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Abstract

Two cue validity models for category learn-
ing were compared to the exemplar model of
Medin & Schaffer (1978). The cue validity mod-
els tested for the use of two cue validity mea-
sures from the Competition Model of Bates &
MacWhinney (1982, 1987, 1989) (“reliability”
and “overall validity”); one of these models ad-
ditionally tested for “rote” associations between
items and categories. Twenty-four undergradu-
ate subjects learned to classify pseudowords into
two categories over 40 blocks of trials. The over-
all fit of the cue validity model without rote as-
sociations was poor, but the fit of the model
that included these was nearly identical to the
exemplar model (R? = .89 vs .90). However,
both cue validity models failed to capture dif-
ferences predicted by exemplar similarity, but
not cue validity, that were apparent as early as
the first block of learning trials. The critical pa-
rameters in the Medin-Schaffer model were fit
as a logarithmic function of the learning block
to provide a uniform account of learning across
the 40 blocks of trials. The evidence that we
provide suggests that competition at the level
of exemplars should be considered as a possible
extension of the Competition Model.

*This paper is based in part upon work supported by
the Texas Advanced Research Program under Grant No.
0216-44-5829 to the first author.

Models of category learning have appeared
in at least two distinct guises. Independent-
cue models (Anderson, 1991; Beach, 1964; Reed,
1972; Rosch & Mervis, 1975) posit the summing
of weighted “evidence” for a category derived
from information provided by individual cues
or features. Eremplar models (Kruschke, 1992;
Medin & Schaffer, 1978; Nosofsky, 1984) usu-
ally require the analysis of exemplars into sim-
pler components, but compute the evidence for a
category on the basis of between-item similarity.

The Competition Model of Bates and
MacWhinney (1982, 1987, 1989) is an indepen-
dent cue model that has been quite successful
in accounting for the learning of natural lan-
guage categories. An important thesis in this
model is that children and adults weight cues
differently depending on their level of learning.
These differences are described through vari-
ous cue validity measures that assess the rela-
tive contribution of a cue to category selection.
Taraban, McDonald, & MacWhinney, 1989), for
instance, used human and computer simulation
data to argue that overall validity provides the
best characterization of cue weights early in
learning; later in learning the weights are best
described by reliability and then by a least-mean
squares solution. McDonald & MacWhinney
(1991) have provided evidence for early use of
overall validity and later reliance on conflict va-
lidity.
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Although the Competition Model provides
the best current account for learning linguis-
tic categories, the exemplar view has not been
explored and it is still not known whether the
Competition Model could benefit from an ex-
emplar approach. In this paper we are not con-
cerned with the standard Competition Model
questions that focus on shifts in weights of in-
dependent cues. Instead we set up contrasting
predictions for independent-cue models and an
exemplar model in a learning experiment to test
whether the exemplar model provides a better
fit to performance at any stage in learning. In
an experimental setting, it is difficult to system-
atically explore language learning with natural
language materials, so in some of these studies
the experimenters have resorted to using artifi-
cial materials (e.g. McDonald & MacWhinney,
1991). We have adopted the same approach in
the present study using a very simple set of pseu-
dowords for which subjects learned category la-
bels over the course of a single, long, experimen-
tal session.

Three models: Cue Validity, Cue +
Rote, Exemplar

Reliability is closely related to formulations
in Beach (1964) and Reed (1972). For any given
cue and a category X, reliability corresponds
to the conditional probability P(X|cue). In the
Cue Validity model, we fit one parameter for
each letter position in the pseudoword stimuli to
allow for differences in attention to cue reliabil-
ities in those positions. As indicated in (1), the
“evidence” for some category X given a test item
t is a weighted sum of cue reliabilities. Overall
validity corresponds to the product of the over-
all frequency of a cue and its reliability. In the
context of the present study, it is important to
point out that the overall frequency of each cue
was 0.5. Thus, a fitted overall validity model dif-
fers from a reliability model by a constant factor
- i.e. we could fit the overall validity model di-
rectly from (1) by simply multiplying each fitted
parameter by 2. This means that (1) should give
a good account of a substantial part of learn-
ing performance, based on current Competition

Model thinking.

Ex = Z a; * reliability; (1)

Is a weighted model like (1) sufficient for de-
scribing category learning? Clearly it is not,
particularly if the categories are “non-linearly”
separable, a condition which by definition pre-
cludes complete learning. MacWhinney, Lein-
bach, Taraban, & McDonald (1989) discuss the
possibility that cue-to-category associations like
those represented in (1) are supplemented by
“rote” associations of items to their respective
category. The Cue + Rote model discussed in
this paper is identical to (1), except that the sum
includes an additional product (a; * item) that
estimates the strength of association of pseu-
dowords to their respective categories, with the
value of item equal to 1 for its association to its
own category, and 0 for its association to the
competing category. Does adding a parameter
for rote associations render the reliabilities su-
perfluous? The answer is “no.” If subjects sim-
ply learned “paired associations” there would be
no between-item differences in fit to a category
(viz. typicality), which is, in general, unlikely
for categories and not the case for our stimuli,
as described later.

