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Abstract Many populations live in ‘advective’ media, such
as rivers, where flow is biased in one direction. In these
environments, populations face the possibility of extinction
by being washed out of the system, even if the net
reproductive rate (R) is greater than one. We propose a
formal condition for population persistence in advective
systems: a population can persist at any location in a
homogeneous habitat if and only if it can invade upstream.
This leads to a remarkably simple recipe for calculating the
minimal value for the net reproductive rate for population
persistence. We apply this criterion to discrete-time models
of a semelparous population where dispersal is character-
ized by a mechanistically derived kernel. We demonstrate
that persistence depends strongly on the form of the
kernel’s ‘tail’, a result consistent with previous literature
on the speed of spread of invasions. We apply our theory to
models of stream invertebrates with a biphasic life cycle,
and relate our results to the ‘colonization cycle’ hypothesis
where bias in downstream drift is offset by upstream bias in
adult dispersal. In the absence of bias in adult dispersal,
variability in the duration of the larval stage and in
oviposition sites have a large effect of the persistence

condition. The minimization calculations required in our
approach are very straightforward, indicating the feasibility
of future applications to life history theory.

Keywords Advection . Drift paradox . Persistence
condition . Invasion speed . Integrodifference equation .

Dispersal kernel

Introduction

Individuals in a wide variety of environments are faced with
unidirectional drift (advection) that threatens their popula-
tions with extinction by being washed out of the system.
Examples include the chemostat (Smith and Waltman 1995),
gut-dwelling bacteria (Ballyk and Smith 1999), phytoplank-
ton (Huisman et al. 2002), benthic marine species along
coastlines with dominant long-shore currents (Byers and
Pringle 2006), and even terrestrial species under the
influence of climate change (Potapov and Lewis 2004).
Arguably, the most famous example, however, are inverte-
brates living in streams and rivers where they are subject to
downstream drift due to water movement. The question of
how their populations can persist in the same location over
large temporal scales has first been raised and studied by
Müller (1954) and is now known as the ‘drift paradox’
(Hershey et al. 1993). Ecologists have since hypothesized
several mechanisms that could lead to population persis-
tence; and many field studies aim to quantify dispersal of
invertebrates in streams.

Müller (1954) proposed the ‘colonization cycle’ hypoth-
esis, by which stream insects at the adult stage preferen-
tially fly upstream for oviposition and thereby replenish the
larval population in the next generation that then drifts
downstream. Downstream drift of larvae (on average) is
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well documented in many species; it ranges from several
meters to kilometers, depending on stream and species
(e.g., Elliott 2003; Hershey et al. 1993; Macneale et al.
2005; Müller 1954, 1982; Turner and Williams 2000;
Waters 1972; Williams and Hynes 1976). The question of
whether adult insects show a bias for upstream movement is
much less clear. Several authors found such a bias (e.g.,
Hershey et al. 1993; Müller 1982) whereas others did not
(e.g., Williams and Williams 1993) and yet some authors
found upstream bias depended on species (Bird and Hynes
1981) or gender (Flecker and Allan 1988), see Waters
(1972) and Macneale et al. (2004) for a literature overview.
Individual-based simulations demonstrated that an upstream
bias in adult flight is not necessary for species persistence
(Anholt 1995; Kopp et al. 2001).

Whether or not upstream flight of adults is biased, it is
clear that Müller’s hypothesis applies only to species that
do have winged adult stages. Waters (1961) with his
‘production hypothesis’ suggested that the probability of
an individual to enter the drift is density dependent: only
individuals produced in excess of the (benthic) carrying
capacity enter the drift and may be carried downstream.
Experimental support for this hypothesis comes from
studies finding a positive relationship between population
densities in the drift and several indices of productivity
(e.g., Waters 1961; Müller 1970), or from removal studies
(Dimond 1967). Such a relationship, however, is not
uniform across species (Pearson 1970). Bishop and Hynes
(1969) found that hydrological effects dominate production
effects in determining drift density. We are not aware of
individual-based simulations for the production hypothesis,
but some of the analytic results by Pachepsky et al. (2005)
and Lutscher et al. (2005) can be interpreted to support this
hypothesis, as we explain below.

While much of the experimental literature is focused on
whether there is an upstream bias for adult movement and
whether there is density dependence, simulation-based
modeling explored the question of whether either or both
are necessary or sufficient to explain the drift paradox.
Anholt (1995) found that an upstream bias is neither
necessary nor sufficient, but that density dependence
together with some upstream bias would resolve the
paradox. The interpretation of his results in the present
context is complicated by two facts. Anholt considered not
only the question of how a population manages to prevent
extinction but also of what limits a population from
growing without bound. It is the second aspect that requires
density-dependent population regulation (which is different
from the density-dependent drift rate as postulated in the
production hypothesis). Anholt’s way of implementing
density-dependent production, however, can lead to confu-
sion in that strong density dependence and/or high carrying
capacity in his model imply high per capita growth rates at

low density. In an extreme case, a single individual can, in
one generation, produce as many surviving offspring as a
quarter to one half of the carrying capacity, see the criticism
in Speirs and Gurney (2001). Re-interpreting the same
individual-based model as Anholt’s (1995), Humphries and
Ruxton (2002) claim that there might not even be a drift
paradox if considered at the correct spatial and temporal
scales. Their results, however, are based on increasing the
carrying capacity in Anholt’s model and hence are subject
to the same criticism. Kopp et al. (2001) use a modified
version of Anholt’s model that avoids the original difficul-
ties, and they show that upstream bias is not necessary for
population persistence, unless the maximal per capita
growth rate is small.

A fundamentally different approach to the drift paradox
originated from the work of Speirs and Gurney (2001). Their
‘diffusion hypothesis’ states that small-scale random move-
ment of individuals can lead to population persistence at a
given location. Humphries and Ruxton (2002) come to a
similar conclusion. There is ample evidence that benthic
invertebrates exhibit such small-scale movements (e.g.,
Elliott 1971). More importantly, Speirs and Gurney (2001)
use an analytically tractable model not only to establish the
qualitative plausibility of their argument but rather to find
precise quantitative parameter relationships that allow for
persistence. Such quantitative relationships are hard, if not
impossible, to obtain from individual-based simulations. The
work of Speirs and Gurney (2001) has been extended to
explicitly include a benthic compartment (Pachepsky et al.
2005; Lutscher et al. 2005) and strong spatial heterogeneity
(Lutscher et al. 2006). One of the results by Pachepsky et al.
(2005) is that if the production rate on the benthos exceeds
the rate at which individuals enter the drift at low population
density, then the population can persist, independent of any
small- or large-scale movement. This finding formalized
Waters’ (1961) production hypothesis.

