more
stringent FDR thresholds for defining sb-QTLs (Supplementary Table
15). Together, these findings suggest that the interindividual variations
in mRNA levels and sample size did not explain the difference in the
number of sb-eQTL and sb-pQTLs.

Putative causal genes with sex-biased protein expression
We asked whether any of the genes with sex-biased expression identi-
fied here are also causal genes in 24 psychiatric, neurologic and brain
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Table 1| Proteins consistent with a causal role in females only identified by PWAS and colocalization analyses using

sex-stratified proteomic data and GWAS results (n=11)

PWAS and COLOC results in females PWAS results in Published GWAS results
males
Protein Trait PWASZ PWASp PWASFDRp COLOC PWASZ PWASp BestGWAS SNPxsex suggestive sex-bias
PP4 SNP interactionp (interaction
p <0.05)

CSRP2 Cross-disorder 41 51X10° 1.8 X 1072 0.92 rs7302529 1.6 X107 yes

DOC2A Cross-disorder -37 1.8 X 10 4.0 X102 0.97 -1.9 0.06 1511150576 21 X102 yes

ITIH3 Cross-disorder -3.8 1.6 X107 4,0 X107 0.77 rs2256332 2.3 X107

PDXDC1 Cross-disorder -4.2 27 X107 1.6 X 1072 0.98 -1.9 0.05 rs3751877 2.3 X107 yes
ARHGAP21  Neuroticism -3.7 1.8 X10™ 2.4 X107 0.96 01 0.92 rs2152432 8.6 X107 yes
CNNM2 Neuroticism =51 3.8 X107 2.3 X10™* 0.97 -1.5 012 rs732998 1.0 X 107 yes

DLST Neuroticism 5.8 6.3X10°  77X10° 0.98 rs8022046 17 X107

EFNA3 Parkinson’s disease  -4.6 50 X 10°® 1.4 X10°® 0.86 rs12743272 27 X10™

VKORC1 Parkinson’s disease 6.6 39X10"  47X10°® 0.82 rs4889603 21X 102 yes

CORO7 Schizophrenia =41 35X 10° 1.4 X 1072 0.89 -1.3 0.21 rs3747584 1.9 X 1072 yes
PDXDC1 Schizophrenia -4.6 3.8 X10° 3.2 X107 0.98 -1.9 0.06 rs3751877 3.5 X107 yes

Multiple testing was adjusted with FDR. Evidence for sex bias at the genetic level for these proteins was based on published GWAS SNP-by-sex interaction P value. Full results are in
Supplementary Table 20. Proteins with missing values for PWAS Z and P value in one sex were those not included in the PWAS in that sex because the protein heritability estimate was not
significant in that sex (that is, heritability P>0.01) and the PWAS can only be performed on heritable proteins. PWAS FDR P value was adjusted for all proteins included in the sex-specific PWAS.
Cross-disorder refers to cross-disorders among schizophrenia, bipolar disorder and major depression. Detailed results are in Supplementary Table 20.

morphologic traits found in our recently published study?. In that
work, weidentified brain proteins that are consistent with a causal role
in those traits by integrating 720 reference human brain proteomes
with genome-wide association study (GWAS) results for each trait using
multiple complementary approaches. These include proteome-wide
association study (PWAS) using FUSION**, Mendelian randomization
using SMR” and colocalization analysis using COLOC* to identify
proteins with highest level of evidence for a causal role in each trait.
For brevity, we refer to the identified 651 gene-protein pairs as causal
genes or causal proteins recognizing that their causal role needs to be
validated in model systems.

We found 97 causal genes with sex-biased protein expression by
intersecting the 651 causal genes identified in the previous work with
the 1,354 proteins with sex-biased expression identified in the current
work (Supplementary Table 16). Moreover, we found that 25% of the
causal genesinbrain traits, onaverage, had sex-biased protein expres-
sion (range 5-50%; Fig. 3a). Furthermore, among these causal genes, 33
had sex-biased expression at both the brain mRNA and protein levels
and 28 had concordant directions of sex-biased expression at the mRNA
and protein levels (Fig. 3b and Supplementary Table 17). For instance,
CTNNDI is acausal genein four different psychiatric disorders (major
depression, schizophrenia, post-traumatic stress disorder and prob-
lematic alcohol use) and neuroticism (a personality trait thatis prone
to experiencing negative emotions) and had sex-biased expression at
boththetranscriptand proteinlevelsin concordant directions (Fig. 3b).

Putative causal genes having sex-biased genetic regulation

To understand the role sex-biased genetic regulation of protein
abundance may have on disease, we used two approaches designed
to circumvent the limited power and small number of the available
sex-stratified GWAS results.