The Ezemplar model presented in (2) is the
one used in Medin & Schaffer (1978). In this
paper, (2) computes the overall similarity of an
item ¢ to a category X. Similarity(t,z) = [] s;,
with an s; fitted for each letter position, com-
putes the similarity of an item ¢ to a particu-
lar category member z. As in Medin & Schaf-
fer, s; = 1 if letter; in z and in ¢t match, and
0 < s; < 1 if they mismatch. In the tests
done by Medin & Schaffer (1978), independent-
cue models that did include item-level (rote) in-
formation generally did not appear to do more
poorly than the exemplar model, motivating a
further examination here of both types of mod-
els.

Yzex Sim(t, z)
Yeex Sim(t,z) + Xyey Sim(t,y)

In order to compare the models, we chose to
use an instantiation of Type V stimuli in Shep-
ard, Hovland, & Jenkins (1961). This set was
important since cue validity and exemplar sim-
ilarity predict different patterns of performance

EX]: = (2)
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Figure 1: Overall similarity values for stimuli in
Table 1, using (2).

across the learning trials. First, as shown in
Figure 1, similarity calculations for the stim-
uli in Table 1 result in three groups, which we
will term the high-, medium-, and low-similarity
groups. The stimuli fall into these three groups
for any value of s between 0 and 1, where s is the
parameter estimated for (2) above. A sample
set of similarities is shown in Table 1 for s = %
On the other hand, the sum of cue validities for
each item in Table 1, for a; = 0.33, shows that
cue validities result in only two distinct groups.
This is true whether the cue validity measure
is “reliability” or “overall validity,” as explained

above.

Pseudo— Category OQuerall Y Cue
word Label Sim  Validity
zub Jets .70 (.30) .58 (.42)
zud Jets .64 (.36) .58 (.42)
zob Jets .64 (.36) .58 (.42)
vod Jets .51 (49) .42 (.58)
vub Sharks .70 (.30) .58 (.42)
vud Sharks .64 (.36) .58 (.42)
vob  Sharks .64 (.36) .58 (.42)
zod Sharks .51 (.49) .42 (.58)

Table 1. The overall similarities, using (2) and
s = 1), and cue validities, (using a; = 0.33), are
for the item’s category; the value for the com-
peting category is shown in parentheses.

The crucial comparison in this experiment
was between the high similarity (zub, vub) and
medium similarity (zud, zob, vud, vob) groups.
Using the estimates shown in Table 1, the Ezem-
plar model predicts a difference between these
groups, based on their relative similarities. Nei-
ther the Cue Validity model nor the Cue + Rote
model predicts a difference, and, in fact, there
is no set of parameters for these two models
that could separate the items into the high and
medium subsets. In this experiment we tested to
see whether the exemplar model provided a bet-
ter fit to the data than either of the cue validity
models at any point in learning.

Method

Subjects. Twenty-four undergraduates par-
ticipated in this experiment for course credit.

Stimuli. The stimuli are shown in Table 1.
Each category consisted of 4 three-letter pseu-
dowords, which were presented to subjects as
codenames for gang members in the Jets and
the Sharks.

Procedure. Each subject was presented
with 40 blocks of trials on an IBM AT clone,
with the pseudowords appearing in random or-
der within each block. Subjects used a rating
scale of 0-9 to indicate membership for both
gangs — i.e. subjects rated the pseudoword twice
on each trial. The order of ratings was ran-
dom. Feedback was provided after each trial
to indicate the correct gang. Subjects were
warned that early on in the experiment they
would know little about the gang membership,
so they should avoid extreme ratings.

Results

Since subjects were instructed to use whole
number ratings, a middle rating (4.5), important
in the early trials, was not available to them, and
subjects tended to begin with ratings of 5. In
order to convert the ratings to the range 0-1, to
correct for the artifact of the rating scale, and to
assure that the sum of residuals in the analyses
was 0, each rating was divided by 9 and then
0.069 was subtracted.
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In the current experiment, items should elicit
high ratings for the item’s own correct category
and low ratings for the competing category. An
examination of Table 2 shows higher ratings for
high- vs medium- vs low-similarity items for the
items’ correct category; similarly, lower ratings
for high- vs medium- vs low-similarity items for
the items’ competing category. An ANOVA us-
ing Similarity (high, medium, low), Rating Type
(either for its own category or for the competing
category), and Block showed a significant effect
for the crucial 2-way interaction in these data:
Similarity X Rating Type [F(2,46) = 6.58, p <
.004, by subjects; F(2,5) = 6.69, p < .04, by
items]. Importantly, the effect of the 3-way in-
teraction was non-significant [F-values < 1, by
subjects and items]. This suggests that there
was a significant difference between the high,
medium, and low items and that the effect did
not vary significantly across the blocks of trials.
One-df F-tests were used to verify that there was
a significant difference between the mean high
and mean medium ratings for items’ own cate-
gory (.70 vs .66: F(1,23) = 13.94, p < .002, by
subjects; F(1,4) = 9.14, p < .04, by items), and
between the mean high and mean medium rat-
ings for items’ competing category (.29 vs .33:
F(1,23) = 7.61, p < .02, by subjects; F(1,4) =
6.03, p = .07, by items). As is evident in Ta-
ble 2, the differences between ratings for high
and medium similarity items clearly emerges in
block 1, at least for items’ own category. (Sub-
jects’ mean ratings for all the blocks are shown
in Figures 3A and 3B.)