All of the above mentioned models exploring the
diffusion hypothesis considered one life history scenario:
continuously growing populations. However, invertebrates
living in streams often have winged adult stages and
discrete generations. Moreover, as discussed above, much
of the experimental studies focused on whether upstream
bias of flight at the adult stage compensates for downstream
movement of larvae. The goal of the present work is to
apply the modeling insights and analytical tools from the
aforementioned diffusion models to describe the growth
and movement dynamics of stream insects with separate
larval and winged adult stages and to quantify their
persistence conditions in terms of movement mechanisms.
In the next section, we present our model, which has the
form of an integrodifference equation (Kot and Schaffer
1986) where a ‘dispersal kernel’ (Neubert et al. 1995)
accounts for movement of individuals. We give exact and
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approximate persistence conditions. In the following sec-
tion, based on assumptions about individual movement
mechanisms, we derive several dispersal kernels from
partial differential equation models and investigate their
effect on population persistence. We then show how
approximations can be applied to a model with individual
movement separated into the movement during the larval
and adult stages. We apply these results to quantify how
much upstream movement of adults is necessary to
compensate downstream movement of larvae.

Model

We consider a single semelparous population with distinct,
non-overlapping reproductive and dispersal phases. For
simplicity of exposition, we assume one generation per year
and consider models that describe the year-to-year changes
in the population distribution on one date (e.g., immediately
after reproduction is completed). We denote by Nt (x) the
population density on that date at location x in a homoge-
neous, one-dimensional habitat, e.g., a river that is much
longer than wide. We describe dispersal of individuals by a
redistribution kernel, K(z), which is the probability density
function of the location of an individual after dispersal
(Neubert et al. 1995), i.e., if an individual is located at a
point x in one year, K(z)dz is the proportion of its surviving
offspring that are located in the infinitesimal range x+z to
xþ zþ dz, the following year. We denote by R the net
reproductive rate (Caswell 2001) of the population, i.e., the
mean number of individuals by which an individual present
at the census date in one year is replaced on the corres-
ponding date the following year, and assume that R takes a
constant value independent of population density and spatial
location. With these assumptions, we arrive at the following
linear integrodifference equation for the dynamics between
generations (e.g., Kot and Schaffer 1986),

Ntþ1ðxÞ ¼ R

Z1
�1

K x� yð ÞNtðyÞdy: ð1Þ

In deriving Eq. 1, we made several simplifying assump-
tions, e.g., linearity, infinitely long river. We will consider
each of these assumptions and their impact in the
“Discussion”.

Population persistence at a location and spreading speed

The total population, defined by Nt ¼
R1

�1
NtðxÞdx, satisfies

the equation Ntþ1 ¼ RNt; since the redistribution kernel
(by definition) integrates to unity. The persistence condition
for the total population defined this way is therefore

formally R≥1. This result, though mathematically correct,
is ecologically misleading as it does not imply that the
population persists at any specified point in space. Indeed,
in the presence of advection this condition is not sufficient
for the population to persist at any particular location
because movement bias transports the population away
faster than it can reproduce locally. This is the basis of the
drift paradox discussed in the “Introduction”; see Byers and
Pringle (2006) for application to a particular case of our
model.

The calculation of persistence conditions at a location
might appear to require an explicit solution of Eq. 1, which
is only available in a few special cases and almost never in
nonlinear models. Instead, we make use of recent analytical
results (Pachepsky et al. 2005; Lutscher et al. 2005) and
characterize persistence at a location in terms of spreading
speeds.

The spreading speed of a population is defined as the
(asymptotic) velocity with which it expands its range in a
homogeneous habitat when introduced locally (Aronson
and Weinberger 1975; Kot et al. 1996). This speed is
arguably the single most important quantity for invasion
processes, and considerable progress has been made in
calculating this quantity for various types of models, see
Hastings et al. (2005) and references therein. In most
previously studied cases, the dispersal process is assumed
to be unbiased, so that the spreading speed is independent
of direction (but see Medlock and Kot (2003)). When
individual movement is biased, the spreading speed in the
direction of the bias (downstream) is larger than the speed
against the bias (upstream). Based on this observation we
propose to characterize the persistence conditions as
follows. A population can persist at any location in a
homogeneous habitat if and only if its upstream speed is
positive. In Appendix A, we prove this condition to be
correct in an arbitrarily long river for a particular dispersal
kernel, and we demonstrate that the persistence condition
for a finite river is only slightly more stringent. We consider
the limitations of our persistence condition in detail in the
“Discussion”.

Following the above characterization, the critical condi-
tion between persistence and extinction is given when the
upstream speed is zero (Pachepsky et al. 2005; Lutscher et
al. 2005). The advantage of this characterization is that the
critical condition can often be calculated relatively easily
even when an explicit solution of the full model Eq. 1 is not
available.

Calculation of the persistence condition

In order to calculate the spreading speed for Eq. 1, we make
the assumption that the dispersal kernel has exponentially
bounded tails (Kot et al. 1996). This restriction only
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excludes consideration of a few forms of passive long-
range dispersal, e.g., seeds carried long distances by birds
(Clark et al. 2001). Mathematically, this implies that a
powerful tool, the moment generating function,

MðsÞ ¼ M s;Kð Þ ¼
Z1
�1

KðzÞ exp szð Þdz; ð2Þ

of the redistribution kernel exists for all s in some interval
about zero (Kot et al. 1996). This in turn ensures that
Eq. 1 has a finite spreading speed and constant-speed
traveling-wave solutions (Weinberger 1982). We derive
several redistribution kernels for larvae and adult stages of
stream insects from mechanistic movement models below,
and all of these have exponentially bounded tails. If this
condition is not satisfied, the model may exhibit acceler-
ating waves (Kot et al. 1996). We return to this aspect in
the “Discussion”.