In the first approach, we intersected 651 causal genes for psy-
chiatric, neurologic and brain morphologic traits identified by the
above-described work?® with 150 genes with sb-pQTLs identified
in the current work. The intersection yielded 12 causal genes with
sb-pQTLs (Fig.4aand Supplementary Table 18a). To test the possibility
of multiple independent causal variants within each of the identified
genes, we performed Sum of Single Effects (SuSiE) regression” for the

12 genes and did not find evidence for more than one causal variant
per gene. These 12 genes influence four psychiatric, one neurologic
and three brain structural traits, and 5 of 12 influence multiple traits
(Fig. 4a). Notably, among these 12 causal genes, three also had
sex-biased protein abundance: ERLECI, CNTN2 and GIGYF2 (Fig. 4a
and Supplementary Table 18b).

In the second approach, we performed sex-stratified PWAS and
colocalization analysis in each sex separately to identify proteins with
evidence consistent with a causal role in one sex but not in the other
for six psychiatric and neurologic traits with available sex-stratified
GWAS results”?** (Supplementary Table 19a). Again, we refer to these
as causal proteins for brevity. We defined sex-specific causal proteins
as being significant in the PWAS in one sex (FDR P < 0.05) and having
evidence of colocalizationin that sex (posterior probability for hypoth-
esis 4 (PP4) > 0.75) but not significant in the PWAS of the other sex
(P> 0.05). Here, colocalization refers to colocalization of the genetic
variants associated with the protein and trait of interest. We found 23
sex-specific causal proteins, with 11 for females only and 12 for males
only (Fig.4b,c, Tables 1and 2 and Supplementary Table 20).

To determine whether the identified sex-specific causal proteins
show sex-specificgeneticrisk, we asked whether the geneticinteraction
withsexin the corresponding GWAS was nominally significant for the
considered trait for the sites that were most significantly associated
withthetraitatthelocus. There were 14 of 23 sex-specific risk proteins
(61%) withsuggestive evidence for sex-biased geneticrisk (Tables1and 2
and Supplementary Table 20). We note that the sex-specific GWAS
were limited in number and power compared with the joint GWAS
(Supplementary Table 19a,b), making direct comparisons between
the two approaches infeasible. Together, the 35 (12 and 23) identified
sex-biased causal proteins are promising targets for sex-aware mecha-
nistic studies for the 24 considered psychiatric, neurologic and brain
morphologic traits.

Discussion

We examined effects of biological sex on brain protein expression and
disease at both the mRNA and protein levels. We found that approxi-
mately 27% of the mRNAs and 13% of the proteins had sex-differentiated
expressioninthebrain. Furthermore, we found that only 5.5% of genes
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Table 2 | Proteins consistent with a causal role in males only identified by PWAS and colocalization analyses using

sex-stratified proteomic data and GWAS results (n=12)

PWAS and COLOC results in males PWAS results Published GWAS results
infemales
Protein Trait PWASZ PWASp PWASFDRp COLOC PWASZ PWASp BestGWAS SNPxsex suggestive sex-bias
PP4 SNP interactionp (interaction
p <0.05)

SLMAP AD =41 4.4 X107 3.9 X102 0.87 rs266837 4.4 X107 yes
LRRC57 Bipolar disorder 4. 39X 10° 2.3 X102 0.99 1.3 0.21 rs4924687 15 X107 yes
CADM2 Neuroticism 4.1 4.3 X107 2.5 X107 0.8 rs1900916 1.8 X107
FARP1 Neuroticism 3.6 35X 10™ 5.0 X 1072 0.92 15 0.13 rs2274051 1.6 X 107
HIP1R Parkinson’s disease =41 4.2 X10° 9.3 X107 0.99 -1.2 0.23 rs11060180 3.9 X 10™
OMG Parkinson’s disease -4.0 7.4 X107 1.2 X 1072 0.93 -0.9 0.36 rs11080149 4.0 X 107 yes
FTSJ3 Schizophrenia 37 1.9 X10™* 2.5 X102 0.77 -0.5 0.63 rs1062791 6.4 X107 yes
LRRC57 Schizophrenia 4.0 6.4 X107 1.4 X107 0.76 0.9 0.38 rs2412709 87 X107
NAGA Schizophrenia 3.6 29 x10™ 3.5 X107 0.91 1.6 on rs1023500 1.6 X107
NMRK1 Schizophrenia -3.7 2.0 X10™* 2.6 X 1072 0.83 -1.8 0.07 rs3780178 4.0 X102 yes
TOM1L2 Schizophrenia -3.8 14X 10™ 2.2 X107 0.76 -1.6 on rs4925133 3.7 X107
ZZEF1 Schizophrenia 45 5.8 X 10 17 X10°° 0.93 0.0 1 rs10521129 9.0 X 1072 yes