Correct category High Med Low

Overall .70 .66 .62
Block 1 55 .50 .41
Block 2 .63 .47 46
Competing category

Overall .29 33 .37
Block 1 47T 47 .59
Block 2 37 83 .52

Table 2: Mean ratings. (High, medium, and
low groups are based on the overall similarity
estimates in Figure 1.)

Fit to models. Each of the models was first
assessed on a block-by-block basis — basically, 40
regression analyses for each model - using the

080 1 —a— pasm

—0— CE+ROTE
—— CLEVALIDITY

0.40 -

Sum Squared-Residuals

Figure 2: Fit of the three models.

models specified at (1), (2) above. This was to
allow for the most liberal fit of parameters for
each model and was equivalent to 40 hypothet-
ical experiments for which testing would simply
occur at the n-th block after n — 1 blocks of
training. A comparison of the three models is
shown in Figure 2 in terms of the residual er-
ror in the analyses done for each model at each
block. The general result here is that all three
models were quite close early on. After the first
5 blocks, the Cue Validity model began showing
a clear disadvantage, and generally, the Exem-
plar model showed a slight advantage over the
Cue + Rote model.

To provide a uniform account of the learn-
ing that took place, we fit the data from all 40
blocks of trials by reinterpreting each s; from
the Exemplar model and each a; from the Cue
+ Rote model as the logarithmic function in (3),
with constant; defining the starting value for the
redefined variable, s; or a;, and Irate; specify-
ing how quickly it changes over the 40 blocks of
trials. Figures 3A and 3B show the fitted Ex-
emplar model, with (3) substituted for the s;s,
superimposed on the human data. The overall
fit of the model was excellent, with R? = .90.
The overall fit of the Cue + Rote model (not
shown) was similarly very good, with R? = .89.
Figures 3C and 3D show how the reinterpreted
8; and a; parameters change over the 40 blocks
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of trials. An important diagnostic characteristic
of the Cue + Rote model is that it made iden-
tical predictions for high and medium similarity
items, for each of the 40 blocks of trials. An ex-
amination of human performance in Figures 3A
and 3B shows that this is a major flaw of the
Cue + Rote model; the Exemplar Model cor-
rectly distinguishes between all three levels of
similarity.

s;,a; = constant; + Irate; x In(block)

(3)
Discussion

A major focus of recent work in categoriza-
tion has been on learning, and a compelling in-
sight has concerned between-item similarity, as
first described by Medin & Schaffer (1978). As
learning proceeds, the s parameter in the Ex-
emplar model goes to 0. This reflects a reduc-
tion in the contribution of stored items that are
“similar” to the test item on the categorization
outcome. In the limit, the influence of other
items is nil. The Cue + Rote model helps us
to distinguish between the process in the Exem-
plar model and the buildup of rote associations.
If they were similar, we might expect the two
models to converge at some point in learning,
but they clearly do not when one uses the high-
and medium-similarity items to monitor the be-
havior of the models.

A question that has interested us is how the
three s values that we fit in Figure 3C contribute
to the categorization rating. A cursory examina-
tion of the distribution of the letter values in the
second and third positions shows the reliability
(conditional probability) of these letter values to
be 0.5 — i.e. they are distributed equally in both
categories. The first letter position is the only
informative one. Interestingly, when we com-
puted the predicted ratings using only the fitted
Exemplar model parameters for the second and
third letter positions, they were uniformly 0.5
for each item in each block. This means that
the work in the Exemplar model is being done
by the first letter position. This is somewhat
striking, since it shows that the Exemplar model
is fully consistent with predictions about cue in-
formativeness that would be made based on cue

validities. Yet, it is not simply cue validities,
as tested in the Cue Validity model, that are
being computed. Rather, the Exemplar model
goes deeper to uncover something about the hu-
man representations that cue validities cannot
capture.

At this point, it is not clear how relevant
these results will be to the Competition Model,
which is meant to account for children’s natu-
ral language learning. It could indeed be the
case that children do tend to pick up indepen-
dent cues and over time organize these into a
dominance hierarchy, as suggested recently by
McDonald & MacWhinney (1991). Given the
present result, though, it would seem worthwhile
to consider the notion of competition from the
perspective presented here.

The Exemplar model provides a mathemat-
ical formulation for category learning. It pro-
vides some insight into the characteristics of a
process model, however, nothing nearly as com-
plete as a blueprint. At this point it would
be important to look at available models that
have in recent tests demonstrated an excellent
ability to model category learning problems of
the sort presented here. Two models that we
have in mind are the “backpropagation” model
of MacWhinney, et al. (1989) and Kruschke’s
ALCOVE (1992). From our current perspective
we can only speculate that the ability of mod-
els in this class to effectively model human data
may depend crucially on the characteristics of
“hidden units”-i.e. that part of the model that
plays a major role in internal representations
that the model processes.
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