The characteristic equation for the speed, c, of a
traveling-wave solution is given by exp(sc)=RM(s) (Kot
et al. 1996, Eq. A6). A speed of zero occurs when RM(s)=
1. The smallest value of M(s) gives the critical threshold R*

for which the upstream speed is zero as

R
» ¼ 1

mins MðsÞf g ¼ 1

M s»
� � ; ð3Þ

where s* is the value at which the minimum occurs, see
Appendix A for an alternative, more detailed derivation.
Our central result is that a population can persist at any
location in the face of advection if and only if R≥R*. If
movement is biased, then R*>1; as the bias decreases to
zero, R* decreases to unity. Pringle et al. (2009) recently
presented an extension of this argument to structured
populations. In the remainder of this paper, we use this
result to derive persistence conditions for a range of
ecological situations.

Explicit examples and an approximation

In the case of Gaussian dispersal, Eq. 1 can be solved
explicitly, which allows us to demonstrate that the explicit
approach and our upstream speed characterization Eq. 3
agree. We compare and contrast this situation with two
variants of the Laplace kernel for which only the new
approach is available. Our findings establish the importance
of higher moments of the dispersal kernel. Recognizing that
reconstruction of redistribution kernels from ecological data
makes severe data requirements, we propose and evaluate
an approximation that takes account of skewness and
kurtosis in the dispersal kernel, but does not require full
reconstruction of the kernel.

Gaussian kernel

We assume that individuals are initially concentrated at x=0
and disperse according to the Gaussian kernel with mean μ
and variance σ2,

G z;m; s2
� � ¼ 1ffiffiffiffiffiffiffiffiffiffi

2ps2
p exp � z� mj j2

2s2

 !
; ð4Þ

The explicit solution of Eq. 1 is given by Nt (x)=R
tG (x;

tμ,tσ2). At x=0, we obtain

Ntð0Þ ¼
R exp �m2= 2s2ð Þ� �� �tffiffiffiffiffiffiffiffiffiffiffiffi

2ps2t
p : ð5Þ

If R>exp{μ2/(2σ2)} then the numerator grows faster than
the denominator in time so that the population can persist at
x=0, otherwise the numerator decreases in time, and the
population cannot persist at x=0 (Byers and Pringle 2006).

The moment generating function of the Gaussian kernel
is given by

M s;Gð Þ ¼ exp msþ s2s2

2

� �
: ð6Þ

Its minimum is attained at s*=−μ/σ2, so that the critical
threshold, calculated from the recipe in the preceding
section,

R
» ¼ exp

m2

2s2

� �
; ð7Þ

is precisely the persistence condition found by Byers and
Pringle (2006).

Laplace kernel

Dispersal data are often leptokurtic rather than normally
distributed (Kot et al. 1996). The Laplace kernel that is
frequently used to describe this situation has the additional
advantage that it can be derived from a mechanistic
dispersal model (Neubert et al. 1995). To incorporate
movement bias into a Laplace kernel one can simply shift
the symmetric Laplace kernel to some nonzero mean, or
one can include bias into the dispersal model and derive an
asymmetric Laplace kernel (Lutscher et al. 2005). In both
cases, the critical value R* can be expressed as a function of
the single non-dimensional variable μ2/σ2, which is the
squared inverse of the coefficient of variation (CV). Details
are given in Appendix B. The respective kernels and
resulting R* are plotted in Fig. 1, which shows that the
threshold sensitively depends on the precise dispersal
mechanisms that lead to the redistribution kernel, a finding
consistent with previous work (Lutscher 2007). Thus,
knowledge of the CV or even mean and variance of the
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dispersal kernel is not sufficient for determining the
persistence condition, and we now give an approximate
persistence condition that incorporates higher moments of
the redistribution kernel.

Approximate persistence conditions

In the case of symmetric dispersal, previous workers have
derived an approximate formula for persistence that takes
the excess kurtosis, γ2, of the kernel into account (van den

Bosch et al. 1992; Lutscher 2007). Redistribution kernels in
advective environments can have significant skewness, γ1,
as we saw above. We now extend the above approximate
persistence condition to take skewness into account.

The Gaussian kernel has g1 ¼ g2 ¼ 0, and the critical
value for its moment generating function is s*=−μ/σ2 (see
above). In general, when g1 6¼ 0 6¼ g2, we write s

» ¼
�m=s2 þ " and derive a first order approximation for ε in
terms of the mean, variance, skewness, and kurtosis of the
kernel to arrive at the approximate persistence condition

R
» � 1

M �m=s2 þ "ð Þ ;with

" ¼ m2

6s2

g2m� 3g1s
s2 � g1ms þ g2m4=2ð Þ ;

ð8Þ

as long as the denominator is not zero, see Appendix A for
details. The results for the asymmetric Laplace kernel,
plotted in Fig. 1, show that the approximation has limited
value for kernels with strong skewness. One likely reason for
this is that consideration of two further central moments does
still not capture the effects of the tail of the distribution.

Dispersal mechanisms and redistribution kernels
for stream insects

From one generation to the next, many stream insects
undergo dispersal in two life stages, namely as waterborne
larvae and as airborne adults. To find the dispersal kernel
from one generation to the next, we therefore follow an
individual that first dispersed as larva through its dispersal
as adult. Mathematically, if we denote by KL and KA the
respective kernels for larvae and adults, then the combined
kernel between generations is given by the convolution

KðzÞ ¼ KA»KLðzÞ ¼:

Z1
�1

KA z� wð ÞKLðwÞdw: ð9Þ

Since moment generating functions simply multiply
under convolution, i.e., M(s;K)=M(s;KA)M(s;KL), the per-
sistence condition Eq. 3 is easily computed once the two
separate kernels or their moment generating functions are
known. Similarly, the approximate condition Eq. 8 is easily
computed for the convolution of two kernels since moments
are additive under convolutions and skewness and kurtosis
of K can be computed as weighted averages of these
quantities for KL and KA, see Appendix A for details.