Multiple testing was adjusted with FDR. Evidence for sex bias at the genetic level for these proteins was based on published GWAS SNP-by-sex interaction P value. Full results are in
Supplementary Table 20. Proteins with missing values for PWAS Z and P value in one sex were those not included in the PWAS in that sex because the protein heritability estimate was not
significant in that sex (that is, heritability P>0.01) and the PWAS can only be performed on heritable proteins. PWAS FDR P value was adjusted for all proteins included in the sex-specific PWAS.
Cross-disorder refers to cross-disorders among schizophrenia, bipolar disorder and major depression. Detailed results are in Supplementary Table 20.

had sex-biased expression at both the transcript and protein levels,
and 76% of these had concordant directions of sex difference. Next, we
examined sex effects onthe genetic regulation of gene expression and
identified 150 proteins with sex-biased genetic regulation. To under-
stand the relevance of our findings inbrain health, we intersected our
findings of sex-biased protein expression and genetic regulation of
brain proteins with previously identified causal proteins for 24 psy-
chiatric, neurologic and brain morphologic traits?’. On average, we
found that 25% of these causal proteins had sex-biased protein abun-
danceand 12 causal proteins had sb-pQTLs. Furthermore, weintegrated
sex-specific GWAS with sex-specific brain protein data for six psychi-
atric and neurologic traits and identified 23 proteins consistent with
acausalroleinthese conditions in one sex but not the other. Notably,
14 of 23 (61%) of these sex-specific causal proteins had suggestive evi-
dence of having sex bias at the GWAS level despite the limited sample
size and power of the published sex-stratified GWAS. Together, these
resultsilluminate the effects of sex onbrain health and lay afoundation
for future sex-aware mechanistic studies of psychiatricand neurologic
disorders.

To date, studies of sex effects on psychiatric and neurologic dis-
eases have focused on brain transcriptome”"*°=? Consistent with the
prominent role of the synapses and inflammation in sex-specific tran-
scriptomic studies of depression'®, our results at the protein level sup-
porttherole of synaptic formation and immune function in sex-specific
risk for depression. In particular, among the four causal genes with
sb-pQTLs we found for depression, cadherin 13 (CDH13) regulates
GABAergic neurons, axon guidance and synaptic formation®>*. Moreo-
ver, among the 18 depression causal genes with sex-biased protein
expression that we identified, GGH and PRKAR2A are implicated in
immune response® . In schizophrenia, a study of human brain tran-
scriptomes found enrichment of gene coexpression modules with the
sex-by-diagnosis differential mMRNAs, and these modules contained
genes enriched in neural development®. In line with these results,
among the two schizophrenia causal genes with sb-pQTLs we identi-
fied, PEBPIisinvolved in neural development®®. In sex-specific studies
of alcoholism, a recent review of alcohol consumption studies using

rodent models highlighted neuroimmune processes as akey emerging
feature in sex differences in alcohol consumption®. Inaccordance with
these observations, among the seven alcoholism causal genes with sex
difference in brain protein expression that we identified, LGALS3 is a
driver of macrophage and microglia activation and has been impli-
catedinneuroinflammation®~*'. In AD, both human and mouse studies
using brain transcriptomic data also observed the prominent role of
microglial and inflammatory mechanismsin sex differencesin AD**,
Inagreement with these results,among the eight AD causal genes with
either sex-biased expression or genetic regulation of protein expres-
sion that we identified, half of them are involved inimmune function:
CD2APfacilitates recognition of antigen by T cells**; SLMAP participates
in T cell receptor signaling*’; ADAMIO regulates cytokine levels in
activated microglia**; and STXBP3is involved inimmune function*>*¢,

Aninteresting facet of our resultsis that we did not find sb-eQTLs
at FDR < 0.1 despite comparable sample sizes for the sb-eQTL and
sb-pQTL analyses. We performed several verifications of our sb-eQTL
findings and their results excluded sample size or interindividual vari-
ations in mRNA levels as potential explanations for the difference in
significantsb-eQTLs and sb-pQTLs. We note that our sb-eQTL findings
are consistent with those in published work that could only identify
sb-eQTLs at FDR < 0.25 but not at a lower FDR threshold'>*. The high
degree of replication between our eQTLs and a large published eQTL
study? (1, = 0.96) and the relatively high internal replication rate for
our sb-pQTLs (17, = 0.52) lend confidence to our findings. Of note, the
highest published internal replication rate for sb-eQTLs was i, = 0.28
(ref.12) and it was from breast tissue sb-eQTLs. Our findings are not
entirely unexpected since we found generally low correlations (mean
correlation of 0.11) between the mRNA and protein expression levels
in 307 individuals with both transcriptomic and proteomic data for
the 150 proteins with sb-pQTLs. These low correlations are consistent
withthe modest correlations between mRNA and proteinlevelsinbrain
tissues observed in several studies'® 2. Thus, differencesin observed
sb-pQTLsand sb-eQTLs are likely due to multiple factors ranging from
technical (that is, differences in platforms for measuring mRNA and
proteins) to biological (that s, differences in cell-type proportions or
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post-transcriptional gene regulations). Moreover, emerging evidence
suggests that gonadal hormones and their receptors have pronounced
effects on the expression and regulation of microRNAs**°, which are
important post-transcriptional regulators of gene expression, and on
the translation of mMRNAs®". Together, the more pronounced effects
of sex on the genetic regulation of protein expression highlight an
intriguing difference in what the transcriptome and proteome may
reveal about sex-differentiated genetic control of gene expression in
the human brain and should be further investigated.

Ininterpreting our findings we should take into consideration the
limitations. Our studies were limited in power since each sex must be
analyzed separately. There is also a limited number of sex-stratified
GWAS that can make full use of the sex-specific pQTL data. Moreover,
the available sex-stratified GWAS had much smaller sample sizes,
and thus much lower power, compared with the joint GWAS (Supple-
mentary Table19). Collectively, these factors likely contribute to the
relatively modest number of genesidentified throughintegrating the
sb-pQTLs with sex-stratified GWAS compared with traditional pQTL
and GWAS integrationin both sexes jointly. While it seems reasonable
to speculate that gene-by-sex effects explain a small amount of the
variance in the observed sex differences in brain traits, their utility
lies in the mechanistic insights they provide, and larger sex-specific
GWAS are needed to better gauge their contributions to disease. This
limitation could be mitigated by standard reporting of sex-stratified
GWAS results in addition to standard joint analysis results. Other
limitations of this work include the profiling of brain proteomes
and transcriptomes in individuals of European ancestry, which may
potentially limit the generalizability of these findings to individuals
of other ancestries. Additionally, focusing on older individuals may
limit the generalizability of our findings to individuals across the age
spectrum or to brain illnesses with earlier-onset age such as schizo-
phreniaor bipolar disorder, althoughiit likely reduces heterogeneity
since allindividuals can comfortably be assumed to have undergone
menopause or andropause. Finally, while we found little evidence that
our results of sex-biased genetic regulation were influenced by demo-
graphic factors correlated with sex, we caution that sex in this study
should be thought of as biological sex and there are potentially many
factors that differ between females and males. Thus, unmeasured
environmental factors that are correlated with biological sex could
potentially lead to the appearance of sex-biased gene expression or
genetic regulation. Future studies should test gene-by-environment
interactions to understand potential underlying mechanisms for sex
differencesin brainillnesses.

Strengths of our study include being the first study of the role of
sexon protein abundance and its genetic regulationinthebrainto the
best of our knowledge. Second, it is the largest study of the role of sex
in transcriptional expression, which enables us to compare the role
of sex at the protein and transcript levels for a gene. Third, our study
is based on a large dataset of well-characterized post-mortem brains
that have undergone comprehensive proteomic and transcriptomic
sequencing. Fourth, given the age of the donors, hormonal state was
notlikely to confound our results. Lastly, we presented here aninvalu-
ableresource of the largest brain pQTLs, sex-specificbrain pQTLs and
their concordance/discordance with sex-specific brain eQTLs, paving
the way for future sex-aware studies of neuroscience and brainillnesses.

In conclusion, we found that biological sex has an influence on
brainmRNA and protein expression and that its effects on genetic regu-
lation of gene expression appeared more pronounced at the protein
than mRNA level. Furthermore, we uncovered putative causal genes
in brain traits and disease that have either sex-differentiated protein
expression or sex-biased genetic regulation of protein expression.
Finally, we provide aresource of humanbrain pQTLs, sb-pQTLs, eQTLs,
sb-eQTLs and sex-specific causal proteins in psychiatric and neurologic
disorders for the scientific community to study sex-aware mechanisms
underlying brainillnesses.
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Methods

Cohorts

Participants from the following studies donated post-mortem
brain tissues for proteomic sequencing. The ROS and MAP are two
community-based longitudinal clinical-pathologic studies of aging
and AD*. All participants are organ donors, provide informed consent
and sign an Anatomical Gift Act and repository consent to allow their
dataand biospecimenstoberepurposed. Anlnstitutional Review Board
of Rush University Medical Center approved the studies.

The Arizona Study of Aging and Neurodegenerative Disorders,
conducted by Banner Sun Health Research Institute (referred to as ‘Ban-
ner” here), primarily recruits cognitively normal volunteers from the
retirement communities and some participants with AD or Parkinson’s
disease in Phoenix, AZ*. All participants receive annual standardized
medical, cognitive and neurological assessments. Participants or their
legal representatives signed an informed consent that was approved
by the Banner Sun Health Research Institute Institutional Review Board
allowing for brain donation and use of donated biospecimens for
approved future research and genetic studies.

The Baltimore Longitudinal Study of Aging (BLSA) is a prospective
study of aging in community-dwelling individuals. The BLSA study was
approved by the Institutional Review Board and the National Institute
on Aging. All BLSA participants provided written informed consent
ateach visit.