We derive the redistribution kernel for the larval stage
from a mechanistic description of the dispersal process, using
physically measurable quantities (Neubert et al. 1995). We
assume that larvae experience random diffusion, d, and
advection with effective speed v, which can be significantly

Fig. 1 Comparison of three kernels and persistence conditions for
identical mean and variance. a The three kernels, Gauss, shifted Laplace,
and asymmetric Laplace with mean μ=2/3 and variance σ2=10/9. b The
critical threshold R* for persistence as a function of the non-dimensional
variable μ2/σ2. c The true and approximate persistence condition for the
asymmetric Laplace kernel and, for comparison, the values for the
Gaussian kernel, i.e., the values that result from taking the mean and
variance only
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smaller than the average stream flow due to boundary layers
(Speirs and Gurney 2001) and time spent on the benthos
(Pachepsky et al. 2005). We consider three alternative
descriptions of larval emergence times. Emergence can be
after a certain fixed maturation time, τ, (FE), or at a constant
rate, a, (CE), or at a constant rate, a, after a delay of τ time
units, (DE). The different redistribution kernels, KL1–KL6,
resulting from these assumptions, are summarized in Table 1.
Details of the derivation are given in Appendix C.

We proceed in a similar fashion to derive kernels for adult
dispersal, where we denote diffusive flight by D, and potential
upstream bias by V, with v and V having opposite sign. We
only consider the two cases that oviposition happens at a fixed
time, T, after emergence (FP), or continuouslywith rateA, (CP).
The resulting kernels, KA1–KA5, are summarized in Table 2.

Application of the main formula to the drift paradox

We now use condition (3) together with the mechanistic
movement descriptions above to find the precise quantita-
tive relationships between larval dispersal downstream,
adult upstream bias, net reproductive rate, and persistence.

We start with the baseline case that larvae exhibit no
random upstream movement (d=0) and that adults have no
upstream bias in their flight (V=0). We consider fixed time
or continuous emergence for larvae and fixed time or
continuous oviposition for adults. Hence, we consider the
four cases FE/FP, FE/CP, CE/FP, and CE/CP according to
Tables 1 and 2. We choose parameters such that the two
different kernels for the larval stage have the same mean,
and the two kernels for adult dispersal have the same
variance. We plot the resulting threshold R* as a function of
advection velocity, v, in Fig. 2. (Explicit calculations are
relegated to Appendix D.) The kernels KL4*KA1 (FE/FP)
and KL4*KA2 (FE/CP) are identical in mean and variance,
but differ in the tails. The resulting threshold R* is higher
when the tails of the kernel decay faster. This result was to
be expected since the spreading speed is determined by the

weight in the tails of a distribution (Kot et al. 1996). The
other two kernels KL5*KA1 (CE/FP) and KL5*KA2 (CE/CP)
are also identical in mean and variance, but have a larger
variance than the former ones. Consequently, the threshold
R* is even lower for these kernels.

Next, we consider the role of upstream bias in adult
flight, using the same four combinations of dispersal
mechanisms as above. We fix the downstream drift velocity
of the larvae, v>0, and vary the upstream speed of adults,
V<0, so that the bias is in the opposite direction of larval
drift. At V=0 the upstream bias is zero, for V<0 the
upstream bias increases. We plot the critical threshold R* as
a function of the probability that an adult moves upstream
from where it emerges (Fig. 3). As upstream bias increases,
the critical threshold decreases. This decrease is stronger for
the two combinations that involve the (asymmetric) Laplace
kernel (FE/CP and CE/CP) than for the Gaussian kernels
(FE/FP and CE/FP), again demonstrating the importance of
the tails of the distribution. The critical upstream moving
probability that exactly balances downstream drift (so that
R*=1) is lower for the former two cases than for the latter.

When the mean dispersal distance downstream equals the
mean dispersal distance upstream then the critical threshold
for persistence is R*=1, independent of the shape of the two
kernels. This can be seen as follows. The moment generating
function, M(s), of the convolution of the adult and larvae
dispersal kernels satisfies M′(0)=0, since its slope at zero is
the sum of the slopes of the moment generating functions of
the individual kernels, which, in turn, are the respective
means. Furthermore, M(s) is convex. Therefore, the unique
minimum ofM is at zero, and since M(0)=1, we have R*=1.
Hence, a single species where the mean upstream distance
exactly balances the mean downstream drift requires the least
possible R* for persistence. Kopp et al. (2001) showed that
this exact balance is indeed an evolutionary stable strategy in
the presence of competition.

When the mean downstream drift is larger than the mean
upstream movement, then the critical threshold R* sensitively

Table 1 Redistribution kernels for larval dispersal mechanisms

Process Kernel Mean/variance M(s) Reference

d>0 FE G(z; μ, σ2) μ=vτ, σ2=2dτ exp(μs+σ2s2/2) L1

CE L(z; α, β) m ¼ 1=a � 1=b, s2 ¼ 1=a2 þ 1=b2 ab
a�sð Þ bþsð Þ L2

DE G z;m; s2
� �

»L z;a; bð Þ m ¼ mþ 1=a � 1=b, s2 ¼ s2 þ 1=a2 þ 1=b2 L3

d=0 FE δ(−vτ) μ=vτ, σ2=0 exp(μs) L4

CE E(λ) m ¼ 1=l ¼ v=a, σ2=v2/a2 l
l�s L5

DE δ(−vτ)*E(λ) m ¼ vt þ v=a, σ2=v2/a2 L6

All cases assume an effective advection speed v≠0. The kernels are the Gaussian, G, Eq. 4, the asymmetric Laplace, L, (Appendix B, Eq. B5), the
delta distribution, δ, and the exponential distribution, E, with parameter λ. The stars in the DE cases refer to convolution Eq. 9. The resulting
moment generating functions in the DE cases are simply the products of the two respective moment-generating functions. The values of α, β are
given in Appendix D. Other parameters are as in the text
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depends on the movement mechanisms. We explore this
relationship in Fig. 4. We vary the advection speed for larvae
and choose the upstream flight speed for adults in such a way
that the total mean displacement remains constant. In the case
FE/FP, the resulting Gaussian kernel is independent of the
advection speed, and hence the critical threshold is constant. In
all other cases, however, the critical threshold is a decreasing
function of the advection speed. In other words, faster
upstream flight more than compensates for faster downstream
drift even though the average displacement is constant.

We now consider the case that larvae show random move-
ment, i.e., d>0. Such small-scale random movements can be
active (larvae crawling on the stream benthos, see Townsend
and Hildrew (1976)) or passive (non-laminar flow and eddies
during drift, see Svendsen et al. (2004)). As d increases, the
critical threshold R* will decrease, independent of the detailed
movement assumptions. As an example, we consider the case
that larval and adult movement occurs for a fixed time period

(FE/FP, see Tables 1 and 2). Then the resulting kernels for
larval and adult dispersal are Gaussian with means μL, μA,
and variances s2

L; s
2
A, respectively. The combined redistribu-

tion kernel between generations is again Gaussian with
means and variances added. Hence, the critical R* is given by
Eq. 7. The elasticity of R* with respect to s2

L ¼ 2dt is

1

R»

dR
»

ds2
L

¼ � mL þ mAð Þ2
4 s2

L þ s2
A

� �2 < 0: ð10Þ

The parameter R in model (1) denotes the average number
of offspring recruited from a single adult individual. For many
stream invertebrates, a major source of mortality is predation
in the drift, so that predation and dispersal are intimately
linked. We can incorporate predation in the drift into the
mechanistic dispersal models by adding a removal term with
death rate m into the diffusion equation in Appendix C.
Assuming that all individuals drift for a fixed period of time,
τ, the resulting kernel is the Gaussian kernel KL1, scaled by
the factor exp(−mτ). On the other hand, if we assume that
individuals settle at a constant rate a, then the resulting kernel
is the asymmetric Laplace kernel KL2, scaled by a/(a+m).
Assuming that the average time in the drift is the same in both
cases (τ=1/a), we see that the fraction of larvae surviving drift
mortality is larger for constant settling than for fixed time
settling. Hence, the dispersal mechanism influences the neces-
sary number of larvae produced by a single adult individual.

Our formalism can, of course, also be applied to study
the precise persistence conditions for the ‘diffusion hypoth-
esis’ (e.g., Speirs and Gurney 2001), i.e., the possibility of
small-scale random movements of benthic organisms with
no winged adult stage being the sole mechanism for
persistence. We simply consider the redistribution kernel
between generations to be the kernel for the larvae (K=KL),
as described in Appendix C and Table 1. The general
formula and the approximate conditions still apply.

Fig. 2 The critical threshold R* for population persistence for four
different kernels, as described in Tables 1 and 2. Parameter values are
d=0, τ=1, and a=1, so that the mean for the kernels describing larval
dispersal are the same (μ=1/λ). Similarly, since V=0, T=1, and A=1,
the variances of the kernels for adult dispersal are identical (σ2=2/α2)

Table 2 Redistribution kernels for adult dispersal mechanisms

Process Kernel Mean/Variance Reference 

D>0  

V=0  

FP  G (z ;0,σ 2 ) μ = 0, 2 = 2DT A1  

CP  L (z ;α, ) μ = 0,  2 = 2 2 = 2D/A A2  

D>0  

V<0  

FP  G (z ; μ, σ 2 ) μ = −VT, 2 = 2DT A3  

CP  L (z ; , ) μ = 1 − 1 =V/A, 

σ 2 = 1/α 2 + 1/β 2=(V/A)2 +2D/A

A4  

D=0  

V<0  

CP  E ( − z ; ) μ = 1/ = V /A , 2 = V 2 A2 A5  

α

α β

λ

σ

σ /α

σ

/α /β

λ σ /

Upstream bias is denoted by V<0, as the larval advection is assumed to be in the positive direction. The parameters α, β in the Laplace kernel are
given by Appendix C, Eq. C1 with small letters replaced by capital ones
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Discussion

The research reported here starts by proposing a formal
condition for population persistence in advective systems: a
population can persist at any location in a homogeneous
habitat if and only if it can invade upstream. This condition
leads to a recipe Eq. 3 that defines the minimal value for the
net reproductive rate for population persistence. Besides its
intuitive appeal, our recipe also has computational advan-
tages. The required minimization can be carried out
numerically relatively easily. The alternative way of
determining persistence conditions via dominant eigenval-
ues of certain differential or integral operators on bounded
domains is much more laborious (see Speirs and Gurney
2001; Pachepsky et al. 2005. Lutscher et al. 2005).

Most of our findings can be related to insights derived from
the large, and growing, body of literature on the speed of
spread of invasions. In particular, while persistence conditions
in the absence of advection are insensitive to long-distance
movements (Lockwood et al. 2002), invasion speeds are
strongly influenced by the form of the tails of dispersal
kernels (e.g., Kot et al. 1996); similar sensitivity is illustrated
by our demonstration that different kernels with the same
coefficient of variation may lead to very different persistence
conditions (Fig. 1b). The ‘upstream’ tail of the kernel appears
to be particularly important, with the persistence condition
being especially stringent when this tail decays rapidly
(Fig. 1c). This critical role played by the kernel’s tail presents
challenges for ecologists as the form of tails are
notoriously hard to estimate from data with corresponding
challenges for estimating invasion speeds (Clark et al.
2003). However, Clark et al. suggest that invasion speed
calculations “remain valuable for comparing spread poten-
tial among species and for identifying potential for
invasion”. A similar argument holds for the theory
developed in this paper.

We assumed that the tails of the dispersal kernels are
exponentially bounded so that the moment generating
functions exist. All the kernels that we derived from partial
differential equation models satisfy this assumption (Table 1
and 2). When the tails of the dispersal kernels are not
exponentially bounded, invasions may accelerate (Kot et al.
1996) so that no spreading speed can be defined and our
recipe does not apply. Lutscher et al. (2005) numerically
found that populations with fat-tailed redistribution kernels
can persist in bounded domains even for very high advection
speeds. It is tempting to conjecture that when invasions
accelerate without bound, populations may persist in the face
of arbitrarily fast advection. However, since extreme
dispersal events are crucial for accelerating invasions, there
could be a significant discrepancy between persistence on
bounded and invasion in unbounded domains (see below).
The theories developed by Clark et al. (2001) or Kot et al.
(2004) might be helpful to explore this question further.

Faced with the difficulty of estimating dispersal kernels, it is
tempting to invoke “rules of thumb” to determine the
likelihood of population persistence. For the systems consid-
ered here, the natural choice would be that of Byers and Pringle
(2006) that assumes a Gaussian dispersal kernel—our Eq. 7.
Absent information other than mean and variance, this is an
obvious starting point. However, our analysis shows that the
validity of such an approximation strongly depends on the
particular modeling assumptions. The persistence condition
derived from Gaussian dispersal may crudely underestimate
the true persistence condition (Fig. 1b,c) or considerably
overestimate the true condition (Figs. 2, 3 and 4). The
obvious statement that different mechanistic assumptions lead
to different persistence conditions seems to be excarbarated
by the presence of unidirectional flow.