Post-mortem brain tissues also came from the Mount Sinai/JJ
Peters VA Medical Center Brain Bank®*. All donors or their representa-
tives provided informed consent approved by the Institutional Review
Boards of Mount Sinai School of Medicine and JJ Peters VA Medical
Center. Donors with proteomic data had a mean age of 87 (range:
61-108). Donors with transcriptomic datahad amean age of 89 (range:
67-108).

No monetary compensation was provided to participants.

Proteomicdata

The proteomic sequencing of each dataset was preformed indepen-
dently, and the methods for proteomic sequencing and quality control
have been described in detail previously for all datasets** except for
the precuneus and middle frontal gyrus. All proteomic sequencing
followed the same approach and was performed usingisobaric tandem
mass tag peptide labeling with peptides analyzed by liquid chroma-
tography coupled to tandem mass spectrometry (MS). The proteomic
sequencing for the precuneus and middle frontal gyrus are detailed
here and are illustrative of the approach used for each dataset. Each
sample was individually homogenized in urea lysis buffer to disrupt
nucleic acids. Protein concentration was determined using the bicin-
choninicacid method and frozeninaliquots at =80 °C. Protein mixture
was digested overnight and diluted to obtain peptides. Peptides were
labeled using TMTProisobaric tags (Thermo Scientific). Subsequently,
high pH fractionation was performed as described in research by Ping
etal.’®. Allsamples were then analyzed on the Evosep One system using
the preprogrammed 21-min gradient as described by Bekker-Jensen
etal.”. MSwas performed with a high-field asymmetric waveformion
mobility spectrometry Pro equipped Orbitrap Eclipse (Thermo) in
positive ion mode using data-dependent acquisition with 2-second
top-speed cycles. Each cycle consisted of one full MS scan followed
by as many MS/MS events that could fit within the given 2-second
cycle time limit. All raw files were searched using Thermo’s Proteome
Discoverer suite (v.2.4.1.15) with Sequest HT. The spectrawere searched
againstahuman uniprot database downloaded in August 2020 (86,395
target sequences). Percolator software implemented in the Thermo’s
Proteome Discoverer suite was used to filter peptide spectral matches
lessthan1% FDR. Peptides were grouped using parsimony and unique
peptides were used for protein-level quantitation. Reporter ions were
quantified from MS2 scans using an integration tolerance of 20 ppm
with the most confident centroid setting.

Quality control of the peptide sequencing was performedin each
proteomics dataset separately and followed our previous approach*>,
All proteomic sequencing datasets included at least one global inter-
nal standard (GIS), but some included two GISs. For datasets with two
GISs (that is, ROS/MAP, Banner and BLSA), proteins with abundance
levels outside of the 95% confidence interval of the two GIS measure-
ments within abatch were deemed not reliably measured and were thus
excluded. For datasets with only one GIS per batch, this step was not
performed. Next, proteins with missing valuesin more than 50% of the
samples per dataset were removed. Protein abundance was normalized
using the total abundance of all the proteins for that sample (to account
for proteinloading differences) and log, transformed. To identify sam-
ple outliers, we performed iterative principal component analysis to
remove samples with greater than four standard deviations from the
mean of either the first or second principal component. Regression
was used to estimate and remove the effects of batch, MS mode, age at
death, post-morteminterval and clinical diagnosis from the proteomic
profiles. To enable comparisons across datasets, aZ-score transforma-
tionwas applied. For proteins with multiple isoforms, we selected the
mostabundantisoform forinvestigation. The three datasets fromthe
dPFC were analyzed jointly, including a covariate for dataset, and all
other datasets were analyzed separately. In total, there were six sets
of proteomic datafromsix brain regions used in subsequent analyses
(Supplementary Table1).

Genetic data

Genotypes were generated from blood or brain-derived DNA using
microarrays (ROS/MAP and Banner) and/or whole genome sequencing
(ROS/MAP and Mount Sinai Brain Bank) as described previously***>*5,
First, genotype quality control was performed on each dataset inde-
pendently. Individuals with genotype missing rate > 5% were excluded
and variants were excluded if they met any of the following criteria:
genotype missing rate > 5%, minor allele frequency < 5%, Hardy-Wein-
berg equilibrium P <5 x 107 and non-biallelic variants. Related indi-
viduals were identified using KING* (v.2.2.2) and individuals who were
second-degree or closer relatives were randomly removed. Individu-
als who were population outliers were identified and removed using
EIGENSTRAT (v.6.1.4)°°. All participants included in the analysis were
of European ancestry. After initial genotype quality control, genotype
datawere merged, and asecond round of population substructure and
kinship analysis was applied to verify that the final dataset included
only unrelated samples without population outliers. Lastly, EIGEN-
STRAT*®® was used to derive genetic principal components and ten
principal components were used as covariates in the quantitative trait
locus analyses.