Four important mathematical simplifications were in-
volved in this work: (1) a one-dimensional river; (2) an

Fig. 4 The critical threshold R* for population persistence for four
different kernels, as described in Tables 1 and 2. Parameter values are d=0,
τ=1, and a=1, for the kernels describing larval dispersal. Adult dispersal is
biased upstream in such a way that the combined effect of larval and adult
dispersal is a downstream mean dispersal distance of one. The other
parameters are T=1 and A=1. For a more detailed explanation, see text

Fig. 3 The critical threshold R* for population persistence for four differ-
ent kernels, as described in Tables 1 and 2. Parameter values are d=0,
τ=1, v=2, and a=1, for the kernels describing larval dispersal. Adult dis-
persal is biased upstreamwith speedV ranging between 0 and −2. The other
parameters are T=1 and A=1. For a more detailed explanation, see text

278 Theor Ecol (2010) 3:271–284



infinitely long river; (3) a linear model; and (4) no spatial
heterogeneity in rates. We now discuss each of these.

& One-dimensional river. Almost all mechanistically based
theory for population dynamics all comes from 1-D
models. This is not a requirement for our persistence
condition (possibility of upstream invasion) to be
reasonable, nor for our remarks on the importance of
tails of distributions to remain valid. For rivers that are
much longer than wide, a 1-D model seems reasonably
appropriate. However, adding even one extra space
dimension may substantively change the form of any
mechanistically derived 1-D approximation to the dis-
persal kernel through the inclusion of back-eddies and
other aspects of turbulent flow. One of us (RMN), with
collaborators, is currently exploring this question using a
previously parameterized 2-D hydraulic model for a
section of river in central California. Whether some or all
of this theory applies to one-dimensional transects in
oceans, e.g., coastlines with long-shore currents, is a
more difficult question that requires additional investiga-
tion. For example, the dispersal of larvae in the coastal
ocean may be influenced by large-scale eddies. This may
produce dynamics for which our use of the dispersal
kernel is inappropriate as all larvae originating at a
particular location in a given year may travel together to
another location (Siegel et al. 2008).

& Infinitely long river. For mathematical tractability, we
set the limits of integration in the master Eq. 1 to be ±∞.
Persistence conditions derived for an infinite system are
those for which the “critical domain size” is infinity
Lutscher et al. 2005; Pachepsky et al. 2005. In
principle, this leaves open the question of whether our
theory can be applied to a real stream or river, which of
course has finite length. Calculations in Appendix A.4
demonstrate that the critical domain size decreases
rapidly with increasing growth rate (see Figure in
Appendix A), i.e., the critical conditions for infinitely
long rivers are only slightly less stringent for a large
range of finite length rivers. For management applica-
tions, one would in any case require the growth rate to
exceed the critical R*, simply to minimize the effects of
demographic or environmental stochasticity.

& We considered a linear model since persistence con-
ditions are determined by the linearization at zero, as
long as there is no Allee effect. When population
growth is monotone, then the linear model (1) has the
same invasion speed as the nonlinear model (Wein-
berger 1982). Even for a large class of overcompensa-
tory growth functions, the invasion speed is still given
by the linearization at zero (Hsu and Zhao 2008).
Density dependence in movement, rather than popula-
tion dynamics, can lead to novel qualitative behavior

(Cantrell and Cosner 2006; Lutscher 2008). However,
rather than speculating on general effects, we suggest
that our framework can be used to explore the effects of
particular mechanisms when modeled properly. Interac-
tion with other species, competitors or predators alike,
certainly affects population dynamics, but not necessar-
ily persistence conditions since, following invasion
analysis, linearization at low densities renders the
equation for the focal species independent of the others.

& No spatial heterogeneity. This is probably the greatest
limitation of the theory. Previous work by Lutscher et
al. (2006) provides some pointers to possible conse-
quences. These authors studied continuous time models
with alternating ‘good’ and ‘bad’ patches, but with no
downstream ‘trend’ in model parameters. They con-
cluded: “If the advection speed in good patches is larger
than the critical speed, then the population cannot
persist nor invade upstream, if it is smaller, then there
are parameter values such that the population can
persist and invade upstream”. Clearly spatial heteroge-
neity at some spatial scales will impact the conclusions
in the present paper, but the nature of these changes is a
subject requiring future research.

Many organisms that have to adapt to advective media
have synchronized reproduction and biphasic life histories.
Our approach offers a particularly powerful theoretical tool
for modeling populations of these organisms. The dispersal
kernel involves a convolution Eq. 9, but the moment
generating function is simply the product of the moment
generating functions for the individual stages. This opens
the way to relatively straightforward investigations of the
effects on persistence of life history changes in the
individual stages, as exemplified by the examples consid-
ered here. Our result on the minimization of R* points the
way to other applications in life history theory.
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Appendix A: Analytical results and derivations

A.1 Derivation of the main formula

For the linear integrodifference Eq. 1 Kot et al. (1996) gave
the relationship between the population growth rate, its
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movement behavior, and the spreading speed, c, in
parametric form

c ¼ M 0ðsÞ
MðsÞ ; R ¼ exp sM 0ðsÞ=MðsÞf g

MðsÞ ; ðA1Þ

where s is related to the steepness of the population density at
the advancing edge of its range. The speed is zero only ifM′(s)=
0, which, sinceM is a convex function (see below), implies that
M(s) is at its minimum, s*. Therefore, the speed is zero
precisely at the critical value R*=1/M(s*). By definition,M(0)=
1. Furthermore, if there is movement bias to the right then

M 0ð0Þ ¼
Z1
�1

xKðxÞdx > 0;

which implies that M(s)<1 for some s<0, and hence R*>1.
The second derivative

M 00ðsÞ ¼
Z1
�1

x2KðxÞ exp sxð Þdx > 0;

is positive since all functions under the integral sign are
positive. Therefore, M is convex.