Transcriptomic data

Transcriptomic profiling was performed as previously described
in detail®. Briefly, RNA was extracted from post-mortem dPFC and
sequenced on the lllumina HiSeq. Reads were aligned to a GRCh38
reference using STAR v.2.4 (ref. 62) and transcript level counts were
computed. Transcripts with less than 1 count per million (CPM) for at
least 50% of samples per clinical diagnosis of cognition (normal, AD or
other), missing gene length or missing percentage guanine-cytosine
content were removed. Two samples that were outliers based on princi-
pal component analysis of raw CPM values were removed. Raw counts
for 15,582 genes from 632 individuals were available for analysis. We
applied the variance stabilizing transformation (‘vst’ function) from
the R package DESeq2 (ref. 63; v.1.26.0) to normalize for library size,
reduce heteroskedasticity and transformto log, CPM while protecting
the effect of sex (by specifying design formula ~sex). Subsequently, we
regressed out effects of batch, RNA integrity number, post-mortem
interval, age and clinical diagnosis from the normalized transcriptomic
data before performing the downstream analyses. Among these 621
transcriptomes, 307 were from donors of the proteomes above.
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Definition of sex
Sex was defined using genotyping data. In particular, biological sex
was determined based on the heterozygosity rate across genetic vari-
ants located on the X chromosome in each donor using PLINK®*. All
donorsincluded in our analyses had biological sex consistent with
self-reported sex.

Statistical analysis

SVA. We performed SVA using the SVA package® (v.3.20.0) and the
significant SVs were later used as covariates in the regression models
to map QTLs and sb-QTLs. We derived 56 significant SVs from prot-
eomic data and 33 significant SVs from transcriptomic data. For both
proteomicand transcriptomic SV derivation, the effect of sexongene
expressionwas protected. In particular, in the SVA model, the primary
variable of interest was sex and the expression matrix was the normal-
ized protein expression levels. Of note, we already regressed out the
effects of protein sequencing batch, post-morteminterval, study, age
and cognitive diagnosis from the proteomic profile before using it as
inputinthe SVA.

Sex differences in protein expression. We performed regression
modeling with protein as the outcome, sex asthe independent variable
and 56 SVs as covariates in each brain region separately. To identify
proteins with sex difference in expression across the different brain
regions, we performed a meta-analysis following the MASH approach
(MASHR v.0.2.38)*, which uses an empirical Bayesian approach to
estimate correlations (using mash_estimate_corr_em) among these
regions. The priors were effects in each brain region separately fol-
lowing the MASH approach?. We used both cov_pca and cov_flash
frommashr to derive data-driven covariances. No statistical methods
were used to predetermine sample sizes, but our sample size of 1,277
proteomes was larger than those reported in previous publications on
sex differences in mRNA expression in brain'',

Sex differences in mRNA expression. The study of sex differences
in mRNA expression was performed in an analogous fashion, as was
done for protein using the transcriptomic count matrix and 33 SVs as
covariates.

Sex differences in genetic regulation of protein abundance. The
dPFC was used to investigate sex-differentiated genetic regulation of
proteinabundance because this brainregion has the largest sample size
with both proteomic and genetic data (n = 716). We examined proteins
encoded by genes located on the 22 autosomes and X chromosome.
For the latter, we coded the number of the minor allele as O or 2 for
homozygous malesand 0,1, 2 for females. The window for QTL analysis
was 500 kb up and downstream of the gene. To identify proteins with
sb-pQTLs, wefirst performed ajoint pQTL analysisin menand women
combined using linear regression in PLINK, and sex-stratified pQTL
analysis in men and women separately. Among the pQTLs identified
at FDR < 0.05 in any of the above three analyses, we examined their
genotype-by-sex interaction and declared those with a significant
interaction at FDR < 0.05 as sb-pQTLs (Fig. 2). We performed FDR
correction on all tested SNP-protein combinations. To identify index
sb-pQTLs, we performed clumping with PLINK using the parameters of
r’of 0.50 and window size of 250 kb. The quantile-quantile plot for the
Pvalues of the genotype-by-sex termin the regression modeling for all
the chromosomes (Extended Data Fig. 2a) and for the X chromosome
(Extended Data Fig. 2b) showed no evidence of inflation, suggesting
the underlying assumptions of the regression modeling were met, but
this was not formally tested.

Likewise, toidentify sb-QTLs among the genes that were profiled
inboththe proteomes and transcriptomes (n = 8,009 genes) for com-
paring sb-eQTLs to sb-pQTLs, we selected those genes and applied the
same analysis framework as described above.

Sex differences in genetic regulation of mRNA expression. The
study of sex differences ingenetic regulation of mRNA expression was
performed in an analogous fashion to sb-pQTLs, using the transcrip-
tomic count matrix and 33 SVs as covariates.

Genomic site-type enrichment for the sb-pQTLs and sb-eQTLs.
Variant annotation of the sb-QTL sites was performed with Bystro®®.
Fisher’s exact test was used to test for enrichment of different site types
among the sb-QTL sites.

Internal replication (i, statistics) of the shb-pQTLs. To determine the
replication rate of sb-pQTLs, the ROS/MAP dPFC proteomic dataset
was considered as the discovery dataset (n = 565) and the Banner dPFC
proteomic dataset was considered the replication set (n =151). In the
discovery set, theindependent sb-pQTLs were identified after clump-
ing sb-pQTLsat FDR < 0.05 using the threshold of r* < 0.5. Those results
were compared with the sb-pQTLs of the replication dataset using the
qvalue package v.2.22.0 (ref. 67) to estimate ;.

Internalreplication (m, statistics) of the sb-eQTLs. Theindependent
significant sb-pQTLs at FDR < 0.2 were tested for replication with the
sb-eQTLs using the qvalue package in R to estimate m,.

Gene set enrichment analysis. Gene set enrichment analysis was
performed using GO-Elite (v.1.2.5) for human species®®, which included
Biological Process®, Molecular Function®, Cellular Component®’,
WikiPathways’®, KEGG® and REACTOME’! databases. Fisher’s exact
test and Z-scores were used to test for significant enrichment among
the proteins of interest using abackground of 10,198 assayed proteins.
Multiple testing was addressed with the Benjamini-Hochberg FDR.

SuSiE regression. We performed multiple regression using the soft-
ware package SuSIE” and its default settings for the 12 causal genes
with sb-pQTLs to examine whether there was more than one causal
variant per gene.

Sex-specific PWAS. Sex-specific PWAS was performed following
FUSION?* in males and females, respectively, using the sex-stratified
GWAS results and sex-specific pQTL data we generated. We had access
to the following sex-stratified GWAS for this analysis: major depression
(n=21,168 males and 27,372 females)’, bipolar disorder (n=17,995
males and 21,554 females)’, schizophrenia (n = 32,152 males and 24,093
females)’, neuroticism (n = 137,880 males and 155,126 females; a person-
ality trait that is prone to experiencing negative emotions)”, Parkin-
son’s disease (n =110,616 males and 104,082 females)* and AD proxy
viafamily history of dementia (n = 141,897 males and 170,769 females)*
(Supplementary Table19a).

First, werestricted the genotype data to the SNPs in the linkage
disequilibrium reference panel provided with the FUSION* package,
whichincludes 1,190,321 SNPs from 1,000 Genome EUR samples, to
minimize theinfluence of linkage disequilibrium on the analysis. Next,
for each sex separately, SNP-based heritability for each protein was
estimated. Proteins with SNP-based heritability P < 0.01 were declared
heritable. Subsequently, for each heritable protein, we estimated
the effect of a set of SNPs within a 500 kb window of the gene on its
protein abundance, also referred to as the protein ‘weight’ for each
sex separately. We applied the BLUP, LASSO, elastic net and BSLMM
prediction models and kept the weights from the best-performing
prediction model. Finally, we integrated the brain protein weights
with each of the sex-specific GWAS summary statistics to perform
the PWAS for each sex separately. The PWAS Z-score for each gene
represents the combined effect of the protein and SNPs on the trait.
The PWAS identified the cis-regulated proteins associated with the
trait. We defined significant proteins as those with FDR P< 0.05 in
each sex.
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Sex-specific colocalization analysis. Sex-specific colocalization
analysis was performed using COLOC*. Specifically, using the marginal
association statistics, we estimated the posterior probability that a
protein and trait share or do not share a genetic variant. We used the
default previous values provided by COLOC, which were p, = p,=10""*
and p,, =107, We used the PP4 threshold of >75% to declare sharing a
genetic variant.

Sex-biased causal genes and proteins. We defined genes and cor-
responding proteins identified in the PWAS and COLOC as genes and
proteins consistent with a causal role or pleiotropy if they have FDR
P<0.05inthe PWAS and COLOC PP4 > 75% in the colocalization analy-
sis. Moreover, we operationally defined causal genes/proteins as sex
differentiatedif they (1) haveaPWASFDR P < 0.05and COLOC PP4 > 75%
infemales butaPWAS P> 0.05 or no PWAS Pin males (since the proteins
were not significantly heritablein males to run the PWAS) or (2) have a
PWASFDRP<0.05and COLOCPP4 > 75% in males butaPWAS P> 0.05
orno PWAS Pin females.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