A.2 The approximate persistence condition

To derive the approximate persistence condition, we work
with the cumulant generating function, which is the logarithm
of the moment generating function, C(s)=ln{M(s)}. Since the
logarithm is a monotone function, the unique minimum of M
(s) gives rise to a unique minimum of C(s) for the same
critical value s*. The first four terms of the Taylor series of
the cumulant generating function are given in terms of the
mean, variance, skewness, and excess kurtosis as

CðsÞ ¼ msþ s2s2

2
þ g1s

3s3

6
þ g2s

4s4

24
: ðA2Þ

For the Gauss kernel, we have g1 ¼ 0 ¼ g2, and the
minimum of C(s) occurs at s*=−μ/σ2. If we assume that γ1,
γ2 are close to zero, we expect the minimum to occur near
that same value. Therefore, we differentiate C(s), set
s
» ¼ �m=s2 þ ", and arrange by powers of ε. This gives

C0 s
»

	 

¼ g1m

2

2s
� g2m

3

6s2
þ " s2 � g1ms þ g2m

4

2

� �
þ O "2

� �
:

ðA3Þ

In the first order approximation, i.e., discarding higher
powers of ε, the minimum occurs at C′(s*)=0 if

" ¼ m2

6s2

g2m� 3g1s
s2 � g1ms þ g2m4=2ð Þ : ðA4Þ

Then the critical threshold R* is given by

R
» ¼ 1

M s»
� � ¼ exp �C s

»
	 
	 


¼ exp �C "� m=s2
� �� �

:

ðA5Þ

A.3 The approximate condition for convolutions of kernels

The approximate formula (A5) is particularly useful for
kernels that arise as a convolution of two kernels (see
Eq. 9) since the cumulants of a distribution simply add
under convolution. More precisely, if KA, KL are two
kernels with moment generating functions MA, ML and
means μA, μL, variances σ

2
A, σ

2
L, skewness γ1A, γ1L, and

excess kurtosis γ2A, γ2L, then the convolution kernel K=
KA*KL has the cumulant-generating function

CðsÞ ¼ ln MðsÞð Þ ¼ ln MAðsÞMLðsÞð Þ
¼ ln MAðsÞð Þ þ ln MLðsÞð Þ ¼ CAðsÞ þ CLðsÞ;

and therefore, the characteristic quantities of the kernel K
are given by

m ¼ mA þ mL; s2 ¼ s2
A þ s2

L;

g1 ¼ s3
Ag1Aþs3

Lg1L
s3 ; g2 ¼ s4

Ag2Aþs4
Lg2L

s4 :

Formulas (A4) and (A5) then give the approximate
persistence condition for the convolution of the two kernels.

A.4 Proof of the persistence condition and sensitivity
for finite rivers

For a particular choice of dispersal kernel, we show that a
population can persist on an arbitrarily long bounded river
if and only if it can invade upstream. We then demonstrate
that the length of a river required to sustain a population
decreases very rapidly as a function of the population
growth rate.

Population dynamics on a finite river of length L,
represented by the interval [0, L], are given by the
integrodifference equation

Ntþ1ðxÞ ¼ R

Z L

0
K x� yð ÞNtðyÞdy;

where we assume that individuals who disperse outside of [0,
L] are lost from the population. In particular, we assume that
individual behavior does not change at the boundaries. In the
more general case when we wish to include particular
behavior at the boundary, we write K(x,y), see for example
van Kirk and Lewis (1999). We look for the dominant
eigenvalue of the operator on the right hand side, i.e., we set
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Nt+1=lNt. The population can persist on the domain if l>1.
Alternatively, the population can persist if the dominant
eigenvalue of

vfðxÞ ¼
Z L

0
K x� yð ÞfðyÞdy; ðA6Þ

is greater than 1/R. It can be shown that v is increasing
from 0 to 1 as L increases from 0 to infinity (Lutscher and
Lewis 2004). Given R, the critical domain size is then the
value of L for which v=1/R. In general, the dominant
eigenvalue or even the critical domain size cannot be
calculated explicitly. For the special case that K is the
asymmetric Laplace kernel (Appendix B, B5), however,
progress can be made by converting the integral equation
into a second-order differential equation (see Lutscher et
al 2005). Given 0<v<1, one can calculate the critical
domain size L above which the population described by
(A6) can persist from

L ¼
4 arctan 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ab

v aþbð Þ2 � 1
q� �

a þ bð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4ab
v aþbð Þ2 � 1

q : ðA7Þ

As a function of v, the critical domain size approaches
infinity as v approaches 4ab

aþbð Þ2.

The persistence threshold R* for the asymmetric Laplace
kernel according to our recipe (3) is

R
» ¼ a þ bð Þ2

4ab
;

see (B8), i.e., the persistence condition is valid in the
limiting case for an arbitrarily long river. In other words:
For every R>R* the upstream speed is positive, hence
recipe (3) predicts persistence. At the same time, for every
R>R*, expression (A7) gives the finite, but potentially
large, domain size L, above which the population can
persist in the bounded river.

To demonstrate how rapidly the critical domain size
drops for values R>R* we choose R=ρR*for some ρ>1,
then the critical domain length becomes

L ¼ 4 arctan 1=
ffiffiffiffiffiffiffiffiffiffiffi
r� 1

pð Þ
a þ bð Þ ffiffiffiffiffiffiffiffiffiffiffi

r� 1
p :

The plot in Figure (A) shows that the critical domain size
is a rapidly decreasing function near ρ=1, so that our
persistence condition (3), while strictly speaking only true
for infinitely long rivers, is a very good approximation for
considerably shorter finite rivers.

Note that the integral operator in Eq. A6 is a non-
negative operator. If we assume that the kernel is positive
everywhere, then the eigenfunction corresponding to the
dominant eigenvalue is also positive everywhere. Due to
that fact, it is irrelevant for population persistence where in
the domain the population is introduced. The location of
introduction does, however, influence the time it takes for
the total population to reach a certain density after
introduction. Hence, in a stochastic rather than determinis-
tic model, the location of population introduction could
strongly influence its probability of persistence.

Appendix B: The two variants of the Laplace kernel

B.1 The shifted Laplace kernel

We take the symmetric Laplace kernel (back-to-back
exponential) and shift it to some nonzero mean, analogous-
ly to the Gaussian kernel (4). The resulting kernel is

KðzÞ ¼
ffiffiffiffiffiffiffiffi
1

2s2

r
exp � z� mj jffiffiffiffiffiffiffiffiffiffi

s2=2
p

 !
; ðB1Þ

with mean μ and variance σ2. The minimum of the moment
generating function,

MðsÞ ¼ exp msð Þ
1�s2s2=2 ; s2 < 2=s2 ; ðB2Þ

occurs at

s
» ¼ 1

m
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2m2

s2

r !
; ðB3Þ

Fig. A The critical length of a river for population persistence
decreases rapidly as a function of ρ, see text. The parameter values are
a þ b ¼ 1
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which gives a persistence threshold of

R
» ¼ s2

m2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2m2

s2

r
� 1

 !
exp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2m2

s2

r
� 1

( )
: ðB4Þ

B.2 The asymmetric Laplace kernel

The symmetric Laplace kernel can be derived from a
mechanistic movement model, assuming individuals move
randomly without bias and settle at a constant rate (Neubert
et al. 1995). Assuming that individual movement is biased,
one arrives at the asymmetric Laplace kernel (Lutscher et
al. 2005), see Appendix C. It is given by

L z;a; bð Þ ¼ f exp azð Þ; z � 0;
f exp �bzð Þ; z � 0;

�
ðB5Þ

with normalizing constant f ¼ ab= a þ bð Þ, α, β>0. The
mean and variance of this kernel are m ¼ 1=a � 1=b and
s2 ¼ 1=a2 þ 1=b2, respectively. The skewness and kurtosis
are given by

g1 ¼ 2 b3�a3

a2þb2ð Þ3=2 ; g2 ¼ 6 b4 þ a4

a2 þ b2
� �2 :

The minimum of the moment generating function

MðsÞ ¼ ab
a�sð Þ bþsð Þ ; �b < s < a ; ðB6Þ

occurs at

s
» ¼ a � b

2
; ðB7Þ

which gives a persistence threshold of

R
» ¼ a þ bð Þ2

4ab
¼ 1� m2

2s2

1� m2

s2

: ðB8Þ

Note that for the asymmetric Laplace kernel, we always
have μ2<σ2, since

m2 ¼ 1

a
� 1

b

� �2

¼ 1

a2
� 2

ab
þ 1

b2
<

1

a2
þ 1

b2
¼ s2:

Now we can understand why the critical R* goes to
infinity as μ2→σ2. In this limit, the term 1/αβ has to
approach zero, which implies that either 1/α or 1/β
approach zero. But then, the asymmetric Laplace kernel
approaches the one-sided exponential distribution, which
allows no upstream movement at all, so that the population
cannot persist, no matter how large R*.

Appendix C: Derivation of kernels from PDEs

Assuming that an individual performs a potentially
biased random walk for a certain time and stops at a
certain rate, the probability density function u(t,x) of the
location of the individual satisfies the partial differential
equation

@u
@t ¼ d @2u

@x2 � v @u
@x � aðtÞu; u 0; xð Þ ¼ dðxÞ

where d is the diffusion coefficient, v is the drift speed,
and a(t) is the rate at which the individual stops. The
dispersal kernel results as the density of the locations
where the individual stops, i.e.,

KðxÞ ¼
Z1
0

a tð Þu t; xð Þdt;

see Neubert et al. (1995) or Lutscher et al. (2005).
If the random walk occurs for a fixed period of

time, τ, then the settling rate becomes a delta distribution
aðtÞ ¼ d t � tð Þ and the resulting kernel K(x)=u(τ,x) is
simply a Gaussian kernel with mean μ=vτ and variance
σ2=2dτ.

If instead we assume that the stopping times are
exponentially distributed with mean 1/a, then the settling
rate is a constant a(t)=a, and the asymmetric Laplace kernel
results with parameters

a ¼ vþ ffiffiffiffiffiffiffiffiffiffiffi
v2þ4ad

p
2d ; b ¼ v� ffiffiffiffiffiffiffiffiffiffiffi

v2þ4ad
p
2d

��� ���; ðC1Þ

In terms of the random walk parameters, the mean of the
asymmetric Laplace kernel is μ=v/a and the variance is
s2 ¼ 2d=aþ v2=a2. For v=0, we obtain the symmetric
Laplace kernel (see Neubert et al. 1995).

Appendix D: Kernels for stream insects: explicit examples

D.1: FE/FP

Larval emergence and oviposition occur after a fixed period
of time. The resulting kernel for larveae is a delta
distribution (KL4), for adults a Gaussian kernel results
(KA1). The convolution is Gaussian with the means and
variances added. The calculations for the critical R* are as
in the first example in the main text.

D.2: FE/CP

When larvae emerge at a fixed time and oviposition occurs at
a constant rate, we obtain a delta distribution (KL4)
convolved with a Laplace kernel (KA2). The result is the
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shifted Laplace kernel. All the calculations are as presented
in Appendix B.

D.3: CE/FP

Larvae emerging at a constant rate give rise to an
exponential kernel (KL5), whereas oviposition is described
by a Gaussian kernel (KA1). The convolution of these two
does not have a simple closed-form representation of the
kernel, but the moment generating function is

MðsÞ ¼ l
l�s exp s2s2=2ð Þ; s < l : ðD1Þ

Differentiating and setting M′(s)=0 to zero gives

l
l� s

þ ls2s ¼ 0:

The resulting quadratic polynomial in s has one
admissible root, namely

s
» ¼ l

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2

4
þ 1

s2

s
; ðD2Þ

which then gives the threshold value as R*=1/M(s*).

D.4: CE/CP

When larval emergence and oviposition both happen at a
constant rate, the resulting kernels are the exponential (KL5)
and the Laplace kernel (KA2). It is tedious but possible to
calculate their convolution explicitly. However, the relevant
moment generating function simply is

MðsÞ ¼ l
l�s

a2

a2�s2 ; �a < s < min a; lf g: ðD3Þ
Again, the critical value for M(s) is given by the solution

of M′(s)=0 or

l
l� s

þ 2s

a2 � s2
¼ 0:

The resulting quadratic equation for s has the solution

s
» ¼ l

3
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2

9
þ a2

3

s
; ðD4Þ

and the critical threshold follows from that.
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