The data and results are deposited at Synapse at https://doi.
org/10.7303/syn51150434. These data include raw, processed and
normalized proteomic and transcriptomic data, sex-specific pQTLs,
sex-specific eQTLs, and sex-specific protein weights from FUSION.
These data are in whole or in part based on data obtained from the
AMP-AD Knowledge Portal (https://adknowledgeportal.synapse.
org/Explore/Programs/DetailsPage?Program=AMP-AD). The AD
Knowledge Portal is a platform for accessing data, analyses and tools
generated by the Accelerating Medicines Partnership (AMP-AD)
Target Discovery Program and other National Institute on Aging
(NIA)-supported programs to enable open-science practices and accel-
erate translational learning. The data, analyses and tools are shared
early in the research cycle without a publication embargo on second-
ary use. Data are available for general research use according to the
following requirements for data access and data attribution (https://
adknowledgeportal.org/DataAccess/Instructions). The following
databases for gene set enrichment analyses were used: Molecular Sig-
natures Database (https:/www.gsea-msigdb.org/gsea/msigdb/index.
jsp); WikiPathways (https://www.wikipathways.org); KEGG pathway
(https://www.genome.jp/kegg/pathway.html); and Reactome (https://
reactome.org).

Code availability
In-house pipelines and scripts used for this work are available at https://
github.com/wingolab-org/role_of sex_in_brain_expression.
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projects/fusion) was used to perform PWAS in each sex separately. COLOC v5.0.0.9002 (https://chrlswallace.github.io/coloc/) was used for
colocalization analysis in each sex separately. SusieR (https://stephenslab.github.io/susieR/index.html) was used to examine possibility of
multiple causal variants for a gene. In-house pipelines and scripts used for this work are available at https://github.com/wingolab-org/
role_of_sex_in_brain_expression.
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reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

The data and results are available at DOI: https://doi.org/10.7303/syn51150434. These data include raw, processed, and normalized proteomic and transcriptomic
data, sex-specific pQTLs, sex-specific eQTLs, and sex-specific protein weights from FUSION. These data are in whole or in part based on data obtained from the
AMP-AD Knowledge Portal. The AD Knowledge Portal is a platform for accessing data, analyses, and tools generated by the Accelerating Medicines Partnership
(AMP-AD) Target Discovery Program and other National Institute on Aging (NIA)-supported programs to enable open-science practices and accelerate translational
learning. Data are available for general research use according to the following requirements for data access and data attribution (https://adknowledgeportal.org/
DataAccess/Instructions). We also used the following databases for gene set enrichment analyses: Molecular Signatures Database (https://www.gsea-msigdb.org/
gsea/msigdb/index.jsp); WikiPathways (https://www.wikipathways.org); KEGG pathway (https://www.genome.jp/kegg/pathway.html); Reactome (https://
reactome.org).

Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender The manuscript refers to sex in the biological sense of the word. Sex was determined based on the genotyping of the X
chromosome. Particularly, biological sex was determined based on the heterozygosity rate across genetic variants located on
the X chromosome in each donor using Plink. As part of genotyping quality control, we checked the agreement between self
reported gender and genetic sex and they agreed for all subjects included in our analyses.

Population characteristics The ROS/MAP and Banner post-mortem brain donors were recruited from the community. The Mt Sinai Brain Bank donors
were from the Mt. Sinai and JJ Peters VA Medical Center Brain Bank. Mean age of donors ranged from 82 to 91.
Approximately 63% of donors were females.

Recruitment Participants were recruited from the community by the Rush Memory and Aging Project, Religious Order Study, and Arizona
Study of Aging and Neurodegenerative Disorders. We are not aware of any self-selection bias or other bias that may affect
the study besides the focus on participants of retirement age (65 or above). All research participants and post-mortem brain
donors provided informed consent approved by the Institutional Review Boards of Rush University Medical Center, Banner
Sun Health Research Institute, National Institute on Aging, Mount Sinai School of Medicine, and JJ Peters VA Medical Center,
respectively.

Ethics oversight All the studies (ROS/MAP; Banner, Mt. Sinai Brain Bank) received approval for the studies from an Institutional Review Board
at their academic affiliates.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences |:| Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size No sample size calculations were used. All available samples with brain proteomic, genetic, and phenotypic data were used for the analysis.

Data exclusions  Outlier samples were removed in the quality control step of proteomic data. This was done through an iterative process of detecting outliers
by principal component analysis of the proteomic data and excluding all individuals who were greater than 4 standard deviations from the
mean of the first two principal components. Then we included individuals with both proteomic and genome-wide genotyping data for the
analyses.

Replication Internal replication of the sb-pQTLs was performed using the n1 statistics and found to be 0.53, which is higher than published replication rate
for sb-eQTLs.

Randomization  For proteomic sequencing, samples were randomized by age, sex, PMI, clinical diagnosis, and pathologies into batches of 8
samples to minimize the batch effects.
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Blinding The individuals preparing samples for proteomic sequencing were blinded to phenotypic information.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies |:| ChiIP-seq
Eukaryotic cell lines |Z |:| Flow cytometry
Palaeontology and archaeology |:| MRI-based neuroimaging
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